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Abstract
Humans (e.g., crowdworkers) have a remark-
able ability in solving different tasks, by sim-
ply reading textual instructions that define
them and looking at a few examples. Despite
the success of the conventional supervised
learning on individual datasets, such mod-
els often struggle with generalization across
tasks (e.g., a question-answering system can-
not solve classification tasks). A long-standing
challenge in AI is to build a model that
learns a new task by understanding the human-
readable instructions that define it. To study
this, we introduce NATURAL INSTRUCTIONS,
a dataset of 61 distinct tasks, their human-
authored instructions, and 193k task instances
(input-output pairs). The instructions are ob-
tained from crowdsourcing instructions used
to create existing NLP datasets and mapped
to a unified schema. Using this meta-dataset,
we measure cross-task generalization by train-
ing models on seen tasks and measuring gen-
eralization to the remaining unseen ones. We
adopt generative pre-trained language models
to encode task-specific instructions along with
input and generate task output. Our results
indicate that models benefit from instructions
when evaluated in terms of generalization to
unseen tasks (19% better for models utilizing
instructions). These models, however, are far
behind an estimated performance upperbound,
indicating significant room for more progress
in this direction.1

1 Introduction

We have witnessed great progress in solving many
NLP datasets through fine-tuning pre-trained lan-
guage models (LMs) (Peters et al., 2018; Brown
et al., 2020). More recent studies show tremendous
promise in generalization within the set of observed
tasks through multi-task training and unified en-
coding (Khashabi et al., 2020; Aghajanyan et al.,

˚Work done while interning at Allen Institute for AI.
1Dataset is available at https://instructions.

apps.allenai.org

grammar
check

tagging 
essential
phrases

question
typing

answering 
questions

Input: She chose to make a salad for lunch on Sunday.
Question: how long did it take for her to make a salad?

Crowdsourcing Instruction: List all 
the words that are essential for 
answering it correctly. [...] 

Crowdsourcing Instruction: Label 
the type of the temporal phenomena 
in the question. Example are  [...]
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making 
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? supervision with seen  tasks

Output: 
Event 

duration

? evaluation on unseen  tasks
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"yes" if the sentence contains any 
grammatical issues. Otherwise, [...]
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Answer the provided question based 
on a given [...]

Figure 1: We construct the NATURAL INSTRUCTIONS
dataset from crowdsourcing instructions and instances
of different NLP datasets. We study if models can learn
from seen tasks and generalize to unseen tasks given
their natural crowdsourcing instructions.

2021). However, cross-task generalization – gener-
alization to unseen tasks – has generally remained
under-explored. For example, can we supervise
a model with instances of grammar checking or
question answering tasks, yet expect it to solve
a different task like question typing (Fig.1). Evi-
dently, humans are capable of such generalizations;
an average human can follow natural language in-
structions to solve a variety of problems, as evident
by the success of crowdsourcing platforms (also
argued in Efrat and Levy (2020)). In this paper,
we study if models can generalize to unseen tasks
given their crowdsourcing instructions (Fig.1).

We build NATURAL INSTRUCTIONS, a dataset
consisting of natural crowdsourcing instructions
for various tasks and their instances. Training on
seen tasks Tseen in our dataset, we build a model
that learns to follow natural instructions that define
a task and perform tasks (i.e., mapping input to out-
put). Testing on unseen tasks Tunseen, we evaluate
if the model can perform unseen tasks solely from

3470

https://instructions.apps.allenai.org
https://instructions.apps.allenai.org


Task Instance-Level
Generalization

Task-Level
Generalization

Training
data X train, Y train pIt, X

train
t , Y train

t q

t P Tseen

Evaluation

xÑ y

where:
px, yq P pX test, Y test

q

px, Itq Ñ y

where:
px, yq P pX test

t , Y test
t q

t P Tunseen

(a) A comparison of task vs instance-level generalization It,
Xt and Yt indicate natural language instructions, input, and
output sets respectively for task t. In the conventional setup,
training and evaluation are done on the instances of the same
task. However, in task-level generalization, a model is expected
to generalize to unseen tasks, where Tunseen X Tseen“ H.

number of seen tasks

pe
rf

or
m

an
ce

 (R
O

U
G

E-
L)

0

10

20

30

40

50

10 20 30 40 50

No Instruction With Instruction GPT-3

(b) BART evaluation on unseen tasks (y-axis is perf. on Tunseen)
when supervised with seen tasks (x-axis is |Tseen|). A model us-
ing instructions (It) consistently improves with more observed
tasks. In contrast, models with no access to the instructions
show no sign of improved generalization. Details in §6.3.

Figure 2: The formal definition of generalization to unseen tasks (a) and a summary of its empirical outcome (b).

their instructions and without any task-specific la-
beled data (Table 2a; right). In contrast to the
instance-level generalization (Table 2a; left), our
model uses instruction as additional input, and eval-
uations are done on tasks that were not observed in
the training stage.

We compile NATURAL INSTRUCTIONS from
task instructions written by researchers for crowd-
sourcing existing NLP datasets. Such crowdsourc-
ing instructions often elaborate a variety of details
about how a task should (and should not) be done.
To provide a systematic study of various elements
of crowdsourcing instructions, we map them to
a unified schema to cover the most important el-
ements of task descriptions — such as definition,
constraints, positive and negative examples. We
collect tasks in NATURAL INSTRUCTIONS as min-
imal stand-alone steps provided to crowdworkers
to complete a downstream NLP task. For exam-
ple, tasks collected from QASC (Khot et al., 2020)
include sub-tasks about generating topic words or
combining facts, as well as answering multi-hop
questions. Therefore our dataset not only contains
typical downstream tasks in NLP, but also the inter-
mediate subtasks that are not well-represented in
the common benchmarks. The unified schema and
the collection of minimal subtasks enable training
LMs that can generalize across different tasks by
learning from instructions. In total, our dataset con-
sists of 61 distinct NLP tasks and 193k instances.

Our experimental results indicate that LMs learn
to leverage natural language instructions as they
show improved generalization to new tasks. For
example, a BART (Lewis et al., 2019) achieves
a 19% gain in terms of cross-task generalization
compared to a model not using instructions (§6).

Importantly, LMs can generalize better to unseen
tasks if they observe more tasks in training (Fig.2b).
This upward trajectory suggests the potential for
stronger cross-task generalizable models upon scal-
ing up the diversity of tasks represented in a meta-
dataset of task instructions. Despite the benefits
of instructions, we observe a sizable gap between
models’ generalization and their estimated upper-
bounds (6.4), encouraging the community to work
on this challenging problem.

Contributions: In summary, the contributions
of this work are as follows: (a) we introduce
NATURAL INSTRUCTIONS, a dataset of human-
authored instructions curated from existing well-
known datasets mapped to a unified schema, provid-
ing training and evaluation data for learning from
instructions; (b) we build models that can encode
instructions and show: (b.1) the benefit of cross-
task generalization by leveraging instructions; (b.2)
the importance of different elements of instructions
in the performance; (b.3) noteworthy headroom for
improvement on our benchmark, which hopefully
will motivate further work in this direction.

2 Related Works
Learning from instructions. There is recent lit-
erature on the extent to which models follow lan-
guage instructions (Hase and Bansal, 2021; Ye and
Ren, 2021; Gupta et al., 2021; Zhong et al., 2021).
For example, Efrat and Levy (2020) examine if
language models can follow crowdsourcing instruc-
tions with no further training. On the contrary, our
work is pursuing a fundamentally different goal:
creating a dataset of crowdsourcing instructions
and task instances and formulating cross-task gen-
eralization by training models on seen tasks and
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measuring generalization to the remaining unseen
ones. Weller et al. (2020) construct a crowdsourced
dataset with short question-like task descriptions.
Compared to this work, our instructions are longer,
more complex and natural since they were used to
collect datasets through crowdsourcing.

PromptSource and FLAN (Wei et al., 2022; Sanh
et al., 2022) are two concurrent works that pursue a
similar goal as ours. A key difference between our
work to these works is in terms of data collection
strategy. Our work uses natural instructions created
by NLP researchers before the dataset instances
were created by crowd workers, and hence it con-
tains the complete definition of each task (defini-
tion, things to avoid, negative examples, etc.). On
the other hand, instructions in the concurrent work
are collected retroactively based on the already-
available task instances. Our natural instructions
enable evaluating models on how they learn tasks
given different elements of task descriptions. (See
§A.5 for further comparisons.) Nevertheless, we
believe that all these approaches to constructing
instructions and task categories are complementary
and the community will benefit from considering
both towards solving the challenging problem of
cross-task generalization.

Prompt engineering. Constructing effective dis-
crete prompts for language models to perform NLP
tasks is an active area of research (Schick and
Schütze, 2021; Reynolds and McDonell, 2021; Liu
et al., 2021). Such prompts are often extremely
short and may not include a complete definition of
complex tasks. In contrast, our instructions encode
detailed instructions as they were used to collect the
datasets. Moreover, the goals are different: Most
prompt-engineering approaches seek prompts with
higher performance on a particular task, typically
through assumptions about their target task which
make them non-trivial to generalize to any other
task. However, our introduced meta dataset enables
the measurement of generalization to unseen tasks.

Beyond standard multi-task learning. Multi-
task learning is a long-standing goal for AI (Caru-
ana, 1997) and has led to successful models that
can support a wider range of tasks (McCann et al.,
2018; Raffel et al., 2020; Khashabi et al., 2020;
Mishra et al., 2020; Aghajanyan et al., 2021; Ye
et al., 2021). Most of the conventional setups in
the multi-tasking literature evaluate on instances
that belong to the tasks that are seen, i.e., their la-
beled instances were observed during training (1st

column of Table 2a). We augment this setup by
introducing natural language instructions which en-
able our models to bridge to tasks that were not
seen during training.

3 Defining Cross-Task Generalization

Here we formally define the problem setup for gen-
eralization across tasks. Each task t consists of
input/output instances pXt, Ytq and is described in
terms of its natural language instructions It.

Task-specific models. Standard supervised
learning algorithms use task-specific labeled
instances to learn a mapping from input x to output
y: Mpxq “ y for px, yq P pX train

t , Y train
t q and is

evaluated on the test instances of the same (or
similar) task pX test

t , Y test
t q. We refer to this as the

instance-level generalization (Table 2a; left).

Cross-task models. In this setup, the goal is to
learn a model M that at inference obtains the out-
put y given the input x and the task instruction It:
MpIt, xq “ y, for px, yq P pXt, Ytq. In contrast to
the task-specific models, no task-specific training
data is used to learn the mapping M . We collect
NATURAL INSTRUCTIONS (§4) to study this ques-
tion: can a model be trained to follow instructions
via training tasks Tseen and be generalized to follow
instructions for a task t1 P Tunseen. We refer to this
as a task-level generalization (Table 2a; right).

4 NATURAL INSTRUCTIONS

NATURAL INSTRUCTIONS consists of instructions
that describe a task (e.g., question answering) and
instances of that task (e.g., answers extracted for a
given question). Fig.3 shows an example instruc-
tion for the task of ‘generating questions that re-
quire an understanding of event duration’ accom-
panied with positive and negative examples that
contextualize the task. Here we introduce a schema
for representing instructions (§4.1) and then de-
scribe how existing datasets (their crowdsourcing
templates) are mapped into our schema (§4.2).

4.1 Instruction Schema

Instructions used in crowdsourcing various
datasets, are written by distinct authors for differ-
ent purposes, and they are different in a variety
of ways (see Appendix A.2 for their differences.)
We introduce a unified schema (Fig.4) to consis-
tently represent these diverse forms of instructions.
Our instruction schema is the result of our pilot
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Instructions for MC-TACO question generation task 

- Title: Writing questions that involve commonsense understanding of "event 
duration".
- Definition: In this task, we ask you to write a question that involves ?event 
duration", based on a given sentence. Here, event duration is defined as the 
understanding of how long events typically last. For example, ?brushing teeth?, 
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single 
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of 
answers in text. Instead, it has to be implied from what is given. In other words, 
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was 
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a 
temporal event duration question.

Positive Example

-Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned 
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

Example task instances

- Input: Sentence: It's hail crackled across the comm, and Tara spun to 
retake her seat at the helm.

-Expected Output: How long was the storm?

Instance

- Input: Sentence: During breakfast one morning, he seemed lost in thought 
and ignored his food.

-Expected Output: How long was he lost in thoughts?

Instance

...

Figure 3: An example from our dataset. Note that it
follows the schema provided in Fig.4. See Fig .11 for
more examples.

study conducted on a subset of datasets. Below we
describe the ingredients of this schema:

• TITLE provides a high-level description of a task
and its associated skill (such as question genera-
tion, answer generation).

• PROMPT is a single sentence command that often
appears before the input instance and connects it
to the instructions.

• DEFINITION provides the core detailed instruc-
tions for a task.

• THINGS TO AVOID contain instructions regard-
ing undesirable annotations that must be avoided.
These help to define the scope of a task and the
space of acceptable responses.

• EMPHASIS AND CAUTION are short, but impor-
tant statements highlighted in the crowdsourcing
templates which were intended to be emphasized
or warned against.

• POSITIVE EXAMPLES contain inputs/outputs
similar to the input given to a worker/system and
its expected output, helping crowdworkers better
understand a task (Ali, 1981).

• NEGATIVE EXAMPLES contain inputs/outputs

Instructions

Title Definition Things to avoid Emphasis/caution Prompt

# of positive examples

Input Output

Reason

# of negative examples

Input Output

Reason Suggestion

Positive Example Negative Example

Instances

# of instances

Input Output

Task Instance

Figure 4: The schema used for representing instruction
in NATURAL INSTRUCTIONS (§4.1), shown in plate no-
tation.

to emphasize THINGS TO AVOID by providing
examples that must not be produced.

• REASON provides explanations behind why an
example is positive or negative.

• SUGGESTION contains suggestions on how a
negative example could be modified to turn it
into a positive example.
The next section describes the process of map-

ping the raw instructions (designed for crowdwork-
ers) to our instruction schema.

4.2 Constructing NATURAL INSTRUCTIONS

4.2.1 Collecting Data
Collecting raw instructions and instances. We
use existing, widely adopted NLP benchmarks
that are collected via crowdsourcing platforms
and hence, come with crowdsourcing templates.
In the first step, we identified several datasets
and engaged with their authors to get their
crowdsourcing templates and raw data. This
yields the following datasets: CosmosQA (Huang
et al., 2019), DROP (Dua et al., 2019), Essential-
Terms (Khashabi et al., 2017), MCTACO (Zhou
et al., 2019), MultiRC (Khashabi et al., 2018),
QASC (Khot et al., 2020), Quoref (Dasigi et al.,
2019), ROPES (Lin et al., 2019) and Wino-
grande (Sakaguchi et al., 2020).2

Splitting crowdsourcing instructions into mini-
mal tasks. Almost all the crowdworking instruc-
tions include sequences of steps to guide crowd-
workers in creating task instances. For example,
QASC and MCTACO include 7 and 19 steps in
the data creation process, respectively. We divide

2We only focus on textual instructions and avoid datasets
that involve visual or auditory steps, mostly focusing on QA
datasets that were available to the authors.
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source dataset task

Quoref
(Dasigi et al., 2019)

question generation
answer generation

QASC
(Khot et al., 2020)

topic word generation
fact generation
combining facts
question generation
answer generation
incorrect answer generation

Table 1: Examples of the datasets and the tasks formed
from them. The extracted tasks are independent annota-
tion assignments in the crowdsourcing templates of the
datasets. The complete list is in Table 10 in Appendix.

category # of tasks # of instances

question generation 13 38k
answer generation 16 53k
classification 12 36k
incorrect answer generation 8 18k
minimal modification 10 39k
verification 2 9k

Total 61 193k

Table 2: Task categories and their statistics.

crowdsourcing instructions into their underlying
steps and generate multiple subtasks that are min-
imal and standalone.3 Table 1 shows subtasks ex-
tracted for Quoref and QASC. For example, the
main task in Quoref is to answer a question given a
context paragraph, but the crowdsourcing template
consists of two sub-tasks of question generation
and answer generation with their separate instruc-
tions. This process results in a more consistent
definition of tasks, enabling a successful mapping
of instructions into our schema, in contrast to the
work of Efrat and Levy (2020) that uses crowd-
sourcing instructions as-is.

In total, there are 61 tasks, which are categorized
into 6 semantic categories (Table 2). We assigned
these broad categories to the tasks to understand
their collective behavior in the experiments. It is
noteworthy that, despite the apparent resemblance
of the tasks included in the same category, any
pair of tasks are distinct. For example, while ques-
tion generation is part of Quoref, CosmosQA, and
QASC, each has its own separate variant of the
question generation task (see Fig.10 in Appendix).

4.2.2 Mapping Raw Instructions to Schema
We manually fill in the fields of our instruction
schema with the content from the crowdsourcing

3We eliminate tasks that involve model-in-the-loop.

instructions. For instance, parts of the raw instruc-
tions that are highlighted for emphasis are incor-
porated as part of our emphasis/caution field. The
modifications suggested in this step were applied
by one author and were verified by another author.4

Improving description quality and consistency.
We edit raw instructions to ensure their quality.
Particularly, we fix writing issues (typos, ambigui-
ties, etc.) and redact repetitions. While repetition
often helps in augmenting human understanding,
short and concise instructions are often more ef-
fective for computers due to their limited attention
span (Beltagy et al., 2020).
Augmenting examples and reasons. There is a
large variance in the number of examples provided
in the raw instructions. Instructions often include
more positive examples, or some instructions do
not include any negative examples (e.g., QASC).
Whenever possible, we add negative examples such
that each task has at least two negative examples.
Furthermore, not all raw instructions contain REA-
SONS or SUGGESTIONS for each of their examples.
For example, positive examples are usually not ac-
companied by explanations, and most datasets do
not include suggestions. We add them, wherever
such information is missing in the instructions.
Collecting input/output instances for subtasks.
Most of our tasks are the intermediate steps in
the crowdsourcing process. Therefore, to extract
input/output instances for each task, we need to
parse the raw annotations of crowdworkers for ev-
ery step. Since each dataset stores its annotations in
a slightly different format, extracting and unifying
such intermediate annotations can be non-trivial.
Verification. An annotator verified the quality of
the resulting data in consultation with dataset au-
thors. The annotator iterated on the authors’ feed-
back (avg of 3 iters) until they were satisfied.
Quality assessment. We ask independent human
annotators to answer 240 random instances (20 in-
stances from 12 random tasks, used later for our
evaluation §5.1). The subsequent evaluation of the
human-generated responses results in more than
96% accuracy, which indicates that humans can ef-
fortlessly understand and execute our instructions.

4.2.3 NATURAL INSTRUCTIONS Statistics
In summary, NATURAL INSTRUCTIONS consists
of subtasks each with a set of instructions and in-

4On average, the process of data curation for each task
takes around 5 hrs-34 hrs (details in Appendix; Table 9).
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put/output instances (Fig.3 and 4). The complete
list of instructions is included in the appendix. In
total, the dataset includes 61 tasks and 193k in-
stances. Table 2 shows data statistics for each task
category.5 On average, instructions contain 4.9
positive examples and 2.2 negative examples. The
longest element of instructions is usually DEFINI-
TIONS with 65.5 tokens and the shortest is TITLE

with 8.3 tokens (more statistics in Table 3).

statistic value

“title” length 8.3 tokens
“prompt” length 12.6 tokens
“definition” length 65.5 tokens
“things to avoid” length 24.1 tokens
“emphasis/caution” length 45.0 tokens
“reason” length 24.9 tokens
“suggestion” length 19.6 tokens
num of positive examples 4.9
num of negative examples 2.2

Table 3: Statistics of NATURAL INSTRUCTIONS

5 Problem Setup and Models

Here we define different cross-task generalization
settings (§5.1) and the models (§5.2).

5.1 Task Splits and Generalizations Types

Random split. This setup follows the common
practice in benchmarking NLP models with ran-
dom data splits. Here, two tasks from each task
category (Table 2) in NATURAL INSTRUCTIONS

are randomly selected for evaluation, and the rest
of the tasks are used for training. This leads to 12
tasks in Tunseen and 49 tasks in Tseen.6

Leave-one-out generalization. To better under-
stand the nature of cross-task generalization, we
study more restrictive settings of dividing training
and evaluation tasks.
leave-one-category: evaluates how well a model
generalizes to a task category if it is trained on
others – no task of that category is in Tseen.
leave-one-dataset: evaluates how well a model can
generalize to all tasks in a particular dataset if it is
trained on all other tasks – no task of that dataset
is in Tseen. This split prevents any leakage across
tasks that belong to the same source datasets.

5We limit the number of instances in each task to 6.5k to
avoid massive instance imbalance.

6Those tasks that do not accept a relatively reliable auto-
matic evaluation are excluded from Tunseen.

Prompt : Iprompt
t

Definition : IDefinition
t

Things to Avoid : Iavoid.
t

Emphasis&Caution : Iemph.
t

NegativeExample1´

input : Ipos. ex.
t , output : Ipos. ex.

t , reason : Ipos. ex.
t

PositiveExample1´

input : Ipos. ex.
t , output : Ipos. ex.

t reason : Ipos. ex.
t

input : x, output :”

Figure 5: Encoding instruction It, where Ict refers to
the text of a component c in the instruction schema.

leave-one-task: evaluates how well a model can
learn a single task by training on all other tasks.

5.2 Models

We build models using pre-trained LMs with
encoder-decoder architectures BART (Lewis et al.,
2019) for fine-tuning and GPT3 (Brown et al.,
2020) for few-shot experiments.

Encoding instructions and instances. For ev-
ery problem setup, we map a given instruction It
and an input instance x into a textual format and
decode an output y and obtain encpIt, xq. This en-
coding function is then fed to an encoder-decoder
model to predict y: M : encpIt, xq Ñ y.

Encoding instances follows a standard NLP
paradigm of mapping an input instance to text.
Each instruction It consists of multiple elements as
described in our instruction schema (§4.1). Here,
we map each element of the instruction to a tex-
tual format and append it before the input instance.
Fig.5 shows how we encode the full instruction.

To study the impact of each instruction element
for cross-task generalization, we compare these en-
codings: (1) PROMPT, (2) POS. EXAMPLES, (3)
PROMPT + DEFINITION, (4) PROMPT + THINGS

TO AVOID, (5) PROMPT + EMPHASIS , (6) PROMPT

+ POS. EXAMPLES, (7) PROMPT + + DEFINITION

+ POS. EXAMPLES, and (8) FULL INSTRUCTION.
Each of these (e.g., PROMPT and POS. EXAMPLES)
correspond to prompting setups in the recent litera-
ture (Le Scao and Rush, 2021; Lu et al., 2021).

BART. We use BART (base) (Lewis et al., 2019)
which allows us to fine-tune its model parameters.
This is an encoder-decoder architecture with 140m
parameters. For each setup, the input is encoded
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model ↓ evaluation set Tunseen →
random split

of tasks
leave-one-

category (QG)
leave-one-

dataset (QASC)
leave-one-

task (QASC QG)

BART (fine-Tuned) NO INSTRUCTIONS 13 6 37 20
FULL INSTRUCTIONS 32 17 51 56

GPT3 (not fine-tuned) FULL INSTRUCTIONS 24 33 22 33

Table 4: Cross-task generalization of BART under various splits (§5.1). Fine-tuned BART shows improved per-
formance when provided with instructions. It also archives better performance than GPT3, despite being over 1k
times smaller. All numbers are ROUGE-L.

using different instruction elements, trained on all
Tseen tasks, and evaluated on Tunseen (§5.1).
GPT3. As a comparison, we evaluate
GPT3 (Brown et al., 2020) which is a 175B
parameter autoregressive LM (ˆ1.2k larger
than BART) and has shown promising results in
mimicking demonstrations provided in its prompt.
We cannot fine-tune the parameters of this massive
model and use it as-is under its default setting
on the evaluation tasks in Tunseen (§5.1) using the
encoding introduced earlier.

6 Experiments
Evaluation metrics. We treat all of our tasks as
text generation problems and evaluate them with
automated evaluation metrics for text generation.
In particular, we use ROUGE-L (Lin, 2004) to au-
tomatically evaluate the generated outputs.7

Implementation details. For BART, our models
are trained for 3 epochs with a learning rate of 5e-5
for a given training split and input encoding. For
GPT3, we use the davinci-instruct engine
and produce outputs with greedy decoding, gener-
ating up to a maximum number of tokens of 16 (the
default value). We use the default stop condition
which is 2 newline tokens.8

6.1 Generalization Under Various Task Splits
Table 4 reports the results of the BART model train
and evaluated with various task splits (§5.1). For
comparison, we evaluate GPT3 which uses no fine-
tuning, unlike BART that is fine-tuned with the
Tseen tasks. The first column corresponds to ran-
dom split of tasks, while the remaining columns re-
port cross-task generalization results of the BART
model under leave-one-x splits (§5.1). For x “
category, the tasks in question-generation category

7Our experiments show that other metrics, e.g.
BLEURT (Sellam et al., 2020) are also correlated with
ROUGE-L, which has also been used in generative QA tasks.

8The relevant code is available at: https://github.
com/allenai/natural-instructions-v1

are held out during training. For x “ dataset, the
tasks that were extracted from the QASC dataset
were excluded from training. For x “ task, we
train a model on all tasks, except QASC question
generation task which is used for evaluation.
Instructions benefit cross-task generalization.
The results indicate that BART benefits from in-
structions in generalizing to new tasks, regardless
of task splits. For example, under random split, the
model using FULL INSTRUCTIONS results in +19%
gains over a model that is not using instructions.
This is particularly interesting for leave-one-cat-
egory-out split since the trained model can gen-
eralize to the tasks of a particular semantic cate-
gory, without being exposed to it. In comparison
to GPT3, the fine-tuned BART model that utilizes
instructions achieves a stronger performance de-
spite being ˆ1k smaller than GPT3. For exam-
ple, a BART models using FULL INSTRUCTIONS

achieves 8% higher performance than GPT3 under
random split of tasks.

Note that the absolute values in leave-one-
category are lower due to the difficulty of this setup
compared to, for example, the random split setup.
While all settings involve evaluating on tasks not
seen during training, the leave-one-category set-
ting enforces more dissimilarity among training
and evaluation tasks.

6.2 Generalization Under Instruction
Encoding and Task Categories

Table 5 reports the results of the BART model per
encodings of different instruction elements (§5.2)
and for different task categories. The table shows
that encoding more elements of the instructions
generally achieves better results than just using
PROMPT or POSITIVE EXAMPLES. It additionally
shows that the benefit of the instruction elements
seems to depend on the target task category. We ob-
serve that the question-generation (QG) tasks ben-
efit the most from POSITIVE EXAMPLES, whereas
in classification (CF), POSITIVE EXAMPLES are of
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model ↓ task category → QG AG CF IAG MM VF avg

BART
(fine-tuned)

NO INSTRUCTION 26 6 0 21 33 7 13

PROMPT 27 22 7 22 34 9 20
+DEFINITION 35 24 50 25 36 7 30Ò (+50)
+THINGS TO AVOID 33 24 4 24 58 9 25Ò (+25)
+EMPHASIS 38 23 16 26 49 3 26Ò (+30)
+POS. EXAMPLES 53 22 14 25 17 7 23Ò (+15)
+DEFINITION+POS. EXAMPLES 51 23 56 25 37 6 33Ò (+65)

POS. EXAMP. 55 6 18 25 8 6 20
FULL INSTRUCTION 46 25 52 25 35 7 32Ò (+60)

GPT3
(not fine-tuned) FULL INSTRUCTION 33 18 8 12 60 11 24 (+11)

Table 5: Cross-task generalization under random split (§5.1). Models show improved results when provided with
instructions. The numbers in parenthesis indicate absolute gains compared to ‘NO INSTRUCTIONS’ baseline.
Fine-tuned BART archives better performance than GPT3, despite being over 1k times smaller. Category names:
QG: Question Generation, AG: Answer Generation, CF: Classification, IAG: Incorrect Answer Generation, MM:
Minimal Text Modification, VF: Verification. All numbers are ROUGE-L (in percentage).

little help. We hypothesis this is because it is easier
to mimic question-generation based on a few ex-
amples, whereas it is difficult to define classes via
a few examples, where DEFINITION can be more
helpful. The models show little improvement in
verification (VF). We hypothesize these tasks are
inherently more difficult, partially because of their
distinctness from the rest of the tasks in the dataset.
We hope future work on this line will study a wider
variety of tasks and will improve our understanding
of such failure cases.

6.3 Generalization vs. Number of Seen Tasks

Fig.2b compares the impact of the number of seen
tasks for cross-task generalization. For supervi-
sion, we randomly sample a few tasks as Tseen
and evaluate on 6 tasks (one from each category).
(each point in the figure is averaged over 5 ran-
dom subsamples.) The results show that with NO-
INSTRUCTION encoding there is no tangible value
in observing more tasks. In contrast, the gener-
alization of the models that encode instructions
improves with observing more tasks. This is an
exciting observation since it suggests that scaling
up our dataset to more tasks may lead to stronger
instruction-following systems.

6.4 Analyses

Upperbound: Task-specific Models. For each
task, we obtain a task-specific model (§ 3) by
training BART separately on each task’s annotated
training data. We evaluate these task-specific mod-
els to obtain a loose estimate of upperbounds for
each task. On average, task-specific models score

Model ↓ Split ↓ w/ neg.
examples

w/o neg.
examples

BART

random 32 35
leave-one-x
ë x “ category (AG) 19 21
ë x “ dataset (Quoref) 37 37
ë x “ task (QASC QG) 56 57

GPT3 - 24 44

Table 6: Effect of excluding negative examples from
FULL INSTRUCTION encoding. Negative instructions
are surprisingly difficult for the models to learn from.

66% which is considerably higher than our mod-
els’ best generalization (32%; Table 4). This indi-
cates that there is considerable room for improving
generalization-based models that use instructions.

Impact of Negative Examples. Crowdsourcing
instructions often include negative examples to ex-
emplify undesirable responses. We study how neg-
ative examples in instructions affect cross-task gen-
eralization. Our cases study (Table 6) indicates
that the models work better without (w/o) nega-
tive examples, contrary to the previously-observed
benefits of other instructional elements (e.g., def-
inition, positive examples). This is aligned with
the previous studies (Xuan et al., 2020; Lin et al.,
2003) that discuss the challenges of learning from
negative examples. Interestingly, GPT3’s drop (44
vs 24) is more significant than BART (35 vs 32),
showing that BART can partly recover through the
training step.

Error Analysis. We randomly sample 30 erro-
neous predictions of our fine-tuned BART on 3 dis-
tinct tasks (Winogrande answer generation; QASC
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Category Helpful Fields Explanation

Question Generation (QG) 1. DEFINITION - Provides a holistic picture of the task.
2. EMPHASIS & CAUTION - Provides key information for solving the task.
3. POSITIVE EXAMPLES - This gives an idea of what is expected in the output.
4. NEGATIVE EXAMPLES - Good to know the common mistakes people do.

Answer Generation (AG) 1. PROMPT - It limits the exploration space to question spans.
2. DEFINITION - Provides a general understanding of the task.
3. POSITIVE EXAMPLES - Reason field is very helpful.

Classification (CF) 1. DEFINITION - The task is unclear without this field.

Incorrect Answer Generation (IAG) 1. DEFINITION - Helps understand the utility of such a task.
2. EMPHASIS & CAUTION - Source of some useful shortcuts.
3. POSITIVE EXAMPLES - Helps in understanding the type of questions asked.

Minimal Text Modification (MM) 1. THINGS TO AVOID - Provides critical information.

Verification (VF) 1. DEFINITION - Makes the task easy to understand.
2. THINGS TO AVOID - Contains useful tips required for this task.
3. POSITIVE EXAMPLES - Exemplifies task understanding.
4. NEGATIVE EXAMPLES - Helps avoid potential mistakes.

Table 7: Results of humans’ perceived importance of instruction elements. Our annotators, for example, find DEF-
INITION and THING TO AVOID to be helpful for Classification and Minimal Text Modification tasks, respectively.

question generation; MC-TACO incorrect answer
generation). We categorize the errors into common
patterns (Table 8).

error type BART

Generates a nonsensical/vague question 47
Generate an invalid question 8
Generates a yes/no question 4
Copies the given fact or a subset of it 3
Generates unanswerable questions 3

Table 8: Percentage of errors on QASC QG task. The
numbers do not sum to 100 since the error types are not
mutually exclusive.

Unlike GPT3 which generally suffers from gen-
erating redundant content irrelevant to instructions,
our BART model provides more control, however,
it can fail to generate proper output. Here are sev-
eral erroneous predictions from our model:
Generates a nonsensical/vague question
BART input:[...]input: Fact: graduations are used for measuring
the volume of substances. output: ?
BART output: How many substances are there in volume?

Copies the given fact or a subset of it
BART input:[...] input: Fact: If someone is not breathing, begin
with ventilation. output: ?
BART output: If someone is breathing, begin with ventilation.

Generates a yes/no question
BART input:[...] input: Fact: Lack of saliva hinders the break
down of food into components the body can absorb. output: ?
BART output: Does saliva hinders the break down of food into
components the body can absorb?

Perceived Impact of Instruction Elements.
We survey human annotators to find out the value
of instruction elements to humans. Except for the
negative examples which were shown to be diffi-
cult for models, we observe similar trends between

humans’ perceived value of those elements (Ta-
ble 7) and their contributions to the model perfor-
mance (Table 5). For example, humans viewed
DEFINITION and THINGS TO AVOID as necessary
fields for classification and minimal text modifica-
tion categories, respectively, which is compatible
with our empirical observations (e.g., PROMPT +
DEFINITION has the highest score on CF category
in Table 5).

7 Conclusion

In this paper, we studied the goal of building mod-
els that generalize to new tasks by encoding and
understanding crowdsourcing instructions. We in-
troduced NATURAL INSTRUCTIONS, which is built
based on existing crowdsourced datasets, that en-
ables building such models and systematically eval-
uate them. To the best of our knowledge, this is
the first work to show the benefit of instructions
towards improved cross-task generalization. Addi-
tionally, we observe that our proposed task has a
large room for improvement, which we believe will
bring more attention to building stronger models
that can generalize to a wider range of tasks.
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Supplemental Material

A Datasets and their Templates

A.1 Division of Crowdsourcing Instructions
into Minimal Tasks

Fig. 9 shows an example of how a task is divided
into multiple subtasks for the MC-TACO dataset.
MC-TACO has five categories (Event Duration,
Event Frequency etc.). Each category contributes
to 2 subtasks one for question generation and one
for answer generation.

Number of tasks in each dataset. Fig. 6 illus-
trates how the number of steps in the data creation
process varies across the 6 datasets. QASC and
MC-TACO contain a relatively higher number of
steps in the data creation process in comparison to
DROP, Quoref, CosmosQA, and Winogrande.

Figure 6: Variations in the number of subtasks

A.2 Analysis of Crowdsourcing Templates

We analyzed crowdsourcing templates of 6 datasets:
CosmosQA (Huang et al., 2019), DROP (Dua et al.,
2019), MC-TACO (Zhou et al., 2019), QASC (Khot
et al., 2020), Quoref (Dasigi et al., 2019), and Wino-
grande (Sakaguchi et al., 2020). Our intention be-
hind the analysis is to identify similarities and dif-
ferences across templates and subsequently decide
regarding the collection of more templates.

Size of the instructions. We observe significant
variation in size across the 6 datasets (Fig. 8). In
the case of QASC, the instruction size associated
with each step of the data creation process is very
high, whereas for Winogrande, it is exactly the
opposite– instruction size associated with each step
of the data creation process is very low. Instead,
the size of the common instruction (i.e., the in-
struction preceding the first step of the data cre-
ation process) is high in Winogrande; this is also
seen for DROP. The major mode of instruction

varies across datasets. Examples and instructions
associated with each step of data creation respec-
tively take up the majority of space in Quoref and
CosmosQA. MC-TACO relies on examples to ex-
plain the crowdsourcing task, while Winogrande
and QASC depend mostly on common instructions
and instructions associated with each step of the
data creation process respectively, to explain the
task to the crowdworker.

The number of positive/negative examples.
Variation in the occurrence of POSITIVE and NEG-
ATIVE Examples across datasets has been illus-
trated in Fig. 7. Only Winogrande provides an
equal number of POSITIVE and NEGATIVE Ex-
amples. QASC instructions do not contain any
NEGATIVE Examples. Overall, DROP instructions
consist of a relatively higher number of examples
than other datasets.

Figure 7: Variation in the number of positive and nega-
tive examples

Figure 8: Variation in the number of sentences in the
crowdsourcing instructions across datasets

Presence of reasons/suggestions in examples.
All datasets except QASC contain both POSITIVE

and NEGATIVE Examples. However, Quoref is
the only dataset to provide REASONS for all the
POSITIVE and NEGATIVE Examples. There are
explanations associated with each of the NEGA-
TIVE Examples, but the presence of explanations
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Figure 9: Dividing a data creation task into multiple
subtasks for the MC-TACO dataset.

associated with POSITIVE Examples varies across
datasets. Finally, Quoref is the only dataset to
provide SUGGESTIONS along with the REASONS

associated with the NEGATIVE Examples.

A.3 Qualitative Analysis

Writing Style. There are significant variation in
writing style across the datasets, even among those
datasets that have the common a objective (e.g.,
DROP, Quoref and QASC). DROP instructions say
"There is an AI running in the background which
will also try to answer the question. You won’t be
able to submit the question if the AI gives the same
response." The writing style in Quoref however is
different: "We also want you to avoid questions
that can be answered correctly by someone without
actually understanding the paragraph. ..."

Information. We observe that sometimes in-
structions of a dataset contain information that is
relevant to several other datasets, which do not con-
tain similar instruction information. For example,
Quoref, DROP and CosmosQA are datasets that
are all based on reading comprehension tasks. Cos-
mosQA contains a step in the data creation process
asking users to skip passages containing inappro-
priate or offensive content. This information is also
relevant to Quoref and DROP, but is not mentioned
in their respective instructions.

Hardness. In a typical crowdsourcing task, cer-
tain tasks may be harder than the others, often these
are the core tasks, e.g.: question generation, adver-
sarial data creation, etc. Additional information,
especially in the form of tips is always helpful in
solving these hard tasks. Figure 10 illustrates that
the task of question generation is stated differently
in Quoref, CosmosQA, and QASC. QASC men-
tions an easy and detailed way to create questions,
whereas CosmosQA mentions several different at-
tributes of a good quality question. Knowing about
the CosmosQA and QASC question generation pro-
cesses may help with data creation for Quoref and

Figure 10: Variation in Task Specification: Quoref con-
tains a single line instruction whereas the CosomosQA
contains a detailed instruction. QASC on the other
hand, contains examples along with instruction.

other such question generation tasks, where less ad-
ditional information is provided regarding question
creation.

A.4 Data Curation Effort

Table 9 shows the effort distribution in the data cu-
ration process of NATURAL INSTRUCTIONS. Step-
8 which involves parsing instances is the main
bottleneck in the data curation process. Table 10
shows the detailed structure of tasks in NATURAL

INSTRUCTIONS. Fig. 11 shows examples of four
different tasks in NATURAL INSTRUCTIONS.

step task time per
task

1 Identify crowdsourced dataset and
engage with their authors.

20-30 mins

2 Go through the template and under-
stand the task.

10-15 mins

3 Manually fill fields in the schema
with content from the template.

30-45 mins

4 Iterate over the instructions to en-
sure their clarity while eliminating
the repeated content. Fix writing is-
sue in examples, also typos etc.

2-3 hrs

5 Create negative examples if not
present. Add the missing explana-
tions to the examples.

1-2 hrs

6 Extract the input/output instances
from raw crowdsourcing annota-
tions.

0.5-24 hrs

7 Final inspections of the data to ver-
ify the data quality

0.25- 2hrs

Overall 6-34 hrs

Table 9: Steps taken to curate each task in NATURAL
INSTRUCTIONS and their estimated times.
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question generation (from MC-TACO) 

- Title: Writing questions that involve commonsense understanding of "event 
duration".
- Definition: In this task, we ask you to write a question that involves ?event 
duration", based on a given sentence. Here, event duration is defined as the 
understanding of how long events typically last. For example, ?brushing teeth?, 
usually takes few minutes.
- Emphasis & Caution: The written questions are not required to have a single 
correct answer.
- Things to avoid: Don't create questions which have explicit mentions of 
answers in text. Instead, it has to be implied from what is given. In other words, 
we want you to use "instinct" or "common sense".

- Input: Sentence: Jack played basketball after school, after which he was 
very tired.

-Output: How long did Jack play basketball?
-Reason: the question asks about the duration of an event; therefore it's a 
temporal event duration question.

Positive Example

- Input: Sentence: He spent two hours on his homework.
-Output: How long did he do his homework?
-Reason: We DO NOT want this question as the answer is directly mentioned 
in the text.

-Suggestion: -

Negative Example

- Prompt: Ask a question on "event duration" based on the provided sentence.

- Input: Sentence: Still, Preetam vows to marry Nandini if she meets him 
again.

-Expected Output: How long had they known each other?

Task Instance

answer generation (from Winogrande)    

- Title: Answering a fill in the blank question on objects
- Definition: You need to answer a given question containing a blank (_). Your 
answer must be one of the two objects mentioned in the question for example 
"trophy" and "suitcase".
- Emphasis & Caution: -
- Things to avoid: Your answer must not contain a word that is not present in 
the question.

- Input: Context word: fit. Question: The trophy doesn't fit into the brown 
suitcase because _ is too large.

-Output: trophy
-Reason: Answer is one of the objects ("trophy" and "suitcase") in the 
question. Since the blank is a "large" object that didn't fit the 
"suitcase", the answer must be "trophy".

Positive Example

- Input: Context word: fit. Question: The trophy doesn't fit into the brown 
suitcase because _ is too large.

-Output: bottle
-Reason: The issue is that the answer is not one of the objects present 
in the question which are "trophy" and "suitcase". Note that, a valid 
answer must be one of the objects present in the question.

-Suggestion: -

Negative Example

- Prompt: Answer a fill in the blank question that is based on a provided 
context word.

- Input: Context Word: Story. Question: After watching the movie Kelly 
began to work on her own story. The _ was for her research.

-Expected Output: movie

Task Instance

classification (from DROP) 

- Title: Finding the answer type of a reasoning question
- Definition: This task involves annotating the answer type to a given 
question that involve some kind of complex reasoning (including numerical 
reasoning). Note that the questions require looking at more than one part 
of the passage to answer. There are 3 possible answer types (i) spans, (ii) 
numbers and (iii) dates. If the answer can be found in the passage, label it 
as "span". If the answer is a number, label as "number". Similarly, label 
"date" if you think the answer to the given question is a date.
- Emphasis & Caution: -
- Things to avoid: -

- Input: Passage: The outbreak of the Seven Years' War in Europe in 1756 
resulted in renewed conflict between French and British forces in India. The 
Third Carnatic War spread beyond southern India and into Bengal where 
British forces captured the French settlement of Chandernagore in 1757. 
However, the war was decided in the south, where the British successfully 
defended Madras, and Sir Eyre Coote decisively defeated the French, 
commanded by Comte de Lally at the Battle of Wandiwash in 1760. After 
Wandiwash, the French capital of Pondicherry fell to the British in 1761. The 
war concluded with the signing of the Treaty of Paris in 1763, which 
returned Chandernagore [...] Question: Which french settlement did the 
British capture first, Chandernagore or Pondicherry?

-Output: Span
-Reason: The answer "Chandernagore" is a word from the passage. So, the 
answer type is "span".

Positive Example

-

Negative Example

- Prompt: What is the type of the answer corresponding to the given question? 
Number, Date, or Span?

- Input: Passage: Hoping to rebound from their loss to the Patriots, the 
Raiders stayed at home for a Week 16 duel with the Houston Texans. 
Oakland would get the early lead in the first quarter as quarterback 
JaMarcus Russell completed a 20-yard touchdown pass to rookie wide 
receiver Chaz Schilens. The Texans would respond with fullback Vonta 
Leach getting a 1-yard touchdown run, yet the Raiders would answer with 
kicker Sebastian Janikowski getting a 33-yard and a 30-yard field goal. 
Houston would tie the game in the second quarter with kicker Kris Brown 
getting a 53-yard and a 24-yard field goal. Oakland would take the lead in 
the third quarter [...] Question: How many field goals did Kris Brown kick?

-Expected Output: Number 

Task Instance

minimal text modification (from Winogrande) 

- Title: Modifying a fill in the blank question on persons
- Definition: You're given a fill-in-the-blank question where the answer is 
PersonX. You need to minimally change the given question so that the 
answer flips to PersonY. This task typically involves replacing one word i.e. 
the 'trigger word' by its antonym (e.g. changing from "sympathetic" to 
"stern").
- Emphasis & Caution: 1. Your question must contain at least 15 and at 
most 30 words. 2. Your question must have atleast 70% overlapping words 
with the given question 3. Your question must contain only one blank. 4. 
Make sure that PersonX and PersonY have the same gender. 6. In your 
question, PersonX and PersonY should be used only ONCE and PersonX 
should appear earlier than PersonY. [...]
- Things to avoid: 1. You should not change any content in the given 
question beyond a word or two i.e. the trigger word/phrase. [...] 

- Input: Context word: upset. Question: PersonX yelled at PersonY 
because _ was so upset about the news. Answer: PersonX.

-Output: PersonX comforted at PersonY because _ was so upset 
about the news.

-Reason: On replacing the trigger word "yelled" by its antonym 
"comforted", the answer flips to PersonY which is as per the given 
instruction. So, this is a valid question.

Positive Example

- Prompt: What is the type of the answer corresponding to the given 
question? Number, Date, or Span?

-Input: Context Word: day. Question: PersonX learned new 
organizational skills from PersonY because _ 's day schedule 
was very chaotic. Answer: PersonX

-Expected Output: PersonX learned new organizational skills 
from PersonY because _ 's day schedule was very efficient.

task instance

- Input: Context word: step. Question: PersonX was always ahead of 
PersonY, as _ walked with a quick step. Answer: PersonX.

-Output: PersonY was always ahead of PersonY, as _ walked with a 
quick step.

-Reason: Here, the issue is that the usage order of PersonX and 
PersonY has been changed in the generated question. Remember 
that, for a question to be valid, PersonX should appear earlier than 
PersonY.

-Suggestion: -

Negative Example

Figure 11: Examples from NATURAL INSTRUCTIONS. Each task follows the schema provided in Fig. 4.
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task id title source dataset task category

1 task001_quoref_question_generation Quoref Question Generation
2 task002_quoref_answer_generation Quoref Answer Generation

3 task003_mctaco_question_generation_event_duration MC-TACO Question Generation
4 task004_mctaco_answer_generation_event_duration MC-TACO Answer Generation
5 task005_mctaco_wrong_answer_generation_event_duration MC-TACO Incorrect Answer Generation
6 task006_mctaco_question_generation_transient_stationary MC-TACO Question Generation
7 task007_mctaco_answer_generation_transient_stationary MC-TACO Answer Generation
8 task008_mctaco_wrong_answer_generation_transient_stationary MC-TACO Incorrect Answer Generation
9 task009_mctaco_question_generation_event_ordering MC-TACO Question Generation
10 task010_mctaco_answer_generation_event_ordering MC-TACO Answer Generation
11 task011_mctaco_wrong_answer_generation_event_ordering MC-TACO Incorrect Answer Generation
12 task012_mctaco_question_generation_absolute_timepoint MC-TACO Question Generation
13 task013_mctaco_answer_generation_absolute_timepoint MC-TACO Answer Generation
14 task014_mctaco_wrong_answer_generation_absolute_timepoint MC-TACO Incorrect Answer Generation
15 task015_mctaco_question_generation_frequency MC-TACO Question Generation
16 task016_mctaco_answer_generation_frequency MC-TACO Answer Generation
17 task017_mctaco_wrong_answer_generation_frequency MC-TACO Incorrect Answer Generation
18 task018_mctaco_temporal_reasoning_presence MC-TACO Classification
19 task019_mctaco_temporal_reasoning_category MC-TACO Classification
20 task020_mctaco_span_based_question MC-TACO Classification
21 task021_mctaco_grammatical_logical MC-TACO Classification

22 task022_cosmosqa_passage_inappropriate_binary Cosmosqa Classification
23 task023_cosmosqa_question_generation Cosmosqa Question Generation
24 task024_cosmosqa_answer_generation Cosmosqa Answer Generation
25 task025_cosmosqa_incorrect_answer_generation Cosmosqa Incorrect Answer Generation

26 task026_drop_question_generation DROP Question Generation
27 task027_drop_answer_type_generation DROP Classification
28 task028_drop_answer_generation DROP Answer Generation

29 task029_winogrande_full_object Winogrande Minimal Text Modification
30 task030_winogrande_full_person Winogrande Minimal Text Modification
31 task031_winogrande_question_generation_object Winogrande Question Generation
32 task032_winogrande_question_generation_person Winogrande Question Generation
33 task033_winogrande_answer_generation Winogrande Answer Generation
34 task034_winogrande_question_modification_object Winogrande Minimal Text Modification
35 task035_winogrande_question_modification_person Winogrande Minimal Text Modification

36 task036_qasc_topic_word_to_generate_related_fact QASC Minimal Text Modification
37 task037_qasc_generate_related_fact QASC Minimal Text Modification
38 task038_qasc_combined_fact QASC Minimal Text Modification
39 task039_qasc_find_overlapping_words QASC Verification
40 task040_qasc_question_generation QASC Question Generation
41 task041_qasc_answer_generation QASC Answer Generation
42 task042_qasc_incorrect_option_generation QASC Incorrect Answer Generation

43 task043_essential_terms_answering_incomplete_questions Essential Terms Answer Generation
44 task044_essential_terms_identifying_essential_words Essential Terms Verification

45 task045_miscellaneous_sentence_paraphrasing Miscellaneous Minimal Text Modification
46 task046_miscellaenous_question_typing Miscellaenous Classification
47 task047_miscellaenous_answering_science_questions Miscellaenous Answer Generation

48 task048_multirc_question_generation MultiRC Question Generation
49 task049_multirc_questions_needed_to_answer MultiRC Classification
50 task050_multirc_answerability MultiRC Classification
51 task051_multirc_correct_answer_single_sentence MultiRC Answer Generation
52 task052_multirc_identify_bad_question MultiRC Classification
53 task053_multirc_correct_bad_question MultiRC Minimal Text Modification
54 task054_multirc_write_correct_answer MultiRC Answer Generation
55 task055_multirc_write_incorrect_answer MultiRC Incorrect Answer Generation
56 task056_multirc_classify_correct_answer MultiRC Classification
57 task057_multirc_classify_incorrect_answer MultiRC Classification
58 task058_multirc_question_answering MultiRC Answer Generation

59 task059_ropes_story_generation ROPES Minimal Text Modification
60 task060_ropes_question_generation ROPES Question Generation
61 task061_ropes_answer_generation ROPES Answer Generation

Table 10: Detailed set of tasks included in NATURAL INSTRUCTIONS
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A.5 Qualitative Comparison to PromptSource
We provide a comparison between our proposed dataset and PromptSource (Sanh et al., 2022). Prompt-
Source tasks are mainly focused on the common NLP downstream tasks (such as question-answering,
coreference, NLI, etc). However, since we create tasks from various steps (including the intermediate
steps) in a data creation process, our instructions contain a broader variety of tasks. For example, tasks for
chaining facts (task 38; Table 10), question typing (task 27; Table 10) or detecting inappropriate content
(task 22; Table 10) are unique additions in NATURAL INSTRUCTIONS. Additionally, since our instructions
were originally written by various researchers targeted for crowdworkers, they are elaborate and contain
the complete definition of each task. This is somewhat evident from observation that GPT3 leads to higher
performance on our instructions (Table 11). Last but not least, since we represent the instructions in a
structured format, we are able to ablate various elements of the instructions (definition, negative/positive
examples, etc.) and empirically quantify their contributions (§6).

Task Model PromptSource NATURAL INSTRUCTIONS

Quoref QA (002) GPT3-Instruct 43 47
GPT3 2 13

DROP QA (028) GPT3-Instruct 6 10
GPT3 2 3

Table 11: Comparing zero-shot performance of GPT3 on our instructions vs. PromptSource. The instructions
curated in this work, despite being lengthier, lead to higher performance.

task Natural Instructions PromptSource (Sanh et al. 2021)

MC-TACO 
(question 

answering) 

* Definition: In this task we ask you to write answer to a question that involves 
“absolute timepoint" of events, which is defined as understanding of when events usually 
happen. For example, "going to school" usually happens during the day (not at 2 A.M).
* Emphasis: Note that a lot of the questions could have more than one correct answers. We 
only need a single most-likely answer. Please try to keep your "answer" as simple as 
possible. Concise and simple "answer" is preferred over those complex and verbose ones.
* Prompt: Answer the given question on "absolute timepoint" of events.
    Sentence: {{ sentence }}
    Question: {{ question }}

Given the context, 
   {{sentence}} 
observe the following QA pair 
and check if the answer is 
plausible: 
   Question: {{question}} 
   Answer: {{answer}} 

Quoref 
(question 

answering) 

* Definition: In this task, you're expected to write answers to questions involving 
multiple refences to the same entity.  
Emphasis: The answer to the question should be unambiguous and a phrase in the paragraph. 
Most questions can have only one correct answer. 
* Prompt: Answer the given question. Your answer must be a single span in the passage.
    Passage: {{ passage }}
    Question: {{ question }}

Given the following context:
  {{context}}
answer the following question:
  {{question}}

CosmosQA 
(question 

answering) 

* Definition: Craft one correct answer to the question given in input. To make it more 
interesting, try to use non-stereotypical language if possible. Make sure your correct 
answer is reasonably long, consistent with the context, and requires common sense (instead 
of explicit extraction from the context.)
* Emphasis: 1. In your answer, use as few words as possible from the given context. 2. Use 
a response that is uncommon/non-stereotypical, so that it is less predictable. 3. To be 
less repetitive, please vary your language for each question.
* Prompt: Craft one correct answer to the question given in input.
    Context: {{ context }}
    Question: {{ question }}

{{ context }}
According to the above context, 
choose the best option to 
answer the following question.
  Question: {{ question }}
  Options: {{answer_choices}}

DROP 
(question 
answering)

* Definition: This task involves creating answers to complex questions, from a given 
passage. Answering these questions, typically involve understanding multiple sentences. 
Make sure that your answer has the same type as the "answer type" mentioned in input. The 
provided "answer type" can be of any of the following types: "span", "date", "number". A 
"span" answer is a continuous phrase taken directly from the passage or question. You can 
directly copy-paste the text from the passage or the question for span type answers. If 
you find multiple spans, please add them all as a comma separated list. Please restrict 
each span to five words. A "number" type answer can include a digit specifying an actual 
value. For "date" type answers, use DD MM YYYY format e.g. 11 Jan 1992. If full date is 
not available in the passage you can write partial date such as 1992 or Jan 1992. 
* Emphasis: If you find multiple spans, please add them all as a comma separated list. 
Please restrict each span to five words.
* Prompt: Write an answer to the given question, such that the answer matches the "anwer 
type" in the input.
    Passage: {{ passage }}
    Question: {{ question }}

Context: {{passage}}
I am trying to figure out the 
answer to the question from the 
above context. Can you tell me 
the answer?
  Question: {{question}}
  Answer:

Winogrande 
(pronoun 
resolution)

Definition: You need to answer a given question containing a blank (_). Your answer must 
be one of the two objects mentioned in the question for example "trophy" and "suitcase".
Things to avoid: Your answer must not contain a word that is not present in the question. 
Prompt: Answer a fill in the blank question that is based on a provided context word.
    Sentence: {{ sentence }}

The _ in the sentence below 
refers to {{option1}}. True or 
False?
    {{sentence}}

Table 12: Qualitative comparison of the task instructions for several shared tasks among NATURAL INSTRUCTIONS
and PromptSource (Sanh et al., 2022).
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B Building Baselines for NATURAL
INSTRUCTIONS

In this section, we provide several details on the
baselines included in our work.

B.1 Encoding of the instructions

According to our schema (§4.1), each instruction It
for the t-th task is a set that contains the following
fields:

It “
 

I title
t , Idef.

t , I avoid
t , I emph.

t , Iprompt
t , Ipos. ex.

t , Ineg. ex.
t

(

To feed the instances to LMs, we first encoder
them into plain text. Let encpI, xq define a function
that maps a given instruction I and input instance
x to plain text. Evidently, there are many choices
for this function. In our study, we consider the
following encodings:

NO-INSTRUCTIONS encoding. This encoding
is the conventional paradigm where no instructions
exist:

encpIt, xq :“input : x

output :”
(1)

PROMPT encoding. In this encoding, we append
the prompt message before the input:

encpIt, xq :“Prompt : Iprompt
t

input : x

output :”
(2)

PROMPT + DEFINITION encoding. In this en-
coding, the prompt message and the task definition
appear before the input:

encpIt, xq :““Definition : Idef.
t

Prompt : Iprompt
t

input : x

output :”

(3)

Intuitively, this encoding is more informative and
more complex than “prompt” encoding.

FULL INSTRUCTIONS encoding. This encod-
ing contains all the instruction content:

encpIt, xq :““Definition : Idef.
t

Prompt : Iprompt
t

Things to Avoid : Iavoid.
t

Emphasis&Caution : Iemph.
t

“NegativeExample1´

input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

reason : Ipos. ex.
t preasonq

NegativeExample2´

. . .

“PositiveExample1´

input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

reason : Ipos. ex.
t preasonq

PositiveExample2´

. . .

input : x

output :”

(4)

where encexpItq is an alternating encoding pos-
itive and negative examples. We include as many
examples as possible, before exceeding the input
limit.

POSITIVE EXAMPLES encoding. This encod-
ing contains only positive examples of the subtask
(no task description, etc).

encpIt, xq :“ input : Ipos. ex.
t pinputq

output : Ipos. ex.
t poutputq

. . .

input : x

output :”

(5)

Such example-only have been used in several re-
cent studies in the field (Zhao et al., 2021).
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C Analysis on Baseline Results

C.1 Comparison to Raw Instructions
We seek to understand the value of breaking the
tasks into sub-tasks and mapping them into our pro-
posed schema (§4.2). We compute performance
of raw instructions (first sub-task of four datasets),
in the same vein as (Efrat and Levy, 2020)’s setup.
We compare this to our FULL INSTRUCTION - NEG

EXAMPLES encoding. The results in Table 13 in-
dicate that GPT3 leads to higher performance with
our encoding (2nd row) compared to raw instruc-
tions (first row). Weak performance of LMs on raw
instructions aligns with (Efrat and Levy, 2020)’s
finding that “language model performs poorly”.

Quoref
MCTaco

CosmosQA

QASC

raw instructions 12.5 5.00 6.9 3.7
our schema 25.8 42.6 17.7 51.3

Table 13: Comparing GPT3 performance on raw
crowdsourcing instructions vs. our encoding. All num-
bers are ROUGE-L.

This might be partly due to the verbose language
of the raw instructions: the average length of the
raw instructions is 2.5k tokens, in comparison to
950 tokens for our encoding. While repetition often
helps human understanding, concise instructions
seem to be more effective for computers.
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