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Abstract
We consider the problem of generating natu-
ral language given a communicative goal and
a world description. We ask the question: is it
possible to combine complementary meaning
representations to scale a goal-directed NLG
system without losing expressiveness? In par-
ticular, we consider using two meaning rep-
resentations, one based on logical semantics
and the other based on distributional semantics.
We build upon an existing goal-directed gener-
ation system, S-STRUCT, which models sen-
tence generation as planning in a Markov de-
cision process. We develop a hybrid approach,
which uses distributional semantics to quickly
and imprecisely add the main elements of the
sentence and then uses first-order logic based
semantics to more slowly add the precise de-
tails. We find that our hybrid method allows
S-STRUCT’s generation to scale significantly
better in early phases of generation and that the
hybrid can often generate sentences with the
same quality as S-STRUCT in substantially
less time. However, we also observe and give
insight into cases where the imprecision in dis-
tributional semantics leads to generation that
is not as good as using pure logical semantics.

1 Introduction

We consider the problem of goal-directed natural
language generation (NLG) (Gatt and Krahmer,
2018). Here, the agent intends to communicate
some information about its world to another entity.
It has semantic representations for its world, its
goal, and a grammar to realize the language. Given
this input, the goal is to generate (realize) a syntac-
tically correct representation of the semantic goal
without omissions or additions (see Figure 1). This
task is different from open ended text generation
that fills in text after a prompt or the problem of
filling in a blank given some context.

Many previous systems for goal-directed NLG
use first-order logic (FOL) extended with the λ-
calculus to represent semantics (Church, 1985).
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Figure 1: Example of the goal-directed NLG task.
Given a world of facts, a grammar, and a communica-
tive goal, generate a grammatical sentence that unam-
biguously expresses the goal.

This semantic representation allows for very pre-
cise generation. However, the process is usually
slow, primarily because each step of the generation
process needs to check that the semantics of the
partially realized text is compatible with the even-
tual goal. This step typically involves checking
all possible compatible bindings, which is combi-
natorial. Using distributional semantic representa-
tions (Deerwester et al., 1990; Mikolov et al., 2013;
Pennington et al., 2014) may allow us to sidestep
this combinatorial process through checks via sim-
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ple algebraic operations. However, these semantics
may lack precision and introduce errors in gener-
ation with respect to the goal. In this paper we
ask whether it is possible to combine these two
different semantic representations in a single gener-
ation system that takes advantage of their strengths
while mitigating their weaknesses. In particular
our insight is that, early in the generating process,
we may not need to be very precise. We can use
distributional semantics to quickly add in the main
elements of a sentence and then use logical seman-
tics to fill in the details more slowly and precisely.
Our goal is to balance these elements to get a more
scalable generation system while not sacrificing
much, if any, expressiveness.

A rich literature exists for generation systems.
Overgeneration and ranking systems derive possi-
ble sentences from word lattices (Langkilde-Geary,
2002; Langkilde, 2000; Bangalore and Rambow,
2000). These word lattices are directed acyclic
graphs whose edges correspond to single words. To
generate a valid sentence, the system can traverse
a path in the lattice. Then, they rank the candidate
sentences using a language model. An alternative
approach is to view generation as an AI planning
problem. The planner can apply grammar “actions”
to take planning steps until it finds a state that ful-
fils some communicative goal. One such system
is SPUD (Sentence Planner Using Descriptions)
which answers questions using a knowledge base
(Stone and Doran, 1997). The CRISP system builds
on SPUD by applying an off-the-shelf planner in-
stead of using a greedy search (Koller and Stone,
2007; Koller and Hoffmann, 2021). This allows
for the application of search heuristics and other
advances in classical planning. A further improve-
ment is PCRISP which allows probabilistic actions
by translating probabilities into costs (Bauer and
Koller, 2010).

Other work uses neural networks with an en-
coder and/or decoder architectures. For instance,
a transformer will already have the semantics of
individual words as static word vectors (Vaswani
et al., 2017; Peters et al., 2018; Radford et al., 2018;
Devlin et al., 2019; Lewis et al., 2020). The over-
all meaning is calculated using attention and feed-
forward layers. These approaches create a complex
representation of the language model in the encoder
and employ a variety of sampling strategies in the
decoder. While they can be much faster than logic-
based systems, it can be difficult to guarantee that

the generated string will be consistent with some
world or goal. Recent work has started to explore
hybrid approaches in this space. One approach
adds logical constraints and plans to transformers
and LSTMs. DualEnc models are provided “con-
tent plan” traversals through RDF graphs as input
(Zhao et al., 2020). While these plans provide the
model with the information that is supposed to be
included in the generated text, there is no guarantee
the model will include all of it or that the informa-
tion is truly consistent with the original RDF graph.

Rather than providing a plan before generation,
NeuroLogic Decoding constrains generated trans-
former output based on logical constraints during
the decoding step (Lu et al., 2021). By leverag-
ing predicate logic, this allows the output to be
more precisely constrained to include any neces-
sary true facts and leave out any extra, potentially
incorrect, information. This precision is added at
a cost asymptotically equivalent to a conventional
beam search. However, the logical constraints in
this work are syntactic rather than semantic, and
ensure that, for example, certain words are not used
by the decoded string.

In contrast to such approaches, in our work,
we modify S-STRUCT (McKinley and Ray, 2014;
Pfeil and Ray, 2016), a planning based system for
goal-directed NLG, to use both distributional as
well as logical semantics. S-STRUCT is described
in detail in the next section. This system models
generation as planning in a Markov decision pro-
cess (MDP). We show experimentally that our ap-
proach scales better than pure logical semantics in
many cases. We also identify and discuss tradeoffs
that arise from the use of distributional semantics,
that in some cases lead to worse generation quality.

2 S-STRUCT

Scalable Sentence Tree Realization using UCT
(Upper Confidence bounds applied to Trees), or
S-STRUCT, is a planning based NLG system that
generates single sentences, using a world of facts,
a communicative goal, and a grammar. The world
and goal are both specified semantically in FOL.
The world describes all entities and relations known
to the generator while the goal specifies informa-
tion to communicate. The grammar consists of
a semantically annotated probabilistic lexicalized
tree adjoining grammar (PLTAG) derived from the
XTAG project (XTAG Research Group, 1998).
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Figure 2: S-STRUCT algorithm. UCT is used to find
the best action (PLTAG tree substitution/adjoin) at each
step until the goal is satisfied (reward is maximized).

Before S-STRUCT begins the generation pro-
cess, it finds an expanded communicative goal. The
expanded goal includes any extra information nec-
essary to make the goal entities unambigiuous from
the other entities in the world. Then, S-STRUCT
prunes the grammar of lexicalized trees that, given
the goal, will never be used. The resulting pruned
grammar will be able to express relations between
goal entities and will contain trees that satisfy se-
mantic constraints that may not be explicitly men-
tioned in the goal (e.g., a complementizer “that”
tree). It will also be able to express at least one
referring-expression for each unique entity (e.g., if
we need to generate a “cat” entity, we may need to
clarify whether it is black or brown).

We observe that once trees are pruned, any as-
sociated entities and relations in the world can be
pruned as well. This world pruning reduces the
space of possible bindings, which we have empiri-
cally verified results in a significant speed increase
without impacting accuracy. We call this version
of S-STRUCT with world pruning S-STRUCT v2.

Once this pruning is completed, to generate a
sentence, S-STRUCT uses the UCT (Kocsis and
Szepesvári, 2006) procedure (see Figure 2) to plan
in an MDP. States in the MDP are semantically an-

notated partial trees reflecting the partial sentence
constructed so far. Actions adjoin or substitute a
single PLTAG tree. At each step, S-STRUCT ranks
actions to add a new fragment to the current partial
tree. If there are unexplored actions, it chooses
such an action to explore. Otherwise, it chooses
actions based on the UCT ranking, which balances
explore/exploit criteria.

To estimate the downstream quality of the ac-
tion, S-STRUCT looks ahead by a number of
exploratory actions that are uniformly sampled.
For each action, S-STRUCT finds the reward of
each state reached, propagating the rewards up the
search tree. These rewards identify the best action
at a state. The reward is largely determined by how
well the partial sentence matches the semantics of
the goal. To do this, S-STRUCT considers bind-
ings between entities in the partial sentences and
the goal. Here, a valid binding between entities
is one in which the stated semantic information
does not disagree (e.g., we have a cat in the partial
sentence that is white and a cat in the goal that is
white and long-haired). In the reward, S-STRUCT
only receives credit when a goal entity has a valid
biding to a partial-sentence entity.

The reward also considers the number of enti-
ties missing a determiner, the number of partial-
sentence entities with no goal bindings, the number
of world bindings, and the length of the sentence.
The first two characteristics penalize missing in-
formation. The number of world bindings reflects
potential ambiguity in the sentence. Finally, the
last criterion reflects the fact that given two sen-
tences, both of which express the goal semantics
precisely, we prefer the shorter sentence.

The action search procedure returns the action
with the best reward. S-STRUCT applies this ac-
tion and updates the partial sentence. If a terminal
state is reached in which adding more actions will
not improve the reward or the generation process
runs out of time, then this sentence is returned.
If not, the action search repeats. In subsequent
searches, we may be able to reuse parts of the
search tree of exploratory actions as some will still
be relevant in the new state.

To improve search efficiency, the search in S-
STRUCT is carried out in two phases. First, only
substitution actions are considered until all substi-
tution nodes in the PLTAG tree are filled. Then,
adjoin actions (and some substitutions if required
by the added adjoins) are considered to complete
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the generation. This reduces the branching factor
of the search considerably, speeding up the process.

3 HS-STRUCT: S-STRUCT with Hybrid
Semantics

In this section, we describe how we modify S-
STRUCT to use distributional semantics. We first
describe how we compose distributional seman-
tics and how the distributional reward is com-
puted. Then, we describe additional modifications
required by using imprecise semantics in the search,
including a step to correct word ordering errors and
using a beam search instead of a greedy search in
UCT.

3.1 Distributional Composition

We must be able to compose embeddings to obtain
the semantics of the goal and each state. We first
note that we cannot use order-dependent composi-
tion of word vectors to obtain state or goal embed-
dings. Say our goal is to express dog(x)∧cat(y)∧
rat(z) ∧ chase(y, z) ∧ chase(x, y). If we have
generated to the point of, for example, “dog chase
cat,” then we can use an order dependent method
to compose the semantics of the dog, chase, and
cat vectors to represent the fragment. However, the
logical goal does not order relations in a meaning-
ful way. In fact, figuring out the syntactic structure
to realize the goal is a problem S-STRUCT itself
solves. So, to compose the goal embedding, we
will need a method that is not order dependent. To
be consistent, we need to apply the same method
for state embeddings as well.

In our approach, we find goal or state embed-
dings by averaging the components. In other words,
we map the entities and relations in our goal or
state to word embeddings (for example, the rela-
tion “chase” is mapped to the vector for the word
chase) and then average these to create an embed-
ding for the state or the goal.

3.2 Distributional Reward

For each partial state, we need to compute a reward
that measures how close we are to realizing the goal.
This is described in Algorithm 1. First, we calculate
the distance between the partial state and the goal
as the Euclidean norm of the difference between the
embeddings (line 2). We next add a penalty for the
number of missing or extra conditions (line 3) and
the sentence length (line 4). Thus the best states
will be short sentences that do not have missing or

extra conditions and that have embeddings close
to the goal. C1, C2 and C3 are weight factors
that modify the relative importance of these factors
(hand-selected as 100, 15 and 10 and consistent
in all experiments). Finally, for S-STRUCT we
need the reward to be positive. This is because
S-STRUCT’s tree policy chooses actions in part
based on the total reward over all the times it has
been applied. Here, a negative reward will penalize
actions that we see more often. To fix this, we add
a large constant to the reward (line 1), making the
reward always positive. This reward shaping will
not affect the optimal plan (Ng et al., 1999).

Algorithm 1: calcReward
Input: Partial Sentence S, World W , Goal

G
1 score← Rmax

2 score −= C1‖S.Sem−G.Sem‖
3 score −= C2|G.conds− S.conds|
4 score −= C3|S.sentence|
5 return score

3.3 Integrating Distributional and Logical
Semantics

Each semantic representation has its strengths and
weaknesses. How should we integrate the two?
First, consider an alternative in which we only use
distributional semantics. This version (let us call
it “PureDist”) would be fast, but runs into several
issues. First, in the absence of word-order-sensitive
composition, PureDist cannot identify which sen-
tences have the wrong word ordering.

Additionally, a problem arises with the stopping
criterion. Generation should stop when not taking
an action leads to a better reward than taking one.
For PureDist, since our embedding vectors are high
dimensional, there are many degrees of freedom to
slightly improve the reward. So, while S-STRUCT
can only get reward for fulfilling a goal relation or
adding a determiner to an entity once, PureDist can
keep generating by adding new, potentially repeti-
tive words that are not adding any new information
but instead are moving the state slightly closer to
the goal vector. Without a strong way to determine
whether or not the current state has reached the
goal, PureDist’s generation quality is more heavily
tied to the balance of the sentence length penalty.
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If the sentence length penalty is too high, PureDist
will cut generation off before useful information
has been expressed. If it is too low, generation
can continue to add irrelevant words that move the
state slightly closer to the goal. As a result, using a
purely distributional semantic search is not a viable
alternative (this is validated in our experiments).

This leaves two options: we can use distribu-
tional semantics to start, and then switch to logical,
or vice versa. Of these, the first is more suitable.
The key intuition is that early in generation, the
work done to compute bindings and to validate par-
tial sentences in S-STRUCT is overkill. A less pre-
cise semantic representation could do just as well,
while being more efficient. Further, by switching to
logical semantics after distributional we will have
the opportunity to correct word ordering errors.
Conversely, using logical semantics in the early
phase means we are potentially doing unnecessary
work. Therefore we decide to use distributional
semantics to start, and then switch to logical se-
mantics.

When should we switch? As mentioned above,
S-STRUCT has a natural transition point. The first
part of the search focuses only on substitution ac-
tions (a “substitution phase”) before switching to
an “adjoin phase.” We choose to use distributional
semantics in the substitution phase. In our example
in Figure 3, we use our distributional reward in the
initial and substitution actions getting us to “cat
chased dog.” At this point, we cannot add more in-
formation without adjoin actions, so we can move
to the next phase.

3.4 Swap Actions

Since our state/goal composition is word order in-
dependent, the output of the first phase may have
ordering errors, such as in Figure 3b. We address
this by adding a Swap phase in between the distri-
butional and logical semantic phases. In this phase,
we find all pairs of entities in the tree output by
the distributional phase that have the same type
(such as a noun phrase), and consider the trees that
result if we exchange them. For each such tree,
we compute the original S-STRUCT reward with
logical semantics. This means that we consider ex-
act bindings of the sentence entities to their world
and goal counterparts to determine the reward of
the sentence. We greedily apply the best swaps
we can find until doing no swap yields a better re-
ward. Unlike with Dist, Swap will only get credit

for adding an entity if it is being used correctly,
meaning Swap will get a better reward when word
ordering mistakes are fixed.

3.5 Beam Search

While Swap actions can mitigate some of the mis-
takes caused by the first phase, they may not ac-
count for all possible errors, such as the use of
incorrect substitutions. So we use a beam search
within the UCT search of the first phase of HS-
STRUCT instead of greedily selecting the best state.
This means HS-STRUCT can keep track of multi-
ple states that may seem sub-optimal when using
the distributional reward but will be more success-
ful under the formal logic reward. The resulting
beam after the first phase is passed into Swap as
described above. Each partial state is processed
by Swap, and the best state found is then input
to the third phase, which is regular S-STRUCT,
to perform adjoins and finish the generation pro-
cess (shown in Figure 3c and 3d). By adding this
beam search, we allow HS-STRUCT to partially
underspecify substitution decisions during the dis-
tributional phase.

To keep generation efficient, we split trials of
exploratory actions between all states in the beam.
In other words, each beam search state uses an
equal portion of the overall exploratory actions,
keeping the total number of exploratory actions the
same as without the beam search.

3.6 HS-STRUCT Algorithm

Our HS-STRUCT algorithm is shown in Algo-
rithm 2. We begin by using distributional seman-
tics (Dist) from the initial (empty) state. This
search follows the general structure of the origi-
nal S-STRUCT search (Figure 2) though with a
beam search (line 4 and Figure 3a). We only al-
low initial and substitution actions in this phase
as we are only trying to block out the main ideas.
Then, we consider swap actions to correct for word
order issues (lines 5 and 6 and Figure 3b). Now
that we have our swapped states, we down select
into a single state for the remainder of generation
(line 7). Finally, we use our original FOL-based
S-STRUCT to add any details that would have re-
quired adjoin actions to finish out our generation
(line 8 and Figures 3c and 3d).
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Figure 3: Example of HS-STRUCT generation of “The brown dog chased the cat.” (a) Using the distributional
reward, we do the initial “chased” action and substitute the “dog” and “cat”. (b) We use a swap action to fix the
word ordering mistake. (c&d) Using the logical reward, we adjoin the “brown” detail and the determiners.

Algorithm 2: HS-STRUCT
Input: Grammar R, World W , Goal G,

NumTrials N , Lookahead D,
Timeout T , Beam Width B

1 R← pruneGrammar(R)
2 W ← pruneWorld(W,R)
3 states← a size B empty list
4 states← Dist(R,W,G,N,D, T, states)
5 for i in [1,B] do
6 states[i]← Swap(states[i])

7 state←
argmaxs∈states calcLogicalReward(s)

8 bestSentence, state←
FOL(R,W,G,N,D, T, state)

9 return bestSentence

4 Empirical Evaluation

Our primary hypothesis is that integrating distribu-
tional and logical semantics through HS-STRUCT
will scale better (i.e. generate better quality sen-
tences in less time) than either S-STRUCT v2 (S-
STRUCT with world pruning), PureDist or using
distributional semantics after logical semantics. We
will also evaluate the impacts of design choices
such as the beam search. We have not compared
against contextual language models in our experi-
ments because, as described in Section 1, the most
related such approaches that we know of still do
not address the goal-directed NLG task.

Data. We follow prior work and focus on gen-
eration of English sentences, pulling world facts
and goals from the WSJ section of the Penn Tree-
Bank corpus (McKinley and Ray, 2014; Marcus
et al., 1999). The sentences were parsed with
an LTAG parser (Sarkar, 2000; XTAG Research
Group, 1998) to find the best parse trees for each

Test Set Goals World World Avg. Goal Avg. Goal
Entities Relations Entities Relations

Simple 32 48 36 1.50 1.13
Complex 750 1224 1245 1.63 1.66

Table 1: Summary statistics for evaluation datasets

sentence. A subset of the most frequently occur-
ring XTAG trees were chosen and manually seman-
tically annotated with FOL semantics. Together,
these trees could parse 74% of the corpus. For
our distributional semantic representation, we use
pre-trained OLIVE word vectors trained on the
Wikipedia English corpus (Seonwoo et al., 2019).
While HS-STRUCT is agnostic to the distributional
semantic representation used, OLIVE vectors are
trained to have additive compositionality, so we
know we can compose our partial sentence and
goal embeddings. Some sentences in our dataset
had to be removed because of the lack of OLIVE
vectors to cover them.

For our experiments, we choose goals from the
semantic annotations of sentences in the dataset,
with the world being a combination of facts from
the semantics of all goals (sentences). These
worlds and goals are split into a “simple” and a
“complex” dataset based on the complexity of the
goals with the complex dataset having more world
entities, relations, average relations and entities
in the goal (Table 1). These datasets are made
from non-overlapping goals. An example simple
goal is bank(z1) ∧ acquiesced(z1) which could
mean “The bank acquiesced.”, and an example
complex goal is siliconvalley(z1) ∧ sigh(z2) ∧
relief(z3) ∧ heaved(z1, z2) ∧ of(z2, z3) which
could mean “Silicon Valley heaved a sigh of relief.”
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Figure 4: Comparison of reward gained or ROUGE-1 score and time to generate using various versions of S-
STRUCT. (a-d) and (e-f) use the simple and complex datasets respectively. The x-axes show time in seconds and
the y-axes show the percentage of the best metric at a given time. In all cases, scores are averaged over all goals
in the given dataset. (a) and (e) show the overall reward gain on HS-STRUCT vs other versions of S-STRUCT. (b)
and (f) similarly show the changes in ROUGE-1 score. (c) and (g) look at the effect of using the beam search. (d)
and (h) show the effect of splitting or not splitting trials between stored states of HS-STRUCT.

Metrics. There are two possible ways to evalu-
ate our generation quality: syntactic and semantic.
The reward assigned by S-STRUCT v2 and HS-
STRUCT is primarily based on a semantic match
between the goal and the partial sentence. How-
ever, in some cases a semantic difference can be
misleading if the syntactic realization is similar.
So, in addition to our semantic reward, we also
evaluate our sentences using ROUGE-1 (Recall-
Oriented Understudy for Gisting Evaluation)(Lin,
2004). ROUGE is designed to evaluate summaries
of texts by comparing them to ideal summaries cre-
ated by humans. We use it to compare the result
of each approach after each action to the "ideal"
sentence with the best possible reward.

All experiments were implemented in Python
3.7.1. They were run on a single core of an Intel(R)
i5-8250 processor clocked at 1.60GHz with access
to 8GB of RAM. The results of our evaluation are
shown in Figure 4a to 4h. In each case the x-axis
is time in seconds and the y-axis is the percentage
of the best metric at a given time. The results are
averaged over all goals in each dataset.

4.1 HS-STRUCT vs. PureDist

As we can see in Figure 4a, HS-STRUCT gains
a much higher reward than the method that only
uses the distributional reward, PureDist. As we
discussed in Section 3.3, there are a number of is-

sues like word ordering and stopping criteria which
makes generation with only distributional seman-
tics difficult. This result provides empirical val-
idation of these observations. Because PureDist
performed so poorly on even simple goals, we did
not run it on complex goals.

4.2 HS-STRUCT vs. Reversed Hybrid

We also consider reversing the order of distribu-
tional and formal semantics within the hybrid,
starting with the logic-based FOL and then us-
ing the distributional Dist. As we can see in Fig-
ure 4a, reversed hybrid is less efficient than either
HS-STRUCT or S-STRUCT v2. Reversed HS-
STRUCT needs to spend twice the time switching
between semantic systems and potentially much
more time completing swap actions than regular
HS-STRUCT. While we chose the sentence length
tradeoff hyperparameter to allow for the reversed
HS-STRUCT to achieve a good reward, in gen-
eral using a distributional reward for adjoin actions
leads to issues with deciding when to cut genera-
tion off. Overall, this shows that simply reversing
HS-STRUCT does not yield an improvement in
performance.

4.3 HS-STRUCT vs. S-STRUCT v2

On the simple dataset (Figures 4a and 4b), HS-
STRUCT initially creates sentences with a higher
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syntactic and semantic quality faster than S-
STRUCT v2. The final syntactic quality (4b) is
the same as S-STRUCT v2, though there is a small
gap in the final semantic quality. On the complex
dataset, (Figures 4e and 4f), while HS-STRUCT
again produces sentences with a higher reward
faster than S-STRUCT v2 early on in generation.
But there is a decrease in the final metric obtained
by HS-STRUCT both syntactically and semanti-
cally by about 12% syntactically and about 17% se-
mantically. The reason for the gap in the final met-
ric values is analyzed further below. Overall, we
find that HS-STRUCT sometimes produces lower
quality sentences on high complexity goals than
S-STRUCT v2 given enough time. However, even
when the goal is complex, HS-STRUCT can pro-
duce higher quality sentences than S-STRUCT v2
under a short time limit, and consistently achieves
this when the goal is simple.

4.4 Effect of Beam Search
Figures 4c and 4g show the effect of using a
beam search in the distributional phase of HS-
STRUCT as opposed to a greedy search. On the
simple dataset (Figure 4c), allowing HS-STRUCT
to choose between stored states in the formal logic
phase improved the average final reward by 22%.
On the complex dataset, this change resulted in
a 154% increase. This indicates as well that the
distributional phase may not be very accurate at
selecting the single best state in the search process.

When a beam search is used, a decision must be
made how to allocate the UCT rollouts to different
states in the beam. Instead of giving each state the
same number of trials as the single, greedy search
approach, which would make the beam search
much less efficient, we hypothesize that we can
split the overall number of trials between each state
to receive a comparable reward in significantly less
time. As we can see in Figure 4d, splitting the
number of trials has a very significant effect on
the speed and quality of generation on the simple
dataset. Simply providing each state in the beam
the same number of trials as greedy search slows
generation considerably. Again in Figure 4h, we
observe that not splitting trials slows generation
substantially in the early phases while having no
significant impact on quality. Increasing the num-
ber of trials to 2x also slowed generation with no
significant increase in quality. Thus, a broad and

shallow search seems well suited to the early phase
of generation, which agrees with our intuition.

4.5 Discussion

Our results show that HS-STRUCT can produce
sentences that are around 12% lower in terms of
syntactic quality than S-STRUCT v2 under no time
constraints. In this section we discuss why we
see this gap and whether it is due to fundamental
aspects of distributional semantics.

The reward gap between HS-STRUCT and S-
STRUCT v2 results from a number of issues such
as incorrect parts of speech, incorrect verb valence,
and over-generation. These errors can co-occur, but
we report them without overlap, prioritizing part of
speech errors. This means that the reported error
frequencies are a lower bound for every error type
except part of speech.

Parts of Speech. The same word may be used
as different parts of speech. This is important in
generation, but distributional semantics has diffi-
culty telling this apart. A common problem for
HS-STRUCT was using an entity as a verb. These
mistakes will not be fixed by the Swap phase and
will not allow for valid bindings in the logical
phase. This means that we cannot recover if all
beam search states contain this error. S-STRUCT
v2 does not make such mistakes, since it does not
use distributional semantics.

On the complex dataset, these part of speech mis-
takes account for about 50% of cases in which HS-
STRUCT earns a worse reward than S-STRUCT
v2. Such errors could potentially be fixed with im-
proved embeddings considering different vectors
for different parts of speech.

Verb Valence. Our grammar has multiple pos-
sible verb trees which will be lexicalized with the
possible verbs in our lexicon. This means that,
as appropriate, verbs can lexicalize multiple trees,
representing the different number of arguments the
verb could take (also known as the verb’s valence).
In S-STRUCT, this valence distinction will not
cause issues. Using the wrong tree with the cor-
rect root will not count toward the goal satisfaction
portion of the reward since the number of argu-
ments in the semantic representation has to match.
For HS-STRUCT, however, the reward calculation
does not explicitly check for the correct valence
as the verb is the same, with the same embedding,
so the same goal distance will be given to partial
sentences using either tree.
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In the simple dataset, this leads to a partially
artificial reward gap. In 60% of cases in which
HS-STRUCT received a lower reward, the final sen-
tences produced by HS-STRUCT and S-STRUCT
v2 are identical. In the complex dataset, valence
issues accounted for about 20% of cases in which
S-STRUCT v2 outperformed HS-STRUCT. This
issue could be alleviated by computing different
embeddings for different valences of a verb.

Over-generation. On the complex dataset, we
also see a number of cases in which the overall
content of the two generated sentences were nearly
identical, with HS-STRUCT adding in unneeded
additions like extra complementizers. Since ex-
tra complementizers do not change the semantic
content, this mistake will barely affect the logical
reward but does decrease ROUGE-1 scores. This
over-generation may also stem from the “incremen-
tal benefit” of HS-STRUCT’s reward function as
described in Section 3.3, and accounts for about
15% of cases in which HS-STRUCT earns a worse
reward than S-STRUCT v2 on the complex dataset.
It could potentially be alleviated by more carefully
tuning the sentence length penalty in the reward.

Examples. Consider the sentence “The rates
in the secondary market are typical,” which is ex-
pressed as the goal rates(z1) ∧ typical(z1) ∧
market(z2) ∧ secondary(z2) ∧ in(z1, z2). As
we can see, there is no verb listed in the goal se-
mantics. The copula “are” would not make sense
as an FOL relation as typical(z1) already implies
that the rates are typical. We also run into issues
with the preposition “in”. Since it could also fea-
sibly be an abbreviation for “inch”, our grammar
includes it as a noun as well.

HS-STRUCT begins by choosing a “typical”
declarative adjective small clause tree (αnx0Ax1)
with “typical” as the AP and the NP and V substi-
tution nodes left open. It cannot tell the difference
between noun and preposition “in”, so it sees substi-
tuting “in” for the remaining NP node (essentially
creating the string “in typical”). Using our OLIVE
vectors, the combination of “in” and “typical” is
closer to the goal than the correct “rates” and “typ-
ical” (because “in” is present in the goal), so this
part-of-speech mistake is seen as beneficial. HS-
STRUCT may also store the “rates” substitution,
but this is a function of the beam width. It leaves
the copular verb “are” location blank, as this verb
does not appear in the goal.

While the “in” substitution helped the distribu-
tional reward, it will hurt the logical reward in fu-
ture since there is no “in” entity in the world or goal
to bind to (there is only an “in” relation). Since
HS-STRUCT will not be able to find valid bindings,
it will not be able to add additional information,
forcing the generation to stop at “in typical”. Here,
generation can be improved by increasing the beam
states until the “rates” substitution is also chosen, or
by having the distributional phase represent prepo-
sition “in” and inches “in” separately.

Another such error is shown by the sentence
“Investors dumped any technology shares.” Here,
the “shares” are an entity in the goal (i.e., written as
instance_of(x, shares) not shares(x, y)). HS-
STRUCT will represent both the verb “shares” and
the noun “shares” the same way, so it does not
know that it should not consider the initial tree
using the verb “shares”. In this case, HS-STRUCT
ends the distributional phase with the best sentence
“Investors share technology.” Again, such an error
is not recoverable in the logical semantics phase.

A different issue that may contribute to HS-
STRUCT’s lower reward in some cases is that of
copular verbs. These do not appear in the goal
semantics. However, if there is some non-copular
verb in the goal, HS-STRUCT may incorrectly sub-
stitute in a verb in the copular verb slot, as doing so
will decrease the goal distance. If the beam search
did not keep a state without one of these incorrect
substitutions, then HS-STRUCT will not be able to
recover in the logical phase.

5 Conclusion

We have presented HS-STRUCT, which uses
both distributional and logical semantics for goal-
directed language generation. By taking a hybrid
approach HS-STRUCT’s generation scales signif-
icantly better in early phases. However, in some
cases, the quality of the final generation can be
lower than a pure logical approach. HS-STRUCT
is available through GitHub upon request.
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