
WMT 2021

Sixth Conference on
Machine Translation

Proceedings of the Conference

November 10-11, 2021



©2021 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-954085-94-7

ii



Preface
The Sixth Conference on Machine Translation (WMT 2021) took place on Wednesday, November 10
and Thursday, November 11, 2021 immediately following the 2021 Conference on Empirical Methods
in Natural Language Processing (EMNLP 2021).

This is the sixth time WMT has been held as a conference. The first time WMT was held as a conference
was at ACL 2016 in Berlin, Germany, the second time at EMNLP 2017 in Copenhagen, Denmark, the
third time at EMNLP 2018 in Brussels, Belgium, the fourth time at ACL 2019 in Florence, Italy, and
the fifth time at EMNLP-2020, which was held as an online event due to the COVID-19 pandemic.
Prior to being a conference, WMT was held 10 times as a workshop. WMT was held for the first
time at HLT-NAACL 2006 in New York City, USA. In the following years the Workshop on Statistical
Machine Translation was held at ACL 2007 in Prague, Czech Republic, ACL 2008, Columbus, Ohio,
USA, EACL 2009 in Athens, Greece, ACL 2010 in Uppsala, Sweden, EMNLP 2011 in Edinburgh,
Scotland, NAACL 2012 in Montreal, Canada, ACL 2013 in Sofia, Bulgaria, ACL 2014 in Baltimore,
USA, EMNLP 2015 in Lisbon, Portugal.

The focus of our conference is to bring together researchers from the area of machine translation and
invite selected research papers to be presented at the conference.

Prior to the conference, in addition to soliciting relevant papers for review and possible presentation,
we conducted 13 shared tasks. These consisted of 10 translation tasks: Machine Translation of News,
Similar Language Translation, Biomedical Translation, Multilingual Low-Resource Translation for Indo-
European Languages, Large-Scale Multilingual Machine Translation, Triangular MT: Using English to
Improve Russian-to-Chinese Machine Translation, Translation Efficiency, Machine Translation using
Terminologies, Unsupervised and Very Low Resource Supervised Translation, and Lifelong Learning for
Machine Translation, two evaluation tasks: Quality Estimation of Translation and Metrics for Machine
Translation, and the Automatic Post-Editing task.

The results of all shared tasks were announced at the conference, and these proceedings also include
overview papers for the shared tasks, summarizing the results, as well as providing information about the
data used and any procedures that were followed in conducting or scoring the tasks. In addition, there
are short papers from each participating team that describe their underlying system in greater detail.

Like in previous years, we have received a far larger number of submissions than we could accept for
presentation. WMT 2021 has received 49 full research paper submissions (not counting withdrawn
submissions). In total, WMT 2021 featured 18 full research paper presentations and 96 shared task
presentations.

The event hosted a panel discussion led by Markus Freitag (Google) on evaluation with Nitika Mathur
(Univ. Melbourne), Benjamin Marie (NICT), Ricardo Rei (Unbabel), Tom Kocmi (Microsoft).

We would like to thank the members of the Program Committee for their timely reviews. We also
would like to thank the participants of the shared task and all the other volunteers who helped with the
evaluations.

Loïc Barrault, Ondřej Bojar, Fethi Bougares, Rajen Chatterjee, Marta R. Costa-jussà, Christian
Federmann, Mark Fishel, Alexander Fraser, Markus Freitag, Yvette Graham, Roman Grundkiewicz,
Paco Guzman, Barry Haddow, Matthias Huck, Antonio Jimeno Yepes, Philipp Koehn, Tom Kocmi,
André Martins, Makoto Morishita, Christof Monz, Masaaki Nagata, Toshiaki Nakazawa, Matteo Negri,
Aurélie Névéol, Mariana Neves, Martin Popel, Matt Post, Marco Turchi, and Marcos Zampieri
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14:45–16:15 Just Ask! Evaluating Machine Translation by Asking and Answering Questions
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16:45–18:15 Translation Transformers Rediscover Inherent Data Domains
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10:30–12:00 Lingua Custodia’s Participation at the WMT 2021 Machine Translation Using Ter-
minologies Shared Task
Melissa Ailem, Jingshu Liu and Raheel Qader
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10:30–12:00 Huawei AARC’s Submissions to the WMT21 Biomedical Translation Task: Domain
Adaption from a Practical Perspective
Weixuan Wang, Wei Peng, Xupeng Meng and Qun Liu

10:30–12:00 Tencent AI Lab Machine Translation Systems for the WMT21 Biomedical Transla-
tion Task
Xing Wang, Zhaopeng Tu and Shuming Shi
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Hao Yang, Zhanglin Wu, Zhengzhe Yu, Xiaoyu Chen, Daimeng Wei, Zongyao Li,
Hengchao Shang, Minghan Wang, Jiaxin Guo, Lizhi Lei, chuanfei xu, Min Zhang
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Ergun Biçici
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Yimeng Chen, Chang Su, Yingtao Zhang, Yuxia Wang, Xiang Geng, Hao Yang,
Shimin Tao, Guo Jiaxin, Wang Minghan, Min Zhang, Yujia Liu and Shujian Huang

10:30–12:00 Ensemble Fine-tuned mBERT for Translation Quality Estimation
Shaika Chowdhury, Naouel Baili and Brian Vannah

10:30–12:00 The JHU-Microsoft Submission for WMT21 Quality Estimation Shared Task
Shuoyang Ding, Marcin Junczys-Dowmunt, Matt Post, Christian Federmann and
Philipp Koehn

10:30–12:00 TUDa at WMT21: Sentence-Level Direct Assessment with Adapters
Gregor Geigle, Jonas Stadtmüller, Wei Zhao, Jonas Pfeiffer and Steffen Eger

10:30–12:00 Quality Estimation Using Dual Encoders with Transfer Learning
Dam Heo, WonKee Lee, Baikjin Jung and Jong-Hyeok Lee

10:30–12:00 ICL’s Submission to the WMT21 Critical Error Detection Shared Task
Genze Jiang, Zhenhao Li and Lucia Specia

10:30–12:00 Papago’s Submission for the WMT21 Quality Estimation Shared Task
Seunghyun Lim, Hantae Kim and Hyunjoong Kim

10:30–12:00 NICT Kyoto Submission for the WMT’21 Quality Estimation Task: Multimetric Mul-
tilingual Pretraining for Critical Error Detection
Raphael Rubino, Atsushi Fujita and Benjamin Marie

10:30–12:00 QEMind: Alibaba’s Submission to the WMT21 Quality Estimation Shared Task
Jiayi Wang, Ke Wang, Boxing Chen, Yu Zhao, Weihua Luo and Yuqi Zhang

10:30–12:00 Direct Exploitation of Attention Weights for Translation Quality Estimation
Lisa Yankovskaya and Mark Fishel
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10:30–12:00 Unsupervised and Very Low Resource Translation Task

10:30–12:00 The IICT-Yverdon System for the WMT 2021 Unsupervised MT and Very Low Re-
source Supervised MT Task
Àlex R. Atrio, Gabriel Luthier, Axel Fahy, Giorgos Vernikos, Andrei Popescu-Belis
and Ljiljana Dolamic

10:30–12:00 Unsupervised Translation of German–Lower Sorbian: Exploring Training and
Novel Transfer Methods on a Low-Resource Language
Lukas Edman, Ahmet Üstün, Antonio Toral and Gertjan van Noord

10:30–12:00 The LMU Munich Systems for the WMT21 Unsupervised and Very Low-Resource
Translation Task
Jindřich Libovický and Alexander Fraser

10:30–12:00 Language Model Pretraining and Transfer Learning for Very Low Resource Lan-
guages
Jyotsana Khatri, Rudra Murthy and Pushpak Bhattacharyya

10:30–12:00 NRC-CNRC Systems for Upper Sorbian-German and Lower Sorbian-German Ma-
chine Translation 2021
Rebecca Knowles and Samuel Larkin

10:30–12:00 NoahNMT at WMT 2021: Dual Transfer for Very Low Resource Supervised Ma-
chine Translation
Meng Zhang, Minghao Wu, Pengfei Li, Liangyou Li and Qun Liu
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Abstract

This paper presents the results of the news
translation task, the multilingual low-resource
translation for Indo-European languages, the
triangular translation task, and the automatic
post-editing task organised as part of the Con-
ference on Machine Translation (WMT) 2021.
In the news task, participants were asked to
build machine translation systems for any of
10 language pairs, to be evaluated on test
sets consisting mainly of news stories. The
task was also opened up to additional test
suites to probe specific aspects of transla-
tion. In the Similar Language Translation
(SLT) task, participants were asked to de-
velop systems to translate between pairs of
similar languages from the Dravidian and Ro-
mance family as well as French to two sim-
ilar low-resource Manding languages (Bam-
bara and Maninka). In the Triangular MT
translation task, participants were asked to
build a Russian to Chinese translator, given
parallel data in Russian-Chinese, Russian-
English and English-Chinese. In the mul-
tilingual low-resource translation for Indo-
European languages task, participants built
multilingual systems to translate among Ro-
mance and North-Germanic languages. The

task was designed to deal with the transla-
tion of documents in the cultural heritage do-
main for relatively low-resourced languages.
In the automatic post-editing (APE) task, par-
ticipants were asked to develop systems capa-
ble to correct the errors made by an unknown
machine translation systems.

1 Introduction

The Sixth Conference on Machine Translation
(WMT21)1 was held online with EMNLP 2021
and hosted a number of shared tasks on various as-
pects of machine translation. This conference built
on 15 previous editions of WMT as workshops and
conferences (Koehn and Monz, 2006; Callison-
Burch et al., 2007, 2008, 2009, 2010, 2011, 2012;
Bojar et al., 2013, 2014, 2015, 2016, 2017, 2018a;
Barrault et al., 2019, 2020).

This year we conducted several official tasks. In
this paper we report on the news task, the multilin-
gual low-resource translation for Indo-European
languages task, the triangular translation task, and
the automatic post-editing task. Additional shared
tasks are described in separate papers in these pro-
ceedings:

1http://www.statmt.org/wmt21/
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• biomedical translation (Yeganova et al.,
2021)

• efficiency (Heafield et al., 2021)
• large-scale multilingual machine translation

(Wenzek et al., 2021)
• machine translation using terminologies

(Alam et al., 2021)
• metrics (Freitag et al., 2021b)
• quality estimation (Specia et al., 2021)
• unsupervised and very low-resource transla-

tion (Libovický and Fraser, 2021)

In the news translation task (Section 2), partic-
ipants were asked to translate a shared test set,
optionally restricting themselves to the provided
training data (“constrained” condition). We in-
cluded 20 translation directions this year, with
translation between English and each of Chinese,
Czech, German, Japanese and Russian, as well as
French↔German being repeated from last year,
and English to and from Hausa and Icelandic be-
ing new for this year, along with Bengali↔Hindi
and Xhosa↔Zulu. The translation tasks covered
a range of language families, and included both
low-resource and high-resource pairs. System out-
puts for each task were evaluated both automati-
cally and manually, but we only include the man-
ual evaluation here.

The human evaluation (Section 3) involves ask-
ing human judges to score sentences output by
anonymized systems. We obtained large numbers
of assessments from researchers who contributed
evaluations proportional to the number of tasks
they entered. We collected additional assessments
from a pool of linguists, as well as crowd-workers.
This year, the official manual evaluation metric is
again based on judgments of adequacy on a 100-
point scale, a method (known as “direct assess-
ment”, DA) that we explored in the previous years
with convincing results in terms of the trade-off
between annotation effort and reliable distinctions
between systems. In addition, other golden stan-
dards with this year’s systems were collected. The
human-in-the-loop GENIE leaderboard (Khashabi
et al., 2021) conducted de→en evaluations inde-
pendently in a Likert scale (Section 3.5). We refer
the reader to Freitag et al. (2021b) for MQM scor-
ing of en→de, en→ru, and zh→en.

The primary objectives of WMT are to evalu-
ate the state of the art in machine translation, to
disseminate common test sets and public train-
ing data with published performance numbers, and

to refine evaluation and estimation methodologies
for machine translation. As before, all of the
data, translations, and collected human judgments
are publicly available.2 We hope these datasets
serve as a valuable resource for research into data-
driven machine translation, automatic evaluation,
or prediction of translation quality. News transla-
tions are also available for interactive visualization
and comparison of differences between systems at
http://wmt.ufal.cz/ using MT-ComparEval
(Sudarikov et al., 2016), and also on Explain-
aBoard3 (Liu et al., 2021b).

In order to gain further insight into the perfor-
mance of individual MT systems, we again orga-
nized a call for dedicated “test suites”. Test suites
are custom additions to the inputs. Anyone can
provide a test suite for any subset of news trans-
lation task languages and we ensure that the test
suite is requested from all participating MT sys-
tems. The MT outputs are delivered back to test
suite authors for evaluation, which can be manual,
automatic or both, focusing on any possible aspect
of the MT systems. This year, five test suites were
acquired and translated by participating MT sys-
tems but only two were then analyzed in time for
these proceedings:

• Freitag et al. (2021b), the metrics task paper,
used TED talks as additional domain, scored
them with MQM, and further used these out-
puts and scores to assess domain-dependence
of MT evaluation metrics.

• Macketanz et al. (2021) reports on the
fourth application of a fine-grained test suite
for German↔English linguistic phenomena.
The previous instances (Macketanz et al.,
2018; Avramidis et al., 2019, 2020) use the
same underlying collection of sentences and
thus allow to observe the overall development
of MT systems in clear categories. This year,
the major jump was observed in the cate-
gory of idioms, especially due to a few excep-
tional MT systems. Many phenomena are be-
ing solved almost perfectly, the difficult cat-
egories remain false friends, ambiguity and
multi-word expressions.

The goal of the Similar Language Translation
(SLT) task (Section 4) is to evaluate the perfor-

2http://statmt.org/wmt21/results.html
3http://explainaboard.nlpedia.ai/

leaderboard/task-mt/index.php
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mance of MT systems taking into account the sim-
ilarity between pairs of closely-related languages
from the same language family. Following the
interest of the community in this topic (Costa-
jussà et al., 2018; Popović et al., 2020) and the
success of the past two editions of the SLT task
task at WMT 2019 and WMT 2020, we orga-
nize a third iteration of the task at WMT 2021.
SLT 2021 features a pair of similar Dravidian lan-
guages, namely Tamil - Telugu, and multiple pairs
of Romance languages involving Catalan, Span-
ish, Portuguese, and Romanian in all possible
combinations. A new track with French and two
similar low-resource Manding languages: Bam-
bara and Maninka was also included to encour-
age participants to take advantage of the similar-
ity between Bambara and Maninka and explore
data augmentation techniques, a typical scenario
of low-resource languages. Finally, translations
were evaluated in both directions using three au-
tomatic metrics: BLEU, RIBES, and TER.

The primary goals of the Triangular MT task
(Section 5) are to promote translation between
non-English languages, to optimally mix di-
rect and indirect parallel resources and exploit
noisy web data sources to build an MT sys-
tem. Specifically, the task was Russian to Chi-
nese machine translation, given parallel data com-
prising of direct (Russian-Chinese) and indirect
(Russian-English and English-Chinese) sources.
The submitted systems were evaluated on a (se-
cret) mixed-genre test set, drawn from the web and
curated manually for high-quality segment pairs.

The multilingual low-resource translation for
Indo-European languages task (MLLR, Sec-
tion 6) aims to investigate the best approaches
to deal with multilingual translation. Usu-
ally, multilingual translation is done with the
help of a high-resourced language, e.g. En-
glish. In MLLR, we evaluate translation qual-
ity for Icelandic–Norwegian Bokmål–Swedish
(North-Germanic) and Catalan–Italian–Occitan–
Romanian (Romance). Higher resourced lan-
guages (Danish, German, English, Spanish,
French and Portuguese) are allowed for training
but not evaluated. We focus on a specific domain:
cultural heritage documents are extracted from Eu-
ropeana and Wikipedia, a domain where named
entities may also play a role in translation qual-
ity. The evaluation is done at language family level
with a combination of automatic metrics (BLEU,

TER, chrF, BertScore and COMET) and comple-
mented by a manual evaluation on a subset of lan-
guage pairs.

The automatic post-editing (APE) task (Sec-
tion 7) focuses on another MT-related problem:
the correction of machine-translated text gener-
ated by an unknown system. In continuity with
last year, in this seventh iteration of the task at
WMT we focused on two language pairs (English-
German and English-Chinese), using data drawn
from English Wikipedia articles and translated
with neural MT systems. The evaluation was car-
ried out both automatically – with TER and BLEU
respectively used as primary and secondary metric
- and manually – with the same direct assessment
method used for the news translation task.

2 News Translation Task

This recurring WMT task assesses the quality
of MT on text from the news domain. As in
the previous year, we included Chinese, Czech,
German, Japanese and Russian (to and from En-
glish) as well as French↔German. New language
pairs for this year were Icelandic and Hausa (to
and from English) as well as Bengali↔Hindi and
Xhosa↔Zulu.

2.1 Test Data

As in previous years, the test sets consist of un-
seen translations prepared specially for the task.
The test sets are publicly released to be used as
translation benchmarks in the coming years. Here
we describe the production and composition of the
test sets.

The source texts for the test sets were all ex-
tracted from online news sites, with the exception
of Bengali↔Hindi and Xhosa↔Zulu, which were
part of the FLORES-101 benchmark (Goyal et al.,
2021) and extracted from Wikipedia. The sources
used for the online news are shown in Table 1,
and all articles are from the second half of 2020.
For the French↔German task, we specifically se-
lected financial and economic news, whereas for
the other news sources, we randomly selected arti-
cles from general online news, including politics,
sports, international and local events.

For all language pairs, we aimed for a test set
size of 1000 sentences, and to ensure that the test
sets were “source-original”, in that the source text
is the original article and the target text is the trans-
lation. This is to avoid “translationese” effects on
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the source language, which can have a detrimental
effect on the accuracy of evaluation (Freitag et al.,
2019; Laubli et al., 2020; Graham et al., 2020).
The exceptions were Chinese→English, where we
used a larger test set of 1948 sentences, and the
FLORES-101 test sets which were around 500
sentences, and derived from English source docu-
ments. For language pairs that were new this year
(i.e. Icelandic↔English and Hausa↔English) we
prepared development sets using the same process
as the test set, but concatenating both translation
directions into the same set. For each translated ar-
ticle in the development set, the direction of trans-
lation is clearly identified.

For WMT20, we experimented with using test
sources with line (segment) boundaries at para-
graphs (not sentences) for some language pairs,
but we found no evidence that translators used
their new freedom to reorganise sentences, and the
longer lines possibly made evaluation more diffi-
cult, so we reverted to a sentence-per-line format
this year. For selected language sources (Czech,
German and English, when translated into the
recurring languages) we retained the paragraph
boundaries from the original articles, but within
the paragraphs, the sentences were in separate seg-
ments. It was up to the participating systems to
make use of the paragraph breaks or not, but the
systems were expected to preserve the segment
boundaries.

The test sets for WMT21 were released using
a new XML format, replacing the “pseudo xml”
SGML format which had been used for many
years. The advantages of the new format are: (i)
it can be processed with standard XML tools, and
there is no longer any doubt about how to treat spe-
cial XML characters such as the ampersand (“&”);
(ii) the source, all references and all submissions
can be contained in one convenient XML file; (iii)
the metadata better matches the needs of the task,
and can be extended as necessary. We created sim-
ple tools for converting from text-based files to the
new XML format.4

The translation of the test sets was performed by
professional translation agencies, according to the
brief supplied in Appendix B. Several language
pairs got special attention. For Chinese↔English,
Russian↔English and German↔English, we ob-
tained a second reference in each direction from

4https://github.com/wmt-conference/
wmt-format-tools

a different translation agency, labelled “B”. For
German↔English, the “B” reference was found to
be a post-edited version of one of the participating
online systems, so we had to discard it. Microsoft
then sponsored a third independent translation, la-
belled “C”, and the metrics task organizers with
the support from Google later provided yet another
German↔English reference, discussed only in
Freitag et al. (2021b) as “D”. For Czech↔English,
the first reference (labelled “A”) which served in
reference-based manual evaluations, was provided
by a translation agency in both directions. The
second Czech↔English reference (labelled “B”)
which served as another system in the competi-
tion was provided by professional translators re-
cruited from teachers and students of translation
studies into Czech and three students and gradu-
ates of translation studies and one translator, En-
glish native speaker, into English.

2.2 Training Data

As in past years we provided a selection of parallel
and monolingual corpora for model training, and
development sets to tune system parameters. Par-
ticipants were permitted to use any of the provided
corpora to train systems for any of the language
pairs. As well as providing updates on many of the
previously released data sets, we included several
new data sets, mainly to support the new language
pairs.

Our training data includes the latest version
of ParaCrawl (Bañón et al., 2020) for all lan-
guage pairs where it is available. New for this
year is a ParaCrawl corpus for Chinese↔English,
which contains 14M sentences, as well as a small
Hausa↔English ParaCrawl. The JParaCrawl cor-
pus (for Japanese↔English) is constructed in a
similar way to ParaCrawl, but by a different group
(Morishita et al., 2020).

For Icelandic↔English we used the recently
released ParIce (Barkarson and Steingrímsson,
2019) a source of parallel data, and the Icelandic
Gigaword corpus for monolingual data (Stein-
grímsson et al., 2018).

For Hausa↔English, the data was mainly
drawn from Opus (Tiedemann and Nygaard,
2004), which is mostly religious and IT localisa-
tion text. We added a small (< 6000) parallel sen-
tence corpus extracted from the website of Aya-
tollah Khamenei,5 now only accessible using the

5https://english.khamenei.ir/
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English ABC News (5), Al Jazeera (1), All Africa (2), BBC (4), Brisbane Times (3), CBS LA (1), CBS
News (3), CNBC (1), CNN (1), Daily Express (4), Daily Mail (1), Egypt Independent (3), Fox News (2),
Guardian (6), LA Times (1), London Evening Standard (2), Metro (1), NDTV (7), New York Times (2),
RTE (1), Russia Today (5), Seattle Times (4), Sky (1), The Independent (1), The Sun (2), UPI (1),
VOA (1), news.com.au (1), novinite.com (1),

Chinese China News (76), Hunan Ribao (5), Jingji Guancha Bao (3), Macao Government (2), Nhan Dan (3),
RFI Chinese (6), VOA Chinese (3), Xinhua (57), tsrus.cn (1),

Czech Aktuálně (4), Blesk (5), Denik (3), Dnes (1), E15 (1), Haló noviny (5), Hospodářské Noviny (1),
Idnes (2), Lidovky (7), Mediafax (6), Novinky (6), Týden (1), Tydenek Homer Mostecka (1), ČT24 (4),
Česká Pozice (6), Česká Televize (4), České Noviny (4), Český Rozhlas (1),

German Aachener Nachrichten (1), Abendzeitung Mn̈chen (1), Abendzeitung Nürnberg (1), Allgemeine
Zeitung (1), Augsburger-allgemeine (1), Braunschweiger Zeitung (1), Das Bild (3), Dresdner Neueste
Nachrichten (1), Euronews (1), Frankfurter Allgemeine Zeitung (1), Freie Presse (1), Handels-
blatt (1), Hessische/Niedersaechsische Allgemeine (1), Infranken (3), Kurier (2), Lampertheimer
Zeitung (3), Landeszeitung (1), Main-Netz (1), Mainpost (1), Mittelbayerische Zeitung (2), Mit-
teldeutsche Zeitung (2), Morgenpost (2), Neue Presse (Coburg) (2), Nordbayerischer Kurier (3),
OE24 (1), Passauer Neue Presse (2), Peiner Allgemeine Zeitung (2), Pforzheimer Zeitung (1), Pots-
damer Neueste Nachrichten< (1), Rhein Zeitung (2), Rundschau online (1), Söster Anzeiger (1),
Salzburger Nachrichten (1), Schwäbische (2), Schwäbische post (2), Schwarzwälder Bote (2), Tiroler
Tageszeitung (2), Usinger Anzeiger (1), Westfälische Nachrichten (2), Wienerzeitung (1),

Hausa Deutsche Welle (7), Freedom radio (22), Leadership (19), Premium Times (20), RFI Hausa (10), VOA
Hausa (18), VON Hausa (4),

Japanese Fukui Shimbun (1), Hokkaido Shimbun (5), Iwate Nippo (3), Saga Shimbun (3), Sanyo Shimbun (4),
Shizuoka Shimbun (11), Ube nippo Shimbun (2), Yaeyama mainichi shimbun (1), Yahoo (49), Yama-
gata Shimbun (2),

Russian Altapress (1), Altyn-orda (1), Argumenti Nedely (5), Argumenty i Fakty (6), Armenpress (1), BBC
Russian (1), Delovoj Peterburg (1), ERR (5), Gazeta (4), Interfax (3), Izvestiya (11), Kommersant (1),
Komsomolskaya Pravda (7), Lenta (6), Lgng (2), Moskovskij Komsomolets (9), Novye Izvestiya (1),
Ogirk (1), Parlamentskaya Gazeta (3), Rossiskaya Gazeta (5), Russia Today (8), Russkaya Planeta (1),
Sovsport (2), Sport Express (9), Tyumenskaya Oblast Segodnya (1), VOA Russian (1), Vedomosti (2),
Vesti (6), Xinhua (3),

German (economic) Aachener Nachrichten (1), Abendzeitung Mn̈chen (1), Das Bild (1), Der Spiegel (2), Epoch Times (1),
Frankfurter Allgemeine Zeitung (6), Handelsblatt (17), Haz (2), Kurier (4), Lübecker Nachrichten (1),
Mindener Tageblatt (1), Mittelbayerische Zeitung (1), NZZ (1), Neue Westfälische (1), Onetz (1), Pas-
sauer Neue Presse (2), Rheinische Post (1), Russia Today (3), Süddeutsche Zeitung (8), Salzburger
Nachrichten (2), Tiroler Tageszeitung (1), Volksstimme (1), Yahoo (1), come-on.de (1),

French (econmic) Algérie Presse Service (3), Aujourd’hui le Maroc (5), Dernière Heure (4), Dernières Nouvelles
d’Alsace (1), Euronews (2), L’Independant (1), L’express (2), La Croix (4), La Meuse (3), La Tri-
bune (4), La Venir (1), Le Devoir (3), Le Figaro (17), Le Monde (5), Le Quotidien (1), Les Echos (1),
Liberté Algerie (1), Libre Belgium (1), Madagascar tribune (1), Metro Canada (1), Nice Matin (1),
Nouvel Obs (6), Russia Today (4), VOA Afrique (2),

Table 1: Composition of the test sets. The economic arcticles were used for French↔German only. We did not record the
sources for the Icelandic articles, and the Bengali, Hindi, Xhosa and Zulu articles were from Wikipedia.
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Europarl Parallel Corpus
Czech↔ English German↔ English German↔ French

Sentences 645,241 1,825,745 1,801,076
Words 14,948,900 17,380,340 48,125,573 50,506,059 47,517,102 55,366,136

Distinct words 172,452 63,289 371,748 113,960 368,585 134,762

News Commentary Parallel Corpus
Czech↔ English German↔ English Russian↔ English

Sentences 253,456 388,813 331,596
Words 5,674,011 6,270,051 9,921,515 9,840,910 8,469,701 8,820,805

Distinct words 176,403 70,774 215,101 86,518 207,701 82,938
Chinese↔ English Japanese↔ English German↔ French

Sentences 313,934 1,851 296,022
Words – 7,982,550 – 45,438 7,671,513 9,346,818

Distinct words – 76,372 – 6,280 185,348 87,481

Common Crawl Parallel Corpus
German↔ English Czech↔ English Russian↔ English French↔ German

Sentences 2,399,123 161,838 878,386 622,288
Words 54,575,405 58,870,638 3,529,783 3,927,378 21,018,793 21,535,122 13,991,973 12,217,457

Distinct words 1,640,835 823,480 210,170 128,212 764,203 432,062 676,725 932,137

ParaCrawl Parallel Corpus
German↔ English Czech↔ English Chinese↔ English

Sentences 82,638,202 14,083,311 14,170,585
Words 1,543,410,882 1,613,780,145 240,233,151 260,801,934 – 253,776,811

Distinct Words 15,256,769 7,765,311 2,655,118 1,972,030 – 1,871,639

Japanese↔ English Russian↔ English French↔ German
Sentences 10,120,013 12,654,509 7,222,574

Words – 274,368,443 232,950,488 266,368,340 145,190,707 123,205,701
Distinct Words – 2,051,246 2,913,181 1,816,590 1,534,068 2,368,682

Icelandic↔ English Hausa↔ English
Sentences 2,392,422 158,968

Words 39,528,080 42,454,372 4,041,027 3,957,605
Distinct Words 709,945 416,986 102,962 101,049

EU Press Release Parallel Corpus
Czech↔ English German↔ English

Sentences 452,411 1,631,639
Words 7,214,324 7,748,940 26,321,432 27,018,196

Distinct words 141,077 83,733 402,533 197,030

Yandex 1M Parallel Corpus
Russian↔ English

Sentences 1,000,000
Words 24,121,459 26,107,293

Distinct 701,809 387,646

CzEng v2.0 Parallel Corpus
Czech↔ English

Sentences 60,980,645
Words 757,316,261 848,016,692

Distinct 3,684,081 2,493,804

WikiTitles Parallel Corpus
Chinese↔ English Czech↔ English German↔ English Hausa↔ English

Sentences 922,194 410,977 1,474,196 7,501
Words – 2,549,611 990,191 1,065,417 3,219,123 3,763,461 14,285 14,629

Distinct – 380,234 218,992 186,375 674,927 573,280 7,855 7,827

Icelandic↔ English Japanese↔ English Russian↔ English German↔ French
Sentences 50,181 757,052 1,189,097 1,006,563

Words 90,620 100,847 – 2,016,400 3,244,102 3,261,299 2,142,193 2,543,265
Distinct 40,570 34,440 281,880 534,392 457,933 503,342 444,330

Figure 1: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library).
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CCMT Corpus
casia2015 casict2011 casict2015 datum2011 datum2017 neu2017

Sentences 1,050,000 1,936,633 2,036,834 1,000,004 999,985 2,000,000
Words (en) 20,571,578 34,866,598 22,802,353 24,632,984 25,182,185 29,696,442

Distinct words (en) 470,452 627,630 435,010 316,277 312,164 624,420

Extra Japanese-English Parallel Data
Subtitles Kyoto TED

Sentences 2,801,388 443,849 223,108
Words – 23,933,060 – 11,622,252 4,554,409

Distinct – 161,484 – 191,885 – 60,786

Extra Hausa-English Parallel Data
Khamenei Opus

Sentences 5,837 584,004
Words 217,543 167,466 8,385,179 8,994,622

Distinct 6,075 7,942 219,203 193,518

CC-Aligned
Bengali↔Hindi Xhosa↔Zulu

Sentences 3,365,142 94,323
Words 40,782,432 45,609,689 1,689,086 1,658,266

Distinct 996,612 860,033 186,070 173,148

United Nations Parallel Corpus
Russian↔ English Chinese↔ English

Sentences 23,239,280 15,886,041
Words 570,099,284 601,123,628 – 425,637,920

Distinct 1,446,782 1,027,143 – 769,760

Synthetic parallel data (both directions combined)
Czech↔ English Russian↔ English Chinese↔ English

Sentences 126,828,081 76,133,209 19,763,867
Words 2,351,230,606 2,655,779,234 1,511,996,711 1,698,428,744 – 416,567,173

Distinct 5,745,323 3,840,231 5,928,141 3,889,049 – 1,188,933

Wikimatrix Parallel Data
Czech↔ English German↔ English Japanese↔ English Icelandic↔ English

Sentences 2,094,650 6,227,188 3,895,992 313,875
Words 34,801,119 39,197,172 113,445,806 118,077,685 – 72,320,248 5,395,042 6,475,011

Distinct 1,068,844 798,095 2,855,263 1,827,785 – 1,106,529 328,369 231,192

Russian↔ English Chinese↔ English German↔ French
Sentences 5,203,872 2,595,119 3,350,816

Words 93,828,313 102,937,537 – 58,615,891 68,249,384 59,422,699
Distinct 2,233,043 1,592,190 – 1,059,537 1,067,450 1,844,533

Figure 2: Statistics for the training sets used in the translation task. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library).
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News Language Model Data

English German Czech Russian Japanese
Sentences 274,929,980 386,987,716 97,396,609 111,118,861 14,389,733

Words 6,782,988,670 7,951,191,279 1,760,715,133 2,010,171,968 –
Distinct words 8,329,647 39,524,377 5,960,637 5,679,507 –

Icelandic Chinese French Hausa Hindi Bengali
Sentences 534,647 10,771,382 96,402,399 272,966 46,187,245 10,101,626

Words 9,653,929 – 2,338,364,059 7,305,501 872,106,937 148,586,981
Distinct words 308,924 – 3,975,116 125,350 2,752,071 1,091,788

Document-Split News LM Data (not dedudped)

Czech English German
Sentences 142,478,129 531,904,913 739,041,709

Words 2,221,995,079 11,472,609,712 12,524,314,673
Distinct words 5,744,574 8,595,778 26,849,693

Common Crawl Language Model Data

English German Czech Russian
Sent. 3,074,921,453 2,872,785,485 333,498,145 1,168,529,851

Words 65,104,585,881 65,147,123,742 6,702,445,552 23,332,529,629
Dist. 342,149,665 338,410,238 48,788,665 90,497,177

Chinese Icelandic Hausa French
Sent. 1,672,324,647 24,627,579 1,467,326 4,898,012,445

Words – 595,998,326 20,082,665 126,364,574,036
Dist. – 7,483,421 688,610 363,878,959

Figure 3: Statistics for the monolingual training sets used in the translation task. The number of words and the number of dis-
tinct words (case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/
indic_nlp_library).

Test Sets
Czech→ EN EN→ Czech German→ EN EN→ German

Lines. 1000 1002 1000 1002
Words 17,914 22,080 22,570 27,454 25,907 27,190 18,190 20,668 20,541 27,454 28,273 28,673

Distinct words 6,457 4,032 4,425 5,374 8,295 8,577 5,115 4,012 3,980 5,374 6,841 6,697

Chinese→ EN EN→ Chinese Russian→ EN EN→ Russian
Lines. 1948 1002 1000 1002
Words – 72,334 27,454 – – 17,796 21,400 21,185 27,454 26,413 26,253

Distinct words – 8,290 5.374 – – 6,315 4,214 4,230 5,374 8,591 8,377

Icelandic→ EN EN→ Icelandic Japanese→ EN EN→ Japanese Hausa↔ EN
Lines. 1000 1000 1005 1000 997
Words 19,930 22,749 26,467 25,557 – 28,846 26,467 – 31,362 27,519

Distinct words 5,282 3,773 5,258 6,614 – 5,001 5,258 – 4,032 4,240

EN↔ Hausa Bengali→ Hindi Hindi→ Bengali Xhosa→ Zulu Zulu↔ Xhosa
Lines. 1000 503 509 503 509
Words 26,467 33,915 11,439 14,133 14,286 11,136 9,180 9,314 9,320 9,065

Distinct words 5,258 4,713 4,514 3,686 3,402 4,091 5,499 5,265 4,961 5,093

French→ German German→ French
Lines. 1026 1000
Words 30,143 26,353 18,801 26,407

Distinct words 5,395 6,021 5,198 4,613

Figure 4: Statistics for the test sets used in the translation task. In the cases that there are three word counts, these are
for source, first target translation, and second target translation. The number of words and the number of distinct words
(case-insensitive) is based on the Moses tokenizer and IndicNLP (https://github.com/anoopkunchukuttan/indic_nlp_
library).

8



Wayback Machine.6

For the two FLORES-101 language pairs (i.e.
Bengali↔Hindi and Xhosa↔Zulu) all training
data is from the CC-Aligned corpus (El-Kishky
et al., 2020).

Other language pairs used the same data sets as
last year, with updates wherever available.

The monolingual data we provided was similar
to last year’s, with a 2020 news crawl7 added to
all the news corpora. Note that news crawl now in-
cludes 59 languages, so is not limited to languages
used in WMT. In addition, we provided versions of
the news corpora for Czech, English and German,
with both the document and paragraph structure
retained. In other words, we did not apply sen-
tence splitting to these corpora, and we retained
the document boundaries and text ordering of the
originals.

Some statistics about the training and test mate-
rials are given in Figures 1, 2, 3 and 4.

2.3 Submitted Systems

In 2021, we received a total of 173 submissions.
The participating institutions are listed in Table 2
and detailed in the rest of this section. Each sys-
tem did not necessarily appear in all translation
tasks. We also included online MT systems (orig-
inating from 5 services), which we anonymized as
ONLINE-A,B,G,W,Y. All submissions, sources
and references are made available via github8.

The collect submissions, we used the submis-
sion tool, OCELoT,9 replacing the matrix that has
been used up until 2019. Using OCELoT gives us
more control over the submission and scoring pro-
cess, for example we are able to limit the number
of test submissions by each team, and we also dis-
play the submissions anonymously to avoid pub-
lishing any automatic scores.

For presentation of the results, systems are
treated as either constrained or unconstrained.
When the system submitters report that they were
only trained on the provided data, we class them as
constrained. The online systems are treated as un-
constrained during the automatic and human eval-
uations, since we do not know how they were built.

In Appendix C, we provide brief details of the
submitted systems, for those where the authors

6https://archive.org/web/
7http://data.statmt.org/news-crawl
8https://github.com/wmt-conference/

wmt21-news-systems
9https://github.com/AppraiseDev/OCELoT

provided such details.

3 Human Evaluation

A human evaluation campaign is run each year to
assess translation quality and to determine the of-
ficial ranking of systems taking part in the news
translation task. This section describes how data
for the human evaluation is prepared, the process
of collecting human assessments, and computation
of the official results of the shared task.

3.1 Direct Assessment

We have employed Direct Assessment (DA, Gra-
ham et al., 2013, 2014, 2016) as the primary mech-
anism for evaluating systems since running a com-
parison of DA and relative ranking in 2016 (Bo-
jar et al., 2016). DA has several important fea-
tures including accurate quality control of crowd-
sourcing. With DA human evaluation, human as-
sessors are asked to rate a given translation by how
adequately it expresses the meaning of the corre-
sponding reference translation or source language
input on an analogue scale, which corresponds to
an underlying absolute 0–100 rating scale.10

3.1.1 Source and Reference-based
Evaluations

The original definition of DA provides human as-
sessors with a reference translation. The bene-
fit of this reference-based evaluation is that only
speakers of the target language are needed, but the
quality of the reference translation becomes criti-
cal and even if flawless, evaluating against a single
reference translation could bias evaluators towards
that reference.

In 2018, we trialled source-based (or “bilin-
gual”) evaluation for the first time, for English
to Czech translation. In this configuration, the
human assessor is shown the source input and
system output only (with no reference translation
shown). The assessor thus has to understand both
the source and target languages very well but the
quality of the reference is no longer vital. In fact,
the human-generated reference can be included in
the evaluation as an additional system to provide
an estimate of human performance.

10No sentence or document length restriction is ap-
plied during manual evaluation. Direct Assessment is also
employed for evaluation of video captioning systems at
TRECvid (Graham et al., 2018; Awad et al., 2019, 2021) and
multilingual surface realisation (Mille et al., 2018, 2019).
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Team Language Pairs System Description
AFRL ru-en (Erdmann et al., 2021)
ALLEGRO.EU en-is,is-en (Koszowski et al., 2021)
AMU ha-en,en-ha (Nowakowski and Dwojak, 2021)
BJTU-NMT en-zh (no associated paper)
BORDERLINE en-zh,de-en,zh-en (Wang et al., 2021)
BUPT-RUSH en-zh,en-ja,en-de (no associated paper)
CAPITALMARVEL en-zh,en-ja,ja-en (no associated paper)
CUNI-DOCTRANSFORMER en-cs,cs-en (Gebauer et al., 2021)
CUNI-MARIAN-BASELINES en-cs (Gebauer et al., 2021)
CUNI-TRANSFORMER2018 en-cs,cs-en (Gebauer et al., 2021)
DIDI-NLP zh-en (no associated paper)
EPHEMERALER en-zh,en-ja (no associated paper)
ETRANSLATION fr-de,en-cs,en-de (Oravecz et al., 2021)
FACEBOOK-AI ha-en,en-zh,en-ha,en-is,en-ja,de-en,

zh-en,en-ru,en-cs,cs-en,ru-en,en-de,
ja-en,is-en

(Tran et al., 2021)

FJDMATH xh-zu (Martinez, 2021)
GTCOM ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (Bei and Zong, 2021)
HAPPYNEWYEAR en-zh,zh-en (no associated paper)
HAPPYPOET en-zh,de-en,en-de (no associated paper)
HW-TSC ha-en,en-zh,bn-hi,en-ha,en-is,en-ja,

zu-xh,de-en,zh-en,hi-bn,xh-zu,en-de,
ja-en,is-en

(Wei et al., 2021)

ICL en-zh,de-en,zh-en,en-de (no associated paper)
IIE-MT zh-en,ja-en (no associated paper)
ILLINI en-ja,ja-en (Le et al., 2021)
KWAINLP zh-en,ja-en (no associated paper)
LAN-BRIDGE-MT en-zh,en-is (no associated paper)
LISN fr-de,de-fr (Xu et al., 2021)
MACHINE-TRANSLATION en-zh,zh-en (no associated paper)
MANIFOLD ha-en,en-ha,en-is,de-en,en-ru,de-fr,

ru-en,en-de,is-en
(no associated paper)

MIDEIND en-is,is-en (Jónsson et al., 2021)
MISS en-zh,en-ja,zh-en,ja-en (Li et al., 2021b)
MOVELIKEAJAGUAR en-zh,en-ja,ja-en (no associated paper)
MS-EGDC ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (Hendy et al., 2021)
NIUTRANS ha-en,en-zh,en-ha,en-is,en-ja,zh-en,

en-ru,ru-en,ja-en,is-en
(Zhou et al., 2021)

NJUSC-TSC en-zh,zh-en (no associated paper)
NUCLEAR-TRANS en-zh,en-de (no associated paper)
NVIDIA-NEMO de-en,en-ru,ru-en,en-de (Subramanian et al., 2021)
P3AI ha-en,en-zh,en-ha,fr-de,de-en,zh-en,

de-fr,en-de
(Zhao et al., 2021)

SMU en-zh,de-en,zh-en (no associated paper)
TALP-UPC fr-de,de-fr (Escolano et al., 2021)
TRANSSION ha-en,bn-hi,en-ha,zu-xh,hi-bn,xh-zu (no associated paper)
TWB ha-en,en-ha (no associated paper)
UEDIN ha-en,bn-hi,en-ha,de-en,hi-bn,en-de (Chen et al., 2021; Pal et al., 2021)
UF en-zh,de-en,zh-en,en-de (no associated paper)
VOLCTRANS-AT de-en,en-de (Qian et al., 2021)
VOLCTRANS-GLAT de-en,en-de (Qian et al., 2021)
WATERMELON de-en (no associated paper)
WECHAT-AI en-zh,en-ja,en-de,ja-en (Zeng et al., 2021)
WINDFALL en-zh (no associated paper)
XMU zh-en,ja-en (no associated paper)
YYDS en-zh,zh-en (no associated paper)
ZENGHUIMT en-zh,zh-en (Zeng, 2021)
ZMT ha-en,en-ha (no associated paper)

Table 2: Participants in the shared translation task. The translations from the online systems were not submitted by their
respective companies but were obtained by us, and are therefore anonymized in a fashion consistent with previous years of the
workshop.
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For both reference and source-based evalua-
tion, we require human assessors to only evalu-
ate translation into their native language. Follow-
ing WMT19 and WMT20, we thus again use the
source-based evaluation only for out-of-English
language pairs. This is especially relevant since
we have a large group of volunteer human asses-
sors with native language fluency in non-English
languages and high fluency in English, while we
generally lack the reverse, i.e. native English
speakers with high fluency in non-English lan-
guages.

We use different implementation and human an-
notators for into-English and out-of-English. We
describe the approaches separately. Reference-
based (monolingual) into-English human evalu-
ation is described in Section 3.2, while source-
based (bilingual) out-of-English and non-English
human evaluation is described in Section 3.3.
A third, simplified annotation was used for
Bengali↔Hindi and Xhosa↔Zulu, Section 3.4.

3.1.2 Translationese
Prior to WMT19, all the test sets included a
mix of sentence pairs that were originally in the
source language, and then translated to the tar-
get language, and sentence pairs that were orig-
inally in the target language but translated to
the source language. The inclusion of the latter
“reverse-created” sentence pairs has been shown
to introduce biases into the evaluations, particu-
larly in terms of BLEU scores (Graham et al.,
2020). Therefore we have avoided it for all
language pairs, apart from Bengali↔Hindi and
Xhosa↔Zulu, where the texts are all translated
from English.

3.1.3 Document Context
As mentioned already in our discussion in
WMT18 and as also established within the com-
munity (Läubli et al., 2018b; Toral et al., 2018a),
evaluating sentences out of their document con-
text can skew the results. The effect is particularly
pronounced when comparing human and machine
translation, where it is observed that evaluators
tend to rate the human translation higher (relative
to the machine translation) when the translations
are viewed in context. Human translators always
have access to the document context when trans-
lating to create the references.

In WMT19, we experimented with a DA style
that considers document context in a simple way.

Language Pair Sys. Assess. Assess/Sys

Czech→English 9 10,651 1,183.4
German→English 20 25,718 1,285.9
Hausa→English 14 17,321 1,237.2
Icelandic→English 10 11,124 1,112.4
Japanese→English 16 17,055 1,065.9
Russian→English 11 11,499 1,045.4
Chinese→English 24 44,268 1,844.5
Total to-English 104 137,636 1,323.4

Table 3: Amount of data collected in the WMT21 man-
ual evaluation campaign for evaluation into-English; after re-
moval of quality control items.

Dubbed “SR+DC” (segment rating with docu-
ment context), this method presents one segment
at a time but the segments are no longer shuffled
(as in “SR−DC”, segment rating without docu-
ment context). Instead, they are provided in the
order in which they appear in the document. The
implementation still has the limitation that the as-
sessors cannot go back to the previous segment.

An improved alternative to “SR+DC” is to of-
fer the full document and allow the assessors to
review their segment-level ratings. We call this
setup “SR+FD” (segment ranking in a full docu-
ment) and illustrate the user interface in Appraise
in Figure 5.11

This year, for all language pairs for which doc-
ument context was available, we include it when
evaluating translations. Note that the ratings are
nevertheless collected on the segment level, moti-
vated by the power analysis described in Graham
et al. (2019) and Graham et al. (2020). The par-
ticular details on how document context is made
available to assessors depends on the translation
direction, as described in more detail in Sec-
tions 3.2 to 3.4.

3.2 Human Evaluation of Translation
into-English

In terms of the News translation task manual eval-
uation for into-English language pairs, a total of
589 turker accounts were involved.12 488,396
translation assessment scores were submitted in
total by the crowd, of which 170,194 were pro-
vided by workers who passed quality control.13

System rankings are produced from a large set
of human assessments of translations, each of
which indicates the absolute quality of the out-

11Compare with Figures 3 and 4 in Bojar et al. (2019).
12Numbers do not include the 1,078 workers on Mechani-

cal Turk who did not pass quality control.
13Numbers include quality control segments.
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Figure 5: Screen shot of the document-level DA (SR+FD, segment rating within the full document) configuration in the
Appraise interface for an example assessment from the human evaluation campaign. The annotator is presented with the entire
translated document randomly selected from competing systems (anonymized) and is asked to rate the translation of individual
segments and then entire document on sliding scales.

put of a system. Table 3 shows total numbers of
human assessments collected in WMT21 for into-
English language pairs contributing to final scores
for systems.14

3.2.1 Crowd Quality Control

Collection of segment-level ratings with document
context (SR+DC, Segment Rating + Document
Context) involved constructing HITs so that each
sentence belonging to a given document (produced
by a single MT system) was displayed to and rated
in turn by the human annotator.

14Number of systems for WMT21 includes four “human”
systems comprising human-generated reference translations
used to provide human performance estimates.

We then injected the three kinds of quality con-
trol translation pairs described in Table 4: we re-
peat pairs expecting a similar judgment (Repeat
Pairs), damage MT outputs expecting significantly
worse scores (Bad Reference Pairs) and use refer-
ences instead of MT outputs expecting high scores
(Good Reference Pairs). For each of these three
types, we include the MT output, along with its
corresponding control item.

HITs were then constructed as follows, with as
close as possible to 100 segments in a single HIT:

1. All documents produced by all systems are
pooled;15

15If a “human” system is included to provide a human per-
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Repeat Pairs: Original System output (10) An exact repeat of it (10);
Bad Reference Pairs: Original System output (10) A degraded version of it (10);
Good Reference Pairs: Original System output (10) Its corresponding reference translation (10).

Table 4: Standard DA HIT structure quality control translation pairs hidden within 100-translation HITs, numbers of items
are provided in parentheses.

2. Documents are then sampled at random
(without replacement) and assigned to the
current HIT until the current HIT contains
close to (but less than) 70 segments

3. Once documents amounting to close to 70
segments have been assigned to the current
HIT, we select a subset of these documents
to be paired with quality control documents;
this subset is selected by repeatedly checking
if the addition of the number of the segments
belonging to a given document (as quality
control items) will keep the total number of
segments in the HIT below 100; if this is the
case, it is included; otherwise it is skipped
until the addition of all documents has been
checked. In doing this, the HIT is structured
to bring the total number of segments as close
as possible to 100 segments.

4. Once we have selected a core set of origi-
nal system output documents and a subset of
them to be paired with quality control ver-
sions for each HIT, quality control documents
are automatically constructed by altering the
sentences of a given document into a mix-
ture of three kinds of quality control items
used in the original DA segment-level quality
control: bad reference translations, reference
translations and exact repeats (see below for
details of bad reference generation and Table
5 for numbers of words replaced in document
segments);

5. Finally, the documents belonging to a HIT
are shuffled.

Construction of Bad References As in previ-
ous years, bad reference pairs were created au-
tomatically by replacing a phrase within a given
translation with a phrase of the same length, ran-
domly selected from n-grams extracted from the
full test set of reference translations belonging to
that language pair. This means that the replace-
ment phrase will itself comprise a mostly fluent

formance estimate, it is also considered a system during qual-
ity control set-up.

Translation # Words Replaced
Length (N) in Translation

1 1
2–5 2
6–8 3
9–15 4
16–20 5
>20 b N/4 c

Table 5: Number of words replaced when constructing qual-
ity control items.

sequence of words (making it difficult to tell that
the sentence is low quality without reading the en-
tire sentence) while at the same time making its
presence highly likely to sufficiently change the
meaning of the MT output so that it causes a no-
ticeable degradation. The length of the phrase to
be replaced is determined by the number of words
in the original translation, as listed in Table 5.

Quality Filtering When an analogue scale (or
0–100 point scale, in practice) is employed, agree-
ment cannot be measured using the conventional
Kappa coefficient, ordinarily applied to human as-
sessment when judgments are discrete categories
or preferences. Instead, to measure consistency
we filter crowd-sourced human assessors by how
consistently they rate translations of known dis-
tinct quality using the bad reference pairs de-
scribed previously. Quality filtering via bad ref-
erence pairs is especially important for the crowd-
sourced portion of the manual evaluation. Due to
the anonymous nature of crowd-sourcing, when
collecting assessments of translations, it is likely
to encounter workers who attempt to game the ser-
vice, as well as submission of inconsistent evalu-
ations and even robotic ones. We therefore em-
ploy DA’s quality control mechanism to filter out
low quality data, facilitated by the use of DA’s ana-
logue rating scale.

Assessments belonging to a given crowd-source
worker who has not demonstrated that he/she can
reliably score bad reference translations signifi-
cantly lower than corresponding genuine system
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(A) (A)
Sig. Diff. & No Sig. Diff.

All Bad Ref. Exact Rep.

Czech→English 290 73 (25%) 68 (93%)
German→English 605 162 (27%) 150 (93%)

Hausa→English 423 109 (26%) 101 (93%)
Icelandic→English 273 75 (27%) 67 (89%)
Japanese→English 315 103 (33%) 91 (88%)
Russian→English 187 84 (45%) 77 (92%)
Chinese→English 617 195 (32%) 178 (91%)

Total 1,694 589 (35%) 544 (92%)

Table 6: Number of crowd-sourced workers taking part
in the reference-based SR+DC campaign; (A) those whose
scores for bad reference items were significantly lower than
corresponding MT outputs; those of (A) whose scores also
showed no significant difference for exact repeats of the same
translation; note: many workers evaluated more than one lan-
guage pair.

output translations are filtered out. A paired sig-
nificance test is applied to test if degraded transla-
tions are consistently scored lower than their orig-
inal counterparts and the p-value produced by this
test is used as an estimate of human assessor re-
liability. Assessments of workers whose p-value
does not fall below the conventional 0.05 thresh-
old are omitted from the evaluation of systems,
since they do not reliably score degraded transla-
tions lower than corresponding MT output transla-
tions.

Table 6 shows the number of workers partic-
ipating in the into-English translation evaluation
who met our filtering requirement in WMT21 by
showing a significantly lower score for bad refer-
ence items compared to corresponding MT out-
puts, and the proportion of those who simultane-
ously showed no significant difference in scores
they gave to pairs of identical translations. We re-
moved data from the non-reliable workers in all
language pairs.

3.2.2 Producing the Human Ranking
This year all rankings (for to-English transla-
tion) were arrived at via segment ratings presented
one at a time in their original document order
(SR+DC).

In order to iron out differences in scoring strate-
gies of distinct human assessors, human assess-
ment scores for translations were first standard-
ized according to each individual human asses-
sor’s overall mean and standard deviation score.

Average standardized scores for individual seg-
ments belonging to a given system were then com-
puted, before the final overall DA score for a given

system is computed as the average of its segment
scores (Ave z in Table 7). Results are also reported
for average scores for systems, computed in the
same way but without any score standardization
applied (Ave % in Table 7).

Human performance estimates arrived at by
evaluation of human-produced reference transla-
tions are denoted by “HUMAN” in all tables.

Clusters are identified by grouping systems to-
gether according to which systems significantly
outperform all others in lower ranking clusters, ac-
cording to Wilcoxon rank-sum test. Rank ranges
are based on the same head-to-head statistical sig-
nificance tests. For instance, if a system is statisti-
cally significantly worse than 2 other systems, and
not statistically different from 4 other systems, its
rank is reported as 3–6 (the top of the rank range
is 2+1, the bottom 2+4).

All data collected during the human evalua-
tion is available at http://www.statmt.org/wmt21/
results.html. Appendix A shows the underlying
head-to-head significance test official results for
all pairs of systems and also reports BLEU, chrF,
and COMET scores.

3.3 Bilingual Human Evaluation

Human evaluation for nine out-of-English and
non-English translation directions used a source-
based (sometimes called “bilingual”) direct as-
sessment of individual segments in the full docu-
ment context (SR+FD), as established in WMT20
(Barrault et al., 2020).

In an attempt to break more ties among the par-
ticipating systems, we also ran a second stage of
annotation using segment-level contrastive source-
based DA ignoring document context (labelled
“contr:SR−DC”) for top-10 systems (plus human
references) for 3 out-of-English language pairs.
Details on the second stage are in Section 3.3.5.

In the source-based DA campaign, we collected
303,627 assessments in total after excluding qual-
ity control items and users who did not pass
the quality control. The contrastive source-based
DA campaign provided 64,031 translation assess-
ments. The total numbers of collected assess-
ments per language pair are presented in Table 8.
For data collection, we used the open-source Ap-
praise Evaluation Framework (Federmann, 2012)
for both assessment types.
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Czech→English
Rank Ave. Ave. z System
1–2 77.8 0.111 Facebook-AI
1–2 78.4 0.081 Online-A
3–6 72.0 0.008 CUNI-DocTransf
3–6 74.0 −0.005 Online-B
3–8 71.5 −0.008 CUNI-Trf2018
3–8 74.5 −0.032 Online-W
5–9 67.2 −0.039 Online-G
7–9 74.4 −0.084 Online-Y
5–9 75.6 −0.085 HUMAN-B

German→English
Rank Ave. Ave. z System
1–5 71.9 0.126 Borderline
1–6 73.5 0.124 Online-A
1–4 78.6 0.122 Online-W

4 79.5 0.113 UF
3–8 73.2 0.106 VolcTrans-AT
4–9 77.5 0.100 Facebook-AI
5–12 75.8 0.068 ICL
4–12 73.4 0.048 Online-G
8–17 69.7 0.016 Online-B
7–17 71.3 0.016 Online-Y
7–17 71.6 0.010 VolcTrans-GLAT
5–16 69.6 0.007 P3AI
9–19 70.6 −0.008 SMU
9–17 73.1 −0.008 UEdin
9–17 69.1 −0.010 NVIDIA-NeMo

10–19 69.9 −0.035 Manifold
15–20 67.0 −0.043 Watermelon
7–17 71.8 −0.061 happypoet

16–20 66.8 −0.081 HUMAN-C
18–20 66.0 −0.120 HW-TSC

Hausa→English
Rank Ave. Ave. z System

1 74.4 0.248 Facebook-AI
2–4 68.8 0.118 Online-B
3–7 66.6 0.062 TRANSSION
2–6 66.5 0.059 ZMT
3–6 69.0 0.059 GTCOM
3–9 65.3 0.029 HW-TSC
5–19 65.2 0.002 MS-EgDC
6–10 60.1 −0.031 P3AI
6–10 62.4 −0.032 NiuTrans
8–11 63.5 −0.090 Online-Y

10–12 59.6 −0.112 Manifold
11–13 60.4 −0.173 AMU
12–13 58.2 −0.205 UEdin

14 56.9 −0.267 TWB

Icelandic→English
Rank Ave. Ave. z System

1 74.5 0.293 Facebook-AI
2 74.8 0.112 Manifold

3–7 75.1 0.045 NiuTrans
3–8 71.3 0.028 Online-B
3–7 76.6 0.013 HW-TSC
3–7 69.7 0.009 Mideind
3–9 75.4 0.003 Online-A
6–9 70.1 −0.037 Allegro.eu
7–9 71.7 −0.080 Online-Y
10 65.2 −0.256 Online-G

Japanese→English
Rank Ave. Ave. z System

1 73.8 0.141 HW-TSC
2–5 65.1 0.082 IIE-MT
2–6 68.6 0.046 NiuTrans
2–9 67.8 0.033 KwaiNLP
2–6 66.2 0.032 Facebook-AI
5–11 63.5 0.025 XMU
3–10 66.8 0.011 capitalmarvel
5–11 60.9 0.001 Online-B
6–11 61.5 −0.031 MiSS
5–11 66.7 −0.039 Online-W
7–12 59.3 −0.062 WeChat-AI

11–14 59.0 −0.080 Online-A
12–16 55.0 −0.140 Online-G
12–16 64.8 −0.157 movelikeajaguar
13–16 62.2 −0.189 Online-Y
13–16 55.4 −0.193 Illini

Russian→English
Rank Ave. Ave. z System
1–5 77.5 0.137 NVIDIA-NeMo
1–4 73.9 0.130 Online-W
3–7 73.1 0.108 Online-B
1–7 73.3 0.089 HUMAN-B
2–7 71.7 0.060 Manifold
1–7 70.4 0.056 Facebook-AI
3–8 68.5 0.044 NiuTrans

7–10 65.1 0.016 Online-G
8–11 65.5 −0.014 AFRL
8–11 63.9 −0.022 Online-A
9–12 69.1 −0.123 Online-Y

Chinese→English
Rank Ave. Ave. z System
1–5 75.0 0.042 NiuTrans
1–6 77.0 0.039 KwaiNLP
1–6 75.6 0.031 DIDI-NLP
1–9 74.1 0.019 HUMAN-B
1–9 71.7 0.016 HappyNewYear

2–19 74.0 −0.001 P3AI
4–18 70.5 −0.023 Borderline
4–19 72.6 −0.026 ICL
6–17 70.1 −0.029 MiSS
3–24 73.1 −0.031 IIE-MT
9–22 72.8 −0.032 Machine-Translation
7–21 70.6 −0.034 SMU
7–21 70.7 −0.036 yyds
6–20 70.1 −0.037 Facebook-AI
7–21 73.6 −0.042 Online-B
7–21 73.5 −0.050 ZengHuiMT
7–21 73.0 −0.062 HW-TSC
7–22 67.6 −0.068 XMU
12–24 76.0 −0.072 NJUSC-TSC
11–24 72.1 −0.082 Online-G
8–22 72.9 −0.087 Online-W
17–24 70.1 −0.103 UF
20–24 66.7 −0.106 Online-A
20–24 69.0 −0.174 Online-Y

Table 7: Official results of WMT21 News Translation Task for translation into-English (SR+DC). Systems ordered by DA
score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p <
0.05; rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall outside
the constraints provided.
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Language Pair Sys. Assess. Assess/Sys

English-Czech 12 50,491 4,207.6
English-German 22 24,689 1,122.2
English-Hausa 15 18,656 1,243.7
English-Icelandic 12 16,940 1,411.7
English-Japanese 16 43,991 2,749.4
English-Russian 11 31,632 2,875.6
English-Chinese 31 84,322 2,720.1
German-French 10 21,018 2,101.8
French-German 10 11,888 1,188.8

Total standard DA 139 303,627 2,184.4

English-Czech 12 19,279 1,606.6
English-German 12 23,212 1,934.3
English-Chinese 12 21,540 1,795.0

Total contrastive DA 36 64,031 1,778.6

Table 8: Amount of data collected in the WMT21 manual
document- and segment-level evaluation campaigns for bilin-
gual source-based evaluation out-of-English and non-English
language pairs. The system counts include the human refer-
ences (either 1 or 2 references, depending on language pair).

3.3.1 Sources of Human Annotators

We used three groups of annotators: participants
in the News Shared Task, crowd-workers from the
Toloka platform, and paid professional annotators
sponsored by Microsoft.

We asked participants of the news task to con-
tribute around 9 hours of annotation time (which
we estimated at 12 HITs) per each primary sys-
tem submitted, with each HIT including roughly
100 segment translations. Furthermore, we col-
lected information about the classification of their
annotators type. Unfortunately, only 65% of the
requested annotations were finished by participat-
ing teams.

The second annotator group was provided by
Toloka AI.16 Toloka AI is a global data labeling
company that helps its customers generate ma-
chine learning data at scale by harnessing the wis-
dom of the crowd from around the world. It relies
on a geographically diverse crowd of several mil-
lion registered users (Pavlichenko et al., 2021).17

Toloka tests proficiency of their annotator crowd
and excludes from future annotations anyone who
does not pass quality control in the Appraise tool.

The last part of annotations is sponsored by Mi-
crosoft, who contributed with their crowd of quali-
fied paid bilingual speakers experienced in the an-
notation process. Moreover, Microsoft tracks the
performance of the annotators, and those who fail

16https://toloka.ai/
17https://hackernoon.com/

evolution-of-the-data-production-paradigm-in-ai

quality control are permanently removed from the
pool of annotators. This increases the overall qual-
ity of the human assessment.

For bilingual human evaluation, Microsoft con-
tributed with 42%, WMT News participants con-
tributed with 37%, and Toloka platform with 21%
of all valid annotations (after removal of annota-
tors that do not pass quality control). The distri-
bution of individual groups of annotators per each
language is presented in Table 9.

3.3.2 Document-Level Assessment

This year’s human evaluation for out-of-English
and non-English language pairs features a
document-level direct assessment configuration
as presented last year (Barrault et al., 2020). We
again use the segment level rating but provide
the full document at once (SR+FD, segment
rating within a full document), for a more reliable
evaluation (Castilho et al., 2020; Laubli et al.,
2020).

Figure 5 above shows a screenshot of the fully
document-level interface. In the default scenario,
an annotator scores individual segments one by
one and, after scoring all of them, on the same
screen, the annotator then judges the translation
of the entire document displayed. Annotators
can, however, revisit and update scores of previ-
ously assessed segments at any point of the anno-
tation of the given document. It has been shown
that presenting the entire document context on a
screen may lead to higher quality segment- and
document-level assessments (Grundkiewicz et al.,
2021) improving the correlation between seg-
ment and document scores and increasing inter-
annotator agreement for document scores. A simi-
lar setup has been used by Popel et al. (2020) even
for more than two systems compared at once.

3.3.3 Quality Control

For the document-level evaluation of out-of-
English translations, HITs were generated using
the same method as described for the SR+DC
evaluation of into-English translations in Sec-
tion 3.2.1 with a minor modification: Since the
annotations are made by researchers and profes-
sional translators who ensure a better quality of
assessments than the crowd-sourced workers, only
bad references are used as quality control items.
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Microsoft Toloka Participants
annotators paid crowd linguists annotators researchers students

English - Chinese 33% 11% 2% 20% 17% 17%
English - Czech 27% 18% - 54% - -
English - German 56% 29% 13% - 2% -
English - Hausa 63% 35% 3% - - -
English - Icelandic 82% 5% 13% - - -
English - Japanese 43% 20% 1% 26% 4% 8%
English - Russian 29% 39% 9% - 23% -
French - German 76% 14% 11% - - -
German - French 43% 45% 11% - - -

Total 42% 21% 37%

Table 9: Distribution of annotation crowds for each language pair in bilingual human evaluation. Annotator types are self-
classified by participants.

3.3.4 Including Human Translations
Source-based DA allows us to include human ref-
erences in the evaluation as another system to
provide an estimate of human performance. Hu-
man references were added to the pool of sys-
tem outputs prior to sampling documents for tasks
generation. Each reference is assessed individu-
ally if multiple references are available, which is
the case for English→German, English→Czech,
English→Russian, and English→Chinese.

3.3.5 Contrastive Direct Assessment
This year we extended the bilingual source-based
human evaluation with contrastive evaluation us-
ing segment-level pairwise direct assessments
(Novikova et al., 2018; Sakaguchi and Van Durme,
2018). It has been pointed out (Freitag et al.,
2021a) that standard direct assessment may not
be able to properly differentiate high-quality MT
system outputs. The contrastive approach to DA
can strengthen the discriminative power as anno-
tators judge translations in relation to each other.
When standard DA can likely provide better abso-
lute quality assessment, the contrastive evaluation
can provide better relative quality assessments be-
tween system pairs. This may help create a more
reliable ranking of systems if used on top of the
standard approach described in Section 3.3.

The contrastive evaluation is similar to the rel-
ative ranking used from WMT08 (Callison-Burch
et al., 2008) to WMT16 (Bojar et al., 2016), where
annotators were presented with up to five system
outputs and corresponding source and reference
sentence and asked to rank these systems between
each other. The main differences in this year’s

contrastive evaluation to the relative rankings are
that 1) the evaluation is source-based, i.e. without
the reference, 2) the continuous scale is used in-
stead of ranks, and 3) only two system outputs are
judged at the same time instead of five.

To reduce the cognitive load on annotators, we
decided to trial this contrastive approach evaluat-
ing individual sentences independent of their con-
text. This is a very important difference compared
to the the first stage (Section 3.3).

We ran the contrastive evaluation for
English→Chinese, English→Czech and
English→German, and we selected top-10
best performing systems based on DA z-score
from the ranking created using standard direct
assessment for those languages (Table 10), and
two human references.

This contrastive evaluation was sponsored by
Microsoft and performed by the bilingual paid
annotator group as described in Section 3.3.1.
Assessments were collected using the open-
source Appraise Evaluation Framework (Feder-
mann, 2012). A screenshot of the user inter-
face used in this stage is shown in Figure 6.
Each annotator is presented with two randomly
selected translated segments from competing sys-
tems (anonymized) and asked to rate both of them
on a continuous scale of 0-100. Upon request
by the annotator, the differences between the two
translations were highlighted at the word level to
help avoid missing differences. This highlighting
may however reduced the effectiveness of control
items.
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Figure 6: Screen shot of the contrastive DA configuration in the Appraise interface for an example assessment from the
2nd stage of human evaluation campaign. The annotator is presented with two translated segments randomly selected from
competing system outputs (anonymized) and is asked to rate both of them on sliding scales.

3.3.6 Human Rankings
Table 10 shows official news task results for trans-
lation out-of-English, where lines indicate clusters
according to Wilcoxon rank-sum test p < 0.05.

Source-based DA scores were collected based
on the document-level annotation interface, so
context was available during annotation. All sys-
tems are evaluated in isolation, based on the an-
notators’ perception of translation quality given
the source text and document context. Across
all language pairs, human reference translations
end up in the top-scoring cluster, indicative of a
(relatively) high quality of these references. For
language pairs with large numbers of submis-
sions, we observe little to no clustering. Notably
English→German has only two clusters, one of
which contains all but one of the submitted sys-
tems, and English→Chinese ends up with a huge
mono cluster containing all submissions. While
there are differences in average scores and z scores
these are not statistically significant enough for
effective clustering. As a substitute, rank ranges
give an indication of the respective system’s trans-
lation quality.

Table 11 shows contrastive news task results
for translation out-of-English, where lines indi-
cate clusters according to Wilcoxon rank-sum test
p < 0.05.

Contrastive, source-based DA scores
(contr:SR−DC) were collected using a segment-
level annotation interface, so context was not

been available to annotators. Results for the
source-based DA annotation phase (SR+FD) in
Table 11 were computed on the subset of data
for the ten systems and two references for which
we have run the contrastive, source-based DA
annotation phase.

We generally observe better clustering for the
contr:SR−DC. This is especially noteworthy as
the number of annotations collected per system
is much higher for the first, SR+FD, DA phase
(for two of the three language pairs on which
contr:SR−DC was run). It seems that pairwise
comparison of system outputs is beneficial for de-
termining whether differences between systems
are statistically significant.

In contrast to the first annotation phase, we
find that human reference translations are scored
worse, and significantly worse than the top clus-
ter. We explain this by the fact that our contrastive
setup was run on segment-level while the source-
based DA annotators had access to the full docu-
ment context. A simple explanation that should
nevertheless be empirically validated is that the
wording of the sentence created for and within the
context of the document does not sound flawless
and natural when evaluated in isolation (Läubli
et al., 2018a; Toral et al., 2018b). Some machine
translation systems do consider the surrounding
sentences but their capacity of ‘contextualizing’
the candidate sentences is probably limited.

Observing the striking difference in system
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English→Czech
Rank Ave. Ave. z System

1 90.2 0.397 HUMAN-A
2–4 87.9 0.284 HUMAN-B
2–4 87.6 0.263 Facebook-AI
2–4 86.1 0.214 Online-W
5–7 83.0 0.122 eTranslation
5–6 82.1 0.047 CUNI-Transformer2018

6–8 79.2 -0.120 CUNI-DocTransformer

7–9 79.3 -0.154 CUNI-Marian-Baselines

8–10 77.8 -0.183 Online-B
9–10 74.6 -0.308 Online-A
11 76.2 -0.373 Online-Y
12 65.6 -0.674 Online-G

English→German
Rank Ave. Ave. z System
1–17 83.3 0.266 Online-B
1–5 84.7 0.243 Online-W
1–14 86.6 0.217 WeChat-AI
1–6 87.6 0.145 Facebook-AI
1–10 89.4 0.116 UF
2–17 85.2 0.089 HW-TSC
3–17 86.8 0.072 UEdin
3–18 86.5 0.041 P3AI
3–18 86.4 0.030 HUMAN-A
5–19 83.3 0.013 happypoet
4–19 86.1 0.010 eTranslation
4–19 84.4 0.001 Online-A
3–18 84.5 0.001 HUMAN-C
5–19 78.8 -0.053 VolcTrans-AT
5–19 86.7 -0.055 NVIDIA-NeMo
8–21 83.1 -0.058 Manifold
4–20 84.3 -0.062 Online-G

12–20 84.5 -0.072 Online-Y
18–21 73.9 -0.130 ICL
4–20 85.0 -0.140 VolcTrans-GLAT

16–21 78.3 -0.179 nuclear_trans
22 80.0 -0.415 BUPT_rush

English→Hausa
Rank Ave. Ave. z System
1–2 84.1 0.362 HUMAN-A
1–4 82.7 0.264 Facebook-AI
2–5 80.8 0.263 NiuTrans
3–6 81.2 0.175 Online-B
4–6 80.1 0.128 TRANSSION
2–6 79.2 0.124 ZMT

7–10 78.0 0.018 P3AI
7–10 78.7 0.006 HW-TSC
8–12 75.2 -0.026 AMU
7–10 78.8 -0.036 GTCOM
9–12 75.0 -0.128 MS-EgDC
12–15 70.2 -0.227 UEdin
11-15 73.4 -0.243 Manifold
12–15 70.5 -0.340 TWB
11-15 67.7 -0.448 Online-Y

English→Icelandic
Rank Ave. Ave. z System

1 88.1 0.872 HUMAN-A
2 84.5 0.594 Facebook-AI

3–4 68.2 0.277 NiuTrans
3–4 72.7 0.240 Manifold
5–9 75.2 0.200 Online-A
5–7 65.6 0.130 Lan-Bridge-MT
5–9 62.6 0.063 Mideind
6–9 73.9 0.026 Online-B
6–9 75.6 -0.034 HW-TSC
10 62.0 -0.236 Online-Y
11 48.7 -0.470 Allegro.eu
12 33.9 -1.082 Online-G

English→Japanese
Rank Ave. Ave. z System
1–2 86.4 0.430 Facebook-AI
1–2 85.3 0.314 HUMAN-A
3–5 84.2 0.266 Online-W
3–5 81.3 0.168 WeChat-AI
3–5 82.6 0.148 NiuTrans
6–8 77.8 0.017 HW-TSC
6–8 71.8 -0.042 MiSS

8–13 78.5 -0.051 Online-Y
6–10 77.8 -0.067 BUPT_rush
8–13 70.9 -0.129 Online-A
9–13 67.4 -0.184 Online-B
9–14 74.2 -0.284 ephemeraler
9–14 72.5 -0.339 capitalmarvel

12–14 70.1 -0.373 movelikeajaguar
15–16 63.5 -0.440 Illini
15–16 65.7 -0.541 Online-G

English→Russian
Rank Ave. Ave. z System
1–3 86.0 0.317 HUMAN-B
1–3 83.3 0.277 Online-W
1–3 82.5 0.093 HUMAN-A
4–6 79.4 0.056 Online-B
4–7 75.3 0.032 Online-A
4–7 80.1 -0.001 Facebook-AI

7–10 74.5 -0.123 NiuTrans
7–10 72.3 -0.153 Manifold
7–10 75.4 -0.161 NVIDIA-NeMo
5–10 76.0 -0.180 Online-G

11 62.7 -0.541 Online-Y

English→Chinese
Rank Ave. Ave. z System
1–3 82.5 0.325 HUMAN-B
2–14 74.9 0.284 HappyNewYear
1–7 81.2 0.250 Facebook-AI
1–8 80.0 0.216 HUMAN-A
4–19 75.3 0.164 Borderline
2–19 81.0 0.161 bjtu_nmt
3–14 75.5 0.151 Lan-Bridge-MT
4–21 79.3 0.124 BUPT_rush
2–18 79.2 0.098 NiuTrans
4–18 75.7 0.091 Machine_Translation

2–15 80.9 0.078 SMU
6–22 81.4 0.064 capitalmarvel
4–19 79.5 0.056 WeChat-AI
6–22 78.1 0.026 Online-W
7–22 75.2 0.004 ICL
9–23 75.9 -0.008 HW-TSC
5–23 78.2 -0.025 ZengHuiMT

11–22 81.2 -0.026 yyds
10–26 79.7 -0.050 P3AI
17–27 77.1 -0.061 windfall
6–24 78.9 -0.075 Online-B

13–26 76.8 -0.080 NJUSC_TSC
9–24 77.7 -0.100 MiSS

19–27 77.0 -0.101 UF
22–28 72.7 -0.123 Online-A
22–28 79.3 -0.160 happypoet
20–28 76.9 -0.185 nuclear_trans
25–29 76.4 -0.247 ephemeraler
28–31 67.5 -0.257 Online-G
29–31 67.1 -0.463 Online-Y
29–31 68.3 -0.613 movelikeajaguar

French→German
Rank Ave. Ave. z System
1–5 87.7 0.088 Online-W
1–7 89.2 0.052 Online-A
1–4 89.5 0.035 HUMAN-A
2–8 85.7 0.002 LISN
1–8 86.9 -0.014 Online-B
4–10 85.0 -0.021 talp_upc
3–8 85.0 -0.064 eTranslation
7–10 84.1 -0.154 Online-G
3–10 86.6 -0.210 Online-Y
7–10 86.4 -0.229 P3AI

German→French
Rank Ave. Ave. z System
1–3 87.9 0.160 Online-B
1–3 86.5 0.126 HUMAN-A
3–6 83.4 0.018 Manifold
1–6 84.8 0.006 Online-W
3–6 84.5 0.004 Online-A

6–10 83.0 -0.084 Online-G
3–10 83.5 -0.148 P3AI
6–10 81.3 -0.149 LISN
6–10 83.7 -0.177 Online-Y
6–10 81.0 -0.190 talp_upc

Table 10: Official results of WMT21 News Translation Task for translation out-of-English (SR+FD). Systems ordered by
DA score z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test
p < 0.05; rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall
outside the constraints provided. DA scores are collected using a document-level annotation interface, so context is available to
annotators.
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ranking by SR+FD vs. contr:SR−DC, esp. the
discrepancy in the ranking of human transla-
tions, we conclude that evaluating MT systems
without document context is no longer reliable
for mid- and high-quality MT systems. This is
also supported by the surprising observation in
Czech→English in Table 7 where humans seemed
to be surpassed by all participating MT systems.
(Considering statistical significance, the claim is
arguably weaker: humans share the second cluster
with the majority of the systems.) We acknowl-
edge that it is possible that the Czech→English
HUMAN-B references are of much worse qual-
ity than the English→Czech ones,18 but we tend
to put more trust in the reference quality than in
the SR+DC method for two reasons: (1) The an-
notators did not see the whole document at once
and cannot go back in their annotation, so their
effective capability to consider context is limited.
(2) It is possible that other effects of reference-
based DA in the Czech→English start playing role
when both the candidate and reference are human
vs. when only the reference is human. One pos-
sibility would be a stronger confidence of asses-
sors when scoring human translations, leading e.g.
to more polarized scores. A detailed investigation
into manual evaluation methods that word reliably
for both human and machine translations is thus
still needed.

3.4 Human Evaluation of Bengali↔Hindi
and Xhosa↔Zulu Translation (Wikipedia
Data)

Translation quality for Bengali↔Hindi and
Xhosa↔Zulu was evaluated using Direct As-
sessment without considering document context
(SR−DC) with a scoring scale of 1-100 by vetted
human evaluators. The human evaluators were
asked to provide a judgment that they felt most
accurately reflected the perceived quality of each
corresponding translation of the give source
sentence. Definitions of translation quality within

18The quality assurance for each of “A” and “B” references
for English↔Czech was comparable; not that the same trans-
lators would be producing both directions. In fact, we ex-
pected the “B” translations to be better, because they were
created by experienced students and teachers of translation
studies, who are active translators themselves and who specif-
ically attempted to produce as good translations as possible.
As the to-Czech scores suggest, our annotators preferred the
translation agency “A” translations significantly more. But
even if the “A” translations were also better than “B” in from-
Czech, we see it as very unlikely that the translatologist trans-
lations would be worse than all systems.

several scoring ranges were provided to assist
evaluators in providing consistent annotations.

A participating system translation was dis-
played on the right next to its corresponding
source sentence on the left. The sentence pairs
were then randomized and passed to a human eval-
uator for a single direct assessment. The evalua-
tion was performed on the sentence level and eval-
uators provided a direct assessment score for each
sentence-translation pair. The user interface was
simpler than the one shown in Figure 5: instead
of a slider, the annotators had to enter the scores
numerically.

Because evaluators were extremely difficult to
recruit for these language pairs and the evaluation
was thus low resource, no quality control items
were injected and we focused on the vetting pro-
cess of the evaluators prior to performing any as-
sessment. The only sanity check was that evalu-
ators enter an integer between 1 and 100 as the
scores.

All segments from the FLORES Wikimedia test
set were included for the evaluation. Each segment
was annotated and assessed by one evaluator only
once.

All four language directions were assessed by
trusted evaluators who have been vetted by a lo-
calization vendor specializing in translation eval-
uation services, to have native fluency of the tar-
get language, fluent to native understanding of the
source language, have lived in the target region for
at least five years recently, and have had at least
two to five years of professional translation expe-
rience. For Hindi→Bengali and Bengali→Hindi,
two human evaluators were used with the transla-
tion data being split in half and randomly assigned
to the respective evaluators. Two human evalua-
tors assessed for Xhosa→Zulu data and one eval-
uator assessed for Zulu→Xhosa. The number of
evaluators and judgments they made is provided
in Table 12.

The final scores for Bengali↔Hindi and
Xhosa↔Zulu are provided in Table 13.

3.5 GENIE DE-EN Evaluation

This year, human evaluations for
German→English translation with the GE-
NIE leaderboard were also carried out. GENIE

is an ongoing effort that centralizes and facil-
itates human evaluations for natural language
generation tasks (Khashabi et al., 2021). In
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Source-based DA
(on document level)

SR+FD

English→Czech
Rank Ave. Ave. z System

1 90.2 0.397 HUMAN-A
2-4 87.9 0.284 HUMAN-B
2-4 87.6 0.263 Facebook-AI
2-4 86.1 0.214 Online-W
5-7 83.0 0.122 eTranslation
5-6 82.1 0.047 CUNI-Transformer2018
6-8 79.2 -0.120 CUNI-DocTransformer
7-9 79.3 -0.154 CUNI-Marian-Baselines

8-10 77.8 -0.183 Online-B
9-10 74.6 -0.308 Online-A
11 76.2 -0.373 Online-Y
12 65.6 -0.674 Online-G

Five clusters

English→German
Rank Ave. Ave. z System
1-10 83.3 0.209 Online-B
1-6 84.7 0.179 Online-W

1-10 86.6 0.109 WeChat-AI
1-6 87.6 0.077 Facebook-AI

3-11 86.8 0.008 UEdin
1-11 86.5 -0.014 P3AI
3-11 86.4 -0.031 HUMAN-A
3-11 86.1 -0.038 eTranslation
1-11 84.5 -0.063 HUMAN-C
10-12 84.5 -0.109 Online-Y
5-12 83.3 -0.131 happypoet
3-12 86.7 -0.134 NVIDIA-NeMo

Single cluster

English→Chinese
Rank Ave. Ave. z System
1-8 74.9 0.205 HappyNewYear
1-5 82.5 0.186 HUMAN-B
1-7 81.2 0.139 Facebook-AI
1-5 80.0 0.105 HUMAN-A
3-9 75.5 0.045 Lan-Bridge-MT
2-11 81.0 0.019 bjtu_nmt
2-9 80.9 -0.012 SMU
7-12 75.3 -0.066 Borderline
4-12 75.7 -0.068 Machine_Translation
7-12 81.4 -0.074 capitalmarvel
8-12 79.3 -0.090 BUPT_rush
5-12 79.2 -0.105 NiuTrans

Single cluster

Contrastive, source-based DA
(segment level ignoring doc. context)

contr:SR−DC

English→Czech
Rank Ave. Ave. z System
1-2 87.8 0.281 Facebook-AI
1-2 87.6 0.237 Online-W
3-5 85.6 0.091 CUNI-DocTransformer
3-6 84.9 0.067 CUNI-Transformer2018
4-7 84.3 0.026 HUMAN-A
3-6 84.1 -0.003 HUMAN-B
6-7 83.4 -0.057 eTranslation
8-9 82.7 -0.119 CUNI-Marian-Baselines
8-10 81.3 -0.219 Online-A
9-10 81.1 -0.238 Online-B

11-12 77.7 -0.489 Online-Y
11-12 75.8 -0.630 Online-G

Four clusters

English→German
Rank Ave. Ave. z System
1–3 89.6 0.093 Facebook-AI
1–3 88.5 0.067 WeChat-AI
1–3 88.4 0.035 Online-W
4–9 87.2 -0.044 NVIDIA-NeMo

4–11 87.9 -0.058 HUMAN-C
4–10 86.7 -0.062 P3AI
4–9 86.5 -0.080 UEdin

4–10 87.1 -0.088 Online-B
4–10 86.9 -0.102 eTranslation
6–12 85.7 -0.190 happypoet

10–12 85.7 -0.192 Online-Y
10–12 85.8 -0.226 HUMAN-A

Two clusters

English→Chinese
Rank Ave. Ave. z System
1–5 82.6 0.072 Borderline
1–5 82.3 0.071 bjtu_nmt
1–5 82.5 0.062 SMU
1–5 82.4 0.048 Facebook-AI
1–5 82.5 0.011 NiuTrans
6–11 82.0 -0.016 HappyNewYear
6–11 82.0 -0.016 Machine_Translation
6–10 82.0 -0.056 Lan-Bridge-MT
6–11 81.6 -0.094 BUPT_rush
6–11 81.2 -0.126 capitalmarvel
6–11 81.7 -0.149 HUMAN-A

12 79.3 -0.393 HUMAN-B

Three clusters

Table 11: Contrastive results of WMT21 News Translation Task for translation out-of-English. Systems ordered by DA score
z-score; systems within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05;
rank ranges are based on the same test (for details, see Section 3.2.2); grayed entry indicates resources that fall outside the
constraints provided. DA scores collected using a segment-level annotation interface, so context is not available to annotators.
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Language Pair Sys. Assess. Evaluators

Bengali→Hindi 9 4,461 2
Hindi→Bengali 9 4,512 2
Xhosa→Zulu 6 2,952 2
Zulu→Xhosa 5 2,502 1
Total 29 14,437 7

Table 12: Amount of data collected in the WMT21 man-
ual evaluation campaign for evaluation Hindi to/from Bengali
and Zulu to/from Xhosa

addition to all German→English submissions,
four original transformer baselines with varying
sizes and depths were trained and evaluated:
GENIE-large-6-6 (transformer large with a 6-layer
encoder and a 6-layer decoder), GENIE-base-6-6,
GENIE-base-3-3, and GENIE-base-1-1.19 These
models were trained solely on the given training
data without ensembling, backtranslation, or any
other data augmentation method.

Similar to the official into-English evalua-
tions, evaluations are done monolingually where
Human-A is used as the reference. Each HIT con-
tains 5 segments that are randomly shuffled, and
no document context is considered during evalu-
ations. Turkers are asked to decide whether they
agree or disagree that the prediction adequately
expresses the meaning of the reference. Turkers
are given the following additional instructions: a
prediction is adequate if in the absence of the ref-
erence, the prediction perfectly conveys the mean-
ing intended by the reference. The user interface
for annotating one candidate segment in the HIT
is illustrated in Figure 7.

For quality control, we first selected Amazon
Mechanical Turkers who had completed at least
5000 HITs with a 99+% approval rate and had a
locale of US, GB, AU, or CA. They were then
asked to carefully read the instructions and fin-
ish 10 sample questions created from WMT 2019
submissions and references. They were allowed
to participate only when they correctly annotate
9 instances at least. In addition to this quality
control at the entry point, we kept monitoring to
detect spamming behavior. In particular, we ran-
domly replaced 5% of the model predictions with
sentences identical to the corresponding reference
(Perfect Ref., similar to good reference in Section
3.2.1), and 5% of the model predictions with the

19The leaderboard is public at https://leaderboard.
allenai.org/genie-mt21/submissions/public. All
models and code to reproduce are available at https://
github.com/jungokasai/GENIE_wmt2021-de-en.

reference from a different question (Wrong Ref.).
We then randomly selected 800 examples from the
test set to annotate. During annotation, we moni-
tored how annotators labeled the Perfect Ref. and
Wrong Ref. questions. Annotators that failed to
both assign a high score to the Perfect Ref. and
a low score to the Wrong Ref. questions were re-
moved from the annotator pool, and all of their
annotations were discarded. This qualification re-
sulted in removing 5% of the participants. Since
spammers invest little effort into completing each
HIT, they can complete many more than other an-
notators (we found they would have completed
up to 50% of the HITs in our preliminary exper-
iments). Therefore, removing the 5% of partici-
pants that spammed annotations substantially im-
proved the quality of our assessment.

In summary, there are several major differences
from the setup used in the official evaluations:

• Turkers assess the adequacy by a five-
category Likert scale, which is later con-
verted to scalar values: strongly agree (1.0),
agree (0.75), neutral (0.5), disagree (0.25),
and strongly disagree (0.0).

• All 5 segments are randomly chosen for
each HIT, and the document context is dis-
regarded.

• For evaluating each system, we randomly
sample 800 segments from the test set. The
randomly selected instances are shared across
all systems.

• To maximize the number of segments an-
notated for a given budget, each segment is
annotated only once (unilabeling). Under a
fixed annotation budget, unilabeling results
are shown to be relatively stable compared
to multilabeling (i.e., evaluating one segment
by multiple annotators. See Section 5.1 of
Khashabi et al., 2021).

• The overall scores are calculated by averag-
ing raw numbers over the 800 segments. No
standardization is applied.

• Different quality controls are applied as dis-
cussed above.

Table 14 shows results from the GENIE evalua-
tion for German to English translation. There are
systems that are ranked highly, both in the offi-
cial and GENIE evaluations, such as Online-A and
VolcTrans-AT. Conversely, happypoet and Mani-
fold are given low scores consistently. Further, the
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Bengali→Hindi
Rank Ave. Ave. z System
1–2 82.1 0.202 GTCOM
1–2 79.1 0.163 Online-B
3–5 77.5 0.080 TRANSSION
3–5 78.0 0.076 MS-EgDC
3–6 78.0 0.054 UEdin
4–8 76.1 −0.015 Online-Y
6–8 75.7 −0.080 HW-TSC
6–8 75.7 −0.107 Online-A

9 70.8 −0.373 Online-G

Xhosa→Zulu
Rank Ave. Ave. z System
1–3 68.4 0.331 HW-TSC
1–3 67.9 0.287 TRANSSION
1–3 63.7 0.240 GTCOM
4–5 61.5 0.144 MS-EgDC
4–5 62.6 0.107 FJDMATH

6 19.4 −1.135 Online-G

Hindi→Bengali
Rank Ave. Ave. z System
1–4 95.0 0.245 HW-TSC
1–4 94.8 0.236 Online-A
1–4 94.5 0.233 GTCOM
1–4 94.6 0.214 UEdin
5–6 92.3 0.080 Online-Y

7 92.0 0.045 TRANSSION
6–7 91.3 0.029 Online-B

8 90.9 −0.008 MS-EgDC
9 73.5 −1.100 Online-G

Zulu→Xhosa
Rank Ave. Ave. z System

1 80.7 0.502 TRANSSION
2–3 74.3 0.310 HW-TSC
2–4 72.6 0.258 MS-EgDC
3–4 69.3 0.162 GTCOM

5 21.9 −1.253 Online-G

Table 13: Official results of WMT21 Translation Task for Hindi to/from Bengali and Zulu to/from Xhosa translation
(Wikipedia data, SR−DC). Systems ordered by DA score z-score; systems within a cluster are considered tied; lines indicate
clusters according to Wilcoxon rank-sum test p < 0.05; rank ranges are based on the same test (for details, see Section 3.2.2);
grayed entry indicates resources that fall outside the constraints provided.

Figure 7: GENIE annotation interface for one segment.

transformer baselines are ranked in the expected
order: large-6-6, base-6-6, base-3-3, followed by
base-1-1. This confirms the validity of the evalua-
tions. Nonetheless, we see some noticeable dif-
ference from the official ranking. In particular,
HUMAN and the Watermelon systems are ranked
high in contrast to the official evaluations. It is left
to future work to analyze which parts of the crowd-
sourcing setup are contributing to the diverging
system rankings; these analyses would help us im-
prove our human evaluation method in the future.

4 Similar Language Translation

In this section we present the findings of the third
SLT shared task organized at WMT 2021. The
task follows the success of the two past SLT shared
tasks organized at WMT 2019 and WMT 2020.
SLT 2021 is motivated by the growing interest of
the community in translating between similar lan-

guages, low-resource languages, dialects, and lan-
guage varieties, and the challenges faced by state-
of-the-art systems in these settings evidenced in
recent studies (Hassani, 2017; Costa-jussà et al.,
2018; Popović et al., 2020; Tapo et al., 2020).

The main goal of the task is to evaluate the per-
formance of state-of-the-art MT systems on trans-
lating between closely-related language pairs of
languages from the same language family. Past
editions of the task (Barrault et al., 2019, 2020)
featured language pairs such as Spanish - Por-
tuguese, Czech - Polish, and Hindi - Nepali to
name a few. This year’s SLT features multiple
pairs of similar languages from the Indo-Aryan
and Romance family.

Finally, SLT 2021 also features a track includ-
ing French and two similar low-resource Manding
languages spoken in West Africa, namely Bam-
bara and Maninka, where participants were pro-
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GENIE German→English
Ave. Score Lower Upper System

0.757 0.737 0.776 Watermelon
0.752 0.732 0.772 VolcTrans-AT
0.752 0.732 0.772 HUMAN
0.743 0.724 0.764 Online-B
0.742 0.721 0.760 Online-A
0.740 0.720 0.759 Facebook-AI
0.738 0.721 0.756 Online-W
0.738 0.717 0.757 Online-G
0.737 0.717 0.757 VolcTrans-GLAT
0.735 0.714 0.756 UF
0.734 0.713 0.754 HuaweiTSC
0.733 0.710 0.753 NVIDIA-NeMo
0.712 0.691 0.734 ICL
0.704 0.684 0.723 GENIE-large-6-6
0.704 0.684 0.722 P3AI
0.700 0.680 0.721 UEdin
0.692 0.670 0.712 SMU
0.690 0.669 0.711 GENIE-base-6-6
0.685 0.664 0.705 Manifold
0.676 0.655 0.696 Borderline
0.665 0.645 0.684 Online-Y
0.653 0.630 0.676 GENIE-base-3-3
0.643 0.620 0.667 happypoet
0.507 0.483 0.530 GENIE-base-1-1

Table 14: GENIE DE-EN results. Lower and upper bounds
for 95% confidence intervals are calculated by bootstrapping
(Koehn, 2004; Khashabi et al., 2021). Grayed entries indicate
unconstrained settings.

vided with the opportunity to combine datasets of
the two Manding languages taking advantage of
their similarity. As in past editions of the task,
translations at SLT 2021 are evaluated in all di-
rections using three automatic evaluation metrics:
BLEU, RIBES, and TER.

4.1 Data

Training We have made available a number of
data sources for the SLT shared task. Some train-
ing datasets were used in the previous editions of
the WMT News Translation shared task and were
updated (News Commentary v16, Wiki Titles v3),
while some corpora were newly introduced. We
also used data collected from Opus (Tiedemann
and Nygaard, 2004; Tiedemann, 2012)20.

For the Spanish–Catalan language pair we
used parallel corpora: Wiki Titles v3, ParaCrawl
(Bañón et al., 2020), DOGC v2, and monolingual:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl, caWaC (Ljubešić and Toral,
2014) (see Table 15). Released corpora for the
Spanish–Portuguese language pair included paral-
lel datasets: Europarl v10 (Koehn, 2005), News
Commentary v16, Wiki Titles v3, Tilde MODEL
(Rozis and Skadin, š, 2017), JRC-Acquis (Stein-

20http://opus.nlpl.eu/

berger et al., 2006), and monolingual corpora:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl (see Table 16). Moreover, cor-
pora for the Romanian–Spanish language pair (see
Table 17) and the Romanian–Portuguese language
pair (see Table 18) contained parallel datasets: Eu-
roparl v8 (Koehn, 2005), Wiki Titles v3, Tilde
MODEL (Rozis and Skadin, š, 2017), JRC-Acquis
(Steinberger et al., 2006), and monolingual data:
Europarl v10 (Koehn, 2005), News Commentary
v16, News Crawl, Common Crawl.

The released parallel Tamil–Telugu dataset was
collected from news (Siripragada et al., 2020),
PMIndia (Haddow and Kirefu, 2020) and MKB
(Man Ki Baat) datasets. All data were initially
combined, tokenized using indic-nlp tokenizer
(Kunchukuttan, 2020) and randomly shuffled. A
subset of data extracted from the dataset are used
for test and development set. The remaining data
were considered as training set (cf. Table 21).

Finally, the parallel Bambara-French corpus is
a part of the Bambara Reference Corpus 21.

Development and Test Data The development
and test sets for Spanish–Catalan, Spanish–
Portuguese, Romanian–Spanish and Romanian–
Portuguese language pairs were created from a
corpus provided by Pangeanic22. Catalan transla-
tions were provided by the Directorate-General for
Language Policy at the Ministry of Culture, Gov-
ernment of Catalonia. Each dev and test dataset
was cleaned, deduplicated and shuffled, resulting
in 969 and 999 sentences in dev and test sets re-
spectively.

4.2 Participants and Approaches

SEBAMAT SEBAMAT submitted their system
for two language pairs, Spanish–Catalan and
Spanish–Portuguese, in both directions. The SE-
BAMAT approach is based on the Marian NMT
toolkit that leverages the Transformer architec-
ture. The systems were trained using only the
parallel corpora that were made available for the
participants. For all the language pairs and di-
rections, SEBAMAT submitted PRIMARY and
CONTRASTIVE systems with different vocabu-
lary sizes (40,000 and 85,000, respectively). Inter-
estingly, in all the cases, the PRIMARY systems
with a smaller vocabulary size performed better in
terms of BLEU scores.

21http://cormand.huma-num.fr/index.html
22https://www.pangeanic.com/
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Corpus Sentences
Parallel Spanish↔ Catalan Wiki Titles v3 476,475

Spanish↔ Catalan ParaCrawl 6,870,183
Spanish↔ Catalan DOGC v2 10,933,622

Monolingual Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Catalan caWaC 24,745,986

Dev Spanish↔ Catalan 969
Test Spanish↔ Catalan 999

Table 15: Corpora for the Spanish↔ Catalan language pair.

Corpus Sentences
Parallel Spanish↔ Portuguese Europarl v10 1,801,845

Spanish↔ Portuguese News Commentary v16 48,259
Spanish↔ Portuguese Wiki Titles v3 649,833
Spanish↔ Portuguese Tilde MODEL 13,464
Spanish↔ Portuguese JRC-Acquis 1,650,126

Monolingual Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Portuguese Europarl v10 2,016,635
Portuguese News Commentary v16 89,111
Portuguese News Crawl 2008-2020 10,900,924

Dev Spanish↔ Portuguese 969
Test Spanish↔ Portuguese 999

Table 16: Corpora for the Spanish↔ Portuguese language pair.

Corpus Sentences
Parallel Romanian↔ Spanish Europarl v8 387,653

Romanian↔ Spanish Wiki Titles v3 253,770
Romanian↔ Spanish Tilde MODEL 3,770
Romanian↔ Spanish JRC-Acquis v2 451,849

Monolingual Spanish Europarl v10 2,038,042
Spanish News Commentary v16 503,255
Spanish News Crawl 2007-2020 65,365,886
Romanian Common Crawl 288,806,234
Romanian News Crawl 2015-2020 29,538,472

Dev Romanian↔ Spanish 969
Test Romanian↔ Spanish 999

Table 17: Corpora for the Romanian↔ Spanish language pair.

T4T The T4T team participated in the SLT 2021
Romance languages track, submitting their sys-
tem for Spanish ↔ Catalan and Spanish ↔ Por-
tuguese. While their systems are built using out-
of-the-box OpenNMT toolkit, the team developed
custom cleaning scripts and an adhoc tokenizer.
SentencePiece library was used for pre-processing
and reducing the vocabulary size to 16,000 sym-
bols.

UBC-NLP The UBC-NLP team submitted their
Spanish ↔ Portuguese, Catalan → Spanish and
French↔ Bambara systems to the SLT 2021 task.
Their systems are built using Transformers from
the HuggingFace library. The UBC-NLP team ex-
perimented with tokenized (PRIMARY) and un-
tokenized (CONTRASTIVE) systems and com-
pared them with models developed by fine-tuning
pre-trained models as well as models trained from
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Corpus Sentences
Parallel Romanian↔ Portuguese Europarl v8 381,404

Romanian↔ Portuguese Wiki Titles v3 251,834
Romanian↔ Portuguese Tilde MODEL 3,860
Romanian↔ Portuguese JRC-Acquis v2 451,737

Monolingual Portuguese Europarl v10 2,016,635
Portuguese News Commentary v16 89,111
Portuguese News Crawl 2008-2020 10,900,924
Romanian Common Crawl 288,806,234
Romanian News Crawl 2015-2020 29,538,472

Dev Romanian↔ Portuguese 969
Test Romanian↔ Portuguese 999

Table 18: Corpora for the Romanian↔ Portuguese language pair.

Corpus Sentences
Parallel French↔ Bambara Dokotoro/Bible/SIL Dictionary 9,939

Sentences/Corpus Référence de Bambara
Dev French↔ Bambara 5,972
Test French↔ Bambara 2,984

Table 19: Corpora for the French↔ Bambara language pair.

Corpus Sentences
Parallel French↔Maninka 3000 training sentences/Constitution of Guinea 3,243
Dev French↔Maninka 540
Test French↔Maninka 270

Table 20: Corpora for the French↔Maninka language pair.

Corpus Sentences
Parallel Tamil↔ Telugu MKB 3,100

Tamil↔ Telugu News 11,038
Tamil↔ Telugu PM India 26,009

Dev Tamil↔ Telugu 1,261
Test Tamil↔ Telugu 1,735

Table 21: Corpora for the Tamil↔ Telugu language pair.

scratch. The pre-trained models were developed
using Marian NMT by Helsinki-NLP on Hugging-
Face.

A3-108 The A3-108 team submitted 3 sys-
tems (one PRIMARY and two CONTRASTIVEs)
based on statistical machine translation for Tamil
↔ Telugu language pair. The team explores var-
ious tokenization schemes for their submissions.
Their PRIMARY run achieved top rank in Telugu
→ Tamil and ranked 3rd in Tamil→ Telugu trans-
lation task.

oneNLP oneNLP team participation on Tamil
↔ Telugu system is based on transformer based
NMT. The team explored different subword con-
figurations, script conversion and single model

training for both directions. Their primary sub-
mission achieved 2.05 BLEU for Tamil→ Telugu
and 5.03 for Telugu→ Tamil.

CNLP-NITS The team submitted their run for
Tamil↔ Telugu similar language translation task.
The CNLP-NITS system used pre-train word em-
beddings from monolingual data and applied in
transformer based neural machine translation. The
model achieved BLEU score 4.05 for both Tamil
→ Telugu and Telugu→ Tamil.

NITK-UOH NITK-UoH’s submission system
is based on vanilla Transformer model initialized
with MultiBPEmb – a collection of multilingual
subword segmentation based pretrained embed-
dings. NITK-UoH performs top in Tamil → Tel-
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ugu translation task.

4.3 Results

Similarly to the previous edition of the SLT
shared task, participants could submit systems for
the Spanish–Catalan and Spanish–Portuguese lan-
guage pairs (in both directions). The best systems
for Spanish-to-Portuguese (see Table 25) achieved
over 40 BLEU and around 85 RIBES. While
in the opposite direction (Portuguese-to-Spanish)
the best performing system reached 47.71 of
BLEU (see Table 24). As the Spanish–Catalan
dev and test sets were aligned with Spanish–
Portuguese ones, we noticed that the best results
for the Spanish–Catalan language pair are in gen-
eral much better than for Spanish–Portuguese. For
Spanish-to-Catalan the best system attained over
79 BLEU and below 15 TER (see Table 27).
However, its RIBES score (95.76) was lower than
the runner-up system’s (96.24). In the case of
Catalan-to-Spanish, the best system scored over
82 BLEU and less than 11 TER (see Table 26). As
there were no submissions for Romanian–Spanish
and Romanian–Portuguese, we do not provide any
evaluations for these language pairs.

4.4 Summary

This section presented the results and findings of
the third edition of the SLT shared task at WMT.
The third iteration of this competition featured
data from multiple language pairs from three dif-
ferent language families: Dravidian, Manding,
and Romance languages. We evaluated the sys-
tems translating in both directions of the lan-
guage pair using three automatic metrics: BLEU,
RIBES, and TER. Most teams this year partici-
pated in the Dravidian language pairs. Following
a trend observed in the past editions of the task,
we observed that the performance varies widely
between language pairs and domains.

5 Triangular MT

This section presents an overview of the Triangu-
lar MT shared task. Given a low-resource lan-
guage pair (X/Y), the bulk of previous MT work
has pursued one of two strategies.

• Direct: Collect parallel X/Y data from the
web, and train an X-to-Y translator , OR

• Pivot (Utiyama and Isahara, 2007; Wu and
Wang, 2009): Collect parallel X/English and

Y/English data (often much larger than X/Y
data), train two translators (X-to-English +
English-to-Y), and pipeline them to form an
X-to-Y translator

However, there are many other possible strate-
gies for combining such resources. These may
involve, for example, ensemble methods, multi-
source training methods, multi-target training
methods, or novel data augmentation methods.
For eg. (Zoph et al., 2016; Dholakia and Sarkar,
2014; Kim et al., 2019).

5.1 The Task

The goals of this shared task is to promote:

• translation between non-English languages,

• optimally mixing direct and indirect parallel
resources, and

• exploiting noisy, parallel web corpora

The task is Russian-to-Chinese machine trans-
lation. We provided parallel corpora to the par-
ticipating teams. We evaluate system transla-
tions on a (secret) mixed-genre test set, drawn
from the web and curated for high quality seg-
ment pairs. After receiving test data, participants
had one week to submit translations. After all
submissions are received, we posted a populated
leaderboard that will continue to receive post-
evaluation submissions.23 The evaluation met-
ric for the shared task is 4-gram character Bleu.
The script to be used for Bleu computation is
Moses multi-bleu-detok.perl. Instructions
to run the script were released as part of the shared
task.24 The participants indicated their intent to
participate via registration on the Codalab website
for the shared task25 and obtained the instructions
and links to various resources.

5.2 Training Data

We provided three parallel corpora:

• Chinese/Russian: crawled from the web and
aligned at the segment level, and combined
with different public resources.

23https://competitions.codalab.org/
competitions/30446#results

24https://github.com/didi/wmt2021_
triangular_mt/tree/master/eval

25https://competitions.codalab.org/
competitions/30446#participate
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Team Name System Type BLEU ↑ RIBES ↑ TER ↓
NITK-UOH PRIMARY 6.09 17.03 -
A3-108 CONTRASTIVE1 5.54 40.58 98.082
A3-108 PRIMARY 5.23 42.37 98.662
CNLP-NITS PRIMARY 4.05 24.80 97.241
oneNLP CONTRASTIVE2 3.67 22.28 99.122
oneNLP CONTRASTIVE 3.57 23.54 99.034
A3-108 CONTRASTIVE2 3.32 34.42 -
oneNLP PRIMARY 2.05 21.68 -
NITK-UOH CONTRASTIVE 0.00 0.03 -

Table 22: Evaluation results for Tamil to Telugu.

Team Name System Type BLEU ↑ RIBES ↑ TER ↓
A3-108 PRIMARY 8.37 43.55 95.884
A3-108 CONTRASTIVE1 7.89 46.24 95.627
A3-108 CONTRASTIVE2 7.43 42.54 94.964
NITK-UOH PRIMARY 6.55 19.61 98.356
oneNLP PRIMARY 5.03 23.98 97.551
CNLP-NITS PRIMARY 4.05 24.80 97.241
oneNLP CONTRASTIVE 3.63 27.05 97.534
oneNLP CONTRASTIVE2 3.61 26.12 96.772
NITK-UOH CONTRASTIVE 0.04 1.00 -

Table 23: Evaluation results for Telugu to Tamil.

Team Name System Type BLEU ↑ RIBES ↑ TER ↓
UBC-NLP PRIMARY 47.71 87.11 39.213
SEBAMAT PRIMARY 46.51 86.31 41.235
T4T PRIMARY 46.29 87.04 40.181
UBC-NLP CONTRASTIVE 43.86 85.10 43.801
SEBAMAT CONTRASTIVE 43.12 84.99 45.068

Table 24: Evaluation results for Portuguese to Spanish.

Team Name System Type BLEU ↑ RIBES ↑ TER ↓
T4T PRIMARY 40.74 85.69 43.343
SEBAMAT PRIMARY 40.35 84.99 45.258
SEBAMAT CONTRASTIVE 38.90 83.89 47.044
UBC-NLP PRIMARY 38.10 85.35 46.556
UBC-NLP CONTRASTIVE 35.61 82.48 52.612

Table 25: Evaluation results for Spanish to Portuguese.

Team Name System Type BLEU ↑ RIBES ↑ TER ↓
UBC-NLP PRIMARY 82.79 96.98 10.918
SEBAMAT PRIMARY 78.65 94.76 15.805
T4T PRIMARY 77.93 96.04 16.502
UBC-NLP CONTRASTIVE 76.8 95.19 15.421
SEBAMAT CONTRASTIVE 76.78 94.46 17.067

Table 26: Evaluation results for Catalan to Spanish.
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Team Name System Type BLEU ↑ RIBES ↑ TER ↓
SEBAMAT PRIMARY 79.69 95.76 14.632
T4T PRIMARY 78.60 96.24 16.133
SEBAMAT CONTRASTIVE 77.32 95.35 16.744

Table 27: Evaluation results for Spanish to Catalan.

Team Name System Type BLEU ↑ RIBES ↑ TER ↓
UBC-NLP PRIMARY 1.32 24.79 97.899

Table 28: Evaluation results for French to Bambara.

• Chinese/English: combining several public
resources.

• Russian/English: combining several public
resources.

The details of the training resources provided
are shown in Table 30. The provenance of
the collected parallel data is as follows. We
used a parallel data harvesting pipeline devel-
oped at DiDi (Zhang et al., 2020) to harvest
Russian/Chinese parallel data on the Internet.
We downloaded parallel datasets available from
Opus (Tiedemann, 2009) for all the three lan-
guage pairs - Russian/Chinese, Russian/English
and English/Chinese. Since united nations data
and subtitles data (Ru/En) are very large sources
of parallel data, we report statistics on these two
types of Opus parallel sources. In addition to
Opus, we also curate parallel data from Wikima-
trix (Schwenk et al., 2019) in all three language
pairs and social media parallel data - Weibo and
Twitter (Ling et al., 2013). We also release the
provenance of each parallel segment, in case teams
want to use this information to filter noisy data
sources.

5.3 Creating the Test Dataset
We spent a considerable amount of time to cu-
rate high quality, parallel data online to be used
as development and evaluation datasets. This was
a completely manual process undertaken by a na-
tive speaker of Russian who consulted with a na-
tive Chinese speaker from our team to ensure good
quality translations (that does not contain tell-tale
signs of automatic translation). Our workflow en-
tailed finding websites and large chunks of paral-
lel text, not necessarily from the same pages. The
sources selected were also hard to be harvested
from a parallel data pipeline due to their differ-
ence in URL structure. The sources selected were

from a diverse range of non-traditional sources,
and have a balance of different types of docu-
ments. The topics would be famous works of lit-
erature, or tourism related news stories, and so on.
We copied large chunks of text from such sources
and manually aligned the paragraphs, followed by
manual sentence alignment, each done manually
to ensure top quality parallel segments. This was
followed by a final filtering step to remove sen-
tences and entire sources which had a significant
overlap with training and development data. The
details of the development and test datasets are
shown in Tables 31 and 32.

5.4 Baselines and Final Results

We released a baseline system26 as part of the
shared task. This is based on the Google Ten-
sor2tensor27 toolkit to train a Transformer-based
NMT system. We also provided the baseline bleu
score on the development dataset ahead of the
evaluation phase. We had 2 simple baselines -
(1) Direct - Transformer model trained on the en-
tire Russian/Chinese parallel dataset and decoded
with α = 1.0 and beam_size=4. (2) Pivot model
- 2 MT systems - Russian-to-English and English-
to-Chinese - each trained with the corresponding
parallel data. Both the Russian-to-English and the
English-to-Chinese systems were decoded with
alpha=1.0 and beam_size=4. The baseline re-
sults on the development dataset as shown in Ta-
ble 33.

We had a total of six teams submitting their sys-
tem outputs on the test dataset. The evaluation
metric was 4-gram character bleu score. The final
evaluation results are shown in Table 34.

26https://github.com/didi/wmt2021_
triangular_mt/

27https://github.com/tensorflow/
tensor2tensor
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Team Name System Type BLEU ↑ RIBES ↑ TER ↓
UBC-NLP PRIMARY 3.62 36.17 -

Table 29: Evaluation results for Bambara to French.

Russian/Chinese parallel data Segment pairs Characters (Chinese side)
DiDi parallel data harvesting pipeline 5,403,157 82,552,922
Opus (no UN) + Weibo + Wikimatrix 430,302 20,954,541
Opus (UN) 27,551,996 1,362,478,536
Total 33,385,455 1,465,985,999

Russian/English parallel data Segment pairs Words (Russian side)
Opus (no UN, no subtitles) + Twitter + Wikimatrix 6,340,245 97,537,275
Opus (UN, subtitles) 62,811,986 909,476,736
Total 69,152,231 1,007,014,011

English/Chinese parallel data Segment pairs Characters (Chinese side)
Opus (no UN) + Twitter + Weibo + Wikimatrix 1,435,132 69,894,886
Opus (UN) 27,089,931 1,333,732,823
Total 28,525,063 1,403,627,709

Table 30: Triangular MT: Training data statistics

5.5 Overview of the Submitted Systems

Five out of the six participating systems submit-
ted system description papers. In this section we
briefly discuss the outline of these systems. For
more details please refer to the proceedings.
- istic-team-2021 (Guo et al., 2021) The team’s
system is based on the Transformer architecture.
They used several corpus pre-processing steps
such as special symbol filtering and filtering based
on segment length. In addition, they used context-
based system combination - which is a multi-
encoder to encode source sentence and contextual
information from the machine translation results
on the source sentence. They tried with both a
direct and pipeline-based pivot system and report
that the latter outperforms the former.
- HW_TSC (Li et al., 2021a) Huawei’s submis-
sion used a multilingual model which is a sin-
gle neural machine translation model to translate
among multiple languages. Upon adding more
parallel data, they report an increase in bleu score
of upto 2 points using the multilingual model com-
pared to the baseline model. In addition they used
several data pre-processing techniques to denoise
the training data and data augmentation techniques
such as back-translation to improve overall system
performance.
- Papago (Park et al., 2021) Naver’s system re-
ports that they get better performance by treating
this as a bilingual machine translation task rather

than as a multilingual translation task, based on
their early experiments. They use the transformer
model with extensive data pre-processing, filter-
ing and data augmentation. To augment the direct
bilingual data they synthetically generate bilingual
sentence pairs using monlingual Chinese back-
translated to Russian and the 2 sets of indirect par-
allel dataset provided.
- DUT-MT (Liu et al., 2021a) This team ex-
perimented with 2 different multilingual train-
ing models called mBART and mRASP, both of
them based on underlying Transformer architec-
ture. They report boosted performance especially
on rare words when using mRASP. In addition,
they also carry out data preprocessing and filter-
ing to improve system performance.
- CFILT-IITB (Mhaskar and Bhattacharyya,
2021) CFLIT-IITB team’s system used a pivot-
based transfer learning technique. In this
technique they have 2 encoder-decoder models,
source-pivot (Russian-to-English) and pivot-target
(English-to-Chinese), each of them trained on the
respective training datasets. They use the encoder
of the former and the decoder of the latter to ini-
tialize a third encoder-decoder for the actual task
of Russian-to-Chinese translation. They fine tune
this decoder using the given parallel data for Rus-
sian/Chinese. They report this system has a better
performance compared to either a direct or pivot-
based cascaded system. They do not experiment
much with data pre-processing and filtering.
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Source Genre Parallel segments
Anna Karenina, dialog Literature 98

Art Academy Biography 67
Isaac Babel interview Literature 104
Master and Margarita Literature 106

MPMCMS International news 71
Potato system International news 97

Visit Amur Tourism 250
Chinese Embassy in Russia International news 172

Total - 965
Table 31: Triangular MT: Development dataset details

Source Genre Parallel segments
Aeroflot Tourism 99

Isaac Babel - salt Literature 47
A Day Without Lies Literature 200

Everything is Normal, Everything is Fine Literature 98
Hujiang Language Learning 236

Kazinform Tourism 21
Lotos shopping centre Tourism 17

Alexandra Marinina novel Literature 55
Private Museum Catalog Tourism 196

Solzhenitsyn Nobel speech Literature 240
Russia Beyond Biography 329

Shenyang consulate International news 113
War and Peace Literature 3

Russian Embassy in China Tourism, International News 97
Total - 1751

Table 32: Triangular MT: Test dataset details

5.6 Conclusion

The triangular machine translation shared task
set out to explore various modeling possibilities
when building a machine translation system for
a non-English language pair. We received en-
thusiastic participation from the participants. Al-
most all of them performed data filtering and pre-
processing to denoise the training datasets and that
seemed to substantially help improve system per-
formance. The transformer model and its vari-
ants were used in all the system submissions con-
firming Transformer’s ubiquitous acceptance as
the model of choice for building machine transla-
tion systems. Many teams explored model ensem-
bling and model averaging in addition to model re-
ranking strategies. Several teams explored back-
translation as an effective data-augmentation strat-
egy. There was a wide variety of modeling archi-
tectures experimented by the participants. Almost
everyone used all the parallel datasets provided

underlining the importance of using parallel data
in all directions to build a better machine transla-
tion system. Overall we are happy that the shared
task provided a platform to the participants to ex-
periment with different modeling strategies. We
hope practitioners will find these techniques use-
ful when working on machine translation between
non-English language pairs.

6 Multilingual Low-Resource
Translation for Indo-European
Languages Task

Massively multilingual machine translation has
shown impressive results, including zero and few-
shot translation of low-resource languages. How-
ever, these models are often evaluated from or into
English, where the most data is available, and one
assumes that the models would generalise to other
language pairs and low-resource languages. This
shared task focuses explicitly on checking this as-
sumption and aims to explore multilingual archi-
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System BLEU
Google Translate API 33.04
BASELINE-DIRECT 20.24
BASELINE-PIVOT 19.33

Table 33: Triangular MT: Baseline results on the development dataset

Team name BLEU
Google Translate API 30.2

Team 1 HW_TSC 27.7
Team 2 Papago 26.8
Team 3 DUT-MT 21.7
Team 4 istic-team-2021 19.2
Team 5 CFILT-IITB 18.8

- BASELINE-PIVOT 17.9
- BASELINE-DIRECT 17.0

Team 6 mcairt 16.6
Table 34: Triangular MT: Results on the test dataset

tectures for languages in a same family and evalu-
ate only low-resource pairs even if using the high-
resourced pairs in the same language family is not
forbidden. We work in the cultural heritage do-
main, where we can consider full documents, and
in two Indo-European language families: North-
Germanic and Romance. With these goals in mind
(multilinguality, specific domain and document-
level translation) we define two tasks, one per fam-
ily:

Task 1. Europeana thesis abstracts and de-
scriptions. North-Germanic languages: from/to
Icelandic (is), Norwegian Bokmål (nb) and
Swedish (sv). Danish (da), German (de) and En-
glish (en) data is allowed for training but transla-
tion quality is not evaluated.

Task 2. Wikipedia cultural heritage articles.
Romance languages: from Catalan (ca) to Occitan
(oc), Romanian (ro) and Italian (it). Spanish (es),
French (fr) and Portuguese (pt) data (+ English) is
allowed for training but translation quality is not
evaluated.

6.1 Data and Resources
6.1.1 Training Corpora
One of the purposes of the shared task is to ob-
tain state-of-the-art systems for the language pairs
in the domain involved. In principle, this would
imply an unconstrained data setting but, we also
want to be able to compare systems and architec-
tures among themselves. For this, we constrain the
amount of parallel and monolingual corpora to be

used but we allow pretrained open-source systems
which might use more data than allowed for the
languages considered. All the sources listed below
apply to the following languages (except for pre-
trained models): Icelandic, Norwegian Bokmål,
Swedish, Danish, German and English (Task 1);
and Catalan, Italian, Occitan, Romanian, Spanish,
French, Portuguese and English (Task 2).

• Corpora available at ELRC.28 This data in-
cludes Paracrawl and Global voices.

• Europarl, JW300, WikiMatrix, MultiC-
CAligned, OPUS-100, Books, the Bible and
TED talks.

• Common Crawl, Wikipedia and Wikidata
dumps.

• Wordnets with open license, BabelNet.

• (Multiligual) pre-trained embeddings or
other models that can be found freely
available online (Hugging Face).

• Additional resources in Section 6.1.2 (multi-
lingual lexicons).

6.1.2 Additional Resources
Given the importance of named entities in the
cultural heritage domain, we provide participants
with parallel/multilingual lexicons from Wikidata,
Wikipedia titles and Wiktionary. The figures for
each source are summarised in Table 35.

28https://elrc-share.eu/repository/search/
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Wikidata Wikipedia Wiktionary

all cleaner all cleaner all

is2nb/nb2is 1,141,891 – – – 3,304/6,552
is2sv/sv2is 1,149,894 – – – 15,369/17,321
nb2sv/sv2nb 2,648,493 – – – 9,390/7,124
is-nb-sv 1,139,493 23,574 – – –

ca2it/it2ca 3,072,380 – 323,055 – 18,684/19,050
ca2oc/oc2ca 1,300,979 – 71,854 – 3,999/3,538
ca2ro/ro2ca 1,608,860 – 123,215 – 11,990/12,034
it2oc/oc2it 1,285,771 – 75,542 – 7,225/6,332
it2ro/ro2it 4,547,649 – 215,296 – 20,898/20,442
ro2oc/oc2ro 1,230,752 – 64,800 – 4,586/4,350
ca-it-ro 1,579,345 123,543 117,543 97,484 –

Table 35: Number of entries of the parallel/multilingual lexicons extracted from Wikidata, Wikipedia titles and Wiktionary
for the multilingual low-resource translation task.

Validation Test

Docs. Sents. Src toks. Tgt toks. Docs. Sents. Src toks. Tgt toks.

is2nb 26 467 6,096 6,932 24 563 8,256 9,301
is2sv 26 467 6,096 6,611 24 563 8,256 8,819
nb2is 19 502 7,673 7,495 16 540 9,218 8,867
nb2sv 19 502 7,673 7,499 16 540 9,218 8,804
sv2is 43 516 9,097 9,524 44 547 9,642 9,733
sv2nb 43 516 9,097 9,232 44 547 9,642 9,787

ca2it 41 1,269 30,363 29,725 42 1,743 38,868 37,649
ca2oc 41 1,269 30,363 30,184 42 1,743 38,868 38,662
ca2ro 41 1,269 30,363 29,842 42 1,743 38,868 37,379

Table 36: Statistics on the validation and test sets of the multilingual low-resource translation task. Source (Src) are original
documents and target (Tgt) are human translations.

Wikidata. We extract aligned lexicons from
the wikidata-20210301-all.json dump and provide
two versions. The complete ("all") version in-
cludes all the entries, including duplicates. The
"cleaner" version excludes duplicates, most of the
terms that are equal in all the languages, terminol-
ogy related to Wikimedia and a naïve cleaning on
terms including years, parenthesis, and others.

Wikipedia titles. We extract aligned titles for
the languages in Task 2 from the May 2020
Wikipedia dumps using the Wikitailor Toolkit29

(Barrón-Cedeño et al., 2015; España-Bonet et al.,
2020). We also provide two versions: the com-
plete version ("all") includes all the entries. The
"cleaner" version results from a naïve cleaning on
titles including years, dates, parenthesis, and oth-
ers.

Wiktionary. Each Wiktionary entry contains a
word, its translation into several languages and its
part of speech. We extract bilingual entries from
April 2021 dumps for adjectives, adverbs, nouns
and verbs from the Icelandic, Swedish, English

29github.com/cristinae/WikiTailor

and German Wiktionaries (Task 1) and from the
Catalan and English ones (Task 2). The part of
speech is kept in the dictionaries. Since the xlm
dump contains the information in a text element
with different structure for different dictionaries,
we provide the extraction scripts for reproducibil-
ity.30

6.1.3 Validation and Test Sets
The documents used for constructing the valida-
tion and test sets are obtained from the Europeana
collection (Task 1) and Wikipedia (Task 2).

Europeana kindly provided us with thesis ab-
stracts, descriptions of archaeological sites and
bibliographic entries for Icelandic, Norwegian
Bokmål and Swedish. These monolingual doc-
uments are available at the Europeana portal
but no intra-family parallel data exists and even
the monolingual extraction is not straightforward
for two main reasons: (i) collections with pan-
Scandinavian labels and descriptions are uncom-
mon, and (ii) language attributes in general are
uncommon. For documents tagged as Norwe-

30github.com/LeHarter/
Extracting-translations-from-wiktionary
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gian there is no distinction between Bokmål and
Nynorsk, so texts where classified according to
simple heuristics based on lexicons.

The original Europeana crawl obtained 1,192
documents (150,080 tokens) for Icelandic, 2,000
documents (166,303 tokens) for Norwegian Bok-
mål and 2,046 bilingual documents in English and
Swedish with 443,111 tokens for Swedish. From
these sets, we eliminate very similar documents
(specially for Icelandic) and split documents at
sentence level manually; we selected documents to
collect around 1,000 sentences per language. Doc-
uments are finally divided evenly to build a valida-
tion set and a test set (Table 36).

The Wikipedia sets were built from articles in
the Catalan edition. We selected original articles
in Catalan that have no comparable article in any
other language and that cover the cultural heritage
domain (food, locations, sport, literature, tradi-
tions, people and animals). We selected 83 arti-
cles which were sentence-split manually to gather
3,013 sentences and 69,231 tokens. Similarly
to the North-Germanic family, documents are di-
vided evenly to build a validation set and a test set
(Table 36). In this case, we also marked some en-
tities in the source test documents (dates and loca-
tions) for further analysis in the manual evaluation
(see Section 6.4).

Validation and test sets were sent to professional
translators. A first translation was done by a native
professional translator and afterwards there was a
quality evaluation check by a second native pro-
fessional translator. For the North-Germanic lan-
guages, we translated the source texts in Icelandic,
Norwegian Bokmål and Swedish into the other
two languages. For the Romance languages, we
translated the source texts in Catalan into Italian,
Romanian and Occitan. Translators were asked to
keep the same sentence division as in the source
and no indications were given on the translation of
named entities.

6.2 Baselines and Submitted Systems

Nine different teams downloaded the validation
data set but only five of them participated: BSC,
CUNI, EdinSaar, Tencent and UBCNLP. We al-
lowed two submissions per group and task, a pri-
mary (P) and a contrastive (C) system. With these
constraints, we received four submissions for Task
1 and seven submissions for Task 2. We also pre-
pared two baseline systems for comparison pur-

poses.

6.2.1 M2M-100 (baseline)
We use M2M-100 without any modification, a
multilingual model trained on a data set with 7.5
billion sentences for 100 languages including all
the languages in our task (Fan et al., 2020). The
sequence-to-sequence system is trained with par-
allel data enriched with backtranslations. We use
the model with 1.2 B parameters available at the
Hugging Face site.31

6.2.2 mT5-devFinetuned (baseline)
mT5 is a sequence-to-sequence model pretrained
on a masked language modeling span-corruption
objective with 8.5 billion monolingual sentences
from 101 languages (Xue et al., 2021). As base-
line, we use the model with 580 M parameters
from Hugging Face. We finetune mT5-base only
with the multilingual validation sets for each task
described in Section 6.1.3. For Task 1, that in-
volves 5,500 sentences, where we use the paral-
lel sentences L1–L2dev in both directions L12L2

and L22L1 (that is, we use is2nbdev sentences as
is2nb and nb2is, and nb2isdev sentences as nb2is
and is2nb because is2nbdev and nb2isdev are dif-
ferent; the same for the other pairs). We prepend
one of the extra_id tokens in mT5 vocabulary to
the source sentences to indicate the language of
the target sentences. The remaining 440 sentences
are used for validation. We repeat the process for
Task 2, but in this case the training is multilin-
gual but not bidirectional, so sentences are only
used in one direction with a total of 3,600 sen-
tences (1,200 ca2it, 1,200 ca2ro and 1,200 ca2oc)
for finetuning and 207 for validation.

6.2.3 BSC (Kharitonova et al., 2021) – Task 2
BSC submission is a multilingual semi-supervised
machine translation model. It is based on a pre-
trained language model, XLM-RoBERTa, that is
later finetuned with parallel data obtained mostly
from OPUS (5.1 M sentences). XLM-RoBERTa is
only used to initialize the encoder while the shal-
low decoder is randomly initialised.

6.2.4 CUNI (Jon et al., 2021) – Task 2
Multilingual supervised machine translation
model (primary) enriched with backtranslated
data (contrastive). The multilingual systems

31https://huggingface.co/facebook/m2m100_1.
2B
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Average Ranking BLEU TER chrF COMET BertScore

M2M-100 (baseline) 1.0±0.0 31.5 0.54 0.55 0.399 0.862
EdinSaar-Contrastive 2.2±0.4 27.1 0.57 0.54 0.283 0.856
EdinSaar-Primary 2.8±0.4 27.5 0.58 0.52 0.276 0.849
UBCNLP-Primary 4.0±0.0 24.9 0.60 0.50 0.076 0.847
UBCNLP-Contrastive 5.0±0.0 24.0 0.61 0.49 -0.068 0.837
mT5-devFinetuned (baseline) 6.0±0.0 18.5 0.78 0.42 -0.102 0.810

Table 37: Official ranking according to the automatic metric average for the multilingual low-resource translation task of
Europeana documents for North-Germanic languages (Task 1).

Average Ranking BLEU TER chrF COMET BertScore

CUNI-Primary 1.2±0.4 50.1 0.401 0.694 0.566 0.901
CUNI-Contrastive 1.6±0.5 49.5 0.404 0.693 0.569 0.901
TenTrans-Contrastive 3.0±0.0 43.5 0.460 0.670 0.444 0.894
TenTrans-Primary 3.8±0.4 43.3 0.462 0.668 0.442 0.894
BSC-Primary 5.0±0.7 41.3 0.402 0.647 0.363 0.884
M2M-100 (baseline) 5.8±0.4 40.0 0.478 0.634 0.414 0.878
UBCNLP-Primary 7.2±0.4 35.4 0.528 0.588 0.007 0.854
mT5-devFinetuned (baseline) 8.0±0.7 29.3 0.592 0.553 0.059 0.850
UBCNLP-Contrastive 8.6±0.5 28.5 0.591 0.529 -0.374 0.825

Table 38: Official ranking according to the automatic metric average for the multilingual low-resource translation task of
Wikipedia articles in the cultural heritage domain for Romance languages (Task 2).

use 41 M original parallel sentences including
all language pairs in the task plus French and
English. Besides leveraging multilingual training
data, various subword granularities are explored
and phonemic representation of texts are added
via multi-task learning. For Catalan–Occitan,
character-level rescoring on the translations
n-best lists is applied and Apertium is used for
backtranslations when included.

6.2.5 EdinSaar (Tchistiakova et al., 2021) –
Task 1

Semi-supervised systems with multilingual pre-
training, backtranslation, finetuning and check-
point ensembling. The primary system is a semi-
supervised machine translation model. mT5 is
finetuned with 1.2 M parallel sentences in the lan-
guages of the task plus Danish, German and En-
glish. The contrastive system is a transformer base
architecture trained with 422 M parallel sentence
pairs in all 30 language directions (including Dan-
ish, German and English) and finetuned only with
pairs with the languages of the task as target lan-
guage.

6.2.6 TenTrans (Yang et al., 2021) – Task 2
TenTrans submissions are semi-supervised multi-
lingual systems based on a transformer base ar-
chitecture. The basic system is an 8-to-4 mul-
tilingual model with Catalan–Italian–Romanian–
Occitan as the target side and the inclusion of
the high resource languages Spanish, French, Por-
tuguese and English on the source side. In-domain
finetuning is done with data selected using a do-
main classifier trained with multilingual BERT.
Knowledge transfer is achieved with knowledge
distillation of the M2M 1.2B model previously
finetuned on the languages of the task. The pri-
mary submission is an ensemble between the in-
domain multilingual and the distilled M2M. The
contrastive submission adds a multilingual base
model enriched with backtranslations to the en-
semble and pivot-based methods to augment the
training corpus.

6.2.7 UBCNLP (Chen and Abdul-Mageed,
2021) – Task 1, Task 2

Supervised bilingual systems based on a trans-
former base architecture where the Helsinki-NLP
pretrained models available at the Hugging Face
site are finetuned to the languages of the shared
task. The primary submission finetunes the
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sv2nb is2nb

BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc

M2M-100 56.8 0.29 0.77 1.048 0.935 19.3 0.67 0.42 -0.133 0.825
mT5-dFT 36.3 0.46 0.63 0.716 0.891 22.3 0.64 0.47 0.120 0.853
EdinSaar-C 48.2 0.35 0.73 0.980 0.923 13.0 0.71 0.41 -0.250 0.820
EdinSaar-P 45.4 0.38 0.70 0.919 0.912 16.3 0.72 0.39 -0.287 0.812
UBCNLP-C 51.8 0.33 0.74 0.996 0.931 9.5 0.77 0.33 -0.827 0.778
UBCNLP-P 49.8 0.35 0.73 0.952 0.927 12.8 0.74 0.36 -0.628 0.799

nb2is sv2is

BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc

M2M-100 21.5 0.64 0.47 0.259 0.833 19.0 0.66 0.48 0.501 0.832
mT5-dFT 3.6 1.26 0.21 -0.986 0.705 9.4 0.82 0.35 -0.138 0.777
EdinSaar-C 18.3 0.66 0.46 0.155 0.829 20.2 0.65 0.50 0.469 0.836
EdinSaar-P 19.5 0.65 0.46 0.258 0.829 22.4 0.64 0.51 0.509 0.836
UBCNLP-C 7.8 0.78 0.32 -0.924 0.771 20.5 0.66 0.49 0.348 0.838
UBCNLP-P 15.7 0.68 0.43 -0.074 0.822 14.8 0.71 0.45 0.144 0.825

nb2sv is2sv

BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc

M2M-100 50.9 0.34 0.72 0.826 0.921 21.2 0.63 0.45 -0.110 0.826
mT5-dFT 18.6 0.82 0.40 -0.368 0.790 21.1 0.69 0.46 0.047 0.844
EdinSaar-C 45.4 0.37 0.69 0.690 0.911 17.3 0.66 0.42 -0.348 0.815
EdinSaar-P 42.9 0.40 0.65 0.615 0.898 18.8 0.68 0.41 -0.357 0.805
UBCNLP-C 36.8 0.43 0.63 0.422 0.893 17.6 0.69 0.40 -0.425 0.810
UBCNLP-P 42.7 0.39 0.67 0.636 0.906 14.0 0.70 0.38 -0.572 0.804

Table 39: Automatic evaluation per language pair in the North-Germanic family of the multilingual low-resource translation
task (Task 1). Best scores boldfaced. Notice that the final ranking is done per family and not per language pair as shown in
Table 37.

Catalan–Spanish Helsinki-NLP model with Wiki-
Matrix data (1.1 M sentences for ca-it, 139 k for
ca-oc and 490 k for ca-ro). The same data is
used to finetune the Catalan–English Helsinki-
NLP model in the contrastive submission.

6.3 Automatic Evaluation

Recently, automatic metrics based on contextual
embeddings have been shown to correlate better
than string matching ones with human judgments
(Kocmi et al., 2021). COMET was shown to be the
best performing metric for languages with Latin
script and chrF the best performing string-based
method. Still, BLEU is used as de facto met-
ric in most papers. As we cannot perform hu-
man evaluation for the 9 language pairs involved
in this shared task, for the official ranking we use a
combination of several metrics including the ones
just mentioned plus BertScore as representative of
contextual embedding-based metrics and TER as

representative of plain string methods.
We evaluate the submissions and the base-

line systems for the two tasks using BLEU,32

TER,33 chrF,34 (all with SacreBLEU) COMET,35

and BertScore.36 The final ranking is done accord-
ing to the average ranking of the individual metrics
per family, ties on individual metrics are consid-
ered.

We report the results for Task 1 in Table 37
and for Task 2 in Table 38. M2M-100 resulted
in a very strong baseline for North-Germanic lan-
guages. EdinSaar systems are second and third,
followed by UBCNLPs. The ranking is consistent

32BLEU+case.mixed+numrefs.1+smooth.exp+tok.13a+
+version.1.4.14

33TER+tok.tercom-nonorm-punct-noasian-
uncased+version.1.4.14

34chrF2+numchars.6+space.false+version.1.4.14
35wmt-large-da-estimator-1719 model(comet=0.1.0)
36bert-base-multilingual-cased_L9_no-

idf_version=0.3.9(hug_trans=4.9.0.dev0)
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ca2it ca2oc

BLEU TER chrF COMET BertSc BLEU TER chrF COMET BertSc

M2M-100 46.6 0.390 0.694 0.743 0.913 40.2 0.405 0.673 0.341 0.892
mT5-dFT 30.4 0.551 0.571 0.235 0.872 40.1 0.395 0.680 0.402 0.897
BSC-P 42.0 0.420 0.670 0.651 0.908 57.1 0.272 0.780 0.514 0.929
CUNI-C 49.5 0.366 0.714 0.813 0.916 67.1 0.201 0.832 0.724 0.952
CUNI-P 50.5 0.360 0.717 0.810 0.917 66.9 0.202 0.829 0.719 0.951
TenTrans-C 44.1 0.410 0.680 0.667 0.912 56.1 0.309 0.813 0.617 0.941
TenTrans-P 43.2 0.418 0.671 0.640 0.910 56.5 0.304 0.817 0.640 0.944
UBCNLP-C 25.7 0.574 0.539 -0.263 0.844 51.7 0.316 0.736 0.259 0.905
UBCNLP-P 35.1 0.477 0.622 0.391 0.886 59.9 0.254 0.787 0.538 0.928

ca2ro

BLEU TER chrF COMET BertSc

M2M-100 33.1 0.640 0.535 0.159 0.831
mT5-dFT 17.3 0.830 0.407 -0.461 0.784
BSC-P 24.9 0.695 0.490 -0.076 0.814
CUNI-C 31.8 0.644 0.533 0.169 0.835
CUNI-P 32.8 0.640 0.535 0.168 0.834
TenTrans-C 30.2 0.661 0.517 0.047 0.830
TenTrans-P 30.2 0.664 0.516 0.047 0.829
UBCNLP-C 8.6 0.884 0.311 -1.119 0.725
UBCNLP-P 11.2 0.855 0.354 -0.908 0.749

Table 40: Automatic evaluation per language pair in the Romance family of the multilingual low-resource translation task
(Task 2). Best scores boldfaced. Notice that the final ranking is done per family and not per language pair as shown in Table 38.

across metrics. The quality of the second base-
line, the finetuned version of mT5, is low as com-
pared to the other systems because it has only been
trained for machine translation with 5,500 paral-
lel sentences for the 6 language pairs. EdinSaar-
Primary is also a version of mT5 finetuned with
1.2 M parallel sentences and that improves trans-
lation quality significantly, but still, it lies below
the multilingual baseline system trained with huge
amounts of parallel data, M2M-100.

A more fine-grained analysis (Table 39) shows
that translation into Icelandic is difficult for all the
systems, and also translation from Icelandic into
Swedish (Norwegian) is more difficult than trans-
lation from Norwegian (Swedish) into Swedish
(Norwegian). Systems do not behave consistently
across language pairs: mT5-devFinetuned (mT5-
dFT in the table) achieves top performance when
translating from Icelandic but performs poorly
for the remaining pairs; UBCNLP-Contrastive
(UBCNLP-C) is specially good for translating
from Swedish.

For Task 2, the Romance family, the CUNI sys-
tems are significantly better than the rest, both at
family and language pair levels (Tables 38 and

40). Only for ca2ro, M2M-100 is better according
to some metrics; however, this system performs
comparatively bad for ca2it. TenTrans and BSC
perform very close one to each other. Globally,
TenTrans performs better with BSC showing good
performance for ca2oc. For this language pair, the
reranking strategy via a character-based model by
CUNI achieves very good results.

6.4 Human Evaluation

In order to complement and corroborate the auto-
matic evaluation, we also perform human evalua-
tion on a subset of the languages. However, since
not all language pairs are covered, we cannot use
the manual evaluation results for the official rank-
ing of the systems.

The type of evaluation has been conditioned by
the number and expertise of the raters we could
attract. We hired a total of 14 raters: 5 Swedish
annotators to rate nb2sv and is2sv documents; 3
bilingual Catalan–Occitan annotators to rate ca2oc
documents and 6 bilingual Catalan–Italian annota-
tors to rate ca2it documents. With these numbers
in mind, we decided to do ratings on a Likert-like
scale but following the philosophy of direct assess-
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(a)

(b)

Figure 8: Modifications to the Appraise Evaluation Framework (Federmann, 2018) for the multilingual low-resource transla-
tion task. (a) We conduct reference document-level direct assessments on a discrete scale [1,5]. (b) For languages where we
can conduct source document-level assessments, we we also evaluate term translation (dates and locations).

ments (DAs). We do source DA for Italian and
Occitan, and reference DA for Swedish.

Following the conclusions in (Graham et al.,
2020) and (Castilho et al., 2020), we perform sen-
tence level evaluation with document context. Fig-
ure 8(a) shows that evaluators rate each sentence
in context and when all the sentences in document
are evaluated, the whole document is also scored.
The evaluation is done using the Appraise Evalu-
ation Framework (Federmann, 2018) with several
modifications. Appraise implements document di-
rect assessments as used in the WMT News Task
evaluation campaign (Barrault et al., 2020). In our
case, we have fewer annotators so we cannot ex-
pect > 15 ratings per sentence to get statistically

significant results with a 100 points DA scale. To
tackle this limitation, we constrain the DA scale to
a 5 points Likert-like scale [1,5]. This resembles
an adequacy+fluency evaluation where raters still
answer the question "The black text adequately ex-
presses the meaning of the gray text.", but they do
not evaluate adequacy and fluency separately. Af-
ter a small pilot experiment (see below), the guide-
lines to the evaluators were the following:

Rank a sentence with a 5 if it completely ex-
presses the same meaning as the source/reference.
Notice that we do not ask for a literal transla-
tion but for a sentence that preserves the mean-
ing and it is grammatically correct. For a 3 score,
the sentence should convey part of the meaning
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of the original sentence but some relevant parts
are missing or not well translated. For a 4, only
non-relevant parts are not OK. For a 2, most of
the sentence is wrong but still some bits, proba-
bly non-relevant, are well translated. Finally, rate
the sentence with a 1 if none of the content is pre-
served.

Bilingual raters allow us to do a small term
translation evaluation for Catalan to Italian and
Occitan. Figure 8(b) shows that we boldface some
terms in the source text and evaluators are asked
to say if (i) The phrase is not translated, (ii) The
phrase is well translated or (iii) The phrase is mis-
translated.

6.4.1 Data Preparation
We select test documents or parts of them to cover
100 sentences per language. Table 36 shows that
considering full documents would limit the evalu-
ation to very few texts so we select a subset of con-
tiguous sentences in documents to make the eval-
uation more heterogeneous. For Catalan to Ital-
ian and Occitan, we selected fragments in 9 doc-
uments with lengths between 5 and 15 sentences;
for Icelandic to Swedish fragments in 7 documents
with lengths between 8 and 20 sentences; and for
Norwegian to Swedish fragments in 7 documents
with lengths between 7 and 22 sentences.

We extract the same 100 sentences from the par-
ticipants primary submissions and from the ref-
erence. For source DA evaluation (Catalan and
Occitan), the reference is also rated and used to
establish human performance. For reference DA
(Swedish), the reference is just used for rating
translations.

Finally, we mark 60 of the source sentences in
Catalan with one term each. Selected terms37 are

37List of terms which translation is evaluated manually:
Plaça del Mercadal, segle XV, segle XIX i XX, la Casa
Pinyol, Festes de Maig, Rambla de Badalona, la Cremada, la
Segona República, Josep Maria Cuyàs, Baró de Maldà, 11 de
maig de 1940, Francesc de Paula Giró i Prat, Aristeus anten-
natus, Productes de l’Empordà, 400 metres, mitjan segle XX,
Canyó de Palamós, Confraria de Pescadors de Palamós, fi-
nals del segle XIX, Xat de Benaiges, començaments del segle
XX, "salvitxada", la calçotada, Alt Camp, Congrés de Cultura
Catalana, Valls, Concurs de salsa de la "calçotada", Fogueres
de Sant Antoni, Nadal, Sant Antoni, Química Orgànica, Uni-
versitat de Barcelona, Junta d’Energia Nuclear, Universitat de
Chicago, Universitat de València, Física Teòrica, Mecànica
Teòrica, Premi d’Investigació Ramón y Cajal, Manaies de
Girona, any 1751, Dijous Sant, Setmana Santa, segles xviii
i xix, 1851, mitjans de segle XIX, finals del XVIII, port del
Masnou, dos quilòmetres i mig, Club Nàutic del Masnou,
Creu Roja, festival Ple de Riure, Masnou, N-II, Premià de
Mar, any 2019, platja d’Ocata, Michelin, Ferran Adrià, El

nb2sv is2sv

System z-score raw z-score raw

M2M-100 0.7±0.6 4.2±0.8 0.1±1.0 2.0±1.1
EdinSaar 0.2±0.7 3.6±1.1 -0.1±0.8 1.9±1.0
UBCNLP 0.2±0.8 3.5±1.2 -0.4±1.0 1.6±1.1
mT5-dFT -1.2±0.7 1.5±1.1 0.4±1.1 2.4±1.2

Table 41: Average DA and standard deviation of raw- and
z-scores for all primary submissions of Task 1 in the language
pairs manually evaluated.

ca2it ca2oc

System z-score raw z-score raw

HUMAN 0.8±0.4 4.8±0.6 0.8±0.7 4.0±1.0
CUNI 0.5±0.7 4.4±0.9 0.5±0.8 3.6±1.1
M2M-100 0.4±0.7 4.2±1.0 -0.7±0.8 2.0±1.0
TenTrans 0.0±0.8 3.8±1.1 0.3±0.8 3.4±1.2
BSC -0.1±0.8 3.7±1.1 0.3±0.9 3.4±1.2
UBCNLP -0.5±1.0 3.1±1.3 0.0±0.9 3.0±1.2
mT5-dFT -1.2±0.9 2.3±1.2 -1.0±0.7 1.7±0.9

Table 42: Average DA and standard deviation of raw- and
z-scores for all primary submissions of Task 2 in the language
pairs manually evaluated. HUMAN refers to the evaluation
of the reference.

mostly named entities (dates, locations or titles)
and might be multi-word. Named entities that ap-
pear only a few times in training data are a chal-
lenge for neural systems, so the aim is to check the
quality of these translations. Since professional
translators did not receive any instructions on how
to translate these terms, we can observe a mix-
ture of untranslated and translated named entities,
which makes it difficult to assess its quality in an
automatic way.

6.4.2 Pilot Experiment

We prepared a pilot experiment with two goals: (i)
provide some training to the raters and (ii) check
the feasibility of the task. For this, we prepared a
manual with instructions to work with the modi-
fied Appraise interface and the guidelines for rat-
ing the translations. We populate the task with 20
translated sentences from one of the submissions.
Sentences come from two test documents so that
the annotators go through the full document anno-
tation process twice.

After the pilot, we made the guidelines more
concrete to accommodate the raters questions.
These annotations are discarded for the final anal-
ysis described in the next section.

Celler de Can Roca, Can Fabes
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6.4.3 Results

The results of the evaluation task are the average
DA scores per system. In order to take into ac-
count that some raters might be more strict than
others, we rank the systems according to the z-
score, where the DA score is mean-centered and
normalised per rater.

Inter-annotator agreement as measured by
Fleiss’ κ (Fleiss, 1971) is moderate: 0.32±0.03
(nb2sv, fair agreement), 0.16±0.04 (is2sv, slight
agreement), 0.28±0.03 (cat2it, fair agreement)
and 0.16±0.02 (ca2oc, slight agreement). These
values are in agreement with previous analy-
ses (Castilho, 2020). Intra-annotator agreement
ranges from 0.88±0.06 to 0.24±0.09 for the
North-Germanic languages and from 0.56±0.09 to
-0.04±0.07 for the Romance family. We discard
raters with κ∼0 and report results with 4 raters for
Swedish, 3 for Catalan–Occitan and 4 for Catalan–
Italian. Tables 41 and Table 42 show the results for
Task 1 and Task 2 respectively.

For Task 1, we obtain very different scores de-
pending on the language pair. This is in line with
the automatic evaluation: translations from Ice-
landic do not behave in the same way as Swedish
and Norwegian which are closer languages. Base-
lines perform very well on this family, but not si-
multaneously. M2M-100 offers good translation
quality for nb2sv while mT5-dFT is specially good
for is2sv. For is2sv, systems are not statistically
significantly different, for nb2sv mt5-dTF is sig-
nificantly worse than the others and EdinSaar and
UBCNLP show similar performance.

For Task 2, the reference (HUMAN) is ranked
first in both language pairs, but the deviation is
large and it is not significantly better than the
CUNI system. For ca2it, HUMAN is not sig-
nificantly better than the baseline system M2M-
100 either. In some cases though, the distinction
seemed to be easy. Raters pointed out several rea-
sons: (i) mistranslations of very frequent words
—got in Catalan (cup, glass) translated into Ital-
ian as getto (jet), grigio (gray) or vetro (glass, the
material); (ii) bad translation in context of am-
biguous words —quarentena in Catalan translates
into Italian as quarantina (about fourty) or quar-
antena (quarantine); (ii) mistaken roots (this can
be related to BPE subunits as explained below) —
calçots (a local vegetable) translated as calzatura
(footwear); or changing words —un físic català (a
Catalan physicist) translated as un fisico spagnolo

ca2it ca2oc

System well mis no Σ well mis no Σ

HUMAN 53 0 3 56 40 0 2 42
CUNI 39 3 5 47 30 7 1 38
M2M-100 33 2 6 41 26 9 0 35
TenTrans 37 0 9 46 32 4 1 37
BSC 27 7 5 39 33 4 0 37
UBCNLP 29 16 1 46 19 1 0 20
mT5-dFT 20 17 10 47 25 11 4 40

Table 43: Number of well translated, mis-translated and not
translated terms for the language pairs manually evaluated
for Task 2. The last column per language shows the total
number of terms considered from the maximum of 60 bold
faced terms (see text).

(a Spanish physicist).
Similar to the automatic evaluation, TenTrans

and BSC are very close to each other according to
the human ratings although the two architectures
are completely different. The evaluation also con-
firms the bad performance of M2M-100 on ca2oc
but its good performance on ca2it. In general, all
the systems perform worse on ca2oc than ca2it ac-
cording to the raw scores in Table 42, but the trend
is reversed when analysing the z-scores. This re-
sult points to differences between the scale that an-
notators used in the two tasks even if they received
the same instructions. Notice that almost all au-
tomatic metrics but COMET tend to score higher
ca2oc than ca2it for most systems.

Term translation. The evaluation against the
source for the Romance languages allows us to
study the translation quality of selected terms. For
ca2it we use the annotations from 5 raters but
only 2 were considered for ca2oc as the remaining
raters did not do the task properly. The agreement
for this task is 0.34±0.05 (ca2it) and 0.19±0.05
(ca2oc). Table 43 shows the number of well trans-
lated, mis-translated and untranslated terms for
both pairs.

For each term, we sum the votes from all the
raters per class (well translated, mis-translated or
untranslated) and consider the winning class the
one with the majority of votes. In case there is a
tie with 2 or more classes, the term is not consid-
ered in the analysis, this is why the last columns
Σ in Table 43 differ from 60. The disagreement
is high, and one of the causes is the ambigu-
ity in the annotation of toponyms. For instance,
the name of the city of "Valls" has been evalu-
ated 17 times: 7 times as well translated and 10
times as not translated being always the translation
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"Valls". The same happens with other toponyms
and years. This ambiguity damages specially the
majority voting for Occitan (low Σ) since we only
consider 2 raters.

The systems with the largest number of mis-
translations are those with less access to the
task languages, that is, the baselines. mT5-
devFinetuned and M2M-100 (specially for Occ-
itan) do the most mistakes. A curious case is
UBNLP which only produces 1 mistranslation for
Occitan but 16 for Italian. Also BSC generates
more errors for Italian (7) than for Occitan (4) even
though translation quality into Italian is higher
than into Occitan. Looking at some examples,
we hypothesise that this can be related to the sub-
unit segmentation strategy. For instance, the word
"calçotada" is translated as calzotada, calzolata or
as we have seen before calzatura in Italian, where
no Italian word for this concept exists. For Occi-
tan, it is always translated by calçotada (BPE units
in Catalan and Occitan might be the same, but not
for Italian), only two times it is mistranslated as
escòla.

Besides these errors that might be due to the
split in subunits, we also observe multi-word
named entities where one of the words has been
literally translated and the others have not. Also,
in few occasions, a number (specially centuries) is
translated by another one.

6.5 Discussion

This shared task faced three challenges: multi-
lingual translation, document translation and in-
domain (cultural heritage) translation. 60% of
the submissions approached multilinguality with
a single system while 40% used a combination
of several bilingual systems. None of the partic-
ipants focused on the document-level aspect of the
task, and those who dealt with the specific domain
did not use any of the in-domain multilingual lex-
icons but selected in-domain data from the avail-
able training corpus.

More details and comparisons among the sub-
missions can be found in Figures 9 and 10. Fig-
ure 9 focuses on the resources. Participants did
not use all the data available, probably because
of its heterogeneous nature and the difference
of language pairs available in the different cor-
pora. WikiMatrix is the favourite corpus, with
80% of the submissions trained on it. 90% of
the systems used some kind of pretrained model:
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Figure 9: Resources used by the participants to train the
systems submitted to the multilingual low-resource transla-
tion task (10 responses).

from language models such as mBERT (TenTrans,
EdinSaar) or XLM-RoBERTa (BSC) to machine
translation models such as M2M-100 (TenTrans)
or Helsinki’s NLP (UBCNLP). There is no clear
favourite system here, and each team followed a
different approach. In all cases, systems were
finetuned with language specific data, either data
made available for the task or backtranslations
made by themselves. 50% of the submissions
also used data from the related high resourced lan-
guages for training.

Figure 10 compares the architectures. As ex-
pected, neural systems dominate the number of
submissions. In fact, all of them where 100% neu-
ral, without any hybridisation with any non-neural
component. All participants used direct transla-
tion, either multilingual (60%) or bilingual (40%),
but none of them submitted translations done
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,

Figure 10: Main characteristics of the systems submitted to the multilingual low-resource translation task. Percentages are
over the sample of 10 submissions.

through a pivot language. One team, CUNI, tried
pivot through English for the Romance languages
but translation quality was significantly better with
direct systems. TenTrans used a pivot language
for creating a synthetic corpus using backtransla-
tion. Similarly to CUNI’s, the approach worked
well for ca2it and ca2ro but did not work at all for
the lowest resourced language, Occitan, damaging
the quality of the multilingual system as a whole.
In both cases, multilingual systems trained with
parallel data of the task languages plus additional
corpora with the related rich languages as source
gave the best performance.

Data augmentation via backtranslations and/or
parallel data including high-resourced languages
have been beneficial for all the systems. Two
teams also got improvements by selecting data
close to the domain of the validation set, but the
in-domain adaptation was not decisive to win the
shared task. TenTrans extracted in-domain sen-
tences with a domain classifier trained on mBERT
in Task 2 while EdinSaar used cross-entropy for
the same purpose in Task 1.

In this shared task, we have evaluated systems
per family, but differences among translation pairs
are significant and determine the final ranking.
The trends for the 2 families are similar. One
of the languages has a relatively large amount

of data (Swedish/Italian), the second language in
terms of amount of data is the most distant one
within the family (Icelandic/Romanian) and the
lowest-resourced language is linguistically very
similar to the richest language (Norwegian Bok-
mål/Occitan). Icelandic is the bottleneck for Task
1 and Romanian for Task 2 showing that in this
case the distance between languages is more im-
portant than the amount of data.

It is interesting to see how the ranking depends
on the language pair. The most extreme case is our
baseline mT5-devFinetuned which performed the
best when translating from Icelandic and the worst
in the other cases (Task 1). Similarly but not so ex-
treme, UBCNLP-Contrastive performed very well
when translating from Swedish and significantly
worse on the other cases. In Task 2, Romance lan-
guages, the two baselines specially M2M-100, are
penalised by the bad performance on ca2oc show-
ing that the amount of Occitan text might be too
diluted in their multilingual training. M2M-100 is
the best for ca2ro, and this is the only pair where
the best system is not CUNI. For all the systems,
ca2ro is the most difficult pair.

Finally, we want to emphasise the correlation
between automatic and human evaluations among
systems even though standard deviations are high
and top performing systems are not significantly
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different.

7 Automatic Post Editing

This section presents the results of the 7th round
of the WMT task on MT Automatic Post-Editing.
The task consists in automatically correcting the
output of a “black-box” machine translation sys-
tem by learning from human-revised machine-
translated output. In continuity with last year, the
challenge consisted of fixing the errors present in
English Wikipedia pages translated – into German
and Chinese – by state-of-the-art, not domain-
adapted neural MT (NMT) systems unknown to
participants. Despite a number of data down-
loads in line with the previous rounds, this year
we observed an unexpected drop in participation:
two teams participated in the English-German
task, submitting two runs each, while the English-
Chinese task had no participants. Most likely, this
setback can be ascribed to the difficulty to han-
dle the released test data, which are characterized
by NMT output of very high quality. This is re-
flected by much higher baseline results compared
to last year (18.05 TER / 71.07 BLEU for en-de,
22.73 TER / 69.2 BLEU for en-zh), which only
one run was able to improve according to both the
automatic metrics used (-0.77 for the primary TER
metric and +0.48 for the secondary BLEU metric).
Nevertheless, the outcomes of human evaluation
still reveal the ability of APE systems to improve
MT output quality: significant gains over the base-
line are indeed observed for all the participating
systems.

7.1 The Task

MT Automatic Post-Editing (APE) is the task
of automatically correcting errors in a machine-
translated text. As pointed out by (Chatterjee
et al., 2015), from the application point of view,
the task is motivated by its possible uses to:

• Improve MT output by exploiting informa-
tion unavailable to the decoder, or by per-
forming deeper text analysis that is too ex-
pensive at the decoding stage;

• Cope with systematic errors of an MT system
whose decoding process is not accessible;

• Provide professional translators with im-
proved MT output quality to reduce (human)
post-editing effort;

• Adapt the output of a general-purpose MT
system to the lexicon/style requested in a spe-
cific application domain.

This 7th round of the WMT APE shared task
kept the same overall evaluation setting of the pre-
vious six rounds. Specifically, the participating
systems had to automatically correct the output of
an unknown “black box” (neural) MT system by
learning from training data containing human revi-
sions of translations produced by the same system.
The selected language pairs (English-German and
English-Chinese) and the data domain (Wikipedia
articles) were the same of last year (Chatterjee
et al., 2020), as well as the type of MT systems
(generic NMT systems not adapted to the target
domain).

7.2 Data, Metrics, Baseline

7.2.1 Data
In continuity with all previous rounds, participants
were provided with training and development
data consisting of (source, target, human post-
edit) triplets (7,000 for the training and 1,000 for
the development sets for both languages) where:

• The source (SRC) is a tokenized English sen-
tence;

• The target (TGT) is a tokenized Ger-
man/Chinese translation of the source, which
was produced by a generic, black-box NMT
system unknown to participants.38

• The human post-edit (PE) is a tokenized
manually-revised version of the target, which
was produced by professional translators.

For the English-German sub-task, two additional
training resources were made available to par-
ticipants. These are: i) the corpus of 4.5 mil-
lion artificially-generated post-editing triplets de-
scribed in (Junczys-Dowmunt and Grundkiewicz,
2016), and ii) the 14.5 million artificially-
generated instances of the English-German section
of the eSCAPE corpus (Negri et al., 2018).

38The NMT systems for both the languages are based
on the standard Transformer architecture (Vaswani et al.,
2017) and follow the implementation details described in (Ott
et al., 2018). They were trained on publicly available MT
datasets including Paracrawl (Bañón et al., 2020) and Eu-
roparl (Koehn, 2005), summing up to 23.7M parallel sen-
tences for English-German and 22.6M for English-Chinese.
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Test data consisted of newly-released (source,
target) pairs (1,000 in total for each target lan-
guage), similar in nature to the corresponding ele-
ments in the train/dev sets (i.e. same domain, same
NMT architectures). The human post-edits of the
target elements were left apart to measure APE
systems’ performance both with automatic metrics
(TER, BLEU) and via manual assessments.

7.2.2 Metrics
Also this year, the participating systems were eval-
uated both by means of automatic metrics and
manually (see Section 7.5). Automatic evalua-
tion was carried out by computing the distance
between the automatic post-edits produced by
each system for the target elements of the test
set, and the human corrections of the same test
items. Case-sensitive TER (Snover et al., 2006)
and BLEU (Papineni et al., 2002) were respec-
tively used as primary and secondary evaluation
metrics. The official systems’ ranking is hence
based on the average TER calculated on the test set
by using the TERcom39 software: lower average
TER scores correspond to higher ranks. BLEU
was computed using the multi-bleu.perl package40

available in MOSES. Automatic evaluation results
are presented in Section 7.5.1.

Manual evaluation was conducted via source-
based direct human assessment (Graham et al.,
2013). Complete details are provided in Section
7.5.3.

7.2.3 Baseline
Also this year, the official baseline results were
the TER and BLEU scores calculated by com-
paring the raw MT output with human post-edits.
This corresponds to the score achieved by a “do-
nothing” APE system that leaves all the test targets
unmodified. For each submitted run, the statistical
significance of performance differences with re-
spect to the baseline was calculated with the boot-
strap test (Koehn, 2004).

7.3 Complexity indicators

To get an idea of the difficulty of the task, in previ-
ous rounds we have focused on three aspects of the
released data, which provide us with information
about the possibility of learning useful correction
patterns during training and successfully applying

39http://www.cs.umd.edu/~snover/tercom/
40https://github.com/moses-smt/mosesdecoder/

blob/master/scripts/generic/multi-bleu.perl

them at test time. These are: i) repetition rate, ii)
MT quality, and iii) TER distribution in the test
set. For the sake of comparison across the seven
rounds of the APE task (2015–2021), Table 44 re-
ports, for each dataset, information about the first
two aspects. The third one, instead, will be dis-
cussed by referring to Figure 11. Concerning this
year’s round, we only report information for the
English-German sub-task, the only one for which
we had participants; also the discussion henceforth
will exclusively focus on this sub-task.

7.3.1 Repetition Rate
The repetition rate, measures the repetitiveness in-
side a text by looking at the rate of non-singleton
n-gram types (n=1...4) and combining them us-
ing the geometric mean. Larger values indicate
a higher text repetitiveness that may suggest a
higher chance of learning from the training set cor-
rection patterns that are applicable also to the test
set. However, over the years, the influence of rep-
etition rate in the data on systems’ performance
was found to be marginal.41 For the sake of com-
pleteness, we hence just observe that, being drawn
from the same Wikipedia domain, this year’s data
feature very low repetitiveness values (i.e. 0.73,
0.78, and 0.76 respectively for the SRC, TGT and
PE elements), which are comparable to those from
last year (0.653, 0.823, and 0.656). In spite of this,
while last year’s gains over the baseline were the
highest ever observed in the APE task history, this
year’s results are significantly lower. This sug-
gests the higher importance of other complexity
factors, on which repetition rate might have an ad-
ditive effect that still has to be fully understood.

7.3.2 MT Quality
MT quality, that is the initial quality of the
machine-translated (TGT) texts to be corrected, is
indeed a much more reliable indicator of task dif-
ficulty. We measure it by computing, the TER (↓)
and BLEU (↑) scores using the human post-edits
as reference. As discussed in (Bojar et al., 2017;
Chatterjee et al., 2018, 2019, 2020) higher qual-
ity of the original translations leaves to the APE
systems a smaller room for improvement since
they have, at the same time, less to learn during
training and less to correct at test stage. On one

41The analyses carried out over the years produced mixed
outcomes, with impressive final results obtained in spite of
low repetition rates (Chatterjee et al., 2020) and vice-versa
(Chatterjee et al., 2018, 2019).
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Lang. Domain MT type RR_SRC RR_TGT RR_PE Baseline BLEU Baseline TER δ TER
2015 en-es News PBSMT 2.9 3.31 3.08 n/a 23.84 +0.31
2016 en-de IT PBSMT 6.62 8.84 8.24 62.11 24.76 -3.24
2017 en-de IT PBSMT 7.22 9.53 8.95 62.49 24.48 -4.88
2017 de-en Medical PBSMT 5.22 6.84 6.29 79.54 15.55 -0.26
2018 en-de IT PBSMT 7.14 9.47 8.93 62.99 24.24 -6.24
2018 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.38
2019 en-de IT NMT 7.11 9.44 8.94 74.73 16.84 -0.78
2019 en-ru IT NMT 18.25 14.78 13.24 76.20 16.16 +0.43
2020 en-de Wiki NMT 0.65 0.82 0.66 50.21 31.56 -11.35
2020 en-zh Wiki NMT 0.81 1.27 1.2 23.12 59.49 -12.13
2021 en-de Wiki NMT 0.73 0.78 0.76 71.07 18.05 -0.77

Table 44: Basic information about the APE shared task data released since 2015: languages, domain, type of MT technology,
repetition rate and initial translation quality (TER/BLEU of TGT). The last row (δ TER) indicates, for each evaluation round,
the difference in TER between the baseline (i.e. the “do-nothing” system) and the top-ranked submission. For this year’s round
we report results for the only sub-task – English-German – for which we had participants.

side, training on good (or near-perfect) automatic
translations can drastically reduce the number of
learned correction patterns. On the other side,
testing on similarly good translations can i) dras-
tically reduce the number of corrections required
and the applicability of the learned patterns, and
ii) increase the chance to introduce errors, espe-
cially when post-editing near-perfect TGTs. The
findings of all previous rounds of the task support
this observation and, as discussed in Section 7.5,
this year is no exception. For English-German,
the quality of the initial translations (18.05 TER
/ 71.07 BLEU) is close the level of the “hard-
est” previous rounds (2017-2019), characterized
by baseline scores in the 15.5-16.8 TER inter-
val (and BLEU>70.0). Accordingly, this year’s
gains over the baseline amount to less than 1
TER/BLEU points. The strict correlation between
the quality of the initial translations and the actual
potential of APE is hence confirmed.

Figure 11: TER distribution in the English-German test
set.

7.3.3 TER Distribution
A third reliable complexity indicator is the TER
distribution (computed against human references)
for the translations present in the test sets. Al-
though TER distribution and MT quality can be
seen as two sides of the same coin, it’s worth
remarking that, even at the same level of over-
all quality, more/less peaked distributions can re-
sult in very different testing conditions. Indeed,
as shown by previous analyses, harder rounds of
the tasks were typically characterized by TER dis-
tributions particularly skewed towards low values
(i.e. a larger percentage of test items having a TER
between 0 and 10). On one side, the higher the
proportion of (near-)perfect test instances requir-
ing few edits or no corrections at all, the higher the
probability that APE systems will perform unnec-
essary corrections penalized by automatic evalua-
tion metrics. On the other side, less skewed dis-
tributions can be expected to be easier to handle
as they give to automatic systems a larger room
for improvement (i.e. more test items requiring -
at least minimal - revision). In the lack of more
focused analyses on this aspect, we can hypothe-
size that, in ideal conditions from the APE stand-
point, the peak of the distribution would be ob-
served for “post-editable” translations containing
enough errors that leave some margin for focused
corrections, but not too many errors to be so un-
intelligible to require a whole re-translation from
scratch.42

Also with respect to this complexity indicator,
this year’s test set looks particularly difficult to
handle. As shown in Figure 11, more than 35%

42For instance, based on the empirical findings reported
in (Turchi et al., 2013), TER=0.4 is the threshold that, for
human post-editors, separates the “post-editable” translations
from those that require complete rewriting from scratch.
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ID Participating team
PVIE Amazon Prime Video, India (Sharma et al., 2021)
Netmarble Netmarble AI Center, South Korea Korea (Oh et al., 2021)

Table 45: Participants in the WMT21 Automatic Post-Editing task.

of the test instances feature a TER between 0
and 5 and almost 50% of them have 0<TER<10.
This distribution, which is very different from last
year (where less than 7% of the test samples had
0<TER<5 and∼55% of them had 15<TER<45),
is similar to the one featured by the most challeng-
ing datasets from previous rounds.

All in all, the small gains over the baseline men-
tioned above also confirm the strict correlation be-
tween TER distribution and task difficulty. This
goes hand in hand with the above considerations
about MT quality and, together with the possible
additive effect of very low repetition rate values in
raising the difficulty bar, might have discouraged
potential participants.

7.4 Submissions

As shown in Table 45, we received submissions
from two teams, which is indeed a significant drop
with respect to last year’s round. Moreover, as
anticipated, both teams participated only in the
English-German sub-task by submitting 2 runs
each.

Amazon Prime Video (PVIE). Amazon partic-
ipated with a model leveraging a state-of-the-art
MT system based on fairseq (Ott et al., 2019)
and pre-trained on data from the WMT‘19 News
Translation task (Barrault et al., 2019). The ba-
sic model is first fine-tuned on the APE dataset,
by creating (source, target) pairs where the source
is a concatenation of the SRC and MT elements
of the APE data and the target is the correspond-
ing PE element. Then, to cope with the domain
mismatch between the initial training data and the
APE task ones, the model is fine-tuned on i) data
drawn from WikiMatrix (Schwenk et al., 2019)
(64k parallel sentences after cleaning), ii) addi-
tional APE samples (45k triplets) from previous
rounds (2016-2018) of the shared task, and iii) this
year’s APE data. The primary submission is ob-
tained by ensembling models built from different
combinations of the available data.

Netmarble AI Center (Netmarble). Netmar-
ble participated with a Transformer-based system

(Vaswani et al., 2017) built using: i) the WMT21
News Translation data, ii) the additional artificial
synthetic data provided to the APE task partici-
pants, and iii) data augmentation techniques that
make use of an external MT component. These re-
sources are processed through a curriculum train-
ing procedure aimed to step-wise learn from eas-
ier problems to more complex ones. Multi-task
learning is also applied to alleviate data sparsity
issues by sharing knowledge across related tasks
(in this case part of speech recognition, named en-
tity recognition, masked language modeling and
keep/translate classification). All tasks are jointly
trained and, to cope with imbalanced data from the
selected tasks, task-specific losses – namely focal
loss (Lin et al., 2017) and class-balanced loss (Cui
et al., 2019) - are exploited in addition to standard
cross-entropy. Moreover, dynamic weight average
(Liu et al., 2019), which adapts the task weighting
over time by considering the rate of change of the
loss for each task, is applied to optimize the con-
tribution of each task in the multi-task framework.

7.5 Results

7.5.1 Automatic evaluation
Participants’ results are shown in Table 46. The
submitted runs are ranked based on the average
TER (case-sensitive) computed using human post-
edits of the MT segments as reference, which is
the APE task primary evaluation metric. We also
report the BLEU score, computed using the same
references, which represents our secondary evalu-
ation metric.

As it can be seen from the table, the two rank-
ings slightly differ: while the top submission
(17.28 TER, 71.55 BLEU) is the same, the BLEU-
based ranking presents few swaps, with the do
nothing baseline reaching the 2nd position. One
obvious observation is that these fluctuations are
due to the fact that all systems substantially per-
form on par: except for one case (i.e. the 0.77 TER
reduction achieved by the top submission), all the
results’ differences with respect to the baseline are
indeed not statistically significant.

Quite surprisingly, we also observe that the best
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TER BLEU

en-de Netmarble_CURRICULUM-ENSEMBLE_CONTRASTIVE 17.28 71.55
PVIE_single_CONTRASTIVE 17.74 70.54
PVIE_ensemble_PRIMARY 17.85 70.5
Netmarble_CURRICULUM-MTL_PRIMARY 17.97 70.53
Baseline 18.05 71.07

Table 46: Results for the WMT21 APE English-German – average TER (↓), BLEU score (↑) Statistically significant improve-
ments over the baseline are marked in bold.

submission for both participants is the contrastive
one. This highlights the difficulty to select the best
configuration during system development, and in-
directly confirms the difficulty to handle APE data
characterized by very high MT quality, TER distri-
bution skewed towards perfect/near-perfect trans-
lations and very low repetition rate values.

7.5.2 Systems’ behaviour
Modified, improved and deteriorated sen-
tences. In light of the hard conditions posed by
what seems to be the hardest APE dataset ever re-
leased, we now turn an eye toward the changes
made by each system to the test instances. To this
aim, Table 47 shows, for each submitted run, the
number of modified, improved and deteriorated
sentences, as well as the overall system’s precision
(i.e. the proportion of improved sentences out of
the total number of modified instances for which
improvement/deterioration is observed). It’s worth
noting that, as in the previous rounds, the num-
ber of sentences modified by each system is higher
than the sum of the improved and the deteriorated
ones. This difference is represented by modified
sentences for which the corrections do not yield
any TER variations. This grey area, for which
quality improvement/degradation can not be au-
tomatically assessed, contributes to motivate the
human evaluation discussed in Section 7.5.3.

As it can be seen from the table, systems’ be-
haviour reflects the difficulty to handle this year’s
test set. The quite low percentage of modified
sentences (50.2 on average, 46.2 for the top sub-
mission) is in line with our previous observations
about TER distribution (see Section 7.3.1). With
∼50% of the test instances having 0<TER<10, all
systems seem to have properly managed the small
room for intervention by not exceeding the num-
ber of expected corrections. Accordingly, different
from last year,43 systems’ final scores are inversely

43On the much simpler 2020 test set, featuring only

Figure 12: Distribution of edit operations (insertions, dele-
tions, substitutions and shifts) performed by the two primary
submissions to the English-German task.

proportional to their aggressiveness.
Precision-wise, however, we are far from last

year’s values: despite lower aggressiveness, sys-
tem’s precision is 51.12 on average (in 2020 it was
58.0) with the best run peaking at 53.96 (vs 69.0 in
2020). This is due to significant variations in the
percentage of improved (43.5 on average, 45.67
for the top submission) and deteriorated sentences
(41.6 on average, 38.96 for the winning system),
which are very different from last year where, on
a simpler test set, the average values were respec-
tively 58.2 and 23.6.

Edit operations. Similar to previous rounds, we
analysed systems’ behaviour also in terms of the
distribution of edit operations (insertions, dele-
tions, substitutions and shifts) done by each sys-
tem. This fine-grained analysis of how systems
corrected the test set instances is obtained by com-
puting the TER between the original MT output
and the output of each primary submission taken
as reference. Similar to last year, and in line
with the close TER/BLEU results obtained by the
two systems, differences in their behaviour are
barely visible. Both of them are characterised

∼15.0% of instances with 0≤TER≤10, the modified sen-
tences were 69.2% on average, with the more aggressive be-
haviour of the top systems peaking to more than 90.5%.
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Systems Modified Improved Deteriorated Prec.
Netmarble_CURRICULUM-ENSEMBLE_CONTRASTIVE 462 (46.2%) 211 (45.67%) 180 (38.96%) 53.96
PVIE_single_CONTRASTIVE 504 (50.4%) 212 (42.06%) 212 (42.06%) 50.0
PVIE_ensemble_PRIMARY 508 (50.8%) 215 (42.32%) 218 (42.91%) 49.65
Netmarble_CURRICULUM-MTL_PRIMARY 533 (53.3%) 235 (44.09%) 227 (42.59%) 50.87
Average 000. 50.2 000. 43.5 000. 41.6 51.12

Table 47: Number (raw and proportion) of test sentences modified, improved and deteriorated by each run submitted to
the APE 2021 English-German sub-task. The “Prec.” column shows systems’ precision as the ratio between the number of
improved sentences and the number of modified instances for which improvement/deterioration is observed (i.e. Improved +
Deteriorated).

Avg Avg z

Netmarble_CURRICULUM-MTL_PRIMARY 79.82 0.144
Netmarble_CURRICULUM-ENSEMBLE_CONTRASTIVE 78.52 0.095
PVIE_ensemble_PRIMARY 76.85 0.02
PVIE_single_CONTRASTIVE 76.67 0.011
test.mt 69.68 -0.27

Table 48: Results for the WMT21 APE English-German – human evaluation. Systems ordered by DA score; systems
within a cluster are considered tied; lines indicate clusters according to Wilcoxon rank-sum test p < 0.05.

by a large number of deletions (65.0% on aver-
age), followed by insertions (19.2%), shifts (9.2%)
and substitutions (6.5%). Although this year’s
test set turned out to be very different in terms
of difficulty, this distribution is practically iden-
tical to last year. More thorough future investiga-
tions would be needed to find clear explanations
for these observations. For the time being, to get
further insights about systems’ performance, we
now complement our analysis by discussing the
outcomes of human evaluation of the submitted
runs.

7.5.3 Human evaluation
In order to complement the automatic evaluation
of APE submissions, manual evaluation of the 4
submissions for English-German was conducted.
In this section, we present the evaluation proce-
dure, as well as the results obtained.

7.6 Evaluation procedure

We evaluated the overall quality of the MT and PE
output using source-based direct assessment (Gra-
ham et al., 2013; Cettolo et al., 2017; Bojar et al.,
2018b). We used the same instructions that are
used in the News Translation track of WMT2021.
Instead of using crowd-workers, we hired 2 pro-
fessional translators for English-German that are
native German speakers as suggested by Freitag
et al. (2021a).

Human evaluation results for English-German
are summarized in Table 48. Similar to last
year’s task (Chatterjee et al., 2020), all 4
submissions significantly improved the original

MT output. Furthermore, the APE system of
Netmarble_CURRICULUM-MTL_PRIMARY sig-
nificantly outperforms all other submission and
can be declared as the single winner of this years’
APE task. Interestingly, the human evaluation
results show no correlation with the automatic
scores from Table 46 which confirms the findings
from Freitag et al. (2019) that automatic evalua-
tion is hard for post-edited systems.

7.7 Summary

We presented the results from the 7th shared
task on Automatic Post-Editing at WMT. This
round of the challenge featured the same over-
all setting of last year. Specifically, the language
directions were the same (English-German and
English-Chinese), as well as the domain of the
data (Wikipedia articles) and the neural MT sys-
tems used to produce the translations to be au-
tomatically post-edited. Also the evaluation pro-
cess was carried out in continuity with the past,
both with automatic metrics (TER and BLEU, re-
spectively the primary and secondary metrics) and
by means of human evaluation (via source-based
direct assessment, similar to the News Transla-
tion track but involving professional translators).
According to several complexity indicators (rep-
etition rate, original MT quality and TER distri-
bution), this year’s data can be safely considered
as the most difficult one ever released. On one
side, this might have discouraged potential par-
ticipants, which were only two for the English-
German sub-task. On the other side, it contributes
to explain the lower results compared to last year.
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Indeed, only one submitted run was able to achieve
statistically significant improvements over the do-
nothing baseline in terms of our primary automatic
metric. Nevertheless, all submissions were con-
sistently ranked higher by human evaluators, indi-
cating the effectiveness of APE technology even
under such extremely challenging conditions.

8 Conclusion

The news translation task in 2021 covered 20
translation pairs, 14 of which had English on the
source or target side and 6 were without English.
Direct assessment (DA) was the main golden
truth again, although the style varied across lan-
guage pairs. Into-English translation was evalu-
ated against human reference translation, preserv-
ing the order of sentences in a document but not
presenting the whole document at once (SR+DC).
Out-of-English and some of non-English pairs of-
fered the full document context to the annota-
tors and allowed them to revisit the scores as-
signed to individual segments (SR+FD), eval-
uating against the source. Four non-English
pairs used a simpler evaluation without any doc-
ument context (SR−DC). For English→Czech,
English→German and Chinese→English, a con-
trastive DA scoring was also tested, presenting in-
dividual sentences in pairs of candidate transla-
tions (contr:SR-DC), aimed at a more discerning
pairwise comparisons. And finally, an alternative
scoring style called GENIE was additionally ap-
plied to German→English.

Document context was found to be extremely
important for evaluation of high-quality MT sys-
tems. The ranking of participating systems differs
considerably between SR+FD and contr:SR-DC.
In particular, human reference is scored well if
full document context is available throughout the
annotation but tends to be surpassed by top sys-
tems when sentences are evaluated in isolation.
Surprising effects were also observed when us-
ing these evaluation methods on different human
translations.

The triangular machine translation task encour-
aged participants to use all the parallel data pro-
vided (involving direct and indirect sources) to
build a better machine translation system for the
particular language pair and direction (Russian-to-
Chinese). The participants explored several mod-
eling choices and data augmentation strategies
that would help practitioners when building ma-

chine translation systems involving non-English
language pairs.

The multilingual low-resource translation task
dealt with two Indo-European language families:
North Germanic and Romance. The best per-
forming systems used multilingual supervised ma-
chine translation models enriched with backtrans-
lated data and additional sentences from higher-
resourced languages in the same family. Pivot
translation via these high-resourced counter-parts
and in-domain data selection was not beneficial for
the final performance.

The results of the task on automatic post-editing
were highly influenced by the difficulty of this
year’s data, which can also explain a drop in
participation (two teams, only in the English-
German sub-task). In light of the very high qual-
ity of the translation to be automatically corrected,
the very skewed TER distribution towards near-
perfect translations and the very low repetition
rate in the data, it comes as no surprise that only
one run was able to outperform the strong do-
nothing baseline with statistically significant im-
provements. Nevertheless, human evaluation re-
sults reveal significant gains by all runs, attesting
the difficulty to apply automatic evaluation proce-
dures to APE and, on a positive note, the effective-
ness of the proposed methods.
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Ondřej Bojar, Rajen Chatterjee, Christian Feder-
mann, Mark Fishel, Yvette Graham, Barry Had-
dow, Matthias Huck, Antonio Jimeno Yepes, Philipp
Koehn, André Martins, Christof Monz, Matteo Ne-
gri, Aurélie Névéol, Mariana Neves, Matt Post,
Marco Turchi, and Karin Verspoor, editors. 2019.
Proceedings of the Fourth Conference on Machine
Translation. Association for Computational Lin-
guistics, Florence, Italy.
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A Differences in Human Scores

Tables 49–59 show differences in average standardized human scores for all pairs of competing sys-
tems for each language pair. The numbers in each of the tables’ cells indicate the difference in average
standardized human scores for the system in that column and the system in that row.

Because there were so many systems and data conditions the significance of each pairwise compar-
ison needs to be quantified. We applied Wilcoxon rank-sum test to measure the likelihood that such
differences could occur simply by chance. In the following tables ? indicates statistical significance
at p < 0.05, † indicates statistical significance at p < 0.01, and ‡ indicates statistical significance at
p < 0.001, according to Wilcoxon rank-sum test.

Each table contains final rows showing the average score achieved by that system and the rank range
according according to Wilcoxon rank-sum test (p < 0.05). Gray lines separate clusters based on non-
overlapping rank ranges.

Tables 49-68 provide automatic metric scores (COMET, BLEU, chrF) for all competing systems.
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ONLINE-A -0.03 - 0.07† 0.09† 0.09‡ 0.11‡ 0.12‡ 0.17‡ 0.17‡

CUNI-DOCTRANSFORMER -0.10 -0.07 - 0.01 0.02 0.04 0.05† 0.09† 0.09?
ONLINE-B -0.12 -0.09 -0.01 - 0.00 0.03 0.03? 0.08† 0.08†

CUNI-TRANSFORMER2018 -0.12 -0.09 -0.02 0.00 - 0.02 0.03 0.08? 0.08
ONLINE-W -0.14 -0.11 -0.04 -0.03 -0.02 - 0.01 0.05? 0.05
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ONLINE-Y -0.20 -0.17 -0.09 -0.08 -0.08 -0.05 -0.05 - 0.00

HUMAN -0.20 -0.17 -0.09 -0.08 -0.08 -0.05 -0.05 0.00 -

score 0.11 0.08 0.01 -0.01 -0.01 -0.03 -0.04 -0.08 -0.09
rank 1–2 1–2 3–6 3–6 3–8 3–8 5–9 7–9 5–9

bleu-A 31.1 28.3 30.2 31.7 26.2 28.9 28.6 24.6 -
chrF-A .599 .569 .585 .593 .551 .576 .575 .549 -

comet-A .628 .534 .592 .557 .510 .595 .517 .459 .358
bleu-B 26.4 23.5 24.7 24.8 21.7 24.8 22.8 20.3 -
chr-B .549 .520 .532 .531 .504 .534 .520 .502 -

comet-B .513 .411 .466 .431 .391 .486 .383 .322 .414

Table 49: Head to head comparison for Czech→English systems
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NEMO - 0.01 0.03? 0.05 0.08 0.08 0.09? 0.12‡ 0.15‡ 0.16‡ 0.26‡
ONLINE-W -0.01 - 0.02? 0.04 0.07? 0.07 0.09† 0.11‡ 0.14‡ 0.15‡ 0.25‡
ONLINE-B -0.03 -0.02 - 0.02 0.05 0.05 0.06 0.09† 0.12‡ 0.13‡ 0.23‡
HUMAN -0.05 -0.04 -0.02 - 0.03 0.03 0.04 0.07† 0.10‡ 0.11‡ 0.21‡

MANIFOLD -0.08 -0.07 -0.05 -0.03 - 0.00 0.02 0.04? 0.07† 0.08† 0.18‡
FACEBOOK-AI -0.08 -0.07 -0.05 -0.03 0.00 - 0.01 0.04† 0.07‡ 0.08‡ 0.18‡

NIUTRANS -0.09 -0.09 -0.06 -0.04 -0.02 -0.01 - 0.03 0.06? 0.07? 0.17‡
ONLINE-G -0.12 -0.11 -0.09 -0.07 -0.04 -0.04 -0.03 - 0.03 0.04 0.14?

AFRL -0.15 -0.14 -0.12 -0.10 -0.07 -0.07 -0.06 -0.03 - 0.01 0.11
ONLINE-A -0.16 -0.15 -0.13 -0.11 -0.08 -0.08 -0.07 -0.04 -0.01 - 0.10
ONLINE-Y -0.26 -0.25 -0.23 -0.21 -0.18 -0.18 -0.17 -0.14 -0.11 -0.10 -

score 0.14 0.13 0.11 0.09 0.06 0.06 0.04 0.02 -0.01 -0.02 -0.12
rank 1–5 1–4 3–7 1–7 2–7 1–7 3–8 7-10 8–11 8–11 9–11

bleu-A 40.2 37.0 40.6 - 41.1 42.3 41.8 41.2 38.8 38.7 32.8
chrF-A .660 .631 .661 - .659 .661 .658 .668 .635 .652 .600

comet-A .625 .610 .624 .619 .619 .656 .632 .635 .595 .595 .524
bleu-B 40.1 37.2 40.0 - 40.5 41.6 41.2 40.7 39.6 38.8 33.2
chrF-B .663 .635 .663 - .661 .663 .661 .671 .640 .657 .602

comet-B .619 .606 .621 .619 .614 .647 .623 .629 .589 .591 .523

Table 52: Head to head comparison for Russian→English systems
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HUAWEITSC - 0.06? 0.09? 0.11‡ 0.11? 0.12‡ 0.13‡ 0.14‡ 0.17‡ 0.18‡ 0.20‡ 0.22‡ 0.28‡ 0.30‡ 0.33‡ 0.33‡
IIE-MT -0.06 - 0.04 0.05 0.05 0.06† 0.07? 0.08† 0.11† 0.12† 0.14‡ 0.16‡ 0.22‡ 0.24‡ 0.27‡ 0.27‡

NIUTRANS -0.09 -0.04 - 0.01 0.01 0.02? 0.03 0.04? 0.08† 0.08? 0.11‡ 0.13‡ 0.19‡ 0.20‡ 0.23‡ 0.24‡
KWAINLP -0.11 -0.05 -0.01 - 0.00 0.01 0.02 0.03 0.06? 0.07 0.10† 0.11‡ 0.17‡ 0.19‡ 0.22‡ 0.23‡

FACEBOOK-AI -0.11 -0.05 -0.01 0.00 - 0.01? 0.02 0.03? 0.06? 0.07? 0.09‡ 0.11‡ 0.17‡ 0.19‡ 0.22‡ 0.22‡
XMU -0.12 -0.06 -0.02 -0.01 -0.01 - 0.01 0.02 0.06 0.06 0.09 0.11? 0.17‡ 0.18‡ 0.21‡ 0.22‡

CAPITALMARVEL -0.13 -0.07 -0.03 -0.02 -0.02 -0.01 - 0.01 0.04 0.05 0.07† 0.09‡ 0.15‡ 0.17‡ 0.20‡ 0.20‡
ONLINE-B -0.14 -0.08 -0.04 -0.03 -0.03 -0.02 -0.01 - 0.03 0.04 0.06 0.08? 0.14‡ 0.16‡ 0.19‡ 0.19‡

MISS -0.17 -0.11 -0.08 -0.06 -0.06 -0.06 -0.04 -0.03 - 0.01 0.03 0.05? 0.11‡ 0.13† 0.16‡ 0.16‡
ONLINE-W -0.18 -0.12 -0.08 -0.07 -0.07 -0.06 -0.05 -0.04 -0.01 - 0.02 0.04† 0.10‡ 0.12‡ 0.15‡ 0.15‡

WECHAT-AI -0.20 -0.14 -0.11 -0.10 -0.09 -0.09 -0.07 -0.06 -0.03 -0.02 - 0.02 0.08? 0.09? 0.13† 0.13†
ONLINE-A -0.22 -0.16 -0.13 -0.11 -0.11 -0.11 -0.09 -0.08 -0.05 -0.04 -0.02 - 0.06 0.08 0.11? 0.11?
ONLINE-G -0.28 -0.22 -0.19 -0.17 -0.17 -0.17 -0.15 -0.14 -0.11 -0.10 -0.08 -0.06 - 0.02 0.05 0.05

MOVELIKEAJAGUAR -0.30 -0.24 -0.20 -0.19 -0.19 -0.18 -0.17 -0.16 -0.13 -0.12 -0.09 -0.08 -0.02 - 0.03 0.04
ONLINE-Y -0.33 -0.27 -0.23 -0.22 -0.22 -0.21 -0.20 -0.19 -0.16 -0.15 -0.13 -0.11 -0.05 -0.03 - 0.00

ILLINI -0.33 -0.27 -0.24 -0.23 -0.22 -0.22 -0.20 -0.19 -0.16 -0.15 -0.13 -0.11 -0.05 -0.04 0.00 -

score 0.14 0.08 0.05 0.03 0.03 0.03 0.01 0.00 -0.03 -0.04 -0.06 -0.08 -0.14 -0.16 -0.19 -0.19
rank 1 2–5 2–6 2–9 2–6 5–11 3–10 5–11 6–11 5–11 7–12 11–14 12–16 12–16 13–16 13–16

bleu 26.5 25.4 27.2 25.8 27.7 25.8 23.7 27.2 27.0 22.8 27.8 21.0 20.6 21.2 17.3 18.6
chrf .528 .521 .532 .524 .536 .524 .496 .526 .529 .489 .535 .455 .476 .476 .482 .453

comet .348 .314 .371 .307 .392 .307 .236 .270 .294 .270 .361 .167 .145 .182 .061 .073

Table 53: Head to head comparison for Japanese→English systems
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FACEBOOK-AI - 0.18‡ 0.25‡ 0.26‡ 0.28‡ 0.28‡ 0.29‡ 0.33‡ 0.37‡ 0.55‡
MANIFOLD -0.18 - 0.07? 0.08‡ 0.10† 0.10† 0.11‡ 0.15‡ 0.19‡ 0.37‡
NIUTRANS -0.25 -0.07 - 0.02 0.03 0.04 0.04 0.08† 0.12† 0.30‡
ONLINE-B -0.26 -0.08 -0.02 - 0.02 0.02 0.03 0.07 0.11? 0.28‡

HUAWEITSC -0.28 -0.10 -0.03 -0.02 - 0.00 0.01 0.05? 0.09† 0.27‡
MIDEIND -0.28 -0.10 -0.04 -0.02 0.00 - 0.01 0.05? 0.09? 0.26‡

ONLINE-A -0.29 -0.11 -0.04 -0.03 -0.01 -0.01 - 0.04 0.08 0.26‡
ALLEGRO -0.33 -0.15 -0.08 -0.07 -0.05 -0.05 -0.04 - 0.04 0.22‡

ONLINE-Y -0.37 -0.19 -0.12 -0.11 -0.09 -0.09 -0.08 -0.04 - 0.18‡
ONLINE-G -0.55 -0.37 -0.30 -0.28 -0.27 -0.26 -0.26 -0.22 -0.18 -

score 0.29 0.11 0.04 0.03 0.01 0.01 0.00 -0.04 -0.08 -0.26
rank 1 2 3–7 3–8 3–7 3–7 3–9 6–9 7–9 10

bleu 41.7 39.8 39.2 40.6 38.4 33.5 33.6 33.3 30.1 23.7
chrF .623 .621 .610 .624 .611 .578 .574 .574 .559 .492

comet .683 .629 .619 .645 .604 .552 .512 .467 .422 -.071

Table 54: Head to head comparison for Icelandic→English systems
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FACEBOOK-AI - 0.13‡ 0.19‡ 0.19‡ 0.19‡ 0.22‡ 0.25‡ 0.28‡ 0.28‡ 0.34‡ 0.36‡ 0.42‡ 0.45‡ 0.51‡
ONLINE-B -0.13 - 0.06? 0.06 0.06 0.09† 0.12‡ 0.15‡ 0.15‡ 0.21‡ 0.23‡ 0.29‡ 0.32‡ 0.39‡

TRANSSION -0.19 -0.06 - 0.00 0.00 0.03 0.06 0.09† 0.09? 0.15‡ 0.17‡ 0.24‡ 0.27‡ 0.33‡
ZMT -0.19 -0.06 0.00 - 0.00 0.03 0.06? 0.09† 0.09? 0.15‡ 0.17‡ 0.23‡ 0.26‡ 0.33‡

GTCOM -0.19 -0.06 0.00 0.00 - 0.03 0.06? 0.09† 0.09? 0.15‡ 0.17‡ 0.23‡ 0.26‡ 0.33‡
HUAWEITSC -0.22 -0.09 -0.03 -0.03 -0.03 - 0.03 0.06 0.06 0.12† 0.14‡ 0.20‡ 0.23‡ 0.30‡

MS-EGDC -0.25 -0.12 -0.06 -0.06 -0.06 -0.03 - 0.03 0.03 0.09? 0.11† 0.18‡ 0.21‡ 0.27‡
P3AI -0.28 -0.15 -0.09 -0.09 -0.09 -0.06 -0.03 - 0.00 0.06 0.08? 0.14† 0.17‡ 0.24‡

NIUTRANS -0.28 -0.15 -0.09 -0.09 -0.09 -0.06 -0.03 0.00 - 0.06 0.08? 0.14‡ 0.17‡ 0.24‡
ONLINE-Y -0.34 -0.21 -0.15 -0.15 -0.15 -0.12 -0.09 -0.06 -0.06 - 0.02 0.08? 0.12† 0.18‡
MANIFOLD -0.36 -0.23 -0.17 -0.17 -0.17 -0.14 -0.11 -0.08 -0.08 -0.02 - 0.06 0.09? 0.16‡

AMU -0.42 -0.29 -0.24 -0.23 -0.23 -0.20 -0.18 -0.14 -0.14 -0.08 -0.06 - 0.03 0.09†
UEDIN -0.45 -0.32 -0.27 -0.26 -0.26 -0.23 -0.21 -0.17 -0.17 -0.12 -0.09 -0.03 - 0.06?

TWB -0.51 -0.39 -0.33 -0.33 -0.33 -0.30 -0.27 -0.24 -0.24 -0.18 -0.16 -0.09 -0.06 -

score 0.25 0.12 0.06 0.06 0.06 0.03 0.00 -0.03 -0.03 -0.09 -0.11 -0.17 -0.20 -0.27
rank 1 2–4 3–7 2–6 3–6 3–9 5–19 6–10 6–10 8–11 10–12 11–13 12–13 14

bleu 21.0 18.7 18.8 18.8 17.8 17.5 17.1 17.8 16.5 13.9 16.9 14.1 14.9 12.3
chrF .487 .467 .472 .472 .467 .468 .453 .463 .447 .448 .456 .413 .422 .403

comet .422 .335 .345 .344 .345 .253 .148 .245 .174 .124 .127 .070 .076 -0.046

Table 55: Head to head comparison for Hausa→English systems
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GTCOM - 0.04 0.12‡ 0.13‡ 0.15‡ 0.22‡ 0.28‡ 0.31‡ 0.58‡
ONLINE-B -0.04 - 0.08? 0.09? 0.11† 0.18‡ 0.24‡ 0.27‡ 0.54‡

TRANSSION -0.12 -0.08 - 0.00 0.03 0.09? 0.16† 0.19† 0.45‡
MS-EGDC -0.13 -0.09 0.00 - 0.02 0.09 0.16† 0.18† 0.45‡

UEDIN -0.15 -0.11 -0.03 -0.02 - 0.07 0.13? 0.16† 0.43‡
ONLINE-Y -0.22 -0.18 -0.09 -0.09 -0.07 - 0.07 0.09 0.36‡

HUAWEITSC -0.28 -0.24 -0.16 -0.16 -0.13 -0.07 - 0.03 0.29‡
ONLINE-A -0.31 -0.27 -0.19 -0.18 -0.16 -0.09 -0.03 - 0.27‡
ONLINE-G -0.58 -0.54 -0.45 -0.45 -0.43 -0.36 -0.29 -0.27 -

score 0.20 0.16 0.08 0.08 0.05 -0.01 -0.08 -0.11 -0.37
rank 1–2 1–2 3–5 3–5 3–6 4–8 6–8 6–8 9

bleu 24.2 24.1 24.5 21.1 21.7 21.5 21.9 21.1 16.7
chrF .517 .512 .512 .486 .489 .488 .488 .483 .433

comet .692 .670 .637 .532 .584 .501 .528 .494 .116

Table 56: Head to head comparison for Bengali→Hindi systems
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HUAWEITSC - 0.01 0.01 0.03 0.17? 0.20‡ 0.22? 0.25‡ 1.35‡
ONLINE-A -0.01 - 0.00 0.02 0.16? 0.19‡ 0.21? 0.24‡ 1.34‡

GTCOM -0.01 0.00 - 0.02 0.15† 0.19‡ 0.20† 0.24‡ 1.33‡
UEDIN -0.03 -0.02 -0.02 - 0.13? 0.17‡ 0.19? 0.22‡ 1.31‡

ONLINE-Y -0.17 -0.16 -0.15 -0.13 - 0.04? 0.05 0.09‡ 1.18‡
TRANSSION -0.20 -0.19 -0.19 -0.17 -0.04 - 0.02 0.05? 1.14‡

ONLINE-B -0.22 -0.21 -0.20 -0.19 -0.05 -0.02? - 0.04† 1.13‡
MS-EGDC -0.25 -0.24 -0.24 -0.22 -0.09 -0.05 -0.04 - 1.09‡
ONLINE-G -1.35 -1.34 -1.33 -1.31 -1.18 -1.14 -1.13 -1.09 -

score 0.24 0.24 0.23 0.21 0.08 0.04 0.03 -0.01 -1.10
rank 1–4 1–4 1–4 1–4 5–6 7 6–7 8 9

bleu 13.0 13.4 13.9 12.5 10.6 15.0 15.3 10.9 5.9
chrF .457 .465 .471 .454 .432 .478 .480 .434 .364

comet .523 .552 .575 .545 .386 .537 .535 .411 -0.215

Table 57: Head to head comparison for Hindi→Bengali systems
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TRANSSION - 0.19‡ 0.24‡ 0.34‡ 1.75‡
HUAWEITSC -0.19 - 0.05 0.15† 1.56‡

MS-EGDC -0.24 -0.05 - 0.10 1.51‡
GTCOM -0.34 -0.15 -0.10 - 1.41‡

ONLINE-G -1.75 -1.56 -1.51 -1.41 -

score 0.50 0.31 0.26 0.16 -1.25
rank 1 2–3 2–4 3–4 5

bleu 14.5 9.9 9.2 11.9 3.6
chrF .503 .486 .476 .475 .361

comet .290 .315 .299 .199 -.606

Table 58: Head to head comparison for Zulu→Xhosa systems
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HUAWEITSC - 0.04 0.09 0.19‡ 0.22‡ 1.47‡
TRANSSION -0.04 - 0.05 0.14† 0.18‡ 1.42‡

GTCOM -0.09 -0.05 - 0.10? 0.13† 1.38‡
MS-EGDC -0.19 -0.14 -0.10 - 0.04 1.28‡
FJDMATH -0.22 -0.18 -0.13 -0.04 - 1.24‡
ONLINE-G -1.47 -1.42 -1.38 -1.28 -1.24 -

score 0.33 0.29 0.24 0.14 0.11 -1.14
rank 1–3 1–3 1–3 4–5 4–5 6

bleu 11.8 11.8 11.5 9.9 9.8 3.9
chrF .504 .497 .493 .477 .479 .370

comet .233 .206 .192 .180 .197 -.582

Table 59: Head to head comparison for Xhosa→Zulu systems

Rank Ave. Ave. z System CometA BLEUA,B BLEUA BLEUB chrFA chrFB

1 90.2 0.397 HUMAN-A – – – – – –

2-4 87.9 0.284 HUMAN-B – – – – – –
2-4 87.6 0.263 Facebook-AI 0.775 36.1 24.8 22.7 0.536 0.506
2-4 86.1 0.214 Online-W 0.751 33.6 23.0 21.6 0.528 0.500

5-7 83.0 0.122 eTranslation 0.625 30.8 21.0 19.4 0.506 0.478
5-6 82.1 0.047 CUNI-Transformer2018 0.671 31.5 21.6 19.7 0.509 0.482
6-8 79.2 -0.120 CUNI-DocTransformer 0.680 32.1 22.2 19.8 0.517 0.485
7-9 79.3 -0.154 CUNI-Marian-Baselines 0.621 28.9 20.1 18.3 0.499 0.472
8-10 77.8 -0.183 Online-B 0.586 28.9 20.0 17.9 0.496 0.466
9-10 74.6 -0.308 Online-A 0.585 29.0 20.2 18.2 0.499 0.468

11 76.2 -0.373 Online-Y 0.456 26.2 18.1 16.1 0.481 0.451

12 65.6 -0.674 Online-G 0.293 22.0 15.3 13.9 0.457 0.431

Table 60: Automatic metric scores for English→Czech systems
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Rank Ave. Ave. z System CometA CometC BLEUA,C BLEUA BLEUC chrFA chrFC

1-17 83.3 0.266 Online-B 0.502 0.568 47.3 28.4 37.2 0.588 0.650
1-5 84.7 0.243 Online-W 0.546 0.616 51.0 29.7 41.3 0.602 0.678
1-14 86.6 0.217 WeChat-AI 0.548 0.610 51.2 31.3 40.0 0.607 0.668
1-6 87.6 0.145 Facebook-AI 0.567 0.630 52.5 31.3 42.0 0.606 0.676
1-10 89.4 0.116 UF 0.507 0.573 47.3 28.5 37.2 0.589 0.650
2-17 85.2 0.089 HW-TSC 0.516 0.576 48.9 29.8 38.6 0.597 0.658
3-17 86.8 0.072 UEdin 0.517 0.574 48.4 29.9 38.0 0.595 0.650
3-18 86.5 0.041 P3AI 0.498 0.560 46.3 28.3 36.5 0.584 0.639
3-18 86.4 0.030 HUMAN-A – 0.554 – – – – –
5-19 83.3 0.013 happypoet 0.452 0.511 44.6 27.6 35.4 0.582 0.634
4-19 86.1 0.010 eTranslation 0.506 0.568 48.7 29.6 38.5 0.594 0.653
4-19 84.4 0.001 Online-A 0.511 0.573 47.6 29.0 37.9 0.594 0.653
3-18 84.5 0.001 HUMAN-C 0.540 – – – – – –
5-19 78.8 -0.053 VolcTrans-AT 0.518 0.580 47.8 29.3 38.0 0.595 0.653
5-19 86.7 -0.055 NVIDIA-NeMo 0.531 0.592 49.8 30.0 39.2 0.598 0.660
8-21 83.1 -0.058 Manifold 0.497 0.557 47.5 29.4 37.2 0.592 0.644
4-20 84.3 -0.062 Online-G 0.439 0.497 43.4 27.1 33.5 0.577 0.627
12-20 84.5 -0.072 Online-Y 0.465 0.522 45.2 27.9 35.3 0.582 0.636
18-21 73.9 -0.130 ICL 0.196 0.246 39.0 24.5 30.4 0.552 0.595
4-20 85.0 -0.140 VolcTrans-GLAT 0.542 0.616 53.6 31.3 43.2 0.608 0.683
16-21 78.3 -0.179 nuclear_trans 0.386 0.445 44.3 27.7 34.5 0.578 0.626

22 80.0 -0.415 BUPT_rush 0.371 0.428 42.0 26.4 32.6 0.571 0.618

Table 61: Automatic metric scores for English→German systems

Rank Ave. Ave. z System CometA BLEUA chrFA

1-2 84.1 0.362 HUMAN-A – – –
1-4 82.7 0.264 Facebook-AI 0.329 20.1 0.511
2-5 80.8 0.263 NiuTrans 0.304 19.7 0.532
3-6 81.2 0.175 Online-B 0.224 18.9 0.504
4-6 80.1 0.128 TRANSSION 0.228 18.9 0.504
2-6 79.2 0.124 ZMT 0.230 18.8 0.504

7-10 78.0 0.018 P3AI 0.273 20.4 0.517
7-10 78.7 0.006 HW-TSC 0.307 20.3 0.512
8-12 75.2 -0.026 AMU 0.092 16.2 0.465
7-10 78.8 -0.036 GTCOM 0.197 17.9 0.499
9-12 75.0 -0.128 MS-EgDC 0.086 16.1 0.465
12-15 70.2 -0.227 UEdin -0.061 14.8 0.453
11-15 73.4 -0.243 Manifold 0.175 18.0 0.495
12-15 70.5 -0.340 TWB 0.000 17.1 0.483
11-15 67.7 -0.448 Online-Y 0.083 15.0 0.469

Table 62: Automatic metric scores for English→Hausa systems
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Rank Ave. Ave. z System CometA BLEUA chrFA

1 88.1 0.872 HUMAN-A – – –

2 84.5 0.594 Facebook-AI 0.776 33.3 0.596

3-4 68.2 0.277 NiuTrans 0.694 30.6 0.575
3-4 72.7 0.240 Manifold 0.648 28.6 0.562

5-9 75.2 0.200 Online-A 0.550 25.5 0.545
5-7 65.6 0.130 Lan-Bridge-MT 0.589 24.9 0.538
5-9 62.6 0.063 Mideind 0.542 24.3 0.531
6-9 73.9 0.026 Online-B 0.583 25.7 0.543
6-9 75.6 -0.034 HW-TSC 0.560 27.5 0.554

10 62.0 -0.236 Online-Y 0.351 22.4 0.513

11 48.7 -0.470 Allegro.eu 0.323 22.7 0.510

12 33.9 -1.082 Online-G -0.327 12.2 0.421

Table 63: Automatic metric scores for English→Icelandic systems

Rank Ave. Ave. z System CometA BLEUA chrFA

1-2 86.4 0.430 Facebook-AI 0.652 46.8 0.407
1-2 85.3 0.314 HUMAN-A – – –

3-5 84.2 0.266 Online-W 0.602 42.1 0.366
3-5 81.3 0.168 WeChat-AI 0.615 46.9 0.404
3-5 82.6 0.148 NiuTrans 0.619 46.2 0.399

6-8 77.8 0.017 HW-TSC 0.614 45.4 0.392
6-8 71.8 -0.042 MiSS 0.517 42.6 0.370
8-13 78.5 -0.051 Online-Y 0.386 39.5 0.341
6-10 77.8 -0.067 BUPT_rush 0.549 42.9 0.372
8-13 70.9 -0.129 Online-A 0.421 40.8 0.350
9-13 67.4 -0.184 Online-B 0.488 41.6 0.360
9-14 74.2 -0.284 ephemeraler 0.414 39.6 0.343
9-14 72.5 -0.339 capitalmarvel 0.460 41.0 0.355
12-14 70.1 -0.373 movelikeajaguar 0.379 38.5 0.334

15-16 63.5 -0.440 Illini 0.189 34.3 0.294
15-16 65.7 -0.541 Online-G 0.143 33.5 0.287

Table 64: Automatic metric scores for English→Japanese systems

Rank Ave. Ave. z System CometA CometB BLEUA,B BLEUA BLEUB chrFA chrFB

1-3 86.0 0.317 HUMAN-B 0.600 – – – – – –
1-3 83.3 0.277 Online-W 0.664 0.660 45.0 31.8 29.9 0.576 0.571
1-3 82.5 0.093 HUMAN-A – 0.599 – – – – –

4-6 79.4 0.056 Online-B 0.604 0.601 43.5 29.8 29.2 0.568 0.567
4-7 75.3 0.032 Online-A 0.576 0.559 41.2 28.8 27.2 0.561 0.556
4-7 80.1 -0.001 Facebook-AI 0.650 0.644 46.0 32.2 30.4 0.576 0.571
7-10 74.5 -0.123 NiuTrans 0.512 0.510 40.5 28.4 27.1 0.546 0.543
7-10 72.3 -0.153 Manifold 0.566 0.566 41.5 29.2 27.6 0.554 0.551
7-10 75.4 -0.161 NVIDIA-NeMo 0.582 0.578 41.6 29.3 27.6 0.562 0.558
5-10 76.0 -0.180 Online-G 0.600 0.595 42.8 30.1 28.6 0.570 0.564

11 62.7 -0.541 Online-Y 0.474 0.470 37.7 25.8 25.3 0.538 0.538

Table 65: Automatic metric scores for English→Russian systems
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Rank Ave. Ave. z System CometA CometB BLEUA,B BLEUA BLEUB chrFA chrFB

1-3 82.5 0.325 HUMAN-B 0.427 – – – – – –
2-14 74.9 0.284 HappyNewYear 0.468 0.403 48.0 35.7 32.1 0.300 0.278
1-7 81.2 0.250 Facebook-AI 0.499 0.425 49.9 35.9 35.3 0.343 0.331
1-8 80.0 0.216 HUMAN-A – 0.421 – – – – –
4-19 75.3 0.164 Borderline 0.473 0.403 49.2 36.5 33.2 0.313 0.289
2-19 81.0 0.161 bjtu_nmt 0.474 0.409 46.9 34.8 32.5 0.295 0.274
3-14 75.5 0.151 Lan-Bridge-MT 0.463 0.406 44.6 32.6 31.3 0.320 0.300
4-21 79.3 0.124 BUPT_rush 0.425 0.368 44.7 33.1 31.1 0.296 0.278
2-18 79.2 0.098 NiuTrans 0.483 0.411 48.1 35.8 32.9 0.305 0.282
4-18 75.7 0.091 Machine_Translation 0.467 0.403 47.7 35.5 32.3 0.294 0.275
2-15 80.9 0.078 SMU 0.474 0.402 47.9 35.8 32.5 0.306 0.280
6-22 81.4 0.064 capitalmarvel 0.378 0.299 43.9 32.2 30.5 0.268 0.261
4-19 79.5 0.056 WeChat-AI 0.501 0.437 49.2 36.9 33.4 0.337 0.305
6-22 78.1 0.026 Online-W 0.468 0.391 44.8 33.4 30.9 0.303 0.277
7-22 75.2 0.004 ICL 0.463 0.396 47.5 34.8 33.3 0.317 0.300
9-23 75.9 -0.008 HW-TSC 0.447 0.380 47.4 35.1 32.3 0.298 0.279
5-23 78.2 -0.025 ZengHuiMT 0.448 0.386 48.5 35.9 32.6 0.304 0.282
11-22 81.2 -0.026 yyds 0.474 0.407 48.1 35.9 32.4 0.302 0.278
10-26 79.7 -0.050 P3AI 0.436 0.375 47.0 34.0 33.3 0.318 0.308
17-27 77.1 -0.061 windfall 0.395 0.313 44.2 32.6 30.3 0.282 0.269
6-24 78.9 -0.075 Online-B 0.458 0.381 48.5 36.0 33.1 0.321 0.299
13-26 76.8 -0.080 NJUSC_TSC 0.439 0.381 46.3 34.2 31.9 0.312 0.291
9-24 77.7 -0.100 MiSS 0.468 0.404 49.0 36.2 33.2 0.304 0.286
19-27 77.0 -0.101 UF 0.413 0.361 45.3 33.1 31.4 0.288 0.277
22-28 72.7 -0.123 Online-A 0.340 0.292 43.3 31.6 30.1 0.264 0.261
22-28 79.3 -0.160 happypoet 0.364 0.307 43.5 32.5 29.7 0.277 0.259
20-28 76.9 -0.185 nuclear_trans 0.428 0.361 44.7 33.4 30.5 0.284 0.261
25-29 76.4 -0.247 ephemeraler 0.382 0.311 44.0 32.6 30.2 0.287 0.273
28-31 67.5 -0.257 Online-G 0.301 0.238 43.2 31.1 29.7 0.304 0.288
29-31 67.1 -0.463 Online-Y 0.317 0.254 43.9 32.0 30.9 0.281 0.271
29-31 68.3 -0.613 movelikeajaguar 0.371 0.309 43.7 32.7 29.7 0.280 0.260

Table 66: Automatic metric scores for English→Chinese systems

Rank Ave. Ave. z System CometA BLEUA chrFA

1–5 87.7 0.088 Online-W 0.714 60.4 0.788
1–7 89.2 0.052 Online-A 0.566 40.6 0.670
1–4 89.5 0.035 HUMAN-A – – –
2–8 85.7 0.002 LISN 0.505 37.3 0.644
1–8 86.9 -0.014 Online-B 0.576 43.8 0.689
4–10 85.0 -0.021 talp_upc 0.481 36.3 0.641
3–8 85.0 -0.064 eTranslation 0.595 40.6 0.666
7–10 84.1 -0.154 Online-G 0.454 36.9 0.653
3–10 86.6 -0.210 Online-Y 0.503 39.5 0.659
7–10 86.4 -0.229 P3AI 0.583 39.3 0.654

Table 67: Automatic metric scores for French→German systems

Rank Ave. Ave. z System CometA BLEUA chrFA

1–3 87.9 0.160 Online-B 0.544 29.7 0.584
1–3 86.5 0.126 HUMAN-A – – –
3–6 83.4 0.018 Manifold 0.586 32.5 0.606
1–6 84.8 0.006 Online-W 0.622 29.9 0.591
3–6 84.5 0.004 Online-A 0.561 35.7 0.613
6–10 83.0 -0.084 Online-G 0.449 28.6 0.577
3–10 83.5 -0.148 P3AI 0.512 31.7 0.626
6–10 81.3 -0.149 LISN 0.426 28.1 0.563
6–10 83.7 -0.177 Online-Y 0.463 28.3 0.568
6–10 81.0 -0.190 talp_upc 0.466 27.5 0.565

Table 68: Automatic metric scores for German→French systems
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B Translator Brief: Sentence-Split News Test Sets

Translator Brief 
In this project we wish to translate online news articles for use in evaluation of Machine 
Translation (MT). The translations produced by you will be compared against the translations 
produced by a variety of different MT systems.  They will be released to the research 
community to provide a benchmark, or “gold-standard” measure for translation quality. The 
translation therefore needs to be a high-quality rendering of the source text into the target 
language, as if it was news written directly in the target language. However there are some 
constraints imposed by the intended usage: 

● All translations should be “from scratch”, without post-editing from MT. Using 
post-editing would bias the evaluation, so we need to avoid it. We can detect 
post-editing so will reject translations that are post-edited.  

● Translation should preserve the sentence boundaries.  The source texts are 
provided with exactly one sentence per line, and the translations should be the same, 
one sentence per line. 

● Translators should avoid inserting parenthetical explanations into the translated 
text and obviously avoid losing any pieces of information from the source text. 

We will check a sample of the translations for quality, and we will check the entire set for 
evidence of post-editing.  
 
The source files will be delivered as text files (sometimes known as “notepad” files), with one 
sentence per line. We need the translations to be returned in the same format. If you prefer 
to receive the text in a different format, then please let us know as we may be able to 
accommodate it.  
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C News Task System Submission Summaries

This appendix lists self-reported details on MT systems participating in the News Translation Task.

C.1 AFRL (Erdmann et al., 2021)
No brief description provided.

C.2 ALLEGRO.EU (Koszowski et al., 2021)
Allegro news translation system is based on the transformer-big architecture, it makes use of corpora
filtering and backtranslation both applied to parallel and monolingual data alike.

ALLEGRO.EU common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Vocabulary Size: 32000
Toolkit Used: OpenNMT-py
Batch size: 8192 tokens
Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 1x A100
Wallclock training time: 13h
Number of contrastive configurations used: 4
Other comments: fp16 was used

ALLEGRO.EU en-is True Parallel Training Data Size in Sentence Pairs: 3935903 parallel.en-is
True Parallel Training Data Size in Words: 60185218 parallel.en 55419088 parallel.is
Synthetic Parallel Training Data Size in Sentence Pairs: 2953528 synt.en-is
Synthetic Parallel Training Data Size in Words: 47082741 synt.en 44441374 synt.is
Monolingual Training Data in Sentences: 4044137 mono.en-is
Monolingual Training Data in Words: 81559107 mono.en 72315845 mono.is
Processing Tools Used: Language detection (e.g. for data cleanup)
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling
Number of Systems Ensembled/Averaged: 1

ALLEGRO.EU is-en True Parallel Training Data Size in Sentence Pairs: 3935903 parallel.is-en
True Parallel Training Data Size in Words: 55419088 parallel.is 60185218 parallel.en
Synthetic Parallel Training Data Size in Sentence Pairs: 2907611 synt.is-en
Synthetic Parallel Training Data Size in Words: 43642048 synt.is 47392565 synt.en
Monolingual Training Data in Sentences: 3991420 mono.is-en
Monolingual Training Data in Words: 78481284 mono.is 81693347 mono.en
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling, Ensembling
Number of Systems Ensembled/Averaged: 2

C.3 AMU (Nowakowski and Dwojak, 2021)
AMU submission for the low-resource English-Hausa language pair involved data filtering and cleaning,
transfer learning from the pretrained unrelated high-resource language pair (German-English) and itera-
tive backtranslation. The initial iteration of backtranslation was performed with a PB-SMT model, while
the subsequent iterations were performed with NMT Transformer models.

C.4 BJTU-NMT (no associated paper)
No brief description provided.

C.5 BORDERLINE (Wang et al., 2021)
No brief description provided.
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C.6 BUPT-RUSH (no associated paper)
No brief description provided.

C.7 CAPITALMARVEL (no associated paper)
No brief description provided.

C.8 CFILT

We train our DE-DSB system using transfer learning from DE-HSB model. Our DE-HSB model is using
monolingual data of HSB and DE and train an unsupervised system first using MASS objective, then
finetune it with iterative back-translation and then finetune it for translation using parallel data of DE-
HSB. This system is then trained using monolingual data of DE and DSB with iterative back-translation.
We use shared encoder and decoder with 6 layers in both encoder and decoder.

CFILT common Multilingual MT System: No.

CFILT de-dsb Basic System Classification: Masked sequence to sequence pretraining (Song et al 2019)+ Transfer
learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 33678
True Parallel Training Data Size in Sentence Pairs: de-hsb 147521 de-dsb 0
Processing Tools Used: Tokenizer
Other Processing Tools Used: fastBPE
Toolkit Used: Moses, fastBPE, MASS
Features of your model development: Iterative back-translation, Unsupervised (i.e. not involving
parallel data), Language model pretraining with MASS objective
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)
Document-level training: No document-level: Our system processes each segment independently.
Other Features of Your Training: Transfer learning

CFILT de-hsb Basic System Classification: MASS pretraining (song et al)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Toolkit Used: Moses, fastBPE, MASS
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)
Document-level training: No document-level: Our system processes each segment independently.

CFILT dsb-de Basic System Classification: MASS pretraining, Transfer learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer

CFILT hsb-de Basic System Classification: MASS pretraining (song et al 2019), Transfer learning
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Pre-trained parts of models: Masked Sequence to Sequence Pre-training (MASS)

C.9 CUNI (Gebauer et al., 2021)
CUNI-DOCTRANSFORMER CUNI-DocTransformer is similar to the sentence-level version called
CUBBITT (Popel et al., 2020), but trained on sequences with multiple sentences of up to 3000 char-
acters. This year, a better sentence detection and number/unit conversion post-processing have been
applied.

CUNI-TRANSFORMER2018 CUNI-Transformer2018, also called CUBBITT, is exactly the same sys-
tem as in WMT2018. It is the Transformer model trained according to Popel and Bojar (2018) plus a
Block Back-translation (Popel et al., 2020).

73



CUNI common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: SubwordTextEncoder of Tensor2Tensor (as in
https://github.com/tensorflow/tensor2tensor)
Vocabulary Size: 32k
Monolingual Training Data in Sentences: see synthetic
Monolingual Training Data in Words: see synthetic
Processing Tools Used: Tokenizer
Toolkit Used: Tensor2Tensor
Features of your model development: Data filtering, Data selection, Block-backtranslation as in
Martin Popel, Marketa Tomkova, Jakub Tomek et al. (2020), Iterative back-translation, Oversam-
pling, Averaging
Features of your model structure: Dropout, Tied source and target word embeddings, Weight tying
(other than word embeddings)
Number of Systems Ensembled/Averaged: 8 checkpoints
Wallclock training time: 8 days (without iterated backtranslation)

CUNI-DOCTRANSFORMER cs-en,
en-cs

True Parallel Training Data Size in Sentence Pairs: 61000000
True Parallel Training Data Size in Words: en=617000000, cs=702000000
Synthetic Parallel Training Data Size in Sentence Pairs: en=76000000, cs=51000000
Synthetic Parallel Training Data Size in Words: en=1296000000, cs=833000000
Batch size: 1800*10 subwords
Document-level training: Overlapping windows: A window is moved over segments, receiving
multiple translations of each of them, with some voting or combination afterwards.
Number of GPUs Used Concurrently: 10 GTX 1080 Ti
Number of contrastive configurations used: 4

CUNI-TRANSFORMER2018 cs-en,
en-cs

True Parallel Training Data Size in Sentence Pairs: 58000000
True Parallel Training Data Size in Words: en=642000000, cs=563000000
Synthetic Parallel Training Data Size in Sentence Pairs: en=47000000, cs=65000000
Synthetic Parallel Training Data Size in Words: en=935000000, cs=927000000
Batch size: 2900*8 subwords
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 8 GTX 1080 Ti
Number of contrastive configurations used: Now only one. In 2018, I trained hundreds of models
on smaller data or less GPUs, as described in Training Tips for the Transformer Model (Popel and
Bojar, 2018).

C.10 DIDI-NLP (no associated paper)
No brief description provided.

C.11 EPHEMERALER

We use Transformer big model and ensembling.

EPHEMERALER common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)

EPHEMERALER en-ja Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)

EPHEMERALER en-zh —

C.12 ETRANSLATION (Oravecz et al., 2021)

eTranslations’s En-De system is an ensemble of 4 big transformers, trained from all available parallel
data (cleaned up and filtered with heuristic rules and with a language model built from the German
NewsCrawl data) and with additional tagged, back-translated data generated from the monolingual news
corpora. The original parallel data is upsampled to a 1:1 ratio. Each transformer model is then tuned on
a 10M top subset of original parallel data scored and ranked by the monolingual news language model
and then fine-tuned further on previous year’s test sets. The models use a 36k SentencePiece vocabulary.
The SentencePiece module as built in the Marian toolkit is used for end-to-end text processing, without
the standard pre- and postprocessing steps of truecasing, or (de)tokenization.

The Fr-De system is an ensemble of 4 big transformers. Three of them are trained on original parallel
(OP) data and back-translated (BT) data in a 1:1 ratio. The 4th big transformer was additionally fine-
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tuned for 7 epochs on 2M of the OP data scored by a domain language model. BT data and data for the
domain language model were selected using topic modelling techniques to tune the model towards the
domain defined in the task.

The En-Cs system is an ensemble of two big transformer models from last year’s submission, trained
on the WMT 2020 data, both original parallel and back-translated. Training on the 2021 data had not
finished until the submission deadline and intermediate models scored worse than the 2020 models.

ETRANSLATION common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Toolkit Used: Marian
Document-level training: No document-level: Our system processes each segment independently.

ETRANSLATION en-de Vocabulary Size: 36000
True Parallel Training Data Size in Sentence Pairs: 32077088
True Parallel Training Data Size in Words: 637753194; 603406453
Synthetic Parallel Training Data Size in Sentence Pairs: 226375233
Synthetic Parallel Training Data Size in Words: 3514437534; 3007895939
Monolingual Training Data in Sentences: BT: 226375233; En LM: 133385694; De LM:
167110102;
Monolingual Training Data in Words: BT: 3514437534; 3007895939 En LM: 2891767899; De
LM: 3012152905
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Batch size: 1500-5000
Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Oversampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Other Features of Your Training: continued training on LM scored subset of OP data
Number of Systems Ensembled/Averaged: 4
Number of GPUs Used Concurrently: 4-8 V100
Wallclock training time: 10 days
Number of contrastive configurations used: 16
Other comments: described in the system paper

ETRANSLATION fr-de Vocabulary Size: 30000
True Parallel Training Data Size in Sentence Pairs: 13640043
True Parallel Training Data Size in Words: 257966051; 228953683
Synthetic Parallel Training Data Size in Sentence Pairs: 14980793
Synthetic Parallel Training Data Size in Words: 241457887; 209714902
Monolingual Training Data in Sentences: de: 11475958
Monolingual Training Data in Words: de: 160803597
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Oversampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 4
Number of GPUs Used Concurrently: 4
Wallclock training time: 5 days
Number of contrastive configurations used: 11

ETRANSLATION en-cs Vocabulary Size: 36000
True Parallel Training Data Size in Sentence Pairs: 45104433
True Parallel Training Data Size in Words: cs: 559485115 en: 637004843
Synthetic Parallel Training Data Size in Sentence Pairs: 88164502
Synthetic Parallel Training Data Size in Words: cs: 1206604906 en: 1450464754
Monolingual Training Data in Sentences: 0
Monolingual Training Data in Words: 0
Processing Tools Used: Language detection (e.g. for data cleanup)
Batch size: 1000
Features of your model development: Data filtering, Back-translation with sampling, Ensembling
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 2
Number of GPUs Used Concurrently: 4
Wallclock training time: 12 days
Number of contrastive configurations used: 4
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C.13 FACEBOOK-AI (Tran et al., 2021)
Facebook AI participated in the unconstrained track for all 14 English-centric directions. To explore
the limit of scaling multilingual translation, we trained two multilingual systems: Any-to-English, and
English-to-Any, and submitted them to all directions. In addition to well-known techniques such as
large scale backtranslation, in-domain finetuning, ensembling, and noisy channel re-ranking, we also
experimented with scaling dense transformer (up to 4.7B parameters), and sparse mixture of experts (up
to 52B parameters)

FACEBOOK-AI common Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)

FACEBOOK-AI cs-en,
de-en,
ha-en,
is-en,
ja-en,
ru-en,
zh-en

Vocabulary Size: 128000
True Parallel Training Data Size in Sentence Pairs: (This includes mined data from CCMatrix
and CCAligned) cs-en 163,005,937 de-en 544,549,887 ha-en 1,176,367 is-en 20,632,971 ja-en
141,399,044 ru-en 276,805,988 zh-en 163,188,501 Total 1,310,758,695
True Parallel Training Data Size in Words: (This includes mined data from CCMatrix and
CCAligned) 2725979073 train.cs_en.cs 2661179726 train.cs_en.en 10546303763 train.de_en.de
9692849751 train.de_en.en 20466571 train.ha_en.ha 18786730 train.ha_en.en 342802801
train.is_en.is 301337746 train.is_en.en 640041697 train.ja_en.ja 1907474016 train.ja_en.en
4896618898 train.ru_en.ru 4887514242 train.ru_en.en 714086693 train.zh_en.zh 2853757236
train.zh_en.en
Synthetic Parallel Training Data Size in Sentence Pairs: (Backtranslation data) cs-en 428,914,158
de-en 394,678,147 ha-en 378,439,788 is-en 428,581,678 ja-en 428,227,231 ru-en 381,863,501
zh-en 432,017,983 Total 2,872,722,486
Monolingual Training Data in Sentences: Similar to backtranslation data ( 430M English sentences)
Processing Tools Used: Language detection (e.g. for data cleanup)
Toolkit Used: fairseq(-py)
Batch size: 1M tokens
Features of your model development: Data filtering, Iterative back-translation, Ensembling,
Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for domain adaptation,
Mixture of Experts
Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Other Features of Your Training: In-domain parallel data mining
Number of Systems Ensembled/Averaged: 3
Number of GPUs Used Concurrently: 128
Wallclock training time: 1 week
Number of contrastive configurations used: 5 different architectures, 3-4 training iterations each

FACEBOOK-AI en-cs,
en-de,
en-ha,
en-is,
en-ja,
en-ru,
en-zh

Vocabulary Size: 128000
True Parallel Training Data Size in Sentence Pairs: (Includes mined data from CCMatrix,
CCAligned) en-cs 163,758,080 en-de 546,657,024 en-ha 995,860 en-is 27,228,288 en-ja
142,843,968 en-ru 277,540,224 en-zh 163,774,144 Total 1,322,797,588
Synthetic Parallel Training Data Size in Sentence Pairs: en-cs 140,172,928 en-de 237,235,904
en-ha 6,719,488 en-is 101,139,008 en-ja 218,456,960 en-ru 163,223,744 en-zh 123,211,776 Total
990,159,808
Monolingual Training Data in Sentences: Same as backtranslation
Processing Tools Used: Language detection (e.g. for data cleanup)
Toolkit Used: fairseq(-py)
Batch size: 1M tokens per batch
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Oversampling, Ensembling, Averaging, Right-to-left reranking, Target-to-source reranking,
Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 2-3
Number of GPUs Used Concurrently: 128
Wallclock training time: 1 week
Number of contrastive configurations used: 20

C.14 FJDMATH (Martinez, 2021)
No brief description provided.
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C.15 GTCOM (Bei and Zong, 2021)
No brief description provided.

C.16 HAPPYNEWYEAR (no associated paper)
No brief description provided.

C.17 HAPPYPOET (no associated paper)
No brief description provided.

C.18 HW-TSC (Wei et al., 2021)
We participate in 7 language pairs including Zh/En, De/En, Ja/En, Ha/En, Is/En, Hi/Bn, and Xh/Zu
and in both directions under the constrained condition. We use the standard Transformer-Big model as
the baseline and obtain the best performance via two variants with larger parameter sizes. We perform
detailed pre-processing and filtering on the provided large-scale bilingual and monolingual datasets.
Several commonly used strategies are used to train our models such as Back Translation, Ensemble
Knowledge Distillation, etc. We also conduct experiments regarding similar language augmentation,
which lead to positive results, although not used in our submission. Our submission obtains competitive
results in the final evaluation.

HW-TSC common Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 8

HW-TSC en-zh Multilingual MT System: No.
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer,
jieba
Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 16.5M
Synthetic Parallel Training Data Size in Sentence Pairs: 316.5M
Monolingual Training Data in Sentences: 300M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup), Jieba word segmentation for Chinese
Toolkit Used: Marian, fairseq(-py), Moses
Batch size: 4096
Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 2Ensembled

HW-TSC zh-en Multilingual MT System: No.
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer,
jieba
Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 16.5M
Synthetic Parallel Training Data Size in Sentence Pairs: 316.5M
Monolingual Training Data in Sentences: 300M
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py), Moses
Batch size: 4096
Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 2ensemble
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HW-TSC en-ha Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 0.6M
Synthetic Parallel Training Data Size in Sentence Pairs: 14.9M
Monolingual Training Data in Sentences: 14.3M
Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)
Toolkit Used: Marian, fairseq(-py)
Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 4ensemble

HW-TSC ha-en Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 0.6M
Synthetic Parallel Training Data Size in Sentence Pairs: 14.9M
Monolingual Training Data in Sentences: 14.3M
Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)
Toolkit Used: Marian, fairseq(-py)
Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 4

HW-TSC en-is Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 4M
Synthetic Parallel Training Data Size in Sentence Pairs: 42M
Monolingual Training Data in Sentences: 38M
Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 4096
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with greedy decoding, Iterative back-translation, Forward translation for synthetic
data, Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 3

HW-TSC is-en Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 4M
Synthetic Parallel Training Data Size in Sentence Pairs: 42M
Monolingual Training Data in Sentences: 38M
Processing Tools Used: Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for
data cleanup)
Toolkit Used: Marian, fairseq(-py)
Features of your model development: Data filtering, Data selection, Back-translation with greedy
decoding, Iterative back-translation, Forward translation for synthetic data, Ensembling, Averaging,
Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 3
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HW-TSC bn-hi Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 3400000
Synthetic Parallel Training Data Size in Sentence Pairs: 46500000
Monolingual Training Data in Sentences: 46500000
Monolingual Training Data in Words: 1899414973
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling
Number of Systems Ensembled/Averaged: 4

HW-TSC hi-bn Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 3400000
Synthetic Parallel Training Data Size in Sentence Pairs: 50000000
Monolingual Training Data in Sentences: 50000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging
Number of Systems Ensembled/Averaged: 4

HW-TSC xh-zu Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 67000
Synthetic Parallel Training Data Size in Sentence Pairs: 12000000
Monolingual Training Data in Sentences: 12000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

HW-TSC zu-xh Multilingual MT System: Yes, the system was trained and used jointly for all the language pairs.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 67000
Synthetic Parallel Training Data Size in Sentence Pairs: 12000000
Synthetic Parallel Training Data Size in Words: 50000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging
Number of Systems Ensembled/Averaged: 4
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HW-TSC en-ja Multilingual MT System: No.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 14000000
Synthetic Parallel Training Data Size in Sentence Pairs: 80000000
Monolingual Training Data in Sentences: 150000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

HW-TSC ja-en Multilingual MT System: No.
Token Unit Type Used: sentencepiece
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 12000000
Synthetic Parallel Training Data Size in Sentence Pairs: 80000000
Monolingual Training Data in Sentences: 150000000
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: 1500
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Oversampling, Ensembling, Averaging, Right-to-left reranking, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

HW-TSC en-de Multilingual MT System: No.
Token Unit Type Used: Moses Tokenizer, spm
Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 79M
Synthetic Parallel Training Data Size in Sentence Pairs: 300M
Monolingual Training Data in Sentences: en 300M,de 300M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py), Moses
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 4 ensembled, 3 averaged.
Wallclock training time: max_token=500000, max_step=50000

HW-TSC de-en Multilingual MT System: No.
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32K
True Parallel Training Data Size in Sentence Pairs: 79M
Synthetic Parallel Training Data Size in Sentence Pairs: 300M
Monolingual Training Data in Sentences: en 300M, de 300M+
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Toolkit Used: Marian, fairseq(-py)
Batch size: max_token=500000
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: ensembled: 4, average: 3
Wallclock training time: step 50000

C.19 ICL (no associated paper)
No brief description provided.

80



C.20 IICT-YVERDON

IICT-Yverdon presents the systems submitted by our team from the Institute of ICT (HEIG-VD / HES-
SO) to the Unsupervised MT and Very Low Resource Supervised MT task. We first study a base-
line system using a Transformer architecture, using the Upper Sorbian (HSB) / German data from the
2020 edition of the task. We quantify the improvements brought by additional techniques such as back-
translation of large German corpora and parent-language initialization using Czech-German data, and
show that each of these is beneficial, and helps to reach scores that are comparable to more sophisticated
systems from the 2020 task. We then present the application of this system to the 2021 task for low-
resource supervised HSB-DE translation, in both directions. Finally, we present a contrastive system for
HSB-DE in both directions, and for unsupervised German to Lower Sorbian (DSB) translation, which
uses multi-task training with various training schedules to improve over the baseline. More specifically,
we present a baseline system using a Transformer architecture, which uses back-translation of large
German corpora and parent-language initialization using Czech-German data. We submit translations
from this system for low-resource supervised HSB-DE, in both directions. We also present a contrastive
system that makes use as well of back-translation and Czech-German initialization, and also multi-task
training, in which we first train Czech-German systems by giving them different denoising tasks, together
with translation, in increasing order of complexity. Afterwards, we first present the child systems with
denoising tasks, and later introduce translation. Finally, we train different models with some changes in
their training setups that we use for ensembling, in order to maximize diversity among the models.

C.21 IIE-MT (no associated paper)
No brief description provided.

C.22 ILLINI (Le et al., 2021)
Illini team presents an end-to-end NMT pipeline for the Japanese↔ English news translation task using
Transformer models and techniques such as politeness and formality tagging, back-translation, model
ensembling, and n-best reranking to improve our translation systems.

C.23 KWAINLP (no associated paper)
No brief description provided.

C.24 LAN-BRIDGE-MT (no associated paper)
No brief description provided.

C.25 LISN (Xu et al., 2021)
LISN’s systems for DE↔FR use Transformer-big model with the “priming" based on a prior retrieval
step, which looks for similar sentences (in source and target) to prime a similar translation. These
techniques aim to perform some unsupervised domain transfer, which is one of the challenge of this task.
Our system only uses the data provided for the task (bilingual and backtranslated monolingual data) and
are thus constrained submissions. They are built using the fairseq toolkit.

LISN de-fr,
fr-de

Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Toolkit Used: fairseq(-py)
Batch size: 4096
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C.26 MACHINE-TRANSLATION (no associated paper)
No brief description provided.

C.27 MANIFOLD (no associated paper)
No brief description provided.

C.28 MIDEIND (Jónsson et al., 2021)
We fine-tuned a sentence-level mBART25 model on the en-is/is-en translation task using a filtered ver-
sion of the ParIce parallel corpus and a back-translated corpus of roughly 30 million sentence pairs
per translation direction. The back-translated corpus was generated via iterative back-translation using
a Transformer-base model and a final iteration using the mBART25 translation model. Miðeind is an
Icelandic startup company focusing on NLP and AI applications for the Icelandic language.

C.29 MISS (Li et al., 2021b)
No brief description provided.

C.30 MOVELIKEAJAGUAR (no associated paper)
No brief description provided.

C.31 MS-EGDC (Hendy et al., 2021)
We develop NMT for low resource language pairs Bengali to/from Hindi, English to/from Hausa and
Xhosa to/from Zulu. We use constrained resources provided by the organizers. The main idea is to train
a multi-lingual model with a multi-task objective using both parallel and monolingual data. This model
is then used to forward and backward translate monolingual and parallel data (the latter is known as
knowledge distillation). The resulting synthetic data is then used to train bilingual MT models for each
language pair. The best multi-lingual and multi-task models are then combined with the best bilingual
model for each pair using a novel transformer-based method.

C.32 NIUTRANS (Zhou et al., 2021)
No brief description provided.

C.33 NJUSC-TSC (no associated paper)
No brief description provided.

C.34 NUCLEAR-TRANS (no associated paper)
No brief description provided.

C.35 NVIDIA-NEMO (Subramanian et al., 2021)
No brief description provided.

C.36 P3AI (Zhao et al., 2021)
No brief description provided.
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C.37 SMU (no associated paper)
No brief description provided.

C.38 TALP-UPC (Escolano et al., 2021)
No brief description provided.

C.39 TRANSSION

This paper describes the submission systems of TRANSSION for WMT21 . We participated in 6 transla-
tion directions including Hindi↔ Bengali, Zulu↔ Xhosa and English↔ Hausa in both directions. Our
systems are based on Google’s Transformer model architecture, into which we integrated the most recent
features from the academic research. We also employed most techniques that have been proven effective
during the past WMT years, such as Multi-Lingual Training, Back Translation, In-domain Finetuning,
Transfer Learning, ensemble and Reranking.

TRANSSION common Multilingual MT System: No.
Token Unit Type Used: Custom Tokenizer, BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 50000
Processing Tools Used: Tokenizer, Shallow Dependency Parser ( UD), Shallow Consituency Parser,
Word Aligner (e.g. fast_align or GIZA++), Language detection (e.g. for data cleanup)
Batch size: 6144
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 5
Number of GPUs Used Concurrently: 1

TRANSSION bn-hi Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...),
Hybrid
Monolingual Training Data in Sentences: 44,035,924
Monolingual Training Data in Words: 329,604,211,372,512,000
Toolkit Used: Custom in Tensorflow, Custom in Keras (whatever is below it)
Features of your model development: Data filtering, Data selection, Back-translation with
sampling, Iterative back-translation, Forward translation for synthetic data, Extra languages used
beyond those listed above (e.g. some form of pivoting or multi-lingual training), Ensembling,
Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings, Residual
adapters
Pre-trained parts of models: Pre-trained word embeddings
Wallclock training time: 12hours
Number of contrastive configurations used: 15

TRANSSION xh-zu,
zu-xh,
bn-hi,
hi-bn,
ha-en,
en-ha

Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Toolkit Used: Custom in Tensorflow
Features of your model development: Data filtering, Data selection, Back-translation with
sampling, Iterative back-translation, Forward translation for synthetic data, Oversampling, Extra
languages used beyond those listed above (e.g. some form of pivoting or multi-lingual training),
Ensembling, Averaging, Right-to-left reranking, Target-to-source reranking, Fine-tuning for
domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Wallclock training time: 12 hours

C.40 TWB

We developed a bidirectional transformer-based system for Hausa-English news translation task. In our
paper we give an overview of the data available including the 15,000 hand-crafted parallel dataset which
was created internally. Our best systems achieved 17.1 and 12.3 BLEU on EN-HA and HA-EN directions
on the task test sets, respectively.
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TWB common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 50,000
True Parallel Training Data Size in Sentence Pairs: 806345
True Parallel Training Data Size in Words: 10697192(en), 11405851(ha)
Toolkit Used: OpenNMT-py
Batch size: 4096 tokens
Features of your model development: Data filtering, Data selection, Back-translation with sam-
pling, Ensembling, Averaging, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: Averaged up to 8 models
Number of GPUs Used Concurrently: 2
Number of contrastive configurations used: 1

TWB en-ha Synthetic Parallel Training Data Size in Sentence Pairs: 567231
Synthetic Parallel Training Data Size in Words: 25495541(ha), 23815542(en)
Monolingual Training Data in Sentences: Only the 567231 sentence dataset that were machine
translated to make synthetic data
Monolingual Training Data in Words: 25495541
Wallclock training time: 24 hours

TWB ha-en Synthetic Parallel Training Data Size in Sentence Pairs: 1,000,000
Synthetic Parallel Training Data Size in Words: 11442297(en), 13188160(ha)
Monolingual Training Data in Sentences: Only the 1,000,000 sentence dataset that were machine
translated to make synthetic data
Monolingual Training Data in Words: 11442297
Wallclock training time: 36 to 48 hours

C.41 UEDIN (Chen et al., 2021; Pal et al., 2021)
UEdin’s bn-hi and hi-bn systems use models trained on constrained parallel data to back-translate all of
the provided monolingual data. New transformer models are then pre-trained on back-translated data, and
fine-tuned on parallel data. A second stage of fine-tuning is done on training data that is in-domain, which
is extracted in a number of ways, including n-gram matching, TF-IDF similarity, and language model
scoring with the validation set. Finally, multiple models fine-tuned in different ways are ensembled to
generate the final translations.

UEdin’s approach to de↔en started with rule-based and dual conditional cross-entropy filtering of the
provided corpora. All models were trained on a mix of parallel and back-translated data, and further
trained on parallel sentences only. Specifically for en→de, we trained the model on additional title-cased
sentences. The models were then fine-tuned on previous WMT test sets. We ensembled 5 models for
en→de and 6 for de→en. During inference, each test instance was split at sentence-level, translated, and
then concatenated.

UEDIN common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece)
Toolkit Used: Marian
Document-level training: No document-level: Our system processes each segment independently.
Number of GPUs Used Concurrently: 4
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UEDIN bn-hi Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 2036669
True Parallel Training Data Size in Words: 24797974
Synthetic Parallel Training Data Size in Sentence Pairs: 248828890
Synthetic Parallel Training Data Size in Words: hi (monolingual, target side): 4368794315 bn
(back-translated, source side): 3287105444
Monolingual Training Data in Sentences: 248828890
Monolingual Training Data in Words: 4368794315
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Other Processing Tools Used: Sentence splitter
Batch size: Dynamic
Features of your model development: Data filtering, Data selection, Ensembling, Fine-tuning for
domain adaptation, Back-translation with beam search
Number of Systems Ensembled/Averaged: 5
Wallclock training time: 40 ( 6 * 4 for model ensemble for back-translation + the rest for the final
model)
Number of contrastive configurations used: 30

UEDIN hi-bn Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 2036669
True Parallel Training Data Size in Words: 24797974
Synthetic Parallel Training Data Size in Sentence Pairs: 59736357
Synthetic Parallel Training Data Size in Words: bn (monolingual, target side): 873200873 hi
(back-translated, source side): 1044281945
Monolingual Training Data in Sentences: 59736357
Monolingual Training Data in Words: 873200873
Processing Tools Used: Tokenizer, Language detection (e.g. for data cleanup)
Other Processing Tools Used: Sentence splitter
Batch size: Dynamic
Features of your model development: Data filtering, Data selection, Forward translation for
synthetic data, Ensembling, Fine-tuning for domain adaptation, Back-translation with beam search
Number of Systems Ensembled/Averaged: 8
Wallclock training time: 50 ( 8 * 4 for model ensemble for back-translation + the rest for the final
model)
Number of contrastive configurations used: 30

UEDIN de-en Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 66530788
Synthetic Parallel Training Data Size in Sentence Pairs: 91033109
Processing Tools Used: Language detection (e.g. for data cleanup)
Other Processing Tools Used: fastText for language identification
Features of your model development: Data filtering, Back-translation with greedy decoding,
Back-translation with sampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Pre-trained parts of models: Did not use
Number of Systems Ensembled/Averaged: 6
Number of contrastive configurations used: N/A

UEDIN en-de Vocabulary Size: 32k
True Parallel Training Data Size in Sentence Pairs: 66530788
Synthetic Parallel Training Data Size in Sentence Pairs: 146216106
Processing Tools Used: Language detection (e.g. for data cleanup)
Other Processing Tools Used: fastText for language identification
Features of your model development: Data filtering, Back-translation with greedy decoding,
Back-translation with sampling, Ensembling, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Pre-trained parts of models: did not use
Number of Systems Ensembled/Averaged: 5
Wallclock training time: 274 hours
Number of contrastive configurations used: N/A

C.42 UF (no associated paper)
No brief description provided.

C.43 VOLCTRANS (Qian et al., 2021)

VOLCTRANS-AT VolcTrans-AT’s submission is described in the respective paper (Qian et al., 2021).
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VOLCTRANS-GLAT VolcTrans-GLAT’s submission is a non-autoregressive model equipped with our
recent technique of “glancing transformer" (Qian et al., 2020, to appear in ACL 2021).

VOLCTRANS common Multilingual MT System: No.
True Parallel Training Data Size in Sentence Pairs: 75M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Document-level training: No document-level: Our system processes each segment independently.

VOLCTRANS-AT de-en Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 12000
Synthetic Parallel Training Data Size in Sentence Pairs: 110M
Monolingual Training Data in Sentences: 0
Other Processing Tools Used: n/a
Toolkit Used: fairseq(-py), Custom in Pytorch, Custom in Keras (whatever is below it), Moses
Batch size: 125k-256k
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Forward translation for synthetic data, Ensembling, Fine-tuning for
domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 9
Number of GPUs Used Concurrently: 16
Wallclock training time: 2 days
Other comments: 3

VOLCTRANS-GLAT de-en Basic System Classification: Non-Autoregressive Transformer
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32000
Synthetic Parallel Training Data Size in Sentence Pairs: 100M
Monolingual Training Data in Sentences: 0
Toolkit Used: fairseq(-py), Custom in Pytorch, Moses
Batch size: 256k
Features of your model development: Data filtering, Data selection, Knowledge distillation, Itera-
tive back-translation, Forward translation for synthetic data, Ensembling, Right-to-left reranking
Features of your model structure: Dropout
Number of Systems Ensembled/Averaged: 3
Number of GPUs Used Concurrently: 32
Wallclock training time: 3 days
Number of contrastive configurations used: 6

VOLCTRANS-AT en-de Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt), Moses Tokenizer
Vocabulary Size: 12000
Synthetic Parallel Training Data Size in Sentence Pairs: 110M
Monolingual Training Data in Words: 0
Toolkit Used: fairseq(-py), Custom in Pytorch, Custom in Keras (whatever is below it), Moses
Batch size: 125k-256k
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Forward translation for synthetic data, Ensembling
Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 3
Number of GPUs Used Concurrently: 16
Wallclock training time: 3 days
Number of contrastive configurations used: 3

VOLCTRANS-GLAT en-de Basic System Classification: Non-Autoregressive Transformer
Token Unit Type Used: Unigram (as in https://github.com/google/sentencepiece), Moses Tokenizer
Vocabulary Size: 32000
Synthetic Parallel Training Data Size in Sentence Pairs: 100M
Monolingual Training Data in Sentences: 0
Toolkit Used: fairseq(-py), Custom in Pytorch
Batch size: 256k
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Iterative back-translation, Fine-tuning for domain adaptation
Features of your model structure: Dropout
Number of GPUs Used Concurrently: 32
Wallclock training time: 3 days
Number of contrastive configurations used: 6
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C.44 WATERMELON

We only truly participated de-en direction using constraint settings. For other directions, we submit
results from online translators (mainly from DeepL) just in order to see the performance.

WATERMELON de-en Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 32000
True Parallel Training Data Size in Sentence Pairs: 45M
Synthetic Parallel Training Data Size in Sentence Pairs: 65M
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Other Processing Tools Used: Truecaser
Toolkit Used: fairseq(-py)
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with greedy decoding, Back-translation with sampling, Iterative back-translation,
Forward translation for synthetic data, Ensembling, Averaging, Right-to-left reranking, Target-to-
source reranking, Fine-tuning for domain adaptation
Features of your model structure: Dropout, Tied source and target word embeddings
Number of Systems Ensembled/Averaged: 15

C.45 WECHAT-AI (Zeng et al., 2021)
We have participated in the WMT 2021 shared news translation task on English-to-Chinese, English-
to-Japanese, Japanese-to-English and English-to-German. Our systems are based on the Transformer
(Vaswani et al., 2017) with some effective variants, such as mixed-aan model, dual-attention model,
weighted-aan model, talking-heads attention model, etc. In our experiments, we employ data selection,
several synthetic data generation approaches, advanced finetuning approaches and self-bleu based model
ensemble. Our constrained systems achieve 36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU scores on
English-to-Chinese, English-to-Japanese, Japanese-to-English and English-to-German, respectively. The
BLEU scores of English-to-Chinese, English-to-Japanese and Japanese-to-English are the highest among
all submissions, and that of English-to-German ranks the second. Additionally, one of our submissions
on English-to-Chinese also achieves the highest chrF score 0.344.

WECHAT-AI common Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: BPE (as in https://github.com/rsennrich/subword-nmt)
Processing Tools Used: Tokenizer, Word Aligner (e.g. fast_align or GIZA++), Language detection
(e.g. for data cleanup)
Batch size: 65536 tokens
Features of your model structure: Dropout
Document-level training: No document-level: Our system processes each segment independently.

WECHAT-AI en-de Toolkit Used: fairseq(-py)
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Forward translation for synthetic data, Ensembling, Fine-tuning
for domain adaptation
Number of Systems Ensembled/Averaged: 6

WECHAT-AI en-ja Vocabulary Size: en: 34981, ja: 48519
True Parallel Training Data Size in Sentence Pairs: 12339352
True Parallel Training Data Size in Words: en: 310739662, ja: 379286579
Toolkit Used: OpenNMT-py
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Ensembling, Fine-tuning for domain
adaptation
Number of Systems Ensembled/Averaged: 8
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WECHAT-AI ja-en Vocabulary Size: en: 34981, ja: 48519
True Parallel Training Data Size in Sentence Pairs: 12339352
True Parallel Training Data Size in Words: en: 310739662, ja: 310739662
Toolkit Used: OpenNMT-py
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Forward translation for synthetic data, Ensembling, Fine-tuning
for domain adaptation
Number of Systems Ensembled/Averaged: 15

WECHAT-AI en-zh Vocabulary Size: en: 38038, zh: 47038
True Parallel Training Data Size in Sentence Pairs: 31076375
True Parallel Training Data Size in Words: en: 784141085, zh: 749465141
Toolkit Used: fairseq(-py)
Features of your model development: Data filtering, Data selection, Knowledge distillation,
Back-translation with sampling, Iterative back-translation, Forward translation for synthetic data,
Ensembling, Fine-tuning for domain adaptation
Number of Systems Ensembled/Averaged: 4

C.46 WINDFALL (no associated paper)
No brief description provided.

C.47 XMU (no associated paper)
No brief description provided.

C.48 YYDS (no associated paper)
No brief description provided.

C.49 ZENGHUIMT (Zeng, 2021)
No brief description provided.

ZENGHUIMT en-zh,
zh-en

Multilingual MT System: No.
Basic System Classification: Seq2seq Transformer Style [Vaswani+2017] (self-attention, ...)
Token Unit Type Used: Custom Tokenizer, BPE (as in https://github.com/rsennrich/subword-nmt)
Vocabulary Size: 45467
True Parallel Training Data Size in Sentence Pairs: 5600583
True Parallel Training Data Size in Words: 88573016
Synthetic Parallel Training Data Size in Sentence Pairs: 23428568
Monolingual Training Data in Sentences: 23428568
Toolkit Used: THUMT
Batch size: 15000
Features of your model development: Data filtering, Data selection, Iterative back-translation,
Ensembling
Features of your model structure: Dropout, Tied source and target word embeddings
Document-level training: No document-level: Our system processes each segment independently.
Number of Systems Ensembled/Averaged: 4
Number of GPUs Used Concurrently: 1
Wallclock training time: three days

C.50 ZMT (no associated paper)
No brief description provided.
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Abstract

We present the results of the first task on Large-
Scale Multilingual Machine Translation. The
task consists on the many-to-many evaluation
of a single model across a variety of source
and target languages. This year, the task con-
sisted on three different settings: (i) SMALL-
TASK1 (Central/South-Eastern European Lan-
guages), (ii) the SMALL-TASK2 (South East
Asian Languages), and (iii) FULL-TASK (all
101 x 100 language pairs). All the tasks
used the FLORES-101 datasetas the evaluation
benchmark. To ensure the longevity of the
dataset, the test sets were not publicly released
and the models were evaluated in a controlled
environment on Dynabench.There were a total
of 10 participating teams for the tasks, with a
total of 151 intermediate model submissions
and 13 final models. This year’s result show a
significant improvement over the known base-
lines with +17.8 BLEU for SMALL-TASK2,
+10.6 for FULL-TASK and +3.6 for SMALL-
TASK1.

1 Introduction

Despite recent advances in translation quality for
a handful of languages and domains, MT systems
still perform poorly on low-resource languages.
Yet, most of the world’s population speak low-
resource languages and would benefit from im-
provements in translation quality on their native
languages. As a result, the field has been shift-
ing focus towards the evaluation of MT in low-
resource situations (Thu et al., 2016; Guzmán et al.,
2019; Barrault et al., 2020; ∀ et al., 2020; Ebrahimi
et al., 2021; Kuwanto et al., 2021). However, these
efforts have had poor coverage of low-resource
languages which limits our understanding on gen-
eralization.More importantly, there has been little
focus on the evaluation of true many-to-many mul-
tilingual models, which hampers the progress of
the field despite all the recent excitement on this
research direction (Fan et al., 2020).

The recent release of the FLORES-101 (Goyal
et al., 2021) benchmark made possible to evaluate
massively multilingual systems in a consistent way.
The benchmark consists of 3001 sentences sam-
pled from English Wikipedia and professionally
translated in 101 languages. This poses a unique
opportunity to understand translation across many
languages with varied typology, resources, etc.

In this first multilingual large-scale shared task,
we use the FLORES-101 benchmark to evaluate
the progress on massively multilingual translation,
where the evaluation is performed in a non-English-
centric way. We propose 3 different tasks: two
small tasks involving translation between 6 lan-
guages each (30 pairs), and a large task involving
the translation across 101 languages (10K pairs).
In the remainder of this paper, we describe the task
setup, the participants, and the official results for
the task. We also analyze the results to understand
better the languages for which progress has been
attained, and those where a gap in quality is still
observed. Finally, we propose future directions for
other tasks in the future.

2 Shared tasks

In this section, we briefly describe each of the tasks,
the data, the baselines and metric used for evalua-
tion.

2.1 Languages

The languages and statistics for the languages in
the small tasks can be observed in Table 1, while
the statistics for the complete set of languages in
the full task can be obtained in Goyal et al. (2021).

SMALL-TASK1 - This task consisted of English
and Central and South-Eastern European Lan-
guages: Croatian, Estonian, Hungarian, Macedo-
nian, Serbian. These languages were chosen by
their low availability of resources, geographical
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ISO 639-3 Language Family Subgrouping Script Bitext Mono
w/ En Data

SMALL-TASK1
hrv Croatian Indo-European Balto-Slavic Latin 42.2K 144M
est Estonian Uralic Uralic Latin 4.82M 46M
hun Hungarian Uralic Uralic Latin 16.3M 385M
mkd Macedonian Indo-European Balto-Slavic Cyrillic 1.13M 28.8M
srp Serbian Indo-European Balto-Slavic Cyrillic 7.01M 35.7M

SMALL-TASK2
ind Indonesian Austronesian Austronesian Latin 39.1M 1.05B
jav Javanese Austronesian Austronesian Latin 1.49M 24.4M
msa Malay Austronesian Austronesian Latin 968K 77.5M
tam Tamil Dravidian Dravidian Tamil 992K 68.2M
tgl Filipino (Tagalog) Austronesian Austronesian Latin 70.6K 107M

Table 1: Languages in each of the small tasks. We include the ISO 639-3 code, the language family, and script.
We also include the amount of resources available in OPUS as reported by Goyal et al. (2021)

.

proximity, language family diversity (Balto-Slavic,
Uralic and Germanic), and different scripts.

SMALL-TASK2 This task consisted of English
and South-Eastern Asian languages: Javanese, In-
donesian, Malay, Filipino (Tagalog) and Tamil.
These were chosen by their low-resource nature,
geographical proximity and relatedness to a high-
resource language (Indonesian).

FULL-TASK This task consisted of all 101 lan-
guages in the FLORES-101 benchmark, including
English.

2.2 The evaluation data

The original sentences in FLORES-101 were
sourced in English, from a broad group of top-
ics that could be of general interest regardless of
the native language of the reader. The sentences
were sampled equally from Wikinews, Wikijunior
and WikiVoyage by selecting an article randomly
from each domain, and then selecting 3 to 5 con-
tiguous sentences (not considering segments with
very short or malformed sentences).

All source sentences were sent to a Language
Service Provider (LSP) for translation into 101 lan-
guages. After that, the data was sent to different
translators within the LSP for editing and quality
assessment which then moved on to an automated
quality control setup to ensure that the translation
quality score was at least 90 on a scale of 0-100.

2.3 The baselines

Fan et al. (2021) worked on creating a Many-to-
Many translation model, but it did not have the
full coverage of languages in FLORES-101. Hence,

we used the extended model trained in Goyal et al.
(2021) which was supplemented with OPUS data
and extended to 124 total languages. We trained
two different sizes of models with 615M and 175M
parameters.

2.4 Evaluation Metric

Automatically evaluating translation quality us-
ing BLEU is suboptimal as it relies on n-gram
overlap which is heavily dependent on the par-
ticular tokenization used. The challenge of mak-
ing BLEU comparable by using equivalent tok-
enization schemes has been partially addressed by
sacrebleu (Post, 2018). Ideally, the automatic
evaluation process should be robust, simple and
can be applied to any language without the need to
specify any particular tokenizer, as this will make
it easier for researchers to compare against each
other.

Towards this goal, we trained a SentencePiece
(SPM) tokenizer (Kudo and Richardson, 2018)
with 256K tokens using the CC100 monolingual
data1 (Conneau et al., 2020; Wenzek et al., 2020)
from all the FLORES-101 languages. SPM is a sys-
tem that learns subword units based on untokenized
training data, providing a universal tokenizer that
can operate on any language. One challenge is that
the amount of monolingual data available for dif-
ferent languages is not the same — an effect that is
extreme when considering low-resource languages.
Languages with small quantities of data may not
have the same level of coverage in subword units,
or an insufficient quantity of sentences to repre-
sent a diverse enough set of content. To address

1http://data.statmt.org/cc-100/
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this, we train our SPM model with temperature up-
sampling similar to Conneau et al. (2020), so that
low-resource languages are represented. Finally,
to compute BLEU, we apply SPM tokenization to
the system output and the reference, and then cal-
culate BLEU in the space of sentence-pieces. Due
to the difference in tokenization, spBLEU scores
are not strictly comparable across different target
languages. However, to compare different models,
here we use averages across the same set of target
languages assuming that difference in tokenizations
do not favor any specific model. In Goyal et al.
(2021) this metric is described as spBLEU, but in
this paper we use BLEU and spBLEU interchange-
ably.

3 Participants

In this section, we list each of the task participants
and briefly describe each of their submissions. For
reproducibility, we link to each of the model sub-
mitted, available in the Dynabench platform.

eBay (Liao et al., 2021) This submissions com-
pares different kind of back-translation settings to
improve the baseline model. They compare dif-
ferent generation algorithms: top-5 beam search;
regular decoding without beam search; regular de-
coding with sampling from top-10 words. Contrary
to Edunov et al. (2018), they find that top-10 de-
coding works best. They also consider how much
English data should be used for the back transla-
tion (since it’s more abundant than for the other
languages). The models are trained from scratch
using iterative back translation. Models: model
440 (SMALL-TASK1), model 441 (SMALL-TASK2),
model 425 (FULL-TASK)

Huawei-TSC (Yu et al., 2021) The Huawei-
TSC’s team use a deep transformer encoder-
decoder architecture (Sun et al., 2019), and fo-
cus their efforts on a combination of heuristics
for data preprocessing, synthetic data generation,
fine-tuning language-specific layers, and ensemble
knowledge distillation. Compared to their base-
line transformer on devtest, they get +2.8 BLEU
from the synthetic data generation, +0.5 BLEU
from layer fine tuning, and +0.8 BLEU from the
ensemble knowledge distillation. Models: model
439 (SMALL-TASK2)

LMU (Lai et al., 2021) The LMU team’s sub-
mission was based on a multilingual model, which
were improved based on two techniques: (i) Tagged

back-translation originating from bilingual models
(+1.6 above back-translation coming from a multi-
lingual)2; (ii) data selection w.r.t to the dev/devtest
corpora following (Axelrod et al., 2011). Models:
model 444 (SMALL-TASK1)

Maastricht University (Liu and Niehues, 2021)
This submission trained a single multilingual Ma-
chine translation system by training on all 30 direc-
tions of track 2 languages. They mainly adapted
the released pretrained M2M-100 model. They also
did some data filtering to create a cleaner version of
training corpus. Also they created synthetic pairs
by taking parallel source to pivot language transla-
tion dataset and automatically translating pivot lan-
guage sentences into target language, which gives
0.5 BLEU score improvement. They also tried
similarity regularizer and language specific adapter
weight which give 0.2 BLEU score gains overall.
Models: model 445 (SMALL-TASK2)

Microsoft (Yang et al., 2021) The Microsoft
team participated in all three tasks. The submission
is based on the newly-released pretrained model
DeltaLM (Ma et al., 2021a). The final submis-
sion to the shared task uses a mixture of direct and
pivoted translation to improve the performance of
individual directions, depending on whether the
direct or pivoted models perform best. The mix-
ture results in an improvement of +3.63 BLEU for
the FULL-TASK, over their baseline architecture
(24/12), but smaller improvements for the SMALL-
TASK2. In addition, the models use progressive
learning, which starts with a smaller architecture,
noisier training data, and later changes to improve
performance. The model also uses a combination
of parallel, back-translated and noisy-parallel data
(obtained for langs. X and Y from back-translating
into X and Y) Models: model 483 (FULL-TASK)
model 448 (SMALL-TASK1) model 457 (SMALL-
TASK2)

MMTAfrica (Emezue and Dossou, 2021) This
submission creates a non-English-centric multilin-
gual translation system focusing on six African lan-
guages (Igbo, Kinyarwanda, Fon, Swahili, Xhosa,
Yoruba) and English and French. The system starts
from mT5 (Xue et al., 2021) and finetunes it on
parallel data with additional monolingual data used

2Authors hypothesized that the difference in performance
could be due to the implicit self-training coming from a multi-
lingual model, as opposed to the diversity introduced by a
bilingual model.
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for online backtranslation (Sennrich et al., 2016).
To cover Fon and Kinyarwanda, which are not in-
cluded in FLORES-101, a small new test set was
created. Compared to the small baseline models
provided in Goyal et al. (2021), significant improve-
ments were obtained.

Samsung RPH - Konvergen AI (Sutawika and
Cruz, 2021) The submission of the Samsung Re-
search Philippines/Kovergen AI’s team focuses on
the languages in SMALL-TASK2, in particular on
data preprocessing. For large-scale multilingual
models, the importance of preprocessing has risen
as researchers focus on using web crawls or nois-
ily aligned data to train translation models. In this
submission, various different preprocessing tech-
niques are applied while holding the model and
architecture fixed. The authors have gains of more
than 1 BLEU point from improving preprocessing.
Models: model 443 (SMALL-TASK2)

TenTrans (Xie et al., 2021) The submission ex-
plores several techniques to improve performance.
It focuses on two systems: TenTrans and FLO-
RES101, although the second one is favored in
later experimentation. The authors achieve large
improvements in performance by using a the pre-
trained M2M124 FLORES101 model. Main ben-
efit comes from in-domain knowledge adaptation
and fine-tuning. The authors use a domain classifier
based on BERT. Then they use gradual fine-tuning
to gradually removing the least-likely in-domain
sentence pairs at the later stages of training. They
also explore other techniques, including model av-
eraging that help to improve the performance of
their system. Models: model 460 (SMALL-TASK2)

TelU-KU (Budiwati et al., 2021) The team from
TelU-KU participated in SMALL-TASK2. Their ap-
proach explores an interesting alternative of im-
proving NMT performance via hyper-parameter
optimization (most promising for low resource lan-
guages). Although simple, this approach effec-
tively provides improvements by +1.08 BLEU on
top of the small baseline and opens up a promising
direction for hyper-parameter optimization. Mod-
els: model 465 (SMALL-TASK2)

UMD (Bandyopadhyay et al., 2021) This sys-
tem build upon the baseline M2M-124 model (Fan
et al., 2020). It includes two improvements: (i) fine-
tuning over MultiCCAligned; (ii) it uses ReLUs,
which improve +0.8 BLEU over GELUs. In ad-

dition, the final system is the result of an exten-
sive hyper-parameter optimization. Interestingly,
the authors find that using the bible for finetuning
improves performance over the baseline model de-
spite its small size (only about 0.5 BLEU behind
MultiCCAligned). Models: model 304 (SMALL-
TASK2)

4 Evaluation Environment

All models were evaluated within the Dynaboard
evaluation-as-a-service framework (Ma et al.,
2021b) that is a part of the Dynabench plat-
form (Kiela et al., 2021). This was done to ensure
that the FLORES test set remains hidden while we
evaluate many-to-many translation. Moreover, the
testing conditions were constrained to a p2.xlarge
AWS instance, which has one NVIDIA K80 GPU.

All model submissions had to be wrapped in a
torchserve3 handler and were required to follow
a fixed input/output specification using Dynalab4.
Submitting a system to the task required writing
some wrapper code, and often testing different con-
figurations (e.g. batch size), to ensure that the
model was able to run under the constraints.

Given the additional work needed to run the eval-
uation, participants were encouraged to test the
platform and to submit models early on. To avoid
fine-tuning on the devtest set, we established a sub-
mission cap of one model per day.

In total, we had 81 distinct model submissions
for the small task2 (South-East Asian Languages),
57 distinct submissions to the small task1 (Central
/ South-East European Languages), and 13 model
submissions to the full task. During the evaluation
period, participants were requested to mark a model
as their final submission. In the end, we had 10
final submissions to the small task2, 4 to the small
task 1 and 3 to the full task.

In Figure 1 we observe the total number of sub-
missions per day. We can see that the total number
of submissions per day remained low (less than
5) until August, where the number of submissions
reached 16 per day.

5 Results

Present the analysis of the results for each of the
tasks. Furthermore, we analyze the progress made
for each task, that is, how much improvement has

3https://pytorch.org/serve
4https://github.com/facebookresearch/dynalab
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Figure 1: Submissions to the shared task through Dynabench per day. As expected, we see a rise in the number of
submissions towards the end of the evaluation period.

there been between the baselines and the best mod-
els. Lastly, we analyze the difference between the
models for the full task and each of the smaller
tasks.

5.1 Main Results

In Table 2 we observe the final results for each of
the shared tasks. From the results we observe that
the DeltaLM model from the Microsoft team per-
forms best by a large margin on the SMALL-TASK1
(+2.6 BLEU) and FULL-TASK (+9.1 BLEU), but
the margin is smaller for the SMALL-TASK2 (0.6
BLEU). Below, analyze each task’s results indepen-
dently.

BLEU

SMALL-TASK1 (CSE European langs)
Microsoft 37.59
eBay 34.96
LMU 31.86
baseline M2M-615 28.23
baseline M2M-175 21.33

SMALL-TASK2 (SE Asian langs)
Microsoft 33.89
eBay 33.34
TenTrans 28.89
Maastricht University 28.64
Huawei-TSC 28.40
Samsung RPH/ Konvergen AI 22.97
baseline M2M-615 16.11
UMD 15.72
TelU-KU 13.19
baseline M2M-175 12.30

FULL-TASK (all langs)
Microsoft 16.63
eBay 7.55
baseline M2M-175 6.05

Table 2: Official results for the three shared tasks in the
large-scale multilingual machine translation task

SMALL-TASK1 In the Central/South-East Euro-
pean languages we observed that the model pre-
trained with DeltaLM performed best, followed by
eBay’s model by a margin of 2.6 BLEU. In this task
we observe that the progress between the M2M-615
baseline and the next best system of 3.6 BLEU.

SMALL-TASK2 In the South-East Asian lan-
guages task, there were many more submissions
than in the other tasks. We see a smaller gap be-
tween the first and second models. These two mod-
els are very different, one using a large pre-trained
language model, while the other one trains from
scratch and uses iterative back translation. There
is also a second cluster formed by the submission
of the next three models, with a gap less than 0.5
BLEU among them. In this cluster, two models
are based on the pre-trained M2M model while
the third one is trained from scratch. Six out of
eight participants perform better than the M2M-
615 baseline, while all participants perform better
than the M2M-175 baseline. The gap between the
best system and the M2M-615 baseline is of 17.8
BLEU.

FULL-TASK In the full task we had fewer submis-
sions, possibly due to the difficulty and resources
to train an evaluate such models. Here the gap
between the best and second-best models is signifi-
cant, around 9 BLEU. However, note that the gap
between the best systems and the baseline is much
smaller (∼10.6 BLEU), denoting how much harder
is translating more languages with similarly sized
models.
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5.2 Analysis of the progress on quality

One interesting aspect that we can analyze is how
much progress has there been since the release of
M2M-100 (Fan et al., 2020), and its subsequent
adaptation for FLORES101, M2M-124. Here, we
break down the improvements by language pairs to
understand better the changes in performance.

Note that looking at spm-BLEU numbers across
target languages can be deceiving. This is due to
the different spm vocabularies that are used for
each target language. However, for the sake of sim-
plicity in the following analyses we assume that:
(i) relative improvements (deltas) are comparable
across language pairs, (ii) averages of relative im-
provements from two different source languages
(say English and Hausa) into the remaining 101 lan-
guages are roughly comparable, even though the
average for Hausa on the source doesn’t contain
on the target Hausa and contains English, and the
average for English on the source doesn’t contain
English on the target but contains Hausa.

5.2.1 Progress on SMALL-TASK1
SMALL-TASK1 is constrained and encompasses
Central and South-East European Languages. In
Table 3 we see that the top performing pairs (most
progress) are into and out of English, while the
worst performing ones include Croatian and Mace-
donian. The gap between the best and the worst
performing pairs is of 13 BLEU, yet on average,
translation across language pairs improved 11.3
BLEU.

Source Target ∆BLEU

Best 5
English Serbian 19.08
Serbian English 15.58
Macedonian English 14.81
Estonian English 14.17
Hungarian English 13.37

Worst 5
Hungarian Croatian 9.05
Macedonian Croatian 8.09
Croatian Macedonian 6.96
Serbian Macedonian 6.49
Serbian Croatian 6.13

Average: 11.32

Table 3: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK1

In Table 4 we present the average progress for
languages in the source or target, and we observe
the following: there was more progress in translat-

Source ∆BLEU Target ∆BLEU

English 14.20 English 13.97
Macedonian 11.65 Serbian 13.58
Estonian 11.43 Hungarian 10.96
Hungarian 11.22 Estonian 10.91
Serbian 9.84 Macedonian 9.47
Croatian 9.58 Croatian 9.02

Table 4: Average progress for each of the languages in
SMALL-TASK1

ing from English than any other language. How-
ever, the gap between the best and worst is less
than 5 BLEU. When looking at the performance
when translating into each of the task languages,
we see a very similar tendency: English tops the
list, Croatian is at the bottom, and the gap between
best performing and worst performing languages is
less than 5 BLEU.

5.3 Progress on SMALL-TASK2

For SMALL-TASK2, there was a significant
progress on languages like Tamil (tam) and Tagalog
(tgl). In Table 5 we see a progress of 30+ BLEU
for translation between Tamil <> English. This
is encouraging, as the baseline model had issues
translating from/into Tamil. It is also encouraging
to see that even for the translation between Malay
<> Indonesian (which was strong to begin with),
we see more than 10+ BLEU improvement. On
average, we see an improvement of 21.8 across
all directions. It’s important to note the fact that
all submissions for this task were constrained, so
these improvements come from better modeling
and training techniques.

Another aspect to note comes from Table 6,
where we see that the language with most progress
is Tamil, followed by English and Tagalog. On the
other hand, in this case we see more disparity on
the progress between the languages with most and
least progress. For instance, it is harder to translate
into Javanese, which only improves 14.7 BLEU on
average.

5.3.1 Progres on FULL-TASK

In Table 7 we present the deltas between the best
scores in the competition for each language pair,
and the baseline. We observe that there are signifi-
cant improvements for certain languages, particu-
larly: Welsh (cym), Irish (gle), Maltese (mlt) and
their pairings with English. These are languages for
which the original M2M model was doing poorly,
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Source Target ∆BLEU

Best 5
English Tamil 32.63
English Tagalog 31.04
Tagalog English 30.16
Tamil English 30.00
Indonesian Tamil 28.45

Worst 5
Tagalog Javanese 14.67
Malay Javanese 12.40
Indonesian Malay 11.59
Indonesian Javanese 11.05
Malay Indonesian 10.45

Average: 21.75

Table 5: Progress in quality for the best and worst lan-
guage pairs in SMALL-TASK2

Source ∆BLEU Target ∆BLEU

Tamil 24.35 Tamil 27.29
English 24.30 Tagalog 25.29
Tagalog 23.19 English 24.68
Javanese 20.68 Malay 19.72
Indonesian 19.13 Indonesian 18.81
Malay 18.88 Malay 14.74

Table 6: Average progress for each of the languages in
SMALL-TASK2

yet the DeltaLM model is doing much better 5. In
fact, as seen in Fig. 2, these language pairs are
an exception, and most language pairs fall around
the 11 BLEU improvement range. The average
improvement across language pairs is 10.6 BLEU.
However, there are several language pairs for which
there was no progress at all. In Fig. 2, close to 10%
(∼1K pairs) have less than 5 BLEU improvement.

5Since this is an unconstrained submission, it is hard to
know what data went into the models. However, we hypoth-
esize that the improvement is likely due to the amount of
training data available for DeltaLM. As pointed out in Yang
et al. (2021) their model contains about 300K sentences for
Maltese (mt), 1.5M sentences for Irish (ga), and 3M sentences
for Welsh (cy)

Source Target ∆BLEU

Best 5
English Welsh 46.41
Irish English 43.55
English Irish 43.10
Maltese Welsh 42.88
Irish Maltese 41.83

Average: 10.60

Table 7: Progress in quality for the best and worst lan-
guage pairs in FULL-TASK. Note that we exclude the
worst performing pairs, which made no progress at all.
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Figure 2: Distribution of improvements in BLEU for
different language pairs in the full task

To facilitate the analysis of the progress across
languages, in Fig. 3 we present the improvements
by language groupings. We see big improvements
coming from Other Indo-European (influenced by
Irish, Welsh), Dravidian (influenced by Tamil, Tel-
ugu), Austronesian (influenced by Tagalog). How-
ever we note that there is very little progress for
African Languages as represented by the Bantu and
Nilotic subgroups. Another interesting finding is
that progress trends to be lower when translating
into harder languages.

In summary, there is large progress for a few
languages, but sadly, there is little progress made
for very low-resource languages, particularly those
unrelated to other major languages.

5.4 Moderately Multilingual vs. Massively
Multilingual

A natural question that arises is: what is the gap that
remains between what we’re calling moderately
multilingual models (MoM), i.e models handle just
a few languages and a couple dozen pairs; vs. the
massively multilingual models (M2M) that handle
hundreds of languages and tens of thousand pairs?

To analyze this aspect, we compare the best mod-
els for the full task, and each of the small tasks.

5.4.1 SMALL-TASK1 vs. FULL-TASK

In Figure 4 we present the scores of the best system
for task1 (MoM) vs. the best system for the full task
(M2M). Here we observe that there is a consistent
gap of about 4.7 BLEU between the MoM and
the M2M models when averaging across source
languages. We can observe on the distribution of
deltas of performance that drops in performance
are similarly distributed across languages. This
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Figure 3: Average BLEU improvements per languages
in the source and target language families

suggests that the curse of multilinguality (Conneau
et al., 2020), i.e. the loss in performance by adding
more languages into to a model with fixed capacity,
affects equally the encoding of different languages
to a rate of about 0.05 BLEU per language added to
the model. This is encouraging, as it suggests that
encoding is robust to the addition of new languages.

On the other hand, when we look at the target
side the picture is quite different. Particularly, we
observe more variation in performance, ranging
from -2.7 BLEU for English to -6.8 BLEU for Ser-
bian. We hypothesize that these differences could
be due to a combination of factors: (i) amount of
supervision (which would explain why English per-
formance doesn’t drop as much), (ii) additional
supervision from similar languages, (iii) morpho-
logical richness (which would explain why Hungar-
ian and Estonian are more affected), and (iv) script
usage (which would explain why Serbian is more
affected than Croatian). However, proving these
hypotheses is beyond the scope of this paper.

5.4.2 SMALL-TASK2 vs. FULL-TASK

In Figure 5 we present the scores of the best system
for task2 (MoM) vs. the best system for the full
task (M2M). Here we see again that the model
with more parameters per language is still ahead by

10 5 0
delta in spBLEU by source language

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035

de
ns

ity

src
eng
est
hrv
hun
mkd
srp

eng est hrv hun mkd srp
Source language

0

10

20

30

40

Be
st

 m
od

el
 sp

BL
EU

41.3
36.2 36.7 35.0

37.5 38.736.8
31.3 32.4 30.1

32.7 33.8

Shared Task
small1
full

10 5 0
delta in spBLEU by target language

0.00

0.02

0.04

0.06

0.08

0.10

de
ns

ity

trg
eng
est
hrv
hun
mkd
srp

eng est hrv hun mkd srp
Target language

0

10

20

30

40

50

Be
st

 m
od

el
 sp

BL
EU

45.2

34.1 35.0 33.2
38.9 39.2

42.4

28.5
31.7

27.8
34.3 32.4

Shared Task
small1
full

Figure 4: Comparison of average performances of the
best systems in the FULL-TASK and SMALL-TASK1 by
source and target languages
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Figure 5: Comparison of average performances of the
best systems in the FULL-TASK and SMALL-TASK2 by
source and target languages

about 4.26 BLEU. We also observe more variability
in the distribution of drops in performance, notably,
Javanese, the lowest resource language, being the
most different to the others.

On the target side, we observe that English is
ahead of the curve, showing the least regression.
On the other hand Javanese and Tamil further rein-
force our observations that additional supervision
and morphology play an important role in decoding
performance.

5.5 African Languages

While not officially a track on this year’s com-
petition, Emezue and Dossou (2021) focused on
the task of multilingual machine translation for
African languages that are in FLORES-101. They
introduced MMTAfrica, the first many-to-many
multilingual translation system for six African lan-
guages: Fon (fon), Igbo (ibo), Kinyarwanda (kin),
Swahili/Kiswahili (swa), Xhosa (xho), and Yoruba
(yor) and two non-African languages: English (eng)
and French (fra). For multilingual translation con-
cerning African languages, a novel backtranslation
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and reconstruction objective, BT&REC, was in-
troduced which is inspired by the random online
back translation and T5 modelling framework re-
spectively, to effectively leverage monolingual data.
Additionally, MMTAfrica improves over the FLO-
RES 101 benchmarks (BLEU gains ranging from
+0.58 in Swahili to French to +19.46 in French to
Xhosa).

6 Conclusion and Future Work

In this paper we presented the first iteration of the
large-scale multilingual translation task. This task
attracted several teams from across the globe and
many models submissions. We kept the test set
blind and used a platform to evaluate model sub-
missions under a controlled environment. In this
task, we observed significant progress in translation
quality across tasks, but particularly in the small
tasks. We observed that pre-trained language mod-
els and large amounts of back-translation (either
at one go, or in iterative fashion) were important
tools used by many participants.

We observed that models that have to translate
fewer languages trend to do better on average, and
that lower resources and morphology complicate
translation, particularly for decoding. We also ob-
served that languages in certain groups, like the
African languages in the Bantu and Nilotic fami-
lies, experience little to no improvement.

In the future, we want to organize shared tasks
with languages for which little or no progress was
achieved this time around. Additionally, we want
to open up the FLORES evaluation setup to other
organizers interested groups of languages within
the FLORES-101 set.
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Abstract

This paper describes the Global Tone Commu-
nication Co., Ltd.’s submission of the WMT21
shared news translation task. We participate in
six directions: English to/from Hausa, Hindi
to/from Bengali and Zulu to/from Xhosa. Our
submitted systems are unconstrained and fo-
cus on multilingual translation model, back-
translation and forward-translation. We also
apply rules and language model to filter mono-
lingual, parallel sentences and synthetic sen-
tences.

1 Introduction

We applied fairseq(Ott et al., 2019) as our develop
tool and use transformer(Vaswani et al., 2017) as
the main architecture. The primary ranking index
for submitted systems is BLEU (Papineni et al.,
2002), therefore we apply BLEU as the evaluation
matrix for our translation system.

For data preprocessing, punctuation normaliza-
tion, tokenization and BPE(byte pair encoding)
(Sennrich et al., 2015) are applied for all lan-
guage. Further, we apply truecase model for En-
glish, Hausa, Zulu and Xhosa according to the
character of each language. Regarding to the to-
kenization, we use polyglot 1 as the tokenizer for
Hausa, Hindi, Bengali, Zulu and Xhosa. Besides,
knowledge based rules and language model are also
involved to clean parallel data, monolingual data
and synthetic data.

Due to the quantity limitation of parallel cor-
pus in low-resource language pair, we use forward-
translation with monolingual data to generate more
synthetic data instead of knowledge distillation
(Kim and Rush, 2016). Here forward-translation
refers to translate the source language sentences to
the target language, and then clean this synthetic
data with the above described method. In order
to enrich the low-resource language corpus, we

1https://github.com/aboSamoor/polyglot

add English to X corpus to construct a multilingual
translation model. This multilingual model is ex-
pected to obtain the inner deep information among
all languages and give us a better translation.

This paper is arranged as follows. We firstly de-
scribe the task and show the data information, then
introduce our multilingual translation model. After
that, we describe the techniques on low-resource
condition and show the conducted experiments in
detail of all directions, including data preprocess-
ing, model architecture, back-translation, forward-
translation and multilingual translation model. At
last, we analyze the results of experiments and draw
the conclusion.

2 Task Description

The task focuses on bilingual text translation in
news domain and the provided data is show in Ta-
ble 1, including parallel data and monolingual data.
For the directions between Hindi and Bengali, the
parallel data is mainly from CC-Aligned, as well
as the directions between Zulu and Xhosa. For the
directions between English and Hausa, the parallel
data is mainly from English-Hausa Opus corpus,
Khamenei corpus, ParaCrawl v8. The monolingual
data we used includes: News Crawl in English,
Hindi and Bengali; extended Common Crawl in
Hausa, Xhosa and Zulu; Common Crawl in Hausa.
All language directions we participated are new
tasks in this year, therefore we only use the pro-
vided newsdev2021 as our development set for the
directions of English to/from Hausa, flores-dev for
the directions of Hindi to/from Bengali and Zulu
to/from Xhosa.

3 Multilingual Translation Model

In low-resource condition, data augmentation and
pretrained model are the most effective approaches
to improve translation quality. According Google’s
Multilingual Neural Machine Translation Sys-
tem(Johnson et al., 2017), we use other language
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language number of sentences
bn-hi parallel data 3.3M
en-bn parallel data 2.2M
en-hi parallel data 2.2M
en-ha parallel data 750K
xh-zu parallel data 60K
en-xh parallel data 41K
en-zu parallel data 45K
en monolingual data 93.4M
bn monolingual data 59.7M
hi monolingual data 46.1M
ha monolingual data 46.1M
xh monolingual data 1.6M
zu monolingual data 2M
en-ha development set 2000
bn-hi development set 997
xh-zu development set 997

Table 1: Task Description

pairs parallel data along with the provided bilingual
data to training a multilingual translation model,
the low-resource language pair is expected to get
the benefits from other language pair’s parallel data,
especially in similar language. For the multilingual
model preprocessing, we add a language tag at be-
ginning of each source sentence, and use joint BPE
for all languages in one multilingual translation
model.

4 Experiment

4.1 Model architecture

• Baseline Table 2 shows the baseline model
architecture.

• Big transformer We use fairseq to train our
model with transformer big architecture. The
model configuration and training parameters
is almost same as GTCOM2020(Bei et al.,
2020).

4.2 Training Step

This section introduces all the experiments we set
step by step and Figure1 shows the full improve-
ment status.

• Date Filtering The methods of data filtering
are mainly the same as GTCOM2020, includ-
ing knowledge based rules, language model
and repeat cleaning.

configuration value
architecture transformer
word embedding 512
Encoder depth 5
Decoder depth 5
transformer heads 2
size of FFN 2048
attention dropout 0.2
dropout 0.4
relu dropout 0.2

Table 2: The FLoRes model architecture.

• Baseline We use FLoRes (Guzmán et al.,
2019) architecture to construct our baseline in
low-resource condition.

• Multilingual translation model. Due to the
language distinction, We construct two mul-
tilingual translation models with the corpus
organized as: 1. English-Bengali parallel data,
English-Hindi parallel data and Bengali-Hindi
parallel data; 2. English-Hausa parallel data,
English-Xhosa parallel data, English-Zulu par-
allel data and Xhosa-Zulu parallel data. Each
multilingual translation model has a shared
vocabulary.

• Back-translation We use multilingual trans-
lation model to translate the target language
sentence to source language, and clean syn-
thetic data with language model. Here, we
translate all language pairs we have added
into this multilingual translation model. Then
we combine the cleaned back-translation data
and provided parallel sentences to train a new
multilingual translation model.

• Forward-translation Source language sen-
tences are translated to target language, and
then cleaned by language model. Again we
add this forward translation data with cleaned
back-translation data and provided parallel
sentences to train another multilingual trans-
lation model.

• Joint training Repeat generating back-
translation data and forward-translation data
by currently trained best multilingual model
until there is no improvement.

• Transformer big Using bilingual parallel
data and synthetic data generated by cur-
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Figure 1: The whole work flow.

model bn2hi hi2bn
baseline 19.00 11.20
multilingual translation model 19.33 11.22
+ back-translation 23.63 14.80
+ forward-translation 23.95 14.95
+ joint training 24.05 15.02
big transformer 24.11 15.14
+ Ensemble Decoding 25.13 15.86

Table 3: The BLEU score between Hindi and Bengali.

model en2ha ha2en
baseline 11.04 12.02
multilingual translation model 12.20 13.09
+ back-translation 18.27 17.56
+ forward-translation 18.74 18.21
+ joint training 18.95 18.59
big transformer 19.32 18.91
+ Ensemble Decoding 21.09 21.58

Table 4: The BLEU score between English and Hausa
after truecase.

rently best multilingual model to train a bilin-
gual model with transformer big architecture
and repeat back-translation step and forward-
translation step, until there is no improvement.

• Ensemble Decoding We use GMSE Algo-
rithm (Deng et al., 2018) to select models to
obtain the best performance.

5 Result and analysis

Table 3, Table 4 and Table 5 show the BLEU score
we evaluated on development set for Hind to/from
Bengali, English to/from Hausa and Xhosa to Zulu

model xh2zu zu2xh
baseline 10.58 10.60
multilingual translation model 11.66 10.73
+ back-translation 12.48 10.76
+ forward-translation 12.70 10.86
+ joint training 12.74 10.92
big transformer 12.77 10.95
+ Ensemble Decoding 12.95 11.02

Table 5: The BLEU score between Xhosa and Zulu
after truecase.

respectively. Back-translation is still the most ef-
fective method with improvement ranging from
0.03 to 6.07 BLEU score in low-resource condition.
And multilingual translation model gets the im-
provement ranging from 0.02 to 1.16 BLEU score.
Forward translation enrich the information in low-
resource condition, with improvement of 0.1 to
0.65 BLEU score. Further, ensemble decoding in-
crease the performance with 0.07 to 2.67 BLEU
score.

6 Summary

This work mainly focus data augmentation and pay
less attention on modeling. Because optimizing
translation by data augmentation is the most elegant
way for a commercial system. It can avoid many
unexpected translation result generated by a newly
proposed model which may give our customers
worse translating experience.

This paper describes GTCOM’s neural machine
translation systems for the WMT21 shared news
translation task. For all translation directions,
we build systems mainly base on multilingual
translation model and enrich information by back-
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translation and forward-translation. The effect of
increasing information is also dependent on data
filtering.
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Abstract

This paper presents the University of Edin-
burgh’s constrained submissions of English-
German and English-Hausa systems to the
WMT 2021 shared task on news translation.
We build En-De systems in three stages: cor-
pus filtering, back-translation, and fine-tuning.
For En-Ha we use an iterative back-translation
approach on top of pre-trained En-De models
and investigate vocabulary embedding map-
ping.

1 Introduction

We describe the University of Edinburgh’s par-
ticipation in English↔German (En↔De) and
English↔Hausa (En↔Ha) at the WMT 2021 news
translation task. We apply distinct sets of tech-
niques to the two language pairs separately, as the
two pairs are very different in terms of language
proximity and the availability of resources. We fol-
low the constrained condition where we only use
the provided data available to all participants.

For En↔De we first employ rule-based and
dual conditional cross-entropy filtering to clean the
datasets. Then we add to training back-translations
generated in a few ways: tagged, greedy, beam
search and sampling. We fine-tune our models on
past years’ test sets, and finally tune a few config-
urations: length normalization, test sentence split-
ting, and German post-processing.

For En↔Ha we adopt iterative back-translation,
where at each iteration we initialize the model pa-
rameters from an En-De model in the correspond-
ing direction (En→De for En→Ha and De→En for
Ha→En). These En-De models are trained in the
same way as those submitted to the En-De task, ex-
cept that their vocabulary includes subwords from
the Hausa language. Besides, we experiment with
vocabulary mapping at the embedding level.

Some configurations are kept consistent across
language pairs and systems. Sentences are tok-

enized using SentencePiece (Kudo and Richard-
son, 2018) with a 32K shared vocabulary, except
that we added a few extra tokens for tagged back-
translation. All models are trained following Mar-
ian’s Transformer-Big task preset (Vaswani et al.,
2017; Junczys-Dowmunt et al., 2018) unless other-
wise specified: 6 encoder and decoder layers, 16
heads, 1024 hidden embedding size, tied embed-
dings (Press and Wolf, 2017), etc.1

Section 2 and Section 3 describe the detailed
model building process for En↔De and En↔Ha
respectively. While awaiting human evaluation re-
sults, we summarize our automatic metric scores
on the WMT 2021 test sets computed by the task
organizers in Table 1.

Direction BLEU ChrF
En→De 29.90 0.59
De→En 51.78 0.66
En→Ha 14.81 0.45
Ha→En 14.89 0.42

Table 1: Automatic metric scores on WMT21 test com-
puted by the task organizers.

2 English↔German

2.1 Data and cleaning

English-German is considered to be a high-
resource language pair, with over 90 million par-
allel and hundreds of millions monolingual sen-
tences provided in the shared task. Following our
last year’s submission (Germann, 2020), we divide
the data into three categories, and we use all the
parallel data, as well as monolingual news from
2018 to 2020:

• High-quality parallel: News Commentary, Eu-
roparl and Rapid.

1https://github.com/marian-nmt/marian/
blob/master/src/common/aliases.cpp
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• Crawled parallel: ParaCrawl, WikiMatrix,
CommonCrawl, and WikiTitles.

• Monolingual news: News Crawl

The majority of parallel data are mined and
aligned sentences from the web (Bañón et al., 2020;
Schwenk et al., 2021), so our first step is corpus fil-
tering to remove noisy sentences which could harm
neural machine translation (Khayrallah and Koehn,
2018). We run rule-based filtering using FastText
language identification (Joulin et al., 2016), and var-
ious handcrafted features such as sentence length,
character ratio and length ratio. Similar rules are
applied on the monolingual data, omitting the fea-
tures designed for parallel data. More details can be
found in our cleaning script which is made public.2

We then train seed Transformer-Base models on
the filtered high-quality data, as well as the crawled
data separately, to (self-)score translation cross-
entropy of the crawled parallel sentences. This
enables us to rank and filter out sentences by their
dual conditional cross-entropy (Junczys-Dowmunt,
2018). The method prefers the sentences in a pair
to have low and similar translation cross-entropy
given each other. After empirical trials, we find it is
always better to score using models trained on the
high-quality data, and we choose to keep the best
75% of the crawled data. The filtering efforts are
reported in Table 2. Next, we train Transformer-
Big models on the combination of filtered high-
quality and crawled data. These models serve as
baselines and are used for back-translation later.

Amount of
crawled

Scoring
model De→En En→De

top 25%
high-qual 41.47 -
crawled 39.35 -

top 50%
high-qual 41.64 43.68
crawled 41.51 -

top 75%
high-qual 42.15 43.40
crawled 41.90 -

all - 42.02 42.70

Table 2: BLEU of filtering experiments on WMT19 test
used as dev.

2.2 Back-translation

Since its introduction, back-translation (Sennrich
et al., 2016) has been widely used to boost NMT.

2https://github.com/browsermt/
students/tree/master/train-student/clean

We use ensembles of our best seed and baseline
models trained on the filtered data, to generate
back-translations from the monolingual news data
from 2018 to 2020, hoping that the domains are
similar to that of the test. For En→De we mix
back-translations generated using greedy search,
beam search, and sampling; for De→En, we adopt
tagged back-translation (Caswell et al., 2019).

After merging the original and back-translated
data, for each direction we train 4 standard
Transformer-Big models, as well as a model with 8
encoder layers and 4 decoder layers. Specifically
for De→En, we have an extra pre-layer normalized
variant.

As we observed last year, validation BLEU does
not improve after we add back-translated data to
training. As a result, after the models converge, we
continue training them on filtered parallel data only.
The models’ validation BLEU scores3 on WMT19
test are displayed in Table 3.

Configuration De→En En→De
Baseline 42.2 43.4

+ BT 41.8 43.0
+ cont. training 42.5 43.6

Table 3: Average BLEU scores of BT experiments on
WMT19 test used as dev.

2.3 Fine-tuning and submission

We grid search on length normalization during de-
coding, and find 1.2 to be ideal for En→De and
0.8 for De→En. Particularly for En→De, we have
two more steps to make German text read more
natural: 1) continued training on 25% title-cased
parallel data to improve headline translation and 2)
post-processing on German quotes to make them
consistent.

Previous submissions show that fine-tuning on
past years’ test data helps model performance
(Schamper et al., 2018; Koehn et al., 2018). In
the early years of WMT news translation tasks, the
test sentence pairs can originate in either source or
target language, and are translated and merged into
one set. However, the current evaluation is on trans-
lating sentences originally in the source language
only. Therefore, we experiment with fine-tuning
on the combined sets, as well as on sentence pairs
originated from the source language. We fine-tune

3sacreBLEU (Post, 2018) with signature BLEU+
case.mixed+numrefs.1+smooth.exp+tok.13a+version.1.5.1
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all our models on WMT 2008-2019 test sets and
validate on WMT 2020 test set.

While the training data contain mainly one sen-
tence per line, the test set can have multiple sen-
tences in the same segment. As a result, we split
each test instance into single sentences, translate,
and rejoin them. We experiment with fine-tuning
and sentence splitting on the 8-encoder-4-decoder
variant for both languages. Table 4 indicates that
the model achieves the best BLEU (and a signif-
icant improvement over BT baseline) if we fine-
tune it on previous test sentences originating in the
source language only, and split long sentences in
both validation and test sets.

FT
on

Dev
split

Test
split De→En En→De

BT baseline 30.8 31.9
none X 41.7 35.2
all 34.7 -
all X 41.1 -
all X 31.2 -
all X X 41.9 36.7

orig. X X 42.5 36.9

Table 4: BLEU of fine-tuning and sentence-splitting ex-
periments on WMT20 test

For each translation direction, we apply the best
configuration to each model and ensemble them by
averaging their predictions post-softmax. Overall,
we have a 5-model ensemble for En→De, and a
6-model ensemble De→En.

3 English↔Hausa

3.1 Data

The main sources of English-Hausa parallel data
are OPUS (Tiedemann, 2012) and ParaCrawl.
We also include data from WikiTitles4 and the
Khamenei5 corpora, which are however much
smaller. In total, we gather 759,061 parallel sen-
tences. For back-translation, we use 9.5 mil-
lion monolingual Hausa sentences from Common
Crawl, Extended Common Crawl, and News Crawl
provided by the task organizers. We randomly se-
lect 50 million English monolingual sentences from
the News Crawl collections from 2018, 2019, and
2020.

4http://data.statmt.org/wikititles/v3/
5http://data.statmt.org/wmt21/

translation-task/ha-en/khamenei.v1.
ha-en.tsv

For training, we use a mix of back-translated
monolingual data and parallel data. Since the
dataset sizes differ substantially, we over-sample
the parallel data to achieve a balanced mix: 10×
for English→Hausa, and 50× for Hausa→English.
Similar to our En-De models, we used tagged back-
translation to distinguish synthetic and authentic
sentences in the data.

3.2 Iterative back-translation and fine-tuning
In our experiments, we combine a transfer learn-
ing approach (Zoph et al., 2016; Kocmi and Bojar,
2018) with 3 iterations of back-translation (Hoang
et al., 2018; Edunov et al., 2018). In each iteration,
we initialize the En→Ha model with a pre-trained
En→De Transformer-Big model (and vice versa
for the other direction). Then, we fine-tune the
model on the English-Hausa data created by the
model from the previous back-translation iteration
(the initial model for the first iteration is fine-tuned
on parallel data only).

We notice that the model generates a large num-
ber of empty translations. We suppress this issue by
taking the second-best candidate translation from
the n-best list if the first one is empty. Another prob-
lem is heavy overfitting in the models. In many
translations, the sentences begin with the prefix
“Never miss an important update!”, followed by the
actual translation. Unfortunately, we only noticed
this issue after the submission.

3.3 Vocabulary embedding mapping
An additional approach we investigate is mapping
the Hausa vocabulary to the German embeddings of
the En→De model, when initializing the En→Ha
model. We train the models with a 32K Senten-
cePiece vocabulary obtained from datasets in all
three languages. Using the frequency-based metric
introduced by (Wang et al., 2020) we assign each
SentencePiece token to an English, German, Hausa
or joint vocabulary. This results in 9192 German to-
kens, 6485 Hausa tokens and a joint vocabulary of
approximately 11k. Having established a separate
Hausa and German vocabulary it is then possible
to map between the embeddings of the two.

In order to map the vocabularies, we indepen-
dently train BWEs (bilingual word embeddings)
using an implementation of Bivec (Luong et al.,
2015) combined with FastText (Bojanowski et al.,
2017). This implementation uses a joint learning
objective as described by Liu et al. (2020) utilising
alignments combined with sub-word information.
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In lieu of a parallel De-Ha dataset an En→De NMT
model is used to translate the English side of the
En-Ha dataset. We constrain SentencePiece encod-
ing using the previously extracted vocabularies for
example the Huasa data is encoded using only the
Hausa tokens and the joint tokens. Once both sides
are encoded FastAlign is used to extract automatic
alignments and the BWEs are trained.

We first map the Hausa tokens to their nearest
neighbour using the Cross-Domain Similarity Lo-
cal Scaling (Lample et al., 2018) distance metric
in the order of Hausa tokens’ frequency, and only
permit a German token to be mapped to exactly
one Hausa token. For tokens that do not have a
one-to-one mapping, we adapt Gu et al. (2018)’s
approach, whereby the embedding of a Hausa to-
ken is initialized to the weighted sum of all German
embeddings. The weights are given by a probabil-
ity distribution derived from the distance of the
Hausa token to each German token in the bilingual
embedding space. It is worth noting that we only
map between the tokens in the Hausa and German
vocabularies not any of the joint tokens. Finally, we
initialize the embedding table using the new embed-
dings and remove all tokens identified as German.
After initialization, we fine-tune the model using
the parallel and back-translated data as described
previously.

Our experiments show that although initializing
the embedding table using a mapping-based ap-
proach results in faster model convergence, it does
not improve the final BLEU score compared to just
fine-tuning from the En-De models. This was ob-
served for both the parallel data and the combined
parallel and back-translated data. The outputs of
the mapping approach to the baseline for the Ha-En
system are qualitatively very similar and indicates
that while the embedding mapping increases con-
vergence there is no knowledge transfer from the
German embeddings.

4 Conclusion

We describe our English-German and English-
Hausa submissions to the news translation task at
WMT 2021. For the En↔De task, fine-tuning and
splitting test instances significantly boosts BLEU
while back-translation alone does not help. In the
En↔Ha task, we experiment with interesting low
resource NMT techniques, but unfortunately, our
submission contains translations from overfitted
models.
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Abstract

This paper describes the Air Force Research
Laboratory (AFRL) machine translation sys-
tems and the improvements that were devel-
oped during the WMT21 evaluation campaign.
This year, we explore various methods of
adapting our baseline models from WMT20
and again measure improvements in perfor-
mance on the Russian–English language pair.

1 Introduction

As part of the 2021 Conference on Machine Trans-
lation (wmt, 2021) news-translation shared task,
the AFRL human language technology team partic-
ipated in the Russian–English portion of the compe-
tition. We experiment with OpenNMT-tf 1 (Klein
et al., 2018) and Marian 2 (Junczys-Dowmunt et al.,
2018) transformer (Vaswani et al., 2017) models
trained as part of our WMT20 (Gwinnup and An-
derson, 2020) efforts and apply varying continued-
training and fine-tuning approaches (Luong and
Manning, 2015; Freitag and Al-Onaizan, 2016), in-
cluding a new method to select a fine-tuning set
from a separate, larger corpus not used in training.

We submit an OpenNMT-based transformer sys-
tem fine-tuned on newstest test sets from 2014-
2017 as our primary entry, and a Marian-based
transformer system fine-tuned on newstest test sets
from 2014-2018 as a contrast.

2 Data and Preprocessing

Since most of our efforts focus on fine-tuning ex-
isting models this year, we reuse the training cor-
pus from our WMT20 systems which includes the
following parallel corpora: Commoncrawl (Smith
et al., 2013), Yandex3, UN v1.0 (Ziemski et al.,

1Available at: https://github.com/OpenNMT/OpenNMT-
tf/

2Available at: https://github.com/marian-nmt/marian
3https://translate.yandex.ru/corpus?

lang=en

2016), Paracrawl4(Esplà et al., 2019), Wikimatrix
(Schwenk et al., 2019), and backtranslated data
from our WMT17 system (Gwinnup et al., 2017)
as well as Edinburgh’s WMT17 system (Sennrich
et al., 2017) yielding a raw corpus of over 76.3
million lines.

The new Russian–English version 8 Paracrawl
corpus is reserved for tuning set selection as de-
scribed in Section 2.3.

2.1 Data Preparation

We re-use the fastText (Joulin et al., 2016b,a) based
language ID filtered corpus with an ID threshold of
0.8 as described in Gwinnup and Anderson (2020),
shown in Table 1, allowing us to make concrete
progress comparisons to last year’s systems.

2.2 Data Augmentation with Speech
Recognition-like output

In order to build a larger pool of training data, we
have created Automatic Speech Recognition (ASR)
- like training data for the Russian–English transla-
tion task. Whereas written text can include upper
and lowercase characters, punctuation, special sym-
bols, and numbers written using digits, transcripts
produced by ASR systems are typically uncased
with no punctuation, no special symbols, and num-
bers written as spoken (e.g., 4.1% rendered as “four
point one percent”). In previous experiments on
an English-German spoken language translation
task (Ore et al., 2020), we found that we could
get an improvement in BLEU score by formatting
the MT training data such that the source language
text matched the output format of our ASR system,
while leaving the target language text unmodified.
We applied a similar procedure to the Russian side
of the Russian-English training corpus using the
text2norm.pl script from ru2sphinx.5 This copy of
the ASR-like training text was then appended to

4Version 1 Russian–English parallel data
5Available at: https://github.com/zamiron/ru4sphinx
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corpus unfiltered lines filtered lines percent remain

commoncrawl 723,256 655,069 90.57%
news-commentary-v15 319,242 286,947 89.88%
yandex 1,000,000 901,318 90.13%
un-2016 11,365,709 9,871,406 86.85%
paracrawl-v1 12,061,155 5,173,675 42.90%
wikimatrix 5,203,872 4,287,881 82.40%
wmt17-afrl-bt 8,921,942 8,317,107 93.22%
wmt17-uedin-bt 36,772,770 29,074,022 79.06%

Total 76,367,946 58,567,425 76.69%

Table 1: Results of language-id based Russian–English corpus filtering with threshold of 0.8 as reported in (Gwin-
nup and Anderson, 2020)

the original training data, effectively doubling the
size of the corpus.

2.3 Selecting Tuning Sets from
Representative Data

We performed experiments involving automatic se-
lection of fine-tuning corpora. Given a monolin-
gual application corpus, we wish to test the pos-
sibility of selecting an appropriate fine-tuning set
to improve a general-purpose neural MT system’s
performance on that application corpus. We an-
ticipate such techniques to be of increasing impor-
tance, especially for high-value application corpora,
as computational costs of subcorpus selection and
fine-tuning continue to decrease.

2.3.1 Method
We performed subselection as in Erdmann and
Gwinnup (2019), which can flexibly incorporate a
text quality metric and multiple parallel text cor-
pora. In short, this algorithm tries to simultane-
ously optimize the quality of the subset’s text and
its coverage of the vocabulary present in given ap-
plication corpora.

Of special note is our use of clustering to select
data. We hierarchically applied the MAPPER algo-
rithm (Singh et al., 2007) to cluster sentence vec-
tors of a monolingual corpus. The clusters deemed
useful were then used to assign fuzzy clustering to
the application corpus and the corpus from which
we subselect. This clustering information was in-
cluded as one of the text corpora.

2.3.2 Application
The application corpus we used was the Russian
side of newstest2019 and newstest2020, totalling
6777 lines. The pool of possible parallel text for

subselection we took to be the given 12.6M-line
subset of Russian–English version 8 ParaCrawl cor-
pus with LASER score at least 1.1. For subselec-
tion algorithms, we first preprocessed the Russian
text, applying a 90k-element joint BPE. We used
the algorithm in Erdmann and Gwinnup (2019) to
subselect a corpus, using 3-grams in the vocab-
ulary coverage. As a text quality metric in this
algorithm we used either the provided Bicleaner
scores (Sánchez-Cartagena et al., 2018; Ramírez-
Sánchez et al., 2020) or the word-averaged scores
provided by OpenNMT’s scoring functionality, us-
ing the untuned OpenNMT model we developed
for this year’s task. In order to provide meaningful
comparisons with our baseline fine-tuning set of
newstest2014-2018, we matched its size by always
subselecting a fine-tuning set with fifteen thousand
lines. Fine-tuning was performed using a single-
model Marian-based untuned MT system as a base-
line.

Sentence vector clustering was learned using a
570M-line monolingual Russian corpus built from
the concatenation of monolingual CommonCrawl
(Smith et al., 2013) data provided by WMT or-
ganizers as part of our WMT18 efforts towards
pretraining word embeddings. The word vectors
were trained using word2vec (Mikolov et al., 2013)
on this corpus, after applying a 90k-element joint
BPE. These embeddings have a dimensionality of
512 to match our Marian transformer-base system
configuration as described in Gwinnup et al. (2018).
A randomly-chosen 100k-line subset of the corpus
was used to find the clustering.

Several methods of converting word vectors to
sentence vectors were considered, and we empiri-
cally chose a “softened sum” of the word vectors
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wi as the sentence vector s:

s =

∑
wi

log(1 + number of words in sentence)
.

Clusters were considered to be useful if they cov-
ered between 1% and 5% of this corpus. In this case
there were 19 such clusters, having between 1000
and 5000 representatives each. These clusters were
found to have qualitative meaning to a Russian lin-
guist: clusters with relatively high representation
in our application corpus tended to be news-like,
and clusters with relatively high representation in
ParaCrawl tended to be noisier.

We computed membership of a given sentence
vector in a fuzzy clustering sense, with weight of
cluster i defined as

zi = (min distance/distancei)4

where we use Euclidean distance, and the minimum
is taken over all 19 clusters. Although the exact
form is empirical, note that the weight has a maxi-
mum of unity at the closest cluster and that a cluster
will get lower weight if it is farther from the sen-
tence vector. This fuzzy clustering was computed
once using k-means (distance is to cluster mean)
and once using single-linkage (distance is to near-
est member) clustering. These two membership
clusters were then averaged. Coverage of the clus-
ters was encouraged by including the clustering as
another text corpus in our standard algorithm (Erd-
mann and Gwinnup, 2019) — each sentence vector
was converted into a 100-word “sentence,” where
each cluster’s “word” appeared a number of times
relative to the magnitude of its weight in the line’s
clustering6. Naturally, coverage of these clustering
words was computed using only unigrams.

2.3.3 Results
Table 2 shows the results of our fine-tuning exper-
iments. The “clustering” and “metric” columns
designate whether clustering was incorporated
and whether Bicleaner (“Bic”) or NMT scor-
ing (“NMT”) was used as the text quality met-
ric. We see consistent gains over the untuned
set, even on newstest2021, which was not used
in the selection. The three subselection meth-
ods produced similar results on the three test
sets. Fine-tuning with our selected sets did not

6For example, using a 10-word sentence for brevity, this
process would convert the fuzzy cluster membership vector
[0.2, 0.0, 0.8, 1.0] into the sentence “0 2 2 2 2 3 3 3 3 3”.

produce consistent improvement over our base-
line fine-tuning using newstest2014-2018. Com-
pared to this baseline fine-tuning, the new sets
improved performance on newstest2019 (roughly
+0.7 BLEU), but they lowered performance on
newstest2020 (roughly −0.7 BLEU) and the un-
seen newstest2021 (roughly −1.1 BLEU). Our
generated fine-tuning sets did not show a consis-
tent benefit for this task, so they were not used in
our submission systems. Without further informa-
tion, we cannot attribute the quality of the results
to the method, the quality of data in ParaCrawl, or
other causes.

Our method generates a pseudo in-domain set
for an unknown application domain, using only
source-side data of the application corpus. This
generated set can be used for fine-tuning, training,
or other purposes in natural language processing.
We believe that such techniques warrant further
investigation, especially for an application corpus
where the domain is unknown or human-curated
parallel data are unavailable.

3 Machine Translation Systems

3.1 OpenNMT-tf
The OpenNMT-tf system trained for this task used
the configuration for a big deep transformer net-
work.

We used the following network hyperparame-
ters:

• 1024 embedding size

• 4096 hidden units

• 12 layer encoder

• 12 layer decoder

• 16 transformer heads

• dropout 0.3

• attention dropout 0.1

• feed forward network dropout 0.1

• embeddings for source, target and output lay-
ers were not tied

• Layer normalization

• Label smoothing 0.1

• Learning rate warm-up 8000 steps

The corpus used for the initial model con-
sisted of commoncrawl, paracrawl v1, and news-
commentary-v13 from wmt19 and was processed
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tuning set clustering metric newstest2019 newstest2020 newstest2021

untuned 35.9 34.5 46.5
newstest2014-2018 37.5 35.7 49.3
selected no NMT 38.0 35.0 48.4
selected no Bic 38.3 35.0 48.2
selected yes Bic 38.2 34.9 47.9

Table 2: Tuning sets and resultant BLEU scores.

with SentencePiece(Kudo and Richardson, 2018)
using a model with a vocabulary size of 40K trained
on this ru-en corpus of 16,805,109 bi-text. This was
one of our WMT20 submitted systems (Systems
3 and 4 in Table 3). Additionally the corpus was
processed as described in Section 2.2 to resemble
ASR output and the resulting data was combined
with the above for a final count of 33,610,218 bi-
text. The network was trained for 10 epochs of
this training data using a batch size of 3124 and an
effective batch size of 49984 using the lazy Adam
(Kingma and Ba, 2015) optimizer with beta1=0.9,
beta2=0.998 and learning rate 2.0. This was a sys-
tem that had been originally trained for speech
translation application but showed improvements
in text translation as well. The final submitted sys-
tem continued training an additional 2 epochs using
the unfiltered data described in Table 1. This was
done to try to take advantage of the larger data set
and not having the computational resources or time
to train a new system with with the larger data set
in time for submission deadline. The output was
an average of the last 8 checkpoints of training.
Checkpoints were saved every 5000 steps. The sys-
tem was then tuned with three epochs of newstest
data from years 2014-2017 (Systems 5 and 6 in
Table 3).

3.2 Marian

Our Marian systems utilize the transformer archi-
tecture in the transformer-base configuration. We
use the WMT14 newstest2014 test set for validation
during training and the following network hyperpa-
rameters:

• 512 embedding size

• 2048 hidden units

• 6 layer encoder

• 6 layer decoder

• 8 transformer heads

• Tied embeddings for source, target and output
layers

• Layer normalization

• Label smoothing

• Learning rate warm-up and cool-down

We experimented with tuning these systems with
the concatenation of WMT newstest sets from
2014-2018 yielding a tuning corpus of 14,820 par-
allel sentences. For each of the five separate trans-
former models trained for the Marian transformer-
base ensemble systems in Gwinnup and Anderson
(2020), continued training was performed for 10
epochs on the concatenated tests sets. An ensemble
of the five resulting tuned models is then used to
decode newstest sets from 2019-2021. Resulting
scores reported by SacreBLEU are shown as Row 2
in Table 3, while the baseline, untuned ensemble is
shown as Row 1. We note gains between +2.0 and
+3.5 BLEU as measured by SacreBLEU over the
baseline ensemble system depending on test set.

4 Experimental Results

Results reported here and in Table 3 for Marian
systems were scored with SacreBLEU (Post, 2018)
while results for OpenNMT systems were score
with mult-bleu-detok.perl from the Moses toolkit
(Koehn et al., 2007). Internal comparisons between
the two scoring methods have been in agreement.
All scores are on detokenized cased output.

The primary submission system was the
OpenNMT-tf configuration described in section 3.1
and shown in Table 3 as onmt+asr-tune. It resulted
in official scores of 53.31 BLEU-all, 38.83 BLEU-
A, 39.56 BLEU-B, 0.64 chrf-all, 0.63 chrf-A, and
0.64 for chrf-B on the 2021 test-set.

Post evaluation a model with the OpenNMT-tf
configuration described in section 3.1 was trained
on all the unfiltered data (approx. 76M million
bi-text). The results are shown in Table 3 as onmt-
large. The baseline onmt-large system was approx-
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imately +1 BLEU better that the baseline onmt-
asr system while the onmt-asr system which con-
tinued training with two epochs of the large data
set and tuned with newstest2014-2017 (onmt-+asr-
tune) was +2.5 BLEU better than the baseline onmt-
large system which was trained with 10 epochs and
comparable to the onmt-large system tuned with
newstest2014-2017. Experiments were conducted
on both onmt+asr and onmt-large with tuning sets
comprised of different combinations of the supplied
news test sets from 2014 to 2019. Tune7 is news
test sets from 2014-2017 (11,820 bi-text), tune8
is news test sets from 2014-2018 (14,820 bi-text),
and tune9 is news test sets from 2014-2019 (16,820
bi-text). Systems were tuned for three epochs using
these tuning sets. Generally performance dropped
off or decreased slightly with more than 3 epochs
of tuning. To be consistent across systems and tun-
ing sets we are only reporting results for 3 epochs.
As can be seen in Table 3 all three tuning sets pro-
vided significant improvements over the baseline
systems, generally in the range of +3.5 BLEU on
test 2021. For onmt+asr there was little difference
in tuning with tune7 or tune8 whereas tune9 was
approximately +0.4 BLEU better than those two.
For onmt-large tune7 did not provide as much ben-
efit as tune8 and tune9 which were basically the
same, less than 0.1 BLEU difference between the
two.

5 Conclusion

While our two submission systems employ a stan-
dard method of fine-tuning to adapt models towards
a test set, we find that our methods to sample a
similarly-sized tuning corpus from a larger body of
text while only using information about the source
side of that data yields a reasonable improvement
in translation quality. Such a technique could be
useful in adapting translation models to specific
domains where only the source language of a text
source is available.

Using actual in-domain data, such as the pro-
vided news development sets, for fine-tuning pro-
vide a substantial gain in translation quality. Such
data is not always available and thus other selection
techniques as described in Section 2.3 come into
play. Future work will investigate combining the
two approaches to see if additional gains can be
obtained.

The authors would like to thank Emily Conway
and Braeden Bowen for their assistance in human

evaluation of MT output.
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Abstract

This paper describes the submission to the
WMT 2021 news translation shared task by the
UPC Machine Translation group. The goal of
the task is to translate German to French (De-
Fr) and French to German (Fr-De). Our sub-
mission focuses on fine-tuning a pre-trained
model to take advantage of monolingual data.
We fine-tune mBART50 using the filtered data,
and additionally, we train a Transformer model
on the same data from scratch. In the exper-
iments, we show that fine-tuning mBART50
results in 31.69 BLEU for De-Fr and 23.63
BLEU for Fr-De, which increases 2.71 and
1.90 BLEU accordingly, as compared to the
model we train from scratch. Our final sub-
mission is an ensemble of these two models,
further increasing 0.3 BLEU for Fr-De.

1 Introduction

Monolingual data is usually more abundant than
parallel data as it does not need any human pro-
cessing. Neural Machine Translation (NMT) has
focused traditionally on parallel data between lan-
guages and monolingual data as back-translation
(Sennrich et al., 2016). This method consists of
translating a monolingual corpus with an NMT sys-
tem and training the model using the synthetic data.
Alternatively, in recent years, pre-trained models
have been proposed using monolingual data as a
pre-training step with self-supervised learning, be-
fore performing task-specific fine-tuning. An exam-
ple of this approach is BERT (Devlin et al., 2019),
which is a Transformer model (Vaswani et al.,
2017), pre-trained on masked language modeling
and next sentences prediction on a large unlabeled
corpus. While BERT is used primarily for classifi-
cation tasks, BART (Lewis et al., 2020) has been
proposed for sequence-to-sequence tasks. BART
is a Transformer encoder-decoder, pre-trained as
a Denoising Autoencoder (DAE) on monolingual
unlabeled text. Since BART is pre-trained on mono-

lingual data, an additional encoder should be intro-
duced during fine-tuning to obtain a bilingual NMT
system. mBART overcomes this restriction by be-
ing pre-trained on multilingual denoising. mBART
(Liu et al., 2020; Tang et al., 2020) is liable to fine-
tuning on several translation directions in order to
obtain a multilingual NMT system.

Our participation to the news translation task at
WMT focuses on translating between German (De)
and French (Fr) in both directions, De-Fr and Fr-
De. To accomplish this, we employ a pre-trained
mBART model, and more specifically mBART50
(Tang et al., 2020), which is pre-trained with 50
languages. We fine-tune the mBART50 on both
translation directions to obtain a single multilingual
model for the task. To measure the importance of
the pre-training step, we additionally train a Trans-
former with the same architecture and hyperparam-
eters but randomly initialized. Our experiments
show that the fine-tuned mBART50 can achieve
better translation quality in both directions, with
improvements of 2.71 for De-Fr and 1.9 for Fr-De.
Apart from fine-tuning a pre-trained model, our
approach also includes extensive filtering of a large
bilingual corpus to ensure high-quality training
data. Finally, we have considered ensembling the
fine-tuned mBART50 and the trained-from-scratch
Transformer for our submission. This ensembling
has resulted in BLEU scores of 31.69 and 23.93 for
De-Fr and Fr-De accordingly.

The rest of this paper is organized as follows:
In Section 2 we describe the background tech-
niques this work builds upon, multilingual NMT
and mBART. In Section 3 we present the datasets
we used for training and the techniques applied for
filtering them. In Section 4 we provide the system
description along with the implementation details
and Section 5 involves the results of our experi-
ments. Finally, in Section 6 we discuss the conclu-
sions of this work and present possible directions
for further research.
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2 Background

2.1 Neural Machine Translation
Neural Machine Translation (NMT) uses sequence-
to-sequence models, with an encoder-decoder
architecture, built upon deep neural networks
(Sutskever et al., 2014; Bahdanau et al., 2014;
Gehring et al., 2017; Vaswani et al., 2017). In
a sequence-to-sequence model, the source sentence
is mapped to its contextualized representation and
fed to the decoder to generate the translation out-
put in an auto-regressive way. Traditionally, re-
current neural networks (Hochreiter and Schmid-
huber, 1997) have been used for the encoder and
decoder, with an attention mechanism (Bahdanau
et al., 2014) that enables each target token to con-
centrate on certain tokens in the source sentence.
Recently, the Transformer (Vaswani et al., 2017)
led to large improvements on sequence-to-sequence
tasks and NMT, relying exclusively on attention
mechanisms. The systems trained in this work, are
also based on Transformer models.

2.2 Multilingual NMT
Multilingual NMT aims to provide a single model
that can translate several language directions (Fi-
rat et al., 2016; Johnson et al., 2017). These can
be one-to-many, many-to-one, or many-to-many,
with the "one" being usually English due to the
broadly available corpora. Previous studies have
explored different design approaches, focusing on
sharing parts of the model between the different
languages, with shared encoder-decoder attention
between languages (Firat et al., 2016), a shared
encoder (Sen et al., 2019), a task-specific atten-
tion (Blackwood et al., 2018), shared parameters
(Zhu et al., 2020) and full model sharing (John-
son et al., 2017). Recently, the paradigm of full
model sharing has been extended to accommodate
for many more languages and directions by train-
ing huge models for massively multilingual NMT
(Arivazhagan et al., 2019; Fan et al., 2020). Our
submission is also based on multilingual models
that are fully shared between the two language di-
rections German-French and French-German.

2.3 mBART
BART (Lewis et al., 2020) is a Transformer
encoder-decoder, which is pre-trained with self-
supervised learning on reconstructing the text cor-
rupted by a noise function. Its multilingual ver-
sion, mBART (Liu et al., 2020), uses the same self-

supervised approach, but reconstructs corrupted
text from multiple monolingual corpora. The na-
ture of this pre-training makes mBART a good ini-
tialization for a multilingual NMT system. mBART
can be fine-tuned on multiple bitext corpora pro-
viding gains in all directions of 25 languages, ex-
cept for the very highest resource ones (Liu et al.,
2020). Our system is initialized with mBART50
(Tang et al., 2020) (an extension of mBART from
25 to 50 languages). This initialization is followed
by multilingual fine-tuning on both directions of a
large German-French bitext.

3 Data

In this section we introduce the datasets used for
training our systems and we go through the data
filtering process that was applied in each one of
them.

3.1 Datasets
In order to train Transformer models for Machine
Translation, commonly, a large parallel corpus is
needed. For the purpose of this research, we fo-
cus on creating a French-German parallel corpus
from several publicly available datasets. More
specifically, these are the Europarl (Koehn, 2005),
Paracrawl (Bañón et al., 2020), Common Crawl1,
News Commentary (Tiedemann, 2012), Wiki Ti-
tles2, Tilde Rapid and EESC (Rozis and Skadin, š,
2017), WikiMatrix3 and TED Talks (Cettolo et al.,
2012). If the dataset contains more languages, we
only keep examples that have non-empty sentences
for French-German. We use the development and
test data of the news test datasets of 2019 and 2020,
as provided by WMT. The size of each dataset can
be found in the first column of Table 1.

3.2 Data Filtering
We employ two stages of data filtering to ensure
that our system is trained on high-quality data. In
the first stage, we process each example, either
from the French or German side, separately by
altering its content. This process includes the fol-
lowing steps in the listed order:

1. Removal of non-utf8 characters

2. De-escaping html characters
1http://data.statmt.org/wmt19/

translation-task/fr-de/bitexts
2http://data.statmt.org/wikititles/v3/
3https://github.com/facebookresearch/

LASER/tree/master/tasks/WikiMatrix
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3. Normalization of different types of punctua-
tion

4. Normalization of spacing

5. Removal of redundant apostrophes

The normalization of spacing and punctuation
is applied using the SacreMoses4 package. Dur-
ing the second stage of filtering, we completely
remove whole examples, when either the French or
the German sentence contain noise or inconsistent
information.

1. Basic Filtering. We remove examples where
either side is empty, or the two sides contain
the same lower-cased text.

2. Language Filtering. Here we intend to iden-
tify sentences that are written in languages
other than French and German. We remove
examples where the language of either sen-
tence does not match the expected one. To
predict the language of a sentence, we use
a pre-trained language detection model from
FastText (Joulin et al., 2016).

3. Length Filtering. Here we aim to identify
sentences or examples with unnatural length
characteristics that potentially result from
noise. We remove examples where either side
is found to have a large number of words
(greater than 200), an extreme character-to-
word ratio (lower than 1.5 or greater than 12),
at least one word with a high number of char-
acters (greater than 25), or the example has
an extreme source-to-target word ratio (lower
than 0.4 or greater than 2.5). For setting the
boundaries of what is an acceptable length or
ratio, we follow (Shi et al., 2020).

4. Alignment Filtering. At this point, we want
to identify noisy pairs by computing their
alignment scores. We use the fast-align li-
brary (Dyer et al., 2013) and remove exam-
ples where the alignment score is 2.5 times
above the average alignment score of the cor-
pus. The alignment score of an example is cal-
culated as the normalized log-probability of
the German-French alignment, and the align-
ment score of the corpus is the sum of the

4https://github.com/alvations/
sacremoses

Dataset
Size (thousands)

Original Filtered
Europarl 1,803 1,480
Paracrawl 7,223 5,893
Common Crawl 622 523
News Commentary 304 236
Wiki Titles 1,007 134
Title Rapid 983 849
EESC 2,844 2,392
WikiMatrix 2,807 1,936
TED Talks 292 279
Total 17,885 13,722

Table 1: Training sets before and after filtering.

alignment scores of its examples. Specifi-
cally for the WikiMatrix pairs, which are not
human-generated and possibly contain more
noise, we follow a more aggressive approach
and remove a pair if its alignment score is 15
absolute points above the average.

The size of the clean corpus can be found in the
second column of Table 1.

4 System Description

In this section we are going to describe the two
main steps of our submission, fine-tuning of a pre-
trained with the provided data and ensemble of
pre-trained and not pre-trained models.

4.1 Multilingual fine-tuning
Traditionally, models are trained from random ini-
tialization. We initialize our model with mBART50
(Tang et al., 2020) pre-trained weights. These
weights act as a more informed initialization that
already contains useful features for language rep-
resentation. Given the support of the public model
to the French and German languages, no modifica-
tions of the embedding model were needed. Follow-
ing mBART50 strategy, we fine-tune all the layers
of the multilingual model on all the filtered French-
German and German-French data. To condition
the language generation (Johnson et al., 2017), a
source language token was added as the first token
of the source sentence, and a target language token
was added as the first decoder token to the decoder.

Implementation Both randomly initialized base-
line and mBART50 models were trained using
fairseq’s (Ott et al., 2019)5 mBART large imple-

5https://github.com/pytorch/fairseq
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mentation for multilingual fine-tuning. The ar-
chitecture consists of 12 layers with 1024 embed-
ding size, 4096 feed-forward size, and 16 attention
heads, both for encoder and decoder, with a total
number of parameters of 610, 878, 464. Models
were trained for approximately 400k updates or
seven epochs using validation loss as an early stop-
ping criterion, with a learning rate of 1 ∗ 10−4 and
3 ∗ 10−5 for the baseline and fine-tuned model, re-
spectively. Both models are trained using the orig-
inal vocabulary of 250k tokens, at subword level
using the sentencepiece6 model available with the
mBART50 model. Both models were trained on
two Nvidia GTX 3090 with eight batches of gradi-
ent accumulation. At generation time, beam size
was set to eight.

4.2 Model ensemble
Model ensembling is a popular technique to lever-
age the features learned by several models. This is
especially important in our case as the pre-trained
model has been trained on data not constrained to
the domain. As the pre-training step is performed
on data that does not belong to the task domain, it
could generate structures or patterns that are not
commonly used, even when keeping the sentence’s
intended meaning. In order to balance the provided
data, we ensemble the best checkpoint from the
baseline and the fine-tuned mBART. Thus, next to-
ken prediction during inference is done according
to the combined probability from both models.

Implementation Ensembling was performed us-
ing the standard fairseq generation script. The two
models ensembled were the same checkpoints at
400k updates reported for the individual systems.
Beam size was set to eight as in the previous exper-
iments.

5 Experiments and Results

Multilingual fine-tuning. Our first hypothesis is
that the use of pre-trained models could improve
translation performance. Therefore, we compare
our system with a baseline system with the same
vocabulary and parameter configuration with ran-
dom initialization to measure the impact of the
translation step. Tables 2 and 3 show the transla-
tion results for German-French and French-German
translation directions, respectively. Results show
that fine-tuning of pre-trained models improves

6https://github.com/google/
sentencepiece

Figure 1: Validation loss during training for the fine-
tuned mBART (fine-tuned) and randomly initialized
(Random init.) models.

BLEU ∆BLEU
Baseline 28.98 -
mBART50 31.69 2.71
+Ensemble 31.69 0.00

Table 2: Results measured in BLEU for the German to
French translation direction

translation quality in both directions by 2.3 BLEU
points on average, showing that a more informed
model initialization significantly impacts the final
model performance. It is worth noticing that we ex-
pected the fine-tuning approach to converge faster
than the randomly initialized baseline, but they
both show similar behaviors and required approxi-
mately 400k training updates. Figure 1 show that
the fine-tuned model’s validation loss is lower over
the entire training but both converge to the best
value at the seventh epoch.

Model Ensemble. Our second hypothesis is that
the pre-training step on the out-of-domain data may
affect the model’s phrasing at inference time, and
ensembling with the baseline trained only on the
provided constrained data could improve its perfor-
mance. Results show that, although a minor im-
provement of 0.3 BLEU points has been reported
for the French to German translation direction, it
is not consistent on German to French, where no
performance difference has been observed. These
results may indicate that the pre-training step has
a limited impact on the final domain performance
and that the fine-tuning step on the provided con-
straint data is the most crucial factor in the final
model’s domain adaptation.
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BLEU ∆BLEU
Baseline 21.73 -
mBART50 23.63 1.90
+Ensemble 23.93 0.30

Table 3: Results measured in BLEU for the French to
German translation direction

6 Conclusions

This work describes the TALP-UPC system for
the WMT 2021 shared news translation task for
French-German and German-French. Experimen-
tal results show that pre-trained models help im-
prove translation performance in this kind of sce-
nario, even for high-resource language pairs with
millions of parallel sentences available, with 2.71
points for German-French translation direction and
1.90 points for French-German. Results also show
that ensembling of pre-trained and randomly ini-
tialized models can lead to minor performance im-
provements (up to 0.3 BLEU) but not consistently
on both tested languages.

In future work, better results may be obtained
by combining fine-tuned pre-trained models with
traditional back translation. Both techniques would
benefit from the additional monolingual in two dif-
ferent aspects of the NMT model, initialization and
additional training on the monolingual data pro-
vided.
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Abstract

We describe our two NMT systems sub-
mitted to the WMT2021 shared task in
English-Czech news translation: CUNI-
DocTransformer (document-level CUBBITT)
and CUNI-Marian-Baselines. We improve the
former with a better sentence-segmentation
pre-processing and a post-processing for
fixing errors in numbers and units. We
use the latter for experiments with various
backtranslation techniques.

1 Introduction

In this paper, we describe our two NMT systems
submitted to the WMT 2021 English-Czech news
translation shared task: “CUNI-DocTransformer”
(Charles University document-level Transformer)
and “CUNI-Marian-Baselines”. In addition, we
submitted also “CUNI-Transformer2018”, which
is exactly the same system (sentence-level) as sub-
mitted in 2018 (Popel, 2018).

CUNI-DocTransformer uses the same model as
submitted last year (Popel, 2020), but with im-
proved sentence segmentation (Section 3.1) and
number-unit postprocessing (Section 3.2). This
system was submitted for both English→Czech
and Czech→English.

CUNI-Marian-Baselines is an attempt at reimple-
mentation of the original CUNI-Transformer2018
in Marian (Junczys-Dowmunt et al., 2018), where
we experiment with various setups of tagged back-
translation (Section 4). This system was trained
only for English→Czech.

According to automatic evaluation provided
by the WMT organizers (Table 1), CUNI-
DocTransformer is the third best English→Czech
system.

2 Common settings

Both our systems use the Transformer (Vaswani
et al., 2017) architecture, checkpoint averaging

cased BLEU chrF

system ref A ref B ref A

Facebook-AI 24.80 (1) 22.69 (1) 0.5358
Online-W 23.02 (2) 21.57 (2) 0.5285
CUNI-DocTransformer 22.19 (3) 19.85 (3) 0.5170
CUNI-Transformer2018 21.63 (4) 19.67 (4) 0.5091
eTranslation 21.03 (5) 19.38 (5) 0.5063
Online-A 20.16 (7) 18.18 (7) 0.4989
CUNI-Marian-Baselines 20.09 (6) 18.29 (6) 0.4992
Online-B 20.04 (8) 17.90 (8) 0.4956
Online-Y 18.13 (9) 16.13 (9) 0.4807
Online-G 15.30 (10) 13.87 (10) 0.4570

Table 1: Evaluation of English→Czech WMT21 sys-
tems. The systems are ordered by BLEU with refer-
ence A, ordering by the other metrics is provided in
parentheses. Names of systems described in this paper
are in bold.

(using the last 8 checkpoints) and a 32k joint
English-Czech subword vocabulary. Both systems
are trained on CzEng 2.0 (Kocmi et al., 2020)
with 61M authentic parallel and 127M synthetic
(back-translated) sentences (see Table 2), but the
English→Czech CUNI-DocTransformer does not
use directly the EN-mono section,1 while CUNI-
Marian-Baselines uses all three sections including
EN-mono (i.e. using forward-translation).

Both systems use Block-backtranslation (Popel
et al., 2020), although CUNI-Marian-Baselines
uses too small block size, so it does not have the
expected positive effect as described in Section 4.

3 DocTransformer improvements

3.1 Sentence segmentation

CUNI-DocTransformer was trained on multi-
sentence sequences of up to 3000 characters and

1The synthetic data in CzEng 2.0 were prepared using it-
erated backtranslation, so the EN-mono data were used for
training a Czech→English system, which produced the En-
glish translation of the CS-mono data in CzEng 2.0. Thus,
indirectly also the EN-mono data were used for training the
English→Czech CUNI-DocTransformer.
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sentence words (M)data set
pairs (M) EN CS

authentic 61 617 702
EN-mono (NewsCrawl 2016–2018) 76 1296 1474
CS-mono (NewsCrawl 2013–2018) 51 700 833

total 188 2613 3009

Table 2: Training data sizes (in millions). All the data
are taken from CzEng 2.0.

750 subwords. However, the WMT submission for-
mat requires a segment-level alignment and also the
CUNI-DocTransformer decoding employs overlap-
ping sequences where sentence alignment is needed
(for details see Popel (2020)). Thus, the sentences
within a sequence are separated with a special token
on both source and target side (both during train-
ing and at inference time), which allows a simple
extraction of the sentence alignment.2

Some segments in the WMT input format con-
tain multiple sentences. When treating such seg-
ments as a single sentence, the resulting transla-
tions often missed sentence-initial capital letters
because there were almost no such examples in the
training data, where multiple sentences would not
be separated by the special token.

We thus decided to first split the input segments
into sentences using UDPipe (Straka et al., 2016).
Unfortunately, UDPipe tends to over-segment.3

Such over-segmentation may lead to serious errors
in the translation, even when using the document-
level model. We thus restrict the sentences bound-
aries detected by UDPipe only to boundaries af-
ter sentence-final punctuation, using a simple rule-
based segmenter from Udapi (Popel et al., 2017).
This improved BLEU on our dev set slightly.

3.2 Number-unit post-processing

We noticed three types of translation errors related
to numbers and units.

1. Attempt at converting numbers and units.
For example, the Czech sentence Je vysoký
pouhých 190 cm (meaning He’s only 190 cm
tall) was translated as He’s only six feet tall.

2If the number of special tokens on the source side does
not match the number of special tokens on the target side at
inference time, we back off to translating each sentence in a
given sequence independently.

3UDPipe is trained on Universal Dependencies (Zeman
et al., 2018), where titles and headlines with no final punctua-
tion are treated as sentences, which need to be detected by the
sentence segmentation.

Note that six feet is 183 cm, so the translation
was not exact.

2. Converting units without numbers. For exam-
ple, 27 Kč was translated as $27, while the
correct translation should be 27 crowns or 27
CZK.

3. Not converting separators. English uses com-
mas (or thin spaces) as thousand separators
and dots as decimal separators, but Czech uses
the opposite convention (with space being a
more common thousand separator than dot).
So e.g. Czech 179,500 kg means 179 and
a half kg (with precision up to 1 gram) and
the correct translation to English should be
179.500 kg, but CUNI-DocTransformer (and
many other systems) keeps the phrase untrans-
lated, resulting in a thousand times higher
value.

The first type is quite rare – 0.7% of numerical
expressions with units in cs-en and 0.6 in en-cs, ac-
cording to Table 3, while some of these cases may
be correct translation (correctly converted num-
ber and unit). The second type is more frequent
– 11.1% and 6.5%, respectively. The third type is
also frequent – in 100,000 Czech sentences from
CzEng 2.0 cs-mono, there were 2594 numbers with
a separator and out of these 275 (10.6%) were not
correctly converted in the English CUBBITT trans-
lations; similarly in 100,000 English sentences in
en-mono, there were 4376 numbers with a separa-
tor and out of these 263 (6.0%) were not converted
in the Czech CUBBITT translations. We have no-
ticed all three types of errors not only in CUBBITT,
but we have not inspected these other MT systems
in detail yet.

We implemented a rule-based tool which tries
to fix such errors in post-processing.4 It detects
imperial/SI units of length, weight, speed, area and
volume; units of temperature (Fahrenheit/Celsius)
and currencies (USD, CZK, EUR), but it can be
easily extended. By default, it keeps the units and
numbers the same (except for the thousand/decimal
separators), but it can be configured to convert the
units and numbers. We had to deal with several
edge cases, such as various ways how to write num-
bers and units or handling multiple numbers in a
sentence with a possibly changed word order (using
a word aligner).

4https://github.com/vsvandelik/
cubbitt-fixer

124



kept cs-en en-cs

number unit # % # %

A yes yes 2 689 86.5 3 548 85.7
B yes no 346 11.1 268 6.5
C no yes 21 0.7 24 0.6
D no no 21 0.7 13 0.3
E detection failure 31 1.0 287 6.9

total 3 108 100.0 4 140 100.0

Table 3: Automatic analysis of numerical expressions
with units in a sample of 100 000 sentences from the
synthetic parts of CzEng 2.0. Numerical expressions
that were detected only in the source sentences, but not
in the (MT) translation, are marked as detection failure.
Cases B and C where only the unit or only the number
were converted can be safely considered as errors – so
the percentages are marked in bold.

Using our tool, we analyzed a sample of the
synthetic training data in CzEng 2.0 and found out
that at least 11.8% of Czech and 7.1% of English
expressions with numbers and units are translated
wrong, see Table 3.

After submitting CUNI-DocTransformer, we an-
alyzed the WMT2021 news test sets and found
out that there were only 4 sentences affected by
our post-processing. All 4 cases were of the same
type – “korun” was translated as “$”, which was
corrected to “crowns”,

4 Experiments in Marian

The goals of the experiments described in this sec-
tion were:

• Reimplement the Block-backtranslation train-
ing (Popel et al., 2020) in Marian (Junczys-
Dowmunt et al., 2018). Block-backtranslation
was first implemented in the Tensor2Tensor
framework in the CUBBITT system, also
known as CUNI-Transformer2018 (Popel,
2018).

• Explore the effect of Block-backtranslation
(vs. standard shuffled backtranslation (Sen-
nrich et al.)), checkpoint averaging and
Tagged backtranslation (Caswell et al., 2019).

• Try a novel type of Tagged backtranslation
with tags on the target side.

• Explore interactions of the above-mentioned
methods.

4.1 Marian settings

We followed the standard Transformer Big hyper-
parameters, with 6 encoder and 6 decoder lay-
ers (unlike CUNI-DocTransformer, which has 12
encoder layers). Other differences from CUNI-
DocTransformer are: Marian was trained on sen-
tences (no document level) of up to 150 subwords
(--max-length 150). It was trained on a sin-
gle GPU (instead of 8), but using 8 batches per
updated (--optimizer-delay 8), thus result-
ing in a similar effective batch size. Due to time
reasons we trained all our Marian models just for
a single epoch on the whole CzEng 2.0 training
data, containing all three parts: authentic parallel
data, synthetic CS-mono and synthetic EN-mono,
i.e. using both backtranslation and forward trans-
lation (Ueffing et al., 2007; Kim and Rush, 2016).
The English→Czech CUNI-DocTransformer was
not trained on the EN-mono part, but it was trained
“until convergence”, for 700k updates (which is not
easily converted to epochs because the authentic
data was upsampled for the Block backtranslation),
i.e. several times more updates that the Marian
model. Finally, we accidentally used too small
blocks in the Block backtranslation, as described
in the following section.

4.2 Replicating CUBBITT

In our first experiment, we tried to replicate the
CUNI-Transformer2018, which also uses the Trans-
former Big hyperparameters (with 6 encoder and
6 decoder layers) and sentence-level training. Our
Marian results were about 1.5 BLEU worse on var-
ious WMT dev sets on average, which is better
than we expected when training for a single epoch
only. According to our preliminary experiments,
including forward-translation data (EN-mono in
our case) makes the initial training faster (i.e. bet-
ter BLEU after the first epoch), although it does
not improve the final BLEU when training until
convergence. Forward translation data are great for
fast uptraining and model distillation – the newly
trained model is being trained to behave similarly
as the original model used to produce the synthetic
translations. The synthetic translations are consis-
tent (if no noising is used) – the same sentence is
translated always the same way.

While the final BLEU results are good enough,
the learning BLEU curves on Figure 1 do not show
the camel-shape progress typical for Block Back-
translation Popel et al. (2020). We also did not
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observe the synergy effect of Block backtransla-
tion and checkpoint averaging. The explanation is
simple: when dividing the data for Block backtrans-
lation, we accidentally used 10 blocks of authentic
data and 20 blocks of synthetic data. Thus there
was less than one checkpoint per each block on
average, which goes against the main idea of Block
backtranslation, where each block of authentic or
synthetic data should be big enough to fit at least
8 checkpoints (considering checkpoint averaging
with 8 checkpoints). We think this is the reason
why we do not see any significant differences be-
tween block and shuffled in Tables 4 and 5 and also
between these two tables (as an effect of checkpoint
averaging).

4.3 Tagged backtranslation

For our experimenting, we decided to try labeling
the data based on its authenticity — The labels
would have two parts, one specifying whether the
source side was an authentic sentence, or created us-
ing back translation or forward translation (Ueffing
et al., 2007; Kim and Rush, 2016), and the other
part specifying the same for the target side. We
tried having no labels at all, labeling only one side
or the other, or labeling both sides. However, in all
these scenarios, every label that existed specified
the authenticity of both the source and the target
side. This is very similar to tagged backtranslation
(Caswell et al., 2019) but we tried using our labels
on the target side as well and we explored possi-
ble synergy between block ordering or checkpoint
averaging by trying the different versions.

Since all of czeng20-train, czeng20-enmono,
czeng20-csmono were used, the labels were
auth+auth, auth+synth and synth+auth.
In each dataset, where the label was present, it was
situated at the beginning of each sentence, space-
separated from the sentence itself.

In addition to the main experimenting with the
four variants of source and target side labeling, we
created versions with data ordered in blocks (of
authentic vs backtranslated data). This resulted in
eight versions being trained — all combinations of:
source side labeling yes/no, targets side labeling
yes/no, block order / completely shuffled data.

When the training data was ordered into blocks,
there were about 10 blocks of each of the data
kinds (czeng20-train, czeng20-csmono, czeng20-
enmono) meaning 30 blocks in total. With our
checkpoint frequency this meant that one block

was slightly smaller than the data seen between
two neighboring checkpoints, which are very small
blocks. The completely shuffled datasets were cre-
ated from the block ones by shuffling them using
a random permutation. The order of data points
was the same among all block-ordered datasets and
same among all completely shuffled datasets.

For time reasons, we only managed to train
each model on a single epoch (using marian’s
--after-epochs 1). From the training, we ob-
tained eight variants, which we then did checkpoint
averaging on, creating additional eight variants. We
then evaluated these 16 variants on the wmt17 new-
stest dataset, and chose two representing models
for each — one was the model at the end of the
training, the other was the model that achieved the
best BLEU score on wmt17. We evaluated these
32 models on concatenation of wmt15, wmt16 and
wmt18 and chose those seven models that reached
the best BLEU on this testset.

4.4 Results

We observed some differences in performance
among the trained versions. The images below
show the development of BLEU score (measured
on a test set, not the training data) as the train-
ing progressed. We can see that there are differ-
ences among the versions but it is hard to find a
pattern in them. They also do not seem to be consis-
tent among the test sets — wmt15, wmt16, wmt17,
wmt18. When wmt15, wmt16 and wmt17 are con-
catenated, the differences seem to largely disappear
(see the tables below) and we still do not see any
clear pattern in the results.

We also fail to see clear differences in perfor-
mance between block ordering vs. completely shuf-
fled corpora, and checkpoint averaging vs. no aver-
aging. There is also no synergy between those two
in our results, which is very likely caused by our
setup of extremely small blocks. The blocks used
in CUBBITT were large enough to contain all eight
averaged checkpoints of certain models, while our
blocks didn’t even fully contain one checkpoint.

5 Conclusions

In this paper, we presented two sets of experiments:
automatic correction of numeric expressions with
units in rule-based post-processing and various set-
tings of Tagged backtranslation.

The correction of numeric expressions with units
focuses on errors which are relatively rare and do

126



Source labeling Target labeling Ordering best-BLEU final-BLEU
yes yes block 27.3 27.4
yes yes shuffled 27.3 27.2
yes no block 27.2 27.4
yes no shuffled 27.2 27.3
no yes block 27.2 27.2
no yes shuffled 27.4 27.4
no no block 27.3 27.3
no no shuffled 27.5 27.5

Table 4: Both BLEU scores shown were measured no the concatenation of wmt15, wmt16 and wmt18. best-BLEU
is the score of the model that achieved the best BLEU on wmt17, while final-BLEU is the BLEU of the model at
the end of the training. All of the models in this table are without checkpoint averaging.

Source labeling Target labeling Ordering best-BLEU final-BLEU
yes yes block 27.4 27.4
yes yes shuffled 27.2 27.2
yes no block 27.5 27.5
yes no shuffled 27.2 27.2
no yes block 27.3 27.3
no yes shuffled 27.4 27.4
no no block 27.3 27.3
no no shuffled 27.5 27.5

Table 5: This table contains the BLEU scores of models with checkpoint averaging. The columns are the same
and have the same meaning as in the previous table.

Source labeling Target labeling Ordering checkpoint averaging point wmt21 BLEU
yes no blocks yes last 20.1
yes no blocks no last 20.0
yes no blocks yes best 19.9
no no shuffled no last 19.9
no no shuffled no best 19.6
no no shuffled yes last 19.6
no yes shuffled no last 19.6

Table 6: These are the BLEU scores of the submited models on the wmt21 test set.
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Figure 1: wmt16 BLEU training curves of averaged
models

not affect automatic metrics such as BLEU much,
but can result in serious misunderstanding of the
meaning of the translation. Unfortunately, these
errors won’t be properly reflected even in the of-
ficial WMT (context-sensitive, but sentence-level)
manual evaluation, where each sentence’s score is
weighted the same, even if some errors are crucial
for the meaning of the whole document.

The experiments with Tagged backtranslation
using a Marian reimplementation of CUBBITT
did not show any substantial differences in the re-
sults nor any consistent pattern. However, we hope
that future work continuing the research on vari-
ous types of training data (authentic vs. synthetic;
forward vs backward; different domains) and their
synergies may bring new results and better under-
standing of the backtranslation training etc.

Figure 2: wmt17 BLEU training curves of averaged
models

Figure 3: wmt18 BLEU training curves of averaged
models

Figure 4: wmt16 BLEU training curves of non-
averaged models

Figure 5: wmt17 BLEU training curves of non-
averaged models
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Figure 6: wmt18 BLEU training curves of non-
averaged models
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Abstract

This paper describes our submission to the
constrained track of WMT21 shared news
translation task. We focus on the three rel-
atively low resource language pairs Bengali
↔ Hindi, English ↔ Hausa and Xhosa ↔
Zulu. To overcome the limitation of rela-
tively low parallel data we train a multilingual
model using a multitask objective employing
both parallel and monolingual data. In addi-
tion, we augment the data using back trans-
lation. We also train a bilingual model in-
corporating back translation and knowledge
distillation then combine the two models us-
ing sequence-to-sequence mapping. We see
around 70% relative gain in BLEU point for
En ↔ Ha and around 25% relative improve-
ments forBn↔ Hi andXh↔ Zu compared
to bilingual baselines.

1 Introduction
Neural machine translation (NMT) witnessed a lot
of success in the past few years especially for high
resource languages (Vaswani et al., 2017). Improv-
ing the quality of low resource languages is still
challenging. Some of the popular techniques are
adding high resource helper languages as in multi-
lingual neural machine translation (MNMT) (Dong
et al., 2015; Firat et al., 2016; Ha et al., 2016; John-
son et al., 2017; Arivazhagan et al., 2019), using
monolingual data including pre-training (Liu et al.,
2020), multi-task learning (Wang et al., 2020), back
translation (Sennrich et al., 2016) or any combina-
tion of these methods (Barrault et al., 2020) and
system combination of multiple systems (Liu et al.,
2018).

This paper describes the Microsoft Egypt Devel-
opment Center (EgDC) submission to the WMT21
shared news translation task for three low resource
language pairs (six directions), Bengali↔ Hindi
(Bn ↔ Hi), English↔ Hausa (En ↔ Ha) and
Xhosa ↔ Zulu (Xh ↔ Zu). We focus on the
constrained track because it is easier to compare

different systems and it is always possible to im-
prove performance by adding more data. The main
features of our approach are as follows:

• Using a recently proposed multitask and mul-
tilingual learning framework to benefit from
monolingual data in both the source and target
languages (Wang et al., 2020).

• Using knowledge distillation (Freitag et al.,
2017) to create bilingual baselines from the
original multilingual model and combining it
with the multilingual model.

The paper is organized as follows. Section 2
gives an overview of the data used in the con-
strained scenario, followed by section 3 that gives
a detailed description of our approach. Section 4
presents our experimental evaluation. Finally, our
findings are summarized in Section 5.

2 Data
Following the constrained track, we use bitext data
provided in WMT21 for the following pairs: Ben-
gali ↔ Hindi, English ↔ Hausa, Xhosa ↔ Zulu
and English ↔ German. Statistics of the paral-
lel data used for the three pairs in addition to the
German helper are shown in Table 1. We also use
monolingual data for all previously mentioned lan-
guages provided in WMT21 for techniques such as
multi-task training and back-translation. Statistics
of the monolingual data used for the 6 languages in
addition to the German helper are shown in Table
2. For very low resource languages, Hausa, Xhosa
and Zulu, we use all the available monolingual
data, e.g. NewsCrawl + CommonCrawl + Extended
CommonCrawl for Hausa, and Extended Common-
Crawl for both Xhosa and Zulu. For relatively high
resource languages, Bengali, Hindi, English and
German, we only use a subset of the provided data
mostly from NewsCrawl due to its high-quality.
In addition to the NewsCrawl monolingual subset,
we add a sampled subset from CommonCrawl to
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Language pair # of sentences
Bengali↔ Hindi 3.36M
English↔ Hausa 750K
Xhosa↔ Zulu 94K
English↔ German 84.8M

Table 1: Bitext data used for bilingual and multilingual
systems. For each language pair, we use all available
sources released in WMT21

Language # of sentences
Raw Cleaned

Bengali 53.8M 53.3M
English 75M 73.5M
German 111.2M 109.9M
Hausa 10.8M 6.2M
Hindi 60.2M 59.8M
Xhosa 1.6M 950K
Zulu 2M 1.4M

Table 2: Monolingual data used for multi-task training
and back-translation

avoid biasing into the news domain especially for
Bengali↔ Hindi and Xhosa↔ Zulu whose target
evaluation domain come from Wikipedia content.

2.1 Data Filtering

For Bengali, English, Hindi and German, we apply
fastText 1 language identification on the monolin-
gual data to remove sentences which are not pre-
dicted as the expected language. We do the same
for Hausa, Xhosa and Zulu using Polyglot 2 be-
cause fastText does not cover these three languages.
The resulting size of the monolingual data of each
language is shown in Table 2.

3 System Architecture
The final MT system in each direction is an en-
semble of two NMT models comprising a bilingual
model (one for each of the six primary directions)
and a multilingual model trained to provide trans-
lations for 8 directions (the six primary directions
plus English↔ German). The multilingual system
uses a recently proposed multitask framework for
training (Wang et al., 2020). We describe the indi-
vidual systems in Subsection 3.1. This is followed
by presenting our system combination techniques
in Subsection 3.2. Finally we present the archi-
tecture of the submitted system highlighting our

1https://fasttext.cc/docs/en/language-identification.html
2https://github.com/aboSamoor/polyglot

design decisions in Subsection 3.3.

3.1 Individual Systems

This subsection describes the individual systems
and their training leading to the proposed system
combination strategy in the following subsection.
We first build bilingual models for the six primary
directions using the data shown in Table 1 except
the English↔ German. These serve as baselines
to compare to the developed systems. The mod-
els use a transformer base architecture comprising
6 encoder and 6 decoder layers and a 24K joint
vocabulary built for Bengali↔ Hindi, a 8K joint
vocabulary built for English ↔ Hausa and a 4K
joint vocabulary built for Xhosa↔ Zulu using sen-
tencepiece (Kudo and Richardson, 2018) to learn
these subword units to tokenize the sentences. In
addition to the baseline bilingual models, we use
knowledge distilled (KD) data and back-translated
(BT) data generated from a multilingual model to
build another set of bilingual models for each of
the six primary directions. This multilingual model
is described below. The purpose of these models is
to participate in the ensemble along with the multi-
lingual models. The latter bilingual models follow
the same transformer base architecture and joint
vocabulary used in the baseline bilingual models.

The multilingual model combines the 8 trans-
lation directions shown in Table 1. These are the
six primary directions plus English ↔ German
as a helper. The latter is mainly used to improve
generation on the English centric directions. The
model uses a 64K joint vocabulary constructed
using sentencepiece (Kudo and Richardson,
2018) from a subset of the monolingual data of
each language as described in Section 2. The
transformer model has 12 encoder and 6 decoder
layers. In addition, a multitask objective is used
during training to make use of monolingual data.
The objective comprises the usual parallel data
likelihood referred to as MT, a masked language
model (MLM) at the encoder and a denoising
auto-encoder (DAE) (similar to mBART (Liu
et al., 2020)) at the decoder side. The latter two
objectives help leverage monolingual data for
both the encoder and the decoder sides. The
three objectives are combined using different
proportions according to a schedule during the
training. Please refer to (Wang et al., 2020) for
details.
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To summarize we build the following models:

• Bilingual models trained using parallel data
in Table 1 for the 6 primary directions. These
are mainly used as baselines.

• Multilingual models trained using a multitask
objective using parallel and monolingual data
and comprising 8 directions.

• Bilingual models trained using KD and BT
data generated using our best multilingual
model. These are combined with the best mul-
tilingual model as described in 3.2.

3.2 System Combination

System combination or ensembling is known to
improve the performance over individual systems.
There are many ways to create an ensemble (Liu
et al., 2018; Dabre et al., 2019). For example, indi-
vidual models obtained from different checkpoints
during the same training or by training models shar-
ing the same vocab and architecture using different
data or simply different random seeds can be com-
bined using model averaging techniques. Here,
we opt to combine different models since it gener-
ally leads to better performance because different
models tend to be more complementary. To this
end, we propose a simple and effective method to
combine completely different architectures. The
proposed method could be also used in conjunction
with checkpoint and model averaging for further
gains, but we haven’t tried this in our experiments
due to time limitations.

The basic idea of our combination is very simple.
Assume we have the translation pair x→ y where
y is the reference translation. The output of model
1 is the pair x → y1 and the output of model 2 is
the pair x → y2. This can be generalized to mul-
tiple systems but we limited our combination to
only two models. We train a new model that takes
the set of hypotheses (possibly augmented by the
source sentence) from the two models to generate
the target sentence. Thus this model combines the
outputs of two models in the ensemble to produce a
translation closer to the original target sentence i.e.
< HY P > y1 < HY P > y2 → y.We also ex-
perimented with adding the source to the input i.e.
< SRC > x < HY P > y1 < HY P > y2 → y
which led to around 0.3 BLEU improvement for
Ha→ En, but we haven’t tried on other pairs due
to time limitation. All combination models use 6

layers encoder and decoder and a 64K vocabulary
similar to the multilingual system. These combi-
nation models use the full bitext and dev data pro-
vided in WMT21 as shown in Table 1. The system
combination is outlined in Figure 1. This ensem-
bling technique can be thought of as providing both
system combination and post-editing capabilities.

3.3 Overall System

Our overall system is depicted in Figure 2. The
first module shows the data input where language
identification (LID) is used to filter the mono-
lingual data. As mentioned in Section 2.1 we
use fastText and polyglot for LID depending on
the language. We first build bilingual baselines
which are not shown in the figure. Then as
shown in the second module, we build 4 multi-
lingual systems using different task objectives as
follows: MT,MT + MLM,MT + DAE and
MT +MLM +DAE trained on the 8 directions
shown in Table 1 following the temperature-based
strategy in (Arivazhagan et al., 2019) to balance
the training data in different resource languages
using T = 5. We pick the best system and use it to
back translate the selected monolingual data. For
most pairs, as detailed in Section 4, we find that
MT +DAE and MT +MLM +DAE are quite
close. Therefore, we use the MT + DAE to do
back translation for all submitted 6 pairs. We use
beam search with beam size = 5 when generating
the synthetic back-translated data. Once we get
the back-translated data (called BT1) we add it to
our parallel and monolingual data and build a new
multilingual model calledMT+DAE+BT1. We
tag the back-translated data with <BT> tag at be-
ginning of each source sentence so the model can
differentiate between the genuine parallel and back-
translated data quality. The resulting model is used
to regenerate the back-translated data (called BT2)
and to knowledge distill the bitext (called KD).
The latter two data sets are augmented and used to
build a bilingual system (calledMT+KD+BT2).
We upsample the KD data set and the upsampling
ratio is selected based on parameter sweeping and
validating the resulting improvement on the val-
idation set. Finally, the latter bilingual model is
combined with our final multilingual model using
the method in Section 3.2 to create our submission.

4 Experimental Results

In this section, we describe the results of our in-
termediate and final systems. We report Sacre-
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Figure 1: The system combination component used for our experiments.

BLEU (Post, 2018) on the validation set released
in WMT21, and both SacreBLEU and COMET
(Rei et al., 2020) using the available implementa-
tion 3 on the official test set released in WMT21.
The results for the six submitted language pairs are
in Tables 3-5. The first row in each table shows
the bilingual baseline which performs relatively
poor due to the limited amount of parallel data
for each pair. This is followed by the four mul-
tilingual systems with different objectives. It is
clear that adding a monolingual objective brings
nice improvements for all language pairs. The
MT +DAE and MT +MLM +DAE perform
closely for all language pairs indicating that target
monolingual data is most important. The next two
rows show the results of adding back-translated
data to the multilingual model and a bilingual base-
line using back-translated and knowledge distilled
data generated from the best multilingual model.
As expected adding back translation brings signifi-
cant improvement to all language pairs. Also using
the multilingual model to create data for a bilin-
gual model shows excellent results that outperform
the multilingual model. Finally, the ensemble, as
expected, performs better than the individual mod-
els. The significant difference between reported
improvements in Ha ↔ En and other directions
shows the effectiveness of adding De↔ En paral-
lel and monolingual data that helps English centric
directions more than other directions. We evaluated
the final submitted systems on the official test set
released in WMT21 as shown in Table 6.

3https://github.com/Unbabel/COMET

System Ha-En En-Ha
bilingual baseline 14.10 13.78
multi. MT 14.32 13.16
+ MLM 16.18 13.94
+ DAE 18.05 14.91
+ MLM + DAE 17.35 15.03
multi. MT + DAE + BT1 21.11 20.24
bilingual MT + KD + BT2 24.43 20.68
ensemble 24.90 21.00

Table 3: Results of Ha-En and En-Ha systems. We re-
port SacreBLEU scores on the validation set provided
in WMT21

System Bn-Hi Hi-Bn
bilingual baseline 18.60 10.90
multi. MT 18.21 10.02
+ MLM 18.82 10.67
+ DAE 18.64 10.40
+ MLM + DAE 19.20 11.27
multi. MT + DAE + BT1 20.18 12.29
bilingual MT + KD + BT2 21.03 12.90
ensemble 21.20 13.30

Table 4: Results of Bn-Hi and Hi-Bn systems. We re-
port SacreBLEU scores on the validation set provided
in WMT21

5 Summary

This paper describes our submission to the con-
strained track of WMT21. We focus on the three
relatively low resource language pairs Bn↔ Hi,
En↔ Ha and Xh↔ Zu. To overcome the lim-
itation of relatively low parallel data we train a
multilingual model using a multitask objective re-
cently proposed in (Wang et al., 2020). In addition,
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Figure 2: The overall system flow used for our experiments

System Xh-Zu Zu-Xh
bilingual baseline 8.00 7.60
multi. MT 7.53 7.47
+ MLM 7.23 7.02
+ DAE 8.53 8.24
+ MLM + DAE 8.20 7.80
multi. MT + DAE + BT1 9.06 8.86
bilingual MT + KD + BT2 9.80 9.17
ensemble 10.00 9.30

Table 5: Results of Xh-Zu and Zu-Xh systems. We
report SacreBLEU scores on the validation set provided
in WMT21

Translation direction BLEU COMET
Ha→ En 17.13 0.149
En→ Ha 16.13 0.086
Bn→ Hi 21.08 0.532
Hi→ Bn 10.93 0.411
Xh→ Zu 9.94 0.180
Zu→ Xh 9.25 0.299

Table 6: Results of the submitted systems. We report
SacreBLEU and COMET scores on the official test set
provided in WMT21. For COMET, we use the recom-
mended model “wmt20-comet-da”.

we augment the data using back translation. We
also use the resulting multilingual model to create a

bilingual model incorporating back translation and
knowledge distillation. Finally, we combine the
two models, using a flexible sequence-to-sequence
approach, to yield our submitted systems. We see
large gains up to 8-10 BLEU points for En↔ Ha
and nice improvements of up to 2-3 BLEU points
for Bn↔ Hi and Xh↔ Zu.
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Monz, Makoto Morishita, Masaaki Nagata, Toshi-
aki Nakazawa, Santanu Pal, Matt Post, and Marcos
Zampieri. 2020. Findings of the 2020 conference on
machine translation (WMT20). In Proceedings of
the Fifth Conference on Machine Translation, pages
1–55, Online. Association for Computational Lin-
guistics.

Raj Dabre, Fabien Cromieres, and Sadao Kurohashi.
2019. Enabling multi-source neural machine trans-

134



lation by concatenating source sentences in multiple
languages.

Daxiang Dong, Hua Wu, W. He, Dianhai Yu, and
Haifeng Wang. 2015. Multi-task learning for mul-
tiple language translation. In ACL.

Orhan Firat, Kyunghyun Cho, and Yoshua Bengio.
2016. Multi-way, multilingual neural machine trans-
lation with a shared attention mechanism. In Pro-
ceedings of the 2016 Conference of the North Amer-
ican Chapter of the Association for Computational
Linguistics: Human Language Technologies, pages
866–875, San Diego, California. Association for
Computational Linguistics.

Markus Freitag, Yaser Al-Onaizan, and Baskaran
Sankaran. 2017. Ensemble distillation for neural
machine translation.

Thanh-Le Ha, Jan Niehues, and Alexander Waibel.
2016. Toward multilingual neural machine transla-
tion with universal encoder and decoder.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation.

Taku Kudo and John Richardson. 2018. Sentencepiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation.

Yuchen Liu, Long Zhou, Yining Wang, Yang Zhao, Ji-
ajun Zhang, and Chengqing Zong. 2018. A com-
parable study on model averaging, ensembling and
reranking in nmt. In Natural Language Process-
ing and Chinese Computing, pages 299–308, Cham.
Springer International Publishing.

Matt Post. 2018. A call for clarity in reporting bleu
scores.

Ricardo Rei, Craig Stewart, Ana C Farinha, and Alon
Lavie. 2020. COMET: A neural framework for MT
evaluation. In Proceedings of the 2020 Conference
on Empirical Methods in Natural Language Process-
ing (EMNLP), pages 2685–2702, Online. Associa-
tion for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation mod-
els with monolingual data. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
86–96, Berlin, Germany. Association for Computa-
tional Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need.

Yiren Wang, ChengXiang Zhai, and Hany Hassan.
2020. Multi-task learning for multilingual neural
machine translation. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1022–1034, On-
line. Association for Computational Linguistics.

135



Proceedings of the Sixth Conference on Machine Translation (WMT), pages 136–139
November 10–11, 2021. ©2021 Association for Computational Linguistics

Miðeind’s WMT 2021 submission

Haukur Barri Símonarson, Vésteinn Snæbjarnarson,
Pétur Orri Ragnarsson, Haukur Páll Jónsson and Vilhjálmur Þorsteinsson

Miðeind ehf., Reykjavík, Iceland
{haukur, vesteinn, petur, haukurpj, vt}@mideind.is

Abstract

We present Miðeind’s submission for the
English→Icelandic and Icelandic→English
subsets of the 2021 WMT news translation
task. Transformer-base models are trained for
translation on parallel data to generate back-
translations iteratively. A pretrained mBART-
25 model is then adapted for translation using
parallel data as well as the last backtransla-
tion iteration. This adapted pretrained model is
then used to re-generate backtranslations, and
the training of the adapted model is continued.

1 Introduction

Our work on machine translation for Icelandic has
been going on for a couple of years as a part of the
government sponsored Icelandic Language Tech-
nology Programme (Nikulásdóttir et al., 2020). By
building on state-of-the-art solutions we have de-
veloped an open and effective translation system
between Icelandic and English.

To achieve this, we collect parallel Icelandic and
English texts which are filtered for good quality
alignments. We also collect monolingual text for
backtranslations. We follow tried and tested meth-
ods in neural machine translation using iterative
backtranslation (Edunov et al., 2018) and adapt the
multilingual denoising autoencoder model mBART-
25 (Liu et al., 2020) for translation.

2 Datasets

We used several parallel and monolingual datasets,
both publicly available and created in-house.

2.1 Parallel data

The parallel data used are ParIce (Steingrímsson
et al., 2020) and the JW300 corpus (Agić and Vulić,
2019). In addition we used a parallel student theses
and dissertation abstracts corpus, IPAC, generated
in-house and sourced from the Skemman reposi-

tory1 as described in (Símonarson and Snæbjarnar-
son, 2021). A breakdown of the data is shown in
Table 1.

Corpus #Sentences
The Bible 33k
EEA regulatory texts 1,700k
EMA 404k
ESO 12.6k
OpenSubtitles 1,300k
Tatoeba 10k
Jehova’s Witnesses (JW300) 527k
Other∗ 93k
IPAC 64k

Table 1: Parallel corpora used. #Sentences are the num-
ber of sentence pairs. Other∗ denotes software local-
izations, Project Gutenberg literature and the Icelandic
sagas.

Following (Pinnis, 2018) we apply simple heuris-
tic filters to the parallel data, mainly for capturing
OCR and PDF errors, and correcting or removing
character encoding errors after deduplication. Fil-
ters include but are not limited to: empty sequence
removal, length cut-offs, character whitelists, mis-
match in case and symbols between languages, edit-
distances between source and target, normalizing
of punctuation, and ad-hoc regular expressions for
Icelandic specific OCR/PDF errors. For a more
in-depth description see (Jónsson et al., 2020).

Other potential parallel datasets are ParaCrawl
(Bañón et al., 2020) and CCMatrix (Schwenk et al.,
2021). Manual review of a couple of hundred ran-
domly chosen lines from ParaCrawl revealed that
the data quality is quite low for Icelandic, many
lines are machine translated or badly aligned. We
therefore did not include ParaCrawl. CCMatrix did
not exist when the project started and we have not

1https://skemman.is
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taken the time to review and integrate it although a
quick inspection indicates that the quality is higher
than in ParaCrawl.

2.2 Data used for backtranslation
We collected and translated monolingual data
for backtranslations, made available in (Símonar-
son et al., 2020), mostly building on the work
in (Edunov et al., 2018). The English sen-
tences (44.7m) are retrieved from the Wikipedia,
Newscrawl and Europarl corpora. The Icelandic
sentences (31.3m) are sourced from the Icelandic
Gigaword Corpus (Steingrímsson et al., 2018).

Lang. Name #Sentences
IS Court rulings 1.8M
IS Supreme court rulings 2M
IS Laws 814k
IS Web of Science 268k
IS Wikipedia 405k
IS Parliamentary proc. 6.2M
IS Misc 350k
IS Newspaper (Mbl) 13.6M
IS Newspaper (Visir) 4.9M
IS Radio transcripts 1M
EN Newscrawl 33.4M
EN Wikipedia 9.3M
EN Europarl 2.0M

Table 2: Monolingual data used for backtranslation.

3 Training of small transformer models

Our earlier models were trained using the
transformer-base configuration described in
(Vaswani et al., 2017) as implemented in Google’s
Tensor2Tensor (TensorFlow-based) (Vaswani et al.,
2018) library. For later models we switched to
Facebook’s Fairseq (Ott et al., 2019) library. An
improved translation task was implemented in
Fairseq to include BPE dropout; it is available in
the greynirseq2 library.

The transformer-base models were trained iter-
atively and used to generate new backtranslations.
We stopped when each language direction had been
trained on backtranslations that were produced by
a model that had itself seen backtranslations at
training time. We compared tagged and untagged
backtranslations, sampling versus beam search and
different mixing ratios (upsampling rate) between
parallel and backtranslated data. Using tagged

2https://github.com/mideind/greynirseq

backtranslations as opposed to no tag showed an
improvement from 16.5 to 17.5 BLEU3 after the
first iteration over the IPAC development set, while
using no backtranslations gave 15.0, so we pro-
ceeded to use tagged translations.

Model BLEU
Transformer-base 16.5
Transformer-base + bt 17.5
Transformer-base + iterative-bt 18.5
mBART (first run) 23.1
mBART (continued) 23.6

Table 3: BLEU scores over IPAC for the EN-IS direc-
tion.

We use the IPAC test set to measure BLEU since
it was available, has a large range of topics (al-
though maybe not a large range of style) and is very
unlikely to be accidentally included in the training
data. The IPAC data is out of distribution with the
rest of the training data but we do not consider that
to be a problem since our goal is a general purpose
model. The WMT dev set did not exist at the time.

We used a joint BPE vocabulary of size 16k and
shared input-output embedding matrices. We pre-
tokenized the input using tokenizer 4 for the
Icelandic side and spaCy (Honnibal et al., 2020) for
the English side. A beam width of 4 was used for
beam search during backtranslation. Each training
iteration took approximately one week on a single
GTX 1080 graphics card. We were pleasantly sur-
prised with how far we got with only this modest
hardware.

3.1 Translation mixing ratio selection and
beam noise

We assessed the impact of the ratio of synthetic
backtranslation data to authentic parallel data on
translation performance. Best results were obtained
with a 1:2 ratio of authentic to synthetic data, using
IPAC (held out from training) for evaluation.

For noising the backtranslation beam outputs, we
follow (Edunov et al., 2018) and used within-k per-
mutation of whole words (with k=3), whole-word
masking, and word dropout. Using sampling and
noised beam outputs yielded comparable results.

3SacreBLEU signature: BLEU+case.mixed+
lang.en-is+numrefs.1+smooth.exp+tok.13a+
version.1.5.1

4https://github.com/mideind/Tokenizer
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4 Adapting mBART-25 for translation

The mBART-25 (Liu et al., 2020) (610M pa-
rameters) language model is far larger than the
Transformer-base model (110M parameters). It
was pretrained on 25 languages, including English
and Swedish, but not Icelandic. We adapt it for
translation from Icelandic to English and vice versa,
using the same human-derived parallel translation
data as for the transformer-base model along with
the synthetic backtranslated corpus in a ratio of
1:2. We do not use any pre-tokenization and in-
herit the BPE sententencepiece vocabulary from
mBART-25 (of size 250k) with the addition of
an Icelandic language marker that was randomly
initialized. We use the same hyperparameters as
in (Liu et al., 2020) and the implementation from
Fairseq (Ott et al., 2019). The models are trained
until their performance on the development sets
plateaus.

The initial learning rate was set to 3e-4. Sixteen
32GB nVidia V100 GPUs connected with Infini-
band were used for training. The effective batch
size was around 10k sequences and the training
took around 4 days of wall clock time per model.

Subsequently, these trained models were used
to generate improved backtranslations. We then
continued training the first iteration of our mod-
els with the new backtranslated data for another
30,000 steps for the Icelandic-English direction,
and 36,000 steps for the English-Icelandic direc-
tion. The same training configurations were main-
tained as for the earlier runs.

Dir. Steps ’21 test ’21 dev EEA
En-Is 40k 22.7 25.9 54.5
En-Is 40k + 36k 24.3 27.8 57.6
Is-En 36k 32.9 30.4 61.0
Is-En 36k + 30k 33.5 31.8 63.2

Table 4: BLEU scores for the mBART-25 adapted trans-
lation models over the newstest2021 and EEA evalua-
tion sets.

The benefit of continuing training of the mBART-
derived models ranges from 0.6 to 3.1 BLEU as
shown in Table 4. BLEU performance is shown for
both the newstest2021 development set as well as
our cleaned-up dataset with sentence pairs from the
EEA regulation corpus. Note that we do not fine-
tune prior to evaluation nor do we perform check-
point averaging.

5 Conclusion

We have shown how a small team with modest
resources can adapt state-of-the-art methods to a
medium resource language and achieve competitive
results on machine translation between English and
Icelandic.

The trained models are available for transla-
tion at https://velthyding.is and will be
made available at the open CLARIN-IS5 repos-
itory. While a formal human comparison of the
current models to the popular Google Translate ser-
vice has not been performed, hundreds of monthly
active users choose our solutions for translation
between Icelandic and English.

6 Future work

We note the relatively small training time of the
mBART adaptation and the lack of Icelandic data
in the pretraining task for mBART as primary fac-
tors that can be addressed for improving results.
Additionally online (or semi-online) self-training
instead of train-then-translate would also improve
results, especially with selective loss truncation as
described in (Zhou et al., 2021). The data selected
for backtranslation should also be expanded for
greater diversity of both genre and vocabulary. Fi-
nally, extending the translation context beyond the
current sentence level is likely to improve results.
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Abstract
This paper describes Allegro.eu submission
for the WMT21 news translation shared
task. We focus on exploring data filtering
and data augmenting methods. We submit-
ted two single-directional models, one for
English→Icelandic direction and other for
Icelandic→English direction. Our news trans-
lation system is based on the transformer-big
architecture, it makes use of corpora filter-
ing, back-translation and forward translation
applied to parallel and monolingual data alike.

1 Introduction

We participated in the WMT21 news translation
shared task for English↔Icelandic language pair.
It is a medium-resource regime with under 10M
parallel sentences. In our experiments we focused
on two approaches for improving translation sys-
tem: data filtering methods inspired by work of
(Jónsson et al., 2020) and data augmentation meth-
ods like back-translation or self-training (Edunov
et al., 2018; Sennrich et al., 2016; He et al., 2019).
We tried to use bi-directional translation models
but single-directional proved to be better. We also
tried to make use of pretraining on monolingual
corpora, but it also was unsuccessful. Krubiński
et al. (2020) showed in their ablation study that
pretraining is the most successful for low-resource
regimes under 1M parallel sentences.

2 Data

2.1 Data Preprocessing
We removed malformed utf-8 encodings, normal-
ized text with NFKC Unicode normalization form,
unescaped HTML, removed control characters and
converted different whitespaces to a basic space
character.

2.2 Data Filtering
We took part in a constrained track for the
English↔Icelandic language pair for the news

translation task. We used similar heuristic for fil-
tering monolingual and parallel data. A proper
sentence pair should fulfil these criteria:
For each sentence separately:

• length in chars ∈ (10, 500)

• length in words ∈ (2, 100)

• average word length in chars < 12

• max word length in chars < 28

• digit ratio < 0.15

• outside alphabet ratio < 0.015

• language detection probability > 0.9

Criteria calculated on a sentence pair:

• no digit sequence mismatch

• Levenshtein distance > 5

• Poisson based length logprob > -10

For language identification we used the CLD2 li-
brary. We arrived at these threshold values by ana-
lyzing outliers of clean corpora: newsdev2021 de-
velopment dataset and Jónsson’s cleaned ParIce cor-
pus (Jónsson et al., 2020). Our filtering procedure
is inspired by Jónsson’s and extracts 72% of the
same sentences they extracted from the raw ParIce
corpus (Barkarson and Steingrímsson, 2019). Each
heuristic removes up to 5% of lines from those
clean corpora, when all thresholds would be ap-
plied they would remove around 9% from the
cleaned ParIce corpus. For all available raw paral-
lel corpora this procedure would remove 35% of
sentences. Table 1 shows sizes of raw and filtered
corpora available in the constrained track.

2.3 Poisson based length filtering
This section describes an improved method of filter-
ing sentences based on their lengths. A simple ratio
of sentence lengths is a common method, but it is
often too strict for short sentences and too loose
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Parallel corpora raw filtered left
ParIce.1_1 3.56M 1.98M 0.56
ParaCrawl.7_1 2.39M 1.95M 0.81
WikiMatrix.1 313k 177k 0.57
wikititles.3 50k 2k 0.04
Total 6.31M 4.1M 0.65

Table 1: Sizes of parallel corpora.

for longer ones. We are using a simple assump-
tion, that the distribution of lengths of expected
translation is given by the Poisson distribution with
a mean equal to a length of the source sentence.
This type of length filtering is used by bicleaner
framework (Sánchez-Cartagena et al., 2018). We
use a correction factor scl = 1.04, which is a ratio
of chars in the English side to the Icelandic side
for the whole parallel corpus. We multiply source
length by it or by its reciprocal before calculating
probabilities, depending on the context. Figure 1
compares this method with a ratio-based heuristic
where the allowable ratio range is (0.5, 2). For this
language pair the correction factor is close to 1.0,
but for other language pairs it can deviate more,
which can lead to bias when using a simple ratio-
based heuristic.

Figure 1: Distribution of lengths of parallel corpora.
As depicted, Poisson-based heuristic allows more varia-
tion for shorter sentences and lower variation in length
for longer ones.

2.4 Translation postprocessing
Our system has a tendency to generate the same
quotation as in source text. Therefore, before sub-
mitting our translations for evaluation, we applied
simple regular expressions to fix quoting. We made
sure that only (" ") for English submission was used
and for Icelandic we made sure that („ “) was used.

3 System overview

All of our models are based on the Transformer big
architecture, as described in Vaswani et al. (2017).
For training we used OpenNMT-py framework
(Klein et al., 2017) together with sentencepiece
tokenizer (Kudo and Richardson, 2018) unigram
model of size 32k with full character coverage. We
trained models on A100 GPU for 210k steps with a
batch of 8192 tokens which amounts to around 12h
per model. We used half-precision and tied embed-
dings. For optimization we used Adam (Kingma
and Ba, 2014), with a linear warmup for learning
rate for 15k steps up to 0.0005 and inverse square
root decay afterwards. Additionally, all of our mod-
els were randomly initialized.

4 Results

Results are presented in Table 3. We trained a
tokenizer on a cleaned ParIce corpus. A baseline
model we trained on all available parallel corpora
and achieved 18.1 BLEU in English→Icelandic
direction and 24.0 BLEU in Icelandic→English
direction.

4.1 Data filtering impact
We ran 4 variants with the same parameters as de-
scribed at the beginning of section 3, but only for
100k steps. We compared the translation quality of
models trained with filtered training corpus and the
impact of cleaning data used in training tokenizer.
We used the aforementioned cleaned ParIce corpus
(Jónsson et al., 2020) to train the tokenizer. Table
2 presents the results of this comparison.

4.2 Back-translation of monolingual corpora
We took 10M monolingual sentences for each lan-
guage and filtered them as described in section 2.2.
For English we took only News Crawl from 2020,
for Icelandic we used News Crawl 2020 and also
Icelandic Gigaword to obtain full 10M sentences.
We translated the English source to Icelandic, then
translated it back to English. Then we compared
those second translations to source by GLEU score
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clean tokenizer raw tokenizer
clean corpus 16.6/22.6 14.0/19.4
raw corpus 16.2/22.2 14.2/18.9

Table 2: Comparison of impact of filtering data. Values
reported are BLEU scores for en→is/is→en direction
for newsdev2021. We can easily see that training to-
kenizer on clean data has a big impact. Also we can
notice that removing 35% of parallel corpora can im-
prove the quality of the model given the same amount
of compute.

(Wu et al., 2016) and filtered the best 40% of pairs
of original source and first translation based on that.
GLEU score is a variation on the BLEU score. It
is claimed to be a more accurate measure of single
sentence translation quality. We repeated this pro-
cedure for 10M Icelandic monolingual sentences. It
is interesting to note that 4.4% and 2.0% of second
translations were the same as the original source,
for English and Icelandic respectively. We then
created English biased corpus which consisted of:

• 4M of clean parallel corpus

• 4M of English based back-translation where
we used original source as target

• 4M of Icelandic base forward translation
where we used our first translations as target

Then we used this corpus to train a new model, it
achieved 26.8 BLEU in Icelandic→English direc-
tion.

4.3 Back-translation of parallel corpora
We used this newly acquired model to translate the
Icelandic side of clean parallel corpus to English
and likewise filtered by GLEU score for the English
side of the corpus, finally we extracted 75% of most
similar pairs. It is interesting to note that 11% of
translations were the same as the English side of
the parallel corpus. We then created a corpus for
training English→Icelandic model, this time with
typical setup for back-translation where original
sentences were used as a target:

• 4M of clean parallel corpus

• 4M backtranslated monolingual corpus

• 3M backtranslated parallel corpus

Then we used this corpus to train a new model. It
achieved 23.6 BLEU in English→Icelandic direc-
tion and that was our final model for this direction.

newsdev2021
Model En→Is Is→En

baseline 18.1 24.0
BT and FT mono - 26.8

BT mono and parallel 23.6 -
BT mono and parallel - 27.2

final models 23.6 27.4
newstest2021

final submission 22.7 33.3

Table 3: Comparison of forward-translation (FT) and
back-translation (BT) model trained on monolingual
and parallel corpora

Then, analogously, we used this model to translate
the other side of the clean parallel corpora and filter
by GLEU score. It is interesting to note that also
11% of translations was the same as the Icelandic
side of the parallel corpus. We then created a cor-
pus and trained Icelandic→English model which
achieves 27.2 BLEU on the development set. For
this direction our final system was an ensemble of
this new model and previous best.

4.4 Denoising
As it has been recently demonstrated by Raffel
et al. (2020), transfer learning can be success-
fully applied to sequence-to-sequences models.
Therefore, we tried doing unsupervised de-noising
pre-training based on provided monolingual data.
We experimented with three different denoising
schemes:

• Token-based masked language modeling (De-
vlin et al., 2019)

• Whole Word Masking objective inspired by
BERT models released in May 2019

• BART-like denoising with text infilling and
sentence permutation (Lewis et al., 2020)

We tried it in two regimes. One where we pretrain
model and then finetune it on translation down-
stream task. The other where we train both de-
noising and translation objectives simultaneously.
However, we didn’t observe any benefits from do-
ing this. The reason for this is unknown.

5 Conclusion

This paper describes Allegro.eu submission for the
WMT21 news translation shared task. We took part
in constrained track for the English↔Icelandic lan-
guage pair only. Participation in this task allowed
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us to deepen the understanding of filtering methods
common in NMT. The experiments demonstrated
the importance of data filtering in medium-resource
regime machine translation. In this regime, less
data but of higher quality can lead to superior re-
sults.
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Abstract

This system paper describes an end-to-
end NMT pipeline for the Japanese ↔
English news translation task as submit-
ted to WMT 2021, where we explore
the efficacy of techniques such as to-
kenizing with language-independent and
language-dependent tokenizers, normaliz-
ing by orthographic conversion, creating
a politeness-and-formality-aware model by
implementing a tagger, back-translation,
model ensembling, and n-best reranking.
We use parallel corpora provided by WMT
2021 organizers for training, and devel-
opment and test data from WMT 2020
for evaluation of different experiment mod-
els. The preprocessed corpora are trained
with a Transformer neural network model.
We found that combining various tech-
niques described herein, such as language-
independent BPE tokenization, incorporat-
ing politeness and formality tags, model
ensembling, n-best reranking, and back-
translation produced the best translation
models relative to other experiment sys-
tems.

1 Introduction

Despite recent advances in machine transla-
tion made possible by neural networks with
attention mechanism (Bahdanau et al., 2014;
Luong et al., 2015), the Japanese-English pair
remains a challenging language pair for ma-
chine translation systems to handle. Chal-
lenges posed by this language pair are multi-
faceted, starting from seemingly trivial differ-
ences in orthographic representations to deep
structural divergence in syntax. This paper
describes an end-to-end neural machine trans-
lation system and related experiments dedi-
cated to the News Translation Shared Task
where the target language pair is Japanese
↔ English, as part of a submission to the

Sixth Conference on Machine Translation -
WMT 2021. In our experiments, we explored
the efficacy of techniques such as tokeniz-
ing with language-independent and language-
dependent tokenizers, normalizing by ortho-
graphic conversion, creating a politeness-and-
formality-aware model by implementing a tag-
ger, back-translation, model ensembling, and
n-best reranking. We found that normalizing
the text by orthographic conversion did not
improve over the baseline but controlling for
politeness and formality levels of the text in-
creased BLEU by 1.2 points for the En→Ja
direction, and other techniques such as back-
translation, model ensembling, n-best rerank-
ing also produced improvements.

The paper gives a detailed review of prior
work, with a particular focus on WMT 2020
submissions, and then proceeds to describe our
data, model architecture, experiments, results,
and discussion of their implications.

2 Prior Work

In this section, techniques and development
in neural machine translation will be reviewed
with a focus on the techniques and implemen-
tation most recently used for the Japanese-
English language pair. General techniques de-
ployed across papers submitted to WMT 2020
are bitext data filtering, back-translation, fine
tuning with in-domain data, knowledge dis-
tillation, rule-based reranking, transfer learn-
ing, co-reference processing, hyperparameter
search, segmenting by subword units, BPE
dropout, model ensembling, pre-training with
monolingual data, experimenting with differ-
ent word segmentation methods, context word
embedding, domain adaptation, using related
languages in joint training, domain tagging,
reranking using backward and forward scores,
and dual conditional cross-entropy filtering
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(Barrault et al., 2020). In subsequent subsec-
tions, representative methods and techniques
will be described and the impacts of these
methods presented, in so far as they are ap-
plicable to the Japanese-English pair.

2.1 Data Preprocessing
Data filtering, cleaning, and normalizing are
essential steps in an NMT pipeline, due to
the noisy nature of text corpora. A cursory
glance at some of the given parallel corpora
shows that our data could benefit from addi-
tional filtering and cleaning. For instance, the
Paracrawl corpus contains a fair amount of du-
plicates or near duplicates and about 6 percent
of the WikiMatrix corpus contains texts out-
side the source and target language.

Previous submissions to WMT 2020 utilized
a mix of language-independent and language-
dependent data preprocessing methods to pre-
pare the corpora for training. Researchers
also noted a few issues in the parallel corpora
requiring special attention; for example, Kiy-
ono et al. (2020) remarked that their transla-
tion output contains additional transliteration
in brackets after names already transliterated
into katakana, because these patterns are very
common in the KFTT training corpus. They
advised that this issue be handled during pre-
processing, because postprocessing clean-up,
while possible, tended to hurt brevity (Kiyono
et al., 2020). Following this suggestion, we in-
corporated a preprocessing step (described in
section 3) to handle these patterns.

2.2 Tokenization
Tokenization is an indispensable step in many
natural language processing (NLP) applica-
tions. Byte-Pair-Encoding (BPE) by Sennrich
et al. (2016c) is a popular compression algo-
rithm that takes care of splitting words into
subword units based on how frequent these
units are. The main idea of BPE is to recover
smaller subwords that are recurring in fuzzy
‘word’ boundaries in order to compress the
vocabulary and decomposes rare words into
known subwords. BPE is an effective solu-
tion to the issue of rare words, open vocab-
ulary, and agglutinating morphology in some
languages. The algorithm works by splitting
all words into individual characters, adding
them to a vocabulary, and then iteratively

merging the most frequency subword pairs and
adding them to the vocabulary.

Kudo and Richardson (2018) implemented
BPE in SentencePiece, an unsupervised
toolkit for word segmentation. A language-
agnostic tokenizing and detokenizing algo-
rithm that implements subword unit BPE
(Sennrich et al., 2016c) and unigram lan-
guage model (Kudo, 2018) to tokenize the
data, SentencePiece also provides a conve-
nient interface to quickly tokenize and deto-
kenize the data, because its implementation
of BPE treats the sentences as sequences of
Unicode characters, does not rely on language-
dependent logic, and allows training from raw
texts. The developers of SentencePiece exper-
imented their toolkit with and without pre-
tokenization for an English-Japanese transla-
tion task, and found that the performance of
training on raw texts is comparable to training
with pre-tokenization.

Previous submissions to WMT 2020 are di-
vided when it comes to which method was
preferred for tokenization. Three submis-
sions (Kiyono et al., 2020; Oravecz et al.,
2020; Marie et al., 2020) used Sentence-
Piece and three submissions (Kim et al.,
2020; Shi et al., 2020; Zhang et al., 2020)
used language-specific tokenizers to preprocess
Japanese (MeCab) and English (Moses) cor-
pora. MeCab is a popular lattice-based tok-
enizer for Japanese. It builds a graph-like data
structure to hold possible tokens in the text
and then uses the Viterbi algorithm to find the
best path through the graph. Moses is a well-
known statistical machine translation toolkit;
its perl scripts are often used to preprocess En-
glish corpora for NMT training (Koehn et al.,
2007). We experimented with both Sentence-
Piece and language-dependent tokenizers prior
to submission. The details will be outlined in
section 5.1 of this report.

2.3 Model Architecture
Most of the papers submitted to WMT 2020
used the Transformer Big settings described
in Vaswani et al. (2017) for their NMT model
architecture (Marie et al., 2020; Kiyono et al.,
2020; Shi et al., 2020; Oravecz et al., 2020;
Zhang et al., 2020).

Prior to the publication of Attention is All
You Need, prominent approaches to sequence-
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to-sequence modeling include recurrent neural
networks, long short-term memory (Hochre-
iter and Schmidhuber, 1997), and gated recur-
rent neural networks. All of these approaches
suffer from computational bottleneck due to
their sequential nature, which prevents par-
allelization within training examples. The
Transformer did away with convolution and
recurrence and focused on attention mecha-
nisms, allowing for modeling of long-distance
dependencies in parallel. Subsequently, it has
been proven to be very successful at handling
long distance dependency in natural language,
as it allows the model to focus attention on
particular source tokens via computation of
an attention score. The attention score can
be determined by way of different methods,
such as a (scaled) dot product (implemented
in Vaswani et al. (2017)), bilinear functions,
or multi-layer perceptrons. The Transformer
achieved state-of-the-art results in English ↔
French and English ↔ German translation
tasks while cutting down on training time
thanks to parallelization.

2.4 Back-Translation
Back-translation is a commonly used method
in NMT to augment bitext training data by
creating an additional synthetic parallel cor-
pus from monolingual corpora (Sennrich et al.,
2016b). To create back-translated data, a
model that translates from target to source
is required. First, a monolingual corpus of
the target language is used to obtain transla-
tions in the source language. Subsequently,
this monolingual corpus and the translated
synthetic data are appended to the original
training data to train the source to target
model. It is ideal to have a lower ratio of syn-
thetic data to parallel corpus in training the
desired model. As the amount of bitext cor-
pora available for the Japanese-English pair is
well under 20 million sentence pairs, Japanese-
English can be considered to be a medium-
resource language pair and additional back-
translated data could help improve transla-
tions. It should also be noted that there are
limited domain-specific corpora for the lan-
guage pair, and adding additional synthetic
data back-translated from NewsCrawl and
NewsCommentary may help augment the mod-
els.

2.5 Model Reranking
Zhang et al. (2020) implemented model rerank-
ing following Ng et al. (2019). N-best rerank-
ing scores and chooses a translation hypoth-
esis from a list of n-best hypotheses. This
method is based on a noisy channel model and
Bayesian theorem of conditional probability
in log scale, where the weight parameters are
learned from fine tuning a validation set. For
decoding, they used beam search to generate
an n-best candidate list and chose the candi-
date hypothesis that maximizes the objective
conditional probability as the best hypothesis.

Besides the noisy channel approach, rerank-
ing can be done using various criteria, such
as distortion score, word penality, phrase pe-
nality, and so on. Shi et al. (2020) gener-
ated n-best candidates by model ensembling of
forward translation models, backward transla-
tion models, and language models of the tar-
get language and then apply K-batched MIRA
(Cherry and Foster, 2012) or noisy channel
(Yee et al., 2019) to score them. Kiyono
et al. (2020) generated n-best candidates from
Source-to-Target L2R, R2L models, Target-to-
Source L2R, R2L models, Unidictionary Lan-
guage models, and Masked Language models
to compute the scores for reranking.

We reranked translation hypotheses using
perplexity as a criteria.

3 Data
Our system was trained, developed, and tested
fully on data provided by the WMT 2021 or-
ganizers, making it a constrained submission.
Details of the raw parallel corpora prior to sub-
stantial filtering1 used in our baseline and ex-
periment models can be viewed in Table 1.

We used the WMT 2020 development and
test sets to compare various experiment mod-
els against the baseline: 1998 sentences in the
development set in both directions, 1000 test
sentences for the En→Ja direction, and 993
sentences for the Ja→En direction.

From the raw datasets, we applied data fil-
tering to remove noisy data based on two main
criteria, alignment confidence and language

1The original raw WikiMatrix corpus contains 3.8M
sentences. We obtained 3.6M after eliminating sen-
tence pairs that do not have the correct language codes
in the corpus. That is the only filtering applied to the
bitext corpora in Table 1
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Corpus Sentences (M)
JParacrawl 2.0 10.12
News Commentary v16 0.0019
Wiki Titles v3 0.757
WikiMatrix 3.6448
Subtitle Corpus 2.8013
KFTT 0.4438
Ted Talks 0.4462
Total 18.215

Table 1: Size of parallel corpora before filtering

identification. An alignment score is available
for both JParacrawl and WikiMatrix corpora;
we chose 0.6 and 1.0 as the threshold for align-
ment confidence in JParacrawl and WikiMa-
trix respectively. We used fasttext (Joulin
et al., 2017) and its pre-trained language iden-
tification model to identify the language of our
text sentence-by-sentence, and then we filtered
sentence pairs where the language identifica-
tion confidence score is less than 0.8. We also
applied on-the-fly filtering of sentences longer
than 100 tokens during training.

According to Kiyono et al. (2020), the
KFTT corpus contained instances of having
Japanese names followed by its English equiv-
alent in parentheses, which caused their model
to append English names after the Japanese
name in the translation output, for example
キャシディ·ステイ (Cassidy Stay). To
avoid this, we filtered out English translations
of names in Japanese source text, specifically
WikiMatrix and KFTT, so that any English
names in parentheses following its Japanese
equivalent were removed. For English, we nor-
malized punctuation and remove non-printing
characters using the Moses scripts (Koehn
et al., 2007). The amount of parallel training
data after filtering was 12.7 M for training our
submission models.

4 Model Architecture

We trained the parallel corpora using the
Transformer base and Transformer big settings
as described in Vaswani et al. (2017), pre-
sented in Table 2. Pre-submission experiments
were trained under the Transformer Base set-
ting while all submission models were trained
under the Transformer Big setting. We used
the same optimization settings in the Trans-

Hyperparameters T-Base T-Big
Encoder layers 6 6
Decoder layers 6 6
Hidden layers 8 16
RRN 512 1024
dff 2048 4096
Dropout 0.1 0.3
Optimization Adam Adam
Decay noam noam
Learning rate 0.2 0.2
Warmup steps 8,000 8,000
Train steps 20,000 300,000

Table 2: Model Hyperparameters

former big model as in the Transformer base
model. We utilized the OpenNMT toolkit
(Klein et al., 2017) with a Pytorch backend
to train our models. Most submission mod-
els took about 7 days to train on one single
NVIDIA GeForce GTX 1080 GPU under the
Transformer Big setting.

5 Experiments
5.1 SentencePiece and

Language-Dependent Tokenizers
We compared two methods of tokenization for
our system. The first is a tokenization method
based on BPE and SentencePiece, as described
in 2.2. We used SentencePiece (Kudo and
Richardson, 2018) to train SentencePiece mod-
els for Japanese and English with 32,000 as
the vocabulary size. SentencePiece is used to
create a tokenizer that depends on subword
units, similar to Byte Pair Encoding (BPE).
This method of tokenization is especially ef-
fective for languages such as Japanese which
does not use whitespace to separate words, has
agglutinating morphology, and contains many
compound words. Using SentencePiece helps
extract subwords within compound words and
create a more robust tokenizer. The tokenizer
model was used with OpenNMT, which per-
formed tokenization on-the-fly. SentencePiece
was used again to detokenize by removing the
meta symbols from the output translation.

The second tokenization method that we
experimented with is language-dependent.
We tokenized English using Moses, follow-
ing the steps described in Hieber et al.
(2018), namely normalizing punctuation in the
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raw data with normalize-punctuation.perl, re-
moving non-printing characters with remove-
non-printing-char.perl, and tokenizing by tok-
enizer.perl.

For Japanese, we tokenized the data with
fugashi (McCann, 2020), a Python wrapper of
the MeCab morphological analyzer described
in 2.2. After tokenization, we applied BPE
(Sennrich et al., 2016c) on both Japanese and
English with 25,000 merge operations to con-
strain the vocabulary size.

For this comparison, we used a mid-sized
corpus to save time and resources instead of
the full 18M corpus. The number of sentences
after filtering and preprocessing is 6.4M sen-
tences. We trained the models using the Trans-
former Base settings, as described in Table 1.

5.2 Normalizing by Orthographic
Conversion

The Japanese writing system uses a combina-
tion of three distinctive orthographic scripts:
kanji, hiragana, and katakana. Kanji are Chi-
nese characters, used to write content words
such as nouns, verb stems, adjectives, and so
on. Hiragana was derived from kanji. It is a
phonetic syllabary, typically used to write con-
jugational endings, particles, and grammatical
words. Katakana, also a phonetic syllabary
much like hiragana, is typically reserved to
write foreign words, loan words, or strengthen
the emotive content of the texts. In modern
times, the Latin alphabet also has increased
visibility due to the popularity of English, and
the Japanese language can be transliterated
using this alphabet as well. This way of writ-
ing Japanese is called romaji.

We were interested in examining if convert-
ing the raw training texts to other ortho-
graphic scripts such as hiragana and romaji
affects the translation quality of the output.
Because hiragana and katakana have a one-
to-one correspondence, it sufficed to experi-
ment with either one of them. Converting
the raw text to hiragana has a normalizing
effect as what it does is reducing the logo-
graphic/ideographic kanji characters to their
pronunciation, the moraic units written in the
hiragana syllabraries. In that sense, it helps
reduce variability in the data and perhaps is
beneficial. However, normalizing also strips
the text off many contextual cues that would

be helpful in translation. The dispersion of hi-
ragana in between the content words written
in kanji is arguably systematic enough for our
model to learn that one is used to represent
grammatical particles and the other is used to
represent objects, names, actions, and so on.
Similarly, converting the raw text to romaji
has a normalizing effect at the quasi-phonemic
level. In a related manner, Du and Way (2017)
looked at how a model trained on pinyin per-
formed on a Chinese → English translation
task. They found that using pinyin can help
alleviate the problem of rare words, although
it can introduce ambiguities.

To investigate the question of what impact
normalizing the Japanese source text in hira-
gana and romaji does, we experimented train-
ing three Ja→En models where the source
text is written in three orthographic scripts,
the regular mixed style (baseline), the normal-
ized moraic level hiragana, and the normal-
ized quasi-phonemic level romaji. Each train-
ing corpus contained 4M sentence pairs, after
being filtered by setting the language identifi-
cation score threshold at 0.85 and sampled.
The data were preprocessed with Sentence-
Piece and trained under the Transformer Base
setting, as described in Table 1.

5.3 Politeness and Formality Tagger
Previous work showed that controlling polite-
ness levels has a positive impact on machine
translation systems. Feely et al. (2019) im-
plemented a formality-aware tagging method
for En→Ja NMT. The authors classified for-
mality levels into three categories (informal,
polite, and formal) and found that using a
heuristics-based tagger improved the system’s
performance. Similar to Feely et al. (2019),
Sennrich et al. (2016a) and Yamagishi et al.
(2016) improved on the stylistics of the output
(politeness and honorific forms, respectively),
by applying a side-constraint approach where
target and source suffixes were added during
training to add more meta-textual information
to the corpora. We tested the effectiveness of
this technique on an En→Ja translation sys-
tem.

The news genre is frequently written in
fairly formal Japanese. Makino (2008) de-
scribed politeness and formality in Japanese as
orthogonal concepts. It’s possible to use polite
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but informal language in daily polite conversa-
tions as well as formal language devoid of po-
lite conjugations such as in news articles, aca-
demic papers, and so on. While the given par-
allel corpora are generally of the latter type,
the subtitles corpus contains mostly colloquial
language and the Ted talks corpus contains po-
lite endings not intended to be used in news
articles.

Due to the presence of mixed writing styles
in the training data, we developed a politeness
and formality tagger that works in conjunc-
tion with the Kytea tokenizer (Neubig, 2011)
to address this issue, because we observed that
our initial translation outputs often contained
polite forms not commonly used in the news
genre. Makino (2008) notes that verbs and i-
adjectives have distinct forms for plain and po-
lite but do not have distinct forms to indicate
the formality levels because the same forms are
used in both non-formal and formal writings.
Furthermore, the copula da conjugation is crit-
ical to indicate formality. The tagging schema
developed in Feely et al. (2019) combines the
formal, plain form dearu into the polite cate-
gory, and the formal category is what is typi-
cally referred to as keigo (honorifics). Our tag-
ging schema is tailored towards the news cor-
pus where dearu features often as a marker of
formal writing while polite endings and keigo
do not typically surface (see Appendix A for
the detailed schema). Our tagger extracts the
verb endings from the annotated sentences re-
turned by Kytea and appends a <polite> or
<formal> tag to the beginning of the source
(English) side. Plain forms are left untagged
as they are the default forms in the news genre.

Applying this tagger on a 12.7M training
corpus results in 34.76% tagged as polite and
3.81% tagged as formal. We tokenized the
data using SentencePiece transforms, imple-
mented in the OpenNMT toolkit. We also
filtered out sentence pairs longer than 100 to-
kens. We trained the models using the Trans-
former Big settings, as described in Table 1.

5.4 Back-Translation
For back-translation, we preprocessed a sub-
set of 4M sentences from the monolingual
Newscrawl corpus in the same manner de-
scribed in 3. The filtered corpus was 3,344,628
lines each. We then used the previously

trained Ja→En and En→Ja model to trans-
late the monolingual data to create synthetic
data, setting a beam size of 1 during decod-
ing. We obtained 2.4M and 2.6M sentences
of Japanese and English synthetic data from
back-translation, respectively. This was com-
bined with the existing parallel data to create
a corpus of approximately 15M sentences.

5.5 Model Ensembling and N-Best
Reranking

For n-best reranking, we used a script
by Xu Song, bert-as-a-language-model2,
which calculates the probability of tokens
and perplexity of sentences given a cor-
pus. Using OpenNMT’s option to pro-
duce n-best translations from an emsem-
ble of several high-performing checkpoints,
we created 10 best translations, and used
bert-as-a-language-model to pick the hy-
pothesis with the best perplexity score. This
method ensures the selected hypothesis has
maximized fluency compared to other candi-
dates.

6 Results and Discussion 3

6.1 SentencePiece and
Language-Dependent Tokenizers

We obtained the BLEU scores in Table 3 for
our models. The comparison is not entirely
fair because the amount of data trained for
the Moses and fugashi tokenizer to translate
in the Ja→En direction is 7.3M instead of
6.4M like other models. Additionally, the
number of BPE merge operations learned for
the language-dependent tokenizer case should
have been set to the same as that of Sentence-
Piece for a more equitable comparison.

Using SentencePiece appears to yield better
BLEU result in this experiment; however, we
also did not keep the other factors constant
across the different models under comparison.

2https://github.com/xu-song/bert-as-language-
model

3Please note that the baseline models for experi-
ments vary, as some experiments related to data prepro-
cessing such as tokenization method and normalizing
by orthographic conversion were conducted very early
on in our project. These models were also trained un-
der the Transformer Base setting, unlike later models
trained under the Transformer Big setting. It follows
that the baseline results vary from experiment to exper-
iment, except for the tagger and back-translation ex-
periments, where the same En→Ja baseline was used.
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Tokenizer Models Ja→En BLEU
SentencePiece 14.0
Moses and fugashi 9.9
Tokenizer Models En→Ja BLEU
SentencePiece 16.0
Moses and fugashi 9.9

Table 3: Tokenizer Comparison

Orthographic Scripts Ja→En BLEU
Mixed scripts (baseline) 14.2
Hiragana 12.6
Romaji 12.8

Table 4: Orthographic Script Comparison

Nonetheless, this experiment’s result led us to
adopt SentencePiece as our preferred method
for segmentation in other experiments.

6.2 Normalizing by Orthographic
Conversion

We obtained the BLEU scores in Table 4 for
our models. It can be seen from the results
that training with normalized data by ortho-
graphic conversion does not improve the mod-
els over the baseline. The models trained
on normalized data also have similar perfor-
mances.

The result of this experiment suggests that
normalizing by orthographic conversion might
have removed too many contextual cues for
the model to perform well. Possible work
for future experiments include investigating
whether normalizing katakana in mixed-script
text into hiragana could have a positive im-
pact, because doing so would remove variabil-
ity but would not introduce ambiguity to the
extent it might have done when the content
words in kanji were also normalized. Another
direction for future research involves looking
at training NMT models using sub-character
units such as radicals or strokes, as was done
in Zhang and Komachi (2018).

6.3 Politeness and Formality Tagger
BLEU and chrF scores with a 95% confidence
interval from a baseline model and a tagger
model as seen in Table 5 shows that using a
formality and politeness aware model improves
the model’s performance.

Models En→Ja BLEU chrF
Baseline 18.6 ±0.8 28.4 ±0.7
With tagger 19.8 ±0.8 29.5 ±0.7

Table 5: Politeness-and-Formality-Aware Model
vs. Baseline

Models En→Ja BLEU chrF
Baseline 18.6 ±0.8 28.4 ±0.7
With BT data 18.8 ±0.8 28.8 ±0.7

Models Ja→En BLEU chrF
Baseline 17.0 ±0.8 44.7 ±0.8
With BT data 18.7 ±0.8 46.6 ±0.8

Table 6: Back-Translation vs. Baseline

The result of this experiment is very encour-
aging to us as the score increase is notable.
It also suggests that the proposed classifica-
tion of predicate endings works well for the
news training data available. The training
data used for this experiment contains 12.7M
sentence pairs. Developing a politeness and
formality aware model applicable to a wider
selection of genres in Japanese remains future
work, where careful consideration of different
writing styles and additional classification of
stylistic markers are needed.

6.4 Back-Translation
Using back-translated data improved the re-
sults (reported with a 95% confidence inter-
val), although the gain in the En→Ja di-
rection was modest, as shown in table 6.
The results reinforce previous findings that
back-translation generally improves transla-
tion quality, and for languages with low re-
sources, it can be especially useful. Al-
though the Ja-En pair is not considered low-
resourced, the parallel data for news-specific
corpus was very scarce, so using the monolin-
gual newscrawl and newscorpus was beneficial
to the model learning.

6.5 Model Ensembling and N-Best
Reranking

During the decoding phase, we ensembled the
highest performing checkpoints and obtained
10 best translations from those checkpoints.
The best hypothesis was determined by the
best perplexity score of the language model.
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Models En→Ja BLEU
Baseline 32.9
N-best reranking 34.0
Models Ja→En BLEU
Baseline 17.6
N-best reranking 18.6

Table 7: N-best reranking vs. Baseline

We found that for both directions, this method
resulted in improved translations, as demon-
strated in table 7. This evaluation result was
done on the WMT 2021 test set and was ob-
tained during the submission period using the
submitted models.

7 Conclusion

We produced several models to tackle the task
of translating Japanese to English and English
to Japanese. Namely, we have used BPE,
employed a politeness and formality tagger,
and during decoding, utilized model ensem-
bling and n-best reranking. Normalizing by
orthographic conversion did not produce im-
provement compared to the baseline, but the
other techniques have all proven to be effec-
tive and thus have been employed in our fi-
nal submissions. We also found that for both
En→Ja and Ja→En, adding back-translated
data improved the results. This may be ex-
plained by the fact that there is very little par-
allel data in the news domain, and adding syn-
thetic data from alternative in-domain sources
helped tune the model. While improvement
in the BLEU score is modest for En→Ja, we
expect the results to improve further if we in-
crease the amount of back-translated data. We
also showed that employing a tagger to intro-
duce more contextual cues related to polite-
ness and formality to our translation system
is an effective technique. Differences in for-
mality and politeness levels present are issues
often encountered when using training data
in languages with rich honorifics. Thus the
technique employed in this paper could be ex-
tended to other languages such as Korean.
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A Appendix

<polite>
です desu,
ます masu,
でした deshita,
ました mashita,
まして mashite,
ません masen,
ましょう mashou,
なさい nasai,
ください kudasai,
くださいませ kudasaimase
<formal>
である dearu,
であろう dearou,
であるだろう dearudarou,
であった deatta,
であったろう deattarou,
であっただろう deattadarou,
であっている deatteiru,
であっていた deatteita,
であれる deareru,
であらせる dearaseru,
であられる dearareru,
であらない dearanai,
であらないだろう dearanaidarou,
であらなかった dearanakatta,
であらなかっただろう dearanakattadarou,
であれない dearenai,
であらせない dearasenai,
であられない deararenai

Table 8: Tagging Rules
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Abstract

In this paper, we describe our MISS sys-
tem that participated in the WMT21 news
translation task. We mainly participated in
the evaluation of the three translation di-
rections of English-Chinese and Japanese-
English translation tasks. In the systems sub-
mitted, we primarily considered wider net-
works, deeper networks, relative positional en-
coding, and dynamic convolutional networks
in terms of model structure, while in terms of
training, we investigated contrastive learning-
reinforced domain adaptation, self-supervised
training, and optimization objective switching
training methods. According to the final evalu-
ation results, a deeper, wider, and stronger net-
work can improve translation performance in
general, yet our data domain adaption method
can improve performance even more. In addi-
tion, we found that switching to the use of our
proposed objective during the finetune phase
using relatively small domain-related data can
effectively improve the stability of the model’s
convergence and achieve better optimal perfor-
mance.

1 Introduction

News translation (Bojar et al., 2017, 2018; Barrault
et al., 2019, 2020) is one of the most prominent
and appealing tasks in machine translation evalua-
tion (Wu et al., 2020b; Li et al., 2020c). Our MiSS
system took part in the WMT21 news translation
task, including English → Chinese (En → Zh),
Chinese→ English (Zh→ En), and Japanese→
English (Ja→ En) translation directions. We devel-
oped translation systems for this year’s submission
to investigate machine translation techniques from
two perspectives: model structure and model train-
ing. All of the data used by the submitted systems
is constrained. Due to a lack of training resources,

∗Corresponding author. Zuchao Li was limited technical
researcher at NICT when this work was done. This work was
partially supported by the Key Projects of National Natural
Science Foundation of China (U1836222 and 61733011).

the English->Japanese translation direction is only
investigated from the model structure perspective.

From the perspective of model structure, we
choose the Transformer (Vaswani et al., 2017; Li
et al., 2021c) model based on self-attention, which
is extensively utilized in neural machine translation
systems, as our basis (Zhang et al., 2020b; Li et al.,
2020d). On this strong foundation, we opt to simply
deepen the model by increasing the number of en-
coder layers or widen the model by increasing the
hidden size of the model to obtain a deeper or wider
model. When deepening or widening the model,
we found that there is no need for additional sophis-
ticated structure design (e.g., layer drop (Fan et al.,
2020) / sublayer drop (Li et al., 2021a)) or train-
ing strategy when there is adequate training data
available. In addition to Transformer architecture,
Wu et al. (2019) propose a dynamic convolution
structure that can perform competitively or better
to the self-attention structure. Follow the practice
in WMT20 (Wu et al., 2020a), we also applied the
dynamic convolution architecture as another basis.

According to our preliminary results on the de-
velopment set, domain has a significant impact on
performance, despite the fact that we are working
with the resource-rich En-Zh and En-Ja language
pairs. This year’s submissions are mostly con-
cerned with utilizing training approaches to miti-
gate the impact of domain differences. Specifically,
we first use data in all hybrid domains to train the
initial NMT model, and then, based on sentence em-
bedding model enhanced by contrastive learning,
the parallel/monolingual corpus is filtered monolin-
gually or cross-lingually, and the filtered domain-
related parallel corpus is used for further finetuning,
and the domain-related monolingual corpus is used
for in-domain back-translation enhancement. In
addition, we also adopted a self-supervised train-
ing method to train the model on the given source
text of the test set and its domain-related monolin-
gual text obtained by filtering. In self-supervised
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training, we combine our Data-dependent Gaus-
sian Prior Objective (D2GPo) objective (Li et al.,
2020b) to alleviate the collapse due to non-golden
targets. In the finetune stage with the domain-
related parallel corpus, we adopted the training
strategy of switching the optimization objective
from the MLE to our proposed Dual Skew Diver-
gence (DSD) (Li et al., 2019). The results demon-
strated that switching to the DSD objective resulted
in improved convergence.

From the evaluation results, we observe substan-
tial improvements over the strong baseline with 4.3
(En→ Zh), 4.8 (Zh→ En), 3.2 (Ja→ En) BLEU
scores on the development sets, respectively. The
gains can be attributed to larger model capacity and
better training strategies. And the results suggest
that the cost of domain adaptation to improve per-
formance is less than the cost of increasing model
capacity.

2 Model Perspective

With the development of deep learning in NLP (He
et al., 2018; Cai et al., 2018; He et al., 2019; Li
et al., 2021d), model ensembling can usually pro-
duce better results than single models, and the big-
ger the difference between the models used for
ensembling, within a certain limit, the higher the
improvement will be. As a result, we chose four
distinct typical architectures as the basis for single
NMT models and trained them on the same data.
The detailed parameters of each model architecture
are shown in Table 1.

Deep Transformer Some related works (Zhang
et al., 2019; Wang et al., 2019; Li et al., 2020a,
2021a) have revealed that deep networks have great
advantages in NMT performance compared to shal-
low networks recently. Based on the Transformer
NMT model architecture, we found that in the pres-
ence of sufficient training data, merely increasing
the number of stacked layers of the encoder can ful-
fill the goal of deep Transformer without the use of
additional initialization, dropout, or layer skipping
techniques.

Wide Transformer Recent researches (Sun
et al., 2019; Wu et al., 2020a; Zhang et al., 2020a;
Wu et al., 2020b; Meng et al., 2020) have demon-
strated that, in addition to deepening the NMT
model, widening the model can also effectively
improve translation performance, with increasing
the feed-forward network (FFN) size in the Trans-

Deep
Transformer

Wide
Transformer

Deep
DynamicConv

Enc. Layers 40 20 20
Dec. Layers 6 6 6
Attn. Heads 16 16 16
Hidden Size 1,024 1,024 1,024
FFN Size 4,096 8,192 4,096

Table 1: Hyper-parameters of different model architec-
tures. Note that Wide Transformer with relative posi-
tion encoding was also used as baseline models.

former model bringing less training and inference
cost than increasing the overall hidden size of the
model. We took a same practice in our work by
increasing the FFN size and established a Wide
Transformer baseline.

Deep DynamicConv Dynamic convolution
(DynamicConv) (Wu et al., 2019) was proposed
as a replacement for Transformer architecture
and has piqued much interest (Wu et al., 2020a)
due to its good speed advantage and comparable
performance. To enhance the performance of
single model, we also deepen the DynamicConv
model by increasing the number of encoder layers,
denoted as Deep DynamicConv. The original Dy-
namicConv model consists of 7 encoder layers and
6 decoder layers. We deepen the DynamicConv
model’s encoder layers to Deep DynamicConv.
Because the kernel size of each convolution layer
in the DynamicConv model differs, we set the
kernel sizes of the 16 encoder layers in Deep
DynamicConv to [3, 7, 15, 31, 31, 31,
31, 31, 31, 31, 31, 31, 31, 31,
31, 31, 31, 31, 31, 31] and leave the
other settings unchanged from the original model.

Relative Position Encoding Because self-
attention in the convention Transformer model is
position-independent, the encoded features must
be enhanced with explicit positional information
for natural language processing. Absolute position
encoding is usually employed in the Transformer
NMT model. Shaw et al. (2018) proposed to add
relative position encoding (RPE) for improving
self-attentional features and shown additional
performance gains. We also applied relative
position encoding to the Wide Transformer model
and created another strong baseline.

We use the identical vocabulary and data to train
these four baseline models separately, and then
average the best 5 checkpoints in each model’s
training phase to generate the final model output

155



L1 
Large-scale

Monolingual Text

Sentence
Encoder

Sentence
Encoder

Initial NMT
Model

NMT Model

In-domain L1
Translated Text

In-domain L1
Filtered Text

In-domain L2
Filtered Text

In-domain L2
Source Text

Sentence
Embedding Bank

L1-L1 query

L1
-L

1 
qu

er
y

L2-L2 query

L2-L2 query

Self-Training /
Back-translation /

MT Training

L2-L1

cross-lingual query

L2-L1 cr
oss

-lin
gual q

uery
Sentence
Encoder

Sentence
Encoder

L2 
Large-scale

Monolingual Text

L1-L2 
Parallel Text

Sentence
Encoder

In-domain L1-L2
Filtered Parallel Text

Transformer

Transformer

Figure 1: Illustration for contrastive learning-reinforced domain adaptation

in the corresponding stage. According to Wu et al.
(2020a)’s experience, the best 5 checkpoints are
determined based on the BLEU metric on the devel-
opment set rather than the perplexity (PPL) metric.
Furthermore, we applied the D2GPo objective (Li
et al., 2020b) in the training process to obtain more
stable convergence and decrease the impacts of
overfitting resulting from the training set’s noise.

3 Training Perspective

Contrastive Learning-reinforced Domain
Adaptation Data domain issues have been found
to have a significant impact on machine translation
performance (Saunders, 2021). The official
training data is of hybrid domain, despite the fact
that the evaluation task is news translation. And,
while news translation corpora can be deemed to be
in the news domain, there are significant variances
in news styles within the same domain. As a result,
one of the keys to performance enhancement will
be how to utilize the data training model that is
closer to the evaluation data domain and style.

Using languages L1 and L2 as an example, the
data that may be used comprises the parallel cor-
pus DP

L1−L2
, as well as their respective large-scale

monolingual corpus DM
L1

and DM
L2

. Parallel cor-
pora are typically utilized for direct training of
NMT models, whereas monolingual corpora are
used for back-translation (Edunov et al., 2018) and
self-supervised training (Jiao et al., 2021). The do-
main filtering method can be utilized in these three
training procedures to create corpus whose domain
is more similar to the development and test sets.

Instead of relying on the co-occurrence probabil-

ity of the surface tokens in the sentence, we based
the domain filtering on the hypothesis that the more
similar the sentence representations generated by
the Transformer encoder are, the more likely they
are to be dispersed in the same domain. Because
the current Transformer encoder’s representation is
based on the bidirectional and full attention of all
tokens, the combination and order of tokens have a
significant impact on the final representation, the
sentence representation is adequate for capturing
domain information. As a result, we use the sen-
tence embedding distance to measure the domain
similarity.

We leveraged a universal paraphrastic sentence
encoder (Wieting et al., 2016; Ethayarajh, 2018;
Li and Zhao, 2020) to embed each given sentence
to a dense representation. On a large scale mono-
lingual corpus, we train our own monolingual and
multilingual sentence encoder, a Transformer that
has been pre-trained using masked language mod-
eling (Devlin et al., 2019; Zhang et al., 2020c; Li
et al., 2021b), with the XLM toolkit (Conneau et al.,
2020) and fine-tuned to maximize cosine similarity
between similar sentences. Contrastive learning
seeks to acquire effective representation by pulling
semantically close neighbors and pushing non-
neighbors apart (Hadsell et al., 2006). Since this cri-
terion precisely meets the requirements of sentence
representation learning, we use contrastive learning
to finetune the pre-trained sentence encoder. Fig-
ure 1 illustrates our contrastive learning-reinforced
domain adaptation method.

According to the domain adaptation require-
ments in actual machine translation, the trained
sentence encoder needs respond to four scenar-
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ios: Original Input Monolingual Filter, Translated
Input Monolingual Filter, Original Input Cross-
lingual Filter, Translated Input Cross-lingual Fil-
ter. Because the fourth scenario can be covered by
the first, we only employ the first three scenarios
in our experiment.

For all scenarios, we first follow Gao et al.
(2021)’s approach to perform unsupervised train-
ing in which the input sentence itself is used as
a positive instance due to there will be some dif-
ferences between the sentence representations of
the two pass input with the presence of the model
dropout, and other sentences in the in-batch are
used as negative instances.

The unsupervised contrastive learning-trained
monolingual sentence encoder can be used directly
as an evaluator of the similarity of sentences in
the same language and to mine similar sentences
from the sentence bank. However, for the non-gold
translated sentences filtering, we apply the base-
line NMT models to translate parallel corpus and
to back-translated monolingual corpus to generate
pseudo-paraphrase corpus. And then triplet loss
is used to fine-tune the unsupervised sentence en-
coder:

L(x, y) = max(0, α− cos(x, y)) + cos(x, yn),

where positive pairs (x, y) are paraphrases from
translation or back-translation, yn are in-batch neg-
ative instances.

Likewise, we still need cross-language filtering,
therefore we use parallel corpus instead of syn-
thetic pseudo-restatement corpus and triplet loss
for additional finetuning on the multilingual sen-
tence encoder.

As shown in Figure 1, taking the L2 in-domain
source sentences in development set as an exam-
ple, we first use the initial NMT model to translate
these sentences to L1 translated text. The different
trained sentence encoder is then used to encode
these sentences and the large-scale monolingual
or parallel corpus based on different scenarios re-
spectively. Then, using the faiss toolkit1, a query
procedure is performed to locate related in-domain
monolingual or parallel corpora with similarity cal-
culation and ranking.

Back-translation and Self-supervised Training
Using the in-domain monolingual and parallel cor-

1https://github.com/facebookresearch/
faiss

pus, we may train the initial model using back-
translation and self-supervised training approaches.
For back-translation, we leverage the original mul-
tiple NMT models to translate these monolinguals
into various pseudo-parallel corpora, and then com-
bine them with the in-domain parallel corpus to
finetune the NMT model. For self-supervised train-
ing, we use a variety of models to perform en-
semble translation on the in-domain monolingual
text as the translation target and combine the in-
domain translation corpus to fine-tune the model.
In the specific implementation, we perform back-
translation and self-supervised training consecu-
tively such that the self-supervised training stage
can exploit the stronger NMT model trained during
the back-translation stage.

Optimization Objective Switching Training It
is easier to fall into a local optimum in the pro-
cess of back-translation and self-supervised train-
ing because there are relatively fewer in-domain
data and input or output in part of the data utilized
is not gold. According to our experience in (Li
et al., 2019), switching the training objective to the
adversarial learning objective after MLE training
converges might help jump out of the local opti-
mal state and get better performance. Follow this
practice, in the back-translation and self-supervised
training stages, we first employ MLE target training
to converge on a development set and then switch
to Li et al. (2019)’s DSD loss for further training:

LDSD = − 1

n

n∑

i=1

[β(t)yi log((1− α)ŷi + αyi)

−(1− β(t))ŷi log(ŷi)

+(1− β(t))ŷi log((1− α)yi + αŷi)],

where yi is the i-th token in the target sequence
y, ŷi is the i-th predicted token, α is a hyper-
parameter in α-skew divergence (Lee, 1999), and
β(t) is the controllable weight from the PID con-
troller.

4 Data Setup

English↔Chinese In the English↔Chinese
translation, we used all official parallel corpus,
including ParaCrawl v7.1, News Commentary
v16, Wiki Titles v3, UN Parallel Corpus V1.0,
CCMT Corpus and WikiMatrix. For English, we
use the tokenization tool provided by Moses2, and

2https://github.com/moses-smt/
mosesdecoder
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Systems En→Zh Zh→En En→Ja Ja→En

Dev Test Dev Test Dev Test Dev Test

Transformer-big 31.67 − 33.26 − 23.31 − 21.61 −
Deep Transformer 32.48 − 34.18 − 24.68 − 22.78 −

¬ ++ID-BT 35.30 − 38.94 − − − 24.46 −
 ++ID-ST 35.95 − 39.18 − − − 25.82 −

Wide Transformer 32.67 − 34.01 − 24.27 − 23.20 −
® ++ID-BT 35.37 − 38.82 − − − 24.55 −
¯ ++ID-ST 36.15 − 39.13 − − − 25.71 −

Deep DynamicConv. 32.39 − 33.68 − 24.08 − 21.91 −
° ++ID-BT 35.01 − 38.66 − − − 24.37 −
± ++ID-ST 36.03 − 39.05 − − − 25.66 −

Wide Transformer w/ RPE 32.52 − 34.35 − 24.76 − 22.78 −
² ++ID-BT 35.55 − 38.91 − − − 24.48 −
³ ++ID-ST 36.08 − 39.20 − − − 25.71 −

Baseline Ensemble 32.79 31.9 34.47 27.8 24.79 42.6 23.15 23.8
Ensemble: ¬ + ® + ° + ² 35.62 35.7 38.98 32.4 − − 24.63 26.4
Ensemble:  + ¯ + ± + ³ 36.41 36.2 39.25 32.6 − − 25.99 27.0

Table 2: BLEU evaluation results on the WMT 2021 development and test sets. The BLEU in the development
set is a word-level MultiBLEU score, but the BLEU in the test set is from the official evaluation. Due to a lack of
resources, En→Ja only completed the baseline training and ensemble submission.

for Chinese, we use pkuseg (Luo et al., 2019) as
the word segmentor. We adopt a joint byte pair
encoding (BPE) (Sennrich et al., 2016) with 44K
operations for subword vocabulary in English
and Chinese. Punctuation normalization is not
employed to preprocess the training data in order
to prevent complex post-processing of punctuation
restoration. For English post-processing, we use
the script in Moses to de-tokenize the translation,
whereas for Chinese, we employ sacremoses3 for
de-segmentation.

English↔Japanese In the English↔Japanese
translation, data for training were combined from
ParaCrawl v7.1, News Commentary v16, Wiki
Titles v3, WikiMatrix, The Kyoto Free Trans-
lation Task Corpus, and TED Talks. Similarly,
the Japanese sentences are segmented using the
Mecab4 segmentor, while the English sentences are
processed using the Moses tokenizer. The size of
the English and Japanese joint BPE is also set to
44K. In post-processing, Moses script and sacre-
moses are also employed for detokenization.

We merged the whole news-crawl corpus for
monolingual data. However, in Chinese and
Japanese, news-crawl corpus alone is insufficient
to train the sentence encoder, so we sampled some
data from the common-crawl corpus and eventu-
ally produced the data in English, Chinese, and

3https://github.com/alvations/
sacremoses

4https://github.com/taku910/mecab

Japanese 100M sentences each. For pre-processing,
we exclude sentences that are more than 175 words
long, and the word ratio between the source and
the target greater than 1:2 or 2:1.

5 Model Training

All of our NMT models are built using the Fairseq
toolkit. Except for the switching training phase, all
models are optimized with Adam optimizer, and
SGD optimizer is utilized for optimization training
when switching to DSD loss. During the base-
line model training process, the learning rate is
scheduled using the inverse sqrt scheduler with
4000 warm-up steps, maximum learning rate 5e-4,
and betas (0.9, 0.98). Each model is trained on 8
NVIDIA V100 GPUs, with batch size limited to
8192 tokens per GPU. FP16 is emploted to save
GPU memory and speed up calculations. To in-
crease the virtual batch size, we set the gradient
update steps to 8 during the training phase. The
label smoothing and dropout values are both set to
0.1. In the finetuning stage, we utilize a smaller
batch size, 4,096 tokens per GPU, and train the
model at a fixed learning rate of 1e-4. Sentence en-
coder models are developed with the XLM toolkit,
and the architecture is based on the BERT-base.
The hidden size, heads, hidden layers, and FFN
size are 768/12/12/3072 respectively. During train-
ing, a early stop mechanism is applied in which the
training will stop when the PPL on the development
set does not decrease after 25 epochs.
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6 Results and Analysis

Table 2 shows the results on the development sets as
well as the official evaluation results on the WMT21
test sets. First, when comparing Deep Transformer,
Wide Transformer, and Transformer-big, we ob-
served that increasing the number of model layers
or widening the model to increase the number of
model parameters can result in large performance
benefits. Second, Deep DynamicConv has shown
comparable results to Deep Transformer in multi-
ple data sets, demonstrating that DynamicConv is a
viable replacement option for Transformer. Third,
the Deep Transformer w/ RPE model outperforms
Deep Transformer model in most circumstances,
demonstrating that machine translation benefits
from additional relative position encoding informa-
tion. Fourth, in-domain back-translation (ID-BT)
and in-domain self-supervised training (ID-ST) im-
prove the model’s performance substantially more
than the increased model parameters, indicating
that the data domain is a primary factor limiting
translation performance. Furthermore, these en-
hancements demonstrate that our domain adaption
approach of contrast learning-reinforced is a effec-
tive approach. Finally, we performed ensemble
on the four finetuned baselines and received even
higher results, demonstrating that the models of the
four architectures differ from each other.

7 Conclusion

In this paper, we introduce our MISS transla-
tion system, which participated in the WMT21
news translation task. We developed a new con-
trast learning-reinforced domain adaptation strat-
egy in this work, and the experimental findings
suggest that this method may significantly increase
translation performance. Furthermore, we con-
ducted experiments on a range of model archi-
tectures. Our domain adaption strategy improved
these strong baseline models significantly, illus-
trating the method’s generality and indicating that
the performance deficiency is not due to a specific
model structure.
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Abstract

This paper describes the Fujitsu DMATH sys-
tems used for WMT 2021 News Translation
and Biomedical Translation tasks. We focused
on low-resource pairs, using a simple system.
We conducted experiments on English-Hausa,
Xhosa-Zulu and English-Basque, and submit-
ted the results for Xhosa→Zulu in the News
Translation Task, and English→Basque in the
Biomedical Translation Task, abstract and ter-
minology translation subtasks. Our system
combines BPE dropout, sub-subword features
and back-translation with a Transformer (base)
model, achieving good results on the evaluation
sets.

1 Introduction

WMT has been exploring the state of the art in
MT for many years, and, particularly in recent edi-
tions, the participants have shown impressive re-
sults. However, often times, these results require
very heavy or complex systems, trained on dozens
of GPUs. Participants compete for a margin that
places them above the rest, combining multiple
methods from the latest research.

In recent years, different variants of the Trans-
former (Vaswani et al., 2017) architecture have
been popular for NMT, so can be seen when inspect-
ing the submissions to previous editions of WMT.
In our systems, we use the Transformer base con-
figuration, the smaller one. Our implementation is
based on Sockeye 2 (Hieber et al., 2020; Domhan
et al., 2020).

We combine several techniques or strategies for
low-resource pairs. These techniques are described
in Section 2.

We conducted a few experiments on language
pairs Xhosa-Zulu and English-Hausa, from the
News Transltion task, and on English-Basque, from
the Biomedical Translation task. The results of our
experiments are shown in Section 3.

2 Techniques

This section describes the strategies used for our
NMT models. The first two, bpe dropout and sub-
subword features, were used in all the subtasks,
while the last one was only used for the biomedical
translation subtasks.

2.1 BPE dropout
BPE dropout (Provilkov et al., 2020) was intro-
duced as an alternative to Kudo (2018). Provilkov
et al. found that the main drawback to the subword
regularization method is its complexity, since it
requires training a unigram language model and
uses uses EM and Viterbi algorithms to sample
segmentations.

BPE dropout works on BPE vocabulary models
(Sennrich et al., 2016b), that is, the vocabularies
are built in the same way as vanilla BPE. While
the unigram language model subword regulariza-
tion method uses a statistical model and dynamic
programming to be able to sample different seg-
mentations from the same sequence, BPE dropout
uses random noise to discard certain merges, ran-
domly generating a different sequence of subwords
each time. This is so because BPE does not store
the frequencies of each subword, only the order
of the merges. Merges are discarded with a prob-
ability p, which is usually 0.1. Provilkov et al.
concluded through several experiments that BPE
dropout achieves better results.

Our systems use BPE dropout during training,
with a dropout proability p of 0.1.

2.2 Sub-subword features
The main idea of the Sub-subword feature method
(Martinez et al., 2021) is to build the embedding
matrices from the n-gram features of the subwords
in the vocabulary. The features used to produce
the embeddings are selected by an algrithm before
training, and the neural network that produces the
embeddings is trained with the rest of the model.
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Sentences Words in source Words in target Word ratio
Xh-Zu 94,323 1,356,127 1,325,168 1.02
En-Ha 752,287 11,044,101 11,713,109 1.06
En-Eu 2,627,745 23,225,786 17,472,145 1.33

Table 1: Statistics of the datasets used for BT experiments. The rows of the table are ordered from smallest to largest,
the source language being that of the pair. The ratios are the number of words of the largest language compared to
the other.

The method has a regularizing effect, particu-
larly effective under low-resource settings. The
sub-subword feature method can be used with BPE
and BPE dropout, to achieve better results.

2.3 Back-Translation

Back-translation (BT) (Sennrich et al., 2016a) can
be used with monolingual data of the target lan-
guage, to improve low-resource language pair per-
formance. BT is a type of distant supervision, in
which a model of the opposite direction to the one
that one wants to build is used to synthesize more
parallel data. The method requires training an op-
posite model, and the synthesized data is noisy.
Still BT has been used extensively with good re-
sults reported (Poncelas et al., 2018; Edunov et al.,
2018).

The effectiveness of the BT method depends
largely on the quality of the monolingual corpora
used. Monolingual corpora compiled automatically
using web crawlers in combination with automatic
language detection are prone to be noisy. Partic-
ularly for low-resource languages for which lan-
guage detection has lower accuracy.

For example, we noted that the Hausa Extended
Common Crawl corpus published for WMT21 con-
tained a large number of Japanese song lyrics writ-
ten in Latin alphabet.

Our systems used 2 million backtranslated sen-
tences to improve performance.

2.4 Multilingual model

Johnson et al. (2017) introduced multilingual mod-
els to NMT. Multilingual models are capable of
translating more than one pair. For this, they used
a simple approach that consists of using a special
symbol inserted in the source sentence, indicating
the target language. The architecture of the model
can be the same as that of non-multilingual models.
In their experiments, they showed that, although
the performance of pairs with more resources wors-
ens when sharing a model with other pairs, the

performance of pairs with fewer resources im-
proves. Multilingual models allow translation be-
tween pairs with zero resources. This is known as
zero-shot translation.

Much research has been done on Multilingual
Neural Machine Translation (MNMT). Dabre et al.
(2020) published a comprehensive survey that sum-
marizes different ideas and techniques for MNMT.

For the English-Basque Biomedical task, we
tried using multilingual models too. In particu-
lar, for the terminology translation subtask, we
included the English-Spanish terminology from
MeSpEN (Villegas et al., 2018). The terminology
was included as training data, using the method
described in this section. A more sophisticated
vocabulary integration method could have given
better results (Post and Vilar, 2018; Bergmanis and
Pinnis, 2021).

3 Experiments

We conducted experiments on Xhosa→ Zulu, Zulu
→ Xhosa, English → Hausa, Hausa → English
and English→ Basque. Notice that the WMT21
Biomedical Translation Task for English-Basque
was only in the English→ Basque direction, and
not Basque→ English.

Table 1 shows the statistics for three language
pairs. The rows are ordered from smallest to largest.
The Xhosa-Zulu and English-Hausa data were pub-
lished in the WMT21 news translation task. Both
are classified as low-resource in the task descrip-
tion, but Xhosa and Zulu are two closely-related
languages, and English and Hausa, two distant lan-
guages. The English-Basque data were published
for the biomedical task of WMT21. The English-
Basque dataset cannot be considered low-resource,
with 2.6M parallel sentences, but it represents two
distant languages. The Basque language has a com-
plex morphology that makes its generation difficult.

Word ratios can hint about the similarity or dis-
similarity of the languages. Xhosa and Zulu are
related languages, and that is why they show a ra-
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Xh→Zu Zu→Xh En→Ha Ha→En En→Eu
Baseline 6.5 (.416) 6.3 (.421) 12.0 (.412) 13.0 (.403) 16.5 (.456)
+SSWF 9.3 (.470) 8.5 (.468) 12.5 (.420) 14.5 (.429) 17.3 (.471)
+BT 9.2 (.471) 8.6 (.467) 17.5 (.480) 16.7 (.460) 16.4 (.462)
+BT+SSWF 9.7 (.478) 8.8 (.470) 18.0 (.482) 15.5 (.461) 16.4 (.463)

Table 2: BT results for various language pairs. (+/-) BT indicates the use or non-use of BT data. The results follow
the format "BLEU (CHRF2)". Best BLEU results are shown in bold and the best CHRF2 are underlined.

tio close to one. English and Hausa are distant
languages, but their morphological characteristics
result in sequences of similar length.

Table 3 shows the hyperparameters used to train
the models. The Transformer hyperparameters
are those of the base model. We use a relatively
large vocabulary size of 32k subwords. Although
Sennrich and Zhang (2019) showed that smaller
vocabularies give better results on low-resource
datasets, larger vocabularies work well when using
sub-subword features (Martinez et al., 2021).

We used 4,000 warmup steps schedule as de-
scribed in Vaswani et al. (2017) with an initial
learning rate of 2.0 and evaluated the development
cost every 2,000 updates. The model was reloaded
from the best checkpoint when the development
cost did not improve, and training stopped after 3
consecutive stallings.

Hyperparameter Value
Vocabulary size 32,000 subwords
BPE dropout p 0.1
Batch size 4,096 (×2 GPUs)
Warmup steps 4,000
Learning rate 2.0
Encoder layers 6
Decoder layers 6
Attention heads 8
Transformer size 512
Hidden layer size 2,048
Dropout 0.1
Label smoothing ϵ 0.1
FTE layers † 3
FTE size † 3,072

Table 3: Hyperparameters used in our models. † FTE
(feature-to-embedding) network size for sub-subword
feature (+SSWF) models.

For the News Translation Task participants need
agree to contribute to the manual evaluation about
eight hours of work, per system submission. In
consideration of this workload, we decided to sub-

mit only the Xhosa → Zulu system to the News
Translation Task.

Table 2 shows the results for the languages in
Table 1. The BT data were translated using the
sub-subword feature (+SSWF) model. The BT data
contain 2 million pairs of sentences. The English-
Basque model shown in this table does not use the
multilingual approach described in Subsection 2.4.

The results show that the sub-subword features
(+SSWF) improve the results of the correspond-
ing -SSWF models under low-resource settings.
In the case of Hausa→ English, the +SSWF sys-
tem did not achieve better BLEU scores than the
corresponding -SSWF system, but achieved better
CHRF2.

Despite its noisy nature, we decided to use the
Extended Common Crawl Hausa corpus. The re-
sults show that the data, although noisy, was effec-
tive in improving the performance.

The English → Basque biomedical abstract
translation did not improve when using back-
translation data. It is possible that the cause for
this was the domain mismatch of the monolingual
data, that was not exclusively from scientific pa-
pers’ abstracts.

All models were trained on two NVIDIA Tesla
P100 GPUs. The Xhosa-Zulu models are trained
in about 2.5 hours, and the English-Hausa models
are trained in about 10 hours.

Table 4 shows the result of combining the
English-Basque training data with the MeSpEN
English-Spanish terminology (Villegas et al., 2018).
The MeSpEN terminology dictionary that we used
contained 125,519 term pairs after cleaning.

Model BLEU chrF2
En→Eu 16.47 .456
En→Eu +SSWF 17.34 .471
En→ {Eu,Es} +SSWF 17.44 .470

Table 4: NMT result of combining the English-Basque
training data with the MeSpEN English-Spanish termi-
nology.
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The scores displayed were obtained by evaluat-
ing the trained models on a test set sampled from
the provided data for abstract translation. The data
used to build the development and test sets were
removed from the training data. The results show
the BLEU and CHRF2 scores for abstract transla-
tion, but we did not prepare any evaluation set for
terminology translation, as we wanted to include
WMT20 terminology in the training data.

The same models were used for abstract trans-
lation and terminology translation. Manual exam-
ination of the produced transations hinted better
performance for the the model trained with English-
Spanish terminology.

In consideration of the results, we decided to
submit two systems to the abstract translation and
terminology translation subtasks. One of the sys-
tems incorporated the MeSpEN terminology, and
the other one did not. Both systems did not use
backtranslated data.

4 Conclusions

We built and submitted three lightweight systems
that used sub-subword features to build the embed-
dings. We evaluated the approach with different
configurations and the results showed the adequacy
of the approach.

The relatively small models could possibly use
larger hyperparameters and other techniques to
achieve better results, but we think the current re-
sults can show the strenght of the techniques that
were applied.
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Abstract

This paper presents the Adam Mickiewicz
University’s (AMU) submissions to the
WMT 2021 News Translation Task. The
submissions focus on the English↔Hausa
translation directions, which is a low-resource
translation scenario between distant languages.
Our approach involves thorough data cleaning,
transfer learning using a high-resource lan-
guage pair, iterative training, and utilization
of monolingual data via back-translation.
We experiment with NMT and PB-SMT
approaches alike, using the base Transformer
architecture for all of the NMT models while
utilizing PB-SMT systems as comparable
baseline solutions.

1 Introduction

We describe the Adam Mickiewicz University’s
submissions to the WMT 2021 News Translation
Task. We focused on translation between Hausa
and English – a low-resource translation scenario
between distant languages. Our methods combine
data cleaning with OpusFilter (Aulamo et al., 2020)
and fastText (Joulin et al., 2016), transfer learning
(Aji et al., 2020; Zoph et al., 2016), iterative train-
ing, and back-translation (Sennrich et al., 2016a).

All NMT models were trained with
FAIRSEQ (Ott et al., 2019), while the first it-
eration of the back-translation was generated with
Moses (Koehn et al., 2007).

The results presented in the paper are based
on the first released development set ("Dev-1"),
which consists of 1000 sentences, the final devel-
opment set ("Dev-full"), which adds additional
1000 sentences to the first development set, and
the released test set without additional test suites
("Test"). The test set consists of 1000 sentences
in English→Hausa direction and 997 sentences in
Hausa→English direction.

The final submissions significantly outperform
the vanilla NMT baselines in terms of BLEU (Pap-

ineni et al., 2002) metric results, as implemented
in SACREBLEU (Post, 2018) with default settings.

All systems were trained in a constrained sce-
nario i.e., using the data provided by the organizers
of WMT 2021 only.

2 Data preparation

The quality of the training data has a great im-
pact on the final performance of the NMT mod-
els (Rikters, 2018). The data preparation consisted
of data cleaning and filtering performed by using
OpusFilter (Aulamo et al., 2020) pipelines. We
specified separate pipelines for monolingual and
parallel data. Data cleaning phase consisted of
normalizing punctuation, removing non-printable
characters, and decoding HTML entities by using
Moses (Koehn et al., 2007) pre-processing scripts.

We applied subword segmentation on fil-
tered data by using SentencePiece (Kudo and
Richardson, 2018) tool with byte-pair-encoding
(BPE) (Sennrich et al., 2016b) algorithm. The cor-
pora we used for model training, along with the
number of sentences before filtering, are specified
in Table 1. Number of sentences after filtering is
presented in Table 2.

Monolingual data filtering For the monolingual
data filtering, we defined an OpusFilter pipeline
that consists of the following filters:

• deduplication filter,

• sentence length filter,

• word length filter,

• Latin character score filter,

• language identification filter.

The sentence length filter requires that the sen-
tence contain a minimum of 3 and a maximum
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Data type Sentences Corpora
Parallel en-ha 751,560 Khamenei, Opus, ParaCrawl
Monolingual en 41,428,626 News crawl (only 2020)
Monolingual ha 2,311,959 News crawl, CommonCrawl
Parallel de-en 8,600,361 Tilde Rapid, CommonCrawl, Europarl, News commentary, ParaCrawl

Table 1: Corpora statistics before filtering.

of 100 words. A maximum of 40 characters is re-
quired for the word length. The required Latin char-
acter score for a sentence is set to 100%. Language
identification filter is based on a fastText (Joulin
et al., 2016) language identifier. The open-source
fastText language identification models do not iden-
tify Hausa, so we used the JW300 corpus from the
English-Hausa Opus collection to train our custom
language identifier. A sentence must pass all filters
to be included in the training data.

Data type Sentences
Monolingual en 39,812,834
Monolingual ha 1,227,921
Parallel ha-en 494,246

Table 2: Monolingual corpora statistics after filtering.

Parallel data filtering The filters used in the
parallel data filtering pipeline are nearly identi-
cal to those used in the monolingual data filtering
pipeline. Filters are applied to both the source and
target sentences in this scenario. We also included
a length ratio filter with a threshold of 2, indicat-
ing that a sentence on the source side can be up to
twice as long as a sentence on the target side and
vice versa.

A similar pipeline was applied to the German-
English data that was used for transfer learning. We
downsampled 3M sentence pairs from ParaCrawl
due to the imbalance in the German-English data.

3 Approach

Our models combine transfer learning from a
high-resource language pair (German-English), it-
erative training, and back-translation. We used
FAIRSEQ (Ott et al., 2019) toolkit in our experi-
ments with NMT models, while we used Moses
(Koehn et al., 2007) toolkit for our experiments
with PB-SMT models.

All of our NMT models follow the base Trans-
former architecture (Vaswani et al., 2017), us-
ing ReLU as the activation function and Adam

(Kingma and Ba, 2015) as the optimizer with the
following parameters: β1 = 0.9, β2 = 0.98,
ε = 1e−8. We set the inverse square root learning
rate scheduling with a peak value of 1e−3. We
used learning rate warmup stage for 4000 updates
with initial learning rate of 1e−7. Dropout prob-
ability was set to 0.2, while the attention dropout
probability was set to 0.1. We also used label
smoothing with a value of 0.1. In the case of base-
line English-Hausa models, the joint vocabulary
was based on both English and Hausa data. In all
cases, the vocabulary size was set to 32,000.

The PB-SMT models were trained with default
settings with Moses (Koehn et al., 2007) toolkit. In
addition, we trained a 5-gram Operation Sequence
Model (Durrani et al., 2013). All language mod-
els are 5-gram models and were binarized with
KenLM (Heafield et al., 2013). The models were
trained on tokenized, word-level, lowercased sen-
tences. Re-casing was applied to the model outputs.
After training the base models, we also applied
MERT (Minimum Error Rate Training) (Och, 2003;
Bertoldi et al., 2009) tuning on the development
set.

3.1 Baseline systems

We decided to train baseline models of two types:
vanilla Transformer (base) and PB-SMT. The ex-
periments conducted on the first release of the
development set showed that PB-SMT performs
significantly better than NMT: we achieved +1.8
BLEU score on Hausa→English and +0.7 on
English→Hausa. Based on these results, we de-
cided to use PB-SMT models to generate data for
the first iteration of iterative training.

When the test set was published, we computed
the scores for the baselines. To our surprise, the
scores obtained by NMT are much higher than PB-
SMT, especially in the Hausa→English direction.
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System HA→ EN EN→ HA
Dev-1 Test Dev-1 Test

NMT baseline 12.21 11.44 10.28 11.05
PB-SMT baseline 14.00 6.59 11.02 9.36

Table 3: Baseline results according to the automatic
evaluation with BLEU metric.

3.2 Transfer learning
According to recent studies, transfer learning (TL)
enhances translation quality in low-resource sce-
narios (Zoph et al., 2016; Aji et al., 2020). We
chose the German→English translation direction
as a base. In general, we followed (Nguyen and
Chiang, 2017) and trained a shared Hausa-German-
English vocabulary (BPE). Then, we trained a
German→English model using parallel data from
the WMT 2021 Translation Task, which was fil-
tered similarly to Hausa-English data. Finally, we
used the Hausa-English data to fine-tune the pre-
trained German→English model. We obtained a
BLEU score of 13.31 on the "Dev-1" development
set (+1.1 BLEU compared to the NMT baseline),
which was lower than the PB-SMT baseline.

3.3 Iterative back-translation
Monolingual data has been widely employed in
MT to enrich parallel corpora with synthetic data
to improve the quality of MT systems, particularly
in low-resource scenarios (Bojar and Tamchyna,
2011; Bertoldi and Federico, 2009). We applied
the back-translation technique (Edunov et al., 2018)
iteratively (Hoang et al., 2018) to translate Hausa
and English monolingual data into the other lan-
guage, using intermediate models to generate incre-
mentally better translations.

1. First, we used the best baseline model (PB-
SMT based on Moses) in English→Hausa di-
rection to translate 5M English sentences into
Hausa.

2. We used this additional data to train the
Hausa→English model by applying transfer
learning from the German→English model.
We upsampled the original parallel data 10
times to match the size of the back-translated
data. We used the resulting NMT model to
translate all Hausa monolingual data into En-
glish via sampling.

3. We combined the obtained back-translated
data with the original parallel corpora to train

the English→Hausa model in a manner sim-
ilar to step 2, with the exception that we did
not upsample the parallel data in this scenario
due to the fact that back-translated data was
generated through sampling.

4. This technique was applied iteratively, result-
ing in the systems shown in Table 4. In all
Hausa→English systems except the last, we
utilized 5M English monolingual sentences in
the model training; in the last system, we used
25M sentences. We used all accessible Hausa
monolingual data in all English→Hausa sys-
tems.

System HA→ EN EN→ HA
1 16.22 -
2 - 13.04
3 20.05 -
4 - 14.38
5 22.85 -
6 - 14.77

Table 4: Iterative back-translation results of the NMT
systems on the "Dev-1" development set according to
the automatic evaluation with BLEU metric.

4 Final results

Table 5 presents the final results for both the
English→Hausa and Hausa→English translation
directions for both the development and test sets.
These results were produced by the final models
from the iterative back-translation step described
in section 3.3.

Direction Dev-1 Dev-full Test
EN→ HA 14.77 21.21 16.15
HA→ EN 22.85 25.23 14.13

Table 5: Final results according to the automatic evalu-
ation with BLEU metric.

We notice a severe decrease in BLEU metric re-
sults on the test set as compared to the development
set, particularly in the Hausa→English direction.
This could suggest a domain shift between the two
sets. Because our models are heavily based on the
back-translated data, some vocabulary, especially
proper names, may be missing from the training
data.
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5 Post-submission work

Due to a lack of computing power and time, our
experiments and submissions were based on single
model training. After the submission deadline, we
retrained the final models three times with different
seeds. Table 6 presents the results for the ensemble
of four models in both directions. We obtained
slight improvements on both test sets, but the dif-
ferences are insignificant. On the other hand, the
ensemble performed worse on the development set,
especially on the first version.

Direction Dev-1 Dev-full Test
EN→ HA 14.68 21.00 16.34
HA→ EN 21.24 26.25 14.87

Table 6: Post-submission models ensemble results ac-
cording to the automatic evaluation with BLEU metric.
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Abstract
The paper describes the 3 NMT models sub-
mitted by the eTranslation team to the WMT
2021 news translation shared task. We de-
veloped systems in language pairs that are
actively used in the European Commission’s
eTranslation service. In the WMT news task,
recent years have seen a steady increase in the
need for computational resources to train deep
and complex architectures to produce compet-
itive systems. We took a different approach
and explored alternative strategies focusing on
data selection and filtering to improve the per-
formance of baseline systems. In the domain
constrained task for the French–German lan-
guage pair our approach resulted in the best
system by a significant margin in BLEU. For
the other two systems (English–German and
English-Czech1) we tried to build competitive
models using standard best practices.

1 Introduction

The eTranslation team is behind the translation ser-
vices of the European Commission’s eTranslation
project2. This is a building block of the Connecting
Europe Facility (CEF), with the aim of support-
ing European and national public administrations’
information exchange across language barriers in
the EU. The project is described in more details in
(Oravecz et al., 2019).

The team’s participation in the WMT shared
tasks has provided valuable insights to improve the
quality of our production systems and allowed us to
explore languages and domains beyond the formal
language of EU institutions, leading to a continuous
extension of the eTranslation service and helping
in the search for the right balance between the use
of resources in production environments and the
best possible performance of models.

1Due to returning problems of resource availability, the
En→Cs experiments did not finish until the submission dead-
line so we could finally only submit last year’s system.

2https://ec.europa.eu/cefdigital/wiki/
display/CEFDIGITAL/eTranslation

This year the team participated in the news trans-
lation shared task with 3 different language pairs:
English→ German, English→ Czech and French
→ German. The selection was motivated by the
fact that these language pairs can all be consid-
ered as high or medium resource, which is the
main scenario in the eTranslation service, while
the constrained domain in Fr→De offered a good
opportunity to focus on and experiment with data
selection and filtering techniques, which is a more
viable alternative in our environment than the re-
source demanding (brute-force) increase in model
complexity.

2 Data Preparation

Here we briefly describe the base data sets, the gen-
eral selection and filtering methods we applied to
prepare these initial data sets used to train the first
models. Further data selection and augmentation
methods to improve the quality of baseline models
are described in Section 3.2. For all models we
only used the provided parallel and monolingual
data, so our 3 submissions fall into the constrained
category.

2.1 Base Data Selection and Filtering

As a first baseline approach, we tried to make use of
all provided original parallel (OP) data to build the
first models for reference or back-translation. Since
these data sets were fairly similar to those from last
year we followed the same practice and trained
baseline models from all OP data. There was, how-
ever, a significant increase in the ParaCrawl data,
which for En→De for example, doubled its size.
As it turned out, the increase in size did not neces-
sarily mean a better translation model trained from
the full data set so we explored different subsets
based on scoring by both source and target lan-
guage models (see Section 4.1 for the details of
these experiments).

The domain distribution of the data sets was not
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Data set En→De Fr→De En→Cs

Europarl v10 1.77M 1.79M 0.62M
Common Crawl 2.16M 0.56M 0.11M
News Commentary v16 0.38M 0.29M 0.25Mv15

Tilde Rapid corpus 0.99M – 0.28M
Wiki Titles v3 1.31M 0.52M 0.32Mv2

ParaCrawl v7.1 79.2M 6.30M 4.90Mv5.1

WikiMatrix 5.46M 2.80M 1.92M
CzEng 2.0 – – 41.6M

Total: 91.27M 12.26M 50.0M

Table 1: Number of segments in the filtered parallel data used for baseline models.

uniform across language pairs, which had some
influence on some of the workflows but the basic
procedure of data cleaning was similar in all cases.
As a general clean-up, we performed the following
steps on the parallel data:

• language identification with FastText3 (Joulin
et al., 2016),

• segment deduplication with masked numerals,
i.e. we deleted duplicate segments regardless
of differences in numerals,

• deletion of segments where source/target to-
ken ratio exceeds 1:3 (or 3:1),

• deletion of segments longer than 100-150 to-
kens (depending on language pair),

• exclusion of segments where the ratio between
the number of characters and the number of
words was below 1.5 or above 40,

• exclusion of segments without a minimum
number of alphabetic characters (2–5 depend-
ing on the data set).

These filtering steps led to an average reduction
of about 15-20% of the training data with the num-
ber of segments as shown in Table 1.

2.1.1 Monolingual data
To build language models or create synthetic par-
allel text from monolingual data, we generally se-
lected recent target language News Crawl data sets
filtered according to the above steps (where appli-
cable) with some minor adjustments. For En→De,
we used the 2016–2020 German News Crawl data

3https://fasttext.cc/docs/en/
language-identification.html

but as in the previous years excluded the 2018 set
due to the high number of garbage segments with
scrambled tokens, we set a threshold on the maxi-
mum length of a token (40) and the minimum ratio
of letters to digits in a segment (4), and reduced the
maximum segment length to 80 tokens, resulting
in a 167M segment monolingual German data set.
A similar procedure applied to the 2016–2020 En-
glish NewsCrawl corpus resulted in a monolingual
English data set of 133M segments.

To create domain specific back-translation data
for Fr→De we used the same data as for En→De,
but due to the document based filtering method (see
Section 3.2.2) the versions with document bound-
aries were used.

2.1.2 Development and test data
Development and test data sets were selected from
the development suites provided. For En→De,
we used the 2019 test set as validation set in the
trainings and the 2020 test set as the test set to
evaluate the trained models4. These data sets al-
ready contained only source original segments. We
also extracted a source original subset from the
full En→De development set, which was used in
fine tuning of the final En→De models (see Sec-
tion 3.2.3).

For Fr→De, the development set was shuffled
and split into 3000 segment pairs for validation
set and the rest (1813 segment pairs) for a general
test set. To get an indication of the effect of data
selection as described in Section 3.2.2, it was nec-
essary to create a domain specific custom test set as
well. The Fr→De 2008–14 development sets were
filtered using a pattern based approach based on a

4The reverse direction was used for the back-translation
engines.
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small list of 50 manually selected domain specific
keywords5, as well as scored and ranked by a target
language model built from selected monolingual
data (see Section 3.2.2). These two candidate lists
were then manually revised and filtered to result in
a 2k domain specific test set. These segments were
removed from the training data.

2.2 Pre- and Postprocessing

Similarly to previous years (Oravecz et al., 2019,
2020) we opted for the simplest possible workflow
leaving out the standard pre- and postprocessing
steps of truecasing, or (de)tokenization, and simply
used SentencePiece (Kudo, 2018), which allows
raw text input/output within the Marian toolkit
(Junczys-Dowmunt et al., 2018)6 in the experi-
ments. In some language pairs some simple nor-
malization steps were applied in post-processing,
which are described in the language pair specific
result sections.

3 Trainings

In competitive systems big transformer architec-
tures have become the norm in recent years (Bar-
rault et al., 2020). We can in general see a sig-
nificant increase in the need for computational re-
sources to train deeper and more complex architec-
tures up to 40–50 encoder layers (Wu et al., 2020b;
Zhang et al., 2020; Wu et al., 2020a). Our resource
environment does not allow us to fully follow this
trend, limiting the complexity of the models as well
as the scope of the experiments. Similarly to pre-
vious years, in all experiments we used Marian, as
the core tool of our standard NMT framework in
the eTranslation service. All trainings were run
as multi-GPU trainings on 2 or 4 NVIDIA V100
GPUs with 16GB RAM, while for one training
we were able to use a server with 8 32GB V100
GPUs.7 Base transformers were typically trained
for 20-30 epochs, whereas big transfomers were
generally trained for 4–9 epochs for very high re-
source setups (>400M segments) and 20–25 epochs
for medium resource.

5For example: Abwicklung, Betrug, Finanzbeitrag, Kapital
etc.

6We did not change the default settings for Marian’s built-
in SentencePiece: unigram model, built-in normalization and
no subword regularization.

7Access to high capacity resources at an affordable price
has been especially challenging for us this year. In a race
where computational power plays a crucial role (particularly
in high resource settings) this might lead to an inherent disad-
vantage, which can be difficult to handle.

3.1 NMT Models

We only used base transformer models (Vaswani
et al., 2017) for the first baseline models and for
models used for back-translation to gain time and
efficiency in back-translating large amounts of tar-
get monolingual data. For more competitive sys-
tems we switched to big transformer architectures,
which resulted in significant improvements but at
the same time the rise in computing costs and train-
ing time was also substantial. Due to the limita-
tions of available resources we could build only
one set of a 2–4 member ensemble from big trans-
formers as our submission systems for En→De and
Fr→De; again a high cost for a relatively smaller
scale improvement. Our training settings have not
changed from last year’s setup: for most of the
hyperparameters we used the default settings for
the base transformer architecture in Marian8 with
dynamic batching and tying all embeddings. To
save time and resources, we stopped the trainings
if sentence-wise normalized cross-entropy on the
validation set did not improve in 5 consecutive val-
idation steps. In the big transformer experiments,
also following recommended settings for Marian,
we doubled the filter size and the number of heads,
decreased the learning rate from 0.0003 to 0.0002
and halved the update value for -lr-warmup and
-lr-decay-inv-sqrt.

Following common ranges of subword vocabu-
lary sizes, we set a 36k joint SentencePiece vocab-
ulary in En→De and En→Cs, and 30k in Fr→De.

3.2 Improving Baseline Models

In this section we briefly describe the methods we
experimented with to improve the baseline mod-
els, such as selecting and filtering domain specific
monolingual corpora to build additional synthetic
data sets with back-translation (Sennrich et al.,
2016), using development data (where available) or
language model scored subsets of original parallel
data to continue the training of already converged
models and building ensembles of deep models
originally trained from different seeds. Evaluation
scores are reported in Section 4.

3.2.1 Filtering ParaCrawl
Training the En→De baseline model from the orig-
inal parallel (OP) data (Table 1) we noticed that
the model performed only as well (32.8 BLEU

8See eg. https://github.com/marian-nmt/
marian-examples/tree/master/transformer.
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on the 2020 test set) as our comparable model
from last year despite having about twice as much
ParaCrawl data while the other datasets remained
basically very similar. This suggested that the v7.1
ParaCrawl (PC) data might have been noisier or
contained more out of (news) domain data than
expected. This was confirmed by training an al-
ternative baseline excluding the whole ParaCrawl
data set, which in the end resulted in a better score
(33.3). To find a more beneficial subset of the PC
data we first experimented with the stock Bicleaner
filtering (Ramírez-Sánchez et al., 2020), setting
higher thresholds of 0.65 and 0.75, which filtered
the PC data to 51M and 26M segments, respec-
tively. Adding either of these subsets to the other
OP data sets did not lead to a significant increase
(33.4 in both setups), however, we used the 51M
segment subset instead of the full PC data in some
further filtering experiments (see Section 3.2.3).

As a second filtering method we trained trans-
former language models (LM) with Marian from
the filtered monolingual English and German data
sets, scored both sides of the ParaCrawl data and
ranked the segments (by simply averaging the
scores). We experimented with models trained
by adding the top 10, 20 and 30M highest scor-
ing PC segments to the other OP data and found
the 20M segment subset to produce the best base-
line score (35.2), therefore we selected this data
set (non ParaCrawl OP data plus the 20M segment
LM scored ParaCrawl subset) as the initial paral-
lel data for more complex models as well as for
back-translation.9

3.2.2 Synthetic Data

Back-translation (BT) is the most used data aug-
mentation technique in neural machine translation,
but one which can introduce a wide range of scenar-
ios in the search for finding the most optimal setup
in the amount of synthetic data, the ratio of bitext to
back-translation data or in the methods to generate
the synthetic source (Edunov et al., 2018; Hoang
et al., 2018). Tagged back-translation (Caswell
et al., 2019) has been proposed as a simple and effi-
cient alternative to noising techniques, arguing that
it is the indication of the data being synthetic that
is relevant for the model. This has been confirmed

9Clearly, there are other data selection combinations possi-
ble, for example, by taking only the 0.65 threshold Bicleaner
subset as the base data for the LM based filtering, however, we
did not have the time and resources to explore more scenarios
for this language pair.

in our experiments in previous years, therefore we
tried to use this technique in our workflows.

In the En→De system, we trained the reverse
engine as a base transformer from the best base-
line data setup mentioned above. After the conver-
gence of this model we continued the training with
a 30M segment subset of the OP data created by lan-
guage model scoring (with the same models as for
ParaCrawl). This gave an additional small increase
in BLEU (0.4). With this model we back-translated
an aggressively sentence segmented version of the
filtered German monolingual data (see Section 2.1),
which increased the size of the training set from
the initial 167M segments to 219M. Our first inten-
tion was to build strong sentence based models and
postprocess their output with dedicated sentence-
to-document methods (which we describe in Sec-
tion 3.2.5), so we tried to build one sentence per
segment back-translated data sets by splitting up
segments containing several sentences.

To train the submission ready systems we upsam-
pled the best baseline OP data set to a 1:1 ratio with
the BT data (Ng et al., 2019; Junczys-Dowmunt,
2019). This setup was a one shot configuration, we
had no time and resources to experiment with other
OP-BT combinations.

The task in the Fr→De language pair was do-
main specific, which offered us the opportunity to
follow suit with the more recent shift from model
centric approaches to data centric ones and focus
on methods for finding the optimal subsets of the
provided data which help improve performance in
the selected domain. Therefore we tried to tune
our models towards the domain by making use of
guided topic modeling10. We created financial seed
word lists by manually selecting 40 and 175 domain
specific tokens from the top of a raw frequency list
from a few million German News Crawl segments,
and then we clustered the documents in the 2016,
2017, 2019 and 2020 German News Crawl data set
into different topics guided by the selected seed
word list.11 By selecting the documents clustered
into the seed word list induced topic we finally
collected ca. 12M German News Crawl segments
derived from two topic modelling runs based on
one or the other list. These segments overlapped to
a great extent. We back-translated both selections
then cleaned up the back-translated data the way

10https://github.com/vi3k6i5/guidedlda
11The text was tokenized and we used a German stopword

list but no lemmatization in creating the document-term matri-
ces.
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we cleaned up the OP data but removed addition-
ally pairs of segments that contained more than 15
numeric characters or more than 15 non-decimal
commas. We also used the two sets to train two
domain specific language models to score and rank
the original parallel data set.

After that we took the union of the filtered BTs
and deduplicated it. This gave us ca. 15M BT seg-
ment pairs which was at almost 1:1 ratio with the
OP data. We explored training with subsets of the
BT data but this did not give any improvement so
we decided to use it all. We also experimented
with tagged and untagged BT data, of which some-
what unexpectedly the latter gave the better result.
The reason might be that the BT data was more
in-domain, while most of the OP data was out of
(news) domain and the explicit OP vs. BT distinc-
tion might have presented a harmful signal to the
model here.

3.2.3 Continued Trainings and Fine Tuning
on Dev Sets

As last year, in the En→De system we followed a
two-stage continued training process to improve
performance as domain adaptation (Luong and
Manning, 2015). We scored the non ParaCrawl
OP plus the 0.65 threshold ParaCrawl subset (see
Section 3.2.1) with the language models used for fil-
tering the ParaCrawl data set (Section 3.2.1). Then
we used the top 10, 20 and 30M subset to continue
the training of the OP+BT converged models until
the BLEU score on the test set increased (Junczys-
Dowmunt, 2019); typically 2 epochs with an in-
crease of 0.5 points. The second stage utilized the
2008–2019 development sets (34k segments) as
fine tuning data in the experiments and for the final
submission it was extended with the 2020 test set.
We trained with reduced batch size and learning
rate for 4 epochs on this set and then for additional
3 epochs we switched to a source original subset
(16k) to reach the highest BLEU score. In the end
this process gave only a minor improvement of 0.3
BLEU points.

For Fr→De, we experimented with fine-tuning
the best converged models (see Section 4.2) by us-
ing different sets of in-domain data. We scored the
OP data for domain, using the two different LMs
as mentioned above. Then, we selected the top 1M
segments of each scored set of OP data and inter-
sected them. This gave us ca. 0.85M segment pairs.
However, this approach was not successful. In the
other setup, we selected the top 2M segments of

each scored set of OP data and intersected them,
which gave us ca. 1.75M segments. We fine-tuned
with reduced batch size until the BLEU score in-
creased, which gave us an increase of 0.8 points on
the domain specific test set.

3.2.4 Ensembles
The En→De final submission consisted of a modest
4 model big transformer ensemble, trained with
the same best configuration and workflow but with
different seeds. This approach usually gives a small
but steady improvement (about 0.5 BLEU points
here) but for substantially high resource settings
it also comes with large computational costs. It
is not uncommon to use ensembling already for
back-translation (Wu et al., 2020b) but for lack of
time and resources we had to limit this technique
to the submission setups.

The Fr→De ensemble was composed of 4 big
transformer models – three of them trained on orig-
inal parallel data and back-translated data in ratio
1:1. The 4th big transformer was one of the 3 big
transformers, additionally fine-tuned for 7 epochs
on the 1.75M OP data scored with the domain LMs.
For lack of time it was only one experimental setup
out of many other possible ones but proved to be
better than our previous systems.

3.2.5 Methods Tested but not Selected for
Submission Models

In the En→De system, this year we experimented
with a two-stage translation process of using a
strong sentence-level system at the first step and
post-process its output with a dedicated sentence-
to-document level model. Following the method
proposed by Voita et al. (2019), we created a 100M
segment synthetic dataset by round-trip translating
the (filtered) 2019 and 2020 German News Crawl
with document boundaries with the baseline sen-
tence level (forward and reverse) systems, and then
generating 1, 2, 3 and 4 sentence long “source
German”–“target German” pairs from the round-
trip translated segments and the sentences in the
original News crawl documents. We trained a base
transformer from this data set and used it as a sec-
ond stage repair on the output of the best En→De
sentence level system. Unfortunately, we observed
a significant drop in BLEU (almost 5 points) and
although this is somewhat consistent with what for
example Ma et al. (2021) reports on automatic eval-
uation for this method, we did not want to take the
risk of submitting a system with such a quality drop

176



on the automatic metric to manual evaluation.

4 Results

We submitted a constrained system for each of the 3
language pairs. For En→Cs, we ran out of time and
had to reuse our last year submission. For the other
language pairs, we provide the evaluation scores
for models at important stages in the development,
which reflect how the models got better as we tried
various methods for improvement. All results are
reported in detokenized BLEU.12

4.1 English→German

Test sets

System Data 2020 2021

M1: Baseline 12M 33.3 –
M2: M1+PC 32M 35.2 –
M3: M2+BTbigT 450M 36.7 –
M4: M3 tuned 450M+36k 37.5 –

M5: M4 ensemble 450M+36k 38.0 29.6

Table 2: Results for En→De models. The 2021 result
is from the Ocelot submission.

In Table 2 we present the main stages of the de-
velopment of the En→De systems. Model 1 was
the initial baseline model and used only the origi-
nal parallel data excluding ParaCrawl altogether. In
Model 2 we added the language model filtered and
scored top 20M subset from ParaCrawl (PC). For
Model 3, we switched to the big transformer archi-
tecture and used the large aggressively segmented
back-translation (BT) dataset with 1:1 upsampled
original parallel data (OP). The next model (M4)
was tuned for 3 additional epochs with the top 10M
LM scored OP data and then with the development
set, leading to a small but steady increase. Finally
the system we submitted was an ensemble of four
M4 models. Our primary system being a sentence-
level model, we performed sentence segmentation
as a preprocessing step and then simply remerged
the sentence level hypotheses on the target side
where needed. Finally, as in previous years, a post-
processing step normalizing German punctuation
and some space fixing around the % sign was run
on the final output.

12sacreBLEU signatures: BLEU+case.mixed+
lang.en-de+numrefs.1+smooth.exp+tok.13a+
version.1.4.13

4.2 French→German

Table 3 summarizes the results of the Fr→De exper-
iments. The first baseline model (M1) was trained
only on the original parallel data with news data
upscaled 5 times (NewsCrawl, NewsCommentary),
while in model 2 and 3 (M2, M3) we added the do-
main specific back-translated data set (as described
in Section 3.2.2). Switching from base transform-
ers (M1 to M3) to the big transformer architecture
in model 4 (M4) led to a decent improvement. This
setup was used for the models in the M5 three
model ensemble. In the primary submission (M6)
this was extended with a 4th big transformer. In M6,
the 4 models were trained on the original parallel
(OP) data and back-translated data (in ratio 1:1),
and one of the models was additionally fine-tuned
for 7 epochs on the 1.75M domain LM scored orig-
inal parallel data subset (see Section 3.2.3).

4.3 English→Czech

Due to problems with computational resources, the
En→Cs trainings had not finished until the submis-
sion deadline. Our primary submission presented
in Table 4 is therefore a clone of the 2020 system
(trained on OP plus BT data).

5 Conclusion

We presented the submissions of the eTranslation
team to the WMT 2021 news translation shared
task on 3 language pairs: English-German, French-
German and English-Czech. Unlike in previous
years, we had to face a few unexpected challenges
with respect to resource availability, which in-
evitably affected some experiments we planned
to carry out. We tried to put more emphasis on data
selection, filtering and domain specific evaluation
with custom test sets in the task where it seemed to
be most rewarding and automatic evaluation results
justified this approach.
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Abstract
We describe the University of Edinburgh’s
Bengali↔Hindi constrained systems submit-
ted to the WMT21 News Translation task. We
submitted ensembles of Transformer models
built with large-scale back-translation and fine-
tuned on subsets of training data retrieved
based on similarity to the target domain. For
both translation directions, our submissions
are among the best-performing constrained
systems according to human evaluation.

1 Introduction

We present the University of Edinburgh’s participa-
tion in the WMT21 news translation shared task on
the Bengali→Hindi (Bn→Hi) and Hindi→Bengali
(Hi→Bn) language pairs. We followed the con-
strained condition, i.e. only using the data provided
by the organizers. The training data for these lan-
guage pairs consisted of noisy crawled data, and
was mostly out-of-domain with respect to the val-
idation and test domain. Therefore, most of our
efforts concentrated on fine-tuning models to adapt
to the target domain. We also explore multiple
back-translation methods, and ensembles of mod-
els trained and fine-tuned with different methods.

Building our systems consisted of the following
steps, each of which is described in more detail in
the remaining sections of this paper:

• Cleaning the noisy parallel data (Section 3).

• Training ensembles of Transformer models on
the cleaned provided data for back-translation;
and using the back-translated data along with
the clean parallel data to train new models
(Section 4).

• Fine-tuning the models on subsets of training
data retrieved that are similar to the target do-
main, based on different similarity measures
(Section 5).

• Ensembling various models and decoding
with optimal parameters (Section 6).

We also report some methods that we tried to
use but did not work in Section 8.

2 Model Configuration

Our models follow the Transformer-Big architec-
ture (Vaswani et al., 2017): 6 layers of encoders
and decoders, 16 heads, an embedding size of 1024,
a unit size of 4096, etc. We found that smaller
Transformer architectures performed worse.

All models are trained with the same vocabu-
lary of 32k SentencePiece subwords (Kudo and
Richardson, 2018) to allow ensembling. We use
a shared vocabulary between source and target, as
well as tied embeddings (Press and Wolf, 2017).
We tried other vocabulary sizes too: 5k, 10k, and
20k, though all of them had similar performance.
We also included several special tokens in the vo-
cabulary, of which we finally used only one for
tagged back-translation (Caswell et al., 2019).

We train models with 32GB dynamic batch size
and an optimizer delay (Bogoychev et al., 2018)
of 3 with the Adam optimizer (Kingma and Ba,
2015) under a learning rate of 0.0003, until we see
no improvement within 10 consecutive validation
steps. All models were trained with the Marian
NMT toolkit (Junczys-Dowmunt et al., 2018)1

3 Datasets and Cleaning

3.1 Corpora

All our models are trained in the constrained sce-
nario – even more specifically, we only use data
provided for the news translation task for these spe-
cific language pairs. This consists of 3.3M parallel
sentences from the CCAligned corpus (El-Kishky
et al., 2020), along with monolingual data in both
languages. The details of the corpora used along
with their sizes are shown in Table 1.

1https://github.com/marian-nmt/marian
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Corpus Lines (M)
Parallel 3.36

+ deduplication and filtering 2.03
Monolingual

Bn NewsCrawl 10.1
Bn CommonCrawl 49.6
Hi NewsCrawl 46.1
Hi CommonCrawl 202

Table 1: Bn and Hi corpora used in our submissions.

3.2 Cleaning

Since the CCAligned corpus is built from web
crawls and is known to be very noisy (Caswell
et al., 2021), we focused on cleaning the parallel
data before training translation models. Our main
approaches are rule-based and heuristic cleaning
methods, along with language identification and
language model filters. Our final systems used the
following cleaning methods for the parallel corpus:

De-duplication Duplicate sentence pairs –
around 17.3% of the corpus – were removed.

Splitting multi-language sentences We ob-
served large chunks of the corpus where the sen-
tences on the Bengali side also had their English
translations attached in the same line. Some rough
punctuation and script-based heuristics were used
to remove the English segments from these lines.
The roughness of these heuristics also affected a
large number of other lines, mostly noisy ones
containing non-lexical information, but we ob-
served no degradation of quality due to this in-
accuracy. We also found some such sentences on
the Hindi side, but they were less frequent and re-
moval showed no improvement in quality, so we
did not split Hindi sentences in this way for our
final models.

Language ID filtering We used publicly avail-
able FastText language identification models
(Joulin et al., 2016, 2017)2 to filter out lines in
wrong languages. We get the top 3 predictions for
each line, throw out lines where the right language
does not appear in the top 3 for one or both sides,
sort by the language prediction probabilities, and
based on manual inspection, arrive at minimum
threshold probabilities of 0.6 for Bengali lines and
0.4 for Hindi lines, above which lines are retained.

2https://fasttext.cc/docs/en/
language-identification.html

Language model filtering We used KenLM
(Heafield, 2011) to train separate trigram language
models for Bengali and Hindi, on all provided Ex-
tended CommonCrawl monolingual data, and used
these to score the parallel data. We retain sentences
with log10 probabilities greater than -4.

4 Training with Synthetic Data

In each language direction, we trained 4 models
with different seeds. We then ensembled these 4
models to back-translate (Sennrich et al., 2016)
all the provided monolingual data. We used this
translated data in many different ways as described
in the remainder of this section.

Tagged back-translation Following Caswell
et al. (2019), we prefixed a special <__BT__>
token to all back-translated news monolingual data,
combined the data with the clean parallel data, and
trained new models.

Two-step training We first trained models on
all the back-translated data only, then once that
converged, continued training on the clean parallel
data. Since the amount of monolingual data far
exceeds the amount of parallel data, this training
regime gave us better results than mixing parallel
and back-translated data at the same time. The
latter method would also involve finding the right
amount of back-translated data to sample/select,
since using it all would overwhelm the parallel
training data.

Forward translation We also trained models on
parallel data along with all the back-translations
and all forward translations, i.e. instead of strictly
keeping target monolingual data on the target side
and synthetic back-translated data on the source
side, we used both directions of translated data.

5 Fine-tuning to the Target Domain

5.1 Fine-tuning on retrieved sentences
Unlike many of the other language pairs in the news
translation task, the Bengali-Hindi pair does not
include any known in-domain training corpora. The
training data is aligned from documents obtained
through untargeted web crawling (El-Kishky et al.,
2020), and thus contains out-of-domain and noisy
text. On the other hand, the target domain, reflected
in the validation and test sets, consists of Wikipedia
content3.

3Despite it being part of the ‘news translation’ task
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To adapt our models to the target domain, we
retrieved sentences from the training corpora which
are similar to the source side of validation and test
sets based on different similarity measures, and
then fine-tuned the models on these subsets of data.
The remainder of this section describes the different
methods to retrieve the relevant subsets of data.
The number of sentence pairs retrieved by each of
these methods which are then used for fine-tuning
is shown in Table 2.

Retrieval Source Lines (K)
Bn Hi

1 bigram overlap dev 448 891
2 bigram overlap dev 243 597
3 bigram overlap dev 158 445
1 bigram overlap dev, test 487 932
2 bigram overlap dev, test 273 639
3 bigram overlap dev, test 183 479
LM threshold -2.5 dev 50 175
LM threshold -2.0 dev, test 12 13
TF-IDF dev, test 5.6 27.9
TF-IDF cluster dev, test 20 20

Table 2: Number of training sentence pairs retrieved for
fine-tuning by different methods.

Based on vocabulary overlap The simplest
method is to retrieve any sentence pairs whose
source texts have 1, 2, or 3 non-punctuation bi-
grams which occur on the source side of the val-
idation and test sets. Due to the large mismatch
between training corpus and target domain, this
method retrieves a surprisingly small proportion of
the training corpus, as shown in Table 2.

Based on language model scoring We trained n-
gram language models on the validation and test set
or validation set data only, scored the parallel data
with these language models, then kept sentences
scoring above a certain threshold. Even though
the small size of the validation data means that
the language model is probably not very good, we
still see some improvements by fine-tuning on data
retrieved this way.

Based on TF-IDF similarity We first adapted
the document aligner4 from ParaCrawl (Bañón
et al., 2020) to work at sentence level. This tool
uses the translation of a source text (Uszkoreit et al.,

4https://github.com/bitextor/bitextor/
tree/master/document-aligner

2010) to match potential target text using cosine
similarity of TF-IDF-weighted word frequency vec-
tors. In this case, we match the source side of our
validation and test sets with the parallel text to find
potential “matches”. This method retrieves too few
matches with only the validation set, but we got
a few thousand sentence pairs (Table 2) from a
combination of validation and test sets.

Following Chen et al. (2020b), we also devel-
oped a variant where we first cluster each source
sentence with another X sentences in the valida-
tion and test sets based on n-gram TF-IDF vector
cosine similarity, then treat the cluster as a single
query and compare it against each source sentence
in the parallel training data. We always picked
the top 20K resulting pairs. Through manual in-
spection, we found that the resulting corpus is very
reasonable when we cluster the whole validation
and test sets as one query, making the fine-tuning
essentially a test domain adaptation process.

5.2 Fine-tuning on the validation set
Since the validation data is the only domain-
specific data we had, similar to Chen et al. (2020a),
we fine-tuned all our final models on a portion of
the validation set (we used 95% of the data instead
of 75%) until it stopped improving on the rest of the
validation set. This was done as a final additional
step after the other kinds of fine-tuning described
previously.

6 Ensembles and Decoding Parameters

6.1 Ensembles
As shown in Table 3, our primary submissions con-
sist of ensembles of multiple models trained and
fine-tuned in different ways. Due to the compo-
nent models not being very high-quality, we ob-
served that this type of ensemble produces more
robust translations than simple ensembles of mod-
els trained identically with different seeds.

6.2 Optimal decoding hyperparameters
Using an initial ensemble of 4 models, we swept
a wide range of values of beam size and length
normalization hyperparameters to decode the vali-
dation set. We find that optimizing these can result
in an improvement of up to 0.5 BLEU on the vali-
dation set. We obtained the best scores with a beam
size of 16, and a length normalization parameter of
1.3 for Bn→Hi and 0.7 for Hi→Bn, and used these
values to decode the test set.
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Model Bn→Hi Hi→Bn
BLEU ChrF BLEU ChrF

(1) Single model baseline – Parallel data 19.56 0.4638 10.70 0.4378
(2) Ensemble – Parallel data 20.37 0.4733 11.47 0.4482
(3) Parallel + back-translated data 18.62 0.4577 9.78 0.4360
(4) Parallel + backward + forward translations 20.16 0.4697 11.78 0.4503
(5) Continue training on (3) with parallel data 21.26 0.4784 12.29 0.4587
(6) Continue training on (4) with parallel data 20.97 0.4767 12.02 0.4470
(7) Tagged BT (NewsCrawl only) + parallel data 20.61 0.4753 12.13 0.4541

(5) fine-tuned on:
(8) 1 bigram overlap, dev 21.55 0.4816 12.26 0.4573
(9) 2 bigram overlap, dev 21.49 0.4806 12.31 0.4587

(10) 3 bigram overlap, dev 21.35 0.4803 12.44 0.4600
(11) LM threshold -2.5, dev 21.30 0.4794 12.29 0.4590
(12) 1 bigram overlap, dev+test 21.45 0.4814 12.29 0.4599
(13) 2 bigram overlap, dev+test 21.52 0.4812 12.21 0.4568
(14) 3 bigram overlap, dev+test 21.38 0.4794 12.26 0.4594
(15) LM threshold -2.0, dev+test 21.29 0.4792 12.24 0.4563
(16) TF-IDF, dev+test 21.32 0.4788 12.32 0.4601
(17) (6) fine-tuned on TF-IDF cluster, dev+test 20.26 0.4710 12.02 0.4470

Table 3: Validation set BLEU and ChrF scores for our models.

Submitted ensembles Bn→Hi Hi→Bn
BLEU ChrF BLEU ChrF

(8)+(9)+(10)+(11) 21.75 0.4895 –
(6)+(7)+(8)+(9)+(10)+(11)+(16)+(17) – 12.55 0.4536

Table 4: Test set BLEU and ChrF scores for our primary submissions. Model numbers refer to models from Table
3, but note that all models were fine-tuned on the validation set before ensembling.

6.3 Sentence splitting
In the source texts of the test set, we observed
many instances of more than one sentence in one
line. Since our models are trained on single sen-
tences, we chose to run a sentence splitter on the
test source, translate, and rejoin the translated sen-
tences. For this purpose, we used the Moses sen-
tence splitter (Koehn et al., 2007)5 for Bengali text,
and the IndicNLP sentence splitter (Kunchukuttan,
2020) for Hindi.

6.4 Numeral transliteration
Due to the fact that numerals in the Latin script
are often used in Bengali and Hindi text, which
is reflected by the web crawled training data, our
models tend to generate a mix of Latin and Ben-
gali/Hindi numerals, sometimes even in the same
sentence. To ensure consistency, we transliterated

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/ems/
support/split-sentences.perl

all Bengali or Hindi numerals in our test outputs to
their Latin script counterparts (it is equally feasible
to convert Latin numerals to the target language).
While this may not help in terms of automatic met-
rics (we lose 0.3-0.5 BLEU after this step), we
believe human evaluators would prefer consistency
in this regard.

7 Results

Table 3 shows BLEU6 and ChrF7 scored using
sacreBLEU (Post, 2018) on the validation sets. We
see that fine-tuning on the retrieved subsets of data
consistently results in quality gains. We tried many
different ensembles and, upon visual inspection,
found that models fine-tuned on data retrieved on
the basis of similarity to validation and test sets
were not necessarily better than those from valida-
tion sets only.

6signature: BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.5.1

7signature: chrF2+numchars.6+space.false+version.1.5.1
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Ave. Ave. z System
82.1 0.202 GTCOM
79.1 0.163 Online-B
77.5 0.080 TRANSSION
78.0 0.076 MS-EgDC
78.0 0.054 UEdin
76.1 -0.015 Online-Y
75.7 -0.080 HuaweiTSC
75.7 -0.107 Online-A
70.8 -0.373 Online-G

(a) bn→hi

Ave. Ave. z System
95.0 0.245 HuaweiTSC
94.8 0.236 Online-A
94.5 0.233 GTCOM
94.6 0.214 UEdin
92.3 0.080 Online-Y
92.0 0.045 TRANSSION
91.3 0.029 Online-B
90.9 -0.008 MS-EgDC
73.5 -1.100 Online-G

(b) hi→bn

constrained unconstrained

Table 5: Human evaluation results. Our submissions are in bold. Systems within a cluster are considered tied.

Table 4 reports the automatic scores of our final
submitted systems on the test sets. As shown in
Table 5, according to human evaluation conducted
by the task organizers, our systems rank at the top
(tied) among all the constrained submissions for
both translation directions.

8 Unsuccessful Attempts

In this section, we document some methods that
we tried to use, but which did not work at all or did
not result in better systems.

Dual conditional cross-entropy filtering Our
initial cleaning effort was to use dual conditional
cross-entropy (Junczys-Dowmunt, 2018) to self-
filter the parallel data, which yielded no useful
results. We also randomly split the data into two
halves, trained translation models on each half, to
score and filter the other half of the data – this
method did not work either. We conclude that these
methods are not suitable in this scenario where we
do not have any clean data, however small, to train
the initial cleaning model.

Copied monolingual data We attempted to syn-
thesize training data by copying (Currey et al.,
2017) and transliterating8 monolingual data in the
target language to source. In this way, we obtained
pseudo parallel data that could potentially improve
the decoder side of a translation model without
harming the encoder much.

Transfer learning We also explored utilizing
dataset from another language in the form of model

8https://github.com/
indic-transliteration/indic_
transliteration_py

pre-training. Following Aji et al. (2020), we initial-
ize our Bengali↔Hindi model weights, excluding
the embeddings, from our English↔German sub-
mission to WMT21 (Chen et al., 2021).

These methods above did not increase BLEU,
except that transliterated monolingual data brought
a tiny improvement. Model pre-training achieved
the convergence faster, but did not achieve better
final BLEU. Consequently, we did not carry out
any further experiments with these methods.
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Abstract

This paper describes the Volctrans’ submission
to the WMT21 news translation shared task
for German→English translation. We build
a parallel (i.e., non-autoregressive) translation
system using the Glancing Transformer (Qian
et al., 2020), which enables fast and accu-
rate parallel decoding in contrast to the cur-
rently prevailing autoregressive models. To
the best of our knowledge, this is the first par-
allel translation system that can be scaled to
such a practical scenario like WMT competi-
tion. More importantly, our parallel translation
system achieves the best BLEU score (35.0)
on German→English translation task, outper-
forming all strong autoregressive counterparts.

1 Introduction

In recent years’ WMT competitions, most teams
develop their translation systems based on autore-
gressive models, such as Transformer (Vaswani
et al., 2017). Although autoregressive mod-
els (AT) achieve strong results, it is also worth
exploring other alternative machine translation
paradigm. Therefore, we build our systems with
non-autoregressive translation (NAT) models (Gu
et al., 2018). Unlike the left-to-right decoding in
the autoregressive models, the NAT models employ
the more efficient parallel decoding. Specifically,
our system employs single-pass parallel decoding,
which generates all the tokens in parallel at one
time, thus can accelerate decoding speed.

In this paper, we would like to present the best
practice we explored in this year’s competition for
our parallel translation system, aiming at achieving
top results while preserving decoding efficiency.

System Overview. To achieve this, we improve
the parallel translation system in several aspects,
including better model architectures, various data

∗Equal contributions.

exploitation methods, mutli-stage training strategy,
and inference with effective reranking techniques.
For model architectures (§2), we build the parallel
translation system based on the Glancing Trans-
former (GLAT, Qian et al., 2020). Besides, our
system employs dynamic linear combination of
layers (DLCL, Wang et al., 2019) for training deep
models. For data exploitation (§3), we first filter
data with multiple strategies. After filtering, we
use the Transformer (Vaswani et al., 2017) to syn-
thesize various distilled data. For training (§4), the
NAT models employ multi-stage training to better
exploit the distilled data. At inference phase (§5),
the system generates the final results by reranking
candidate hypothesis from multiple parallel gener-
ation models.

With the proposed techniques, our parallel trans-
lation system surpasses autoregressive models, and
achieves the highest BLEU score (35.0) in the
German→English translation task. Such results
show that parallel translation system not only has
great decoding efficiency, but also could achieve
better performance compared to the autoregresssive
counterparts.

2 Backbone Model Architecture

As depicted in Figure 1, our submitted system em-
ploys GLAT (Qian et al., 2020) as our backbone
model architecture, and includes an auxiliary de-
coder in GLAT for achieving better translation per-
formance. GLAT is a method for training non-
autoregressive models rather than a model archi-
tecture, which adaptively samples target tokens in
training. Although the target token sampling in
GLAT helps training, it also introduces a gap be-
tween training and inference. To close the gap,
we introduce the auxiliary decoder that shares the
same encoder with the GLAT decoder, which is
only used for training in a multi-tasking fashion.
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Figure 1: Illustration of our backbone model architec-
ture: Glancing Transformer with an auxiliary decoder.

Besides, we train models with three architecture
settings to increase model diversity.

2.1 Glancing Transformer

GLAT has three components: the encoder, the de-
coder, and the length predictor. The architecture
of GLAT is built upon the Transformer (Vaswani
et al., 2017). The encoder is the same as that of
Transformer, and the decoder is different from the
Transformer decoder in the attention mask. Trans-
former employs attention mask in self-attention
layer to prevent decoder representations attending
to subsequent positions. Since GLAT generates
sentences in parallel, the decoder of GLAT has no
attention mask and uses global context in decoding.
The details of the length predictor is described in
Section 2.3.

To reduce the difficulty of training deep mod-
els, we also employ dynamic linear combination
of layers (DLCL, Wang et al., 2019) in the archi-
tecture. With DLCL, the input of each layer is the
linear combination of outputs from all the previous
layers.

Given the source input X = {x1, x2, ..., xN}
and the target output Y = {y1, y2, ..., yT }, we use
the glancing language model (Qian et al., 2020) in
training. The model performs two decoding during
training. In the first decoding, the model generates
the sentence Ŷ in parallel. Then, the model ran-
domly selects a subset of tokens GS(Y, Ŷ ) in the
target sentence Y :

GS(Y, Ŷ ) = Random(Y, S(Y, Ŷ )) (1)

where Random(Y, S) means randomly sample S
tokens in Y . And the sampling number S(Y, Ŷ )
is computed by S(Y, Ŷ ) = α · d(Y, Ŷ ). d(Y, Ŷ )
is the Hamming distance between the first decod-
ing result Ŷ and the target sentence Y , and α is a

hyper-parameter for controlling the sampling num-
ber more flexibly.

In the second decoding, the model replaces part
of the original decoder input representations with
the embeddings of tokens in GS(Y, Ŷ ). Specifi-
cally, the token yi is used to replace the input rep-
resentation at position i. With the replaced decoder
inputs, the model learns to predict the remaining
words and compute the training loss:

Lglm =
∑

yt∈GS(Y,Ŷ )

log p(yt|GS(Y, Ŷ ), X) (2)

where GS(Y, Ŷ ) is the subset of tokens in Y that
are not selected. In training, the model starts from
learning to generate sentence fragments and grad-
ually learning the parallel generation of the whole
sequence.

2.2 Auxiliary Decoder

Although the sampled target words in GLAT train-
ing help the model learn target word interdependen-
cies, they also introduce a gap between training and
inference as the model cannot obtain target word
inputs in inference. Therefore, we add an auxiliary
non-autoregressive decoder to close the gap. The
auxiliary decoder shares the same encoder with the
GLAT decoder and directly learns to predict the
whole sequence in parallel. With the auxiliary de-
coder, we compute the loss for predicting the whole
sequence:

Laux =

T∑

t=1

logPaux(yt|X) (3)

where Paux is the output probability of the auxiliary
decoder. We jointly train the two decoders and the
training loss of model is:

Lgen = Lglm + λLaux (4)

Note that the auxiliary decoder is only used in train-
ing and has no additional cost in inference.

2.3 Length Prediction

To enable parallel generation, the model predicts
the target length before decoding. We use the aver-
age of encoder hidden states Havg as the represen-
tation to predict the length of target sentence. The
probability of the target length is computed by:

Plen = softmax(H>avgElen) (5)
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Figure 2: Overview of Volctrans GLAT System. Each grey block denotes a part of the system, the details can be
found in Section 3: Data Preparation, Section 4: Multi-Stage Training, and Section 5: Inference.

where Elen is the embeddings of length. Instead
of directly predicting the target length, the imple-
mented model predicts the length difference be-
tween input and output, which is easier to learn.
We use cross entropy loss for optimizing Plen and
train the length predictor with the generation mod-
ule jointly.

2.4 Model Variants

As shown in Figure 2, in order to increase the di-
versity of models, we use three model architecture
settings for GLAT. The details of the three GLAT
architecture variants are:

• GLAT-base: Following Wu et al. (2020);Sun
et al. (2019), we increase the number of en-
coder layers and use 16 encoder layers for
GLAT-base. For decoders, we use 6 layers
for the original decoder and 2 layers for the
auxiliary decoder. As for other model hyper-
parameters, we use the 1024 hidden dimen-
sion and 16 attention heads, which are the
same as the setting of Transformer-big.

• GLAT-deep: We further increase the number
of encoder layers to 32 for GLAT-deep. To
keep the number of model parameters on the

same scale, we decrease the hidden dimension
to 768.

• GLAT-wide: Following previous work (Wu
et al., 2020), we also expand the dimension
of the feed-forward inner layer to construct
GLAT-wide. We set the feed-forward dimen-
sion to 12288 and the encoder layer number
to 12.

3 Data Preparation

In this section, we will describe our best practice of
distilled data construction by employing AT mod-
els. As illustrated in data preparation in Figure 2,
we will first depict the general procedure of data fil-
tering and preprocessing of the provided raw data,
followed by the training details of the AT models.
Finally, we will describe how we produced distilled
data given the trained AT models. The resulting
distilled data will be used for training our GLAT
system.

3.1 Data Filtering and Preprocessing
Data quality matters in machine translation systems.
To obtain high-quality data, we employ rule-based
heuristics, language detection, word alignment and
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similarity-based retrieval to filter the provided par-
allel and monolingual corpora.

Rule-based Data Filtering
Based on experiences and WMT reports in previous
years, we first preprocess raw data based on rules:

• Data deduplication.
• Delete parallel data with the same source and

target.
• Remove special tokens and unprintable to-

kens.
• Remove HTML tags and inline URLs.
• Remove words or characters that repeat more

than 5 times.
• Delete sentences that are too long (more than

200 words) or too short (less than 5 words), as
well as the parallel data whose length-ratios of
source and target sentences are out of balance.

Parallel Data Filtering
After completing the rule-based filtering, we fur-
ther filtered parallel data via language detection
and its parallelism. The filtering process consists
of three stages:

1. Coarse-grained filtering: We filter parallel cor-
pus according to the results and ratio of lan-
guage detection. We use the pycld31 library
to filter German→English sentence pairs with
a language likelihood greater than 0.8 and a
language ratio greater than 60%.

2. Word alignment learning: We use fast
align (Dyer et al., 2013)2 to automatically
learn German→English word alignment on
the coarsely filtered corpus.

3. Fine-grained filtering: We filter the sentences
with an align score greater than five on all
parallel corpora and sort them through the
vocabulary learned by fast align.

Note that the amount of data in different corpora is
not balanced. We split the data into the paracrawl
group and the non-paracrawl group. We filter out
about 10% of the data in the non-paracrawl group
and 20% of the data in the paracrawl group.

Monolingual Data Filtering
For monolingual data, we first use the pycld3 li-
brary to filter the data of low scores, similar to the
coarse-grained filtering of parallel data.

Considering that monolingual data is too large,
we searched for some of the most relevant sen-

1https://pypi.org/project/pycld3/
2https://github.com/clab/fast_align

German (De) English (En)

parallel data 75M

monolingual data 86M 105M

Table 1: Statistics of the training data after preprocess-
ing and filtering.

tences in our distilled data through sentence re-
trieval. We sample news domain sentences from
the previous years’ dev set and newscrawl corpus,
and train a sentence BERT (Reimers and Gurevych,
2019)3 to retrieve the sentences on the monolin-
gual corpus. In detail, for each sampled news sen-
tence, we calculate the inner product of sentence
embedding between it and some random monolin-
gual sentences (as the entire corpus is too large),
where the sentence embedding is calculated with
the sentence BERT model. We retrieved the top
8000 sentences for each news sample according to
the inner product of sentence embedding. Finally,
we deduplicate the retrieved sentences to obtain the
final monolingual data.

Data Preprocessing
Once we obtained filtered data, we preprocess them
through the following steps:

1. Normalization: we use Moses tokenizer to
normalize the punctuation.

2. Tokenization: we use Moses tokenizer to tok-
enize all datasets.

3. Truecasing: we use Moses truecaser to learn
and apply truecasing on all datasets.

4. Subword segmentation: we use our proposed
VOLT (Xu et al., 2021), which learns vocab-
ularies via optimal transport, to split tokens
into subwords, resulting in a joint vocabulary
of a size of 12k subwords.

We summarize the statistics of the final datasets in
Table 1.

3.2 Training of AT Systems

In this section, we describe our AT systems, which
served to distill data for GLAT training. Over-
all, we first train a pair of German→English and
English→German AT systems purely using parallel
data. We then exploit source and target monolin-
gual data to create synthetic parallel data to further
improve the AT models. Besides, we leverage the

3https://github.com/UKPLab/
sentence-transformers
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testsets from previous years to fine-tune the AT
models for in-domain adaptation.

Hyperparameters. The AT models are Trans-
former models with 12 layers of encoder and de-
coder. We use the implementations in Fairseq (Ott
et al., 2019). All models are trained with Adam op-
timizer (Kingma and Ba, 2014). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5 ·10−4.
The betas are (0.9, 0.98). We use multiple GPUs
during training, resulting in an approximate total
effective batch size of 128k tokens. During train-
ing, we employ label smoothing (Szegedy et al.,
2016) of 0.1 and set dropout rate (Srivastava et al.,
2014) to 0.3.

Iterative Back Translation

Zhang et al. (2018) proposed an iterative joint train-
ing method for better usage of monolingual data
from the source language (i.e., German) and tar-
get language (i.e., English). In each iteration, the
German→English model generates forward syn-
thetic data from the German monolingual data, and
the English→German model generates backward
synthetic data from the English monolingual data.
Then, the German→English and English→German
models are trained with the new forward and back-
ward synthetic data to improve both models’ perfor-
mance, in which the target-side data are assumed
to be the authentic ones from the monolingual cor-
pus. In the next iteration, the German→English
and English→German models can generate syn-
thetic data with better quality, and their perfor-
mance can be further improved . We jointly train
the German→English and English→German mod-
els for 3 iterations.

In-domain Finetuning

We fine-tune the trained model on the previous
years’ testsets to obtain in-domain knowledge,
which is a widely used technique in previous
years’ WMT (Li et al., 2019). Specifically, we use
WMT19 German→English testset as in-domain
data. We set the learning rate to 1e-4 without a
learning rate scheduler and the max tokens per
batch as 4096. We then fine-tune the model for
30 steps4.

4Since the size of the in-domain data is small, fine-tuning
with more steps will overfit the data.

De-En En-De

baseline 39.34 35.10
iterative BT 43.56 36.85

in-domain FT 44.00 38.30

forward translation 44.05 39.50
final training 44.15 39.70

Table 2: BLEU scores of AT models on newstest20
with respect to different training stages.

Forward Translation
Bogoychev and Sennrich (2019) observed that
on the sentences that are originally in the source
language, which is the case of the test sets of
this year’s WMT, the forward translation could
bring significantly more improvement than back-
translation. We thus use the finetuned model, ob-
tained by the aforementioned in-domain finetuning,
to translate source monolingual corpus to obtain
forward translation data. We then apply these for-
ward translation data to finetune our AT models.

Finally, we combine all the parallel data, back-
translation data, and forward translation data to
further finetune our AT models. Table 2 shows
the performance of the AT models with respect
with each training stage. The resulting AT models
are ready for constructing distilled data for GLAT
training.

3.3 Constructing Distilled Data for GLAT
One of the widely known difficulties of training
NAT models is the multi-modality problem (Gu
et al., 2018). In the raw training data, the target
tokens have strong correlations across different po-
sitions, which is hard to capture by NAT models
due to the conditional independence assumption.
A key ingredient in the training recipe for most of
the NAT models is constructing training data via
sequence-level knowledge distillation (Kim and
Rush, 2016), where the target-side of the training
data is replaced by the forward translation of AT
models.

Note that previous work did not leverage exist-
ing large-scale monolingual data in training GLAT
models, either from source or target language. In
this work, we applied sequence-level knowledge
distillation to parallel data and monolingual data
from both source and target languages.

• Parallel data and source monolingual data dis-
tillation (119M sentences). We directly use
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Figure 3: Learning curves of different finetuning strate-
gies, reported on newstest20, De→En. The light
blue curve denotes training with inverse square root
scheduler where the peak learning rate equals 5 · 10−4,
and the initial sampling ratio λ is set to 0.5, the dark
blue curve denotes training with a constant learning
rate of 1e− 4 and λ = 0.1.

German→English AT model to obtain the for-
ward translations of the German sentences.

• Monolingual target data distillation (39M sen-
tences). The way to exploiting target mono-
lingual data is not as evident as using the
monolingual source data since the purpose of
knowledge distillation is to construct a pseudo-
parallel dataset where synthetic ones replace
the actual target sentences. To this end, we
propose a cycle distilling technique. We use
the backward English→German AT model to
back-translate the monolingual target data, re-
sulting in a translated source dataset. We then
used the German→English AT model to get
the round-trip forward translation of the trans-
lated source dataset, obtaining the cycle dis-
tilled data. We will refer to this as cycle KD
data.

4 Multi-Stage Training

We train our parallel translation system in a multi-
stage way (See Multi-Stage Training in Figure 2).
In the first stage, the model uses the distilled par-
allel and source monolingual data for training. In
the second stage, we train the model with the tar-
get monolingual data (aka. cycle KD data). After
training the model on large-scale distilled data until
convergence, we finetune the model on small-scale
in-domain data.

4.1 General-Domain Training

All models are trained with Adam optimizer with
decoupled weight decay (Kingma and Ba, 2014;

dropout

learning rate
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Figure 4: BLEU score versus the dropout and learning
rate, reported on newstest20, De→En.

Loshchilov and Hutter, 2017). We use the inverse
sqrt learning rate scheduler with 4000 warm-up
steps and set the maximum learning rate to 5 ·10−4.
The adam betas are (0.9, 0.999).

4.2 Resuming Training

We often have to load a pre-trained checkpoint and
continuously train the model on a new dataset. The
loaded checkpoint serves as a good initialization,
and the parameters may change significantly in this
process.

We found that it is not easy to apply the tech-
niques from auto-regressive translation to GLAT
directly. Preliminary experiments show that if we
employ the techniques illustrated in (Qian et al.,
2020) during the finetuning stage, the BLEU score
will degrade dramatically and then increase slowly
until convergence. The number of total update steps
required for convergence is similar to training from
scratch on a new dataset. There are mainly two con-
cerns. Firstly, GLAT employs the inverse square
root learning rate scheduler. The learning rate will
increase to 5 · 10−4 linearly and decay exponen-
tially until the training process is over (the learning
rate is close to 1e−4). During the finetuning stage,
a constant learning rate no larger than 1e− 4 will
stabilize the training process. Secondly, the ini-
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Figure 5: Various pipelines for domain adaptation.

In-Domain Data GLAT-I GLAT-II

- 0.00 +2.20
Raw +1.51 +2.21

Distilled I +0.30 +1.99
Distilled II +1.56 +2.31

Table 3: Results of different adaptation pipelines.
GLAT-I and GLAT-II are models trained with distilled
training data generated by AT Model I and AT Model II
in Figure 5, respectively. After training, we use the in-
domain data Distilled I and Distilled II for fine-tuning.

tial sampling ratio λ = 0.5 in (Qian et al., 2020)
can be too large for finetuning since the model can
already do a good job in the translation task. A
large sampling ratio may cause the model to suf-
fer from “exposure bias”(Zhang et al., 2019): the
gap between training (where some target words are
provided) and validation (where no target words
are provided). Figure 3 illustrates the comparison
between two different finetuning strategies.

4.3 In-Domain Adaptation

When finetuning the model on small-scale in-
domain data, which is widely used for domain
adaptation (Meng et al., 2020), the parameters of
the model do not change significantly.

For domain adaptation, we perform grid search
on four group of hyper-parameters: learning rate(
1e−5, 3e−5, 1e−4), dropout(0.0, 0.1, 0.3), sam-
pling rate λ (0.3, 0.1), and max number of tokens
per batch (2000, 4000, 8000). For each combina-
tion, we conduct two experiments to reduce the
variance. Experimental results (Figure 4) show that
the learning rate and dropout rate are the most sig-
nificant factors. Interestingly, when dropout is set
to 0, the performance is surprisingly great, which
indicates the effectiveness of over-fitting on an in-
domain dataset.

feature groups feature number

GLAT score 3
AT 16e6d 3
AT 12e12d 3
Self BLEU 1
Self Chrf 1

Table 4: Selected Features.

Model BLEU Self-R AT-R

GLAT-base (w/o AUX) 42.28 42.54 42.90
+ CTC 41.04 - -
+ AUX 43.1 43.11 43.52

Table 5: Results of different architectures, reported on
newstest20, De→En.

There are several feasible pipelines for domain
adaptation due to the interaction between auto-
regressive and non-autoregressive models. Figure
5 illustrates these pipelines, and the key points are
listed as follows:

• Should we finetune the auto-regressive model
on the in-domain dataset (AT Model I→AT
Model II)?

• Should we use the original in-domain dataset
for GLAT’s model adaptation or the in-
domain dataset distilled by AT model I, or
the in-domain dataset distilled by AT Model
II?

Table 3 shows the results of different pipelines.
Experiments show that making domain adaptation
on the autoregressive model can boost the perfor-
mance of the non-autoregressive model. It is also
beneficial to further finetune the non-autoregressive
model on the distilled in-domain dataset.

5 Inference

In this section, we introduce two approaches for
GLAT’s inference: Noisy parallel decoding (NPD)
and Reranking (See Inference in Figure 2). NPD
is easy to integrate into a single model and im-
prove the performance; Reranking can help push
the performance to the limit: generating as many
candidates as possible and ranking them with as
many features as possible.

5.1 Noisy Parallel Decoding
A simple yet efficient inference approach is noisy
parallel decoding (NPD) (Gu et al., 2018). We
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GLAT-base GLAT-deep GLAT-wide

Model BLEU Self-R AT-R BLEU Self-R AT-R BLEU Self-R AT-R

baseline 43.10 43.11 43.52 42.44 43.89 43.14 43.38 43.49 43.81
+ cycle KD 43.40 43.24 43.77 42.86 43.51 43.73 43.51 43.49 43.79
+ adaptation 43.76 43.67 44.00 43.00 43.69 43.82 43.76 43.91 43.94

+ reranker 44.64∗

Table 6: Final results, reported on newstest20, De→En. ∗ denotes the submitted system (BLEU=35.0 on
newstest21, De→En). The baseline is GLAT w/ AUX.

first predict m target length candidates (in Table
5, m = 5), then generate output sequences with
argmax decoding for each target length candidate.
Then we use a model to rank these sequences and
identify the best overall output as the final output. If
the model for ranking and the one for generation is
the same model (GLAT), we call it Self-Reranking;
if the ranking model is AT, we call it AT-Reranking.

5.2 Reranking

We use kbmira5 to re-rank hypotheses. We first
train GLAT model variants of different settings,
each of which produces a set of candidates via the
various search algorithm in Section 2.4. For each
source sentence, every model outputs 7 hypothe-
sis candidates and a total of 252 translations are
collected for re-ranking. Then we compute 44 fea-
tures for each hypothesis, out of which 11 features
are finally used. The selected features are listed in
Table 4. The kbmira algorithm takes these features
to select the best hypothesis from these candidates.
Note that the kbmira algorithm is optimized on
newstest19 and validated on newstest20 to
select the best feature combination. Instead of enu-
merating all the possible combinations (244), we
incrementally add feature groups to kbmira algo-
rithm for fast search.

It is considered as an ablation study to pre-
defined features. After selecting the best fea-
ture combination, we further search better kb-
mira weights to achieve higher BLEU scores on
newstest20.

6 Experiment

For our parallel translation system, we train three
GLAT variants with the distilled data, and get the

5https://github.com/moses-smt/
mosesdecoder

final outputs by reranking candidate hypothesis
obtained from multiple GLAT models.

6.1 Hyperparameters
We implement our models with Fairseq (Ott et al.,
2019). Our experiments are carried out on 4 ma-
chines with 8 NVIDIA V100 GPUs, each of which
has 32 GB memory. The number of tokens per
batch is set to 256k. The dropout rate is set to 0.3
for the first 100k steps. We reduce the dropout to
0.1 after 100k steps, which can contribute to an im-
provement of about 1 BLEU score (Figure 3). The
hyper-parameter λ for balancing Lglm and Laux is
set to 1.

6.2 Results
Our models are trained on the distilled parallel data
and the distilled source monolingual data firstly.
We experiment with various utilization of raw data,
but the results show that the usage of raw data
has no positive effect. The results of different ar-
chitectures can be found in Table 5. Self-R and
AT-R denote self-reranking and reranking with an
autoregressive model, respectively. Experimental
results show that the auxiliary decoder (AUX) ef-
fectively improves the performance by about 0.6
BLEU scores. For GLAT-base + CTC (Graves et al.,
2006), we first set the max output length to twice
the source input length and remove the blanks and
repeated tokens after generation. We find CTC does
not improve the performance and requires about
twice the training time for convergence.

Based on GLAT with AUX, we employ three
technologies to improve further: continuously train-
ing on the cycle KD data, domain adaptation, and
reranking with various features. Table 6 shows the
final results of our submitted system. Training on
the distilled target monolingual data can further im-
prove the performance by about 0.3 BLEU scores.
Since the domain adaptation has already been em-
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ployed in the AT model’s training process, the cycle
KD data has already contained information of the
in-domain data. However, the domain adaptation
on GLAT can still gain a slight improvement of
about 0.2. Moreover, an additional reranker with
more diverse features can boost the performance
by about 0.6.

7 Conclusion

In this paper, we introduced our system submitted
to the WMT2021 shared news translation task on
German→English. We build a parallel translation
system based on the Glancing Transformer (Qian
et al., 2020). Knowledge distillation, domain adap-
tation, reranking have proven effective in our sys-
tem. Our constrained parallel translation system
gets first place in the German→English translation
task with a 35.0 BLEU score.
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Abstract

This paper provides an overview of NVIDIA
NeMo’s neural machine translation systems
for the constrained data track of the WMT21
News and Biomedical Shared Translation
Tasks. Our news task submissions for English
↔ German (En ↔ De) and English ↔ Rus-
sian (En ↔ Ru) are built on top of a base-
line transformer-based sequence-to-sequence
model (Vaswani et al., 2017). Specifically,
we use a combination of 1) checkpoint av-
eraging 2) model scaling 3) data augmenta-
tion with backtranslation and knowledge dis-
tillation from right-to-left factorized models 4)
finetuning on test sets from previous years 5)
model ensembling 6) shallow fusion decoding
with transformer language models and 7) noisy
channel re-ranking. Additionally, our biomed-
ical task submission for English ↔ Russian
uses a biomedically biased vocabulary and is
trained from scratch on news task data, medi-
cally relevant text curated from the news task
dataset, and biomedical data provided by the
shared task. Our news system achieves a sacre-
BLEU score of 39.5 on the WMT’20 En →
De test set outperforming the best submission
from last year’s task of 38.8. Our biomedical
task Ru → En and En → Ru systems reach
BLEU scores of 43.8 and 40.3 respectively on
the WMT’20 Biomedical Task Test set, outper-
forming the previous year’s best submissions.

1 Introduction

We take part in the WMT’21 News Shared Task
for English↔ German, English↔ Russian, and
the Biomedical Shared Task for English ↔ Rus-
sian. Our systems are implemented in the NVIDIA
NeMo1 framework (Kuchaiev et al., 2019). They
build on baseline sequence-to-sequence trans-
former models (Vaswani et al., 2017) in the follow-
ing ways: 1) Checkpoint averaging, 2) Model scal-
ing up to 1B parameters, 3) Data augmentation with

1https://github.com/NVIDIA/NeMo

large-scale backtranslation (Edunov et al., 2018) of
monolingual Newscrawl data and sequence-level
knowledge distillation from a right-to-left factor-
ized model (Zhang et al., 2019b), 4) Finetuning
models on in-domain news data from WMT test
sets made available in previous years, 5) Ensem-
bling models trained on different subsets of the
overall data 6) Shallow fusion decoding with trans-
former language models (Gulcehre et al., 2015) 7)
Noisy channel re-ranking of beam search candidate
hypotheses (Yee et al., 2019).

Overall, we find each of these components re-
sults in a small improvement in BLEU scores with
backtranslation results being mixed depending on
the language direction and whether the test data
contains translationese inputs. Using a combina-
tion of these techniques, we achieve 39.5 sacre-
BLEU scores on the En→ De WMT’20 test set,
outperforming the best BLEU scores from last
year’s competition of 38.77.

Training our En↔ Ru biomedical task submis-
sion from scratch using a biomedical vocabulary
and similar model improvements to those used for
our news task submission, we report a sacreBLEU
score of 40.3 on En → Ru and 43.8 on Ru →
Enh on the WMT’20 Biomedical Shared Task test
dataset. This improves over the best submissions
from last year’s competition2 of 39.6 and 43.3 on
En→ Ru and Ru→ En respectively.

2 Datasets

We participated in the constrained data track at
this year’s news and biomedical competitions and
used all the parallel corpora provided by the
WMT Shared Tasks for both En ↔ De and En
↔ Ru. We used the provided English, German,
and Russian monolingual Newscrawl data for back-
translation and training our autoregressive trans-
former language models. We filter out monolingual

2We compare against all En ↔ Ru Biomedical submis-
sions, not just the ones marked as the final submission.

197



Newscrawl data only based on minimum and maxi-
mum length criteria, but perform more aggressive
filtering of our parallel data described in Section
2.1.

2.1 Parallel Corpus Filtering

We use a combination of the following data filter-
ing steps for all parallel corpora (including pseudo
parallel corpora generated via backtranslation and
distillation) except for the Biomedical Shared Task
provided data.

• Language ID Filtering - We use the fastText
(Joulin et al., 2016) language ID classifier3 to
remove training examples that aren’t in the
appropriate language.

• Length and Ratio Filtering - We filter out
examples where a sentence in either language
is longer than 250 tokens before BPE tokeniza-
tion and where the length ratio between source
and target sentences exceeds 1.3.

• Bicleaner - Bitexts that were assigned a Bi-
cleaner (Ramírez-Sánchez et al., 2020) score
of < 0.6 were removed.

On the news shared task, we keep 60M parallel
sentences for En↔ De and 26M sentences for En
↔ Ru after filtering.

2.2 Biomedical Task Data

Our parallel biomedical domain data included a
mix of all the En↔ Ru parallel training data given
by shared task organizers and biomedically relevant
examples selected from the provided En ↔ Ru
news task data.

We trained two biomedical domain binary clas-
sifiers, one for English and one for Russian. The
classifiers were composed of two task-specific fully
connected layers on top of pre-trained BERT Base
(Devlin et al., 2018) or RuBERT Base (Kuratov
and Arkhipov, 2019) for English and Russian re-
spectively. The positive examples were sourced
from the WMT’20 Biomedical Shared Task train
set. The negative examples were randomly sam-
pled from the parallel En↔ Ru news data given
for the WMT’21 news task. An equal amount of
45K examples were used for both the positive and
negative classes.

3https://fasttext.cc/docs/en/
language-identification.html

We ran our English biomedical domain classi-
fiers on the English half of all approximately 26M
parallel En ↔ Ru WMT’21 news training data.
We saved all sentences with predicted biomedical
domain probabilities over 50%, collecting around
560k examples. We then ran our Russian classifier
on the Russian counterparts to the 560k predicted
in domain English sentences. We averaged the clas-
sifier scores from the English and Russian domain
classifiers and used this average score as our final
selection criteria. We set a cut-off threshold of .90
resulting in 208K parallel examples classified from
the news domain data. We combined this with the
46k parallel biomedical examples provided for the
task, resulting in a total of 256,037 parallel training
examples.

2.3 Data Pre-processing and Post-processing
We normalize punctuation4 and tokenize5 examples
with the Moses toolkit. For En↔ De, we train a
shared BPE tokenizer with a vocab of 32k tokens
using the YouTokenToMe6 library. For En↔ Ru,
we train language-specific BPE tokenizers with
a vocab of 16k tokens each. For the En ↔ Ru
Biomedical translation task, we learn a separate
BPE tokenizer solely on our Biomedical Task Data
described in 2.2. We use BPE-dropout (Provilkov
et al., 2019) of 0.1 for both language pairs and
tasks. We post-process En→ De model generated
translations to replace quotes with their German
equivalents - „ and “.

3 System overview

Our systems build on the Transformer sequence-
to-sequence architecture (Vaswani et al., 2017). In
the subsequent subsections, we discuss model scal-
ing, checkpoint averaging, data augmentation with
backtranslation and right-to-left distillation, model
finetuning, ensembling, shallow fusion decoding
with LMs, and noisy channel re-ranking.

3.1 Model Configurations
We experiment with three different model con-
figurations - Large, XLarge, and XXLarge. The
Large configuration corresponds to the “Trans-
former Large” variant from Vaswani et al. (2017)

4https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/normalize-punctuation.perl

5https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

6https://github.com/VKCOM/YouTokenToMe
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and the XLarge and XXLarge scale that base con-
figuration along depth and width. The exact spec-
ifications are in Table 1. Following Kasai et al.
(2020), we keep the number decoder layers fixed
at 6 and scale only the depth of the encoder to 24
layers for the “XLarge” configuration. For stable
optimization of deep transformers, we use the “pre-
LN” transformer block (Xiong et al., 2020). When
scaling to 1 billion parameters (XXLarge), we only
increase hidden and feedforward dimensions of the
model.

Large XLarge XXLarge
Hidden Dim 1,024 1,024 1,536

Feedforward Dim 4,096 4,096 6,144
Attention Heads 16 16 24
Encoder Layers 6 24 24
Decoder Layers 6 6 6

Pre-LN 7 3 3

Parameters 240M 500M 1B

Table 1: Model Configurations

3.2 Checkpoint Averaging
Over the course of training, we save the top-k
checkpoints that obtain the best sacreBLEU scores
on a validation set. The final model parameters are
obtained by averaging the parameters correspond-
ing to these checkpoints.

θavg =
1

k

k∑

i=1

θi

θavg are the model parameters after checkpoint
averaging and θ1 . . . θk are the individual check-
points being averaged. Empirically, we didn’t ob-
serve a difference between averaging the last k
checkpoints versus the top-k checkpoints. The for-
mer is however more common and implemented in
libraries such as fairseq (Ott et al., 2019).

3.3 Data Augmentation with Backtranslation
& Right-to-left model distillation

We follow Edunov et al. (2018) in backtranslating
monolingual Newscrawl data with noise introduced
via topk sampling (k=500). For En↔ De, we back-
translate ~250M sentences and filter translations
based on the process described in Section 2.1. We
observed fairly significant drops in BLEU score
when using backtranslated data for En↔ Ru and
did not apply any data augmentation for this lan-
guage pair. We use the XLarge model configuration

trained only on the News Task provided parallel
corpus to generate translations.

We also train an XLarge model for En → De
and De→ En on the News Task provided parallel
data where the output sequence is factorized from
right-to-left. Translations of the training dataset
with topk sampling (k=500) using these models are
generated and added to the overall training set.

When adding only backtranslated text or data
generated from right-to-left factorized models, we
use a 2:1 ratio of parallel to pseudo-parallel (model
generated) data. When training with a combination
of both, we use a 6:3:1 ratio of parallel, right-to-
left generated, and backtranslated data. We skew
data sampling in this way since training on right-to-
left generated data showed better performance on
recent WMT test sets as opposed to backtranslation
which did better on old test sets that contained
translationese inputs (see Tables 2 and 3).

3.4 Mixed Domain Training

For the biomedical task submission, we experiment
with different mixed domain training approaches
(Zhang et al., 2019a). We train on the concatenated
combination of news task and biomedical task data-
up-sampling the proportion of biomedical data to
make up 30% or 50% of the data-parallel exam-
ples seen during training. We also train models on
concatenated data with no up-sampling and with
purely news task data. The base models trained on
exclusively news task data still use the biomedical
vocabulary tokenizer.

3.5 Model Finetuning

For our news task submission, we finetuned models
on an in-domain parallel corpus consisting of WMT
provided test datasets from past years (WMT’08 -
WMT’19 for En↔ De comprising ~32k examples)
for both En↔ De and En↔ Ru.

We finetuned our biomedical task base models
on the 250k parallel sentences obtained via the pro-
cess described in Section 2.2. Models are finetuned
for 1-2 epochs using a fixed tuned learning rate and
the top-k checkpoints on a validation dataset (new-
stest2020 for the News Shared Task) are averaged.

3.6 Ensembling

Given k different models for a particular language
direction trained with the same tokenizer, we en-
semble them at inference by averaging their proba-
bility distributions over the next token.
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P (yt|y<t, x; θ1 . . . θk) =
1

k

k∑

i=1

P (yt|y<t, x; θi)

Where P (yt|y<t, x) is the probability distribu-
tion over the target token yt given all previously
generated target tokens y<t and the input sequence
x. θ1 . . . θk are the k different models being ensem-
bled.

Beam search scores are computed using these
averaged probabilities at each time step. In practice,
we ensemble models trained on different subsets of
the available data.

For En↔ De, we ensemble a total of 6 models
trained on different subsets of the data. Example:
News Task provided bitext only, the addition of
backtranslated and/or data from right-to-left factor-
ized models and finetuned models.

For En↔ Ru, we ensemble a total of 3 identical
XLarge models trained with different random seeds
on the main parallel corpus.

For the En ↔ Ru biomedical task, we ensem-
ble 4 finetuned models whose base configurations
were trained with different mixed domain sam-
pling ratios. Specifically, each translation direction
includes an ensemble of models initially trained
on mixed domain data with 50% up-sampling
of biomedical data, concatenated biomedical and
news data with no up sampling, exclusively news
data, and exclusively news data with right-to-left
distillation.

3.7 Shallow Fusion Decoding with Language
Models

Aside from backtranslation, another way to lever-
age large amounts of monolingual data is via train-
ing language models. We train language-specific
16-layer transformer language models at the sen-
tence level, which is architecturally similar to Rad-
ford et al. (2019). They are trained on Newscrawl
and use the same tokenizers as our NMT systems.

When generating translations, we decode jointly
with our NMT system θs→t and a target side lan-
guage moel θt (Gulcehre et al., 2015). The score of
a partially decoded sequence on the beam S(y1...n)
of length n is given by the following recurrence

S(y1...n|x; θs→t, θt) = S(y1...n−1|x; θs→t, θt)

+ logP (yn|y<n, x; θs→t) + λsf logP (yn|y<n; θt)

where the empty sequence has a score of 0. We
tuned the LM importance coefficient λsf on a vali-
dation dataset and found a value between 0.05 - 0.1
to work well in practice.

3.8 Noisy Channel Re-ranking
We re-rank the beam search candidates produced
by our ensemble model generated with or without
shallow fusion using a neural noisy channel model
(Yee et al., 2019). The noisy channel model com-
putes the score of any translation S(yi|x) on the
beam based on a forward (source-to-target) model,
a reverse (target-to-source), and a target language
model. The best translation after re-ranking is
given by

arg max
i

S(yi|x) = logP (yi|x; θenss→t)

+λncr
(

logP (x|yi; θt→s) + logP (yi; θt)
)

Forward log probabilities are given by an en-
semble of source-to-target models θenss→t. We ex-
perimented with using an ensemble of target-to-
source translation models to compute logP (x|yi)
but didn’t observe any empirical benefits and so
all reported results use only a single reverse model
θt→s for noisy channel re-ranking. We generate
15 candidates via beam search and tune λncr on a
validation dataset and found a value between 0.5 -
0.7 to work well in practice.

3.9 Training & Optimization
All En↔ De models were trained for up to 450k
updates using the Adam optimizer (Kingma and
Ba, 2014) with β1 = 0.9, β2 = 0.98 and Inverse
Square Root Annealing (Vaswani et al., 2017) with
30k warm-up steps and a maximum learning rate
of 4e-4. En ↔ Ru models were trained for up
to 150k updates with 7k warmup steps. We use
label smoothing of 0.1 and a dropout of 0.1 on
intermediate activations including attention scores
to regularize our models.

The “Large” models were trained on NVIDIA
DGX-1 machines with 8 32G V100 GPUs. We
use a batch size of 16k tokens per GPU for an
effective batch size of 128k tokens. The “XLarge”
models were trained on 64 GPUs split across 4
NVIDIA DGX-2 nodes with 16 32G V100 GPUs
each. These models use an effective batch size of
256k tokens. Finally, our “XXLarge” models were
trained on 256 GPUs across 16 DGX-2 nodes with
an effective batch size of 512k tokens.
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En→ De News Task Model WMT’14 WMT’18 WMT’19 WMT’20 Avg ∆

(1) Transformer-Large 29.9 46.6 41.1 31.5 0
(2) (1) + Checkpoint Averaging 30.7 48.3 43.5 33.5 1.4
(3) (2) + Transformer-XLarge 32.2 48.7 43.3 34.7 2.1
(4) (3) + Backtranslation 34.9 49.2 40.5 34.6 2.2
(5) (3) + R2L Distllation 32.4 49.1 43.4 37.2∗ 2.9
(6) (3) + Backtranslation + R2L Distlla-

tion
34.3 50.1 42.9 37.4∗ 3.6

(7) (5) + Shallow Fuison Decoding 32.8 49.0 43.4 37.6∗ 3.1
(8) (6) + Transformer-XXLarge 35.5 50.0 41.8 37.5∗ 3.6
(9) (6) + Finetuning (WMT’08-19) - - - 37.6∗ -
(10) (8) + (9) + Ensembling 34.4 50.7 44.2 38.9∗ 4.4
(11) (10) + Noisy Channel Re-ranking 36.0 51.6 44.3 39.5∗ 5.2

Table 2: Model ablations for En→ De. All reported scores are obtained from sacreBLEU. WMT’20 scores with a
∗ apply post-processing to replace punctuations as reported in Section 2.3. Avg ∆ computes the improvement over
the Transformer-Large baseline averaged over the 4 test sets.

De→ En News Task Model WMT’14 WMT’18 WMT’19 WMT’20 Avg ∆

(1) Transformer-Large 35.5 45.0 40.5 37.5 0
(2) (1) + Checkpoint Averaging 36.5 46.1 41.6 38.3 0.7
(3) (2) + Transformer-XLarge 37.7 47.8 41.9 37.6 1.3
(4) (3) + Backtranslation 40.3 50.4 40.5 37.7 2.3
(5) (3) + R2L Distllation 37.5 47.8 42.3 39.7 1.9
(6) (3) + Backtranslation + R2L Distllation 39.3 49.6 41.8 39.4 2.7
(7) (6) + Finetuning (WMT’08-19) - - - 41.1 -
(8) (7) + Ensembling 39.5 49.9 43.3 41.9 3.7
(9) (8) + Noisy Channel Re-ranking 40.1 50.6 42.8 42.0 4.0

Table 3: Model ablations for De→ En. All reported scores are obtained from sacreBLEU. Avg ∆ computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

En→ Ru News Task Model WMT’17 WMT’18 WMT’19 WMT’20 Avg ∆

(1) Transformer-Large 35.4 30.8 32.0 22.3 0
(2) (1) + Transformer-XLarge + Ckpt Avg 36.8 32.2 33.2 23.2 1.2
(3) (2) + Finetuning (WMT’14-16) 38.0 33.1 35.1 24.3 2.5
(4) (3) + Ensemble (x3) 38.6 33.5 35.3 24.8 2.9
(5) (4) + Shallow Fusion 38.6 33.7 35.7 24.7 3.0
(6) Oracle BLEU with beam size 4 - - 39.9 - -

Table 4: Model ablations for En→ Ru. All reported scores are obtained from sacreBLEU. Avg ∆ computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

4 News Task Submission

In this Section, we present results for our News
Shared Task submission. Tables 2 and 3 contain
ablations for En↔ De and while Tables 4 and 5
has ablations for En↔ Ru.

Each of the components we describe improves
BLEU scores except for backtranslation and scal-
ing our models to 1B params. Both show mixed

results on En↔ De - scores improve significantly
on WMT’14 and WMT’18 test sets when adding
backtranslated data (possibly because these test sets
contain translationese inputs) but hurts or does not
improve performance on WMT’19 and WMT’20
test sets. Our 1B parameter model does signifi-
cantly better on WMT’14, but worse on WMT’19
and is comparable to the 500M parameter model
on WMT’18 and WMT’20. We found optimization
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Ru→ En News Task Model WMT’17 WMT’18 WMT’19 WMT’20 Avg ∆

(1) Transformer-Large 37.6 33.0 37.7 36.6 0
(2) (1) + Transformer-XLarge + Ckpt Avg 38.7 34.3 38.2 37.2 0.9
(3) (2) + Finetuning (WMT’14-16) 40.7 35.4 40.5 37.1 2.2
(4) (3) + Ensemble (x3) 40.7 35.5 41 37.7 2.5
(5) (4) + Shallow Fusion 40.9 35.9 40.8 37.5 2.6
(6) Oracle BLEU with beam size 4 - - 46.4 - -

Table 5: Model ablations for Ru→ En. All reported scores are obtained from sacreBLEU. Avg ∆ computes the
improvement over the Transformer-Large baseline averaged over the 4 test sets.

En→ Ru Biomedical Task Model WMT’20 Bio ∆

(1) Transformer-Large News Task Model 32.2 0
(2) Transformer-XLarge News Task Model 33.8 1.6
(3) Transformer-XLarge + Biomed Vocab w/ News Data 33.9 1.7
(4) Transformer-XLarge + Biomed Vocab w/ News + R2L Distillation Data 34.2 2.0
(5) Transformer-XLarge + Biomed Vocab w/ News + 30% Biomed Data 36.7 4.5
(6) Transformer-XLarge + Biomed Vocab w/ News + 50% Biomed Data 36.8 4.6
(7) Transformer-XLarge + Biomed Vocab w/ News + Biomed Data 37.4 5.2
(8) (2) + Biomed Data Finetuning 37.8 5.6
(9) (3) + Biomed Data Finetuning 38.5 6.3
(10) (4) + Biomed Data Finetuning 38.2 6.0
(11) (6) + Biomed Data Finetuning 37.4 5.2
(12) (7) + Biomed Data Finetuning 38.5 6.3
(13) (9) (10) (11) (12) Ensemble 39.9 7.7
(14) (13) + Shallow Fusion 40.0 7.8
(15) (13) + Noisy Channel Re-ranking 40.3 8.1

Table 6: Model iterations for the Biomedical Shared Task En→ Ru. All reported scores are checkpoint averaged
and are obtained from sacreBLEU. ∆ computes the improvement over the Transformer-Large baseline on the
WMT’20 Biomedical Shared Task test set. Model 15 is our selected best submission and model 14 is our alternate
submission.

with Adam to be unstable and used AdamW with
a weight decay of 0.01 instead. Our final En →
De model achieves a BLEU score of 39.5 on the
WMT’20 test set, which improves over the sub-
mission with the best BLEU score from last year’s
competition of 38.8. We however do not do as
well on De→ En, with a final BLEU score of 42,
compared to last year’s best submission of 43.8.

Backtranslation significantly hurt performance
in initial experiments on En↔ Ru so we exclude
it from our ensemble. The impact of ensembling,
finetuning, and shallow fusion are fairly similar to
En↔ De. Additionally, we also report an “Oracle
BLEU” score in Tables 4 and 5 where we compute
BLEU scores by cheating and picking the trans-
lation on our beam that has the highest sentence
BLEU score with respect to the reference. This is
a useful indicator of how much there is to gain by
re-ranking the beam search candidates.

5 Biomedical translation task submission

We present our Biomedical Shared Task submission
in this section. Building on lessons learned from
our news task ablation studies, we opted to use
the Transformer-XLarge architecture, and average
all of the intermediate model checkpoints which
helps reduce model variance as a consequence of
finetuning. Tables 6 and 7 show our results as we
iterated on improving our models.

We trained our BPE tokenizer on biomedical
data to mitigate character-level segmentation of
words unique to the biomedical domain. We found
this had a minimal effect on model performance.
This could be because the majority of our parallel
biomedical data was selected from news task train-
ing data, and thus biomedical words were already
adequately accounted for by the news task model’s
tokenizer. We found that up-sampling in-domain
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Ru→ En Biomedical Task Model WMT’20 Bio ∆

(1) Transformer-Large News Task Model 38.7 0
(2) Transformer-XLarge News Task Model 39.8 1.1
(3) Transformer-XLarge + Biomed Vocab w/ News Data 39.8 1.1
(4) Transformer-XLarge + Biomed Vocab w/ News + R2L Distillation Data 39.2 0.5
(5) Transformer-XLarge + Biomed Vocab w/ News + 30% Biomed Data 37.6 -1.1
(6) Transformer-XLarge + Biomed Vocab w/ News + 50% Biomed Data 38.4 -0.3
(7) Transformer-XLarge + Biomed Vocab w/ News + Biomed Data 41.5 2.8
(8) (2) + Biomed Data Finetuning 42.3 3.6
(9) (3) + Biomed Data Finetuning 42.6 3.9
(10) (4) + Biomed Data Finetuning 41.7 3.0
(11) (6) + Biomed Data Finetuning 39.6 0.9
(12) (7) + Biomed Data Finetuning 41.8 3.1
(13) (9) (12) Ensemble 42.8 4.1
(14) (9) (10) (11) (12) Ensemble 43.8 5.1
(15) (14) + Shallow Fusion 43.7 5.0
(16) (14) + Noisy Channel Re-ranking 42.1 3.4

Table 7: Model iterations for the Biomedical Shared Task Ru→ En. All reported scores are checkpoint averaged
and are obtained from sacreBLEU. ∆ computes the improvement over the Transformer-Large baseline on the
WMT’20 Biomedical Shared Task test set. Model 14 is our selected best submission.

biomedical data hurt performance compared to con-
catenating out-of-domain and in-domain data with
no up-sampling. For the En → Ru direction, in-
cluding any biomedical domain data during initial
model training showed improvements over training
on exclusively news task data. Up-sampling in-
domain data for the Ru→ En direction hurt perfor-
mance compared to our news task model baselines.

Unsurprisingly, finetuning base models on
biomedical domain data improved BLEU scores
for all models. In-domain finetuning helped mod-
els initially trained on news task data overcome
performance gaps between themselves and mod-
els that had seen a higher amount of biomedical
data during training. Neither shallow fusion nor
noisy channel re-ranking improved model perfor-
mance after ensembling for the Ru→ En direction.
Both techniques individually improved En→ Ru
performance but failed to do so in combination.

Ensembling our models led to an additional per-
formance boost and allowed us to reach our maxi-
mum En→ Ru BLEU score of 40.3 and Ru→ En
BLEU score of 43.8. These scores show a 0.9 and
0.5 improvement over last year’s best score of 39.4
and 43.3 (Bawden et al., 2020) respectively.

6 Conclusion

We present Neural Machine Translation Systems
for the En↔ De News Task and En↔ Ru News

and Biomedical shared tasks implemented in the
NeMo framework (Kuchaiev et al., 2019). Our
systems build on the Transformer sequence-to-
sequence model to include backtranslated text and
data from right-to-left factorized models, ensem-
bling, finetuning, mining biomedically relevant
data using domain classifiers, shallow fusion with
LMs, and noisy channel re-ranking. These achieve
competitive performance to submissions from pre-
vious years.

7 Author Contributions

Sandeep Subramanian: Sandeep implemented
and experimented with model scaling, backtransla-
tion, distillation with right-to-left factorized mod-
els, model ensembling, and noisy channel re-
ranking. He also ran all of the En ↔ De News
Shared Task experiments, the right-to-left factor-
ized models for the En↔ Ru Biomedical task, and
wrote parts of the paper.

Oleksii Hrinchuk: Oleksii H implemented the
shallow fusion approach and helped with writing
backtranslation scripts. He also ran all of the En
↔ Ru News Shared Task experiments and trained
the language models used in the Biomedical exper-
iments.
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perimented with the warm-start biomegatron en-
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biomedically relevant monolingual and parallel cor-
pora, mixed domain, and finetuning of News mod-
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Abstract

We describe Facebook’s multilingual model
submission to the WMT2021 shared task on
news translation. We participate in 14 lan-
guage directions: English to and from Czech,
German, Hausa, Icelandic, Japanese, Russian,
and Chinese. To develop systems covering
all these directions, we focus on multilingual
models. We utilize data from all available
sources — WMT, large-scale data mining, and
in-domain backtranslation — to create high
quality bilingual and multilingual baselines.
Subsequently, we investigate strategies for
scaling multilingual model size, such that one
system has sufficient capacity for high quality
representations of all eight languages. Our fi-
nal submission is an ensemble of dense and
sparse Mixture-of-Expert multilingual transla-
tion models, followed by finetuning on in-
domain news data and noisy channel reranking.
Compared to previous year’s winning submis-
sions, our multilingual system improved the
translation quality on all language directions,
with an average improvement of 2.0 BLEU. In
the WMT2021 task, our system ranks first in
10 directions based on automatic evaluation.

1 Introduction

We participate in the WMT2021 shared task on
news translation and submit a multilingual transla-
tion system. In recent years, multilingual transla-
tion has gained significant interest as an alternative
to developing separate, specialized systems for dif-
ferent language directions (Firat et al., 2016; Tan
et al., 2019; Aharoni et al., 2019; Zhang et al.,
2020; Tang et al., 2020; Arivazhagan et al., 2019).
Multilingual systems have great potential for sim-
plicity and consolidation, making them attractive
options for the development and maintenance of
commercial translation technologies. From a re-
search standpoint, studies of transfer learning be-
tween related languages and developing methods
that incorporate low-resource languages are strong

motivators for grouping languages together in one
system (Dabre et al., 2019; Fan et al., 2021).

Despite such motivations, existing multilingual
translation systems have been unable to show that
the translation quality of multilingual systems sur-
passes that of bilingual. Several works compare to
bilingual baselines, but these baselines do not in-
corporate standard techniques used across the field
— such as backtranslation or dense model scaling.
Further, multilingual translation systems are often
developed on non-standard training datasets and
use different evaluation datasets. These factors
make it difficult to assess the performance of multi-
lingual translation, particularly when compared to
the most competitive bilingual models.

In this work, our aim is to demonstrate against
the winning WMT2020 models and our bilingual
WMT2021 systems that multilingual translation
models have stronger performance than bilingual
ones. We focus on 14 language directions: En-
glish to and from Czech, German, Hausa, Icelandic,
Japanese, Russian, and Chinese. We create an un-
constrained system that utilizes both WMT dis-
tributed and publicly available training data, apply
large-scale backtranslation, and explore dense and
mixture-of-expert architectures. We compare the
impact of various techniques on bilingual and multi-
lingual systems, demonstrating where multilingual
systems have an advantage. Our final multilingual
submission improves the translation quality on av-
erage +2.0 compared to the WMT2020 winning
models, and ranks first in 10 directions based on au-
tomatic evaluation on the WMT2021 leaderboard.

2 Data

We participate in translation of English to and from
Czech (cs), German (de), Hausa (ha), Icelandic (is),
Japanese (ja), Russian (ru), and Chinese (zh). We
describe our bitext and monolingual data sources,
including additional mined data created for Hausa,
and our preprocessing pipeline.
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2.1 Bitext Data

For all directions, we use all available bitext data
from the shared task . For language directions such
as English to German or English to Russian, this
provides millions of high-quality bitext. However,
for low to mid resource languages, such as Hausa
and Icelandic, we incorporate additional sources
of data from freely available online sources such
as ccMatrix (Schwenk et al., 2019), ccAligned (El-
Kishky et al., 2020), and OPUS (Tiedemann, 2012).
We utilize all available data sources to develop the
best quality translation model possible.

For English-Hausa (and Hausa-English), we also
mined extra parallel data from the provided mono-
lingual data. We use LaBSE (Feng et al., 2020) to
embed Hausa and English sentences into the same
embedding space. We then use the margin function
formulation (Artetxe and Schwenk, 2019) based
on K-nearest neighbors (KNN) to score and rank
pairs of sentences from the two languages. Using
the mining strategy from Tran et al. (2020), we
mined an additional one million pairs of parallel
sentences for English-Hausa.

Data Processing. The majority of available bi-
text represents noisy alignment rather than the out-
put of human translations. We apply several steps
of preprocessing to filter noisy data. First, we apply
language identification using fasttext (Joulin
et al., 2017) and retain sentences predicted as the
desired language1. We then normalize punctuation
with moses. Subsequently, we removed sentences
longer than 250 words and with a source/target
length ratio exceeding 3.

2.2 Monolingual Data

Previous work (Ng et al., 2019) shows that using in-
domain monolingual data provides the most quality
improvement when used for large-scale backtrans-
lation. For high resource languages such as En-
glish and German, there are sufficiently large quan-
tities of in-domain data available in Newscrawl,
and we do not utilize additional monolingual data.
For the remaining languages, the data available
in Newscrawl is not sufficient and we follow the
strategy in Moore and Lewis (2010); Ng et al.
(2019) to examine large quantities of general-
domain monolingual data from Commoncrawl2

1Note: for Hausa, the language identification system was
unreliable, so we did not utilize it.

2http://data.statmt.org/cc-100/

Language Bitext Monolingual

Czech 185M 140M
German 571M 237M
Hausa 1.7M 7M
Icelandic 28.2M 101M
Japanese 145.7M 218M
Russian 297M 163M
Chinese 166M 123M
English — 430M

Table 1: Amount of Data per Language. The bitext
data includes data distributed by the WMT Shared Task,
the OPUS repository, ccMatrix, ccAligned, and newly
mined data for Hausa. The monolingual data includes
data distributed by the WMT Shared Task and CC100.

and identify a subset that is most similar to the avail-
able in-domain news data. For each language, we
train an n-gram language model (Heafield, 2011)
on all available news-domain data (Newscrawl)
and a n-gram language model on a similarly
sized sample from general-domain data (Common-
crawl). For each sentence s in Commoncrawl,
we compute word-normalized cross entropy scores
Hnews(s) andHgeneral(s) using in-domain language
model and general-domain language model respec-
tively. We retain sentences that meet the threshold
Hnews(s)−Hgeneral(s) > 0.01. This selects around
5% of total number of sentences in the original
Commoncrawl.

2.3 Vocabulary

To create our multilingual vocabulary, we first learn
a multilingual subword tokenizer on our combined
training data across all languages. We use Sentence-
Piece (Kudo and Richardson, 2018), which learns
subword units from untokenized text. We train our
SPM model with temperature upsampling (with
T=5) similar to Conneau et al. (2020), so that low-
resource languages are represented. For bilingual
models, we used vocabulary size of 32, 000, and
for multilingual models, we used 128, 000. Subse-
quently, we convert the learned SPM units into our
final vocabulary.

3 System Overview

We describe step-by-step how we created our fi-
nal multilingual submission for WMT2021. We
detail our bilingual and multilingual model archi-
tectures, as well as how we incorporate strategies
such as backtranslation, news-domain finetuning,
ensembling, and noisy channel reranking.
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3.1 Baseline Bilingual Models

A pre-requisite to creating state-of-the-art multi-
lingual translation systems is establishing strong,
competitive bilingual baselines. Our goal is to ap-
ply the same set of techniques in data augmentation
and modeling scaling to both bilingual and multilin-
gual models, and demonstrate multilingual models
have stronger translation quality.

To create baseline bilingual systems, we train a
separate Transformer model (Vaswani et al., 2017)
for each language direction. For every language
pair except Hausa, we use the Transformer 12/12
configurations in Table 2. For Hausa-English (and
English-Hausa), since the amount of bitext data is
smaller, we use the Transformer-Base architecture
similar to Vaswani et al. (2017). We train all our
models using fairseq (Ott et al., 2019) on 32
Volta 32GB GPUs. We use learning rate of 0.001
with the Adam optimizer, batch size of 768,000 to-
kens3, and tune the dropout rate for each language
direction independently. For large models

3.2 Backtranslation

Backtranslation (Sennrich et al., 2015) is a widely
used technique to improve the quality of machine
translation systems using data augmentation. To
perform backtranslation for a forward language di-
rection (e.g. English to German), we use a system
in the backward direction (e.g. German to English),
to translate the target German monolingual data
into the English source. We then use these back-
translated synthetic English to German sentence
pairs in conjunction with the original parallel data
to train an improved forward translation model.

We use all available filtered monolingual data
we have for each language (up to 500 million sen-
tences per language) for backtranslation. Using
our baseline bilingual models (described in Sec-
tion 3.1), we first finetune on in-domain news data
(described in Section 3.5), and use an ensemble of
3 models with different seeds to generate backtrans-
lation data using beam search. For Hausa-English
and English-Hausa, we applied a round of iterative
backtranslation (Hoang et al., 2018; Chen et al.,
2019) as the quality improvement is significant.

3.3 Data Sharding and Sampling

Table 1 displays the amount of data for all lan-
guages after postprocessing. We divide the data

36000 tokens per GPU * 32 GPUs * 4 update frequency

12/12 24/24 24/24 Wide

Layers 12 24 24
Emb. Size 1,024 1,024 2,048
FFN Size 4,096 8,192 16,384
Attn. Heads 16 16 32

Total Params. 480M 1.2B 4.7B

Table 2: Dense Transformer Configurations.

into multiple shards, with each training epoch us-
ing one shard. We downsample data from both
high resource directions and synthetic backtrans-
lated data by dividing them into a greater number
of shards than the real bitext data from low re-
source directions. We find that downsampling high
resource languages works better than upsampling
low resource languages, as upsampling contributes
more strongly to overfitting.

3.4 Model Architectures

We describe several model architectures that we
compared using the final dataset with both bitext
and backtranslated data.

Scaling Bilingual Models. Based on the base-
line architectures described in Section 3.1, we fur-
ther improve our bilingual models. The two main
improvements are: adding backtranslated data, and
adding deeper and wider Transformer configura-
tions to take advantage of the increase in data.

Dense Multilingual Models. For the multilin-
gual systems, we train two separate models: Many
to English, or one system encompassing every lan-
guage translated into English, and English to Many,
or one for English into every language. The chal-
lenge of multilingual models is often one of ca-
pacity — given a fixed number of parameters, a
model needs to learn representations of numerous
languages rather than just one. To understand the
needed capacity and optimal architectural configu-
ration, we experiment with different Transformer
architectures, ranging from 480M parameters to
4.7B parameters (see Table 2).

Sparsely Gated MoE Multilingual Models. In
multilingual models, languages necessarily com-
pete for capacity and must balance sharing parame-
ters with specialization for different languages. A
straightforward way to add capacity to neural archi-
tectures is to simply scale the model size in a dense
manner: increasing the number of layers, the width
of the layers, or the size of the hidden dimension.
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However, this has a significant computational cost,
as each forward pass activates all parameters — at
the limit, models become incredibly slow to train
and produce translations (Fan et al., 2021).

In this work, we instead focus on sparse model
scaling, motivated by wanting to increase capac-
ity without a proportional increase in computa-
tional cost. We train Sparsely Gated Mixture-of-
Expert (MoE) models (Lepikhin et al., 2020) for
English to Many and Many to English. These mod-
els aim to strike a balance between allowing high-
resource directions to benefit from increased ex-
pert model capacity, while also allowing transfer to
low-resource directions via shared model capacity.
In each Sparsely Gated MoE layer, each token is
routed to the top-k expert FFN blocks based on a
learned gating function. Thus, only a subset of all
the model’s parameters is used per input sequence.

We use a Transformer architecture with the Feed
Forward block in every alternate Transformer layer
replaced with a Sparsely Gated Mixture-of-Experts
layer with top-2 gating in the encoder and decoder.
As in Lepikhin et al. (2020), we also add a gate loss
term to balance expert assignment across tokens
with a gate loss weight of 0.01. We use an expert
capacity factor of 2.0. We use a learning rate of
0.001 with the Adam optimizer with 4000 warmup
updates and a batch size of 1 Million tokens (MoE
model with 64 experts) or 1.5 Million tokens (MoE
model with 128 experts).

3.5 In-Domain Finetuning
Finetuning with domain-specific data is an effec-
tive method of improving translation quality for
the desired domain, and thus we curated news-
domain data for finetuning. For directions such
as German and Russian, we finetune on evaluation
datasets from previous years of WMT. For Hausa
and Icelandic, as no previous data exists, we use
mined data and filter to the subset identified as
most likely news domain. Subsequently, we fine-
tune our models on the in-domain data for a maxi-
mum of ten epochs, selecting the best model with
validation loss on the newstest2020 dev set.
For our submission, we use the settings tuned on
newstest2020 and include newstest2021
dev set in the final finetuning.

3.6 Checkpoint Averaging
To combat bias toward recent training data, it is
common to average parameters across multiple
checkpoints of a model (Vaswani et al., 2017). We

apply this technique to all models and average the
last five checkpoints. To address rapid overfitting
during finetuning, we also average the finetuned
model with the model after the initial training is
complete and select this averaged set of parameters
if it performs better on the validation data.

3.7 Noisy Channel Re-ranking
We apply noisy channel re-ranking to select the
best candidate translations from n-best hypotheses
generated with beam search. We follow Yee et al.
(2019); Bhosale et al. (2020) and utilize scores
from the direct model P (tgt|src), channel model
P (src|tgt), and language model P (tgt). To com-
bine these scores for reranking, for every one of
our n-best hypotheses, we calculate:

logP (tgt|src)+λ1 logP (src|tgt)+λ2 logP (tgt)
The weights λ1 and λ2 are determined by tuning
them with a random search over 1000 trials on a
validation set and selecting the weights that give
the best performance. In addition, we also tune a
length penalty. The search bounds we use for the
weights and the length penalty are [0,2].

Language Models. We trained Transformer-
based language models for all languages on the
same monolingual data as used for backtransla-
tion. The exception is English, where we trained
on the CC100 English data and RoBERTa training
data (Conneau et al., 2020; Wenzek et al., 2019;
Liu et al., 2019). For the high resource languages,
the language models have 12 decoder layers and
embedding dimension 4096. For Hausa and Ice-
landic, we trained smaller language models with 6
decoder layers to prevent overfitting.

3.8 Post-Processing
As a final step, we apply post-processing to the
translation outputs for Czech, German, Icelandic,
Japanese, and Chinese. For Czech, German, and
Icelandic, we convert quotation marks to German
double-quote style4. For Chinese and Japanese, we
convert punctuation marks to the language-specific
punctuation characters.

4 Experiments and Results

We conduct experiments to quantify the impact of
each of the component in our system. All exper-
iments are evaluated on newstest20 (Barrault
et al., 2020) using SacreBLEU (Post, 2018).

4https://en.wikipedia.org/wiki/Quotation_mark#German
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cs-en de-en ha-en is-en ja-en ru-en zh-en

Multilingual Vocab 28.3 38.0 28.3 34.5 21.1 38.0 30.8
Bilingual Vocab 28.6 36.8 28.4 35.2 22.4 37.0 29.6

en-cs en-de en-ha en-is en-ja en-ru en-zh

Multilingual Vocab 33.2 39.4 23.1 29.4 26.1 25.7 42.4
Bilingual Vocab 33.7 39.8 23.9 29.4 26.1 26.0 43.3

Table 3: Impact of Vocabulary on Bilingual Models. We compare using a specialized bilingual vocabulary vs. a
general multilingual vocabulary and its impact on performance of bilingual systems.

4.1 Creating State-of-the-Art Multilingual
Translation Models

We investigate the effectiveness of multilingual-
ity in translation. Compared to bilingual models,
which can dedicate their capacity to specializing in
specific source and target languages, multilingual
systems must learn to effectively share available
capacity across all languages while balancing lan-
guages of different resource levels. Despite rising
research interest, previous WMT submissions have
not demonstrated quality improvement of multilin-
gual models over bilingual models. We discuss var-
ious choices and comparisons that build our state-
of-the-art multilingual translation system. Overall,
the best multilingual systems outperform the best
bilingual ones in 11 out of 14 directions, with an
average improvement of +0.8 BLEU.

4.1.1 Building a Multilingual Vocabulary.
Similar to how multilingual systems must share
model capacity, multilingual translation models
must also share vocabulary capacity. Instead of
training specialized subword units for a specific
language (often 32k), multilingual models group
all languages together to learn a much smaller vo-
cabulary set than 32k * number of languages. We
first examine the impact of this multilingual vocab-
ulary, by taking a bilingual system and training it
with the multilingual vocabulary. This would in-
dicate a performance difference coming not from
architecture, but from the vocabulary itself. Ta-
ble 3 indicates that across all directions, using a
specialized bilingual vocabulary is usually supe-
rior, meaning multilingual systems must bridge the
performance gap of a potentially subpar vocabu-
lary. However, for some directions such as en-is
and en-ja, no difference is observed.

4.1.2 Comparing Model Architectures.
Dense Transformer Models. Overall, we find
that dense multilingual models are fairly compet-
itive with dense bilingual models (see Table 4).

Importantly, we find multilingual models benefit
greatly from additional model capacity. In Table 5,
we show comparable dense scaling applied to a
bilingual model translating from English to Ger-
man. While the multilingual model improves up to
1 BLEU point, the bilingual model only improves
+0.3 BLEU, indicating diminishing return and pos-
sible overfitting in bilingual models. Scaling mul-
tilingual translation models has stronger potential
for performance improvement.

Sparsely Gated Mixture of Expert Models. If
multilingual models benefit from greater capacity,
what is the best way to add that capacity? In Ta-
ble 4, we compare the performance of Dense and
MoE multilingual models while keeping the FLOPs
per update approximately the same for fair compar-
ison. Due to the conditional compute capacity of
MoE layers, MoE models have a greater number of
total parameters, but a comparable computational
cost with the corresponding dense model.

For Many to English and English to Many, the
MoE model with 64 experts per MoE layer gives
an average boost of +0.7 BLEU on the dev set.
To compare to scaling dense models, increasing
dense model size from 12/12 to 24/24 does not
correspond to significant improvement for Many
to English. However, there is around +1 BLEU
improvement in dense scaling on English to Many.
We also see a slightly decline or no improvement
in the performance of MoE models (MoE-64 12/12
vs MoE-128 24/24) when increasing model dimen-
sionality and increasing the number of experts from
64 to 128. One possible hypothesis is that having
128 experts is largely unnecessary for only 7 lan-
guages. Compared to 64 experts, training conver-
gence per expert is slower as each expert is exposed
to fewer tokens during training on an average.

After finetuning on in-domain data, we observe
a significant improvement in performance across
the board. There is a larger improvement from fine-
tuning in MoE models compared to the associated
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cs-en de-en ha-en is-en ja-en ru-en zh-en Avg

Bilingual Dense 12/12 28.3 38.0 28.3 34.5 21.1 38.0 30.8 31.3
Dense 12/12 26.9 37.5 28.3 35.2 19.0 36.2 28.8 30.3
MoE-64 12/12 28.0 38.9 27.2 37.3 18.5 39.1 28.0 31.0

Dense 24/24 28.1 37.2 26.3 35.6 20.6 35.8 28.0 30.2
MoE-128 24/24 28.1 36.8 23.1 36.9 18.7 36.9 29.7 29.7
Dense 24/24 Wide 29.0 37.9 24.5 36.8 21.2 36.9 30.4 31.0

Bilingual Dense 12/12, BL-FT 30.4 42.8 30.3 35.5 24.6 39.5 36.2 34.2
Dense 12/12, ML-FT 30.3 42.4 32.7 37.5 23.9 39.5 34.2 34.4
MoE-64 12/12, ML-FT 31.6 43.5 33.4 38.8 25.7 39.8 36.0 35.5

Dense 24/24, ML-FT 31.8 43.4 36.0 38.8 25.6 40.3 36.3 36.0
MoE-128 24/24, ML-FT 31.9 43.6 34.9 39.7 26.5 40.4 37.2 36.3
Dense 24/24 Wide, ML-FT 32.1 43.8 36.1 39.4 26.7 40.6 36.9 36.5

en-cs en-de en-ha en-is en-ja en-ru en-zh Avg

Bilingual Dense 12/12 33.1 39.6 23.1 29.4 26.1 25.7 42.4 31.3
Dense 12/12 33.7 38.6 21.4 30.5 26.6 25.3 41.1 31.0
MoE-64 12/12 33.5 39.7 20.4 31.5 28.0 26.4 42.5 31.7

Dense 24/24 34.0 39.6 21.7 31.6 27.5 26.4 42.3 31.9
MoE-128 24/24 33.0 40.2 19.3 30.9 28.8 26.6 42.8 31.7
Dense 24/24 Wide 33.4 39.7 23.4 32.0 28.0 26.6 42.2 32.2

Bilingual Dense 12/12, BL-FT 35.7 39.5 23.3 29.4 27.7 26.0 43.0 32.1
Dense 12/12, ML-FT 35.0 39.1 22.9 30.5 26.9 25.6 41.5 31.6
MoE-64 12/12, ML-FT 35.9 40.4 24.1 29.6 28.8 26.4 43.0 32.6

Dense 24/24, ML-FT 35.8 40.1 24.1 31.6 28.7 26.8 42.5 32.8
MoE-128 24/24, ML-FT 36.4 40.8 24.6 31.2 29.7 26.8 43.6 33.3
Dense 24/24 Wide, ML-FT 36.7 40.6 24.6 32.0 29.3 26.7 43.0 33.3

Table 4: Comparing Dense vs Sparsely Gated MoE Multilingual Models before and after in-domain fine-tuning.
BL-FT refers to finetuning a model on bilingual data, while ML-FT refers to finetuning a model on multilingual
data, see Section 4.1.

en-de

Bilingual 12/12 39.8
Bilingual 24/24 40.1
Bilingual 24/24 Wide 40.3

Bilingual 12/12 + FT 40.4
Bilingual 24/24 + FT 40.5
Bilingual 24/24 Wide + FT 40.4

Table 5: Scaling Bilingual Models.

dense baselines. Furthermore, the MoE model with
128 experts, which previously lagged behind the
MoE model with 64 experts, now gives the best re-
sults for all but two directions. A possible hypothe-
sis is that expert capacity in MoE models can retain
specialized direction-specific finetuning better than
dense models, where all language directions must
share all model capacity while finetuning.

4.1.3 Effects of In-Domain Finetuning
Finetuning Improves Multilingual More than
Bilingual. Table 6 compares the impact of fine-
tuning across a variety of models. Multilingual
systems benefit more from in-domain finetuning.

As a result, the best multilingual system always
outperforms the best bilingual system.

Multilingual Finetuning is better than Bilin-
gual Finetuning. For multilingual models, there
are two possible finetuning schemes (Tang et al.,
2020). The multilingual model could be finetuned
to specialize to the news domain in a multilingual
fashion, concatenating the news data for all lan-
guages, or could be finetuned for each direction
separately by training on bilingual news domain
data. We compare multilingual in-domain finetun-
ing with bilingual in-domain finetuning in Table 6.
We find that multilingual finetuning is almost al-
ways better than bilingual finetuning, indicating
that it is not necessary to take a multilingual sys-
tem and specialize it to be bilingual via bilingual
finetuning — a completely multilingual system still
has the strongest performance.

4.1.4 Human Evaluation.
While a number of studies have been conducted
on bilingual models to understand how BLEU cor-
relates with human-perceived quality, few studies
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cs-en de-en ha-en is-en ja-en ru-en zh-en

Bilingual 28.3 38.0 28.3 34.5 21.1 38.0 30.8
Bilingual, BL-FT 30.4 42.8 30.3 35.5 24.6 39.5 36.2

Multilingual 29.0 37.9 24.5 36.8 21.2 36.9 30.4
Multilingual, BL-FT 31.8 43.3 31.9 37.0 26.5 40.6 36.8
Multilingual, ML-FT 32.1 43.8 36.1 39.4 26.7 40.6 36.9

en-cs en-de en-ha en-is en-ja en-ru en-zh

Bilingual 33.1 39.6 23.1 29.4 26.1 25.7 42.4
Bilingual, BL-FT 35.7 39.5 23.3 29.4 27.7 26.0 43.0

Multilingual 33.4 39.7 23.4 32.0 28.0 26.6 42.2
Multilingual, BL-FT 36.1 40.3 24.2 30.1 28.7 27.4 43.0
Multilingual, ML-FT 36.7 40.6 24.6 32.0 29.3 26.7 43.0

Table 6: Impact of Finetuning on Bilingual and Multilingual Models. BL-FT refers to finetuning a multilingual
model on bilingual data, while ML-FT refers to finetuning a multilingual model on multilingual data.

cs-en de-en ha-en is-en ja-en

Bilingual 28.9 41.5 15.9 30.3 19.7
+ BT 28.3 38.0 28.3 34.5 21.1
∆ -0.6 -3.5 +12.4 +4.2 +1.4

en-cs en-de en-ha en-is en-ja

Bilingual 33.1 38.7 14.7 25.8 25.4
+ BT 33.2 39.4 23.1 29.4 26.1
∆ +0.1 +0.7 +8.4 +3.6 +0.7

Table 7: Impact of Large-scale Backtranslation in
Bilingual Systems.

cs-en de-en ha-en is-en ja-en

Multilingual 27.7 37.6 16.5 34.2 20.8
+ BT 27.8 37.9 25.8 35.6 20.8
∆ +0.1 +0.3 +9.3 +1.4 +0

en-cs en-de en-ha en-is en-ja

Multilingual 33.7 39 10.0 27.0 26.9
+ BT 33.9 39.2 23.7 31.6 27.6
∆ +0.2 0.2 +13.7 +4.6 +0.7

Table 8: Impact of Large-scale Backtranslation in
Multilingual Systems.

have investigated multilingual ones. Given a bilin-
gual system and a multilingual system with the
same BLEU scores, we want to understand if there
is anything intrinsically different in the multilingual
system output that would impact human evaluation.

We study two directions: English to German and
English to Russian. We ask human annotators who
are fluent in source and native in target language to
evaluate the translation quality between a bilingual
system output and a multilingual system output.
Both systems have similar BLEU scores, within
decimal point difference. The translations are gen-
erated on the same English source sentence. We

Figure 1: Impact of In-Domain Finetuning after
Backtranslation on bilingual models.

find no statistically significant difference between
human evaluations of both systems, indicating that
human evaluators have no innate preference for
bilingual or multilingual systems.

4.2 Impact of Large-scale Backtranslation

Large-scale backtranslation has contributed to im-
provements in performance in machine translation
models (Edunov et al., 2018), even when measured
in human evaluation studies (Edunov et al., 2019;
Bogoychev and Sennrich, 2019) — it is a compo-
nent integrated into most modern translation sys-
tems. However, backtranslation also has downsides.
Research has indicated that systems trained with
large scale backtranslation data tend to overfit to
the synthetically generated source sentences, pro-
ducing lower quality translations when translating
original source sentences (Marie et al., 2020). Fur-
ther, backtranslation is fundamentally a form of
data augmentation, which could have increasingly
marginal effect when large-scale mined bitext is di-
rectly incorporated into training datasets. Beyond
mining, multilingual translation can also be seen
as an inherent form of data augmentation, as lan-
guage directions can benefit from the training data
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MMT Model cs-en de-en ha-en is-en ja-en ru-en zh-en Avg Incremental ∆

7 Bilingual 28.9 41.5 15.9 30.3 19.7 40.2 34.8 30.2 —
7 + Backtranslation 28.3 38.0 28.3 34.5 21.1 38.0 30.8 31.3 +1.1
7 + Finetuning 30.4 42.8 30.3 35.5 24.6 39.5 36.2 34.2 +2.9

3 + Multilingual 32.1 43.8 36.1 39.4 26.7 40.6 36.9 36.5 +2.3
3 + Ensemble 32.3 44.5 37.2 39.9 27.2 40.9 37.8 37.1 +0.6
3 + Reranking 32.7 44.4 38.2 40.5 27.8 41.4 38.0 37.6 +0.5

7 WMT20 Winner 29.9 43.8 — — 26.6 39.2 36.9
∆ over WMT20 +2.8 +0.6 — — +1.2 +2.2 +1.1

MMT Model en-cs en-de en-ha en-is en-ja en-ru en-zh Avg Incremental ∆

7 Bilingual 33.1 38.7 14.7 25.8 25.4 25.8 40.0 29.1 —
7 + Backtranslation 33.1 39.6 23.1 29.4 26.1 25.7 42.4 31.3 +2.3
7 + Finetuning 35.7 39.5 23.3 29.4 27.7 26.0 43.0 32.1 +0.7

3 + Multilingual 36.4 40.8 24.6 31.2 29.7 26.8 43.6 33.3 +1.2
3 + Ensemble 36.8 41.1 25.0 32.5 29.7 26.9 43.6 33.7 +0.4
3 + Reranking 37.2 41.1 25.5 32.8 29.7 27.4 43.6 33.9 +0.2
3 + Postprocessing 39.8 42.6 25.5 34.5 29.8 28.8 48.2 35.6 +1.7

7 WMT20 Winner 36.8 38.8 — — 28.4 25.5 47.3
∆ over WMT20 +3.0 +3.8 — — +1.4 +3.3 +0.9

Table 9: Full Results of Submitted Models. Starting with a bilingual baseline, we depict the incremental gain
of different techniques across language pairs. Our final submission is a multilingual ensemble with noisy channel
reranking, trained on all available data including backtranslation. On all language pairs, we observe improvement
compared to the previous WMT20 winning models. The column MMT denotes if the model is multilingual. Note
Hausa and Icelandic were not present in WMT20.

of other directions. Thus, we analyze further in this
section the continued importance of backtransla-
tion, even in multilingual systems.

Backtranslation in Bilingual Systems. First,
we investigate if backtranslated data is still helpful,
even after we augment the training dataset with
mined and publicly available training data, beyond
what is distributed in the WMT Shared Task. Our
results in Table 7 show that backtranslation is help-
ful for 10 out of 14 directions, especially for low re-
source directions such as ha-en and is-en. However,
for high resource directions such as de-en, ru-en,
zh-en, bilingual systems trained with backtransla-
tion had slightly lower validation BLEU compared
to those trained without backtranslation.

Finetuning Corrects Overfitting to Transla-
tionese We further investigate the anomaly that
high-resource directions can suffer from adding
backtranslated data. Figure 1 shows that the mi-
nor BLEU degradation from adding backtransla-
tion mostly disappears after applying in-domain
finetuning. For zh-en and cs-en after in-domain
finetuning, the system trained with backtransla-
tion has stronger performance (+0.4 BLEU) com-
pared to the system trained without backtransla-
tion. Previous studies of this effect have indicated

that backtranslation produces translationese, which
has distinct qualities compared to original training
data (Marie et al., 2020; Zhang and Toral, 2019;
Graham et al., 2020). We hypothesize that in-
domain finetuning, which trains the model on non-
backtranslated data, can have a corrective effect
that counteracts overfitting on translationese.

Backtranslation in Multilingual Systems. Ta-
ble 8 summarizes the performance improvement
from adding backtranslation to multilingual mod-
els in an ablation study. Overall, despite creat-
ing a fully unconstrained system with substantially
greater training data and leveraging the data shar-
ing potential of multilingual translation, we find
that backtranslation still improves the performance.
We believe this is influenced by the fact that back-
translation fully utilizes available monolingual data.
While data mining techniques can identify poten-
tially parallel sentences, it is naturally limited to
identifying only a subset of the full monolingual
data the algorithms utilize to mine.

4.3 Ablation on Components of Final
Submission

Finally, we end by analyzing each aspect in our
final submission and the cumulative effect. The
effect of each component is shown in Table 9.
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Bilingual Baselines. We find that our bilingual
baselines have high BLEU scores, particularly
for ru-en where our bilingual baseline is already
stronger than the WMT20 winner. Overall, we ob-
serve that only en-ha and ha-en are significantly
lower than 20 BLEU, indicating that curating a
large amount of high quality bitext data is likely
the most important basis of a strong system.

Backtranslation. Subsequently, we add back-
translated data. We observe that ha, is, and ja in
particular observe large improvements in BLEU
after adding backtranslated data, while other direc-
tions can actually slightly decrease in quality as a
possible effect of translationese.

In-Domain Finetuning. We next evaluate the
impact of in-domain finetuning and find an almost
3 BLEU improvement across directions for trans-
lation into English and 0.7 BLEU improvement
for translation out of English. Across all language
directions, finetuning is almost universally helpful.

Multilingual. Compared to bilingual models,
multilingual models have stronger performance in
every direction. Multilingual models benefit much
more from scaling model size, as our largest archi-
tecture (MoE-128 24/24) has the best performance.

Ensembling. The effect of ensembling on aver-
age is fairly minor, but specific directions can see
large improvements (such as +1 BLEU on zh-en).

Reranking. We then apply noisy channel rerank-
ing to the outputs of our final system. It is helpful
across almost all directions, but does not have a
huge effect on BLEU. On average, performance
improves around 0.3 to 0.5 BLEU.

Postprocessing. Finally, we observe that post-
processing translated output to use standardized
punctuation in each language is very important for
BLEU scores when translating out of English. For
example, Chinese in particular has a number of
specific periods and double width punctuation char-
acters, and properly using these produces almost
+5 BLEU. However, we note that these techniques
likely only improve BLEU score, and the effect on
human evaluation is not well understood.

5 Conclusion

In this paper, we describe Facebook’s multilingual
model submission to the WMT2021 shared task on
news translation. We employed techniques such as

large scale backtranslation, bitext mining, large
scale dense and sparse multilingual models, in-
domain finetuning, ensembling, and noisy channel
reranking. We provide extensive experiment results
to quantify the impact of each technique, as well
as how well they cumulatively stack to produce the
final system. Our results demonstrate that multi-
lingual translation can achieve state-of-the-art per-
formance on both low resource and high resource
languages, beating our strong bilingual baselines
and previous years’ winning submissions.
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Abstract

This paper describes Tencent Translation sys-
tems for the WMT21 shared task. We par-
ticipate in the news translation task on three
language pairs: Chinese⇒English, English⇒
Chinese and German⇒English. Our systems
are built on various Transformer models with
novel techniques adapted from our recent re-
search work. First, we combine different
data augmentation methods including back-
translation, forward-translation and right-to-
left training to enlarge the training data. We
also apply language coverage bias, data reju-
venation and uncertainty-based sampling ap-
proaches to select content-relevant and high-
quality data from large parallel and mono-
lingual corpora. Expect for in-domain fine-
tuning, we also propose a fine-grained “one
model one domain” approach to model char-
acteristics of different news genres at fine-
tuning and decoding stages. Besides, we
use greed-based ensemble algorithm and trans-
ductive ensemble method to further boost
our systems. Based on our success in the
last WMT, we continuously employed ad-
vanced techniques such as large batch train-
ing, data selection and data filtering. Fi-
nally, our constrained Chinese⇒English sys-
tem achieves 33.4 case-sensitive BLEU score,
which is the highest among all submissions.
The German⇒English system is ranked at sec-
ond place accordingly.

1 Introduction

In this year’s news translation task, our trans-
lation team at Tencent AI Lab & Cloud Xi-
aowei participated in three shared tasks, in-
cluding Chinese⇒English, English⇒Chinese and
German⇒English. We used the same data strate-
gies, model architectures and corresponding tech-
niques for all tasks.

∗ Corresponding author: vinnylywang@tencent.com. The
other authors are in alphabetical order of last name.

We hypothesized that different models have their
own strengths and characteristics, and they can
complement each other. Thus, we built various ad-
vanced NMT models which mainly differ in train-
ing data and model architectures. These models (i.e.
DEEP, LARGE and LARGE-FFN) are empirically
designed based on Transformer-Deep which has
proven more effective than the Transformer-Big
models (Li et al., 2019). In addition to the orig-
inal multi-head self-attention, we also proposed
a mixed attention strategy by combining relative
position with the original one, which extends the
self-attention to efficiently consider representations
of the relative positions. We use a variation of rel-
ative position, the random attention (RAN) (Zeng
et al., 2021). As a results, we combined these mod-
els at transductive fine-tuning stage.

In terms of data augmentation, we adapt back-
translation (BT) (Sennrich et al., 2016a), forward-
translation (FT) (Zhang and Zong, 2016) and right-
to-left (R2L) (Zhang et al., 2019) techniques to
generate large-scale synthetic training data. Dif-
ferent from the standard back-translation, we add
noise to the synthetic source sentence in order to
take advantage of large-scale monolingual text. In
addition, we used tagged BT mechanism (i.e. add
a special token to the synthetic source sentence) to
help the model better distinguish the originality of
data. All the parallel data and a large amount of
monolingual data are used in corresponding data
augmentation methods, and finally we combine
them together to build strong baseline models.

To enhance the domain-specific knowledge, we
introduced approaches at both data and model lev-
els. First, we employed a hybrid data selection
method (Wang et al.) to produce different fine-
tuning datasets. More specifically, we apply lan-
guage coverage bias (Wang et al., 2021a), data
rejuvenation (Jiao et al., 2020) and uncertainty-
based sampling (Jiao et al., 2021) to select content-
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relevant and high-quality data from parallel and
monolingual corpora. The news texts contain a
number of sub-genres such as COVID-19 and gov-
ernment report. Thus, we fine-tuned a domain-
specific model translate each sub-genre of text in
the test set (i.e. “one domain one model”).

We take advantage of the combination meth-
ods to further improve the translation quality. The
“greedy search ensemble algorithm” (Li et al., 2019)
is used to select the best combinations from single
models. Furthermore, we propose an multi-model
& multi-iteration transductive ensemble (m2TE)
method based on the translation results of the en-
semble models. First, we divided models into two
parts. Second, each part produced syntactic parallel
testsets which is used to fine-tune another part of
models. We repeated this procedure for N times.

This paper is structured as follows: Section 2 de-
scribes our advanced model architectures. We then
present the data statistics and processing methods
in Section 3. The methods and ablation study are
detailed in Section 4 followed by final experimen-
tal results in Section 5. Finally, we conclude our
work in Section 6.

2 Model Architecture

In this section, we mainly introduced three model
architectures, which are empirically adapted from
Transformer (Vaswani et al., 2017).

2.1 General Configurations

All models are implemented on top of the open-
source toolkit Fairseq (Ott et al., 2019). Each single
model is carried out on 8∼16 NVIDIA V100 GPUs
each of which have 32 GB memory. We use the
Adam optimizer with β1 = 0.9 and β2 = 0.98. The
gradient accumulation is used due to the high GPU
memory consumption. We also employed large
batching (Ott et al., 2018), which has significantly
outperformed models with regular batch training.
To speed up the training process, we conduct train-
ing with half precision floating point (FP16). We
set max learning rate to 0.0007 and warmup-steps
to 16000. All the dropout probabilities are set to
0.3. The detailed hyper-parameters of each model
are summarized in Table 1.

2.2 Deep Model

Deep transformer has shown more effective perfor-
mance than the TRANSFORMER-BIG models (Dou
et al., 2018; Wang et al., 2019). We mainly modi-

Module DEEP LARGE LARGE-FFN

Encoder Layer 40 24 20
Attention Heads 8 16 16
Embedding Size 512 1024 1024

FFN Size 2048 4096 8192

Model Size 232M 514M 652M

Table 1: Hyper-parameters and model sizes of different
models used in our systems.

fied the TRANSFORMER-BASE model by using a
40-layer encoder. To stabilize the training of deep
model, we use the Pre-Norm strategy (Li et al.,
2019), which is applied to the input of every sub-
layer. The layer normalization was applied to the
input of every sub-layer which the computation se-
quence could be expressed as: normalize→ Trans-
form→ dropout→ residual-add. The batch size
is 5120 with 16 GPUs and “update-freq” is 1. We
totally train models with 400K updates.

2.3 Large Model
The large model is empirically designed based on
TRANSFORMER-BIG models (Vaswani et al., 2017;
Yang et al., 2020) with 24 encoder layers. More
specifically, the batch size is 4096 with 8 GPUs
and the “update-freq” is 4. We totally train models
with 400K updates.

2.4 Large-FFN Model
We train Larger Transformers, the inner FFN di-
mension of which is twice as big as that of large
Transformer. Specifically, in this setting, the FFN
dimension is set to 8192. The number of encoder
and decoder layers are 20 and 6 respectively. The
number of head is 16. In addition to the original
multi-head self-attention, we use a mixed atten-
tion strategy, where the random attention (Zeng
et al., 2021) is combined with the original atten-
tion. In this way, the self-attention mechanism can
efficiently consider representations of the relative
positions, or distances between sequence elements.
In training Large-FFN models, we set the batch
size to 8192 toknes per GPU and the “update-freq”
parameter is set to 8. The models are trained on 8
GPUs for about 3 days.

3 Data and Processing

3.1 Overview
Table 2 lists statistics of parallel and monolingual
data we used in training our systems. The details
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D. L. Parallel Data Monolingual Data

# Sent. # Word # Sent. # Word
In

. En
6.7M

128.2M 641.3M 13.1B
Zh 116.0M 18.4M 466.0M

O
ut

. En
24.8M

613.8M 1.8B 35.5B
Zh 550.3M 1.1B 28.4B

In
. En

58.5M
1.1B 641.3M 13.1B

De 1.1B 353.8M 7.2B

O
ut

. En
3.4M

78.0M 1.8B 35.5B
De 74.4M 417.0M 1.5B

Table 2: Data statistics of parallel and monolingual
data. We combine sub-corpora according to in-domain
(In.) and out-of-domain (Out.).

are as follows.

Chinese⇔ English The bilingual data include
all the available corpora provided by WMT2021:
CCMT Corpus, News Commentary v16, ParaCrawl
v7.1, Wiki Titles v3, UN Parallel Corpus V1.0 and
WikiMatrix (except for Back-translated news). The
monolingual English data consist of News crawl,
News discussions, Common Crawl. The Chinese
data consist of News crawl, News Commentary,
Common Crawl and Extended Common Crawl.

English⇒ German The bilingual data includes
News Commentary v16, Europarl v10, ParaCrawl
v7.1, Common Crawl, Wiki Titles v3, Tilde Rapid
and WikiMatrix. For monolingual German data, we
used News Crawl, News Commentary, Common
Crawl and Extended Common Crawl. The mono-
lingual English data are same as Chinese⇔English.

3.2 Pre-Processing

To process raw data, we applied a series of open-
source/in-house scripts (Wang et al., 2014; Lu et al.,
2014), including non-character filter, punctuation
normalization, and tokenization/segmentation. The
English and German languages are tokenized by
Moses toolkit,1 while the Chinese sentences are
segmented by Jieba.2 Furthermore, we generated
subwords via BPE (Sennrich et al., 2016b) with
35K merge operations. The BPE models are trained
on all the data in corresponding parallel and mono-
lingual corpora instead of only parallel data. The

1https://github.com/moses-smt/
mosesdecoder/tree/master/scripts/
tokenizer/tokenizer.perl.

2https://github.com/fxsjy/jieba.

vocabulary sizes of Chinese⇔English are 59100
and 48772, respectively. The vocabulary sizes of
English⇒German are 41812 and 40948.

3.3 Filtering

To improve the quality of data, we filtered noisy
sentences (pairs) according to their characteristics
in terms of language identification, duplication,
length, invalid string and traditional-simplified Chi-
nese conversation. First, we filtered sentences
whose language identification is invalid especially
for English⇒German. Second, we removed similar
sentences by comparing MD5 values of skelectons
(i.e. removing stop words from sentences). About
length, we filter out the sentences with length
longer than 150 words. For more noisy corpora
(e.g. ParaCrawl), we added hard filtering rules on
special symbol, digital number, word length, punc-
tuation number, HTML tags. Regarding bingling
data, we further considered source-target ratio. For
instance, the word ratio between the source and the
target must not exceed 1:1.3 or 1.3:1. According
to our observations, our method can significantly
reduce noise issues including misalignment, trans-
lation error, illegal characters, over-translation and
under-translation.

After filtering noisy training data, we used sev-
eral data manipulation approaches to further im-
prove the quality of the training data. We first
followed Wang et al. (2021a) to identify the origi-
nal languages of the bilingual sentence pairs, and
explicitly distinguished between the source- and
target-original training data using the bias-tagging
strategy. We also identified the inactive training
examples which contribute less to the model perfor-
mance, rejuvenated them with self-training (Jiao
et al., 2020). For the data augmentation with back-
translation and forward-translation, we selected the
most informative monolingual sentences by com-
puting the uncertainty of monolingual sentences
using the bilingual dictionary extracted from the
parallel data (Jiao et al., 2021).

3.4 Evaluation

We regarded the WMT2019 test set as the valida-
tion set, and WMT2020 test set as the test set for
all experiments. We ranked checkpoints accord-
ing to either loss or BLEU on validation set. We
used sacreBLEU score3 as our evaluation metrics
which is officially recommended. We also con-

3https://github.com/mjpost/sacrebleu.
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# Method WMT20 Data WMT21 Data

Data WMT19 WMT20 Data WMT19 WMT20

1 TRANSFORMER-DEEP 12.4M 30.1 30.2 31.5M 32.3 32.3
2 + Forward-Translation 22.8M 33.1 31.8 49.9M 34.5 33.2
3 + Back-Translation 32.4M 29.6 28.4 61.5M 32.4 32.5
4 + Right-to-Left Training 24.8M 33.2 31.6 81.4M 34.4 33.1
5 + 2 + 4 45.6M 33.9 32.2 99.8M 35.3 34.0
6 + 2 + 3 + 4 58.0M 33.6 32.3 129.8M 35.5 34.3

Table 3: Effects of data augmentation methods on Chinese⇒English translation task. We used generally the same
amount of monolingual data with the bilingual corpus. We used the DEEP model trained on the original bilingual
data to construct the synthetic data, which is used together with the bilingual data to train the NMT models.

ducted post-processing such as detokenizer.perl on
system output before sacreBLEU.

4 Method and Ablation Study

In this section, we conducted a comprehensive ab-
lation study of the techniques used in this competi-
tion. We reported results on the Chinese⇒English
task using the constrained data.

4.1 Data Augmentation

In this evaluation, we used three commonly-
used data augmentation methods, namely back-
translation (BT), forward-translation (FT) and
right-to-left training (R2L), to exploit the useful
monolingual data. All the synthetic parallel data is
used together with the original parallel data to train
NMT models.

Back-Translation This method first trains an in-
termediate target-to-source NMT system, which
is used to translate monolingual target sentences
into source language. Then the synthetic parallel
corpus is used to train models together the bilin-
gual data. In this work, we apply the noise back-
translations method as introduced in Lample et al.
(2018). When translating monolingual data we use
an ensemble of two models to get better source
translations. We follow Edunov et al. (2018) to add
noise to the synthetic source data. Furthermore,
we use a tag at the head of each synthetic source
sentence as Caswell et al. (2019) does. To filter the
pseudo corpus, we translate the synthetic source
into target and calculate a Round-Trip BLEU score,
the synthetic pairs are dropped if the BLEU score
is lower than 30.

Forward-Translation This method is similar to
BT but performs in a reverse manner. Recent stud-

ies showed that back-translation harms the trans-
lation performance, while forward-translation im-
proves the performance (Edunov et al., 2020; Marie
et al., 2020). Our preliminary experiments recon-
firm their findings. Accordingly, we use forward-
translation to construct the synthetic parallel data
by translating the monolingual source sentences by
the source-to-target NMT model, which is trained
on the original bilingual data.

Right-to-Left Training The approach is pro-
posed to address the error propagation problem in
autoregressive generation task (Zhang et al., 2019).
The main idea is to improve the agreement between
translations generated by Right-to-Left (R2L) mod-
els and Left-to-Right (L2R) models. Following
this work, we translate the source-side sentences in
both parallel and monolingual corpora with both
a R2L model and a L2R model, and use the trans-
lated pseudo corpus to improve the L2R model. For
the right-to-left training, we trained another DEEP

model on the bilingual data, whose target side is
reversed. We drop the pseudo parallel data if the
BLEU score lower than 15.

Experimental Results As shown in Table 3,
we systematically investigated effects of 1)
WMT20/WMT21 training data and 2) individ-
ual/combined data augmentation methods on
Chinese⇒English translation task. For a com-
parison between the different training corpora of
WMT20 and WMT21, we also reported results
on the WMT20 training data (“WMT20 Data”)
used in last year (Wu et al., 2020b), and it con-
sists of 12.4M sentence pairs after filtering. As
seen, WMT21 extended around 19M sentence
pairs, which improves the baseline model by +2.1
BLEU points. About data augmentation methods,
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Source Description # Sent.

WMT

17-, 18-, 19-Dev/Test 7,466
Source-Original 3,963
Data Selection 1,000
Data Augmentation 10,000

CWMT
08-, 09-, 11-Test 19,658
Source-Original 8,036

Table 4: Statistics of data used for fine-tuning. “Source-
Original” (SO) and “Data Selection” (DS) means
respectively selecting source-original and domain-
relevant examples from the whole WMT test sets.
“Data Augmentation” indicates selecting data from the
whole training corpus as extended data.

we selected domain-relevant and high-quality sen-
tences from all available monolingual data as listed
in Table 2. To construct the new training data (i.e.
combining authentic and synthetic data), we se-
lected the same amount of monolingual data with
the bilingual corpus. As seen, individually using
FT and R2L can significantly improve the base-
line model by around +1 BLEU point. About BT,
we fount that it failed to outperform baseline in
“WMT20 Data” while performs slightly better than
baseline in “WMT21 Data”. Finally, we trained
the NMT models on the WMT21 training data aug-
mented with the synthetic data generated by dif-
ferent data augmentation methods (up to 99.8M
sentence pairs in total). We can further improve the
performance by combining them together, demon-
strating complementarity of different methods.

4.2 Fine-Tuning

We use in-domain finetune to further improve the
model performance, which has proven effective on
the WMT19∼20 news translation tasks (Sun et al.,
2019; Meng et al., 2020; Li et al., 2020; Wu et al.,
2020b). We construct different types of finetune
data with the following approaches. Table 4 lists
the statistics of data used for fine-tuning.

Previous Test Sets We follow the common prac-
tices to use WMT test sets in previous years as
the finetune data. Specifically, we use WMT2017
development set, WMT2017 test set, WMT2018
and WMT19 test set.4 Previous studies have shown
that current NMT models suffer from the language
coverage bias problem, which indicates the content-

4In our final submission, we include WMT2019 and
WMT2020 test sets in the fine-tune data.

Finetune W19 W20

None 35.3 34.0

WMT 44.3 35.5
+ CWMT 42.3 34.9

WMT (SO) 43.4 35.7
+ CWMT (SO) 43.3 35.1
+ DS 44.9 35.4
+ DA 42.5 35.8

+ ODOM n/a 36.1

Table 5: Finetune results on the corresponding datasets.

dependent differences between sentence pairs orig-
inating from the source and target languages, be-
cause the target-original data5 can not improve
translation performance (Wang et al., 2021a). Ac-
cordingly, we select the source-original examples
(SO) from the test sets as the finetune data. Besides
the WMT test sets, we also use the test sets from
the CWMT competitions, which are available in
the released data of WMT21 competition. In the
CWMT testsets, each source sentence has four ref-
erences, therefore we construct four sentence pair
for each instance in the CWMT test sets.

In-Domain Training Data We employed data
selection and data augmentation methods to se-
lect in-domain data from WMT/CWMT test sets
and training corpus, respectively. More specifi-
cally, we employed BM25 algorithm to select rel-
evant sentence pairs by regarding source-side of
WMT20 test set as queries. As shown in Table 4,
the “Data Selection” is a subset of WMT test sets.
On the other hand, we extend the finetuning set
by selecting in-domain data from the tranining cor-
pus. We further use the RT and R2L approaches
in Section 4.1 to augment the finetune data with
the TRANSFORMER-DEEP model. Since the data
augmentation approaches only require source-side
sentences, we also construct the synthetic data for
the WMT19 and WMT20 test sets.6 We finetune
the NMT model on the mixture of the additional
synthetic corpus and the selected previous test sets.

One Domain One Model Li et al. (2020) argued
that low-frequency words contain more domain in-
formation than high-frequency words, since low-

5Target-original data are sentence pairs that are translated
from the target language into the source language.

6In the final submission, we augment the WMT21 test set.
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frequency words are mostly domain-specific nouns,
etc., which may indicate the topic directly. There-
fore, they adapt the TF-IDF algorithm to search
and filter on the whole training set and then use
them to train domain-specific models. We automat-
ically to assigned domain labels to each source-side
document in the test set. First, we used K-means
clustering to obtain keywords of each document.
Then, we proposed a rule-based method to clas-
sify each document in three categories: COVID-19,
government report and other. In this experiment,
we only focused on two specific domains and thus
we trained two domain-specific models to translate
COVID-19 and government report documents, re-
spectively. The other documents are still dealt with
a general-domain model.

Experimental Results As shown in Table 5, we
investigated effects of different fine-tuning meth-
ods on Chinese⇒English translation task. As
seen, source-original data is more effective than
combining non-source-original one into finetun-
ing dataset (35.5 vs. 35.7 BLEU). However, the
CMWT dataset instead decrease the BLEU scores
(-0.6 BLEU). The data reduction (“+DS”) and ex-
pansion (“+DA”) methods can not further improve
the performance of baseline model (-0.3 and + 0.1
BLEU). Encouragingly, the “One Domain One
Model” method can significantly improve the base-
line model by +0.4 BLEU point.

4.3 Model Ensemble

Model ensemble is a widely used technique in pre-
vious WMT shared tasks, which can boost the per-
formance by combining the predictions of several
models at each decoding step (Li et al., 2019; Sun
et al., 2019; Wang et al., 2018). In our work, we
use two kinds of ensemble methods and finally the
two are combined for further improvements.

Checkpoint Average For one model (same ar-
chitecture and training data), we stored checkpoints
according to their BLEU scores (instead of PPL or
training time) on validation set. Then we combined
top-L checkpoints (generate a final checkpoint) by
averaging their weights to avoid stochasticity. To
combine different models, we further ensembled
the averaged checkpoint of each model. In our em-
pirical experiments (Wang et al., 2020a), we find
that this hybrid combination method outperforms
solely combining checkpoints or models in terms
of robustness and effectiveness.

Algorithm 1: Multi-Model & Multi-
Iteration Transductive Ensemble
Input: Single Model Mn,

In-domain Seed D={Ds, Dt},
Ensemble N models EN .

Output: New Model M
′
n

1 t := 0
while not convergence do

2 Translate Ds with EN and get DEN
t

3 Train Mn on D ∪DEN and get M
′
n,

then Mn =M
′
n

4 t := t+ 1

5 end

Greedy Based Ensemble This method is pro-
posed by Li et al. (2019), which adopts an easy
operable greedy-base strategy to search for a better
single model combinations on the development set.
For more detail, please refer to the original paper.
We also train single models with different hyper
parameters to ensure the diversity. We refer to this
method as Ensemble in the following.

Multi-Model & Multi-Iteration Transductive
Ensemble Transductive ensemble (TE) is pro-
posed by Wang et al. (2020b). The key idea is
that source input sentences from the validation
and test sets (in-domain seed) are firstly translated
to the target language space with multiple differ-
ent well-trained NMT models, which results in a
pre-translated synthetic dataset. Then individual
models are finetuned on the generated synthetic
dataset. We propose an variation of TE, namely
Multi-Model & Multi-Iteration TE (m2TE) which
is shown in Algorithm 1. The main difference from
Iterative Transductive Ensemble (Wu et al., 2020b)
is that EN can be different groups of ensembled
models (Deep, Large and Large-FFN models).

5 Final Results

In this section, we combined all the presented meth-
ods and techniques (detailed in Section 4) together
and showed the final results in Table 6.

5.1 Chinese⇔English Translation Tasks

We train multiple single models in each settings.
We found that the R2L method can significantly
improve the baseline by about 1 BLEU score. It
is surprising to find a gain of 2 BLEU improve-
ment when combining all data augmentation meth-
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System Method Zh⇒En En⇒Zh De⇒En

W19 W20 W19 W20 W19 W20

WMT2020 Competition Systems
Meng et al. KD+Fine.+Ens. 39.9 36.9 - - - -

Li et al. XLM+Doc+Ens.+Fine.+Rerank - - 40.5 49.1 - -
Wu et al. KD+iteBT+Ens. - - - - 43.8 43.5
Shi et al. KD+Ens.+Fine.+Rerank - - - - 42.2 -

Wu et al.
FT+R2L 31.5 - 39.1 - - -
FT+R2L+Fine.+Ens. 39.0 36.8 42.3 48.0 - -

Our System BT+FT+R2L+Fine.+Ens.+Domain 40.3 37.2 42.9 48.8 43.5 43.2

Table 6: Translation quality when combining all methods and techniques together.

ods. After we boost the in-domain corpus, we
can further achieve 1∼2 more BLEU points on the
different models, illustrating the effectiveness of
fine-tuning. Specifically, we used corresponding
development and test datasets and selected paral-
lel data as in-domain corpus D. After training an
NMT model M with the above methods, we fine-
tune W on D with the same hyper parameters of
training M . When testing on the WMT2020 test
set, we achieve about 1.5 BLEU improvement. As
the in-domain corpus is very limited, we propose a
boosted finetune method by using the R2L training
method to boost the finetune process. In our final
submission, we add the WMT2020 test set to D,
the batch size is set to 2048, the finetune finished
after 3K training steps.

In our experiments, the ensemble models con-
sists of 5 single models: 1 DEEP, 2 LARGE, 2
LARGER-FNN models. The simple ensembled
model can outperform the best single model by
0.5∼2.0 BLEU scores. We then apply transductive
ensemble to each group of models and the perfor-
mance achieves 36.8 BLEU on Chinese⇒English
task. Finally, we employed two fine-grained
domain-specific models to translate COVID-19 and
government report texts, respectively. This can fur-
ther improve the model by +0.5 BLEU point. We
also find that the single models that applied TE can-
not bring further improvement to ensemble results.
We do not apply re-ranking to this task, as we find
that the improvement is insignificant.

5.2 German⇔English Translation Tasks

The baseline model are trained on bilingual data
and R2L data. This boosts the BLEU score from
41.6 to 42.1. After adding BT and FT, we further
improve the BLEU score by 1.3 BLEU scores.

For finetuning English⇒German models, we se-
lect the document whose source side is originally
in German from all previous development and test
dataset as in-domain corpus D. Single models are
trained with the above methods are then fine-tune
on D for one epoch with a fixed learning rate of 1e-
4. In our final submission, the WMT2020 test set
is added to D for better performance improvement.
The fine-tuning can further achieve 0.93 BLEU
improvement on the DEEP model.

In this task, the ensemble models consists of 3
single models: 1 DEEP, 1 LARGE, 1 LARGER-FNN

models. The ensemble models outperform the best
single model by 1.5 BLEU scores. Furthermorem
we apply a rule-based post-processing procedure
on punctuation and this can improve the BLEU
score on development set by 0.5 point.

5.3 Official Results
The official automatic results (in terms of sacre-
BLEU) of our submissions for WMT 2021 are
presented in Table 7. Among participated teams,
our primary systems achieve the first and the
second BLEU scores on Chinese⇔English and
German⇔English, respectively. The experimental
results demonstrates that our models can achieve
the state-of-the-art performance.

In the future, we will integrate these useful tech-
niques in the Tencent TranSmart (Huang et al.,
2021), Mr. Translator (https://fanyi.qq.com),
and Tencent Simultaneous Translation systems.

6 Conclusion

This paper presents the Tencent Translation sys-
tems for WMT2021 news translation tasks. We in-
vestigate various deep architectures to build strong
baseline models. Then popular data augmentation
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System Zh-En En-Zh De-En

Best Official 33.4 36.9 35.0
Our System 33.4 36.5 34.9

Table 7: Official sacreBLEU scores of our submissions
for WMT21 news task. The “Best Official” denotes the
best performance among all participant teams.

methods such as BT, FT and R2L are combined
to improve their performances. We demonstrate
that in-domain fine-tuning and fine-grained do-
main modelling are effective to further improve
domain-specific quality. Besides, our proposed
greed-based ensemble algorithm and transductive
ensemble method play key roles in our systems.
Among participated teams, our primary systems
achieve the first and the second BLEU scores on
Zh⇒En and De⇒En, respectively. In the future,
we will adopt useful methods to our advanced
non-autoregressive translation models (Ding et al.,
2021b,a) and investigate the effects of pre-training
on NMT (Liu et al., 2021a,b).

It is worth mentioning that most advanced tech-
nologies reported in this paper are also adapted to
our systems for biomedical translation task (Wang
et al., 2021b), which achieve three 1st ranks in
German/French/Spanish⇒English tasks.
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Abstract

This paper presents the submission of Huawei
Translate Services Center (HW-TSC) to the
WMT 2021 News Translation Shared Task.
We participate in 7 language pairs, including
Zh/En, De/En, Ja/En, Ha/En, Is/En, Hi/Bn,
and Xh/Zu in both directions under the con-
strained condition. We use Transformer archi-
tecture and obtain the best performance via
multiple variants with larger parameter sizes.
We perform detailed pre-processing and filter-
ing on the provided large-scale bilingual and
monolingual datasets. Several commonly used
strategies are used to train our models, such as
Back Translation, Forward Translation, Multi-
lingual Translation, Ensemble Knowledge Dis-
tillation, etc. Our submission obtains competi-
tive results in the final evaluation.

1 Introduction

This paper introduces our submission to the WMT
2021 News Translation Shared Task. We par-
ticipate in seven language pairs including Chi-
nese/English (Zh/En), German/English (De/En),
Japanese/English (Ja/En), Hausa/English (Ha/En),
Icelandic/English (Is/En), Hindi/Bengali (Hi/Bn),
and Xhosa/Zulu (Xh/Zu) in both directions. We
consider that the officially provided dataset has the
acceptable size and quality and therefore only par-
ticipate in the constrained evaluation. Our method
is mainly based on previous works but with fine-
grained data cleansing techniques and language-
specific optimizations.

For each language pair, we perform multi-step
data cleansing on the provided dataset and only
keep a high-quality subset for training. At the same
time, several strategies are tested in a pipeline, in-
cluding Backward (Edunov et al., 2018) and For-
ward(Wu et al., 2019a) Translation, Multilingual
Translation (Johnson et al., 2017), Right-to-Left
Models (Liu et al., 2016), Iterative Joint Training

(Zhang et al., 2018), Ensemble Knowledge Distil-
lation (Freitag et al., 2017; Li et al., 2019) , Fine-
Tuning (Sun et al., 2019), Ensemble (Garmash and
Monz, 2016), and PostProcess.

We combined all the techniques mentioned
above and the overall training process is shown
in Figure 1. Section 2 focuses on our data process-
ing strategies while section 3 describes our train-
ing techniques, including model architecture and
iterative training, etc. Section 4 explains our exper-
iment settings and training processes and section 5
presents our experiment results.

2 Data

2.1 Data Source

For all language pairs, we follow the constrained
data requirements and take full advantages of the
bilingual and monolingual training data available.
Table 1 lists the data sizes of each language pair
before and after filtering.

2.2 Data Pre-processing

We use following operations to pre-process the
data:

• Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Convert XML escape characters.

• Normalize punctuations using Moses (Koehn
et al., 2007).

• Delete html tags, non-UTF-8 characters, uni-
code characters and invisible characters.

• Filter out sentences with mismatched paren-
theses and quotation marks; sentences of
which punctuation percentage exceeds 0.3;
sentences with the character-to-word ratio
greater than 12 or less than 1.5; sentences of
which the source-to-target token ratio higher
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Figure 1: This figure shows the training process for the WMT 2021 News Translation Shared Task, which consists
of three stages. In stage 1, one forward model and one backward model are trained. In stage 2, the synthetic data
by FTST is used to train L2R and R2L models. In stage 3, the synthetic data by enhanced models are used to train
models. Finally, model ensemble is used to boost the performance.

than 3 or lowers than 0.3; sentences with more
than 120 tokens.

• Apply langid (Joulin et al., 2016b,a) to filter
sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

We perform the additional steps to process Chinese
data:

• Convert traditional Chinese characters to sim-
plified ones.

• Convert fullwidth forms to halfwidth forms.

Data sizes before and after cleansing are listed in
Table 1.

2.3 Data Selection

Since the news (in-domain) monolingual data in
some tasks is not sufficient, it is necessary to obtain
data from Common Crawl. We use Fasttext (Joulin
et al., 2016a) to train a binary classification model
to distinguish between in-domain and out-domain
data.

3 System Overview

3.1 Model
Transformer (Vaswani et al., 2017) has been widely
used for machine translation in recent years, which
has achieved good performance even with the most
primitive architecture without much modifications.
Therefore, we choose to start from Transformer-
Big and consider it as a baseline. Four variants of
Transformer are also evaluated during the experi-
ments, which are the model with wider FFN layers
proposed in (Ng et al., 2019), and the deeper en-
coder version proposed in (Sun et al., 2019). Here,
we use the following four variants:

• Deep 25-6 model: The number of the encoder
layers is adjusted to 25 based on the trans-
former base model architecture and layer nor-
malization is added. The other settings remain
the same as the base model.

• Deep 35-6 model: The number of the encoder
layers is adjusted to 36 based on the trans-
former base model architecture and layer nor-
malization is added. The other settings remain
the same as the base model.
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language pairs Raw bi data Filter bi data Used mono data
Zh/En 37.8M 16.5M En: 150M, Zh:150M
De/En 95M 79M En: 230M, De: 317M
Ja/En 18M 13.5M En: 300M, Ja: 300M
Ha/En 0.73M 0.59M En: 8M, Ha:8.65M
Is/En 5.69M 4.04M En: 20M, Is: 18M
Hi/Bn 3.53M 3.4M Bn: 59.3M, Hi: 45.8M

Table 1: Bilingual data sizes before and after filtering, and monolingual data used in tasks.

• Deep 35-6 big model: This model features
35-layer encoder, 6-layer decoder, 768 dimen-
sions of word vector, 3076 dimensions of FFN,
16-head self-attention, and pre-norm.

• Deep 25-6 large Model: This model features
25-layer encoder, 6-layer decoder, 1024 di-
mensions of word vector, 4096 dimensions of
FFN, 16-head self-attention, and pre-norm.

3.2 Data Augmentation
Back-translation (Edunov et al., 2018) is an ef-
fective way to boost translation quality by using
monolingual sentences to generate synthetic train-
ing parallel data. As described in (Wu et al., 2019b),
similar to back translation, the monolingual corpus
in source language can also be used to generate
forward translation text with a trained MT model,
and the generated forward and backward transla-
tion data can both be merged with the authentic
bilingual data. This strategy can increase the data
size to a large extent.

We take full advantages of the officially provided
monolingual data for data augmentation. In terms
of back translation, we adopt top-k sampling for
high-resource languages, and adopt beam search
for low-resource languages. With regard to forward
translation, we translate monolingual data using
beam search. Through sampling, we ensure that
the sizes of data generated by forward and back
translation are relatively equal. In this paper, we
refer to the combination of forward and sampling
back translation as FTST.

3.3 Iterative Joint Training
Zhang et al. (2018) propose a new iterative joint
training method, that is, using monolingual data
from both source and target sides to train a source-
to-target (forward) model and a target-to-source
(backward) model at the same time. The two mod-
els generate synthetic data for each other. The ad-
vantage of such method is that both of the two mod-

els gain improvement after each iteration with the
synthetic data provided by the other, and then can
generate synthetic data with higher quality. Such
training procedure is repeated after the two models
converge.

3.4 Multilingual Translation
Johnson et al. (2017) propose a simple solution to
use a single neural machine translation model to
translate among multiple languages, and the model
requires no change to the model architecture. In-
stead, the model introduces an artificial token at the
beginning of the input sentence to specify the re-
quired target language. All languages use a shared
vocabulary. There is no need to add more param-
eters. In low-resource tasks, we select a portion
of the En-De bilingual data and conduct a joint
training. The experiment shows that a multilin-
gual model can improve the translation quality of
low-resource languages to a large extent.

3.5 Right-to-Left Models
The approach of Right-to-Left is proposed by (Liu
et al., 2016). The main idea is to integrate informa-
tion of Right-to-Left (R2L) models to Left-to-Right
(L2R) ones. Following this strategy, we translate
the source sentences of the monolingual data with
both R2L models and L2R models. In the Zh/En
and De/En tasks, we use the R2L model to syn-
thesize forward translation data using beam search
and mix the synthetic data with the L2R synthetic
data for iterative joint training.

3.6 Ensemble Knowledge Distillation
Ensemble Knowledge Distillation (Freitag et al.,
2017; Li et al., 2019) improves the performance
of a student model by distilling knowledge from a
group of trained teacher models. Comparing with
some soft label distillation methods, the EKD for
NMT is relatively straightforward, which can be
implemented by training the student models on the
combination of the original training set and the

227



translation from the ensembled teacher model on
the training set. In our experiments, we ensemble
models as the teacher model to translate the wmt21
test set, and use the translate results to further fine-
tune models.

3.7 Fine-tuning
Previous works have demonstrated that fine-tuning
a model with in-domain data, such as last year’s
test set, could effectively improve the performance
of this year (Sun et al., 2019). We use the dev and
test sets from previous years, coupled with data
generated by ensemble knowledge distillation and
noises added to the target side, to fine-tune models
and achieve further improvements.

3.8 Ensemble
Model ensemble is a widely used technique in
previous WMT workshops (Garmash and Monz,
2016), which can improve the performance by com-
bining the predictions of several models at each
decoding step. In our work, we ensemble mod-
els with different architectures to further improve
system performances. For Zh/En and De/En, we
experimented with a combination of the Deep 35-6
big model and the Deep 25-6 large model to en-
semble. For all language pairs, we train multiple
models to ensemble by shuffle the data.

4 Experiment Settings

4.1 Settings
We use the open-source fairseq (Ott et al., 2019) for
training and sacreBLEU (Post, 2018) to measure
system performances. The main parameters are as
follows: Each model is trained using 8 GPUs. The
size of each batch is set as 2048, parameter update
frequency as 32, and learning rate as 5e-4 (Vaswani
et al., 2017). The number of warmup steps is 4000,
and model is saved every 1000 steps. The archi-
tectures we used are described in section 3.1. We
adopt dropout, and the rate varies across different
language pairs. Marian (Junczys-Dowmunt et al.,
2018) is used for decoding during inference.

4.2 Training Process
We employ iterative training and phase-based data
augmentation. Figure 1 shows our training process
in details. The specific steps are as follows:

1) Process data using methods described in sec-
tion 2.2. Train one forward model and one
backward model.

System en2zh zh2en
baseline 39.1 26.5
FTST 45.1 (+6.0) 32.4 (+5.9)
in-domain FTST + R2L 46.2 (+1.1) 34.4 (+2.0)
finetuning 46.5 (+0.3) 34.8 (+0.4)
ensemble 46.7 (+0.2) 34.9 (+0.1)
wmt21 final submit 35.1 28.9

Table 2: The experimental result of Zh/En tasks

2) Generate back translation and forward transla-
tion data. Mix the data with parallel training
data and train three forward L2R models and
three backward models. At the same time,
train three R2L models for generating R2L
forward translation data, in order to improve
the diversity of synthetic data.

3) Split monolingual data into several sets. Gen-
erate back translation and forward translation
data using models trained in step 2. Mix sam-
pled synthetic data with bilingual training data
and train four forward models and four back-
ward models.

4) Average the last five checkpoints of each
model and fine-tune it. Ensemble models to
produce the final system.

5 Results and analysis

5.1 Zh/En
We use methods described in Section 2.2 for data
processing. Four model architectures mentioned
in Section 3.1 are employed to increase system
diversity. On the basis of bilingual baselines model,
we use FTST data augmentation to further enhance
model performance.

Table 2 lists the results of our submission on
WMT 2020 News Task test set. Comparing with the
baseline model, FTST leads to 6.0 BLEU increase
on en2zh direction and 5.9 BLEU increase on the
opposite direction. We conduct data distillation on
source sentences from WMT 2017 and 2018 news
test sets, mix the generated data with the original
data, and add noises to the target side. We fine-
tune the model using the mixed data and achieve
1.1 BLEU and 2.0 BLEU increases on en2zh and
zh2en directions, respectively. We then conduct
a second-round FTST data augmentation on the
fine-tuned model. In this round, we adopt the R2L
model. We conduct data distillation on source sen-
tences from WMT 2017-2018 news test sets, mix
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System en2de de2en
baseline 33.1 39.7
FTST 34.2 (+1.1) 40.8 (+1.1)
FTST + R2L 34.5 (+0.3) 41.1 (+0.3)
finetuning 38.2 (+3.7) 43.1 (+2.0)
ensemble 38.3 (+0.1) 43.4 (+0.3)
postprocess 39.7 (+1.4) -
wmt21 final submit 29.8 34.7

Table 3: The experimental result of De/En tasks

the generated data with the WMT 2017-2018 test
sets, and add noises to the target side. We fine-
tune the model using the mixed data and achieve
0.3 BLEU and 0.4 BLEU increases on en2zh and
zh2en directions, respectively. Finally, ensemble
further leads to 0.2 BLEU increase on the en2zh
direction and 0.1 BLEU increase on the opposite
direction. When submitting the final results, we
further fine-tune the model with WMT 2019 and
2020 test sets. Our models achieve 35.1 BLEU on
the en2zh direction and 28.9 BLEU on the zh2en di-
rection when measuring with the WMT 2021 News
Task test set.

5.2 De/En

For the En-De task, we adopt the Deep 36-5 big
model and Deep 25-6 large model, as described in
section 3.1. We use Moses for English and Ger-
man word segmentation. The training data are seg-
mented by a shared SentencePiece model. The
source and target side each has a vocabulary with
32K words. We process all data using filter meth-
ods described in section 2.2.

Table 3 lists the results of our submission on
WMT 2020 News Task test set. Comparing with
the baseline model, two rounds of FTST data aug-
mentation contribute to 1.4 BLEU increase on each
directions. We conduct data distillation on source
sentences from WMT 2020 news test sets, mix
the generated data with the WMT 2018 and WMT
2019 test sets after adding noises to the target side.
We fine-tune the model using the mixed data and
achieve 3.7 BLEU and 2.0 BLEU increases on
en2de and de2en directions, respectively. Ensem-
ble further leads to 0.1 BLEU increase on the en2de
direction and 0.3 BLEU increase on the opposite di-
rection. Ensemble does not have significant impact
on this task. It should be noted that we find that
the quotation marks generated by the en2de model
does not comply with the German standard, so we

System en2ja ja2en
baseline 36.4 21.4
iterative FTST 39.2 (+2.8) 23.1 (+2.7)
finetuning 42.9 (+3.7) 25.3 (+2.2)
ensemble 43.6 (+0.7) 26.0 (+0.7)
wmt21 final submit 45.4 26.5

Table 4: The experimental result of Ja/En tasks

add a correction script to the post-processing(just
convert English quotation marks to German quota-
tion marks), which surprisingly leads to 1.4 BLEU
increase. When submitting the final results, we fur-
ther fine-tune the model with WMT 2020 test set.
Our submitted models achieve 29.8 BLEU on the
en2de direction and 34.7 BLEU on the de2en direc-
tion when measuring with the WMT 2021 News
Task test set.

5.3 Ja/En

For Ja/En task, we adopt the same settings as that
for the Zh-En task. The dropout rate is set to 0.1.
The training data are segmented by a shared Sen-
tencePiece model. The source and target side each
has a vocabulary with 32K words. The size of
parallel data after cleansing is 13.5M. We sam-
pled 150M English monolingual data from News
Crawl and 300M Japanese monolingual data from
News Crawl and Common Crawl (150M from each
source).

Table 4 lists the results of our submission on
WMT 2020 News Task test set. Comparing with the
baseline model, iterative FTST data augmentation
contribute to 2.8 BLEU and 1.7 BLEU increases
on the en2ja and ja2en directions respectively. We
conduct data distillation on source sentences from
WMT 2020 news test sets, mix the generated data
with the WMT 2020 dev set after adding noises to
the target side. We fine-tune the model using the
mixed data and achieve 3.7 BLEU and 2.2 BLEU
increases on en2ja and ja2en directions, respec-
tively. We train four models on each direction and
ensemble further leads to 0.9 BLEU increase on
the en2ja direction and 1.0 BLEU increase on the
opposite direction. When submitting the final re-
sults, we further fine-tune the model with WMT
2021 dev set. Our submitted models achieve 45.4
BLEU on the en2ja direction and 26.5 BLEU on
the j2en direction when measuring with the WMT
2021 News Task test set.
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System en2ha ha2en en2is is2en hi2bn bn2hi xh2zu zu2xh
baseline 2.8 7.7 18.3 25.1 7.4 18.0 2.1 6.2
multilingual (add en2de data) 14.9 18.9 20.2 28.0 9.2 18.3 7.3 8.1
iFTBT 19.7 23.2 23.5 32.4 10.4 19.4 9.3 9.2
wmt21 final submit 20.3 17.5 27.5 38.4 13.0 21.9 11.8 9.9

Table 5: The experimental result of low resource tasks. iBTFT indicates that multiple rounds of BTFT are used for
data enhancement.

5.4 Low resource tasks

We use the same strategy to deal with low resource
tasks (En-Ha, En-Is, Bn-Hi and Xh-Zu). We train a
bilingual baseline model and a monolingual base-
line model for each direction. Every multilingual
model is trained with 10x bilingual data sampled
from the training corpora and 50M En-De paral-
lel data. For en2ha, en2is, hi2bn and xh2zu, we
use en2de data for training. For other language
directions, we use de2en data for training.

Table 5 lists the results of our submission on dev
set. On the eight language directions, all multilin-
gual models gain huge improvements when com-
paring with the bilingual baseline model. Particu-
larly, En-Ha achieves the greatest improvements:
12.1 BLEU on en2ha direction and 11.20 on ha2en
direction. Bn-Hi achieves the slightest improve-
ments: 0.4 BLEU on bn2hi direction and 1.78 on
hi2bn direction. The results demonstrate that the
fewer the bilingual data, the greater impact a multi-
lingual model has. In other extremely low-resource
scenarios, the improvement gained by a multilin-
gual model for En-Ha is greater than that for the
Xh-Zu task. We think the reason lies in the differ-
ences of language similarities. On the basis of mul-
tilingual models, we conduct data augmentation
as described in section 3.2. We adjust sampling
ratios according to the monolingual data size of
each languages. Our data augmentation strategy
achieves improvements on all eight language di-
rections, from 1.1 BLEU to 4.4 BLEU increase.
When conduct the second-round FTST data aug-
mentation, we only get a slight increase on the
En-Ha task: 0.2 BLEU on en2ha direction and 0.9
on ha2en direction. We also leverage fine-tuning
and ensemble techniques to further improve our
model performances. Finally, we get the highest
BLEU score on the xh2en direction and the second
highest BLEU score on the en2ha direction.

6 Conclusion

This paper presents the submissions of HW-TSC to
the WMT 2021 News Translation Task. For each
direction in all pairs, we perform experiments with
a series of pre-processing and training strategies.
The effectiveness of each strategy is demonstrated.
Our experiments show that in low-resource sce-
narios, multilingual model that utilizing data from
other languages can improve system performance
to a large extent. Data augmentation strategy is
still effective for multilingual models. Our sub-
missions finally achieves competitive results in the
evaluation.
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Abstract

This paper describes LISN’s submissions to
two shared tasks at WMT’21. For the
biomedical translation task, we have devel-
oped resource-heavy systems for the English-
French language pair, using both out-of-
domain and in-domain corpora. The target
genre for this task (scientific abstracts) corre-
sponds to texts that often have a standardized
structure. Our systems attempt to take this
structure into account using a hierarchical sys-
tem of sentence-level tags. Translation sys-
tems were also prepared for the News task for
the French-German language pair. The chal-
lenge was to perform unsupervised adaptation
to the target domain (financial news). For this,
we explored the potential of retrieval-based
strategies, where sentences that are similar to
test instances are used to prime the decoder.

1 Introduction

This paper describes LISN’s1 submissions to the
translation shared tasks at WMT’21, where we took
part in two shared tasks. For the biomedical transla-
tion tasks, we have developed resource-heavy sys-
tems for the English-French language pair, using a
diversity of out-of-domain and in-domain corpora,
thus continuing the efforts reported in (Abdul Rauf
et al., 2020). Like for previous years shared task,
the target genre (scientific abstract) corresponds
to texts that often have a standardized structure
comprising typical subsections of one to five lines.
Standard subsections report the OBJECTIVE, the
METHOD, or the RESULTs of the study. Our sys-
tems for this year attempt to take this structure into
account using sentence-level tags, with the hope
to capture some of the document structure and the
phraseology of the domain into account. These
systems are documented in Section 2.

1LISN [Laboratoire Inderdisciplinaire des Sciences du
Numérique] is the new name of the laboratory formerly known
as LIMSI.

Translation systems were also prepared for the
News task for the French-German language pair.
The challenge this year was to perform unsuper-
vised adaptation to the target domain (financial
news), with no further detail regarding the test data.
In particular, the organizers did not release any de-
velopment data to tune systems. In this setting, we
explored the potential of using a retrieval-based
strategy, where sentences that are similar to the test
instances are used to help the decoding. In this
approach, introduced in (Bulte and Tezcan, 2019)
and further explored in (Xu et al., 2020; Pham
et al., 2020), translation is a two-step process: a
retrieval phase, which identifies sentences that re-
semble the source test sentence in parallel corpora.
These sentences and their translation are then used
to prime the decoder: inserting relevant translations
examples in the decoder’s context should help to
select the right translations, especially for words
and terms from the test domain. These systems are
described in Section 3.

2 MT for biomedical texts

In this section, we describe our participation to the
biomedical task for WMT’21, in which we par-
ticipated in both English to French and French to
English directions. English-French is a reasonably
resourced language pair with respect to biomedical
parallel corpora, allowing us to train our Neural Ma-
chine Translation (NMT) systems (Vaswani et al.,
2017) with in-domain corpora as well as large out-
of-domain data that exists for this language pair.
Like for last year (Abdul Rauf et al., 2020), our first
goal is to make the best of all the available data,
including supplementary in-domain monolingual
data. Our corpora are described in Section 2.1.

For this year’s participation, we also attempt to
take the internal structure of biomedical abstracts
into account. Many of these abstracts follow what
is often refered to as the “IMRAD format”, com-
prising the following subparts: INTRODUCTION,
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Parallel
Corpus Wrds (M) Sents.

English French

Ufal 89.5 100.3 2.72 M
Edp 0.04 0.04 2.44 K
Medline titles 5.97 6.43 0.63 M
Medline abstracts 1.23 1.44 0.06 M
Scielo 0.17 0.21 7.84 K

Cochrane-Reference 2.23 2.74 0.12 M
Cochrane-PE 0.43 0.53 20.5 K
Cochrane-GooglePE 0.63 0.77 30.3 K
Taus 20.1 23.2 0.88 M
Mlia 19.0 23.0 1.0M

IR Retrieved 13.2 14.7 3.6M

Development

Medline 18 5.7K 6.9K 265
Medline 19 9.8K 12.4K 537
Test

Medline 20 12.7K 16.2K 699

Monolingual

Corpus English French Sent.

Lissa_Fr 8.79 7.70 0.33 M
Med_Fr 16.3 16.2 0.06 M
IsTex_Fr 6.92 7.84 0.42M

Med_En 3.40 4.02 0.22M

Out Domain

Corpus English French Sent.

Out-of-domain 1139 1292 35M

Table 1: Data sources for the biomedical task

METHODS, RESULTS, and DISCUSSION (Sol-
laci and Pereira, 2004). This structure can be ex-
plicit in documents through dedicated headings or
remain implicit. Our experiments aim to explore
how to use this information in NMT and to measure
the correlated impact. We notably expect that by
informing the system with sub-document informa-
tion, it will learn the typical style and phraseology
of sentences occurring in each part.

For this purpose, we identified in our data all the
abstracts that were conforming to this basic struc-
ture and worked to make this structure as explicit
and standardized as possible. This notably implied
to normalize the mains headings, as some variation
was observed: for instance, ANALYSIS may be re-
placed with DISCUSSION, and additional subparts

(OBJECTIVES, CONCLUSION) are also be ob-
served. To incorporate the standard IMRaD format
we mapped each subheading to the corresponding
IMRaD subpart using a system of tags. Details
regarding this process are given in Section 2.2.

All systems are based on the Transformer ar-
chitecture of Vaswani et al. (2017). We were
able to achieve appreciable gains both from back-
translation and document structure processing. The
results are discussed in Section 2.4.

2.1 Corpus and preprocessing

We trained our baseline systems on a collection
of in domain biomedical texts as well as out-of-
domain parallel corpus. Table 1 details the corpora
used in training.

2.1.1 Parallel corpora
We gathered parallel and monolingual corpora
available for English-French in the biomedical do-
main. The former included the biomedical texts
provided by the WMT’20 organizers: Edp, Med-
line abstracts and titles (Jimeno Yepes et al., 2017),
Scielo (Neves et al., 2016) and the Ufal Medical
corpus2 consisting of Cesta, Ecdc, Emea (OpenSub-
titles), PatTR Medical and Subtitles. In addition,
we used the Cochrane bilingual parallel corpus (Ive
et al., 2016)3, the Taus Corona Crisis corpus4 and
the Mlia Covid corpus.5 We finally experimented
with additional in-domain data selected using Infor-
mation Retrieval (IR) techniques from general do-
main corpora including News-Commentary, Books
and Wikipedia corpus obtained from the Open
Parallel Corpus (OPUS) (Lison and Tiedemann,
2016). These were selected using the data selection
scheme described in (Abdul-Rauf and Schwenk,
2009). Medline titles were used as queries to find
relevant sentences. We used the 2-best sentences
returned from the IR pipeline as additional corpus.

Our out-of-domain corpora include the paral-
lel data provided by the WMT14 campaign for
French-English: Gigafr-en, Common Crawl, Eu-
roparl, News Commentary and the UN corpora.

For development purposes, we used Medline test
sets of WMT’18 and 19, while Medline 20 was
used as internal test data.6

2https://ufal.mff.cuni.cz/ufal_
medical_corpus

3https://github.com/fyvo/
CochraneTranslations/

4https://md.taus.net/corona
5http://eval.covid19-mlia.eu/task3/
6These testsets were sentence-aligned with in-house
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2.1.2 Monolingual sources
The back-translation of monolingual sources has of-
ten been effectively used to cater for parallel corpus
shortage in the Biomedical domain in (Stojanovski
et al., 2019; Peng et al., 2019). We also adopt this
approach here.

Supplementary French data from three monolin-
gual sources were collected from public archives:
abstracts of medical papers published by Elsevier
from the Lissa portal7 and from the national IS-
TEX archive8; a collection of research articles col-
lected from various sources9 henceforth referred
to as Med_Fr (Maniez, 2009). These documents
were automatically translated into English with an
NMT system trained on biomedical corpora, with
a BLEU score of 33.6 on Medline20 testset.

The English side of Medline German and Span-
ish corpora is used as supplementary English data
for back translation. Duplicate documents were
removed based on the document id. For these, the
internal structure of documents is often available
and has been tagged as for the parallel data. These
texts were then split into sentences10 and translated
into French using a NMT system trained on all
Biomedical corpora with a BLEU score of 36.4
on Medline20 testset. All back-translated data is
tagged using the proposal of Caswell et al. (2019).

Parallel and monolingual data are further pro-
cessed using SentencePiece (Kudo and Richardson,
2018) tokenisation and detokenisation scheme to
segment texts into subword units using a vocabu-
lary of 32K subwords. These units were learned on
all the in-domain corpora.

2.2 Sentence tagging: a three-level scheme

2.2.1 Tagging domains and corpora
As explained above, our training data is diverse,
comprising in-domain parallel, out-of-domain par-
allel, and in-domain monolingual that is automat-
ically back-translated. Some are made of lists of
isolated sentences, while others retain the docu-
ment information. Even within the in-domain data,
some texts precisely match the genre of the testset
(scientific abstracts) - this is the case for instance

tools and are shared at https://github.com/fyvo/
WMT-Biomed-Test.

7https://www.lissa.fr/dc/#env=lissa
8https://www.istex.fr/
9https://crtt.univ-lyon2.fr/

les-corpus-medicaux-du-crtt-613310.kjsp
10https://pypi.org/project/

sentence-splitter/

of Medline and to a lesser extent, Cochrane; while
others are more remote (eg. the Ufal collection, or
the Mlia corpus). In order to reflect this diversity,
we designed a three-level sentence tagging scheme
that is used for the experiments in Section 2.4.2.
These tags appear as prefix of each source sentence.

The first level of tags distinguishes between out-
of-domain data (<G>), and in-domain data (tagged
<M>). The second level of tag aims to distinguish
between data sources, hence the use of one dedi-
cated tag for each corpus, except for the monolin-
gual data, which is simply tagged with <BT>.

2.2.2 Tagging sections within documents
The third level of annotation is indented to enhance
the translation context with information regarding
the position of a sentence within the abstract. The
structure of scientific abstracts in the medical do-
main often obey the IMRAD structure, and the third
tag aims to include this structural information as an
additional document-level context. Document level
information is necessary to model long-range de-
pendencies between words, phrases, or sentences,
or document parts. For a translation system, the
ability to model the context may notably improve
certain translation decisions, e.g. a better or most
consistent lexical choice (Kuang et al., 2018) or
a better translation of anaphoric pronouns (Voita
et al., 2018; Bawden et al., 2019). A recent review
of these themes is in (Maruf et al., 2021).

For this purpose, we further pre-processed 6 cor-
pora containing scientific abstracts. These corpora
had different subheadings and structures as given
below, which were mapped to a restricted set of
section tags listed in Table 2:

1. Medline and Scielo: Abstracts and sub headings often
without title. We identified a total of 189 subheadings
including spelling variations. Examples include: Pre-
senting Concerns of the Patient, Sources of Information,
Novel finding, Study Selection etc.

2. Edp: Abstracts and sub headings mostly contain titles.
45 subheadings where found, such as: Case report, Ob-
servation, Subjects and Methods, Commentary, Peda-
gogical objectives etc.

3. Cochrane: only 10 different subheadings were found,
including: Abs selection criteria, abs search strategy,
abs data collection, summary title etc.

The identification and standardization of sub-
heading information was a tedious process, involv-
ing a lot of rule-based processed to take the vari-
ability of sub-headings into account. In order to
reconstruct fully parallel versions with subhead-
ings, we also had to reinsert explicit headings in
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Title <H1>
Introduction <INT>
Objectives <OBJ>
Material and Methods <MaM>
Results <RES>
Conclusion <CON>

Table 2: Standardized section heading tags

the source or the target files. Also note that this in-
formation was not available for all abstracts. After
preprocessing files for which the full subheading
information was available, we obtained the 6 fully-
tagged corpora (see statistics in Table 3). A similar
process was used for test sets (see Table 4).

Corpus Lines En words Fr words

Medline 34836 742891 920811
Edp 1682 34167 37508
Scielo (wmt16) 7088 163275 199829
Cochrane-Reference 123598 2741426 3308485
Cochrane-GooglePE 30866 685490 828436
Cochrane-PE 20693 468691 568262

Table 3: Document-aligned training corpora

Testset en-fr fr-en

medline20 735 580
medline18 321 347
medline19 493 469

Table 4: Number of test sentences after alignment

Finally, we also introduced a third tag in all other
documents as follows: sentences within an abstract
where tagged as <ABS>, while all remaining sen-
tences from other corpora where simply tagged as
“unspecified subheading” (<US>).

2.3 Translation framework

Our translation systems mostly used the basic
Transformer models, while a few contrastive sys-
tems used the large version (Vaswani et al., 2017).
They all rely on Facebook’s seq-2-seq library
(fairseq) (Ott et al., 2019) with parameters settings
borrowed from transformer_wmt_de_en.11.
The ReLU activation function was used in all en-
coder and decoder layers. We optimize with Adam

11https://fairseq.readthedocs.io/en/
latest/models.html

(Kingma and Ba, 2015), set up with a maximum
learning rate of 0.0005 and an inverse square root
decay schedule, as well as 4000 warmup updates.
We share the decoder input and output embedding
matrices. Models are trained with mixed preci-
sion and a batch size of 4096 tokens on 4 V100
GPUs for 300k updates. Systems were trained un-
til convergence based on the BLEU score on the
development sets. Evaluation was performed using
SacreBleu (Post, 2018). Scores are chosen based
on the best score on the development set (Med-
line 18, 19) and the corresponding scores for that
checkpoint are reported on Medline 20 test set.

For fine-tuned systems, the process starts with
models trained to convergence, based on BLEU
score on dev sets. Training then resumes using a se-
lected portion of the training corpus using the same
parameters and criterion as for the base systems.
In our results corresponding systems are post-fixed
with *-ft.

2.4 Results

We present our results for the two directions in two
tables, Table 5 and 6, differentiating the normal
versus the tag-based systems. Base systems are
given on the left, (⇒) identifies the derived (fine-
tuned) systems.

2.4.1 Regular MT systems
Results for the untagged systems are reported in
Table 5 and are denoted by X*, with E* and F*
representing the English to French and French to
English systems respectively.

We first built baseline systems. X0 denotes the
systems built using only the in-domain data pro-
vided by the organizers. X1 are our baseline sys-
tems built using all in-domain parallel data. We
see good improvement in both directions amount-
ing to 4.2 and 4.8 BLEU points, which is ob-
tained by adding around 1M sentences of addi-
tional Cochrane and Taus corpora to the already
available 3.4M sentences from WMT’20. This
hints at the relevance of the additional in-domain
parallel corpora used.

We used the X1 systems as strong in domain
baselines to study the effect of adding back-
translated in domain data. These appear as X2
and X3 in Table 5. Adding around 0.8M French to
English and around 0.2M English to French back
translated sentences did not help as much as we
were expecting. We saw similar results last year
and increased the amount of back translations this
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ID Train ID Sentences Medline 20 ID Sentences Medline 20

EN-FR FR-EN

X0 WMT biomed data E0 3.4M 31.6 F0 3.4M 28.8
X1 All biomed E1 4.5M 35.8 F0 4.5M 33.6

Back translations of monolingual data

X2 X1 + BT E2 5.3M 34.8 E2 4.7M 33.5
X3 X1 + BT-tag E3 5.3M 36.6 F3 4.7M 32.4
Out of domain fine-tuned with in domain

X4 outdomain⇒biomed E4 40.5M 32.3 F43 41M 35.8

Table 5: Results for systems using in-domain and out-of-domain corpora. Superscripts ∗n denote runs submitted

ID Train Sentences Medline 20
<SUBHEAD> <ABS> <US>

EN-FR

TE1 Out+In 41.7M 36.2 36.3 36.3
TE21 TE1⇒ftbiomedplusbt 47.2M 38.7 38.5 38.6
TE3 TE2⇒ftCocMed 48.0M 38.2 38.4 38.3

Transformer Large

TE4 Out+In 41.7M 36.1 36.2 36.3

TE52 TE4⇒ftbiomedplusbt 47.2M 38.4 38.5 38.2

FR-EN

TF1 Out+In 40.9M 32.1 32.0 32.1

Mixed baseline finetuned with in-domain

TF21 TF1⇒ftbiomedplusbt 46.4M 35.7 35.2 35.2

TF32 TF2⇒ftCocMed 48.8M 35.3 34.9 34.8

Table 6: Results for systems with sentences tagged with our 3 level tagging scheme. Test sets are decoded 3 times,
where the third tag is varied from the more specific (<SUBHEAD>) to the more generic (<US>). Superscripts ∗n

denote the runs submitted.

year. X3 denote systems built using the tagging
scheme proposed by Caswell et al. (2019), where
back translations are prefixed with the <BT> tag
on the source side.

Indicating that a training sentence is back-
translated allows the model to separate the help-
ful and harmful signal. This proved particularly
true for English into French where adding tag to
back translations improved the BLEU score by 0.8
points; but it was not helpful in the reverse direc-
tion where the amount of back translated data was
may be too small (0.2M lines). back-translations
as compared to the baseline corpora.

Finally, systems were built by initialising the

parameters from huge out-of-domain corpora and
later fine tuned on in-domain corpora (X4), where
in-domain sub words learned from all the Biomedi-
cal data are used to segment the out-of-domain data.
The initial systems were trained for 4 epochs on
general domain WMT14 EN-FR corpora. The FR-
EN system (F4) is the best system in this direction,
reaching a BLEU score of 35.8.

2.4.2 Tagged Systems

As our 3-level tagging scheme, described in Sec-
tion 2.2, is adding information about the domain
of each sentence, we specifically focused on larger
systems by using all the available in- and out-of-
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domain corpora.
Results are summarized in Table 6 with TE* rep-

resenting the Tagged English to French systems and
TF* representing the French to English systems.
TE1 is the baseline system for EN-FR built with all
the available in domain and out-domain data. TE4
is the corresponding baseline using a Large Trans-
former12. We then fine-tune these systems with all
the in-domain data including the back translations,
these are represented by TE2 and TE5 respectively.
This gives an appreciable gain of 2.5 and 2.3 BLEU
points for Transformer and Transformer large sys-
tems. As we saw no major difference in scores
for Transformer versus Transformer large, so we
continue the rest of experiments with the simple
Transformer architecture. Fine-tuning further with
just abstracts from Cochrane and Medline did not
yield any further improvement.

French to English results display similar trends.
The baseline (TF1) using all available (in domain +
out-of-domain) data tagged with our 3 level scheme
yielded a BLEU score of 32.1. Fine-tuning it fur-
ther with all in-domain data (TF2) gives an im-
provement of 3.6 BLEU points which does not
improve further when fine-tuning continues with
just Cochrane and Medline abstracts (TF3).

To measure whether the model learned docu-
ment domain and/or sentence origin information,
we tested by tagging the test set with three different
tags in the third position, using either the exact sub-
heading, or abstract or UnSpecified for sentences
for which the sub-section is unknown. Table 6 re-
ports the scores for the three cases. Though the
difference in scores for the three cases is minute,
in-domain systems{TE2, TE3, TE5} and {TF2,
TF3} achieve their best results when the test set is
tagged with the subheading or the abstract tag, typ-
ical feature of the biomedical corpora. Conversely,
for out-of-domain systems {TE1, TE4, TF1}, the
best scores are always for the test set tagged with
<US>. This strongly hints that the system is using
the extra-information provided by the tag. These
observations need to be confirmed using other met-
rics, as BLEU may not properly reflect these differ-
ences.

For English to French direction we got bet-
ter scores with the tagged systems, with the
best system (TE2 = 38.7) achieving 2.1 BLEU
points more than the best un-tagged system (E3 =

12hidden size of 1024 and a feed forward size of 4096. Rest
of the parameters same as for other systems.

EN-FR

E2 base+bt 34.8
E3 base+bt-tag 36.6

<SUBHEAD> <ABS> <US>

TE Indomain+bt 37.3 37.0 37.0

FR-EN
F2 base+bt 33.5
F3 base+bt-tag 32.4

<SUBHEAD> <ABS> <US>

TF Indomain+bt 34.4 34.4 34.4

Table 7: Comparison of our 3 level tagged systems
with the corresponding untagged systems. Systems
{E2,F2} are built by adding back-translated data to
the baseline. In systems {E3,E3}, the added back-
translated data start with <BT> tag. Systems {TE,
TF} use our 3-level tagging scheme for all sentences.

36.6). This was however not the case for French-
English where both tagged and un-tagged systems
had more or less similar scores.

Systems in Tables 5 and 6 have different base-
lines, thus to establish a fair comparison we report
numbers for comparable systems in Table 7. Sys-
tems {E2,E3,F2,E3} are copied from Table 5,
whereas {TE and TF} are the corresponding sys-
tems using our tagging scheme on the sole biomed-
ical data. We see here a clear gain for French-
English when we use a 3-level tagging scheme (TF)
compared to just adding the <BT> tag (F3); results
for the reverse direction are more even and having
one or three tags does not make a difference.

2.5 Conclusion

In this section, we have presented our work for the
biomedical task. We notably have tried to incorpo-
rate document origin and structure information and
improve strong baseline systems that were using
a wealth of in-domain and out-of-domain data. .
Overall, our systems for this year are significantly
better than last year’s, even though the benefits
of adding document structures as tags need to be
confirmed by more experiments and analyses.

3 News translation task: De↔ Fr

In the 2021 News translation task, we focused on
the German-French language pair in which the par-
ticipants are asked to build MT systems for News
in the financial domain. In this section, we discuss
details of our approach and the rationale behind it.
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3.1 Unsupervised adaptation

As the training and development data do not con-
tain domain information, the supervised domain
adaptation paradigm is not suitable here. However,
non-parametric adaptation (Bapna and Firat, 2019),
example-based guided machine translation (Zhang
et al., 2018), unsupervised domain adaptation (Fara-
jian et al., 2017) or priming NMT (Xu et al., 2020;
Pham et al., 2020) have showed promising results
for this problem. These approaches retrieve trans-
lation examples that are similar to the input source
sentence, and use them to guide the inference and
to reproduce existing translations or to locally adapt
the pre-trained NMT system to the input sentence.

Even though all of the approaches mentioned
above have merits of their own, we decided to fo-
cus on computationally cheaper methods such as
(Bulte and Tezcan, 2019; Xu et al., 2020) where the
retrieved instances provide an extra conditioning
context for the decoder. Pham et al. (2020) further
improved these techniques by proposing to simul-
taneously prime the source and the target side of
the retrieved examples (see Section 3.4.1) and has
been our main source of inspiration.

3.2 Data and preprocessing

We use all available parallel data for De ↔ Fr,
with the exception of the ParaCrawl data, for train-
ing. We also use monolingual data to improve
translation quality. For both languages, we choose
Newscrawl 2020. We additionally use Newscrawl
2018 and 2019 French data at inference time to
explore the ability of our priming model to make
use of extra data. Details are in Section 3.4.2. We
use newstest2019 as development set and test our
models on newstest2020.

We filter out sentence pairs with invalid language
tag using fasttext language id model13 (Bo-
janowski et al., 2017). We use Moses tools to nor-
malize punctuation, to remove non-printing charac-
ters and to tokenize into words. The final parallel
data contains 5.6M sentences.14 We use a shared
source-target vocabulary built with 40K Byte Pair
Encoding (BPE) units using the subword-nmt
implementation (Sennrich et al., 2016b).15

13https://dl.fbaipublicfiles.com/
fasttext/supervised-models/lid.176.bin

14https://github.com/moses-smt/
mosesdecoder

15https://github.com/rsennrich/
subword-nmt

3.3 Baseline systems

We build our Transformer-based (Vaswani et al.,
2017) systems using fairseq 16 (Ott et al., 2019).
Our baseline system is a large Transformer with
a hidden size of 1024 and a feedforward size of
4096. We optimize with Adam (Kingma and Ba,
2015), set up with a maximum learning rate of
0.0007 and an inverse square root decay schedule,
as well as 4000 warmup updates. We tie the en-
coder and decoder input embedding matrices with
the decoder output embedding matrix and we apply
layer normalization before each block. Models are
trained with mixed precision and a batch size of
4096 tokens on 4 V100 GPUs for 300k updates.

3.4 Submitted systems

3.4.1 Boosting NMT by similar translations

Our approach comprises 2 steps: similar translation
retrieval and inference where the priming example
is processed in forced-decoding mode.

The retrieval of relevant examples for a given
source sentence is based on their distance in some
high-dimensional numerical representation space.
These representations are computed using the en-
coder of the baseline system (see Section3.3) so as
to keep our systems in the "constrained" track, as
the use of large pre-trained models such as BERT
(Devlin et al., 2019), XLM (Conneau and Lample,
2019), etc., was only allowed in unconstrained sub-
missions. More precisely, for each sentence, we av-
erage the contextualized embeddings output at the
last layer of the encoder. From the training dataset,
we create a datastore of pairs (K,V ) in which the
key K is the sentence embedding of some source
sentence f and the value is the sentence pair (f , e)
whose source sentence is f . For each query, we
retrieve k keys (k = 10 in all experiments).

The similarity between two sentences is the co-
sine similarity and the retrieval of the nearest neigh-
bor(s) is performed using FAISS (Johnson et al.,
2017). In order to search through a large datas-
tore, we divide it into shards containing at most
500K data points; we conduct the k nearest neigh-
bor search on each shard, gather all the retrieved
keys from all shards into a list and reduce it to the
k nearest keys. Given an input sentence and the list
of its k nearest neighbours, we append m (m ≤ k)
retrieved source sentences to the input sentence and
initialize the target side by the concatenation of the

16https://github.com/pytorch/fairseq

238



m corresponding target sentences. We use a special
token to separate sentences.

During training, we train the NMT model with
two types of examples (with and without retrieval):
this means that each training sample will occur
twice, once with and once without priming. The
former examples have the following format:

f1 ∗ · · · ∗ fm||f

e1 ∗ · · · ∗ em||e
while the latter is presented as the original data.

During inference, we use the same format as
for the source-side, while we initialize the decoder
with the prefix e1 ∗ · · · ∗ em||. We therefore call
this initialization "force-decoding". The special to-
kens, which serve as joiners between the retrieved
sentences and the source/target sentence, are care-
fully chosen so that they never occur in the real
text to avoid ambiguity. As discussed in Pham et al.
(2020), it is possible to concatenate several similar
sentences i.e. use m > 1; we however only report
results with m = 1, since our preliminary experi-
ments did not show superior results with m > 1.

3.4.2 Monolingual retrieval
Pham et al. (2020) suggested that monolingual texts
in the target language can also be helpful to in-
form the inference. To make use of monolingual
data, we create pseudo translation pairs with back-
translation to generate the missing source language
side. For this step, we leverage the baseline NMT
system in Section 3.3 for one direction to back-
translate the monolingual target text in the inverse
direction. We use Newscrawl 2020 as monolin-
gual resource for both directions. The monolingual
French data contains approximately 10M sentences
while the German data is much larger. We ran-
domly extract 10M sentences from the German
monolingual data as the pseudo corpus. The back-
translated corpora are added to the real parallel
corpora to create a larger datastore for retrieval.

3.5 Evaluation
3.5.1 Priming and Back-translation
We mainly evaluate our method on the De→Fr di-
rection. Results on both Newstest2019 and 2020
are in Table 8. Our priming model is able to im-
prove for 0.4 BLEU on newstest2019. However,
the same improvement is not observed for new-
stest2020. As indicated in Pham et al. (2020),
monolingual back-translated data could be directly

applied during inference without any additional
training. We thus search similar sentences on both
original and synthetic data for the test sets. As
shown in Table 8 (+ bt inference), searching on
synthetic data directly improves our results by 0.6
BLEU point on newstest2019.

Model newstest2019 newstest2020
baseline 35.7 32.8

+ bt 37.5 33.7
+ tag 37.5 34.3

priming 34.6 33.2
+ bt inference 35.2 33.2

priming + bt 37.4 33.9
+ tag 36.9 34.1
+ min sim 0.85 37.5 34.3

Table 8: BLEU scores of models for De→Fr direction.
Our best submitted system obtained a BLEU score of
28.1 on newstest2021.

Even though priming model could benefit from
back-translated data at inference time, training with
synthetic data has proven to be effective in many
previous works (Sennrich et al., 2016a; Edunov
et al., 2018; Ng et al., 2019). Therefore, we also ex-
periment by adding back-translated data to the orig-
inal data and retrain a translation model. Results
(+ bt) demonstrate that training with synthetic data
clearly improves the performance on both test sets.
Caswell et al. (2019) reports that using explicit tags
to distinguish original from back-translated data
provides further gains; however in our experiments,
tagging BT data was not very helpful.

Our model using priming with synthetic data
was not able to surpass the baseline model trained
with additional back-translated data. One possible
reason is that similar sentences retrieved with low
similarity scores may be too noisy, and therefore
decrease the overall performance. Filtering out
noisy similar sentences (with a threshold of 0.85)17

help to further improve the performance and makes
it our best system (+ min sim 0.85). This setting
was used for our primary submission for both di-
rections.

We directly apply the best settings found for
De→Fr to the reverse direction (Fr→De) and report
the corresponding results in Table 9.

17Threstholding the minimum similarity score is the result
of a trade-off: using a high threshold selects good sentences
for priming, at the risk of leaving many examples without
any priming data, while a low threshold retrieves more ex-
amples, many of which are of poor quality. Our preliminary
experiments showed that that 0.85 was a reasonable value.
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Model newstest2019 newstest2020
baseline 27.7 27.2

+ bt 32.4 32.9
+ tag 30.9 31.0

priming + bt 29.8 29.3
+ tag 29.5 29.6
+ min sim 0.85 30.4 30.1

Table 9: BLEU scores of models for Fr→De. Our best
submitted system obtained a BLEU score of 37.2 on
newstest2021.

3.5.2 Priming and domain adaptation

In this section, we try to assess the relationship
between domain adaptation (DA) and priming, and
question our initial assumption that priming per-
forms some kind of unsupervised adaptation. Our
test set for this part contains 1000 lines extracted
from the European Central Bank (ECB) corpus,
also available from OPUS website.

As an alternative to priming, we first consider a
simple unsupervised domain adaptation technique,
where we retrieve k = 10 most similar sentences
for each test sample, yielding a corpus of 10×k sen-
tences that we use to fine-tune for two epochs the
baseline systems. Again, filtering based on a simi-
larity scores helps to accumulate a smaller number
of sentences that are closer to the test domain.

We then try to combine priming and fine-tuning
in the following manner: for each test sentence, we
use the k nearest examples (f1, e1) . . . (fk, ek) to
derive k domain-adaptation examples with priming
as follows: the first primes f2 with f1, the second
f3 with f2, and so on, until finally f1 is primed with
fk (the target part is built accordingly). This corpus
is used for fine-tuning, and decoding proceeds as
before (with f1 as prime).

These approaches (priming, unsupervised DA,
and priming+DA) are compared in Table 10. We
first see that using back-translated data is detrimen-
tal to the BLEU score of the baseline system, an
effect that might be due to the difference between
News texts and ECB domain. We also see that
unsupervised adaptation with highly similar sen-
tences yields a small gain. Priming alone achieves
the same result as the baseline, but can also benefit
somewhat from unsupervised DA. Our best results
are obtained when we mix the two strategies, only
keeping highly similar sentences.

Model ECB
baseline 26.7
baseline + bt + tag 25.9

+ FT min sim 0.7 26.3
+ FT min sim 0.8 26.1

priming + bt + tag 25.9
+ FT 25.6
+ FT min sim 0.7 26.3
+ FT min sim 0.8 26.0

priming + bt + tag + min sim 0.7 26.3
+ FT min sim 0.7 26.5

priming + bt + tag + min sim 0.8 26.3
+ FT min sim 0.8 26.3

Table 10: BLEU scores for De→Fr on ECB.

3.6 Conclusion
In this section, we have reported our attempt to per-
form domain adaptation through priming, a tech-
nique which uses sentences that are similar to the
test instances to provide additional context in train-
ing and decoding. In our experiments with the
translation of News between French and German,
we had little success with this technique, even when
using massive amounts of back-translated data to
search for relevant primes. This suggests that prim-
ing is not so useful for “open” domains such as
News (Pham et al., 2020), and should better be used
for standardized types of texts that occur in more
specialized domains. We also tried to compare un-
supervised DA and priming, showing that, in our
context, the former was yielding better results that
than the latter and also proposed a promising way
to combine these two complementary techniques.

4 Conclusion and outlook

In this paper, we have described the systems pre-
pared for this year’s participation to WMT shared
tasks. For the biomedical track, most of our ef-
forts have been invested in the development of high
resource systems, trying to take the structure of
medical abstracts into account. In the News task,
we have explored ways to perform unsupervised
domain adaptation using retrieval based techniques
and back-translated data.
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Abstract

This paper introduces WeChat AI’s participa-
tion in WMT 2021 shared news translation
task on English→Chinese, English→Japanese,
Japanese→English and English→German.
Our systems are based on the Transformer
(Vaswani et al., 2017) with several novel and
effective variants. In our experiments, we
employ data filtering, large-scale synthetic
data generation (i.e., back-translation, knowl-
edge distillation, forward-translation, iterative
in-domain knowledge transfer), advanced fine-
tuning approaches, and boosted Self-BLEU
based model ensemble. Our constrained
systems achieve 36.9, 46.9, 27.8 and 31.3 case-
sensitive BLEU scores on English→Chinese,
English→Japanese, Japanese→English
and English→German, respectively.
The BLEU scores of English→Chinese,
English→Japanese and Japanese→English
are the highest among all submissions, and
that of English→German is the highest among
all constrained submissions.

1 Introduction

We participate in the WMT 2021 shared
news translation task in three language pairs
and four language directions, English→Chinese,
English↔Japanese, and English→German. In this
year’s translation tasks, we mainly improve the fi-
nal ensemble model’s performance by increasing
the diversity of both the model architecture and the
synthetic data, as well as optimizing the ensemble
searching algorithm.

Diversity is a metric we are particularly inter-
ested in this year. To quantify the diversity among
different models, we compute Self-BLEU (Zhu
et al., 2018) from the translations of the models on
the valid set. To be precise, we use the translation
of one model as the hypothesis and the translations
of other models as references to calculate an aver-

∗ Equal contribution.

age BLEU score. A higher Self-BLEU means this
model is less diverse.

For model architectures (Vaswani et al., 2017;
Meng and Zhang, 2019; Yan et al., 2020), we
exploit several novel Transformer variants to
strengthen model performance and diversity. Be-
sides the Pre-Norm Transformer, the Post-Norm
Transformer is also used as one of our baselines
this year. We adopt some novel initialization meth-
ods (Huang et al., 2020) to alleviate the gradi-
ent vanishing problem of the Post-Norm Trans-
former. We combine the Average Attention Trans-
former (AAN) (Zhang et al., 2018) and Multi-Head-
Attention (Vaswani et al., 2017) to derive a series of
effective and diverse model variants. Furthermore,
Talking-Heads Attention (Shazeer et al., 2020) is
introduced to the Transformer and shows a signifi-
cant diversity from all the other variants.

For the synthetic data generation, we exploit the
large-scale back-translation (Sennrich et al., 2016a)
method to leverage the target-side monolingual
data and the sequence-level knowledge distillation
(Kim and Rush, 2016) to leverage the source-side
of bilingual data. To use the source-side monolin-
gual data, we explore forward-translation by en-
semble models to get general domain synthetic
data. We also use iterative in-domain knowledge
transfer (Meng et al., 2020) to generate in-domain
data. Furthermore, several data augmentation meth-
ods are applied to improve the model robustness,
including different token-level noise and dynamic
top-p sampling.

For training strategies, we mainly focus on
scheduled sampling based on decoding steps (Liu
et al., 2021b), the confidence-aware scheduled sam-
pling (Mihaylova and Martins, 2019; Duckworth
et al., 2019; Liu et al., 2021a), the target denoising
(Meng et al., 2020) method and the Graduated La-
bel Smoothing (Wang et al., 2020) for in-domain
finetuning.

For model ensemble, we select high-potential
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candidate models based on two indicators, namely
model performance (BLEU scores on valid set)
and model diversity (Self-BLEU scores among all
other models). Furthermore, we propose a search
algorithm based on the Self-BLEU scores between
the candidate models with selected models. We
observed that this novel method can achieve the
same BLEU score as the brute force search while
saving approximately 95% of search time.

This paper is structured as follows: Sec. 2 de-
scribes our novel model architectures. We present
the details of our systems and training strategies in
Sec. 3. Experimental settings and results are shown
in Sec. 4. We conduct analytical experiments in
Sec. 5. Finally, we conclude our work in Sec. 6.

2 Model Architectures

In this section, we describe the model architec-
tures used in the four translation directions, includ-
ing several different variants for the Transformer
(Vaswani et al., 2017) .

2.1 Model Configurations

Deeper and wider architectures are used this year
since they show strong capacity as the number of
parameters increases. In our experiments, we use
multiple model configurations with 20/25-layer en-
coders for deeper models and the hidden size is set
to 1024 for all models. Compared to our WMT20
models (Meng et al., 2020), we also increase the
decoder depth from 6 to 8 and 10 as we find that
gives a certain improvement, but deeper depths give
limited performance gains. For the wider models,
we adopt 8/12/15 encoder layers and 1024/2048
for hidden size. The filter sizes of models are set
from 8192 to 15000. Note that all the above model
configurations are applied to the following variant
models.

2.2 Transformer with Different Layer-Norm

The Transformer (Vaswani et al., 2017) with Pre-
Norm (Xiong et al., 2020) is a widely used architec-
ture in machine translation. It is also our baseline
model as its performance and training stability is
better than the Post-Norm counterpart.

Recent studies (Liu et al., 2020; Huang et al.,
2020) show that the unstable training problem of
Post-Norm Transformer can be mitigated by mod-
ifying initialization of the network and the suc-
cessfully converged Post-Norm models generally
outperform Pre-Norm counterparts. We adopt these

initialization methods (Huang et al., 2020) to our
training flows to stabilize the training of deep Post-
Norm Transformer. Our experiments have shown
that the Post-Norm model has a good diversity com-
pared to the Pre-Norm Model and slightly outper-
form the Pre-Norm Model. We will further analyze
the model diversity of different variants in Sec. 5.1.

2.3 Average Attention Transformer

We also use Average Attention Transformer (AAN)
(Zhang et al., 2018) as we used last year to intro-
duce more model diversity. In the Average Atten-
tion Transformer, a fast and straightforward aver-
age attention is utilized to replace the self-attention
module in the decoder with almost no performance
loss. The context representation gi for each input
embedding is as follows:

gi = FFN(
1

i

i∑

k=1

yk) (1)

where yk is the input embedding for step k and
i is the current time step. FFN(·) denotes the
position-wise feed-forward network proposed by
Vaswani et al. (2017).

In our preliminary experiments, we observe that
the Self-BLEU (Zhu et al., 2018) scores between
AAN and Transformer are lower than the scores
between the Transformer with different configura-
tions.

2.4 Weighted Attention Transformer

We further explore three weighting strategies to im-
prove the modeling of history information from pre-
vious positions in AAN. Compared to the average
weight across all positions, we try three methods
including decreasing weights with position increas-
ing, learnable weights and exponential weights. In
our experiments, We observe exponential weights
perform best among all these strategies. The expo-
nential weights context representation gi is calcu-
lated as follows:

ci = (1− α)yi + α · ci−1 (2)

gi = FFN(ci) (3)

where α is a tuned parameter. In our previous
experiments, we test different alpha, including 0.3,
0.5, and 0.7, on the valid set and we set the alpha
to 0.7 in all subsequent experiments as it slightly
outperform the others.
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Figure 1: Mixed-AAN Transformers.

2.5 Mixed-AAN Transformers
Our preliminary experiments show that the decoder
structure is strongly related to the model diversity
in the Transformer. Therefore, we propose to stack
different types of decoder layers to derive differ-
ent Transformer variants. As shown in Figure 1,
we mainly adopt three Mixed-AAN Transformer
architectures: a) Alternately mixing the standard
self-attention layer and the average attention layer,
b) Continuously stacking several average attention
layers on the bottom layers and then stacking self-
attention layers for the rest layers. c) Stacking both
the self-attention layer and average attention layer
at each layer and using their average sum to form
the final hidden states (named as ‘dual attention
layer’).

In the experiments, Mixed-AAN not only per-
forms better but also shows strong diversity com-
pared to the vanilla Transformer. With four Mixed-
AAN models, we reach a better ensemble result
than the result with ten models which consist of
deeper and wider standard Transformer. We will
further analyze the effects of different architectures
from performance, diversity, and model ensemble
in Sec. 5.1

2.6 Talking-Heads Attention
In Multi-Head Attention, the different attention
heads perform separate computations, which are
then summed at the end. Talking-Heads Attention
(Shazeer et al., 2020) is a new variation that inserts
two additional learned linear projection weights,
Wl and Ww, to transform the attention-logits and
the attention scores respectively, moving informa-
tion across attention heads. The calculation for-
mula is as follows:

Attention(Q,K, V ) = softmax(QKT
√
dk
Wl)WwV (4)

We adopt this method in both encoders and de-
coders to improve information interaction between
attention heads. This approach shows the most re-
markable diversity among all the above variants
with only a slight performance loss.

3 System Overview

In this section, we describe our system used in
the WMT 2021 news shared task. We depicts the
overview of our NMT system in Figure 2, which
can be divided into four parts, namely data filtering,
large-scale synthetic data generation, in-domain
finetuning, and ensemble. The synthetic data gener-
ation part further includes the generation of general
domain and in-domain data. Next, we proceed to
illustrate these four parts.

3.1 Data Filtering
We filter the bilingual training corpus with the fol-
lowing rules for most language pairs:

• Normalize punctuation with Moses scripts ex-
cept Japanese data.

• Filter out the sentences longer than 100 words
or exceed 40 characters in a single word.

• Filter out the duplicated sentence pairs.

• The word ratio between the source and the
target words must not exceed 1:4 or 4:1.

• Filter out the sentences where the fast-text
result does not match the origin language.

• Filter out the sentences that have invalid Uni-
code characters.

Besides these rules, we filter out sentence pairs
in which Chinese sentence has English characters
in En-Zh parallel data. The monolingual corpus
is also filtered with the n-gram language model
trained by the bilingual training data for each lan-
guage. All the above rules are applied to synthetic
parallel data.

3.2 General Domain Synthetic Data
Generation

In this section, we describe our techniques for
constructing general domain synthetic data. The
general domain synthetic data is generated via
large-scale back-translation, forward-translation
and knowledge distillation to enhance the mod-
els’ performance for all domains. Then, we exploit
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Figure 2: Architecture of our NMT system.

the iterative in-domain knowledge transfer (Meng
et al., 2020) in Sec 3.3, which transfers in-domain
knowledge to the vast source-side monolingual cor-
pus, and builds our in-domain synthetic data. In
the following sections, we elaborate the above tech-
niques in detail.

3.2.1 Large-scale Back-Translation

Back-translation is the most commonly used data
augmentation technique to incorporate the target
side monolingual data into NMT (Hoang et al.,
2018). Previous work (Edunov et al., 2018) has
shown that different methods of generating pseudo
corpus has a different influence on translation qual-
ity. Following these works, we attempt several
generating strategies as follows:

• Beam Search: Generate target translation by
beam search with beam size 5.

• Sampling Top-K: Select a word randomly
from top-K (K is set to 10) words at each
decoding step.

• Dynamic Sampling Top-p: Selected a word
at each decoding step from the smallest set
whose cumulative probability mass exceeds p
and the p is dynamically changing from 0.9 to
0.95 during data generation.

Note that we also use Tagged Back-Translation
(Caswell et al., 2019) in En→De and Right-to-Left
(R2L) back-translation in En↔Ja, as we achieve a
better BLEU score after using these methods.

3.2.2 Knowledge Distillation
Knowledge Distillation (KD) has proven to be
a powerful technique for NMT (Kim and Rush,
2016; Wang et al., 2021) to transfer knowledge
from the teacher model to student models. In par-
ticular, we first use the teacher models to gener-
ate synthetic corpus in the forward direction (i.e.,
En→Zh). Then, we use the generated corpus to
train our student models.

Notably, Right-to-Left (R2L) knowledge distil-
lation is a good complement to the Left-to-Right
(L2R) way and can further improve model perfor-
mance.
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3.2.3 Forward-Translation
Using monolingual data from the source language
to further enhance the performance and robustness
of the model is also an effective approach. We
use the ensemble model to generate high quality
forward-translation data and obtain a stable im-
provement in En→Zh and En→De directions.

3.3 Iterative In-domain Knowledge Transfer
Since in-domain knowledge transfer (Meng et al.,
2020) delivered a massive performance boost last
year, we still use this technique in En↔Ja and
En→De this year. It is not applied to En→Zh be-
cause no significant improvement is observed. We
guess the reason is that the in-domain finetuning
in the En→Zh direction does not bring a signifi-
cant improvement compared to the other directions.
And in-domain knowledge transfer is aiming at en-
hancing the effect of finetuning, so this does not
have a noticeable effect in the English-Chinese di-
rection.

We first use normal finetuning in Sec. 3.5 to
equip our models with in-domain knowledge. Then,
we ensemble these models to translate the source
monolingual data into the target language. We use
4 models with different architectures and training
data as our ensemble model. Next, we combine
the source language sentences with the generated
in-domain target language sentences as pseudo-
parallel corpus. Afterwards, we retrain our models
with both in-domain pseudo-parallel data and gen-
eral domain synthetic data.

3.4 Data Augmentation
Once the pseudo-data is constructed, we further
obtain diverse data by adding different noise. Com-
pared to previous years’ WMT competitions, we
implement a multi-level static noise approach for
our pseudo corpus:

• Token-level: Noise on every single subword
after byte pair encoding.

• Word-level: Noise on every single word be-
fore byte pair encoding.

• Span-level: Noise on a continuous sequence
of tokens before byte pair encoding.

The different granularities of noise make the data
more diverse. The noise types are random replace-
ment, random deletion and random permutation.
We apply the three noise types in a parallel way for

each sentence. The probability of enabling each of
the three operations is 0.2.

Furthermore, an on-the-fly noise approach is ap-
plied to the synthetic data. By using on-the-fly
noise, the model is trained with different noises
in every epoch rather than all the same along this
training stage.

3.5 In-domain Finetuning
A domain mismatch exists between the obtained
system trained with large-scale general domain
data and the target test set. To alleviate this mis-
match, we finetune these convergent models on
small scale in-domain data, which is widely used
for domain adaption (Luong and Manning, 2015;
Li et al., 2019). We take the previous test sets
as in-domain data and extract documents that are
originally created in the source language for each
translation direction (Sun et al., 2019). We also
explore several advanced finetuning approaches to
strengthen the effects of domain adaption and ease
the exposure bias issue, which is more serious un-
der domain shift.

Target Denoising (Meng et al., 2020). In the
training stage, the model never sees its own er-
rors. Thus the model trained with teacher-forcing
is prune to accumulated errors in testing (Ranzato
et al., 2016). To mitigate this training-generation
discrepancy, we add noisy perturbations into de-
coder inputs when finetuning. Thus the model be-
comes more robust to prediction errors by target
denoising. Specifically, the finetuning data gener-
ator chooses 30% of sentence pairs to add noise,
and keeps the remaining 70% of sentence pairs un-
changed. For a chosen pair, we keep the source
sentence unchanged, and replace the i-th token of
the target sentence with (1) a random token of the
current target sentence 15% of the time (2) the
unchanged i-th token 85% of the time.

Graduated Label-smoothing (Wang et al.,
2020). Finetuning on a small scale in-domain
data can easily lead to the over-fitting phenomenon
which is harmful to the model ensemble. It gen-
erally appears as the model over confidently out-
putting similar words. To further preventing over-
fitting of in-domain finetuning, we apply the Grad-
uated Label-smoothing approach, which assigns a
higher smoothing penalty for high-confidence pre-
dictions, during in-domain finetuning. Concretely,
following the paper’s setting, we set the smoothing
penalty to 0.3 for tokens with confidence above 0.7,
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zero for tokens with confidence below 0.3, and 0.1
for the remaining tokens.

Confidence-Aware Scheduled Sampling.
Vanilla scheduled sampling (Zhang et al., 2019)
simulates the inference scene by randomly
replacing golden target input tokens with predicted
ones during training. However, its critical schedule
strategies are only based on training steps, ignoring
the real-time model competence. To address this
issue, we propose confidence-aware scheduled
sampling (Liu et al., 2021a), which quantifies
real-time model competence by the confidence of
model predictions. At the t-th target token position,
we calculate the model confidence conf(t) as
follow:

conf(t) = P (yt|y<t,X, θ) (5)

Next, we design fine-grained schedule strategies
based on the model competence. The fine-grained
schedule strategy is conducted at all decoding steps
simultaneously:

yt−1 =

{
yt−1 if conf(t) ≤ tgolden
ŷt−1 else

(6)

where tgolden is a threshold to measure whether
conf(t) is high enough (e.g., 0.9) to sample the
predicted token ŷt−1.

We further sample more noisy tokens at high-
confidence token positions, which prevents sched-
uled sampling from degenerating into the teacher
forcing mode.

yt−1 =





yt−1 if conf(t) ≤ tgolden
ŷt−1 if tgolden < conf(t) ≤ trand
yrand if conf(t) > trand

(7)
where trand is a threshold to measure whether
conf(t) is high enough (e.g., 0.95) to sample the
random target token ŷrand.

Scheduled Sampling Based on Decoding Steps.
We propose scheduled sampling methods based on
decoding steps from the perspective of simulating
the distribution of real translation errors (Liu et al.,
2021b). Namely, we gradually increase the selec-
tion probability of predicted tokens with the growth
of the index of decoded tokens. At the t-th decod-
ing step, the probability of sampling golden tokens
g(t) is calculated as follow:

Algorithm 1 Boosted Self-BLEU based Ensemble
Input:

List of candidate models M = {m0, ..., mn}
Valid set BLEU for each model B = {bi, ..., bn}
Average Self-BLEU for each model S = {si, ...,
sn}
The number of models n
The number of ensemble models c

Output: Model combinations C
1: for i← 1 to n do
2: scorei = (bi−min(B))·weight+(max(S)−si)

3: weight = (max(S)−min(S))
(max(B)−min(B))

4: end for
5: Add the highest score model to candidates list

C = { mtop }
6: while |C| < c do
7: index = argmin

i

1
|M−C|

∑
i∈M−C,j∈C

BLEU(i, j)

8: Add mindex to candidate list C
9: end while

10: return C

• Linear Decay: g(t) = max(ε, kt+ b), where
ε is the minimum value, and k < 0 and b is
respectively the slope and offset of the decay.

• Exponential Decay: g(t) = kt, where k < 1
is the radix to adjust the decay.

• Inverse Sigmoid Decay: g(t) = k

k+e
t
k

, where

e is the mathematical constant, and k ≥ 1 is a
hyperparameter to adjust the decay.

Following our preliminary conclusions (Liu et al.,
2021b), we choose the exponential decay and set k
to 0.99 by default.

3.6 Boosted Self-BLEU based Ensemble
(BSBE)

After we get numerous finetuned models, we need
to search for the best combination for ensemble
model. Ordinary random or greedy search is over-
simplified to search for a good model combination
and enumerate over all combinations of candidate
models is inefficient. The Self-BLEU based prun-
ing strategy (Meng et al., 2020) we proposed in last
year’s competition achieve definite improvements
over the ordinary ensemble.

However, diversity is not the only feature we
need to consider but the performance in the valid
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set is also an important metric. Therefore, we com-
bine Self-BLEU and valid set BLEU together to de-
rive a Boosted Self-BLEU-based Ensemble (BSBE)
algorithm. Then, we apply a greedy search strat-
egy in the top N ranked models to find the best
ensemble models.

See algorithm 1 for the pseudo-code. The algo-
rithm takes as input a list of n strong single models
M, BLEU scores on valid set for each model B,
average Self-BLEU scores for each model S, the
number of models n and the number of ensemble
models c. The algorithm return a list C consists
of selected models. We calculate the weighted
score for each model as line 2 in the pseudo-code.
The weight calculated in line 3 is a factor to bal-
ance the scale of Self-BLUE and valid set BLEU.
Then the list C initially contains the model mtop

has a highest weighted score. Next, we iteratively
re-compute the average Self-BLEU between the
remaining models in |M − C| and selected mod-
els in C, based on which we select the model has
minimum Self-BLEU score into C.

In our experiments, we save around 95% search-
ing time by using this novel method to achieve
the same BLEU score of the Brute Force search.
We will further analyze the effect of Boosted Self-
BLEU based Ensemble in section 5.2.

4 Experiments And Results

4.1 Settings

The implementation of our models is based on
Fairseq1 for En→Zh and EN→De, and OpenNMT2

for En↔Ja. All the single models are carried out
on 8 NVIDIA V100 GPUs, each of which has 32
GB memory. We use the Adam optimizer with β1
= 0.9, β2 = 0.998. The gradient accumulation is
used due to the high GPU memory consumption.
The batch size is set to 8192 tokens per GPU and
we set the “update-freq” parameter in Fairseq to 2.
The learning rate is set to 0.0005 for Fairseq and
2.0 for OpenNMT. We use warmup step = 4000.
We calculate sacreBLEU3 score for all experiments
which is officially recommended.

4.2 Dataset

The statistics of all training data is shown in Table
1. For each language pair, the bilingual data is
the combination of all parallel data released by

1https://github.com/pytorch/fairseq
2https://github.com/OpenNMT/OpenNMT-py
3https://github.com/mjpost/sacrebleu

En→Zh En→De En↔Ja
Bilingual Data 30.7M 74.8M 12.3M
Source Mono Data 200.5M 332.8M 210.8M
Target Mono Data 405.2M 237.9M 354.7M

Table 1: Statistics of all training data.

WMT21. For monolingual data, we select data
from News Crawl, Common Crawl and Extended
Common Crawl, it is then divided into several parts,
each containing 50M sentences.

For general domain synthetic data, we use all
the target monolingual data to generate back-
translation data and a part of source monolingual
data (about 80 to 100 million for different lan-
guages) to get forward translation data. For the
in-domain pseudo-parallel data, we use the entire
source monolingual data and bilingual data. All the
test and valid data from previous years are used as
in-domain data.

We use the methods described in Sec. 3.1 to filter
bilingual and monolingual data.

4.3 Pre-processing and Post-processing
English and German sentences are segmented by
Moses4, while Japanese use Mecab5 for segmen-
tation. We segment the Chinese sentences with
an in-house word segmentation tool. We apply
punctuation normalization in English, German and
Chinese data. Truecasing is applied to English↔
Japanese and English→German. We use byte pair
encoding BPE (Sennrich et al., 2016b) with 32K
operations for all the languages.

For the post-processing, we apply de-truecaseing
and de-tokenizing on the English and German trans-
lations with the scripts provided in Moses. For the
Chinese translations, we transpose the punctuations
to the Chinese format.

4.4 English→Chinese
The results of En→Zh on newstest2020 are shown
in Table 2. For the En→Zh task, filtering out part
of sentence pairs containing English characters in
Chinese sentences shows a significant improve-
ment in the valid set. After applying large-scale
Back-Translation, we obtain +2.0 BLEU score on
the baseline. We further gain +0.62 BLEU score
after applying knowledge distillation and +0.24
BLEU from Forward-Translation. Surprisingly, we
observe that adding more BT data from different

4http://www.statmt.org/moses/
5https://github.com/taku910/mecab
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SYSTEM En→Zh En→Ja Ja→En En→De
Baseline 44.53 35.78 19.71 33.28
+ Back Translation 46.52 36.12 20.82 35.28
+ Knowledge Distillation 47.14 36.66 21.63 36.38
+ Forward Translation 47.38 – – 36.78
+ Mix BT 48.17 37.22 22.11 –

+ Finetune 49.81 42.54 25.91 39.21
+ Advanced Finetune 50.20 – – 39.56

+ 1st In-domain Knowledge Transfer – 40.32 24.49 39.23
+ Finetune – 43.66 26.24 –
+ Advanced Finetune – – – 39.87

+ 2nd In-domain Knowledge Transfer – 43.69 25.89 –
+ Finetune – 44.23 26.27 –
+ Advanced Finetune – 44.42 26.38 –

+ Normal Ensemble 50.57 45.11 28.01 40.42
+ BSBE 50.94 ? 45.35 ? 28.24 ? 40.59
+ Post-Process – – – 41.88 ?

Table 2: Case-sensitive BLEU scores (%) on the four directions newstest2020, where ‘?’ denotes the submitted
system. Mix BT means we use multiple parts of Back Translation data with different generation strategies. The
Advanced Finetune methods outperform the normal Finetune and we report the best results in single model. BSBE
outperforms Normal Ensemble in all four directions.

shards with different generation strategy can further
boost the model performance to 48.17. The fine-
tuned model achieves a 49.81 BLEU score, which
demonstrates that the domain of the training corpus
is apart from the test set domain. The advanced
finetuning further brings about 0.41 BLEU score
gains compared to normal finetune. Our best single
model achieves a 50.22 BLEU score.

In preliminary experiments, we select the best
performing models as our ensemble combinations
obtaining +0.4 BLEU score. On top of that,
even after searching hundreds of models, no bet-
ter results are obtained. With BSBE strategies in
Sec. 3.6, a better model combination with less
number of models are quickly searched, and we
finally achieve 50.94 BLEU score. Our WMT2021
English→Chinese submission achieves a Sacre-
BLEU score of 36.9, which is the highest among
all submissions and chrF score of 0.337.

4.5 English→Japanese

The results of En→Ja on newstest2020 are shown
in Table 2. For the En→Ja task, we filter out the
sentence pairs containing Japanese characters in the
English side and vice versa. The Back-Translation
and Knowledge Distillation improve the baseline
from 35.78 to 36.66. Adding more BT data fur-
ther brings in 0.56 improvements. The improve-
ment by finetuning is much larger than other di-
rections, which is 5.32 BLEU. We speculate that

this is because there is less bilingual data for En-
glish and Japanese than for other languages, and
the test results for Japanese are char level BLEU so
this direction is more influenced by the in-domain
finetuning. Two In-domain knowledge transfers
improve BLEU score from 37.22 to 43.69. Nor-
mal finetune still provides 0.54 improvements after
in-domain knowledge transfer. Then, we apply
advanced finetuning methods to further get 0.19
BLEU improvements. Our final ensemble result
outperforms baseline 9.57 BLEU.

4.6 Japanese→English

The Ja→En task follows the same training proce-
dure as En→Ja. From Table 2, we can observe
that Back-Translation can provide 1.11 BLEU im-
provements from baseline. Knowledge Distillation
and more BT data can improve the BLEU score
from 20.82 to 22.11. The finetuning improvement
is 3.8 which is slightly less than the En→Ja direc-
tion but still larger than En→Zh and En→De. We
also apply two-turn in-domain knowledge transfer
and further boost the BLEU score to 25.89. Af-
ter normal finetuning, the BLEU score achieves
26.27. The advanced finetuning methods provide
a slight improvement on Ja→En. After ensemble,
we achieve 28.24 BLEU in newstest2020.
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MODEL EN-ZH EN-JA JA-EN EN-DE
Transformer 49.92 44.27 26.12 39.76
Transformer with Post-Norm 49.97 - - -
Average Attention Transformer 49.91 44.38 26.31 39.62
Weighted Attention Transformer 49.99 - - 39.74
Average First Transformer ∗ 50.14 44.42 26.37 39.87
Average Bottom Transformer ∗ 50.10 44.36 26.38 39.77
Dual Attention Transformer ∗ 50.20 - - 39.87
Talking-Heads Attention 49.89 - - 39.70

Table 3: Case-sensitive BLEU scores (%) on the four translation directions newstest2020 for different architecture.
The model with ‘∗’ is the Mixed-AAN variants. The bolded scores correspond to the best single model scores in
Table 2.

MODEL Transformer Post-Norm AAN Weighted Avg-First Self-First Dual TH
Transformer 100 78.12 76.02 75.08 74.47 74.02 73.51 72.63
Post-Norm 78.12 100 76.12 75.10 74.33 74.05 73.45 72.59
AAN 76.02 76.12 100 79.24 74.81 74.97 73.43 72.13
Weighted 75.08 75.10 79.24 100 74.72 74.93 73.55 72.21
Avg-First ∗ 74.46 74.33 74.81 74.72 100 75.25 74.28 72.25
Avg-Bot ∗ 74.02 74.05 74.97 74.93 75.25 100 74.21 72.33
Dual ∗ 73.51 73.45 73.43 73.55 74.28 74.21 100 72.23
TH 72.63 72.59 72.13 72.21 72.25 72.33 72.23 100

Table 4: Self-BLEU scores (%) between different architectures. For simplicity, we refer to these models as Trans-
former (Pre-Norm Transformer), Post-Norm (Post-Norm Transformer), AAN (Average Attention Transformer),
Weighted (Weighted Attention Transformer), Avg-First (Average First Transfromer), Avg-Bot (Average Bottom
Transformer), Dual (Dual Attention Transformer), TH (Talking-Heads Attention). The model with ‘∗’ is the Mix-
AAN variants.

4.7 English→German

The results of En→De on newstest2020 are shown
in Table 2. After adding back-translation, we im-
prove the BLEU score from 33.28 to 35.28. Knowl-
edge Distillation further boosts the BLEU score to
36.58. The finetuning further brings in 2.63 im-
provements. After injecting the in-domain knowl-
edge into the monolingual corpus, we get another
0.31 BLEU gain. We apply a post-processing pro-
cedure on En→De. Specifically, we normalize the
English quotations to German ones in German hy-
potheses, which brings in 1.3 BLEU improvements.

5 Analysis

To verify the effectiveness of our approach, we
conduct analytical experiments on model variants,
finetune methods, and ensemble strategies in this
section.

5.1 Effects of Model Architecture

We conduct several experiments to validate the ef-
fectiveness of Transformer (Vaswani et al., 2017)
variants we used and list results in Table 3. We also

investigate the diversity of different variants and
the impacts on the model ensemble. The results is
listed in Table 4 and Table 5. Here we take En→Zh
models as examples to conduct the diversity and en-
semble experiments. The results in other directions
show similar trends.

Performance. As shown in Table 3, AAN per-
forms slightly worse than other variants in En→Zh
but Mixed-AAN variants outperform normal Trans-
former. Weighted Attention Transformer provides
noticeable improvement compare to AAN and
sometimes better than vanilla Transformer.

Diversity. The Self-BLEU scores in Table 4
demonstrate the difference between two models,
more different models generally have lower scores.
As we can see, AAN and all the variants with AAN
have an absolutely lower Self-BLEU score with the
Transformer. The Talking-Heads Attention has the
minimum scores among all the variants.

Ensemble. In our preliminary experiments, we
observe that more diverse models can significantly
help the model ensemble. The results are listed
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MODELS newstest2020
Deeper & Wider Transformer 50.31
Weighted & Mixed-AAN 50.44
Ensemble with all models above 50.62

Table 5: Ensemble results with different architectures.
The first row is the ensemble results with 10 deeper and
wider models searched from dozens of ones. The sec-
ond row is the ensemble results with only 4 Weighted
Attention Transformer and Mixed-AAN models.

in Table 5. We get a more robust ensemble model
with only four models using our novel variants than
searching from dozens of Deeper and Wider Trans-
former models. Even these four models are trained
with the same training data. After we combine the
four models with Deeper and Wider Transformer,
we can further get a significant improvement.

Take En→Zh as an examble, our final submis-
sion consist of 1 Average First Transformer, 1 Av-
erage Bottom Transformer, 1 Dual Attention Trans-
former, 1 Weighted Attention Transformer and 1
Transformer with Post-Norm.

5.2 Effects of Boosted Self-BLEU based
Ensemble

To verify the superiority of our Boosted Self-BLEU
based Ensemble (BSBE) method, we randomly se-
lect 10 models with different architecture and train-
ing data. For our submitted system, we search
from over 500 models. We use a greedy search
algorithm (Deng et al., 2018) as our baseline. The
greedy search greedily selects the best performance
model into candidate ensemble models. If the se-
lected model provides a positive improvement, we
keep it in the candidates. Otherwise, it is added to
a temporary model list and still has a weak chance
to be reused in the future. One model from the
temporary list can be reused once, after which it
is withdrawn definitely. We compare the results of
greedy search, BSBE and Brute Force and list the
ensemble model BLEU and the number of searches
in Table 6. Note that n is the number of models,
which is 10 here. For BSBE, we need to get the
translation result of every model to calculate the
Self-BLEU. After that, we only need to perform
the inference process once.

5.3 Effects of Advanced Finetuning

In this section, we describe our experiments on
advanced finetuning in the four translation direc-
tions. As shown in Table 7, all the advanced fine-

ALGORITHM BLEU Number of Searches
Greedy 50.19 2n
Brute Force 50.44

∑n
i=1C

i
n

BSBE 50.44 n+ 1

Table 6: Results of different search algorithm. n is
the total number of models used for the search. The
number of searches is number that the methods need
to translate the valid set. Our BSBE achieves compara-
ble BLEU score as Brute Force search and significantly
reduces the searching time.

tuning methods outperform normal finetuning. For
En→Zh, Scheldule Sampling Based on Decod-
ing Steps with Graduated Label Smoothing im-
proves the model performance from 49.81 to 50.20.
For En↔Ja, Target Denoising with Graduated La-
bel Smoothing provides the highest BLEU gain,
which are 0.19 and 0.11. For the En→De direc-
tion, Confidence-Aware Scheldule Sampling with
Graduated Label Smoothing performs the best, im-
proving from 39.21 to 39.42. These findings are
in line with the conclusion of Wang and Sennrich
(2020) that links exposure bias with domain shift.

6 Conclusion

We investigate various novel Transformer based
architectures to build robust systems. Our systems
are also built on several popular data augmentation
methods such as back-translation, knowledge dis-
tillation and iterative in-domain knowledge trans-
fer. We enhance our system with advanced fine-
tuning approaches, i.e., target denoising, graduated
label smoothing and confidence-aware scheduled
sampling. A boosted Self-BLEU based model en-
semble is also employed which plays a key role
in our systems. Our constrained systems achieve
36.9, 46.9, 27.8 and 31.3 case-sensitive BLEU
scores on English→Chinese, English→Japanese,
Japanese→English and English→German, respec-
tively. The BLEU scores of English→Chinese,
English→Japanese and Japanese→English are
the highest among all submissions, and that of
English→German is the highest among all con-
strained submissions.
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+ Confidence-Aware Scheldule Sampling 50.17 44.35 26.33 39.42
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Abstract 

I participated in the WMT shared news 

translation task and focus on one high 

resource language pair: English and 

Chinese (two directions, Chinese to 

English and English to Chinese). The 

submitted systems (ZengHuiMT) focus 

on data cleaning, data selection, back 

translation and model ensemble. The 

techniques I used for data filtering and 

selection include filtering by rules, 

language model and word alignment. I 

used a base translation model trained on 

initial corpus to obtain the target versions 

of the WMT21 test sets, then I used 

language models to find out the 

monolingual data that is most similar to 

the target version of test set, such 

monolingual data was then used to do 

back translation. On the test set, my best 

submitted systems achieve 35.9 and 32.2 

BLEU for English to Chinese and Chinese 

to English directions respectively, which 

are quite high for a small model. 

1 Introduction 

I participated in the WMT shared news translation 

task and focus on the English and Chinese 

language pair. This language pair is challenging 

due to the plentiful in-domain bitext training data 

and abundant monolingual data. High resource 

means fierce competition, many high-tech 

companies and universities chose this language 

pair also. My neural machine translation system 

is developed using base transformer (Vaswani et 

al., 2017) architecture and the toolkit I used is 

THUMT (Zhang et al., 2020). Rules and word 

aligning model are used to clean parallel data. 

Language model is used to clean monolingual 

 
1http://mteval.cipsc.org.cn:81/agreement/description 

data. I use a base transformer (Vaswani et al., 

2017) architecture since I have only one GPU. 

The following techniques are used on model 

training: a. Increase the number of encoder layers 

to 12 to further improve the encoder’s 

representation capability; b. Back translation 

(Sennrich et al., 2016) are applied to fully utilize 

the monolingual corpus. c. Shared vocabulary is 

used for better performance. d. Four different 

models using diversified data are trained for 

ensemble decoding. 

2 Data Filtering and Selection 

The parallel data is mainly from CCMT Corpus1, 

and the monolingual data is collected from the 

internet. I did not use any other datasets since I 

think they are not highly related to this news 

translation task. To evaluate my model’s 

performance, I merged the test set from 

WMT2017 to WMT2020 to build a big 

development set. 

2.1 Monolingual Data Filtering Using 

Language Model 

In terms of monolingual data, I collected more 

than 20 million Chinese sentences and more than 

15 million English sentences from various 

websites. 

The Chinese text are collected from the following 

websites: 

http://www.chinanews.com/ 

https://cn.reuters.com/ 

http://news.ifeng.com/ 

http://people.com.cn/ 

https://www.sina.com.cn/ 

http://www.xinhuanet.com/ 

https://news.cctv.com/ 

https://www.qq.com/ 

Small Model and In-Domain Data are All You Need 
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https://www.sohu.com/ 

The English text are collected from the following 

websites: 

https://www.bbc.com/news 

www.theguardian.com 

https://www.telegraph.co.uk/ 

https://www.washingtonpost.com/ 

https://www.latimes.com/ 

https://www.smh.com.au/ 

https://www.brisbanetimes.com.au/ 

https://www.dailymail.co.uk/ 

https://www.rt.com/ 

https://time.com/ 

https://www.euronews.com/ 

https://www.msnbc.com/ 

https://www.cbsnews.com/ 

https://www.nytimes.com/ 

https://www.newsweek.com/ 

https://www.foxnews.com/ 

https://www.standard.co.uk/ 

 

The following rules are used for a simple cleaning: 

•Remove duplicated sentences. 

•Remove the sentences containing special 

characters. 

•Remove the sentences containing html addresses 

or tags. 

Afterwards, language models are used to filter 

the monolingual data. For English sentences, lm-

scorer 2  is used to calculate a score for each 

sentence, which is the mean of tokens’ 

probabilities. The pre-trained model used for 

English is GPT-2 (Radford et al., 2019). 3  For 

Chinese sentences, a pre-trained Chinese GPT-2 

(Radford et al., 2019)4 model is used to calculate 

a score for each sentence. Then, the English and 

Chinese sentences are filtered by their scores. 

GPT-2 (Radford et al., 2019) is a large 

transformer-based language model with 1.5 

billion parameters, trained on a dataset of 8 

million web pages. GPT-2 (Radford et al., 2019) 

is trained with a simple objective: predict the next 

word, given all of the previous words within some 

text. 

The threshold I used is determined based on 

my personal evaluation on the text. After 

calculating the scores for all the sentences, I 

sampled the sentences by their scores and perform 

a language quality check. I started from the 

extremely low scores and the extremely high 

 
2https://github.com/simonepri/lm-scorer 
3https://openai.com/blog/better-language-models/ 

scores, and then gradually move the scale from 

the two ends to the middle until I find that the 

language quality is up to my standard. 

There are about 16 million Chinese sentences 

and 10 million English sentences left after 

filtering using language model. 

2.2 Parallel Data Filtering Using Rules 

For CCMT parallel Corpus and synthetic parallel 

corpus from back translation, I used the following 

rules to filter data. 

a. Remove duplicated sentence pairs. 

b. Remove the lines having identical source and 

target sentences. 

c. Remove the sentence pairs containing special 

characters. 

d. Remove the sentence pairs containing html 

addresses or tags. 

e. Remove the sentence pairs with empty source 

or target side. 

2.3 Parallel Data Filtering Using Word 

Alignment 

In order to get word alignment results, fast_align 

(Dyer et al., 2013) is used on the CCMT Corpus 

filtered by rules, then extract-lex 5  is used to 

generate bilingual phrase tables. The phrase tables 

are then pruned according to probabilities. 

Afterwards, I use the pruned phrase table to 

measure the confidence of the sentence pairs 

being mutual translations. The confidence score is 

calculated like this: check each token of the target 

sentence to find if it has a counterpart in the 

source side, then perform this operation in the 

reverse direction, the final confidence score is 

calculated by summing up the two percentages 

from two respective directions and then getting 

the average. 

Then the confidence score is used to remove bad 

sentence pairs. The sentence pairs with 

confidence scores below 0.6 are discarded. In this 

way, I finally got a high quality parallel CCMT 

Corpus. 

3 System Description 

This section illustrate how I train the model step 

by step. 

4https://huggingface.co/uer/gpt2-chinese-cluecorpussmall 
5https://github.com/marian-nmt/extract-lex 
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3.1 Data pre-processing 

For data preprocessing, I use the tokenizer 

developed on my own to process both Chinese 

and English. Chinese text (including punctuations 

and numbers) is split to single character level. I 

keep the upper and lower case letters of English 

as they are, since I believe they are also important 

features for the model. Numbers in English text 

are also split into single digits. I use byte pair 

encoding (BPE) (Sennrich et al., 2016) to create a 

shared vocabulary, so that the vocabulary size is 

reduced to 45467. I also wrote a post-processor to 

restore the Chinese and English text to normal 

form. 

3.2 Normal Model Training 

To evaluate my model’s performance, I merged 

the test set from WMT2017 to WMT2020 into a 

big development set. First, I use the CCMT 

parallel Corpus filtered by rules and word 

aligning model to train base transformer (Vaswani 

et al., 2017) English to Chinese and Chinese to 

English translation models. Two sets of training 

parameters were used with only one difference: 

the number of encoder layers. The detailed 

parameters are as follows: 

batch_size=15000, 

max_length=384, 

hidden_size=512, 

filter_size=2048, 

num_heads=8, 

num_encoder_layers=6 or 12, 

num_decoder_layers=6 

max_relative_dis=16, 

layer_preprocess="layer_norm", 

eval_steps=2000, 

warmup_steps=4000 

Validation is performed every 2000 steps, the 

training is terminated if there is no gain in BLEU 

for 20 consecutive validations. 

As shown in Table 1, using the same filtered 

CCMT Corpus, the BLEU scores of models with 

deeper encoder (12-layer-encoder, 6-layer-

decoder) are slightly higher than that of the base 

version. 

Back translation (Sennrich et al., 2016) is a 

useful data augmentation technique to boost 

model performance with target side monolingual 

data. The technique starts from training a target to 

source translation model using initial bilingual 

corpus, which is later used to translate the 

monolingual data in the target language back to 

source language. Then the synthetic back-

translated corpus is concatenated with the original 

bilingual corpus to train the source to target 

translation model. After the source to target model 

is enhanced, the same method can be applied 

Model + Corpus BLEU EN2 ZH BLEU ZH to EN 

filtered CCMT Corpus 

base transformer 

6-layer-encoder, 6-layer-decoder, base transformer 

32.7 21.0 

filtered CCMT Corpus 

base transformer 

12-layer-encoder, 6-layer-decoder, base transformer 

32.9 21.1 

filtered CCMT Corpus 

half of the filtered monolingual data 

multiple rounds of back translations 

12-layer-encoder, 6-layer-decoder, base transformer 

35.3 24.5 

filtered CCMT Corpus 

in-domain monolingual data extracted using test set 

multiple rounds of back translations 

12-layer-encoder, 6-layer-decoder, base transformer 

best single model 

38.3 28.0 

filtered CCMT Corpus 

in-domain monolingual data extracted using test set 

multiple rounds of back translations 

12-layer-encoder, 6-layer-decoder, base transformer 

ensemble of four models 

39.5 29.1 

Table 1: Different models and their BLEU scores 

I merged the test set from WMT2017 to WMT2020 into a big development set. 

The BLEU scores are calculated on this big development set. 
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again to train the back-translation system in the 

reversed direction. 

I repeat this process using half of the filtered 

monolingual data for several iterations until the 

BLEU is not increasing. 

3.3 Training on In-domain Data 

BERT (Devlin et al., 2019)  is designed to pre-

train deep bidirectional representations from 

unlabeled text by jointly conditioning on both left 

and right context in all layers. Before feeding 

word sequences into BERT (Devlin et al., 2019), 

15% of the words in each sequence are replaced 

with a [MASK] token. The model then attempts 

to predict the original value of the masked words, 

based on the context provided by the other, non-

masked, words in the sequence. 

After the WMT2021 test set was released, I 

first translated the Chinese and English test 

sentences to target versions using the above 

models, then I generated feature representations 

for the target versions of the test sentences using 

pre-trained English BERT (Devlin et al., 2019) 6 

and Chinese BERT (Devlin et al., 2019) 7 models. 

The example representations are shown in 

Figure 1 and Figure 2. 

 

 
Figure 1: The BERT representation of “I like this 

competition very much”, the tensor shape is [1, 9 , 768] 

 

 
Figure 2: The BERT representation of “我非常喜欢这

个竞赛。”, the tensor shape is [1, 12 , 768] 

 

I also generated feature representation for each 

sentence in the other half of the filtered 

monolingual data. These features are then used to 

calculate the cosine similarity scores between the 

target versions of test sentences generated by the 

previous trained models and the monolingual 

sentences that are not used in previous training. 

 
6https://huggingface.co/distilbert-base-uncased 

Then, the similarity scores are used to find out 

monolingual sentences that are most similar to the 

WMT2021 test set. 

For each test set sentence, hundreds of 

monolingual sentences are extracted. In order to 

determine a threshold score, I randomly sampled 

100 test set sentences and their extracted 

counterparts. Then I checked their similarities and 

scores using my personal linguistic competences 

in these two languages. The determined threshold 

score was then used to automatically extract in-

domain data. 

Finally, I extracted around 550 thousand 

Chinese sentences and 420 thousand English 

sentences as in-domain monolingual data. These 

sentences are then divided into four equal 

portions. On the basis of the best models using 

back translation and the first half of monolingual 

data, I use four portions of in-domain English data 

and four portions of in-domain Chinese data to do 

back translation until the BLEU stops increasing. 

Therefore, I get four in-domain English to 

Chinese and four in-domain Chinese to English 

translation models. These models are then 

ensembled to build two most powerful models for 

each direction. 

3.4 Results 

The BLEU scores on the aforesaid big 

development set (I merged the test set from 

WMT2017 to WMT2020 to build a big 

development set) for each corpus plus model 

combination are shown in Table 1. 

On the WMT 2021 test set, my best submitted 

systems achieve 35.9 and 32.2 BLEU for English 

to Chinese and Chinese to English directions 

respectively, which are even higher than most of 

the systems from famous high-tech companies. 

4 Conclusion 

This paper describes Hui Zeng’s translation 

systems (ZengHuiMT) for the WMT2021 news 

translation shared task. The potential of small 

model plus in-domain data is explored. I am 

pleased to argue that, with high quality in-domain 

data, small model could achieve BLEU scores 

comparable to that of huge models. 

7https://huggingface.co/bert-base-chinese 
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Abstract

This paper describes Mininglamp neural ma-
chine translation systems of the WMT2021
news translation tasks. We have participated in
eight directions translation tasks for news text
including Chinese↔English, Hausa↔English,
German↔English and French↔German. Our
fundamental system was based on Transformer
architecture, with wider or smaller construc-
tion for different news translation tasks. We
mainly utilized the method of back-translation,
knowledge distillation and fine-tuning to boost
single model, while the ensemble was used to
combine single models. Our final submission
has ranked first for the English→Hausa task.

1 Introduction

This paper describes the Mininglamp sub-
missions to the WMT2021 news translation
tasks for eight directions including four high-
resource Chinese↔English, German↔English,
two medium-resource French↔German and two
low-resource Hausa↔English. Furthermore, all of
our systems were built with constrained data sets.

For this participation, we experimented with
some smaller or wider Transformer (Vaswani
et al., 2017) architectures to reach a reliable base-
line based on different resource scales, sampling
or beam search in back-translation to generate
more suitable pseudo bilingual sentences. Particu-
larly in the low-resource tasks, Hausa↔English,
the Transformer-Small neural machine transla-
tion was built for the baseline, we presented it-
erative between back-translation and fine-tuning
pattern which significantly improve the BLEU
score on the validation set, and it worked well on
English→Hausa task. Due to time constraints, we
did not experiment on Hausa→English task. This
path could be an experiment in the future work.

As for the data augmentation aspect, we experi-
mented with several back-translation methods (Sen-
nrich et al., 2016a), including the beam search, un-

restricted sampling and sampling-topK (Edunov
et al., 2018), to leverage the target-side monolin-
gual data. We also applied knowledge distillation
(Freitag et al., 2017) to leverage the source-side
monolingual data.

Our systems followed four main steps:1) data
filtering and preprocessing, 2) back-translation to
generate pseudo bilingual data, 3) knowledge dis-
tillation by monolingual data, 4) fine-tuning with
in-domain.

It should be emphasized that we used Mar-
ian1 (Junczys-Dowmunt et al., 2018) to implement
only for Hausa↔English baseline systems, and
Fairseq2 (Ott et al., 2019) for the rest, include
Hausa↔English back-translation and knowledge
distillation models.

2 System Overview

2.1 Data Filtering and Preprocessing
In this section, we discuss the preprocessing, nor-
malization and filter techniques carried out in an
attempt, in order to reduce spurious uncertainty in
the modeling problem.

2.1.1 Text Preprocessing
Generally, we carried out the following text prepro-
cessing steps prior to use in every model:

• Normalization: Unicode canonicalization,
replacement of common multiple encoding
errors present in training data, standardization
of quotation marks into directional variants,
conversion of any traditional Chinese char-
acters into simplified forms, conversion of
any Chinese full-width characters and seg-
mental Chinese full-width punctuation into
half-width forms. Normalize punctuation in
all data by using Moses3 (Koehn et al., 2007)

1https://github.com/marian-nmt/marian
2https://github.com/pytorch/fairseq
3https://github.com/moses-smt/

mosesdecoder
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(normalize-punctuation.perl)
script except for every language pair.

• Segmentation: Chinese was segmented using
the Jieba4 segmentation tool, and tokenizer
using Moses (tokenizer.perl) script for
English, German, French and Hausa. For the
Hausa tokenizer, we used English tokenizer
instead.

• True-case: The word, at the start of a sen-
tence, containing only an initial capital let-
ter was replaced with the capitalized variant.
That occurred most frequently in other posi-
tions of the English monolingual training data.
Thus, in the previous sentence, the initial to-
ken would be “words” rather than “Words”.
We used Moses’ script for true-case.

• Subword: The neural machine translation sys-
tem is capable of open-vocabulary translation
by representing rare and unseen words as a
sequence of subword units. The model was
trained based on subword-nmt5 on the parallel
training corpus.

2.1.2 Data Filtering
For all language pairs, the data filtering process for
the training bilingual corpus stayed to the principle
with the following rules:

• Filter out the sentence pairs that contain blank
lines either from the source side or the target
side.

• Filter out the sentence pairs that the source
side and the target side at the same.

• Filter out the sentences with the length ratio
falling outside from 0.4 to 2.5.

• Filter out the sentences whose punctuation
and foreign words taking more than 40 per-
cent.

• Remove the sentences which are longer than
200 words, or exceed a single word with 30
characters.

• Filter out the sentences which contain HTML
tags or duplicated translations.

4https://github.com/fxsjy/jieba
5https://github.com/rsennrich/

subword-nmt

• Filter out the sentences which its word ra-
tio between the source and the target exceeds
1:2.5 or 2.5:1.

• Identify language and delete foreign lan-
guages. Filter parallel and monolingual data
by language detection using cld26.

The rules described above were also employed
when cleaning monolingual and back-translation
data. In the monolingual data particularly there
were some lines that include two or more sentences,
we cut them into several sentences by writing a
script.

2.2 Data Augmentation

2.2.1 Back-Translation
Back-translation (Sennrich et al., 2016a) is an es-
sential method to integrate the target side mono-
lingual synthetic knowledge when building a state-
of-the-art neural machine translation system. Es-
pecially for low-resource language tasks, it’s indis-
pensable to augment the training data by mixing
the pseudo corpus with the parallel part. In that
the target side, lexicon coverage was insufficient.
The nucleus sampling (Holtzman et al., 2020) in
back-translation to generate more suitable pseudo
bilingual sentences. We attempted several data aug-
mentation methods as follow, with different single
technologies or combinations.

• Beam search: Generated target translation by
beam search with beam 5.

• Sampling: Selected a word randomly from
the whole distribution in each step, which in-
creases the diversity of pseudo corpus with
low precision, compared with beam search.

• Sampling Top-K: Selected a word in a re-
stricted way that only top-K (we set K as 16)
words could be chosen.

2.2.2 Forward Translation to Generate
Synthetic Parallel Sentence

For Chinese↔English tasks. To generate a more
diverse pseudo-parallel corpus, we use forward-
translated to do generated synthetic parallel sen-
tences on source monolingual data only by our
own ensemble model.

6https://github.com/CLD2Owners/cld2
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2.2.3 Knowledge Distillation
We used knowledge distillation (Kim and Rush,
2016) to do distillation on the original dataset.
Specifically, we translated the source-side of the
bilingual data using previously trained proposal
models, and generated distilled candidates. We
then trained models on filtered data along with the
original bilingual data and back-translation data.

2.3 Iterative Back-translation and
Fine-tuning

A process which iterative twice between back-
translation and fine-tuning was implemented by fol-
lowing steps for the low-resource Hausa↔English
tasks.

2.4 Reranking

For German↔English, French↔German tasks, we
followed noisy-channel (Yee et al., 2019) reranking
using one neural language model and three reverse
translation models.

3 Experiment

3.1 Experiment Settings

In order to demonstrate the experiments of the sys-
tem, there some experiment details should be clari-
fied. To train all of the models used in our system,
we made use only of the constrained data sets pro-
vided to shared news translation task participants.
On the other side, the baseline models were trained
on parallel corpus only by cleaned corpus. In terms
of model evaluation, the main indicator for the re-
port was calculated according to sacreBLEU7 (Post,
2018) based on the results which has been removed
parts of post-preprocessing such as removed BPE
symbols, detruecased, detokenized, etc.

The Transformer-Small was implemented based
on Marian (Junczys-Dowmunt et al., 2018)
as our baseline for Hausa↔English tasks.
For Chinese↔English, German↔English and
French↔German tasks, we implemented the
Transformer-Big FFN-8192 based on Fairseq (Ott
et al., 2019) as our baseline model. We used Adam
optimizer (Kingma and Ba, 2014) during training,
learning rate was 5e-4, β1 = 0.9, β2 = 0.98, weight
decay was 0.0001, label smoothing was 0.1. Specif-
ically, the learning rate warmed up over the 8,000
steps for pre-normalize architectures Transformer-
Big FFN-8192 model. The system shuffled the

7https://github.com/mjpost/sacrebleu

training data before generating the training batch
for each epoch, so the document context informa-
tion was not considered in this case. FP16 was ap-
plied to accelerate training with few performance
damage during the training process.

3.2 Chinese↔English
For Chinese↔English system, our parallel cor-
pus included CCMT, wikititles-v3, wikimatrix-
v1, para-crawl-v7.1, news-commentary-v16 corpus.
While Chinese were segmented by Jieba word seg-
mentation toolkit, English was tokenized by Moses
tokenizer script. Based on the result of data Filter-
ing, we used 17 million Chinese↔English parallel
data corpus for training the baseline model. As
the next step after the preprocessing, we trained
BPE (Sennrich et al., 2016b) models which were
learned with 32,000 merge operations for joined
English and Chinese on the parallel data. We
built separately vocabularies for each language,
and the final vocabulary size of Chinese was 42K
and English was 22K. Baseline train data we fol-
lowed drop-BPE (Provilkov et al., 2020). We
trained the Transformer-Big FFN-8192 model for
Chinese↔English.

For back-translation, we selected 20 million
News Crawl 2020 English monolingual data for
Chinese→English task. All News Crawl Chi-
nese monolingual data and selected 20 million Ex-
tended Common Crawl Chinese monolingual data
were combined for English→Chinese task. Back-
translation data were combined by sampling top-16
and beam search. At the same time, there was a
combination between back-translation data and par-
allel data corpus in order to train Chinese↔English
models. We selected 10 million Chinese and En-
glish sentences respectively for forward translation
and knowledge distillation to generate synthetic
parallel sentences.

Our final submissions consisted of three
Transformer-Big FFN-8192 models with different
configurations, using the beam search with a beam
size of 5, and set lenpen 2.0. Table 1 shows that
the translation quality was improved by using the
proposed techniques.

3.3 Hausa↔English
The parallel corpus for Hausa↔English system in-
cluded para-crawl-v8, wikititles-v3, Khamenei and
Opus corpus, which was tokenized by Moses to-
kenizer script. It should be clear that Hausa used
tokenizer by English mode. After the data filter-
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System zh-en en-zh
baseline 30.2 42.9
+ Back Translation 33.4 45.1
+ Knowledge Distillation 33.8 46.2
+ Fine-tuning 34.7 47.8
+ Ensemble 35.5 48.6

Table 1: SacreBLEU scores on newstest2020
Chinese↔English tasks.

ing, we used 550 thousand Hausa↔English parallel
data corpus for training the baseline model. A joint
BPE model was applied with 10,000 merge opera-
tions. Moreover, shared vocabularies were selected
for Hausa↔English language pairs.

We used Marian trained Transformer-Small8

model for Hausa↔English baseline, with learning
rate ranging from 0.0008 to 0.001, warmup steps
fixing at 48,000. Three models(3e3d, 4e4d, 6e4d)
were trained under different architectures on single
2080Ti GPU.

For English↔Hausa back-translation, the stan-
dard Transformer-Big model implemented in
Fairseq. We selected 4.5 million Hausa mono-
lingual data by data filtering and language detec-
tion, and 20 million English monolingual data from
the News Crawl 2020 were filtered as the back-
translation dataset. Every time we handled the
back-translation process, the beam search was ap-
plied. Then the back-translation and the fine-tune
were executed twice. For Hausa→English, due
to time constraints, it was limited to one back-
translation and fine-tune.

In the fine-tuning stage, 200 sentences from the
newsdev2021 were kept randomly as the validation
set, and other sentences were attributed to fine-tune
the model.

Table 2 shows that the translation quality was
improved by using the proposed techniques. Our
final submissions consisted of two Transformer-Big
models.

3.4 German↔English
For German↔English task, the provided parallel
sentences were completely joined together so as
to get about 95 million sentence pairs. Then, sen-
tences with lots of punctuation masks and non-
alpha-number characters were removed, as well
as the sentences whose length ratio was larger

8The dimension of word embedding was 256, the dimen-
sion of the feed-forward network was 1024, multi-head was 4,
encoder and decoder layer was 4.

System ha-en en-ha
baseline 13.8 11.6
+ 1st. Back-translation 24.6 22.7
+ 1st. Fine-tuning* 29.7 25.5
+ 2nd. Back-translation* - 26.2
+ 2nd. Fine-tuning* - 26.9
+ Ensemble* 31.7 27.4

Table 2: SacreBLEU scores on newsdev2021
Hausa↔English tasks. Steps with extra * marks are
evaluated in the tiny 200 lines new validation set.

than 2. As a result, 52 million sentences were
selected to be candidates. After that, BPE was
learned jointly with 32k as the merge operations,
and the size of the vocabulary was 32,168. The
model’s parameters for both directions were copied
from the Transformer-Big in the paper “Atten-
tion is all you need” (Vaswani et al., 2017). Fi-
nally, we got three English→German models and
two English↔German models for ensembling and
reranking. The language model used for reranking
was trained with GPT-3 using data cleaned from
news 2020. All the models were trained using
Fairseq. The overview of our German↔English
system is listed in Table 3.

System de-en en-de
baseline 44.1 40.0
+ Ensemble 45.1 41.1
+ Reranking 45.5 41.4

Table 3: SacreBLEU scores on newstest2016
German↔English tasks. Learning rate for training is
0.001 and warmup steps are 4000.

3.5 French↔German
For French↔German task, about 7 million sen-
tences were left after removing the sentences
with invalid characters or punctuations from the
original parallel sentences. We trained the BPE
codes with 32k as the merge operations. The
final vocabulary size for German was 32,144
and for French was 32,176. We introduced for-
ward translation in German→French direction
using models trained from the original parallel
dataset. In both directions, the models were based
on the Transformer-Big as the basic architecture.
At last, three French→German models and two
German→French models, trained from forward-
translation, were applied to ensembling and rerank-
ing. The language model used for reranking was
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trained with GPT-3 using data cleaned from news
2020. The models from this system were com-
pletely trained by Fairseq. Check the overview of
our German↔French systems in Table 4.

System de-fr fr-de
baseline 30.9 27.6
+ Knowledge Distillation 31.3 -
+ Ensemble 32.6 28.8
+ Reranking 34.1 30.9

Table 4: SacreBLEU scores on newstest2019
French↔German tasks.

4 Conclusions

This paper described the Mininglamp submissions
to the WMT2021 eight news translation tasks, and
our main exploration was using more diversified
architectures, back-translation, fine-tuning and en-
semble. We used a similar data preprocess and
filtering strategy for all the tasks, containing sta-
tistical information-based rules. And we experi-
mented with back-translation by different decoding
strategies, using the Transformer-Small model and
iterative between back-translation and fine-tuning
for low-resource.
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Abstract

This paper describes NiuTrans neural ma-
chine translation systems of the WMT 2021
news translation tasks. We made sub-
missions to 9 language directions, includ-
ing English↔{Chinese, Japanese, Russian,
Icelandic} and English→Hausa tasks. Our
primary systems are built on several effec-
tive variants of Transformer, e.g., Transformer-
DLCL, ODE-Transformer. We also utilize
back-translation, knowledge distillation, post-
ensemble, and iterative fine-tuning techniques
to enhance the model performance further.

1 Introduction

Our NiuTrans team participated in the WMT
2021 news translation shared tasks, including
English↔Chinese (EN↔ZH), English↔Japanese
(EN↔JA), English↔Russian (EN↔RU),
English↔Icelandic (EN↔IS) and English→Hausa
(EN→HA), nine submissions in total. All of our
systems were built with constrained data sets. We
adopt some effective models and useful methods,
which have been witnessed the success in previous
papers (Wang et al., 2018; Li et al., 2019; Zhang
et al., 2020; Meng et al., 2020; Wu et al., 2020b;
Chen et al., 2020; Yu et al., 2020; Wu et al., 2020a;
Wei et al., 2020).

To enhance the performance of the single model,
we choose pre-normalized Transformer-DLCL
(Wang et al., 2019) and ODE-Transformer (Li et al.,
2021a) as the backbone. All systems are built upon
the relative position representation (Shaw et al.,
2018) due to its strong performance when models
are deep (Li et al., 2020). For the system combi-
nation, we adopt the post-ensemble (Kobayashi,
2018) to find the most similar hypothesis among
several ensemble outputs, which could be regarded
as a reranking technique without pre-training. Pre-
vious works have emphasized the importance of

diversity when building ensemble systems. Be-
sides the architecture diversity, we also adopt iter-
ative ensemble knowledge distillation leveraging
the source-side monolingual data to enlarge the
diversity. More details please refer to (Li et al.,
2019).

Our data preparation pipeline consists of three-
fold: (i) For the data filtering. We use a stricter
cleaning process than last year (Zhang et al., 2020).
Details will be discussed in Section 2.1. (ii)
For the data augmentation, both iterative back-
translation (Sennrich et al., 2016a) method, and it-
erative knowledge distillation (Freitag et al., 2017)
method are employed to take the full advantage
of monolingual data provided by the WMT orga-
nization. In the back-translation stage, we lever-
age target-side monolingual sentences to generate
source-side pseudo sentences and use a nucleus
sampling (Holtzman et al., 2019) decoding strategy
to improve the generalization ability. Furthermore,
we leverage in-domain source-side monolingual
data by applying iterative knowledge distillation.
(iii) For data selection, it’s hard to find massive
in-domain data for low-resource languages to train
a neural language model, so we use a statistical
n-gram language model (XenC toolkit31) instead.

Domain finetuning is quite essential to improve
the translation system given a certain target domain.
We use domain adaptation to migrate the models
from the general domain to the news domain by
iterative finetuning. After in-domain finetuning, we
use multiple ensemble combinations by the post-
ensemble method.

This paper is structured as follows: In Section 2,
we introduce several effective techniques, includ-
ing data preprocessing, deeper and wider Trans-
former models, iterative back-translation, itera-

1https://github.com/antho-rousseau/XenC
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Model Depth Hidden Size Filter Size RPR Batch size update freq
Transformer 6 512 2048 7 4096 1
Transformer (Pre-Norm) 24 512 4096 X 2048 4
Transformer-DLCL 25 512 4096 X 2048 4
Transformer-DLCL 30 512 2048 X 2048 4
Transformer-DLCL 30 512 4096 X 2048 4
ODE Transformer 6 1024 4096 X 2048 8
ODE Transformer 12 1024 4096 X 2048 8

Table 1: The details of several model architectures we used.

tive knowledge distillation, fine-tuning and post-
ensemble. In Section 3, we show the experiment
settings and report the experimental results of the
validation set (newstest2020). Finally, we draw the
conclusion in Section 4.

2 System Overview

2.1 Data Preprocessing and Filtering
For word segmentation, we use different tools in six
languages. English, Russian, Hausa and Icelandic
sentences were segmented by Moses (Koehn et al.,
2007), while Chinese and Japanese used NiuTrans
(Xiao et al., 2012) and MeCab2 separately. Then
BPE (Sennrich et al., 2016b) with 32K operations is
used for five languages sides independently, except
for 36K operations in Russian.

The quality of the parallel training data is cru-
cial to the performance of the models, so we use
rigorous data filtering scheme as the suggestion
in Zhang et al. (2020)’s work. For most language
pairs, rules are as follows:

• Filter out sentences that contain long words
over 40 characters or over 150 words.

• The word ratio between the source word and
the target word must not exceed 1:3 or 3:1.

• Use Unicode to filter sentences with more than
10 other characters.

• Filter out the sentences which contain HTML
tags or duplicated translations.

• In monolingual data, some sentences contain
two or more sentences. We write a script to
cut them into several sentences.

We use these rules to filter bilingual and mono-
lingual data, detecting low-quality sentences with
misalignment, translation errors, illegal characters,
and missing translation.

2https://github.com/taku910/mecab

2.2 Model Architectures

As shown in previous work (Li et al., 2019; Zhang
et al., 2020; Meng et al., 2020), deep Transform-
ers bring significant improvements than the base-
line on various machine translation benchmarks.
In their work, the performance of the model was
significantly improved by increasing the encoder
depth. We keep the decoder depth unchanged as
the brought benefit is marginal when the encoder
is strong enough (Li et al., 2021b).

Hence, we train two deep models in our experi-
ment: Transformer DLCL (Wang et al., 2019) and
ODE Transformer (Li et al., 2021a) with a larger
filter size. ODE Transformer is designed from the
ordinary differential equations (ODE) perspective.
Higher-order ODE solutions can gain fewer trun-
cation errors, thus reducing the global error and
improving the model performance. The details of
several models we mainly experimented with are
summarized in Table 1.

In addition, we incorporate relative position rep-
resentation (RPR) into the self-attention mecha-
nism on both the encoder and decoder sides. Pre-
liminary experiments demonstrate that only relative
key information is enough, and we set the relative
window size to 8.

2.3 Large-scale Back-Translation

Back-translation (BT) is an effective data augmen-
tation technique to boost the performance of NMT
models, which use monolingual data to generate
pseudo-training parallel data. Back-translation is
divided into three stages:

• Using bilingual parallel data to train a target-
to-source intermediate ensemble of models.

• Utilizing the ensemble of reverse direction
models to translate the target monolingual cor-
pus into the source corpus.
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Figure 1: Process of the post-ensemble method. Sn denotes the sentence generated by the n-th ensemble of
models. ALD denotes the average Levinstein distance of a sentence with other sentences. For example, ALD 1 =
1
2 ∗ (Levinstein_distance(S1, S2) + Levinstein_distance(S1, S3)). Finally, we select the sentence of the
smallest ALD.

• Training models with the bilingual parallel
corpus and the synthetic parallel corpus to-
gether.

Select in-domain monolingual data during back-
translation can significantly alleviate domain adap-
tation problems (Zhang et al., 2020). Our in-
domain data consist of the test sets released in re-
cent years and the News Commentary high-quality
monolingual data. Due to insufficient data in the
domain, we used a statistical method to select
in-domain data, the XenC toolkit. Furthermore,
to avoid the high ranking of short sentences, we
choose the in-domain source side sentences accord-
ing to the distribution of sentence tokens number
in the previous years’ test set.

For all tasks, we employ the beam search and
Nucleus Sampling approaches to generate pseudo
corpus and the scale of the pseudo corpus was about
1:1 to the real corpus.

2.4 Iterative Knowledge Distillation

Knowledge distillation (KD) has been proven to be
a powerful technique to improve the performance
of the student model by transferring knowledge
from the teacher model (Li et al., 2019; Zhang
et al., 2020). Here, we regard the ensemble models
as a teacher model and single models as student
models. Specifically, we first use the ensemble
model to generate synthetic corpus in the forward
direction. Then, we merge the synthetic parallel
corpus with the bilingual parallel corpus to teach
student models. And by searching for better model
ensemble combinations, we can provide stronger
teacher models for the next round of knowledge
distillation. Our experiment found that the gap be-
tween the single model and the integrated model
gradually narrowed as the iteration progressed. So
for the nine tasks we participated in, two iterations

of knowledge distillation deliver the best perfor-
mance.

2.5 Finetuning

Domain adaptation plays an important role in im-
proving the performance of the models. A practical
method of domain adaptation is to train models
on large-scale out-domain corpus and then fine-
tune the models with in-domain corpus (Luong and
Manning, 2015). For all tasks, we mainly reuse an
iterative fine-tuning process (Zhang et al., 2020)
and use the development sets and the test sets of
previous years as in-domain corpus.

It is worth noting that, in order to be consistent
with the composition of the test set, we select par-
allel sentences pair from the previous development
sets and test sets in which the source side is real and
the target side is manually translated. Moreover,
we found that iterative fine-tuning can better im-
prove the translation quality of the names of news
organizations in the news field.

2.6 Post-ensemble

Ensemble learning is a technique widely used in
several WMT shared tasks, which improves per-
formance by using multiple single models. In neu-
ral machine translation, a practical method of the
model ensemble is to combine the probability dis-
tribution on the target vocabulary of different mod-
els in each step of sequence prediction. Here, we
adopted their method, which uses a greedy-based
strategy to find a better combination of models on
the development set. However, enumerating all
combinations of candidate models is an inefficient
and cumbersome way.

In our ensemble experiments, we set the number
of the ensemble to four and six. We observed that
simply expanding the scale of the ensemble does
not necessarily improve translation performance.
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Besides, brute force search for all models is costly
and unrealistic. As the number of models increases,
the ensemble easily exceeds the computer capacity
limit. Therefore, for all tasks, we finally search for
four single models as an ensemble.

In addition, we use a simple but effective unsu-
pervised ensemble method, post-ensemble, which
uses a clustering method to select a majority-like
output from multiple ensembles. As shown in the
figure 1, we first choose several ensemble combina-
tions composed of different models to obtain more
diversity. Then we use these ensembles to generate
multiple sentences, respectively. Next, we calcu-
late the Levinstein distance between each sentence,
and finally, we select the sentence of the smallest
average Levinstein distance with other sentences.

For more detailed content, please refer to the
original paper (Kobayashi, 2018). This technology
can further improve the performance of the system
based on ensemble learning.

3 Experiment

3.1 Experiment Settings

The implementation of our models is based on
Fairseq (Ott et al., 2019). All models were trained
on 8 RTX 2080Ti GPUs. We selected the pre-norm
Transformer-base as the baseline for all tasks and
enhanced our deep or wide models by enlarging
the model depth and the hidden size, respectively.
We used Adam optimizer (Kingma and Ba, 2014)
with β1 = 0.9, β2 = 0.997 during training. As sug-
gested in Ott et al. (2018) and Wang et al. (2019)’s
work, models with larger capacities tend to per-
form much better within large batch size and learn-
ing rate. Due to the high GPU memory consump-
tion, accumulated gradients every two steps where
each batch contains 2048 tokens. Training for 15
epochs is sufficient for most tasks, and models have
shown convergence in validation perplexity. The
max learning rate and warmup step were set to
0.002 and 8000 for deep models, and 0.0016 and
16000 for deep and wide models, e.g., Transformer-
DLCL, whose hidden dimension is 768. All the
dropout probabilities were set to 0.1, including the
residual dropout, attention dropout, and the ReLu
dropout. We also used FP16 mix-precision train-
ing to accelerate further the training process with
almost no loss in BLEU.

3.2 EN↔ZH

For EN↔ZH tasks, the training data consists of
ParaCrawl, News Commentary v16, WikiMatrix,
UN Parallel Corpus V1.0, and the CCMT Corpus.
We regarded the newstest2019 as the valid set and
the newstest2020 as the test set to tune the hyper-
parameters. After filtering the data, we sampled the
top 12 and 20 million data according to the XenC
score as the bilingual dataset. For the ZH→EN
task, we used 12 and 20 million data to train the
baseline model, respectively, and found that the
model trained by 12 million data is 1 and 1.2 BLEU
point higher than the model trained by 20 million
data in the valid and test set. We found that the data
quality of the bottom 8 million is lower and also
selected the 12 million data as our training data.

During the first-step back-translation, we sam-
pled 8 million monolingual data from the combi-
nation of News crawl, News Commentary, News
discussions, and News crawl. Then we used the
baseline model to generate the hypotheses via the
beam search strategy as the pseudo dataset. In the
second-step back-translation, we utilized the same
amount of pseudo data while using nucleus sam-
pling, whose p is 0.9. For ZH→EN and EN→ZH,
we got BLEU improvements of 1.8 and 2.9 in the
first back-translation and further BLEU improve-
ments of 0.5 and 0.8 in the second back-translation,
respectively.

In addition, we implemented knowledge distilla-
tion twice to iteratively enhance the single model
with the ensemble outputs. The main goal is to
make the single student mimic the behavior of the
ensemble models, thus obtaining stronger ensem-
ble teachers in the next step. We used the test sets
in previous years as in-domain data in EN→ZH
and EN→ZH directions respectively, and we used
the XenC tool to sample 3 million from the large
scale monolingual data based on in-domain data.
Then we used the best ensemble of models to con-
struct pseudo data by decoding them and merge
them to the original training data to continue train-
ing for each model. We got BLEU improvements
of 1.1 and 0.6 in the first knowledge distillation
and further BLEU improvements of 0.6 and 0.3 in
the second knowledge distillation in ZH→EN and
EN→ZH.

After knowledge distillations, we used the
newstest2017-2019 to fine-tune our models for five
epochs with the 0.0001 learning rate and got 2 and
0.4 BLEU improvements in EN→ZH and EN→ZH
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System EN→ZH ZH→EN EN→JA JA→EN EN→HA
Baseline 41.9 30.1 34.5 21.4 10.9
DLCL30-RPR 42.8 31.0 35.6 21.6 11.9
+Iteratively BT 46.5 33.3 38.4 21.7 16.5
+Iteratively KD 47.4 35.0 41.8 25.9 18.2
+Fine-tune 47.8 37.0 42.0 26.4 -
+Ensemble 48.8 37.2 42.7 27.4 18.5
+Post-ensemble & Post edit 49.0 37.5 43.6 27.4 -

Table 2: BLEU evaluation results on the WMT 2020 EN↔ZH, EN↔JA test sets and WMT 2021 EN→HA
development sets.

directions, respectively. In the final stage, we add
newstest2020 to the fine-tuning data. Finally, we
searched for the best five combinations of 4 out of
12 models for post-ensemble to ensure the diver-
sity of the models. Based on the ensemble method,
post-ensemble further brought us +0.2 and +0.3
BLEU in ZH→EN and EN→ZH directions. Our
main results showed in table 2, we find that iterative
back-translation, iterative knowledge distillation,
and iterative fine-tune are effective methods to get
significant improvements.

3.3 EN↔JA

For EN↔JA tasks, we chose ParaCrawl v7.1, News
Commentary v16, WikiMatrix, Japanese-English
Subtitle Corpus, The Kyoto Free Translation Task
Corpus, TED Talks total of six parallel data cor-
pora about 17.5 million. For the ParaCrawl v7.1,
we only selected 8.5 million data according to the
score of sentences provided by the dataset. We
chose all of News Crawl and News Commentary
and 12 million data sampled from Common Crawl
for the Japanese monolingual data. After merging
corpora into training data, we found that there were
many-to-one situations in both the target side and
the source side. Therefore, we sorted sentences and
calculated the Levenshtein ratio of two adjacent
sentences to remove duplication sentences. We ap-
plied this method to all version data before training
models and removed 10 percent of the total data.
We randomly selected one out of many sentences in
which Levenshtein ratios are greater than or equal
to 0.9.

We also implemented tagged back-translation,
which brought us +2.8 BLEU in the EN→JA task.
In addition, beam search and nucleus sampling
were used to generate two parts of translations to
increase data diversity, and each part contains 12
million data. An interesting phenomenon is that

back-translation is useful for EN→JA task while
knowledge distillation is helpful for JA→EN task.
We suspect this is because the domain of Japanese
monolingual more fits the field of the test set.

We also implemented knowledge distillation and
fine-tuned iteratively. During the knowledge dis-
tillation phase, we used FDA3 and XenC to select
monolingual data more like newstest2020 and gen-
erated pseudo data by using both post-ensemble
and ensemble methods. During the fine-tuning
phase, we used the WMT 2020 valid set and oppo-
site direction test set. After performance stopped
increasing at the second fine-tune, we utilized the
best ensemble models to regenerate pseudo data by
back-translation and knowledge distillation. Then,
we retrained multiple deep models. Finally, we
put all models together to greedy search for the
best combination of 13 models. And this method
brought us +0.7 BLEU in JA→EN task. Our main
results are shown in table 2.

3.4 EN↔RU

For EN↔RU tasks, we used only two parallel
datasets, including ParaCrawl v8 and News Com-
mentary. After the data filter, about 12M sentence
pairs were left to build our system. Additionally,
we set the merge operations of BPE to 36K.

We also used iterative back-translation, itera-
tive knowledge distillation, and fine-tuned to en-
hance the model. During the back-translation, En-
glish monolingual data is the same as the EN↔JA
part, and Russian monolingual data sources con-
sist of News Crawl and News Commentary. Dur-
ing the knowledge distillation, we used FDA to
select 4 million sentence pairs from the monolin-
gual dataset according to the newstest2020 and
newstest2019. Then we merged them with the
official development set to continue training our

3https://github.com/bicici/FDA
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System EN→RU RU→EN EH→IS IS→EN
Baseline 22.0 35.6 20.9 28.4
ODE big6-RPR 22.7 36.8 22.4 30.5
+Iteratively BT 23.0 38.2 28.5 34.9
+Iteratively KD 23.3 38.9 30.7 36.0
+Fine-tune 24.4 39.4 - -
+Ensemble 24.8 39.9 31.2 36.4

Table 3: BLEU evaluation results on the WMT 2020 EN↔RU test sets and WMT 2021 EN↔IS development sets.

Task Submission Task Submission
EN→ZH 35.8 EN→RU 28.4
ZH→EN 31.9 RU→EN 41.8
EH→JA 46.2 EH→IS 30.6
JA→EN 27.2 IS→EN 39.2
EH→HA 19.7 - -

Table 4: Our final submission results in nine tasks.

models for five epochs. After KD, we used the
newstest2019 and newstest2018 to fine-tune our
models for five epochs with the 0.0001 learning
rate and got 1.1 and 0.5 BLEU improvements in
EN→RU and RU→EN.

The detailed and full results can be described in
Table 3. Iterative BT, KD, and fine-tune are still
very effective and improved 2.8 and 4.3 compared
with the base model in EN→RU and RU→EN
tasks, respectively.

3.5 EN↔IS

The process of EN↔IS tasks is similar to EN→HA
task but more complicated. Concretely, we used
four parallel datasets, including ParaCrawl v7.1,
Wiki Titles v3, WikiMatrix, and ParIce. After the
data filtering, about 5.5 million sentence pairs were
left to build the baseline system. The experimental
results are listed in Table 3. We obtained significant
improvements of 6.1 and 4.4 BLEU in EN→IS and
IS→EN directions, respectively.

Then we implemented iterative KD two times
and sampled 3 million in-domain source data ac-
cording to WMT2021 development sets. Table 3
shows that it’s a very effective method to get 2.2
and 1.1 improvements. Furthermore, we fine-tuned
models iteratively twice to transfer the knowledge
into the target domain. Due to implementing two
ensemble combinations to decode sentences, the
model ensemble still gained 0.7 and 0.8 improve-
ments.

3.6 EN→HA
In the EN→HA direction, we used ParaCrawl v8,
Khamenei corpus, and English-Hausa Opus corpus
three data sets, obtaining 1.43M parallel data af-
ter cleaning. We collected News crawl, Extended
Common Crawl, and Common Crawl for the mono-
lingual data, resulting in 5.7M Hausa monolingual
data. Considering the insufficient scale of Hausa,
we used all monolingual data in each round of back-
translation. The implementation details of iterative
knowledge distillation and back-translation are al-
most the same as the EN↔ZH tasks.

Table 2 summarized the results. We can observe
that the wide and deep models were still effective
in low-resource language pairs. Through the back-
translation and knowledge distillation techniques,
we gain 4.6 and 1.7 BLEU improvements, respec-
tively.

3.7 Submission Results
The results we finally submitted are shown in table
4. We participated in nine tasks this year. On the
whole, all of our systems performed competitively,
especially in EH→IS and RU→EN directions.

Through all the experimental results, we found
that different methods perform differently on nine
tasks. Among them, iterative BT is effective for
almost all tasks, except for the JA→EN task. Itera-
tive KD performs better for EN↔ZH, EN↔JA and
EH↔IS tasks, while fine-tune is more suitable for
ZN→EN and EN→RU tasks.

4 Conclusion

This paper introduced our submissions on WMT21
nine tasks. Our main exploration is using a new
effective architectures ODE Transformer and uti-
lizing post-ensemble technology to enhance the
system. And we experimented with iterative back-
translation by different decoding strategies, iter-
ative knowledge distillation, iterative fine-tuning,
model ensembling and post-ensemble.
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Abstract

We investigate transfer learning based on pre-
trained neural machine translation models to
translate between (low-resource) similar lan-
guages. This work is part of our contribu-
tion to the WMT 2021 Similar Languages
Translation Shared Task where we submitted
models for different language pairs, includ-
ing French-Bambara, Spanish-Catalan, and
Spanish-Portuguese in both directions. Our
models for Catalan-Spanish (82.79 BLEU)
and Portuguese-Spanish (87.11 BLEU) rank
top 1 in the official shared task evaluation, and
we are the only team to submit models for the
French-Bambara pairs.

1 Introduction

We present the findings from our participation
in the WMT 2021 Similar Language Translation
shared task 2021, which focused on translation
between similar language pairs in low-resource set-
tings. The similar languages task focuses on build-
ing machine translation (MT) systems for transla-
tion between pairs of similar languages, without
English as a pivot language.

Similarity between languages interacts with MT
quality, usually positively (Adebara et al., 2020).
Languages described as similar usually share cer-
tain levels of mutual intelligibility. Depending on
the level of closeness, certain languages may share
orthography, lexical, syntactic, and/or semantic
structures which may facilitate translation between
pairs. However, (a) scarcity of parallel data that
can be used for training MT models remains a bot-
tleneck. Even high-resource pairs can suffer from
(b) low-data quality. That is, available data is not
always guaranteed to be actual bitext with target
standing as a translation of source. In fact, some
open resources such as OPUS (Tiedemann, 2012a;
Tiedemann et al., 2015) can suffer from noise such
as when the source and target sentences belong to

the same language. In this work, we tackle both
(a) scarcity and (b) low-data quality. For a, we
use simple knowledge transfer from already trained
MT models to the downstream pair. For b, we use
a simple procedure of language identification to
remove noisy bitext where both the source and tar-
get are detected to be the same language or where
source or target is identified as a different language
from what it is expected to be.

The models we develop are for Spanish to Cata-
lan (ES-CA), Catalan to Spanish (CA-ES), Spanish
to Portuguese (PT-ES), Portuguese to Spanish (PT-
ES), French to Bambara (FR-BM), and Bambara to
French (BM-FR) language pairs1. Whenever possi-
ble, we choose an available MT model trained with
the same source and target languages as our pair
of interest. In cases where no such a model exists,
we pick a model with either the source or the target
language as our intended pair (Section 5). To show
the utility of our transfer learning approach to the
problem, we also train on one pair from scratch
(which we treat as a baseline).

We experiment with tokenized (primary mod-
els) and untokenized (contrastive models) settings
and compared the settings with models developed
by fine-tuning pre-trained models as well as models
trained from scratch. Our experiments show that
the tokenized settings perform better than the unto-
kenized settings for all language pairs. The model
fine-tuned on top of the pre-trained MT model has
higher performance than our baseline model from
the first epoch compared with the model trained
from scratch (for six epochs). Our models for the
CA-ES and PT-ES language pairs achieve top 1
rank in the offical shared task results, with 82.96
and 47.71 BLEU scores respectively. In addition,
we are the only team that submitted for the rest
of the language pairs (i.e., ES-PT, FR-BM, and

1All models are available on https://github.com/
fenimi/Similar-Languages-MT
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BR-FR).
The rest of our paper is organized as follows:

we discuss related work in Section 2. We describe
the data and pre-processing in Section 3. Next, we
describe the data cleaning process in Section 4. In
Section 5, we describe the models we developed for
this task and we discuss the various experiments
we perform. We also describe the architectures
of the models we developed. Then we discuss
the evaluation criteria in Section 6. Evaluation
is done on both the validation and test sets. In
section 7 we perform error analysis on the output
of our models for some language pairs to determine
the types of errors the models make. We conclude
with discussion of the insights we gained from the
shared task in Section 8.

2 Related Work

In recent times, there has been an increase of re-
search interest in low-resource MT scenarios (Jawa-
har et al., 2021; Baziotis et al., 2020). NMT models,
specifically those based on the Transformer archi-
tecture, have been shown to perform well when
translating between similar languages (Przystupa
and Abdul-Mageed, 2019; Adebara et al., 2020;
Barrault et al., 2019, 2020), low resource scenarios
(Adebara et al., 2021), and in contexts not involving
English (Fan et al., 2021).

Furthermore, pre-training techniques have been
successful for many NLP tasks (Zoph et al., 2016;
Durrani et al., 2021) including NMT (Aji et al.,
2020; Weng et al., 2020). Self-supervised pre-
training acquires general knowledge from a large
amount of unlabeled monolingual or multilingual
data to improve the training process of downstream
tasks (Aji et al., 2020; Devlin et al., 2018). The
pre-trained model acquires some syntactic and se-
mantic knowledge which can be transferred as ini-
tialized parameters to improve NMT models and
translation quality (Goldberg, 2019; Jawahar et al.,
2019; Aji et al., 2020). The intuitive justification
for using pre-trained models is that the embedding
space becomes more consistent, with semantically
similar words closer together.

The knowledge from pre-trained language mod-
els (LMs) can be used to initialize the NMT model
before training it on parallel data. However, there
are certain limitations for MT tasks. First, LMs can-
not be easily fine-tuned for MT tasks. Second, there
is a discrepancy between pre-training objectives for
LMs and the training objective in MT. Existing pre-

training approaches such as mBART rely on auto-
encoding objectives to pre-train the models, which
are different from MT. Furthermore, LMs learn
to reconstruct all source tokens with some noises,
while NMT learns to translate most source tokens
and copy only a few of them. LM pre-training
is said to copy about 65% of tokens, while NMT
training needs to copy less than 10% (Knowles and
Koehn, 2018). The unexpected knowledge/bias
can be therefore propagated to the NMT model
via pre-training, which may result in NMT mod-
els mistakenly copying source tokens to the tar-
get side (Liu et al., 2021). For instance, because
copying behaviours can be learned, a source word
such as “shoe” may be copied to the target by pre-
training based NMT models instead of providing
a translation. Therefore, fine-tuning MT models
on pre-trained LMs still do not achieve adequate
improvements.

In order to address the difference in training ob-
jectives that using pre-trained language models re-
sults in, we use pre-trained MT models to initialize
our models. This is still a type of transfer learning.

Following the justification for pre-trained mod-
els, we hypothesize that two linguistically similar
languages will share closer semantic and syntactic
relationships. This is based on the assumption that
the more similar the source and target languages,
the more similar the syntax and semantic proper-
ties and the higher the gains from using pre-trained
models will be. We now introduce our data.

3 Data

For our experiments, we use parallel data from
OPUS (Tiedemann, 2012b). Our data are from
the following language pairs Spanish and Catalan,
Spanish and Portuguese, and French and Bambara.
We use data in the two directions from each of these
three pairs. Details about our data is in Table 1.

Pair Lang Sent Words

ES-CA ES 10M 284.6M
CA 10M 273.3M

ES-PT ES 4.1M 86.6M
PT 4.1M 82.7M

FR-BM FR 9.9K 179.3K
BM 9.9K 202.9K

Table 1: Number of sentences and words for the train-
ing data used for each language pair. We also report the
type token ratio (TTR) before and after tokenization.
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3.1 Pre-Processing

We perform pre-processing using the Moses
toolkit (Koehn et al., 2007). For each language not
supported by Moses, we use the tokenization set-
ting of the language it is translated to. This applies
only to Bambara, for which we used tokenization
for the French language. We perform data cleaning,
as we explain next.

4 Data Cleaning & Analysis

We perform data cleaning on the ES-CA, CA-ES,
ES-PT, and PT-ES language pairs. We do not clean
the French and Bambara pairs because we had very
few training sentences for these. For cleaning, we
run the langid tool (Lui and Baldwin, 2012) on the
concatenation of the source and target and remove
sentences that are not identified as belonging to
one or both of the language pair. In Table 2, we
provide some examples of data points we remove
from the training data during data cleaning. These
examples are removed because the claimed lan-
guage is different from the language predicted by
langid. After cleaning, we are left with ∼ 10M
clean sentences out of ∼ 18.3M sentences for the
Spanish and Catalan pair, and ∼ 3.1M clean sen-
tences out of ∼ 4.2M sentences for the Spanish
and Portuguese pair, respectively. We note that re-
moved data comprise large portions of each dataset,
thus confirming our concerns about data quality.

Sentence Claimed Predicted
Animal Crossing: Spanish English
Pico de Santo Tomés Spanish Portug.
Quinto Sereno Sammon-
ico

Portug. Italian

La sombra del caudillo Catalan Spanish
Cultura del Nepal Catalan Spanish
Morts a Rāwalpindi Catalan French

Table 2: Examples removed from our training data.
“Claimed” refers to the expected language as coming
from source, while “predicted” is what langid.py iden-
tified.

5 Models

5.1 Primary and Contrastive Models

We developed our primary and contrastive mod-
els using Transformers from HuggingFace library
(Wolf et al., 2019). The primary models were de-
veloped using tokenized data while the contrastive
models employed untokenized data. For the tok-

Hyperparameter Values
encoder layers 6
decoder layers 6
attention heads 8
hidden layers 6
embedding dimension 512
dropout 0.0
vocab size 49,621

Table 3: Hyperparameter settings for the HuggingFace
Marian Transformer models.

Model #Epochs #Highest
FR-BM tok 100 55
BM-FR tok 100 60

untok 6 3ES-CA tok 8 3
untok 7 7CA-ES tok 8 8
untok 17 15ES-PT tok 35 13
untok 18 16PT-ES tok 34 23

Table 4: Description the number of epochs for train-
ing each model and the epoch with the highest BLEU
score.

Pair Untokenized Tokenized
es-ca 77.3 86
ca-es 87.7 87.8
es-pt 46.9 47.3
pt-es 52.9 53.6
fr-bm - 6.6
bm-fr - 6.07

Table 5: BLEU scores on our Dev set.

enized setting, we used Moses tokenizer (as ex-
plained earlier) while the untokenized setting used
the data just as they were made available to us by
shared task organizers.

We used the pre-trained NMT models developed
by Helsinki-NLP on HuggingFace. We used pre-
trained models closest to the language pairs we
trained. For language pairs without existing pre-
trained models, we used a close language pair with
either the source or target matching one of our
downstream task languages in a given pair. Specif-
ically, we used the following Marian models re-
leased by Helsinki-NLP: es-ca (for ES-PT), ca-es
(for CA-ES and PT-ES), fr-en (for FR-BM), and en-
fr (for BM-FR).

As an example, we report the hyperparameters
for the CA-ES primary model in Table 3. This
model had the best BLEU and RIBES score for this
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Pre-Trained Model Pair
Untokenized System Tokenized System

BLEU RIBES TER BLEU RIBES TER

ca-es ca-es 76.8 95.19 15.421 82.79 96.98 10.918

es-ca es-pt 35.61 82.48 52.61 38.10 85.35 46.556

ca-es pt-es 43.86 85.10 43.801 47.71 87.11 39.213

fr-en fr-bm - - - 1.32 24.79 97.89

en-fr bm-fr - - - 3.62 36.17 101.52

Table 6: BLEU, RIBES and TER Scores on the Test set for the Tokenized (primary) and untokenized (contrastive)
configurations. The models for CA-ES and PT-ES language pairs were the best performing models highlighted in
bold type.

Pair Category Text

ES-CA

Source Por consiguiente, el Fondo debe movilizarse para aportar una contribución financiera en favor de Bulgaria, Grecia, Lituania y Polonia.

Untok Output Por lo tanto , el Fondo debe movilizarse para que se conceda una contribución financiera a Bulgaria, Grecia, Lituania y Polonia.

Tok Output Per tant, el Fons s’ha de mobilitzar per aportar una contribució financera a favor de Bulgaria, Grècia, Lituània i Polònia.

Reference Per tant, el Fons s’ha de mobilitzar per aportar una contribució financera en favor de Bulgària, Grècia, Lituània i Polònia.

CA-ES

Source Text A fi de reduir al mı́nim el temps necessari per mobilitzar el Fons, aquesta Decisió s’ha d’aplicar a partir de la data de la seva adopció,

Untok Output A fin de reducir al mı́nimo el tiempo necesario para movilizar el Fondo, esta Decisión debe aplicarse a partir de la fecha de su adopción,

Tok Output Con el fin de reducir al mı́nimo el tiempo necesario para movilizar el Fondo, esta Decisión se ha de aplicar a partir de la fecha de su adopción.

Reference Con el fin de reducir al mı́nimo el tiempo necesario para movilizar el Fondo, la presente Decisión debe aplicarse a partir de la fecha de su adopción,

ES-PT

Source Text Posición del Parlamento Europeo de 6 de abril de 2017 (pendiente de publicación en el Diario Oficial) y Decisión del Consejo de 11 de mayo de 2017.

Untok Output Posição do Parlamento Europeu de 6 de A bril de 2017 ( pendente de publicação no Jornal Oficial) e D ecisão do Conselho de 11 de Maio de 2017.

Tok Output Posição do Parlamento Europeu de 6 de A bril de 2017 ( indiferente à publicação no Jornal Oficial da União Europeia e decisão do Conselho de 11 de Maio de 201 ).

Reference Posição do Parlamento Europeu de 6 de abril de 2017 (ainda não publicada no Jornal Oficial) e decisão do Conselho de 11 de maio de 2017.

PT-ES

Source Text Os Estados-Membros transmitem os dados referentes ao transporte por vias navegáveis interiores no seu território nacional à Comissão (Eurostat).

Untok Output Los Estados miembros transmitirán a la Comisión (Eurostat) los datos relativos al transporte por vı́as navegables interiores en su territorio nacional.

Tok Output Los Estados miembros transmitirán a la Comisión los datos relativos al transporte por vı́as navegables interiores en su territorio nacional (convenientREAT)

Reference Los Estados miembros transmitirán los datos relativos al transporte por vı́as navegables interiores en su territorio nacional a la Comisión (Eurostat).

FR-BM

Source Text vous pourriez peut-être organiser de petits groupes pour lire et discuter de ce livre, chapitre par chapitre.

Tok Output - An y’a mEn kura in mEn: Mama denmuso, an ka jamana de wa k’a furu min ma kOnO.

Reference aw bEse ka to ka mOgOw dalajEka gafe in kalan; ani ka hakilina falenfalen kEsigidaw kan kelen kelen.

BM-FR

Source Text Hakilijigin ka ñEsin kEnEyabaarakElaw ma

Tok Output cher agent de santé villageois,

Reference cher agent de santé villageois,

Table 7: Examples sentences from the various pairs and corresponding translations based on the untokenized and
tokenized models. Examples are from the Dev set. We highlight the differences between the outputs from the
untokenized model and the reference text with blue highlights and the differences between the tokenized model

and the reference text in red highlights . It can be observed that the number of errors in the untokenized model
(based simply on the number of blue highlights here) is larger than that in the tokenized model (less errors/red
highlights

language pair. We trained each model for differ-
ent number of epochs due to time and GPU con-
straints. We show the number of epochs each model
is trained for and the epoch with the highest BLEU
score in Table 4. We did not train any contrastive
models for FR-BM and BM-FR pairs, so we report
the training for the primary (tokenized) models
only.

5.2 Baseline

We developed a single baseline model based on
Transformers as implemented in Fairseq. This

model does not use any pre-trained MT models nor
tokenization. This model was developed for the
ES-PT pair for six epochs and it achieved a BLEU
score of 37.6. For comparison, we developed a
model for the same pair (i.e., ES-PT) based on an
already available pt-es pre-trained MT model. Af-
ter six epochs, this ES-PT model employing trans-
fer learning achieved 52.18 BLEU (thus signifi-
cantly outperforming our baseline). Based on this
result, we resumed with experiments for all other
language pairs without including a baseline. Ide-
ally, we would train such baseline models for all
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the pairs. However, due to limited time and GPU
resources, we only trained a baseline for a single
pair.

6 Evaluation

We evaluated our models on both the Dev and Test
sets. We used the checkpoint with the best BLEU
score as evaluated on DEV as our best model. We
used a beam size of four during evaluation on both
Dev and Test and evaluated on de-tokenized data.

Evaluation on Dev set. We report the results
on the Dev sets for each language pair in Table 5.
As explained, the models were trained with both
tokenized and untokenized data. As Table 5 shows,
the tokenized setting yielded the highest perfor-
mance for all language pairs. We show sample
outputs from our tokenized models (from Dev data)
in Table 7.

Evaluation on Test set. Our Test set perfor-
mance was evaluated by the shared task organizers
using BLEU (Papineni et al., 2002), RIBES, and
TER (Snover et al., 2009). We report the scores
in Table 6. Each of our CA-ES and PT-ES models
ranked top 1 based on the official shared task re-
sults. In addition, we were the only team to submit
models in the official competition for the French-
Bambara pairs. As with the Dev set, the tokenized
setting gave the highest performance for all lan-
guage pairs.

7 Effect of Language Similarity

In order to gain some insight into the interference
of similarity between languages of a given pair,
we performed an analysis based on Levenstein dis-
tance that allows us to identify the percentage of
cognates shared between the languages. We then
compared system output to the reference sentences,
trying to quantify how much the system is able to
translate cognates correctly (in this case the correct
translation will have the same cognate word in the
target as it is in the source). We performed this
analysis for one language pair: CA-ES and found
that the model learned the cognates correctly up to
80% of the time.

8 Conclusion

We describe our contribution to the WMT2021 Sim-
ilar Languages Translation Shared Task. We de-
velop models for ES-CA, CA-ES, ES-PT, PT-ES,
FR-BM, and BM-FR and show the improvement

our models make with tokenized data when com-
pared to untokenized data. We also show the utility
of transfer learning based on fine-tuning NMT pre-
trained models. Future work can investigate how
the choice of pre-trained models affects the down-
stream tasks.
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M. Costa-jussà, C. Federmann, Yvette Graham, Ro-
man Grundkiewicz, B. Haddow, M. Huck, E. Joa-
nis, Tom Kocmi, Philipp Koehn, Chi kiu Lo, Nikola
Ljubesic, Christof Monz, Makoto Morishita, M. Na-
gata, Toshiaki Nakazawa, Santanu Pal, Matt Post,
and Marcos Zampieri. 2020. Findings of the 2020
conference on machine translation (wmt20). In
WMT@EMNLP.
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Abstract

This system description describes the partici-
pation in the EMNLP 2021 Sixth Conference
on MT (WMT21) - Shared Task: Similar trans-
lation for the language pairs SPA<>CAT and
PTG<>SPA for our T4T solution. The main
objective has been to prove that good data
with a good standard NMT toolkit, as Open-
NMT, is able to provide good results. We have
focus in the corpus cleaning (both from the
physical and from the statistical side), try to
find some alternatives to subword segmenta-
tion (syllabic and byte-pair-enconding), and fi-
nally use OpenNMT as out-box system with
a transformer model. The results have been
pretty close to the best ones, if not the best.

1 Introduction

Current available NMT systems have become so
complex and resource computing demanding, that
the idea behind this project is try to find out if
simple logical solutions and standard tools are able
to provide good results at least in close languages
(according Ethnologue Lexical similarity coef for
the language pairs are 0.85 CA<>ES and 0.89 for
PT<>ES) (Collin, 2010).
The first thing that come with a little surprise is
how we can explain that so similar languages have
persistently get so different BLEU (Papineni et al.,
2002) scores in previous WMT years, as stated in
Table 1 for WMT2020.(Barrault et al., 2020)

ES-CA CA-ES ES-PT PT-ES
86.44 77.08 32.69 33.82

Table 1: Results WMT 2020 for similar languages CA-
ES/PT-ES best BLEU score.

We suspect this 50 BLEU score difference is di-
rect result of corpus quality or diversity. CA<>ES
corpus provided by the organization uses a very
reliable source, the DOG (The official Catalan
Government Diary) (approx 40% of words), and

even though PT<>ES uses also a similar domain
(mainly news and legal), its legal composition (Eu-
roparl/JARC) is based in probably a mix of indirect
translations. We think one of the best ways to im-
prove a NMT system, is to use the best data you
can.
We have have focused in the physical cleaning of
the corpus (duplicate strings, unusual sentences,
tokenized text in some sources, deal with the UTF-
8 universe coding for punctuation, numerical data
and the upper/lower casing issue). We have devel-
oped a set of python programs for these cleaning
tasks and an adhoc tokenizer.
We also have tried also to run some cleaning proce-
dure based in some basic statistical information of
the bitext corpus. As there is a quite large source-
target, we have scored word probabilities in bitext
corpus sentences, and then somehow score sen-
tence probabilities and decide to use or not these
sentences. This simple cleaning has indeed in-
creased the score of the model for corpus in-data,
but is not so clear if it helps with data out of the
corpus.
The last step in data preparation, to deal with the
vocabulary size issue, has been the subword seg-
mentation. We have used python standard tools
for syllabic segmentation with good results (corpus
data has achieved best score than BPE (byte-pair-
enconding), but again, with data outside of the cor-
pus, BPE (Sennrich et al., 2015) has proven better.
At the end, we have used Google SentencePiece
(Kudo and Richardson, 2018) BPE implementa-
tion.
After that, we have used what we think a proven
toolkit for NMT, OpenNMT (Klein et al., 2017),
out of the box, without any modification, using its
web publish options for the Transformer model. In
the last step we have used the inverse python pro-
grams in order to generate the final version of the
test source translated file.
We have focused the system from a practical engi-
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neering point of view. The whole project has been
based in currently available local only mid size sys-
tem, with consumer grade multi-gpu environment.
Following this fast approach, and due the nature
of the main focus on the corpus, we have used
simple models that OpenNMT provides (2-layer
LSTM with 500 hidden units on both the encoder
and decoder) in order to choose several options
and parameters used later for the final transformer
model, as this last model is close to the limit a
midsize system can provide.

2 Cleaning the corpus

In our approach we have joined all data sources (all
monolingual sources and the matching language
for the bilingual text corpus) in order to create a
mono corpus, and the bilingual text corpus. For the
model training we have used the dev data provided
by the organization. The typical size for this file in
OpenNMT is around 2000 lines, so we have used
data from the bilingual text corpus in order to reach
this typical size.

2.1 Physical cleaning steps for the bilingual
corpus

These are the direct "physical" tasks in order to
prepare a corpus with what they look "standard"
sentences.

• Removal of duplicated sentences.

• As many strings are already tokenized we
have detokenize all the corpus with the Moses
(Koehn et al., 2007) detokenizer, as our cus-
tom tokenizer works with untokenized text.
(Some punctuation is changed, but indeed
fixes many punctuation format errors as coma
not correctly joined to the words).

• Perform physical cleaning. These are some
steps based on the manual inspection of the
corpus in order to remove noise sentences or
fix others. For instance, remove all left chars
until an alphabetic char is found, remove some
keywords leftovers, sentences should have at
least a spell correct word (Németh, 2010), re-
move any text between parenthesis or remove
duplicates.

• Using python nltk (Bird et al., 2009) package
we have removed all sentences that probably
are made up of more than one sentence.

2.2 Statistical cleaning for the bilingual
corpus

Using the bitext corpus we have created
source/target dictionary and all instances of where
source word and target word appears in the same
sentence pair. Using simple rules we can try to
score the probability of the source word given
a target word, and somehow score words and
sentences. Then create a list and remove the ones
with worst scores. Most of this cleaning is based in
heuristic parameters.

The clean is indeed effective as for instance,
score for corpus data for PT->ES using this
cleaning can raise from 49,38 BLEU score to
67.27, but these gains are not matched when we
have used test data outside the corpus. We suspect,
this cleaning creates an ideal statistical data set
that cannot explain "real" data outside the corpus.
So we have used this feature in a moderate way, re-
moving 15% of the low matching sentences. Many
of these sentences are indeed removed for a good
reason, but many times too are not, because transla-
tors many times do not follow a statistical behavior.

We suspect this is an open field. This "cleaning"
is close related to word alignment, so probably it
would have been wiser use some GIZA++(Och and
Ney, 2003) or fastalign word based solution.

3 Tokenization

One of the big issues to deal with real data, is the
tokenization. After reviewing several available
tools, we ended creating a python custom tokenizer
that has the following features.

• It uses a list of split chars ( comma, dot, hy-
phen, ...). The number of these chars that
are not alphabetic can be quite large, and is
a source of many problems. This list of split
chars is generated by the tokenizer itself in a
first scanning phase.

• Numbers are replaced by variables (as ((n0)),
((n1)). These numbers are kept in an indepen-
dent file in order to be used if detokenization is
required. This will avoid the use of numbers,
another big source of undesired vocabulary.

• Casing is indicated with special tags before
the upper word in to ways, ((up)) for first up-
percase only first letter words, or ((aup)) for
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all uppercase letter words. This avoids most
of casing issues and allow us to work with a
full lowercase input in the neuronal toolkit.

• Tokenizer also keeps track of the spaces for
words and split chars.

These features provide a robust tokenization <>
detokenization reversibility.

Sentence example:

Vista la Directiva 91/494/CEE del Con-
sejo, de 26 de junio de 1991, sobre ...

is tokenized as:

((up)) vista la ((up)) directiva ((n0))
@@/@@ ((n1)) @@/@@ ((aup)) cee
del ((up)) consejo @@, de ((n2)) de ju-
nio de ((n3)) @@, sobre

4 Word segmentation: BPE and syllabic

Word segmentation is further step in order to to
reduce neuronal network vocabulary.
We have followed two approaches, the well know
BPE subword segmentation, but also an uncom-
mon one, a syllabic segmentation. We have used
again a known python tool (https://pyphen.org/) to
split words in syllables.
Results are quite interesting as they have been
quite consistent. Using a syllabic segmentation:

• BLEU scores for corpus test data in all NTM
models (LSTM or Transformer) have been
better.

• BLEU scores for external data have been
worst.

So the promising syllabic segmentation, has not
responded so well with data outside de corpus. Due
this, BPE has been chosen for final models.

5 Evaluation

After testing in more simple neuronal network
models (LSTM) the final setup has consisted of
a corpus cleaned (in the physical sense, and also
in an statistical sense removing approx 15% of
sentence corpus sentences with the highest per-
plexity). This clean corpus has been detokenized
with our adhoc tokenizer (that lowercase the
corpus, replaces numbers by variables, and handles

punctuation and upper/lower casing).

After this cleaning, the number of words for
ES<>PT has been around 2M lines (55.3M words)
and ES<>CA around 9.5M lines (176M words).

Then we have used 16000 terms SentencePiece
BPE vocabulary on this detokenized corpus in
order to reduce vocabulary. We have removed
sentences with more than approx 170 tokens for
the sentences the neuronal network has ingested
(This length has kept the model below the memory
limit of each one of the GPU cards).

We have set the model configuration using the
published Transformer(Uszkoreit, 2017) model in
the OpenNMT site (https://opennmt.net/OpenNMT-
py/FAQ.html#how-do-i-use-the-transformer-
model). According OpenNMT documentation, this
setup mimic the Google (Vaswani et al., 2017)
setup that replicate its WMT results.

We have tested our models
against test data form our corpus
(23_SP_TRANSF_Statclean_3,5 for PT<>ES
and 25_SP_CAES_2_TRANSF_Statclean_3.5
for CA<>ES) and also from the test data from
WMT2020 (test20 for PT<>ES and test20.v2
CA<>ES).

In Figure 1 we can see the results for the
PT<>ES for both test sets and both directions. The
transformer model converges really fast after 30-
40K steps (as the size of the corpus is not very
large). We have used the best score (PT->ES BLEU
score 55.96 at 55K steps and ES->PT BLEU score
54.68 at 60K steps) for the final evaluation.

In Figure 2 we can see the results for the
CA<>ES for both test sets and both directions. We
have used the best score (CA->ES BLEU score
84.34 at 70K steps and ES->PT BLEU score 83.77
at 85 steps) for the final.

6 Results

In Table 2 we can compare the best score
of each one of the 3 teams that have sub-
mitted results for this WMT 2021 task
(http://www.statmt.org/wmt21/similar.html).
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7 Conclusions

We think we have accomplish the objective to
achieve good results with good data and out of
box toolkit as OpenNMT.
It has proven more difficult than expected find
recipes to improve the corpus quality beyond the
physical cleaning. What we have found suggest
(without prove) that:

• Cleaning the corpus trying to remove sen-
tences with low translation probability to be
correct looks to us that can improve the corpus
for sure, but is not so clear will happen the
same for data outside the corpus. The idea of
find correct paired translated sentences in the
bitext, is a translation/alignment problem by
itself, and probably the simple statistical sys-
tem we have used has much room to improve.

• Syllabic word sub segmentation can improve
greately the corpus quality, but has not im-
proved the score with data outside the corpus.
The reason is unknown.

Figure 1: Results PT<>ES BLEU score for test data
from the corpus and external to the corpus

Figure 2: Results CA<>ES BLEU score for test data
from the corpus and external to the corpus

BLEU RIBES TER
Best score T4T Best score T4T Best score T4T

PT-ES 47.71 46.29 87.11 87.04 39.21 40.12
ES-PT 40.74 40.74 85.69 85.69 43.34 43.34
CA-ES 82.79 77.93 96.98 96.04 10.92 16.5
ES-CA 79.69 78.60 96.24 96.24 14.63 16.13

Table 2: Results for the bests system and T4T
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Abstract

The neural machine translation approach has
gained popularity in machine translation be-
cause of its context analysing ability and its
handling of long-term dependency issues. We
have participated in theWMT21 shared task of
similar language translation on a Tamil-Telugu
pair with the team name: CNLP-NITS. In this
task, we utilized monolingual data via pre-
train word embeddings in transformer model
based neural machine translation to tackle
the limitation of parallel corpus. Our model
has achieved a bilingual evaluation understudy
(BLEU) score of 4.05, rank-based intuitive
bilingual evaluation score (RIBES) score of
24.80 and translation edit rate (TER) score of
97.24 for both Tamil-to-Telugu and Telugu-to-
Tamil translations respectively.

1 Introduction

Machine translation (MT) works as an interface
that handles language ambiguity concerns via auto-
matic translation between two different languages.
Neural machine translation (NMT) attains state-of-
the-art results for both high and low-resource lan-
guage pairs translation (Cho et al., 2014; Sutskever
et al., 2014; Bahdanau et al., 2015; Luong et al.,
2015; Pathak et al., 2018; Pathak and Pakray, 2018;
Laskar et al., 2019; Laskar et al., 2020a). The
NMT utilizes an artificial neural network to pre-
dicts the likelihood of a sequence of words. But
NMT requires a sizeable parallel corpus to get ef-
fective MT output, challenging for low-resource
pair translation. In this WMT21 shared task, we
have participated on a similar language pair transla-
tion task of Tamil–Telugu pair using NMT.We aim
to utilize similarity features among such a similar
language pair and monolingual data to overcome
the less availability of parallel corpus. The trans-
former model (Vaswani et al., 2017) based NMT
is considered in this work, since it outperforms

RNN based NMT. Moreover, NMT performance
can be enhanced utilizing monolingual data (Weng
et al., 2019; Wu et al., 2019; Ramachandran et al.,
2017; Variš and Bojar, 2019; Qi et al., 2018). To
evaluate the performance of our system’s output,
WMT21 organizer used standard evaluation met-
rics, namely, BLEU (Papineni et al., 2002), RIBES
(Isozaki et al., 2010) and TER (Snover et al., 2006)
which are reported in Section 4.

2 Related Work

There are limited works on the Tamil–Telugu pair
(Chakravarthi et al., 2021). The literature sur-
vey found similar works on Indian similar lan-
guage pairs, such as Hindi–Nepali (Laskar et al.,
2019) and Hindi–Marathi (Laskar et al., 2020b) at
WMT19 and WMT20. Both (Laskar et al., 2020b,
2019) used transformer model based NMT. More-
over, Ramachandran et al. (2017); Variš and Bojar
(2019); Qi et al. (2018) pre-trained methods are in-
corporated in NMT to utilize advantage of mono-
lingual data for low-resource pairs translation. In
this work, GloVe (Pennington et al., 2014) pre-
trained word embeddings are used in transformer
model (Vaswani et al., 2017) based NMT for both
Tamil-to-Telugu and Telugu-to-Tamil translation.

3 System Description

Our system mainly consists of the following parts:
data preprossessing, model training and testing.
These have been described in the following sub-
sections. The dataset description is presented in
Section 3.1. For our system, we have used the
OpenNMT-py toolkit (Klein et al., 2017) for the
data preprocessing, training and testing.
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Corpus Type Sentences Tokens SourceTamil Telugu

Parallel
Train 40147 588919 625308

WMT21 OrganizerValidation 1261 25443 25844
Test 1735 33911 35895

Monolingual Tamil 31542481 488507451 IndicNLPTelugu 47877462 574131374

Table 1: Dataset Statistics

3.1 Dataset
The parallel corpus for Tamil-Telugu pair is pro-
vided by the WMT21 organizer1. It consists of
40147, 1261, 1735 sentence pairs for train, vali-
dation and test set. Apart from this, we also col-
lected Monolingual data from the IndicNLP2 cor-
pus. It consists of 31542481 Tamil sentences and
47877462 Telugu sentences. This monolingual
corpus is specifically used for deriving pretrained
embeddings to use in the model. The dataset statis-
tics are described in the table 1.

3.2 Data Preprocessing
The OpenNMT-py toolkit is used to preprocess the
parallel data and then generates a vocabulary of
size: 50002 for the source-target sentences by tok-
enizing and indexing in a dictionary. It was done
in both ways independently, considering Tamil as
source and Telugu as target and thenwith Telugu as
source and Tamil as the target to train models for
both ways for translation in either direction. We
have used GloVe (Pennington et al., 2014) to pre-
train on the monolingual corpora to obtain word
vectors. These word vectors are specifically used
in the form of word embeddings in the transformer
model during the training process.

3.3 System Training
After the data preprocessing, the pre-trained em-
beddings and parallel dataset are used for training
our model for both Tamil-to-Telugu and Telugu-to-
Tamil. We have adopted a transformer model to
implement both of the trained models separately.
The transformer model consists of a self-attention
mechanism, encoder, and decoder layers. The self-
attention comes into play, where the relevancy of
one word to other words of the sentence is repre-
sented as an attention vector that contains the con-
text between words in that sentence. Multiple such

1http://statmt.org/wmt21/similar.html
2https://indicnlp.ai4bharat.org/corpora/

attention vectors are calculated, and the weighted
average is taken so that the interactions with other
words are captured properly rather than their value.
More specifically, the embeddings are converted
into three spaces: query, key, and value. The dot
product of its query vector and all the key vectors
are calculated for every embedding. Since the hid-
den state of the previous embedding is not needed
in calculating the current embedding’s hidden state,
the self-attention can be done in parallel for all em-
beddings. Thus, it can be run in parallel for all em-
beddings simultaneously. This speeds up the train-
ing and translation process a lot. Now, the target
sentences are passed to the decoder layers similarly
to the encoders and then passed to the self-attention
block. The difference is that in attention layers, the
next word of the target sentence is masked so that
the word will be predicted using previous results
for learning. It is called a masked multi-head at-
tention block. The attention vectors thus produced
and the outputs from the encoder layers are then
passed to another attention block called encoder-
decoder attention block. The attention vectors for
every word in the sentences are the output. Then
we pass it through a feed-forward network for mak-
ing output acceptable for further layers.
Our transformer model consists of six layers for
both encoders and decoders and eight attention
heads. We used adam optimizer with a learning
rate 0.001 and a drop-out of 0.1 for normalization.
The rest of the parameters were selected as the de-
fault configuration of the toolkit. This configura-
tion is used for both models, the Tamil-to-Telugu
and vice versa.

3.4 System Testing

The obtained trained models are used in system
testing, where the test data is used to obtain the
predicted translation for both Tamil-to-Telugu and
vice-versa independently.
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Translation System Type BLEU RIBES TER
Tamil to Telugu Primary 4.05 24.80 97.24
Telugu to Tamil Primary 4.05 24.80 97.24

Table 2: Our System results for Tamil-Telugu pair at WMT21

4 Result

Our system’s outputs were submitted to the orga-
nizer for evaluation. Consequently, the results of
the shared task on ”Similar Language Translation”
were announced separately for Tamil-to-Telugu3
and Telugu-to-Tamil4. The ranking of the systems
is mainly based on BLEU score, while the RIBES
and TER scores are also given. Our team name is
CNLP-NITS. For the Tamil-to-Telugu translation
system, we achieved 4th rank with a BLEU score
of 4.05 and 6th rank with a BLEU score of 4.05
for the Telugu-to-Tamil translation. The results of
our system are reported in the Table 2. The system
performance is identical for both translation direc-
tions. We need to perform a human evaluation in
future work to identify the test set and predicted
output are identical or not.

5 Conclusion and Future Work

This work reports our system description along
with results, which we have participated in the
WMT19 shared task of similar language pair:
Tamil-Telugu. Both direction of translations, trans-
former model based NMT is used and utilized
monolingual data through pre-trained word em-
beddings. We will investigate multilingual NMT
approach in future to improve such low-resource
translation quality.
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Abstract

This paper describes the participation of
team oneNLP (LTRC, IIIT-Hyderabad) for the
WMT 2021 task, similar language translation1.
We experimented with transformer based Neu-
ral Machine Translation and explored the use
of language similarity for Tamil-Telugu and
Telugu-Tamil. We incorporated use of differ-
ent subword configurations, script conversion
and single model training for both directions
as exploratory experiments.

1 Introduction

Machine Translation (MT) is a field of Natural
Language Processing which aims to translate
a text from one natural language to another.
The meaning of the source text must be fully
preserved in the resulting translated text in the
target language. Recent years have seen significant
quality advancements in machine translation with
the advent of Neural Machine Translation. For
the translation task, different types of machine
translation systems have been developed and
they are mainly categorized into Rule based
Machine Translation (RBMT)(Forcada et al.,
2011), Statistical Machine Translation (SMT)
(Koehn, 2009) and Neural Machine Translation
(NMT) (Bahdanau et al., 2014).

Neural machine translation (NMT) shows high
quality in terms of output fluency and translation
quality, when large amounts of parallel data are
available (Barrault et al., 2020). Unfortunately, for
most language pairs, parallel data is either scare
or non-existent. To overcome this, unsupervised
MT (UMT) (Artetxe et al., 2020) focuses on util-
ising monolingual data to generate synthetic par-
allel training data. Other techniques like back-
translation(Sennrich et al., 2015),(Hoang et al.,

1https://www.statmt.org/wmt21/similar.html

2018), (Feldman and Coto-Solano, 2020) or denois-
ing(Kim et al., 2019) also rely on parallel corpora
of other language pairs and/or large quantities of
monolingual data.

This paper describes our experiments for very
low resourced similar language translation. For
our work, we focused only on Tamil-Telugu lan-
guage pair (both directions) and participated in a
constrained setting.

We experimented only with Transformer
(Vaswani et al., 2017) based Neural Machine Trans-
lation throughout. Along with it, to tackle high
agglutination of both languages, we explored the
morph (Virpioja et al., 2013) induced sub-word seg-
mentation with byte pair encoding (BPE)(Sennrich
et al., 2016).

Similar to Multilingual Neural Machine Transla-
tion (MNMT), we explored the use of a tag trick,
where a token like “< 2xx >” (xx is language
code) is prefixed to each source sentence to indi-
cate the desired target language(Dabre et al., 2020).
Here, we trained a single model for both directions
(Tamil-Telugu and Telugu-Tamil) on given parallel
data and monolingual data under MNMT setting.

The sections of the paper are organised as fol-
lowing: Section 2 describes Data, Section 3 and
4 describe pre-processing and Training Configura-
tion and in Section 5 we talk about results and we
conclude in section 6.

2 Data

We utilised provided parallel corpora for Tamil<-
>Telugu MT task. Apart form parallel corpus, we
randomly selected 0.1M monolingual corpora from
IndicCorp monolingual corpus2 for Tamil and Tel-
ugu. Table-1 describes the training and develop-
ment data (parallel and monolingual) used in all
our experiments under constrained setting.

2https://indicnlp.ai4bharat.org/corpora/
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Data Sents Token Type
Train
Tamil (Parallel) 40,147 0.68M 74K
Telugu (Parallel) 40,147 0.72M 90K
Development
Tamil (Parallel) 1261 29K 9K
Telugu (Parallel) 1261 30K 10K
Tamil (Mono) 0.1M - -
Telugu (Mono) 0.1M - -

Table 1: Tamil-Telugu WMT2021 Training data

3 Data Pre-Processing

To tokenize and clean both Tamil and Telugu cor-
pora (train, test, valid and monolingual), we used
IndicNLP Tool3 with in-house tokenizer as a first
step. Following subsections explain other pre-
processing steps of experiments.

3.1 Morph + BPE Segmentation
Based on token/type ratio, both Tamil and Telugu
are morphologically rich languages from Table-
1. Translating from (and to) morphologically-
rich agglutinative language is more difficult due
to their complex morphology and large vocabu-
lary. We address this issue with morphology and
BPE(Sennrich et al., 2016) based segmentation
method as prescribed in (Mujadia and Sharma,
2020). We utilized unsupervised Morfessor (Vir-
pioja et al., 2013) by training it on monolingual
data of Tamil and Telugu. We then applied this
trained Morfessor model on our corpora (train, test,
development) to get meaningful stem, morpheme,
suffix segmented sub-tokens for each word in a
sentence. Subsequently, we applied the subword
algorithm on top of the morph segmentation and
used the derived sequence in training.

3.2 Training as Multilingual Neural Machine
Translation (MNMT)

As an exploratory experiment, we configure a simi-
lar low resource machine translation problem as a
multilingual machine translation problem. For both
translation directions (Tamil-Telugu and Telugu-
Tamil) we trained a single model to take advan-
tage of language similarity among these languages.
First, we converted both languages into Roman
script using litcm4. Second, we prefixed “<2TE>”
for Tamil to Telugu and “<2TA>” for Telugu to

3http://anoopkunchukuttan.github.io/indic nlp library/
4https://github.com/irshadbhat/litcm

Tamil to the respective source sentences. Apart
from this, we also utilised monolingual data as
a monolingual translation. For this we prefixed
“<2TE>” for Telugu to Telugu and “<2TA>” for
Tamil to Tamil translation.

4 Training Configuration

Throughout all experiments, we used Transformer
sequence to sequence architecture with the follow-
ing configuration.

• Morph + BPE based subword segmentation,
Embedding size : 512 Transformer for en-
coder and decoder, rnn_size 512, heads 4 en-
coder - decoder layers : 2, label smoothing :
1.0, dropout : 0.30, Optimizer : Adam, Beam
size : 4 (train) and 10 (test), training steps :
20K

For these experiments, we used shared vocab
across trainings. We used Opennmt-py (Klein
et al., 2020) toolkit with above configuration for
our experiments.

Using the above described pre-processing and
configuration, we performed experiments on word
level, BPE level and morph + BPE level for input
and output. The results are discussed in following
Result section.

5 Result

Feature BPE Dev
Script Conversion (ta to te) - 0.57
Word - 5.12
BPE 20K 6.07
Morph + BPE 20K 6.25
Morph + BPE (MNMT) 20K 6.65

Table 2: BLEU scores for Tamil-Telugu on Develop-
ment set. BPE stands for byte pair encoding (sub-
word), Morph for Morphological segment and MNMT
for Multilingual Neural Machine Translation based
method as discussed in Section-3.2

Table-2 and Table-3 show performance of
our systems with different configurations in
terms of BLEU score (Papineni et al., 2002) for
Tamil-Telugu and Telugu-Tamil respectively on the
development data. To get trivial, non-translation
baseline, we used aksharamukha5 script conversion

5https://aksharamukha.appspot.com/converter
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Feature BPE Dev
Script Conversion (te to ta) - 0.41
Word - 5.72
BPE 20K 6.37
Morph + BPE 20K 6.45
Morph + BPE (MNMT) 20K 6.76

Table 3: BLEU scores for Telugu-Tamil on Develop-
ment set. BPE stands for byte pair encoding (sub-
word), Morph for Morphological segment and MNMT
for Multilingual Neural Machine Translation based
method as discussed in Section-3.2

tool to convert script from Tamil-Telugu (both
direction). We achieved highest 6.65 and 6.76
development and 3.67 and 5.03 test BLEU scores
for Tamil-Telugu and Telugu-Tamil systems
respectively (all are of MNMT based systems).

Table-2 and Table-3 show that non-translation
baselines are also low in terms of BLEU scores
which indicates that the task much harder even
though languages are similar. The results show
that for low resource settings, transformer network
based MT models can be improved with morph
based segmentation along with byte pair encoding
for morph rich languages. Also, forming it as a
Multilingual machine translation problem, along
with monolingual data, it improves the quality of
MT models. This may be due to language similarity
and use of monolingual data, as it is helping models
to do better generalization by learning better source
language encoding and target language fluency.

6 Conclusion

From our experiments, we conclude that linguistic
feature such as morph based segmentation with sub-
word segments along with MNMT is a promising
approach for similar language translation.
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Abstract 

This paper describes the SEBAMAT contri-
bution to the 2021 WMT Similar Language 
Translation shared task. Using the Marian 
neural machine translation toolkit, transla-
tion systems based on Google’s trans-
former architecture were built in both direc-
tions of Catalan–Spanish and Portuguese–
Spanish. The systems were trained in two 
contrastive parameter settings (different vo-
cabulary sizes for byte pair encoding) using 
only the parallel but not the comparable 
corpora provided by the shared task organ-
izers. According to their official evaluation 
results, the SEBAMAT system turned out to 
be competitive with rankings among the top 
teams and BLEU scores between 38 and 47 
for the language pairs involving Portuguese 
and between 76 and 80 for the language 
pairs involving Catalan. 

1 Introduction 

In recent years, neural machine translation (NMT) 
has become the state of the art in machine transla-
tion (MT). Using toolkits such as Marian NMT 
(Junczys-Dowmunt et al., 2018), it is relatively 
straightforward to construct end-to-end NMT sys-
tems which need only little pre-processing of the 
training corpora and post-processing of the system 
output. As NMT is a supervised approach to MT 
based on machine learning technology, training is 
usually conducted using sentence aligned human 
translations. Given a large number of source/target-
language sentence pairs, the neural system fully au-
tomatically learns how to translate. 

The SEBAMAT submission to the Similar Lan-
guage Translation (SLT) task1  of the 6th Confer-
ence on MT is based on work conducted as part of 
the SEBAMAT project2 (semantics-based machine 

                                                           
1 http://www.statmt. org/wmt21/similar.html 
2 https://cordis.europa.eu/project/id/844951 

translation; Rapp & Tambouratzis, 2020). This pro-
ject has a focus on experiments introducing seman-
tics into MT but, for comparative purposes, also 
deals with standard NMT systems. The latter were 
used as the basis for the current shared task. During 
the SEBAMAT project a number of MT systems 
had been developed for language pairs involving 
English, French, German, Greek and Spanish, but 
there had been no prior work on Catalan and Por-
tuguese. The aims of the participation in the SLT 
shared task were the following: 
 See in how far the SEBAMAT-based MT sys-

tems are competitive. 
 Extend the number of SEBAMAT languages 

by Catalan and Portuguese. 
 Find out whether systems for new language 

pairs can be developed in a very short time. 
 See whether reasonably well working systems 

can be developed without much proficiency of 
the respective languages on the developer side. 

2 Resources  

2.1 Corpora 

For the training of the NMT systems sentence-
aligned parallel corpora are required. We used all 
parallel corpora suggested by the SLT shared task 
organizers who in their task description explicitly 
stated that no additional parallel corpora were al-
lowed for training. 

For Catalan–Spanish the following parallel cor-
pora were used: 
 Wiki Titles v3 (476,475 sentence pairs) (Bar-

rault et al., 2020)3 
 ParaCrawl (6,870,183 sentence pairs) (Bañón 

et al., 2020) 
 DOGC v2 (10,933,622 sentence pairs) (Tiede-

mann, 2012). 

3 http://data.statmt.org/wikititles/README 
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For Portuguese–Spanish, these parallel corpora 
were used: 
 Europarl v10 (1,801,845 sentence pairs) 

(Koehn, 2005) 
 News Commentary v16 (48,259 sentence 

pairs) (Tiedemann, 2012) 
 Wiki Titles v3 (649,833 sentence pairs) (Bar-

rault et al., 2020) 
 Tilde MODEL (13,464 sentence pairs) (Rozis 

& Skadiņš, 2017). 
 JRC-Acquis (1,650,126 sentence pairs) (Stein-

berger et al., 2006; Tiedemann, 2012)4 
 

The above length specifications were taken from 
the SLT 2021 website’s corpus download page. We 
did not use any of the comparable corpora provided 
by the SLT task organizers which, among others, 
included about 65 million sentences of Spanish 
news crawl.5 The reason is that in the SEBAMAT 
project we achieved fairly good translation results 
when training with the Europarl corpus only. For 
example, we obtained BLEU scores (Papineni et 
al., 2002) well above 40 for Spanish–English and 
Greek–English when evaluated with randomly 
held out data. The Europarl corpus comprises in the 
order of 2 million sentences per language pair for 
many languages. As the parallel corpora for the 
shared task were much larger than this (with the 
Portuguese–Spanish language pair even including 
the respective language parts of the Europarl cor-
pus), we saw no need to extract additional parallel 
sentences from comparable corpora. Such sen-
tences are usually much noisier than parallel sen-
tences based on human translations and could 
therefore possibly even reduce the quality of the 
NMT training in this high resource scenario.  

Given the good quality of the training data pro-
vided by the shared task organizers, we only had to 
convert some of the files from a two-column trans-
lation memory format to the standard Moses for-
mat, and then concatenate all files of the source lan-
guage as well as all files of the target language to 
form a large parallel training set. The concatenation 
was done in the order as listed above. However, as 
Marian NMT by default randomly shuffles the sen-
tence pairs for training, the order of concatenation 
should not be of importance in our scenario. 

                                                           
4 https://ec.europa.eu/jrc/en/language-technologies/jrc-
acquis 

2.2 Hardware 

Marian NMT supports training using CPUs or 
GPUs. According to our experiments in the SEBA-
MAT project, training times in NMT can typically 
be reduced by about two orders of magnitude by 
conducting the training on a current GPU rather 
than on a (single) CPU. We therefore used a PC 
with an nVidia RTX 3090 GPU, supported by an i9 
CPU. With 24 GB of memory, 28.3 billion transis-
tors and 35.58 TFLOPS FP32 (float) performance, 
this GPU is state of the art in 2021, so – depending 
on parameter settings – with a single GPU we typ-
ically had training times of only a few hours per 
language pair. As our operating system we used 
Ubuntu 20.04 LTS.  

As a side note, let us mention that performance 
in CPU-based training can be increased by using 
several CPU cores in parallel, which is supported 
by Marian NMT. With the 16 cores of the i9 pro-
cessor, this looks promising if an appropriate GPU 
is not at hand. However, according to our experi-
ments, each of the processors requires the full 
amount of memory. Therefore, if we assume 8 GB 
of memory per CPU core (which is typically the 
minimum for serious NMT work), we would re-
quire a total of 128 GB of RAM if we wished to use 
all 16 cores.  

2.3 Software 

As the translation engine we used the Marian NMT 
toolkit as it is well established and, for the reason 
that it is implemented in the C++ programming lan-
guage, runs very fast (Kim et al., 2019), thereby 
substantially reducing training times. This is a par-
ticularly important consideration in a shared task 
where time tends to be very limited. 

Marian NMT was installed on the above PC to-
gether with the nVidia driver and CUDA software. 
Our pre-processing pipeline involves the following 
steps: tokenization, cleaning, i.e. removal of very 
long sentences and sentence pairs with very differ-
ent lengths, true-casing, and byte-pair encoding. 
For the first three steps we used the Moses tools 
tokenizer, clean-corpus-n, and truecase (Koehn et 
al., 2007).6  For byte-pair encoding we used Rico 
Sennrich’s Python program bpe (Sennrich et al., 
2016). For post-processing of the translations, the 
tokenization and true-casing was reversed using 
the Moses tools detruecase and detokenizer.  

 

5 http://data.statmt.org/news-crawl/README 
6 http://statmt.org/moses/ 
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# train model 
if [ ! -e "model/model.npz.best-translation.npz" ] 
then 
$MARIAN_TRAIN \ 
--devices $GPUS --sync-sgd --seed 1111 \ 
--model model/model.npz --type transformer \ 
--train-sets data/corpus.bpe.pt data/corpus.bpe.es \ 
--max-length 100 \ 
--vocabs model/vocab.ptes.yml model/vocab.ptes.yml \ 
--mini-batch-fit -w 10000 --maxi-batch 1000 \ 
--early-stopping 10 --cost-type=ce-mean-words \ 
--valid-freq 5000 --save-freq 5000 --disp-freq 500 \ 
--valid-metrics translation ce-mean-words perplexity cross-entropy \ 
--valid-sets data/corpus-dev.bpe.pt data/corpus-dev.bpe.es \ 
--valid-script-path "bash ./scripts/validate.sh" \ 
--valid-translation-output data/valid.bpe.es.output --quiet-translation \ 
--valid-mini-batch 64 \ 
--beam-size 6 --normalize 0.6 \ 
--log model/train.log --valid-log model/valid.log \ 
--enc-depth 6 --dec-depth 6 \ 
--transformer-heads 8 \ 
--transformer-postprocess-emb d \ 
--transformer-postprocess dan \ 
--transformer-dropout 0.1 --label-smoothing 0.1 \ 
--learn-rate 0.0003 --lr-warmup 16000 \ 
--lr-decay-inv-sqrt 16000 --lr-report \ 
--optimizer-params 0.9 0.98 1e-09 --clip-norm 5 \ 
--tied-embeddings-all \ 
--exponential-smoothing \ 
--overwrite --keep-best 

fi 
Table 1: Parameters for Marian NMT training (Portuguese → Spanish). 

The Moses tokenizer works well for Spanish and 
Portuguese, but has some problems with Catalan as 
there are some peculiarities in this language, most 
notably the interpunct (as used e.g. in the word 
cel·la). An insightful discussion on this can be 
found on GitHub.7 As we did not have time to adapt 
the tokenizer to Catalan, to account for a few obvi-
ous errors, we did some minimalistic automatic 
post-processing (replacing a few short character se-
quences) as described in Section 4. 

3 Experiments 

To obtain any information on the training data and 
on the development and test sets, it was required to 
register for the shared task. We did so on July 13, 
2021, so had seven days until July 19 when the sub-
mission of the results was due. This did not leave 
us much time for parameter optimization which is 
why we mostly took the standard parameters as 
suggested in the Marian NMT documentation for 
the Transformer architecture (Vaswani et. al, 2017). 
                                                           
7 https://github.com/alvations/sacremoses/issues/43 

We only did a few test runs with various settings 
concerning the number of merge operations in byte 
pair encoding (later to be referred to as vocabulary 
size), but did not have time to systematically opti-
mize it. In our primary submissions, this parameter 
is set to 40,000, whereas in the comparative sub-
missions, as in some previous SEBAMAT work, it 
is set to 85,000. For all language pairs and data sets 
(development and test), the smaller size performed 
better in terms of BLEU scores, although the exact 
size appears to be not very critical within a wide 
range of values.  

To provide details on the core part of our exper-
iments, in Table 1 we show the script for the Marian 
NMT training. As the parameters are well de-
scribed in the Marian NMT documentation, we do 
not discuss them here. Let us only mention that dur-
ing training BLEU scores are computed periodi-
cally on the development set, and that the training 
stops if the best score cannot be improved within 
ten iterations.  
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4  Results 

We pre-processed the corpora as described in sec-
tion 2 and trained the system for the language pairs 
Catalan→Spanish, Spanish→Catalan, Portuguese  
→Spanish and Spanish→Portuguese. We then in-
spected the translation results. For all language 
pairs the translations looked ok except for Span-
ish→Catalan. For this language pair we noticed, 
apparently because the tokenizer was not well 
suited for Catalan, the following three types of sys-
tematic errors in the output: 
 
 There were extra spaces within Catalan words 

such as paral·lel because the interpunct (punt 
volat) was incorrectly interpreted as a separator 
between words rather than between syllables, 
which is why during tokenization blanks were 
inserted around it. We corrected this by replac-
ing all «˽·˽» sequences («˽» stands for blank) 
in the translation output by «·». 

 We found extra spaces before the apostrophe in 
phrases such as «l’efectiu» or after the apostro-
phe in phrases such as «d’informes». We there-
fore removed all spaces before and after apos-
trophes in the translation output. 

 We noticed that whereas in the translated out-
put «'» was used as the apostrophe, the sample 
translations in the development set used «´» in-
stead. The reason is probably a discrepancy be-
tween training corpora and development sets. 
Assuming that the test set would have the same 
characteristics as the development set, we re-
placed in the translation output all occurrences 
of the former by the latter. 

 
Vocabulary 

size 
Language  

pair 
BLEU score 

40,000 
(primary 

submission) 

ca–es 80.72 
es–ca 83.32  
pt–es 50.37 
es–pt 44.96 

85,000 
(contrastive 
submission) 

ca–es 79.40 
es–ca 81.21 
pt–es 47.29 
es–pt 42.77 

 
Table 2: Results for the development sets. ca = Catalan, 
es = Spanish, pt = Portuguese. Without the interpunct 
and apostrophe substitutions, the BLEU score of es–ca 
(primary) is 69.40 and the BLEU score of es–ca (con-
trastive) is 68.01. 

                                                           
8 https://www.letsmt.eu/Bleu.aspx 

 

Vocabu-
lary size 

Lang-
uage  
pair 

BLEU RIBES TER Rank 

40,000 
(pri-

mary) 

ca–es 78.65 94.76 15.805 2 
es–ca 79.69 95.76 14.632 1 
pt–es 46.51 86.31 41.235 2 
es–pt 40.35 84.99 45.258 2 

85,000 
(contras-

tive) 

ca–es 76.78 94.46 17.067 5 
es–ca 77.32 95.35 16.744 3 
pt–es 43.12 84.99 45.068 4 
es–pt 38.90 83.89 47.044 3 

 
Table 3: Shared task results for the test sets as computed 
by the shared task organizers.  
 

Especially the substitution of the apostrophes re-
sulted in an improvement of several BLEU points, 
whereas the effects of blank removal before and af-
ter apostrophes differed depending on the software 
used for automatic evaluation. When using Tilde’s 
interactive BLEU score evaluator8 this change had 
no effect, whereas with the Moses multi-bleu-de-
tok.perl tool, which we used in our scripts, a small 
improvement was obtained. The discrepancy can 
be explained by assuming that tools for computing 
BLEU scores often introduce some forms of to-
kenization or de-tokenization by themselves, and 
that these operations can slightly differ between 
tools. 

Table 2 shows the BLEU scores obtained with 
the multi-bleu-detok.perl tool on the development 
sets for the four language pairs and the two param-
eter settings (byte pair encoding vocabulary sizes 
of 40,000 vs. 85,000). Table 3 shows the official 
BLEU scores for the test sets as computed by the 
shared task organizers who also provided scores for 
the RIBES (Isozaki et al., 2010) and TER (Snover 
et al., 2006) measures on the evaluation section of 
the SLT webpage. These scores we cite in Table 3. 
The last column shows our submissions’ ranks 
among the other teams participating in the compe-
tition. As can be seen, our primary submissions 
(byte pair encoding vocabulary size of 40,000) won 
the competition for Spanish → Catalan, and ranked 
second for the other three language pairs. 

As can be expected from the evaluation scores, 
the translation quality is to the most part very good. 
This is particularly true for the language pairs in-
volving Catalan. Table 4 shows a translation exam-
ple for Portuguese → Spanish which is harder than 
Catalan → Spanish. For all language pairs, we 
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found a few occurrences of hallucinations (Raunak 
et al., 2021), mainly of the type where the begin-
ning of a long sentence is translated well but to-
wards the end a phrase translation is repeated over 
and over again. To give an idea how often this hap-
pened: manual inspection of the results for Catalan 
→ Spanish (vocabulary size 85,000) showed that 
such hallucinations occurred in 7 of the 970 sen-
tence translations of the development set. 

 
 

FIRST THREE SEGMENTS OF 

TEST SET (PORTUGUESE) 
SEBAMAT TRANSLA-

TION (SPANISH) 
O plano pretende con-
tribuir para a realização 
dos objetivos da política 
comum das pescas e, em 
especial, para garantir 
que a exploração dos re-
cursos biológicos 
marinhos vivos 
restabeleça e mantenha 
as populações das es-
pécies exploradas acima 
de níveis que possam 
produzir o rendimento 
máximo sustentável 
(MSY). 

El plan pretende con-
tribuir a la consecución 
de los objetivos de la 
política pesquera 
común y, en particular, 
garantizar que la explo-
tación de los recursos 
biológicos marinos vi-
vos restablezca y man-
tenga a las poblaciones 
de especies explotadas 
por encima de niveles 
que puedan producir el 
rendimiento máximo 
sostenible (RMS). 

Coordenar, em consulta 
com a Comissão, os 
métodos de diagnóstico 
da doença de Newcastle 
nos Estados-Membros, 
nomeadamente, medi-
ante: 

Coordinar, en consulta 
con la Comisión, los 
métodos de diagnóstico 
de la enfermedad de 
Newcastle en los Esta-
dos miembros, en par-
ticular mediante: 

Por conseguinte, 
atualmente é preciso co-
financiamento da União 
para assegurar que a Fi-
nance Watch e a Better 
Finance recebam os re-
cursos necessários para 
atingirem os objetivos 
pretendidos nos próxi-
mos anos, e para propor-
cionar estabilidade finan-
ceira a ambas as organi-
zações, aos seus peritos e 
ao seu pessoal adminis-
trativo, que até agora 
conseguiram lançar as 
suas atividades rele-
vantes em pouco tempo. 

Por lo tanto, hoy es 
necesario cofinanciar la 
Unión para garantizar 
que Finance Watch y 
Better Finance reciban 
los recursos necesarios 
para alcanzar los ob-
jetivos deseados en los 
próximos años y para 
proporcionar estabi-
lidad financiera a am-
bas organizaciones, a 
sus expertos y a su per-
sonal administrativo, 
que hasta ahora han 
logrado lanzar sus ac-
tividades relevantes en 
poco tiempo. 

 
Table 4: First three Portuguese segments of the SLT 
2021 test set and their translations to Spanish as pro-
duced by the primary SEBAMAT NMT system. 
 

The hallucinations could be detected by looking 
at the ratio of sentence lengths between a source 
language sentence and its translation, and/or by de-
tecting repetitive phrases towards the end of a sen-
tence translation. However, according to Raunak et 
al. (2021), hallucinations are a problem of training 
data quality, which to improve would have been too 
time-consuming. We thought of greedy solutions 
such as cutting off repetitive sentence ends, but did 
not implement them for lack of time and as they 
would be hard to justify.  

5 Discussion and conclusions 

Given the observation that the language pairs in-
volving Catalan achieved considerably higher eval-
uation scores than those involving Portuguese, the 
question arises how this can be explained. Our 
somewhat speculative answer is as follows: As Cat-
alan’s grammar and sentence structure is very sim-
ilar to Spanish, with differences mainly on the vo-
cabulary side, extremely high scores can be 
achieved because in many cases, often in the form 
of a word-by-word translation, there is just one ob-
vious way how to translate a sentence for both man 
and machine. This is only to a lesser extend true for 
Spanish–Portuguese, so the lower scores are likely 
caused by more variability in acceptable translation 
options, rather than by lower translation quality. 

When comparing the BLEU scores in Tables 2 
and 3, it can be seen that our system performed sig-
nificantly worse on the test sets than it did on the 
development sets. From this we conclude that 
probably the test data is less representative of the 
training data than the development data. Problems 
with overfitting seem unlikely as in the previous 
SEBAMAT work we had usually used randomly 
held out sentences of the training data for both de-
velopment and testing. In such a scenario, the re-
sults were very similar in both cases, with only mi-
nor unsystematic discrepancies in BLEU scores. 

Finally, let us try to answer the questions raised 
in the introduction. As it was ranked first for Span-
ish → Catalan and second for the other three lang-
uage pairs, it appears that especially our primary 
systems (with vocabulary size 40,000) are compet-
itive. Let us mention, however, that all participating 
systems showed similarly convincing evaluation 
scores, so that minor differences in parameter 
choice (such as vocabulary size) or in the organiz-
ers’ selection of the test set may have had a notice-
able impact on the rankings. 
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Like many other studies, this work provides 
once again evidence how powerful NMT is, and 
how well the Marian toolkit works: Within a week 
it was possible for a single developer to add two 
new language pairs (in two directions each) to the 
SEBAMAT portfolio, despite mediocre proficien-
cy of Spanish and hardly any proficiency of Cata-
lan and Portuguese. Of course, achieving good 
translation quality was considerably facilitated by 
the similarity of the languages and by the good 
quality and size of the training data provided by the 
shared task organizers. 
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Abstract

In this work, two Neural Machine Transla-
tion (NMT) systems have been developed and
evaluated as part of the bidirectional Tamil-
Telugu similar languages translation subtask in
WMT21. The OpenNMT-py toolkit has been
used to create quick prototypes of the systems,
following which models have been trained on
the training datasets containing the parallel
corpus and finally the models have been evalu-
ated on the dev datasets provided as part of the
task. Both the systems have been trained on a
DGX station with 4 - V100 GPUs.

The first NMT system in this work is a Trans-
former based 6 layer encoder-decoder model,
trained for 100000 training steps, whose con-
figuration is similar to the one provided by
OpenNMT-py and this is used to create a
model for bidirectional translation. The sec-
ond NMT system contains two unidirectional
translation models with the same configuration
as the first system, with the addition of utiliz-
ing Byte Pair Encoding (BPE) for subword tok-
enization through the pre-trained MultiBPEmb
model. Based on the dev dataset evaluation
metrics for both the systems, the first system
i.e. the vanilla Transformer model has been
submitted as the Primary system. Since there
were no improvements in the metrics during
training of the second system with BPE, it has
been submitted as a contrastive system.

1 Introduction

Tamil is a language, predominantly spoken in Tamil
Nadu, a state in Southern India, along with coun-
tries with a large Tamil speaking diaspora such as
Sri Lanka, Malaysia and Singapore, to name a few.
Telugu on the other hand is the official language
of two Southern states in India, namely Andhra
Pradesh and Telangana. It is also spoken among
the Telugu speaking immigrant population in the

USA, Canada and the UK. Both languages belong
to the Dravidian family of languages which com-
prise of Tamil, Telugu, Kannada and Malayalam as
the major languages spoken in South India. Despite
belonging to the same family of languages, there
are many differences between Tamil and Telugu,
such as the script used for writing and linguistic dif-
ferences in terms of phonology, morphology, syn-
tax among others. Tamil belongs to the Southern
branch of Dravidian languages, which has a rich
literary tradition spanning more than 2000 years.
Telugu, on the other hand, belongs to the South
Central branch of Dravidian languages and has a
considerable amount of different linguistic charac-
teristics when compared to Tamil as described by
Krishnamurthy (2019).

As part of the similar language translation’s sub-
task for Dravidian Languages, namely Tamil (TA)
and Telugu (TE), we have attempted to build Neu-
ral Machine Translation (NMT) models using the
OpenNMT-py toolkit 1, which helps to generate
quick prototypes for the NMT models with the
desired configurations. The first NMT system (sub-
mitted as the primary system) in this work is a
Transformer based 6 layer encoder-decoder model
which provides a single model for bidirectional
translation between Tamil and Telugu using the
datasets provided for this shared task. The sec-
ond NMT system (submitted as the contrastive
system) consists of two unidirectional translation
models with the same configuration as the first sys-
tem, but with the addition of utilizing Byte Pair
Encoding (BPE) for subword tokenization using
the pre-trained MultiBPEmb model (Heinzerling
and Strube, 2018).

The rest of the work is described in sections that
pertain to the related work, data, system descrip-

1https://opennmt.net/OpenNMT-py/main.
html
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Dataset Type Dataset Name Number of samples
Parallel Aligned TA-TE pairs (Training) PM India 26009
Parallel Aligned TA-TE pairs (Training) News 11038
Parallel Aligned TA-TE pairs (Training) MKB 3100
Parallel Aligned TA-TE pairs (Dev) Dev 1261
Non Aligned TA-TE sets (Test) Test 1735 (per language set)

Table 1: Dataset statistics for parallel aligned Tamil-Telugu pairs used as train and dev (validation) datasets along
with non aligned samples used as the test set.

Dataset Type Dataset Name Language Longest Line Length
Training PM India TA 659
Training News TA 1524
Training MKB TA 412
Dev Dev TA 923
Test Test TA 1544
Training PM India TE 718
Training News TE 1356
Training MKB TE 376
Dev Dev TE 1004
Test Test TE 757

Table 2: Dataset statistics for Longest Line.

tion, results and conclusion.

2 Rationale for Selecting the Models and
Related Work

There has been a significant amount of work done
on developing machine translation systems for In-
dian languages, with some notable examples for
Dravidian languages such as Tamil and Malayalam
described in Kumar et al. (2019). This shared
task provides a unique challenge in terms of the
constraint on the parallel aligned language pair
data made available for training. The other chal-
lenges include the linguistically rich and domain
specific content present in the Prime Minister of
India (PMI) and the Mann ki baat (MKB) datasets,
where topics related to India’s domestic and foreign
policy issues can be found.

In order to address the challenge of lengthy input
(samples containing more than 300 space delim-
ited tokens), the Transformer model described by
Vaswani et al. (2017) was adopted. This model pro-
vides the multi head attention mechanism which
helps retain context for longer length sentence sam-
ples. To reduce the vocabulary, reduce the training
time and possibly improve the translation quality
(through sub word tokenization), a MultiBPEmb
model trained with a vocabulary of 100000 tokens
from 275 languages has been utilised (Heinzerling

and Strube, 2018).
Other methods to improve translation quality,

that have not been explored as part of this work are
the use of back translation using monolingual cor-
pus or corpora, on the lines of the one described by
Sennrich et al. (2016). Factored NMT (which uses
data tagged on the basis of morphology and Parts
of Speech (POS)) such as the one described by
García-Martínez et al. (2016) is another possible
candidate suitable for the kind of challenge pro-
vided by the similar language translation task, as
the use of POS and morphological information can
reduce the number of tokens and make the models
more generalizable in terms of predictions.

3 Data

The datasets used in the NMT systems for this work
are the parallel aligned Tamil and Telugu (TA-TE)
language pairs provided as part of the Dravidian
Language sub task of the Similar Language Transla-
tion shared task2. Some statistics about the dataset
are outlined in Table 1.

3.1 Dataset preprocessing

Due to the moderate size of the training dataset,
which contains 40147 samples, along with the topic

2https://wmt21similar.cs.upc.edu/
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Model Configuration Name Model Configuration Value
Corpus Weights for PMI dataset 23
Corpus Weights for News dataset 19
Corpus Weights for MKB dataset 3
Source and Target Sequence Length 1600
Save checkpoint after steps 500
Number of training steps 100000
Number of validation steps 5000
Training batch size 4096
Dev(validation) batch size 16
Optimizer Adam
Number of Encoder Decoder Layers 6 (each)
Number of Attention heads 8

Table 3: Training Configuration for Transformer based Encoder-Decoder Model (Primary System).

overlap of sentence samples between the training
and dev datasets as well as test set (to a certain ex-
tent) on topics such as the Indian Prime Minister’s
statements on domestic issues and foreign policies
in the PM India dataset, the entire training dataset
has been utilized in its original form.

The length wise statistics of the dataset (in terms
of space delimited tokens) is given in Table 2, this
was taken as the deciding factor in fixing the max-
imum input length as 1600 for the NMT systems
developed. The tokenization for the primary system
was done as space delimited tokens which yielded
a shared Tamil-Telugu vocabulary of 194860 to-
kens. On the other hand on using the MultiBPEmb
model for subword tokenization gave a vocabulary
of 14056 tokens for Tamil (TA) and 13170 tokens
for Telugu (TE), which included some words in
English as well.

4 System Description

As mentioned in section 1, the PyTorch based
toolkit OpenNMT-py has been used to create rapid
prototypes for NMT models (the motivations for
the same can be seen in section 2), which have then
been trained on the datasets provided, validated
against the provided dev sets and finally transla-
tions for the test sets described in section 3 have
been obtained and submitted to the committee for
evaluating the Similar Language Translation task.

A DGX station with 4 - V100 GPUs have been
used to train the models utilized in this task. A
Transformer based 6 layer encoder-decoder model
on the lines of the NMT system described by
Vaswani et al. (2017), was trained for 100000 train-
ing steps as the first NMT system to be evaluated.

The configuration for this model is the same as
that provided by OpenNMT-py. In order to save
time, a single bidirectional translation model for
TA-TE language pair has been created, which can
translate from Tamil to Telugu and vice versa. The
datasets used in this system were doubled in terms
of the number of samples when compared to the
second NMT system (constrastive submission), by
reversing the position of the TA-TE language pair
and appending them to the original datasets. No
special tagging identifiers were used as the Tamil
and Telugu scripts are distinct.

Basic space delimited tokenization was applied
on the datasets, which resulted in a combined TA-
TE vocabulary of 194860 tokens being generated,
the relevant key configuration for this model are
listed in Table 3.

The corpus weights help assign varied impor-
tance to the particular datasets used in this task,
the values for these weights were determined after
visual analysis of the dev(validation) dataset which
indicated the dev dataset’s contents had a greater
overlap with PMI, News and (Mann ki Baat - which
roughly translates to "From the heart") MKB in that
particular order. The training time for the entire
model was 18 hours.

The second NMT system consists of two uni-
directional translation models with the same con-
figuration as the first system, with the addition of
utilizing Byte Pair Encoding (BPE) for subwords
using the pretrained MultiBPEmb model (Heinzer-
ling and Strube, 2018). The intuition behind using
BPE was to reduce the vocabulary size using sub-
word tokenization. The choice of the pre trained
BPE model was based on the relevance of content
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System Name Source
Lan-
guage

Target
Lan-
guage

BLEU RIBES TER

Primary System (Transformer Based) TA TE 4.321 7.4 99.1
Contrastive System (Transformer Based + BPE subword) TA TE 0.003 0.0 130.6
Primary System (Transformer Based) TE TA 3.908 9.0 98.7
Contrastive System (Transformer Based + BPE subword) TE TA 0.029 3.0 105.0

Table 4: Dev dataset BLEU, RIBES and TER Corpus level scores using the VizSeq library.

System Name Source
Lan-
guage

Target
Lan-
guage

BLEU RIBES TER System
Rank

Primary System TA TE 6.09 17.03 - 1
Contrastive System TA TE 0.00 0.03 - 9
Primary System TE TA 6.55 19.61 98.356 4
Contrastive System TE TA 0.04 1.00 - 9

Table 5: Test dataset BLEU, RIBES, TER scores and BLEU based System Rank in the Shared Task

used for BPE model training, languages supported
and size of the vocabulary. Heinzerling and Strube
(2018) describes a MultiBPE model with a 100000
vocabulary which was deemed suitable for this task
as it supported Tamil and Telugu, was trained on
WikiNews and could use a single vocabulary like
the first NMT system used in this work. During
training it was found that the translations for the
Dev set couldn’t distinguish between Tamil and
Telugu subwords correctly, due to the failure in
vocabulary matching for the candidates used in
the evaluation and possibly due to the vocabulary
shared between the languages. Hence, this system
was trained twice generating two unidirectional
models for TA-TE and TE-TA translations. The
training time for each model was 5 hours, which is
less when compared to the primary system due to
the number of samples used (the primary system
uses double the number of samples) and the vocab-
ulary size (the contrastive system has a smaller and
fixed vocabulary as a pre trained BPE model has
been used).

5 Results

The evaluation metrics used to evaluate the sys-
tems in this task are BiLingual Evaluation Under-
study (BLEU) score as described by Papineni et al.
(2002), Rank-based Intuitive Bilingual Evaluation
(RIBES) score as described by Isozaki et al. (2010)
and Translation Error Rate (TER) as described by
Snover et al. (2006).

Corpus level metrics for the dev dataset were
computed using the VizSeq python library which is
an implementation of several metrics described by
Wang et al. (2019).The metrics for the dev dataset
are listed in Table 4.

Based on the evaluation metrics of the Dev (val-
idation) dataset translations for both the systems
evaluated in this work, the first system i.e. the
vanilla Transformer model has been submitted as
the Primary system. Since there were no improve-
ments in the metrics (the reason for it can be seen
in section 6), during training of the second system
which consists of the Transformer model along
with the use of MultiBPEmb model for sub word
tokenization, hence the second system has been
submitted as a contrastive system.

Table 5 lists the evaluation metrics3 applied on
the test dataset and the BLEU based system rank
in the shared task provided by the evaluation com-
mittee 4,5.

6 Conclusion and Future Work

The analysis of the evaluation metrics, from sec-
tion 5, on the dev dataset indicates that the primary
system, which is a Transformer based Encoder-

3The results of the TER metrics for the test set translations
have been marked as - (refer Table 5), when the values exceed
100.0

4https://mzampieri.com/workshops/wmt/
2021/TA_TE.pdf

5https://mzampieri.com/workshops/wmt/
2021/TE_TA.pdf
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Decoder model, performs better than the con-
trastive system which contains Transformer based
NMT models with BPE for subword tokenization.
The reason for this is possibly due to the lack of
vocabulary matching the candidates being evalu-
ated and also due to the shared vocabulary of the
MultiBPEmb model. The choice of a pre trained
MultiBPE model was to reduce effort on the em-
beddings, but in hindsight training the MultiBPE
model using the given datasets or fine tuning the
pre trained MultiBPE model on the given datasets
would have been a better choice.

As seen from the evaluation of translations ob-
tained using the Dev and Test datasets using BLEU,
RIBES and TER metrics in section 5, there is
a considerable scope of improvement in the sce-
nario where a constraint is placed on the number of
datasets containing parallel corpus language pair
samples, that can be used for training. The possible
reason for the low BLEU scores in the primary sys-
tem is the relatively small number of samples used
along with the presence of a large variety in the
linguistic forms present in the datasets. In the case
of the contrastive system, the low BLEU scores can
be attributed to the use of the pre trained MultiBPE
model (a pre trained BPE model fine tuned on the
given datasets would have helped improved the
scores). Some approaches that have the potential
to improve the results are, the use of back trans-
lation using monolingual corpus (through training
corpus augmentation and providing more training
examples for the model to learn), utilizing domain
specific corpora from the shared machine transla-
tion task for Indian Languages described in section
2. Factored NMT, an NMT which uses input tagged
on the basis of morphology and Parts of Speech
(POS) to reduce the number of tokens, the use of
alternative BPE models trained on content which
are a close match to the dataset used in the shared
task, are other promising alternatives.
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Abstract

In this paper, we describe our submissions for
the Similar Language Translation Shared Task
2021. We built 3 systems in each direction for
the Tamil ⇐⇒ Telugu language pair. This
paper outlines experiments with various tok-
enization schemes to train statistical models.
We also report the configuration of the submit-
ted systems and results produced by them.

1 Introduction

Machine translation is a process of translating text
from a source to a target language. There are mul-
tiple ways of building such a system - Rule-based,
Data-driven, Hybrid etc. In this shared task, we use
data-driven method to create machine translation
system for Tamil⇐⇒ Telugu. Due to low-resource
setting of this language pair in the shared task, we
use Statistical Machine translation method (Koehn
et al., 2003),(Koehn and Knowles, 2017) to build
systems.

Tamil Telugu language pair comes under the
bracket of similar languages. Similar languages
show similarity in their lexical and syntactical prop-
erties (Kunchukuttan et al., 2014a). This may be
due to them being in close proximity of each other
for long time. This can also be due to common
ancestry. In the current digital context, transla-
tion between similar languages is of importance.
But there can be scarcity of good quality parallel
text. In the current shared task, we have a language
pair which is morphologically rich and with '39K
parallel sentences. So, following Kunchukuttan
and Bhattacharyya (2017) and Kunchukuttan et al.
(2014b) we use sentencepiece1 (Kudo and Richard-
son, 2018) and morfessor2 (Virpioja et al., 2013)
to segment tokens in the dataset into subwords.
And due to the size of parallel text ('39K parallel

1https://github.com/google/
sentencepiece

2https://github.com/aalto-speech/
morfessor

text) coming under purview of low resource, we
make use of Moses3(Koehn et al., 2007) to create
statistical machine translation models(Koehn and
Knowles, 2017).

For this shared task we developed 3 translation
systems (1 Primary and 2 Contrastive) in each direc-
tion Tamil⇐⇒ Telugu. For each output we post-
processed and detokenized translation output de-
pending on the tokenization scheme for target lan-
guage. To choose a primary and 2 contrastive sys-
tems, we compared BLEU (Papineni et al., 2002)
scores on output of development dataset for each
system using sacrebleu4 (Post, 2018). The Follow-
ing sections give more details about the systems
developed.

2 SMT systems using different schemes

We used various tokenization schemes to build
translation systems. Evaluated these systems on the
development dataset. After post-processing, deto-
kenizing and scoring each translation output, we
submit output systems as primary and contrastive
submissions accordingly.

2.1 Data and preprocessing

We used parallel data provided by the organizers
to train all the models. IndicNLP5 (Kunchukut-
tan, 2020) was used to normalize and tokenize
datasets. 2 Subword models were trained on tok-
enized text for each language. Sentencepiece(Kudo
and Richardson, 2018) was used to prepare a sub-
word tokenizer model with vocabulary size set to
32000 and character coverage set to 0.9995. An-
other alternative tokenization model was trained
on morfessor(Virpioja et al., 2013). To create 3
systems for each translation direction, we used the

3https://github.com/moses-smt/
mosesdecoder

4https://github.com/mjpost/sacrebleu
5https://github.com/anoopkunchukuttan/

indic_nlp_library
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Dataset with
tokenization

Tamil Telugu Total number
of LinesTotal Token

Count
Total Unique

Token
Avg Token

Per line
Total Token

Count
Total Unique

Token
Avg Token

Per line
Train.basicTok 691433 74341 17.22 725365 72949 18.06 39836
Dev.basicTok 30017 9683 23.80 30359 9467 24.07 1261

Train.spm 770632 31674 19.63 956023 31782 24.35 39246
Dev.spm 36672 8647 29.08 41779 9112 33.13 1261

Train.morf 956485 13956 24.47 947463 17823 24.24 39081
Dev.morf 45279 5496 35.90 43602 6380 34.57 1261

Table 1: Statistics of Tamil and Telugu datasets

following tokenization schemes,

• basicTok: bitext is tokenized with IndicNLP.

• morf: each training file in the parallel text is
tokenized into subwords with the respective
morfessor model.

• spm: each training file in the parallel text is
tokenized into subwords with the respective
sentencepiece model

Table 1 shows the statistics of the Tamil and Tel-
ugu dataset for each tokenization scheme after us-
ing clean-corpus-n.perl script with 1,70
as min,max line length for training text. No ad-
ditional monolingual dataset was used in building
any of the models.

2.2 MT Systems
We build a trigram language model with kneser ney
smoothing for each language in each tokenization
scheme using KenLM (Heafield, 2011). And used
Moses (Koehn et al., 2007) to train an SMT system.
MERT (Och, 2003) is used for tuning the trained
model on development datasets. The performance
of all systems, for each language direction on re-
spective tokenized development datasets, is given
in Table 2. For this shared task, we submit 3 sys-

Tamil ->Telugu Telugu ->Tamil
basicTok 7.7 9.9

spm 5.2 9.0
morf 7.7 9.8

Table 2: BLEU score on development dataset for each
system

tems (1 PRIMARY and 2 CONTRASTIVE) for
each language direction for evaluation. Depending
on scores on development dataset, systems build
were submitted as,

• For Telugu to Tamil,

– A3-108_TE_TA_PRIMARY.txt: basic-
Tok Telugu -> basicTok Tamil system
- trained using SMT model - tokenized
using indic nlp library.

– A3-108_TE_TA_CONTRASTIVE1.txt:
morf Telugu -> morf Tamil system -
trained using SMT model - tokenized
using morfessor into subwords for
training

– A3-108_TE_TA_CONTRASTIVE2.txt:
spm Telugu -> spm Tamil system -
trained using SMT model - tokenized
using sentencepiece into subwords for
training

• For Tamil to Telugu,

– A3-108_TA_TE_PRIMARY.txt: morf
Tamil -> morf Telugu system - trained
using SMT model - tokenized using mor-
fessor into subwords for training

– A3-108_TA_TE_CONTRASTIVE1.txt:
basicTok Tamil -> basicTok Telugu
system - trained using SMT model -
tokenized using indic nlp library.

– A3-108_TA_TE_CONTRASTIVE2.txt:
spm Tamil -> spm Telugu system -
trained using SMT model - tokenized
using sentencepiece into subwords for
training

2.3 Results
This subsection compares the results of our sys-
tems, which we received from organizers, in terms
of BLEU scores. Table 3 shows the BLEU scores
for Telugu to Tamil systems. In comparison with
other systems, all of our system outputs score high-
est. We were hoping that, in test cases, models
using subwords for training and translating would
prove to be better than basicTok, but that was not
the case. Instead models trained on basicTok fared
better.
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System Type BLEU RIBES TER
PRIMARY (basicTok) 8.37 43.55 95.884

CONTRASTIVE1 (morf) 7.89 46.24 95.627
CONTRASTIVE2 (spm) 7.43 42.54 94.964

Table 3: Scores on test dataset for each Telugu to Tamil
system

Table 4 shows the BLEU score we received for
Tamil to Telugu systems. Our system outputs from

System Type BLEU RIBES TER
CONTRASTIVE1 (basicTok) 5.54 40.58 98.082

PRIMARY (morf) 5.23 42.37 98.662
CONTRASTIVE2 (spm) 3.32 34.42 -

Table 4: Scores on test dataset for each Tamil to Telugu
system

CONTRASITVE1 and PRIMARY submission are
in the top 3 in comparison with other systems.
Here again, we see basicTok model fared a bit bet-
ter than model trained on morf segmented dataset.
And sentencepiece model was '2 BLEU points be-
hind both the systems. These BLEU scores (CON-
TRASTIVE1, PRIMARY) are in the top 3. Again,
we were hoping, that in test cases, models using
subwords for training and translating would prove
to be better. But as was case in Telugu to Tamil,
here also models trained on basicTok dataset fared
better, followed by models trained on morfessor
segmented dataset.
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Abstract

This paper describes Netmarble’s submission
to WMT21 Automatic Post-Editing (APE)
Shared Task for the English-German language
pair. First, we propose a Curriculum Training
Strategy in training stages. Facebook Fair’s
WMT19 news translation model was chosen
to engage the large and powerful pre-trained
neural networks. Then, we post-train the trans-
lation model with different levels of data at
each training stages. As the training stages go
on, we make the system learn to solve multi-
ple tasks by adding extra information at differ-
ent training stages gradually. We also show
a way to utilize the additional data in large
volume for APE tasks. For further improve-
ment, we apply Multi-Task Learning Strategy
with the Dynamic Weight Average during the
fine-tuning stage. To fine-tune the APE cor-
pus with limited data, we add some related sub-
tasks to learn a unified representation. Finally,
for better performance, we leverage external
translations as augmented machine translation
(MT) during the post-training and fine-tuning.
As experimental results show, our APE sys-
tem significantly improves the translations of
provided MT results by -2.848 and +3.74 on
the development dataset in terms of TER and
BLEU, respectively. It also demonstrates its ef-
fectiveness on the test dataset with higher qual-
ity than the development dataset.

1 Introduction

Automatic Post-Editing (APE) aims to improve the
quality of an existing Machine Translation (MT)
system by learning from human-edited samples
(Chatterjee et al., 2019, 2020). With the continu-
ous performance improvements of Neural Machine
Translation (NMT) systems along with deep learn-
ing advancements, developing APE systems has
faced a big challenge. Simple translation errors
are hard to find in machine translation outputs, and

∗These authors equally contributed to this work.

the remaining errors are still hard to solve. In re-
cent years, transfer learning and data augmentation
techniques have shown their efficiency when train-
ing models on datasets with limited size (Devlin
et al., 2019). Therefore, such approaches are also
adopted in APE tasks (Lopes et al., 2019).

Participants in WMT21 APE shared tasks are
required to develop systems to automatically post-
edit the translation outputs from an unknown MT
system. In this year, the same data has been re-
post-edited to improve the quality. As a result of
performing statistics on the development set, the
evaluation scores are 19.057 and 68.79 in terms
of TER and BLEU, which are much higher than
the scores of last year, 31.374 and 50.37, respec-
tively. The central distribution of TER has shifted
to the left compared to last year. We find that the
section in the range of 5 to 10 has the most exam-
ples, which indicates that over-correction problems
should be considered during the APE tasks. In ad-
dition, the dataset has been changed in terms of
the domain (from IT to Wikipedia), which results
in the change in data distribution. Therefore, di-
rectly using previous datasets or officially provided
synthetic corpus (Junczys-Dowmunt and Grund-
kiewicz, 2016; Negri et al., 2018) to enlarge the
training set of APE tasks might not be appropriate
under such circumstances. In work by Yang et al.
(2020), considering the change of data distribution,
they select to use additional MT candidates as the
data augmentation method to improve feature di-
versity in their APE systems, which significantly
improves the APE performance.

Inspired by this idea, we decided to solve the
APE task as NMT alike task and utilize the exter-
nal MT at the fine-tuning stage. However, because
of the limited size of the APE corpus and the im-
provement of MT quality, fine-tune the model only
on the APE data, easily reach the performance ceil-
ing in spite of using external translation. To solve
the aforementioned issues, existing works for other
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Natural Language Processing (NLP) tasks have
adopted several Multi-task Learning (MTL) meth-
ods with the auxiliary task (Whang et al., 2021;
Oh et al., 2021). We wondered whether it is pos-
sible to apply MTL mechanism with APE task to
the fine-tuning stage since MTL trains the model
to encourage representation sharing and improve
generalization performance. Furthermore it aims
to alleviate the data sparsity problem with a lim-
ited number of data in each task (Zhang and Yang,
2021). Therefore, we add some related NLP tasks
along with the APE task. Our experiment results
demonstrate that such approaches can further im-
prove performance.

As mentioned above, large-volume data, such as
news translation data and artificial synthetic data,
can not be used to enlarge the APE corpus directly
during the fine-tuning because of the large gap in
data distribution. We wondered if there is a way to
apply any learning method to the post-training so
that we can utilize more data to train a more robust
and powerful model. In work by (Xu et al., 2020),
they applied Curriculum Learning according to the
difficulty of each example on a single training stage.
Inspired by the research, we try to apply Curricu-
lum Learning across multiple training stages. As
the training stage increases, we make the system
learn to solve the different tasks by gradually pro-
viding extra information, described in Section 3 in
detail. Extensive experiments show the effective-
ness of applying the Curriculum Learning Strategy
during the training phase. Finally, We combined
these two approaches to make our final APE sys-
tem, which significantly improves the performance
of the APE task.

Our APE system is built based on Trans-
former (Vaswani et al., 2017) and is post-trained
on WMT21 News-Translation Data (Koehn, 2005;
Tiedemann, 2012; Rozis and Skadin, š, 2017; Bhatia
et al., 2016; Tiedemann, 2012) and artificial syn-
thetic data (Junczys-Dowmunt and Grundkiewicz,
2016; Negri et al., 2018) provided by APE Task
with Curriculum Learning Strategy. For fine-
tuning, MTL is applied with related NLP sub-
tasks such as Part-Of-Speech (POS), Named En-
tity Recognition (NER), Masked Language Model
(MLM), and Keep/Translate are added to the model
to reduce the over-fitting as well as achieve bet-
ter performance, described in Section 4 in detail.
For better training efficiency, the Dynamic Weight
Average (DWA) mechanism (Liu et al., 2019) is

applied during the MTL to keep the correct balance
between these subtasks. Here we summarize our
contributions as follows:

• We design Multi-task Learning Strategy
(MLS) with DWA to the fine-tuning stage,
which improves the training efficiency and
the performance significantly.

• We adapt Curriculum Training Strategy (CTS)
to our APE system during the post-training
across the multiple training stages, which
shows the effectiveness in performance. In
addition, we showed a way to utilize the addi-
tional data in large volumes in APE tasks.

2 Base System

Our system is based on Facebook FAIR’s WMT19
News Translation Model (Ng et al., 2019), which
used the big Transformer (Vaswani et al., 2017)
and provided the pre-trained weights. We use both
of them as our base system. In addition, we utilize
data augmentation with external MT, which has
been proposed by Yang et al. (2020) to generate
the external translated sentence (mt_ext) and help
generate the post-editing sentence (pe). An input
sentence X that contains a source sentence (src),
a translated sentence by the machine translation
system (mt), and an external translated sentence
(mt_ext) is defined as,

X = [src <SEP>mt <SEP>mt_ext], (1)

and output a sequence, H = [hsrc0 , hsrc1 , ...,
hsrcn , h<SEP>, hmt0 , ..., hmtm , h<SEP>, hmt_ext0 , ...,
hmt_extl ] ∈ Rdh×(n+m+l+2), where dh represents
a dimension of the encoder, and n, m, l represents
the number of tokens for src, mt, mt_ext,
respectively. We represent the parameters of the
encoder as Θs. Then, H is fed into the decoder,
and the decoder target is defined as Y = [pe].

3 Curriculum Training Strategy (CTS)

CTS has been inspired by Curriculum Learning
(Xu et al., 2020) that is applied according to the
difficulty of each example on a single training stage,
which has already been applied to our baseline
architecture by Ng et al. (2019). In addition, we
propose CTS, which applied Curriculum Learning
across multiple training stages. CTS aims at step-
by-step learning. In an early stage, the system
learns to solve easy problems or something that
needs to know beforehand and complex problems
or target tasks in the later stages.
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Figure 1: Overall architecture

3.1 Step 1: Understanding for Machine
Translation

X = [src], (2)

The APE task has to understand the machine trans-
lation system because the APE task modifies the
mt results. Therefore, we designed the first step of
the curriculum with the input as Equation 2 and the
target as pe.

3.2 Step 2: Learning about Post-Editing

X = [src <SEP>mt], (3)

After the first step, our system understands as the
machine translation system. In this step, we make
our system learn how to edit mt to pe with the
input as Equation 3 and the target as pe.

3.3 Step 3: Post-Editing with External MT

For the second step, our system learns about the
post-editing mechanism. In this step, we make the
system learn to take the External MT into account
with the input as Equation 1 and the target as pe.

3.4 Fine-Tuning

Finally, we fine-tune the APE system using the data
given in the challenge with the input as Equation 1
and the target as pe.

4 Multi-task Learning Strategy (MLS)

Existing works for MTL propose jointly learn-
ing methods among related tasks. MTL aims
to improve the generalization performance of the
whole tasks by sharing knowledge representations
of other tasks and can also alleviate the data spar-
sity problem where each task has limited labeled
data (Zhang and Yang, 2021). Therefore, we uti-
lize MLS for our system because WMT21 APE
shared task provides only 7,000 train sentences. In
NMT, existing works for MTL applied POS, NER,
or MLM as subtasks and provided improved re-
sults (Chatterjee et al., 2017; Wang et al., 2020).
Despite the impressive results, they applied only
a few subtasks, such as one or two. Since we de-
fined the APE task as NMT alike problem in our
work, it would be helpful to leverage these subtasks
into our work to achieve better performance. We
find out that all these subtasks are cooperative with
each other and benefit our system. Inspired by the
word-level quality estimation task, we also add the
Keep/Translate classification tasks for encoder and
decoder to handle the high-quality APE task, which
is described in Section 4.2 in detail. Since utilizing
multiple subtasks, we have to consider the loss ra-
tio between these subtasks. In our work, we apply
the Dynamic Weight Average method described in
Liu et al. (2019), and more details are described in
Section 4.4. Our final system based on the model

309



post-trained using CTS with fine-tuning the APE
data with MLS.

4.1 Architecture
Our architecture is described in Figure 1. The over-
all flow of the APE task is the same in Section 2.
In this section, we explain five auxiliary subtasks
consisting of POS, NER, MLM, Keep/Translate for
the encoder, and Keep/Translate for the decoder.
For the encoder, the encoding vector H is fed into
Task-shared Representation Layer in Figure 1 like
a Fully-connected Neural Network (FNN), and the
output is represented as,

Hs = (W1H + b1), (4)

where W1 ∈ Rdsh×dh , and dsh represents a dimen-
sion of the Task-shared Representation Layer.

4.2 Subtasks
POS & NER POS and NER task aims to predict
parts of speech and named entities about an input
sequence, respectively. Task-shared Representation
LayerHs is fed into Task-specific Output Heads on
Figure 1 like a FNN, and the output is represented
as,

Ŷ pos = softmax(W2Hs + b2), (5)

where W2 ∈ RCpos×dh is trainable parameters and
Cpos is the number of class of POS task. The pa-
rameters of Task-specific Output Heads for POS
task are represented as Θpos. Likewise, Ŷ ner is
obtained as in Equation 5 for NER task, where the
parameters are represented as Θner.

MLM In MLM task, we copy the input to-
kens from X to Xmlm, which is represented by
Xmlm = {x1, ..., xn+m+l+2}, where n, m, l rep-
resents the number of tokens for src, mt, mt_ext,
respectively. Then, we randomly mask 15% of the
tokens Xmlm using the special token mask, and
define the target as original input tokens. Xmlm is
fed into the encoder. Then, the output representa-
tion is used to the input for Task-specific Output
Heads for MLM task as,

Ŷ 3 = softmax(W3Hs + b3),

Ŷ mlm = {Ŷ 3
r |xr = mask,

∀ r ∈ {0, ..., n+m+ l + 2}}
(6)

where W3 ∈ RCmlm×dh represents trainable pa-
rameters and Cmlm is the number of vocab for the
encoder. The parameters of a linear projection layer
are represented as Θmlm for MLM task.

Keep/Translate Considering the characteristics
of the APE data with relatively low TER scores,
we decide to add Keep/Translate classification sub-
task to both Encoder and Decoder in our APE
system. Keep/Translate subtask aims to predict
the labels of the input sequence, where is Ŷ kt ∈
{Keep, Translate}. In this subtask, each token in
the input will be labeled with Keep or Translate.
For label generation, we apply to the pair of src-mt
and src-mt. First, we use SimAlign (Jalili Sabet
et al., 2020) to perform word alignment on the pe-
mt pair. To each aligned word pair, we labeled
them with Keep if they are equal. Otherwise, they
will be marked as Translate. As for the pair of src-
mt, we also do word alignment to find the corre-
spondence between the source and target side. On
the src side, the tokens are labeled with the same
name as the corresponding words on the mt side.
In our case, the same procedure on pe-mt is con-
ducted for the pair of mt_ext and pe because we
use the mt_ext as our data augmentation method.
Figure 2 shows an example of label generation in
the Keep/Translate task for better understanding.
The output is represented as,

Ŷ kt = softmax(W4Hs + b4), (7)

where W4 ∈ RCkt×dh is trainable parameters and
Ckt is the number of class of Keep/Translate task.
The parameters of Task-specific Output Heads for
Keep/Translate task are represented as Θkt and Ŷ kt

is obtained as in Equation 7 for Keep/Translate
task.

4.3 Loss
As described above, five subtasks are used in our
system, and most of them have data with imbal-
anced labels. The imbalanced ratio reaches 1:2160,
1:15, and 1:6 between minority and majority
classes in POS Tagger, NER, and Keep/Translate
subtasks, respectively. With such imbalanced data,
the Cross-Entropy loss used in classification prob-
lems may result in performance degradation in
some tasks. To improve the performance, the Focal
loss (Lin et al., 2017) is considered as an alternative
candidate because a Focal Loss function addresses
class imbalance during training in tasks. It applies
a modulating term to the cross-entropy loss in or-
der to focus on learning the hard negative exam-
ples. It reduces the relative loss for well-classified
examples (pt > 0.5), putting more focus on hard,
misclassified examples. Equation 8 describes the
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Figure 2: A label generation example in the Keep/Translate task

Focal Loss, where pt is the probability of each
class predicted by the model and γ represents the
focusing parameter. Considering the imbalanced
property of each task, we apply the Focal Loss to
three of our subtasks, such as POS Tagger, NER,
and Keep/Translate in the decoder.

FL(pt) = −(1− pt)
γlog(pt) (8)

Class Balanced Loss is designed to use a re-
weighting scheme that uses the effective number
of samples for each class to re-balance the loss,
thereby yielding a class-balanced loss (Cui et al.,
2019). As the number of samples increases, there
is information overlap among data. Therefore, the
marginal benefit that a model can extract from the
data diminishes. The effective number of samples,
which played as the expected volume of samples,
is used to capture the diminishing marginal ben-
efits by using more data points of a class. For
Keep/Translate task in the decoder, it just consid-
ered the PE as input, so we applied the Focal Loss
to the subtask. However, for Keep/Translate task
in the encoder, as one of the data augmentation
methods, the external MT is also considered as in-
put along with the src and mt. As the information
of input increases, we think it may cause infor-
mation overlap among data because mt and the
mt_ext have the most in common. Therefore, we
apply the Class-Balanced Loss as our loss function
in Keep/Translate subtask in the encoder. Equa-
tion 10 describes the Class-Balanced Loss (Lcb),
where C is the total number of classes, zy is the
output from the model for class y, ny is the num-
ber of samples in the ground-truth class and β ∈
[0, 1) is a hyperparameter which can be calculated
in Equation 9. In Equation 9, i denotes the class

index, i ∈ {1, 2, ..., C}, and N is the number of
samples.

As for the MLM task, since it does not suffer
from the data imbalance problem, we use the Cross-
Entropy loss in our work as other works do.

Ni = N,

βi = β = (N − 1)/N
(9)

Lcb = − 1− β
1− βny

log

(
exp(zy)∑C
j=1 exp(zj)

)
(10)

4.4 Dynamic Weight Average

For most Multi-Task learning networks, it’s dif-
ficult to find the best ratio between each task in
subtasks manually. Therefore, we apply the Dy-
namic Weight Average (DWA) (Liu et al., 2019)
to our work, which adapts the task weighting over
time by considering the rate of change of the loss
for each task.

Equations 11 and 12 describe DWA. Here, λk(·)
represents the weighting for task k, wk(·) calcu-
lates the relative descending loss rate for each task
in each epoch, t is an iteration index, and T rep-
resents a temperature that controls the softness of
task weighting. L in Equation 12 is the loss value,
calculated as the average loss in each epoch over
several iterations.

λk(t) :=
Kexp(ωk(t− 1)/T )∑
iKexp(ωi(t− 1)/T )

(11)

ωk(t− 1) =
Lk(t− 1)

Lk(t− 2)
(12)
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TER BLEU

CTS-best (ensemble) 16.44 71.88

CTS-best (single) 16.46 71.94
w/o step 2 16.70 71.84
w/o step 3 17.33 70.24
w/o step 2 & 3 17.28 70.88

baseline 19.06 68.79

Table 1: CTS results on WMT21 APE development
dataset. CTS-best (ensemble) is built by two similar
single models. we submitted CTS-best (ensemble) as
CONTRASTIVE result.

4.5 Joint Learning Procedure
All tasks are jointly trained, and the objective is
defined as,

L =
1

K

K∑

i

λiL(Yi, f(Xi)), (13)

where λ is a dynamic weight determining the de-
gree of subtasks and f is the training classifier.
Note that the parameter K is the number of sub-
tasks. L(Y, f(X)) is the loss of f w.r.t. the target
Y .

5 Experiments

5.1 Datasets
Following existing works, we utilize additional
resources (Junczys-Dowmunt and Grundkiewicz,
2016; Negri et al., 2018), which have source sen-
tences (src), machine translation sentences (mt),
and post-editing sentences (pe). Moreover, we
also utilize some of News-Translation data for the
WMT21 (Koehn, 2005; Tiedemann, 2012; Rozis
and Skadin, š, 2017; Bhatia et al., 2016; Tiedemann,
2012), which has source sentences (src) and trans-
lated sentences that can be used as pe. For evalua-
tion and fine-tuning, we use the data for WMT21
automatic post-editing shared task. Moreover, we
utilize translated sentences using Google Translate
and Quality Estimation NMT Model (Fomicheva
et al., 2020). The former is used to make mt_ext
from the additional resources and the data for
WMT21 automatic post-editing. The latter is used
to make mt from News-Translation data. We fil-
tered all the training data based on and number
checking logic, which filters the pairs with differ-
ent numbers in source and target side.

TER BLEU

MLS w DWA 16.21 72.53
MLS w/o DWA 16.37 72.34

Table 2: Ablation analysis of DWA on the WMT21
APE development dataset.

5.2 Experimental Settings

For the first step of CTS, we utilize WMT19 en-
de weights by Fairseq (Ng et al., 2019). In the
second step, we utilize News-Translation data with
translated sentences with Quality Estimation NMT
Model asmt. In the third step, we make our system
learn with Junczys-Dowmunt and Grundkiewicz
(2016); Negri et al. (2018) and Google Translate
as mt_ext. Finally, when learning the fine-tuning
step, which contains MLS, we utilize the data for
WMT21 Automatic Post-Editing shared task.

5.3 Results: CTS

To study the effectiveness of CTS, we conduct ab-
lation experiments on WMT21 Automatic Post-
Editing development dataset. We set the baseline,
which is a system that leaves all the test instances
unmodified. As shown in Table 1, we can observe
that the step 3 is more effective than the step 2,
and that using only step 2 doesn’t help APE. As
our system is learning step by step with CTS, it
allows that our system has strengths in the APE
task.

5.4 Results: MLS

Table 2 presents the ablation analysis about DWA
when fine-tuning with MLS on WMT21 APE de-
velopment set. From the result, we can observe that
MLS with DWA has better performance than the
one without applying it. For that reason, we adopt
DWA at a fine-tuning stage with MLS in our APE
Task.

To find the best combination of subtasks in MLS,
we conducted an ablation analysis on the same de-
velopment dataset. Vanilla in the table is a system
without adding any subtasks. We add the subtasks
one by one during the fine-tuning to see the effect
of each subtask on the performance. As shown in
Table 3, the one using all the subtasks performs
best among all the combinations, which means that
these subtasks are cooperative in the APE task.
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TER BLEU

Vanilla 16.71 71.75

w/ POS 16.49 72.12
w/ NER 16.52 72.19
w/ MLM 16.55 72.00
w/ Keep/Translate 16.45 72.32

Fine-tuned with MLS 16.21 72.53

Table 3: The Multi-task Learning results on WMT21
APE validation dataset. Fine-tuned with MLS using all
subtasks model is submitted as PRIMARY result.

TER BLEU

Netmarble_CONTRASTIVE 17.28 71.55
Netmarble_PRIMARY 17.97 70.53

baseline 18.05 71.07

Table 4: Official results on WMT21 APE test dataset.

5.5 Official Results
Table 4 shows the official results of our proposed
methods on WMT21 test dataset. The test dataset
has baseline scores of 18.05 and 71.07, which is
higher than the development dataset with 19.06 and
68.79 in terms of TER and BLEU, respectively. De-
spite its high quality, our proposed methods showed
effectiveness on this test dataset.

5.6 Implementation Details
We set the batch size to 256 for the step 2 and
step 3 in CTS at each GPU, 16 for the fine-tuning
and MLS. We set the initial learning rate to 1e-
4 using scheduler in Fairseq (Ng et al., 2019)
for all experiments. The average runtime of one
epoch for each approach was about 360 minutes
for the step 2, 90 minutes for the step 3, and
40 seconds for MLS. We train our models using
AdamW (Loshchilov and Hutter, 2019) optimizer
and conduct experiments with 16 Tesla A100 GPUs
for CTS, Tesla V100 GPU for MLS.

6 Conclusion

In this paper, we propose an APE system based on
CTS and MLS. CTS allows understanding between
machine translation and automatic post-editing,
and shows a way using additional data in large
volume in APE task. MLS learns a shared unified
representation from related subtasks to improve
the performance. We submitted the system, which

Fine-tunes with MLS, as our primary version and
the ensembled CTS as our contrastive version. The
experimental results show that our system is able
to effectively detect and correct the errors made by
a high-quality NMT system, improving the score
by -2.848 and +3.74 on the development dataset
in terms of TER and BLEU, respectively. Our
proposed methods also achieved performance im-
provement on the test dataset with higher quality.
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Abstract

Automatic post-editing (APE) models are used
to correct machine translation (MT) system
outputs by learning from human post-editing
patterns. We present the system used in our
submission to the WMT’21 Automatic Post-
Editing (APE) English-German (En-De) shared
task. We leverage the state-of-the-art MT sys-
tem (Ng et al., 2019) for this task. For further
improvements, we adapt the MT model to the
task domain by using WikiMatrix (Schwenk
et al., 2021) followed by fine-tuning with ad-
ditional APE samples from previous editions
of the shared task (WMT-16,17,18) and ensem-
bling the models. Our systems beat the baseline
on TER scores on the WMT’21 test set.

1 Introduction

Automatic Post-Editing (APE) is the task of au-
tomatically correcting machine translation (MT)
outputs. Along with fixing systematic errors in
MT outputs, APE models can adapt general pur-
pose MT systems to new domains and provide bet-
ter translations to reduce the human post-editing
effort (Chatterjee et al., 2015). APE has seen
significant progress with Transformer based mod-
els (Yang et al., 2020; Lopes et al., 2019; Chatter-
jee et al., 2019, 2020) dominating the landscape as
opposed to the earlier Statistical Machine Trans-
lation (SMT) based models (Simard et al., 2007;
Béchara et al., 2012) and RNN based sequence-to-
sequence models (Junczys-Dowmunt and Grund-
kiewicz, 2017). To track this progress, WMT has
been conducting APE shared tasks since 2015 on
different data domains and language pairs (Bojar
et al., 2015, 2016, 2017; Chatterjee et al., 2018,
2019, 2020).

WMT 2021’s shared task focused on English-
German and English-Chinese language pairs. We
participated in the English-German sub-task and
describe our submission in this paper. Participants

∗Work done as intern at Amazon Prime Video

were provided a training set with 7000 instances
and a development set with 1000 instances. Each
dataset consisted of source, machine-translation,
post-edit triplets. The source sentences came from
the English Wikipedia, the MT outputs were gener-
ated with a black-box state-of-the-art MT system
and the post-edits were created by professional
translators correcting MT outputs. The test set con-
sisted of 1000 pairs of source and MT outputs for
which the participants had to submit the post-edits
generated by their systems. The task organisers pro-
vided two additional synthetic post-editing datasets
– ‘artificial training data’ (Junczys-Dowmunt and
Grundkiewicz, 2016) and ‘eSCAPE corpus’ (Negri
et al., 2018) and permitted using additional data to
train the model. TER scores (Snover et al., 2006)
and BLEU (Papineni et al., 2002) scores were used
as primary and secondary evaluation metrics re-
spectively.

Last year’s entries primarily focused on transfer
learning (Yang et al., 2020; Lee, 2020; Wang et al.,
2020) and novel data augmentation techniques (Lee
et al., 2020b,a; Wang et al., 2020). The winning
submission (Yang et al., 2020) was based on fine-
tuning a pre-trained machine translation model for
the APE task.

We take a similar line of approach by leverag-
ing an existing state-of-the-art machine translation
model. We first fine-tune an MT model on WikiMa-
trix (Schwenk et al., 2021) — a mined bitext from
Wikipedia — to bridge the domain gap, followed
by further tuning to the APE task with post-editing
samples. To deal with the limited training data,
we exploit APE data from the previous editions of
the WMT shared tasks. We describe the details of
our experiments in Section 3 with gains and ob-
servations from individual tuning steps mentioned
above.
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2 Related Work

The last year’s WMT’20 APE shared task saw
methods using transfer learning with data aug-
mentation techniques perform well. Yang et al.
(2020) fine-tune state-of-the-art transformer-based
MT system on APE data using bottleneck adapter
layers (Houlsby et al., 2019) to avoid overfitting.
They additionally use outputs from an external MT
system as input to the model and converged to
ensembling to achieve 66.89 BLEU score on the
WMT’20 development set to make it to the top of
the final leaderboard.

Data augmentation techniques where post-edits
are synthesized to augment human-edited data was
shown to be effective in the last year’s submis-
sions for addressing the training data limitation.
However, data augmentation must be done care-
fully to prevent a mismatch between the error dis-
tributions in gold and synthetic data (Yang et al.,
2020). Wang et al. (2020) use data augmen-
tation along with dual conditional cross-entropy
model (Junczys-Dowmunt, 2018) based filtering
to ensure data quality, model adaptation to target
domain, and ensembling to achieve 56.06 BLEU
on the development set and the second rank on
the leaderboard. Similarly, Lee et al. (2020b) per-
formed data augmentation by creating a novel nois-
ing scheme to synthesize four kinds of errors for
APE training, namely, insertion, deletion, substi-
tution and shifting/reordering noise to attain 53.77
BLEU score.

The other submissions to the WMT’20 task used
variations of the language models to generate edits.
Lee et al. (2020a) trained a model by jointly opti-
mizing losses for masked language and translation
language models while Lee (2020) tailored a lan-
guage model to make corrections by replacing poor
quality words to improve the overall sentence-level
quality. These two submissions were able to get
55.67 and 53.82 BLEU scores respectively on the
WMT’20 development set.

In comparison, our model is a pre-trained MT
model adapted to the target domain and further
fine-tuned on the APE data. These improvements
give us about five absolute points gain over the
no post-editing baseline (that returns MT output
without changes) on the BLEU score to arrive at
55.85 which is competitive with all but one of last
year’s submissions on the WMT’20 development
set.

Dataset Train Dev Test Domain
WMT’16 12000 1000 2000 IT
WMT’17 11000 – 2000 IT
WMT’18 13442 1000 3023 IT
WMT’21 7000 1000 1000 Wikipedia

Table 1: WMT APE shared task data for En-De

3 Method

We describe our baseline model followed by the de-
tails of domain and task adaptation in this section.

3.1 Baseline translation model
Limited by availability of training data, we used
transfer learning approach (as is common in re-
lated tasks with few samples, see Ruder et al.
(2019)) beginning with a pre-trained MT model.
We used the MT models from FAIR’s WMT’19
submission1 (Ng et al., 2019) that is an ensem-
ble trained for the News Translation task using
fairseq (Ott et al., 2019) library. It takes a sin-
gle source sentence as input and returns transla-
tion in the target language. To use this model
for the APE task, we concatenated the source
and the machine-translation with a special to-
ken to make the input. Thus, we fine-tune the
NMT model on the APE dataset with source
<sep> machine-translation as input and
post-edited reference as the output.

3.2 Pre-training on domain-specific data
FAIR’s WMT’19 NMT model was trained on
Newscrawl and Commoncrawl datasets while the
source of this year’s APE data is Wikipedia. To
fix the domain mismatch in NMT model’s training
data and our task, we fine-tune the NMT model
on WikiMatrix (Schwenk et al., 2021) before fine-
tuning the model with APE data. WikiMatrix is
mined from Wikipedia using the multi-lingual sen-
tence embeddings from the LASER toolkit (Artetxe
and Schwenk, 2019). We ensure that the model is
fine-tuned on only high-quality parallel data by us-
ing a higher threshold of 1.1 for extracting parallel
sentences (rather than the default 1.04) to get 64k
parallel sentences.

3.3 Fine-tuning on APE data
To further address the data limitation, we use sam-
ples from earlier editions of the APE shared task;
WMT’16, WMT’17 and WMT’18. Although the

1transformer.wmt19.en-de
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Model BLEU↑ TER↓
Do Nothing 68.79 19.06

MT fine-tuned on WMT’21 68.74 18.45
MT fine-tuned on (WMT’16-18 + WMT’21) (A) 69.34 18.27

MT fine-tuned on WikiMatrix and further on (WMT’16-18 + WMT’21) (B) 69.12 18.34
Ensemble (A + B) 69.38 18.18

Table 2: Results on the WMT 2021 APE development set. Higher BLEU and lower TER is better. The "Ensemble"
model is the ensemble of the two best performing single models (the ones with 69.12 and 69.34 BLEU scores).

Model BLEU↑ TER↓
Do Nothing 71.07 18.05
Model (A) 70.54 17.74

Ensemble (A + B) 70.50 17.85

Table 3: Results on the WMT 2021 APE test set. Higher
BLEU and lower TER is better. The Model (A) is the
one described in the same from Table 2 and the "Ensem-
ble" model is the ensemble of the two best performing
single models.

domain of the data in the previous editions of this
shared task challenge is different from the current
one, we preferred using this data over synthetic
APE data similar to (Yang et al., 2020). We pre-
fer this because unlike in WMT datasets where
the post-edits are human revisions of the MT out-
put, synthetic APE datasets have post-edited sen-
tences independent of the MT output, causing the
error patterns and data distributions to vary signifi-
cantly. Hence, we combine the WMT’16, WMT’17
and WMT’18 datasets to get 45k source, machine-
translation and post-edit triplets. We present the
details of the data in Table 1.

4 Results and conclusion

We report the results of our model on the WMT’21
development and test set. We use BLEU scores (Pa-
pineni et al., 2002) 2 for quality estimates relative
to a human reference and TER scores (Snover et al.,
2006) for quantifying human post-editing effort.

We report improvements over the Do
Nothing baseline. This baseline refers to
the system that returns the base machine transla-
tion output as the post-edit without any changes.
We submitted the best performing single model
and the ensemble model in Table 2 for evaluation.
In Table 3 we present the results reported by the
organizers for baseline, our model fine tuned

2calculated using multi-bleu.perl script from the
Moses toolkit (Koehn et al., 2007)

on WMT’16-18 + WMT’21 (model A) and our
ensemble model (A + B). The Do Nothing baseline
from last year (Chatterjee et al., 2020) was reported
at 50.21 BLEU score and this year it is reported at
71.07 BLEU score. These numbers suggest that
the baseline machine translation engine used in
this year’s task proved to be of very high quality
for the dataset used; leaving very little room for
APE models to improve the translation similar to
the observation made in (Chatterjee et al., 2018).
This is the only logical conclusion we could draw
since the data used last year and this year are the
same with human post-editing re-done. Using
data from previous years’ tasks clearly improves
both BLEU and TER scores on the development
set. While fine-tuning on WikiMatrix data itself
has not led to improvements on the development
set, it helps improve performance when used in
ensemble with the other model. The model A beats
the baseline on TER metric by 0.31 points on the
test set while both our model A and ensemble
system manage to outperform previous year’s best
entry.

Further extending this work, we wish to study
more carefully the impact of adaptation by switch-
ing the order of domain and task adaptation, effect
of noise in training sample by tuning threshold (Wi-
eting and Gimpel, 2018), and evaluate if synthetic
data can be selectively augmented for greater met-
ric gains.
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Abstract

This paper describes the ISTIC’s submission
to the Triangular Machine Translation Task
of Russian-to-Chinese machine translation for
WMT’ 2021. In order to fully utilize the
provided corpora and promote the translation
performance from Russian to Chinese, the
pivot method is used in our system which
pipelines the Russian-to-English translator and
the English-to-Chinese translator to form a
Russian-to-Chinese translator. Our system is
based on the Transformer architecture and sev-
eral effective strategies are adopted to improve
the quality of translation, including corpus fil-
tering, data pre-processing, system combina-
tion, model averaging, model ensemble and
reranking.

1 Introduction

The Institute of Scientific and Technical Informa-
tion of China (ISTIC) participated in the Triangular
Machine Translation Task of Russian-to-Chinese
in the Sixth Conference on Machine Translation1

(WMT’ 2021). This paper demonstrates the over-
all framework of the ISTIC’s submission and its
technical details.

In this evaluation, we adopted the neural ma-
chine translation architecture of Google Trans-
former(Vaswani et al., 2017) as a part of our sys-
tem. We use the three parallel corpora released by
the evaluation organizer and adopted a two-stage
method for data pre-processing. Several filtering
methods of the corpus are explored to reduce the
data noise and improve the data quality. As for
model construction, we use the pivot method to
get a Russian-to-Chinese translator by bridging the
trained Russian-to-English translator and English-
to-Chinese translator. Model averaging(Claeskens
and Hjort, 2008), model ensemble(Lutellier et al.,

∗Corresponding author: Yanqing He, heyq@istic.ac.cn.
1http://www.statmt.org/wmt21/

triangular-mt-task.html

2020) and reranking(Ng et al., 2019) strategies are
adopted to generate the final output translation. We
removed spaces between words and restored the
target language translation results to the prescribed
file format in data post-processing. In our experi-
ment, the performance of the system under differ-
ent settings was compared and further analyzed the
experimental results.

The structure of this paper is as follows: the sec-
ond part introduces the technical architecture of our
machine translation system; the third part describes
the data pre-processing, parameter settings, experi-
mental results, and related analysis; the fourth part
gives the conclusion and future work.

2 System Overview

The overall framework of the ISTIC’s triangular
machine translation system is shown in Figure 1.

2.1 Single Transformer System

Our baseline single system used in participated
evaluation tasks is the Transformer based encoder-
decoder architecture. Transformer is completely
based on a self-attention mechanism. It can achieve
algorithm parallelism, speed up model training, fur-
ther alleviate long-distance dependence and im-
prove translation quality(Zhang and Zong, 2020).
The encoder and the decoder are formed by stack-
ing N identical layer blocks, where N is set to 6.

2.2 Context-based Combination System

As shown in Figure 2, based on the Transformer
model, our team adopts a context-based(Voita et al.,
2018) system combination method, which is an
encoder-decoder structure composed of n identical
network layers, where n is set to 6. Two different
methods of system combination are designed ac-
cording to the fusion in different positions, which
are Encoder Combination method and Decoder
Combination method. Both of them adopt multi-
encoder(Li et al., 2020) to encode the source sen-
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Figure 1: Overall framework

tences and the context information from machine
translation results of the source sentence. In the
Encoder Combination method, the hidden layer in-
formation of context (multi-system translation) is
transformed into new representation through atten-
tion network, and merges the hidden layer informa-
tion of source sentence through gating mechanism
at encoder end; In Decoder Combination method,
the hidden layer information of multi-system trans-
lation and the hidden layer information of source
sentence is calculated at the decoder to obtain the
fusion vector. The attention calculation method
is the same as the original transformer model, to
obtain a higher quality fusion translation.

The Encoder Combination model (see Figure 3)
uses multiple system translations, and then con-
verts the system translations into new represen-
tations through the attention network, integrating
the hidden layer information of homologous lan-
guage sentences for attention fusion through the
gating mechanism in the Encoder. In the Encoder
Combination mode and the Self-Attention of the
multi-system translation Encoder, Q, K, and V are
all from the upper layer output of the multi-system
translation Encoder; in the Self-Attention of the
source language Encoder, Q, K, and V are all from
the upper layer output of the source language En-

Figure 2: Context-based combination system

Figure 3: Encoder combination model

coder; in the Translation Attention of the source
language Encoder, both K and V come from the
upper hidden layer state HTr of the multi-system
translation Encoder, and Q comes from the upper
layer hidden state Hs of the source language En-
coder. Hs represents the hidden state of the source
language sentence, HTr represents the hidden state
of the multi-system translation, and H represents
the hidden state of the Translation Attention part
of the Encoder.

HTr = Concat(HTr1, ...,HTrn) (1)

H =MutiHead(HTr , Hs) (2)

The Decoder Combination model (see Figure 4)
combines the hidden layer information of multiple
encoders with attention in the decoder. The De-
coder can process multiple encoders separately, and
then fuse them using the gating mechanism inside
the Decoder to obtain the combined vector. In the
Decoder Combination mode and the Self-Attention
of the target language Decoder, Q, K, and V are all
from the output of the previous layer of the target
language Decoder; in the Translation Attention of
the target language Decoder, Q comes from the
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Figure 4: Decoder combination model

output of the upper layer of the target language
Decoder, K comes from the upper hidden layer
state Hs of the source language Encoder, and V
comes from the upper hidden layer state HTr of the
multi-system translation Encoder; in the Encoder-
Decoder Attention of the target language Decoder,
Q comes from the upper layer output of the target
language Decoder, K, V come from the previous
output of the source language Encoder. Hs repre-
sents the hidden layer state of the source language
sentence, HTr represents the hidden layer state of
the multi-system translation, HDecoder represents
the hidden layer state of the upper layer output of
the Decoder, and H represents the hidden state of
the Translation Attention part of the Decoder.

H =MutiHead(HTr , Hs, HDecoder) (3)

2.3 Direct Method
In the direct method (see Figure 5), we use the pre-
processed Russian/Chinese parallel corpus to train
a direct Russian-to-Chinese translator by means of
the single Transformer System or the context-based
Combination System, depending on which kind of
system performs best.

2.4 Pivot Method
In the pivot method (see Figure 5)(Park and
Zhao, 2019), firstly, we use the pre-processed Rus-
sian/English parallel corpus to train a Russian-
to-English translator; secondly, we use the pre-
processed English/Chinese parallel corpus to train
an English-to-Chinese translator; finally, we
pipeline them to form a pivot Russian-to-Chinese
translator. All translators can be trained by means
of the single Transformer System or the context-
based Combination System. By comparing the

Figure 5: Direct and pivot method

experimental results, the system with optimal per-
formance is accepted for Russian-to-Chinese trans-
lation.

3 Experiments

3.1 Data Pre-processing

The evaluation organizers provide three parallel
corpora: the Chinese/Russian corpus is crawled
from the web and aligned at the segment level,
and combined with different public resources; the
Chinese/English corpus combines several public
resources; the Russian/English corpus gathers mul-
tiple public resources. A two-stage method(Wei
et al., 2020) is used for data pre-processing, con-
sist of a general pre-processing stage and a specific
pre-processing stage. The general pre-processing
stage includes conversion from traditional Chinese
to simplified Chinese by the hanziconv2 package ,
conversion between full angle and half-angle, spe-
cial character filtering, same content filtering, sen-
tence length filtering, and sentence length ratio
filtering. Among them, sentence length of the Chi-
nese language is calculated in the unit of "charac-
ter" and sentence length of non-Chinese language
is calculated in the unit of "token". Sentence length
filtering removes sentence pairs which source sen-
tence length or target sentence length exceeds the
range of [5, 200]. Sentence length ratio filtering
excludes the sentence pairs whose ratio of source
sentence length and target sentence length exceeds
the range of [0.2, 20]. In the specific pre-processing
stage, the word segmentation of English and Chi-
nese sentences is implemented using the lexical
tool Urheen3 and the word segmentation of Rus-
sian sentences is implemented using the lexical

2https://github.com/berniey/hanziconv
3https://www.nlpr.ia.ac.cn/cip/

software.html
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Direction Before Pre-processing After Pre-processing
Russian-English 69217438 42939395
English-Chinese 28579587 22233706
Russian-Chinese 33422682 21892537

Table 1: Data pre-processing results

Direction Train Set Dev Set Test Set
Russian-English 42935974 2000 1421
English-Chinese 22231506 1100 1100
Russian-Chinese 21891537 965 1000

Table 2: Data partition results

tool Natasha4. The scales of sentence pairs of all
corpora before and after data pre-processing are
shown in Table 1.

After data preprocessing, we split the corpora
into training set, development set and test set. The
scales of the data partition are shown in Table 2.

3.2 System Settings

The open-source project fairseq5(Ott et al., 2019)
is chosen for this evaluation system. The main pa-
rameters are set as follows. Each model uses 1-3
GPUs for training, and the batch size is 2048. The
embedding size and hidden size are set to 1024, the
dimension of the feed-forward layer is 4096. We
use six self-attention layers for both encoder and de-
coder, and the multi-head self-attention mechanism
has 16 heads. The dropout mechanism(Provilkov
et al., 2020) was adopted, and dropout probabili-
ties are set to 0.3. BPE(Sennrich et al., 2016) is
used in all experiments, where the merge opera-
tions is set to 32000. The maximum number of
tokens is set to 4096. The loss function is set to
“label_smoothed_cross_entropy”. The parame-
ter "adam_betas" is set to (0.9, 0.997). For the
baseline system, the initial learning rate is 0.0007,
the warm-up steps are set to 4000, and the maxi-
mum epoch number is set to 15. For the Encoder
Combination system and Decoder Combination
system6, the initial learning rate is 0.0001, the
warm-up steps are set to 4000, and the maximum
epoch number is set to 10.

3.3 Experimental results

In the training of Russian-to-English transla-
tor, English-to-Chinese translator and Russian-to-
Chinese translator, the single Transformer systems

4https://github.com/natasha/natasha
5https://github.com/pytorch/fairseq/

tree/v0.6.2
6https://github.com/libeineu/

Context-Aware

System Russian-English English-Chinese Russian-Chinese
Transformer 20.89 17.83 16.07

Transformer+
Encoder
Combination

21.53 18.87 16.66

Transformer+
Decoder
Combination

21.76 18.91 16.79

Table 3: BLEU results on self-built test set

Method BLEU
Primary: Pivot Method 19.2

Contrast: Direct Method 18.1

Table 4: BLEU results on released test set

are trained for 15 epochs. The context-based com-
bination systems with Encoder Combination model
or Decoder Combination model are trained for 10
epochs. The best epoch model and the last epoch
model are ensembled to generate better results. The
BLEU(Papineni et al., 2002) scoring results on the
self-built test set are shown in Table 3.

The context-based combination systems with De-
coder Combination model are used as our final sub-
mission since they outperform other systems.

Our primary submission uses the pivot method,
which use English translation as the bridge. The
Russian sentences are translated into English in-
termediate results by the well-trained Russian-to-
English translator and then the English intermedi-
ate results are translated into Chinese output by
the well-trained English-to-Chinese translator. Our
contrast submission uses the direct method, which
uses the well-trained Russian-to-Chinese translator
to generate the target output.

As a result, our primary submission achieves a
BLEU score of 19.2 and ranked the fourth among
all participating teams. Our contrast submission
achieves a BLEU score of 18.1 (shown in Table 4).

4 Conclusions

This paper introduces the main technologies and
methods of ISTIC’s submission in WMT 2021. To
sum up, our model is constructed on the Trans-
former architecture of self-attention mechanism
and context-based system combination method. In
the aspect of data pre-processing, we explore sev-
eral corpus filtering methods. In the process of
translation output, the strategies of model ensem-
ble and reranking are adopted. Experimental results
show that these methods can effectively improve
the quality of translation. It is worth mentioning
that the pivot language translation bridge method

323



outperforms the direct translation method.
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Abstract

This paper presents the submission of Huawei
Translation Service Center (HW-TSC) to
WMT 2021 Triangular MT Shared Task. We
participate in the Russian-to-Chinese task un-
der the constrained condition. We use Trans-
former architecture and obtain the best per-
formance via a variant with larger parameter
sizes. We perform detailed data pre-processing
and filtering on the provided large-scale bilin-
gual data. Several strategies are used to train
our models, such as Multilingual Translation,
Back Translation, Forward Translation, Data
Denoising, Average Checkpoint, Ensemble,
Fine-tuning, etc. Our system obtains 32.5
BLEU on the dev set and 27.7 BLEU on the
test set, the highest score among all submis-
sions.

1 Introduction

This paper introduces our submission to the
WMT21 Triangular task. We adopt Transformer
(Vaswani et al., 2017) architecture and strictly obey
the constrained condition in terms of data usage.
On one hand, we perform multiple data filtering
strategies to enhance data quality; on the other
hand, we leverage multilingual model (Johnson
et al., 2017), pivot language, forward (Wu et al.,
2019) and back translation (Edunov et al., 2018),
and data denoising (Wang et al., 2018) strategies
to further enhance training effects. In addition, we
also adopt fine-tuning (Sun et al., 2019) and ensem-
ble (Garmash and Monz, 2016), two widely used
strategies, to further enhance system performance.
We compare and contrast different strategies based
on our experiment results and give our analysis
accordingly.

The overall training process is illustrated in Fig-
ure 1. Section 2 mainly focuses on our training
techniques, including model architecture, data pro-
cessing and training strategies. Section 3 describes

our experiment settings and training process. Sec-
tion 4 presents the experiment results while section
5 analyze how our multilingual, data denoise and
data augmentation strategies influence system per-
formances.

2 Method

2.1 Model Architecture

Our system uses Transformer (Vaswani et al., 2017)
model architecture, which adopts full self-attention
mechanism to realize algorithm parallelism, accel-
erate model training speed, and improve transla-
tion quality. In this shared task, Transformer-Deep
(Wang et al., 2019) is used, which features 35-layer
encoder, 6-layer decoder, 768 dimensions of word
vector, 3072-hidden-state, 16-head self-attention,
and pre-norm.

2.2 Data Processing an Augmentation

We strictly comply with the constrained condition
and use only the officially provided data.

2.2.1 Data Filtering
We perform the following steps to cleanse all data:

• Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Convert XML escape characters.

• Normalize punctuations using Moses (Koehn
et al., 2007).

• Delete html tags, non-UTF-8 characters, uni-
code characters and invisible characters.

• Filter out sentences with mismatched paren-
theses and quotation marks; sentences of
which punctuation percentage exceeds 0.3;
sentences with the character-to-word ratio
greater than 12 or less than 1.5; sentences of
which the source-to-target token ratio higher
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Figure 1: This figure shows the training process for the WMT 2021 Triangular MT Shared Task, which consists
of three stages. In stage 1, three forward models and one backward model are trained. In stage 2, denoise corpus
is used to train models incrementally. In stage 3, the synthetic data by FTST and denoise corpus are used to train
models incrementally. Finally, model ensemble is used to boost the performance.

than 3 or lowers than 0.3; sentences with more
than 120 tokens.

• Apply langid (Joulin et al., 2016b,a) to filter
sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment, about 10%
of the data is filtered.

We perform the additional steps to process Chinese
data:

• Convert traditional Chinese characters to sim-
plified ones.

• Convert fullwidth forms to halfwidth forms.

Data sizes before and after cleansing are listed in
Table 1.

2.2.2 Data Augmentation
Back-translation (Edunov et al., 2018) is an ef-
fective way to boost translation quality by using
monolingual data to generate synthetic training par-
allel data. As described in (Wu et al., 2019), sim-
ilar to back translation, the monolingual corpus
in source language can also be used to generate
forward translation text with a trained MT model,

and the generated forward and backward transla-
tion data can both be merged with the authentic
bilingual data. This strategy can increase the data
size to a large extent.

Since there is no officially provided monolingual
data, we use the target side of en2zh data and the
source side of zh2ru data filtered out in section 2.2.1
for back translation. We adopt the top-k sampling
method. Then, we use the source side of ru2en
data for forward translation, which is done based
on beam search. Through sampling, we ensure that
the sizes of data generated by forward and back
translation are relatively equal. In this paper, we
refer to the combination of forward and sampling
back translation as FTST.

2.2.3 Filter Using LaBSE

Apart from the commonly used data cleansing
methods, we also explore other techniques based
on neural networks. LaBSE (Feng et al., 2020) is a
multilingual BERT embedding model that can mea-
sure semantic similarities across languages. In our
experiment, we notice that traditional data cleans-
ing methods described in section 2.2.1 are unable
to produce high-quality data, so we further filter the
data using pre-training model LaBSE. For all par-
allel data, we calculated the similarity scores and
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language pair Raw data Data Filtering Filter Using LaBSE
en-zh 28.6M 14.7M 13.3M
en-ru 69.2M 45.1M 36.0M
ru-zh 33.4M 19.1M 14.7M

Table 1: Data sizes before and after filtering by different methods.

filtered out sentence pairs below a threshold. For
Russian-Chinese data, the threshold is set to 0.7.
For Russian-English and English-Chinese data, the
threshold is set to 0.8. Our experiment integrates
data denoising into the training process. The data
size filtered by LaBSE is shown in table 1.

2.3 Multilingual Model

Johnson et al. (2017) proposes a simple solution
that uses a single Neural Machine Translation
(NMT) model to translate among multiple lan-
guages, and the model requires no change to the
model architecture. Instead, the model introduces
an artificial token at the beginning of the input sen-
tence to specify the required target language. All
languages use a shared vocabulary. There is no
need to add more parameters. Surprisingly, exper-
iments show that such model design can achieve
better translation qualities across languages. In our
experiment, we use two multilingual systems: for-
ward model using ru2zh, en2zh, and ru2en data,
and backward model using zh2ru and en2ru data.

2.4 Denoising Training

Wang et al. (2018) find that during training, dy-
namically adjusting noise data can boost system
performance. The core idea is to train the model
with noisy data at the initial stages and clearer data
at later stages till the model converges. The quality
of training data in this task is relatively poor as
most of the data are crawled from website. We con-
sider denoising training is suitable in this scenario.
We simplify the denoising training process in our
experiment, divide the training process into several
stages.

For forward model, the training is divided into
three steps: 1) Use all official provided data in three
directions (ru2zh, en2zh, and ru2en) for training;
2) Use all clean data selected by LaBSE for incre-
mental training; 3) Finally, use ru2zh clean data
selected by LaBSE for incremental training.

For backward model, we only perform two steps:
1) Use all data (en2ru, zh2ru) for training; 2) Use
zh2ru clean data selected by LaBSE for incremental

training.

2.5 Fine-tuning and Ensemble

To achieve better results, fine-tuning with small-
size in-domain data is necessary (Sun et al., 2019).
An effective strategy for fine-tuning is to leverage
the dev set available in this task. The fine-tuning
strategies employed in our experiment include: 1)
Add noise to the target side of the dev set to gen-
erate synthetic training data (Meng et al., 2020);
2) Use multiple models to generate synthetic data
through beam search decoding, and then add syn-
thetic data to the dev test for fine-tuning.

Model ensemble is also a widely used technique
in previous WMT workshops (Garmash and Monz,
2016), which can boost the performance by com-
bining the predictions of several models at each
decoding step. We selected the best four models
from the six we trained for ensemble.

3 Settings

3.1 Experiment Settings

We use the open-source fairseq (Ott et al., 2019)
for training, and use sacreBLEU (Post, 2018) to
measure system performances instead of the BLEU
script mentioned in the task. The main parame-
ters are as follows: Each model is trained using
8 GPUs. The size of each batch is set as 2048,
parameter update frequency as 32, learning rate as
5e-4 (Vaswani et al., 2017) and label smoothing as
0.1 (Szegedy et al., 2016). The number of warmup
steps is 4000, and the dropout is 0.1. We employ
joint sentencepiece model (Kudo and Richardson,
2018; Kudo, 2018) for word segmentation, with the
size of the vocabulary set to 32k. Jieba tokenizer is
used for Chinese word segmentation while Moses
tokenizer for English and Russian word segmen-
tation. The three languages share a vocabulary of
45K words. In the inference phase, we use the open-
source marian (Junczys-Dowmunt et al., 2018) to
perform decoding. The beam-size is 4 and the
length penalty is set to 1.2.
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System BLEU
Data Filter 26.6
Multilingual model 29.3 (+2.7)
Full data denoise 30.0 (+0.7)
FTST + ru-zh denoise 31.9 (+1.9)
Ensemble 32.5 (+0.6)
2021 Final submit 27.7

Table 2: The experimental result of system

3.2 Training Process
We combine multi-stage denoising training with
data augmentation methods. Figure 1 illustrates
our training process:

1) We cleanse the training data using methods
mentioned in 2.2.1 and train three forward
models and one backward model.

2) We further denoise data using LaBSE (as men-
tioned in 2.2.3) and conduct denoising train-
ing until the model converge on the dev set.

3) We perform data augmentation as described
in 2.2.2. We collect a total of 45M Russian
monolingual data and split them into three
sets, each with 15M sentences. We use three
different forward models to generate three sets
of training data. Hoping to add diversity to
incremental training, we use the data synthe-
sized by one model to train the other two mod-
els. For example, we use the synthetic data
generated by forward model A to incremen-
tal train forward model B, C and so on. We
also collect a total of 15M Chinese monolin-
gual data and back translate the data using the
backward model. We repeat back translation
for three times and obtain three sets of back
translation data. We incrementally train six
models using the above synthetic data.

4) We average the last 5 checkpoints of each
model and select the best four from the six
models we trained for final ensemble.

4 Experiment Result

Our overall training strategy is to train a base-
line model, conduct incremental training with tech-
niques such as multilingual model, denoise training,
data augmentation, and fine-tuning. Our submitted
results come from ensembled models. Table 2 lists
the results of our submission on dev set. Compar-
ing with the baseline model, our final submission

Training Strategy Train Data BLEU
Baseline ru2zh 26.6
Enhanced target +en2zh 28.7 (+2.1)
Enhanced target +ru2en 29.3 (+0.6)
and source

All Direction +zh2ru 29.2 (-0.1)
zh2en
en2ru

Table 3: The experimental result of Multilingual Model

achieves an increase of 5.9 BLEU. Our baseline
model is trained with data processed with methods
mentioned in section 2.2.1. The BLEU score of the
baseline model on the dev set is 26.6. Comparing
with the baseline model, our multilingual strategy
leads to a huge improvement of 2.7 BLEU. Our
simplified denoising training strategy contributes
to an increase of 0.7 BLEU. It should be noted that
data augmentation techniques (FTST method and
LaBSE denoising on ru2zh data) also result in a sig-
nificant increase of 1.9 BLEU. Finally, an increase
of 0.6 BLEU is gained via ensemble. Our submit-
ted system gain 32.5 BLEU on the dev set, which
demonstrate the effectiveness of our multiple strate-
gies. According to the organizer’s feedback, our
submitted model gains 27.7 BLEU on the WMT21
test set.

5 Analysis

5.1 Multilingual Model and Model
Performance

Our experiment results demonstrate that multilin-
gual model has positive effects on system perfor-
mance. We have experimented on different mul-
tilingual models and compare their results. Table
3 lists the results of different multilingual models.
Compared with the baseline model, the multilin-
gual model obtains 2.1 BLEU increase after adding
en2zh data for training. A further 0.6 BLEU is
achieved after adding the ru2en data, demonstrat-
ing that adding Russian data at the source side can
optimize the encoder.

However, our experiment shows no improvement
after adding data of other three directions. We
adopt the enhanced target and source strategy for
faster training, as training with all data might be
considerably slow.
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Training Strategy BLEU
Baseline 26.6
+ru2zh denoise 28.0 (+1.4)
Enhanced target and source 29.3
+Full-data denoise 30.0 (+0.7)
+ru-zh denoise 30.5 (+0.5)

Table 4: The experimental result of denoising training

Training Strategy BLEU
Enhanced target and source 29.3
Sampling BT 30.0
Beam BT 29.7
FT 29.7
Pivot FT 29.5
FTST 30.5

Table 5: The experimental result of data augmentation

5.2 Denoising Training and System
Performance

Our experiment also demonstrates the contribution
of denoising training to system performance. Table
4 compares the results of baseline and denoising
training model, from which we can see an increase
of 1.4 BLEU. We further compare the results mea-
sured at the three stages of denoising training. We
use the enhanced target and source model to con-
duct simplified denoising training. Our experiment
shows that full-data denoising training leads to an
increase of 0.7 BLEU while ru2zh data denoising
further leads to an increase of 0.5 BLEU. The ex-
perimental results show that the denoise strategy is
effective and can lead to at least 1 BLEU improve-
ment even after multilingual model enhancement.

5.3 Data Augmentation and System
Performance

Data augmentation strategy also leads to huge
BLEU improvements. We try multiple data aug-
mentation strategies, including back translation
(BT), forward translation (FT), FTST (2.2.2). Sam-
pling BT means sampling from the model condi-
tional distribution and beam BT means using beam
search, when generating synthetic data. Table 5
shows the effects of different data enhancement
methods. Our results show that sampling back
translation can lead to better results (about 0.3
BLEU in our experiment). We also conduct two
forward translation experiments: FT is translating
Russian to Chinese directly, and Pivot FT is using

English as the pivot language, which achieve only
an undesirable result. We then using the FTST
method and gain the best result with a BLEU score
of 30.5. The experimental results show that the
combination of sampling BT and FT data (FTST)
can produce the best data augmentation effect.

6 Conclusion

This paper presents HW-TSC’s submission to
WMT21 Triangular Machine Translation Task. In
general, we use Transformer architecture and ex-
plore multiple data filtering and selection meth-
ods. In terms of training and data processing strate-
gies, multilingual model, denoising training, data
augmentation, and FTST we used can effectively
improve system performance. Our final result
achieves an increase of 5.9 BLEU when compar-
ing baseline model on the dev set and gain a BLEU
score of 27.7 on the test which is the highest among
all submissions.
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Abstract

This paper describes DUT-NLP Lab’s submis-
sion to the WMT-21 triangular machine trans-
lation shared task. The participants are not
allowed to use other data and the translation
direction of this task is Russian-to-Chinese.
In this task, we use the Transformer as our
baseline model, and integrate several tech-
niques to enhance the performance of the
baseline, including data filtering, data selec-
tion, fine-tuning, and post-editing. Further, to
make use of the English resources, such as
Russian/English and Chinese/English parallel
data, the relationship triangle is constructed
by multilingual neural machine translation sys-
tems. As a result, our submission achieves a
BLEU score of 21.9 in Russian-to-Chinese.

1 Introduction

The WMT2021 Shared Task on translating sen-
tences from Russian into Chinese provides a
challenging mixed-genre test for machine trans-
lation systems and a triangular relationship for re-
searchers to evaluate new techniques. The task
focuses on translation between non-English lan-
guages and optimally mixing direct and indirect
parallel resources. In this task, the participants
must use only the provided parallel training data
and use of other data is not allowed. The provided
data is shown in Table 1, including parallel data in
three directions. Given the language pair (Russian-
to-Chinese), the bulk of previous NMT work has
pursued one of two strategies that are illustrated in
Figure 1:

Direct: Collect parallel Russian-to-Chinese data
from the public resource, and train a Russian-to-
Chinese translator.

Pivot: Collect parallel Russian-to-English and
English-to-Chinese data (usually larger than direct
data), train two translators (Russian-to-English +

∗Corresponding author

Direction # SENT

Russian/Chinese 33,388,455
Russian/English 69,155,404
English/Chinese 28,528,290

Table 1: The provided training data in the constrained
data track.

Russian Chinese

English
EN-to-ZH

Model

RU-to-ZH

Model

RU-to-EN

Model

Pivot

Direct

Figure 1: The illustration of two strategies for triangu-
lar machine translation.

English-to-Chinese), and make a cascade translator
from Russian to Chinese.

The DUTNLP submission to the constrained
data track is based on the mainstream architecture
Transformer (Vaswani et al., 2017). According
to the scale of datasets, this shared task should
be considered as the high-resource translation di-
rection. We use the Transformer-big setting for
better performance, on the contrary, a low-resource
translation task often utilizes the Transformer-base
due to the limited parallel training data. Moreover,
to enhance the baseline model and investigate the
usage of triangular direction data, we utilize two
pipelines for combining English related resources:
1) incorporates English-to-Chinese translator into
direct translation process to normalize the transla-
tion of rare words. 2) adopts a multilingual training
strategy to make use of English ↔ X parallel re-
sources. Besides, some of the provided Russian
↔ Chinese parallel corpora are crawled from the
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web, which has many noise issues. We filter the
training bilingual corpora with several techniques,
including language model and constrained rules.

This paper is structured as follows: Section
2 describes variants of models we used in the
shared task. In Section 3, we introduce the sys-
tem overview using several techniques for model
enhancement, including data pre-processing and
filtering, triangular translation strategy and fine-
tuning. In Section 4, this paper presents experimen-
tal settings, main results and analysis. Finally, in
Section 5 we draw a brief conclusion of our work
in the WMT2021 Triangular Translation Task.

2 Model

2.1 Transformer

Recent advances in Transformer (Vaswani et al.,
2017) have led to significant improvement of Neu-
ral Machine Translation (NMT) and achieve hu-
man parity on Automatic Chinese to English News
Translation (Hassan et al., 2018). The Trans-
former adopts a sequence-to-sequence structure,
using stacked encoder and decoder layers of self-
attention. Each encoder layer consists of a self-
attention mechanism and a feed-forward network.
Each decoder layer consists of a masked self-
attention layer, a cross self-attention layer, and a
feed-forward network layer. Moreover, the Trans-
former leverages positional embedding, residual
connections and layer normalization for enhance-
ment (Ba et al., 2016). In this paper, we adopt the
Transformer-big as the baseline model, in which
both the encoder and decoder have 6 layers, the
hidden size is 1024, and the feed-forward inner
size is 4096.

2.2 Multilingual Architecture

Multilingual neural machine translation (mNMT)
handles the translation between multiple languages
by joint training in a multi-task setup (Johnson
et al., 2017), which greatly eases the model deploy-
ment. Previous works (Lakew et al., 2018; Tan
et al., 2019) show that the mNMT model can fa-
cilitate cross-lingual knowledge transfer between
languages. It also enables zero-shot translation be-
tween unseen language pairs (Johnson et al., 2017;
Al-Shedivat and Parikh, 2019; Zhang et al., 2020).
Following Johnson et al. (2017), we build our mul-
tilingual translation system based on the advanced
Transformer model by adding a pretending lan-
guage token to each source sentence, which indi-

English    Chinese 

Russian  Chinese

English  Russian

EN-to-ZH

Model

Multilingual Strategy (MS)

Many

to

Many

Multilingual

Model

Russian

Chinese

Source

TargetTrain

English    Chinese 

Rare Word Strategy (RWS)

Russian

Source

RU-to-ZH

ModelRussian  Chinese 

Rare Words

Chinese

Target

Figure 2: The illustration of two strategies for incorpo-
rating English resources into the baseline systems.

cates the language to be translated into. And the
multilingual model is also fine-tuned on pre-trained
mNMT models such as mBART(Liu et al., 2020)
and mRASP(Lin et al., 2020).

3 System Overview

3.1 Data Pre-processing and Filtering
To improve the quality of data, especially the Rus-
sian↔ Chinese parallel data, we filter noisy data
with several techniques. The flow of all training
data pre-processing and filtering is set to step by
step as follows:

• Punctuation normalization with Moses scripts
(Koehn et al., 2007) for all language pairs.

• Chinese word segmentation using the open
segmentation tool (Huang et al., 2020). Split-
ting the English and Russian words using
clearly delimiter by Moses “tokenizer” script.

• True-casing. The uppercase letter may influ-
ence the generation of vocabulary dictionaries.
We transfer the uppercase letter into lower
case automatically by Moses scripts.

• Filtering out the sentence pairs longer than
256 or duplicated translation.

• Filtering out the sentences by the multilingual
parallel data filter tools LASER 1.

1https://github.com/facebookresearch/LASER
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• Filtering out the sentence according to their
characteristics in terms of language identifi-
cation and length ratios, in particular, the sen-
tence pairs whose length ratio between the
source and target are not in range of 1:2.5 and
2.5:1 are abandoned.

• The bilingual direct translator utilizes BPE
to encode text into sub-word unit (Sennrich
et al., 2016). In the multilingual translator,
the system applies sub-word processing us-
ing SentencePiece tool (Kudo and Richardson,
2018).

3.2 Triangular Translation Strategy
In this task, we exploit two strategies to incorporate
English resources into the baseline systems, which
are shown in Figure 2.

Rare Word Strategy According to the official
provided data, the performance of the direct trans-
lator is better than the pivot. And the provided par-
allel Russian↔ Chinese training data can be con-
sidered as the high-resource. The baseline model
can be trained successfully with the bilingual train-
ing data and can achieve competitive performance
in most cases. However, the translations of rare
words are always terrible by the direct translator,
for example, most Russian names will be trans-
lated into English. We utilize an English↔ Chi-
nese translator to alleviate this issue. The external
translator only works in the specific case to reduce
the error propagation and redundant computational
cost. This strategy is to complement the direct
baseline model and improve the performance in an
interpretable way.

Multilingual Strategy The mNMT models are
effective in low resource settings due to knowledge
transfer. To make use of all provided parallel data,
we train a multilingual many-to-many models with
3 language pairs(i.e., 6 directed translation direc-
tion). However, it is expensive to train different
parameter sets to get the best translation result in
the target direction. According to Lin et al. (2020),
mRASP can obtain more improvements with rich-
resource language pairs than multilingual many-
to-many models, so multilingual strategy (MS) is
based on fine-tuning large-scale pre-training mod-
els. We fine-tune on two pre-trained models respec-
tively: mBART(Liu et al., 2020) and mRASP(Lin
et al., 2020). In particular, we use MS-mBART
and MS-mRASP for the two methods in section

Models VALID. TEST.

Direct 20.2 17.0
Baseline 24.92 20.4
+RWS 26.40 21.8
+MS-mBART 19.47 -
+MS-mRASP 25.21 21.7

Table 2: The BLEU-4 scores in the constrained data
track.

4. We use mBART to continue training on the fil-
tered parallel data subset, and select the appropriate
checkpoints according to the performance on the
validation set. The mRASP model pre-trained on a
dataset contains 32 English-centric language pairs,
including English-Russian and English-Chinese,
and Russian-Chinese are not the direct training ob-
jective of it. We stop the fine-tune process when
the loss on validation does not decrease for 5 con-
secutive steps (measured every 50 updates). The
experiment shows that fine-tuning on mRASP with
filtered parallel data achieves anticipated improve-
ments.

4 Experiment

4.1 Experimental Settings

The implementation of our models is based on
Fairseq (Ott et al., 2019). All the models are carried
out on 2 NVIDIA 3090 GPUs each of which has
24 GB of memory. The parameters of Transformer-
Big, mBART, and mRASP are all followed by the
architectures themselves. We use the Adam opti-
mizer with β1 = 0.9 and β2 = 0.98. The batch
size is set to 4096 tokens and the “update-freq” pa-
rameter in Fairseq is set to 2. In particular, for
pre-trained language models settings (i.e., mBART
and mRASP), the batch size is 2048 and “update-
freq” is 4. The initial learning rate is set to 5e−4

for training and 3e−5 for fine-tuning. The learning
scheduler is inverse_sqrt and all the dropout prob-
abilities are set to 0.1. We select the checkpoint
with the average of the top 5 sacreBLEU scores on
the development set as the final checkpoint in each
training. We calculate the BLEU-4 score for all
experiments, which is officially recommended.

4.2 Main Results

Table 2 shows the Triangular translation results on
validation and test set. We train multiple models
in each setting and report the best scores in Table
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Figure 3: Loss curve of the multilingual models and the
local minima.

2. In particular, the direct model is trained with all
available data, and the Baseline utilizes the clean
parallel data after filtering to train. It improves the
direct method by 4.72 and 3.4 BLEU scores on vali-
dation and test set, respectively. Moreover, to make
use of the English resources, we propose two tri-
angular training strategies to investigate the effect
of the triangle relationship. The rare word strategy
(RWS) can effectively improve the baseline from
24.92 to 26.40 in terms of BLEU scores. And the
multilingual strategy (MS) improves the baseline
from 24.92 to 25.21 in terms of BLEU scores.

4.3 Triangular Translation Analysis

The official results do not open the reference on the
test set. So we investigate the experiments further
on the validation set.

Multilingual Models In this task, we utilize the
multilingual training strategy which is fine-tuned
on mBART and mRASP. It is surprising to find that
the model trains failed on this dataset, which is fine-
tuned on mBART, shown in Figure 3. However,
the mRASP worked in this scenario. Follow by
Lin et al. (2020), the mRASP is beneficial to fine-
tune the high-resource language pairs. And this
method (MS-mRASP) achieves the best BLEU-4
scores on the validation set. Although the training
curve of MS-mBART is more stable, the overall
loss has remained relatively high level and cannot
be effectively declined.

Results Discussion Figure 4 shows the results
from different models. The two multilingual trans-
lation strategies can effectively improve the perfor-
mance of baseline model, especially for the rare
words. In the baseline model, some rare words are
translated into English, and most of the words are
translated correctly depends on the direct training
method. It is worth mentioning the two multilin-
gual translation strategies can alleviate this issue
effectively.

Figure 4: The results by different NMT systems. The
rare words are bold.

5 Conclusion

This paper presents the DUTNLP Translation sys-
tems for WMT2021 Russian-to-Chinese triangular
translation tasks. We investigate various neural
architectures and data filtering to build strong base-
line systems. Then the two triangular translation
strategies are used to improve the baselines. We
also prove that in-domain finetuning is very effec-
tive for this translation task. Finally, we discuss the
results carefully and analyze the influence of differ-
ent triangular strategies for further improvement.
A number of advanced technologies reported in
this paper focus on alleviating the issue of triangle
translation. As a result, our system outperforms the
strong baseline by 1.48 and 1.4 BLEU scores on
the validation set and test set, respectively. In the
future, we will investigate the technologies in the
low-resource scenario and continue to improve the
performance of this task through post-evaluation
submissions.
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Abstract

In this paper, we discuss the various tech-
niques that we used to implement the Russian-
Chinese machine translation system for the
Triangular MT task at WMT 2021. Neural
Machine translation systems based on trans-
former architecture have an encoder-decoder
architecture, which are trained end-to-end and
require a large amount of parallel corpus to
produce good quality translations. This is
the reason why neural machine translation sys-
tems are referred to as data hungry. Such
a large amount of parallel corpus is majorly
available for language pairs which include En-
glish and not for non-English language pairs.
This is a major problem in building neural ma-
chine translation systems for non-English lan-
guage pairs. We try to utilize the resources
of the English language to improve the trans-
lation of non-English language pairs. We use
the pivot language, that is English, to lever-
age transfer learning to improve the quality
of Russian-Chinese translation. Compared
to the baseline transformer-based neural ma-
chine translation system, we observe that the
pivot language-based transfer learning tech-
nique gives a higher BLEU score.

1 Introduction

The aim of this work is to improve the quality of
Machine Translation (MT) for low-resource, dis-
tant and non-English language pairs. One of the
major requirements for the good performance of
the Neural Machine Translation (NMT) systems
is the availability of a large parallel corpus. Such
large parallel corpus of good quality is not available
for low-resource, distant and non-English language
pairs but mostly available for language pairs con-
taining English. This poses a major challenge in
developing good quality Machine Translation sys-
tems for non-English and distant language pairs.
As a result there is a need to come up with addi-
tional resources by augmenting parallel corpora or

by using knowledge from other tasks using transfer
learning for translation of non-English language
pairs. In this paper, we focus on leveraging the
knowledge from other tasks using transfer learning
to improve the performance of NMT systems for
low resource language pairs.

In our pivot based transfer learning experiments
we try to utilize the resources of English language,
that is English-Chinese and English-Russian par-
allel corpora to improve the quality of Russian-
Chinese translation. We implement techniques
which efficiently use the resources of the English
language for the task of Russian-Chinese transla-
tion.

2 Related Work

Recurrent Neural Network (RNN) based encoder
decoder architectures (Bahdanau et al., 2014; Cho
et al., 2014; Sutskever et al., 2014) were initially
used in NMT systems. Transformer (Vaswani et al.,
2017) architecture improved the performance of
NMT systems. In order to enable translation be-
tween distant and non-English language pairs for
which a large amount of parallel corpus is not avail-
able, a cascade method can be used. In the cascade
method, two models are trained, a source language
to English and a English to target language model.
Then to translate a source sentence to target sen-
tence, the source sentence is passed through the
two models. (Zoph et al., 2016) introduced a trans-
fer learning technique in which a parent model
is trained on high resource language pairs, which
is then used to initialize the the parameters of a
child model which is then trained on low resource
language pair data. (Kim et al., 2019) introduced
pivot language-based transfer learning techniques
in which the encoder and decoder of the model
for low resource language pair is initialized us-
ing the encoder and decoder of different models
trained on high resource language pairs, and this
model is then finetuned on low resource language
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Figure 1: Direct Pivoting (En:English, Ru:Russian, Zh:Chinese)

pair data. Multi-lingual NMT systems (Zoph and
Knight, 2016; Firat et al., 2016; Johnson et al.,
2017) can also be used to improve the performance
of low resource language pair translation as knowl-
edge is transferred from various languages which
helps the task of low resource language pair trans-
lation.

3 Approaches

In this section, we discuss the various approaches
we used to build a Russian-Chinese MT system.
We mainly focus on pivot-based transfer learning
techniques, in which we use the resources of En-
glish to improve the quality of Russian-Chinese
translation.

3.1 Baseline
The baseline Russian-Chinese model is a NMT
model based on Transformer architecture. The
model is trained on Russian-Chinese parallel data.

3.2 Cascade Model
The cascade model makes use of the resources of
English language to train a Russian-Chinese MT
system. In this approach, we train two NMT mod-
els, a source to pivot (Russian-English) model and
a pivot to target (English-Chinese) model. The
source Russian sentence is first translated into En-
glish using the Russian-English model. Then this
English sentence is translated into Chinese using
the English-Chinese model. In this way, the cas-
cade model translates the Russian sentence to Chi-
nese by passing it through the two NMT models.

There are a few disadvantages in this cascade model
based approach,

1. The source sentence is passed through two
different NMT models to produce the target
sentence. This doubles the decoding time for
the generation of the output sentence which is
very inefficient.

2. The errors in translation are propagated from
first (source-pivot) model to the second (pivot-
target) model.

These disadvantages of the cascade model ap-
proach make it an undesirable approach to utilize
the resources of the pivot language. In order to
overcome these disadvantages, we need to train a
single source-target model which utilizes the re-
sources of the pivot language. In the following
pivot language-based transfer learning technique,
direct pivoting, we overcome these disadvantages.
In this technique, we train a single source-target
model while utilizing the resources of the pivot
language.

3.3 Direct Pivoting
In this technique, we first train two separate NMT
models, a source-pivot model and a pivot-target
model. As demonstrated in Figure 1, we first
separately train a Russian-English (source-pivot)
model (task 1) and a English-Chinese (pivot-target)
model (task 2) on their respective parallel cor-
pus. Then we use the encoder of the Russian-
English (source-pivot) model and the decoder of
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the English-Chinese (pivot-target) model to initial-
ize the encoder and decoder of the Russian-Chinese
(source-target) model respectively. Finally, we fine-
tune the Russian-Chinese (source-target) model on
the Russian-Chinese parallel corpus.

As in this technique we are training a single
source-target (Russian-Chinese) model, there is no
problem of double decoding time. The parameters
of the encoder and decoder of the source-target
(Russian-Chinese) model are not randomly initial-
ized, they are trained on the source-pivot and pivot-
target translation task respectively. The initialized
encoder and decoder of the source-target (Russian-
Chinese) model have already learned some rep-
resentation or knowledge from the previous tasks.
This knowledge helps in the source-target (Russian-
Chinese) translation task. In this way this approach
utilizes the resources of the pivot (English) lan-
guage which assists in the translation task from
source to target (Russian-to-Chinese).

4 Experiments

In this section, we discuss the details of all the
experiments that we carried out to implement the
Russian-Chinese MT system.

4.1 Dataset

The NMT systems were trained on the parallel cor-
pora provided by the WMT 2021 organizers. We
used the Russian-Chinese, Russian-English, and
the Chinese-English parallel corpus. We used a
subset of the provided parallel corpora for train-
ing the models. Byte Pair Encoding (BPE) (Sen-
nrich et al., 2015) is used as a segmentation tech-
nique. The words in the data are broken down into
sub-words using the BPE technique. For the base-
line model the number of BPE merge operations
used were 16000 for the source and target data.
For the direct pivoting model, the source and tar-
get vocabulary are combined English-Russian and
English-Chinese vocabulary, respectively. So, the
BPE codes are computed by combining the source
side Russian and English data for source and the
target side English and Chinese data for target. The
number of BPE merge operations used were 32000
for the source and target data. The detailed corpora
statistics are mentioned in Table 1.

4.2 Models

For all the experiments, Transformer architecture
was used. The encoder of the Transformer con-

Language pair Number of sentences
Russian-Chinese 10M
Russian-English 10M
English-Chinese 10M

Table 1: Corpora statistics of all the language pairs

sisted of 6 encoder layers and 8 encoder attention
heads. The encoder used embeddings of dimension
512. The decoder of the Transformer consisted of 6
decoder layers and 8 decoder attention heads. For
the implementation of all models, fairseq (Ott et al.,
2019) library was used.

4.3 Training Setup
For all experiments, the transformer model from
fairseq library was used. The optimizer used was
adam with betas (0.9, 0.98). The inverse square
root learning rate scheduler was used with an initial
learning rate of 5e-4 and 4000 warm-up updates.
The criterion used was label smoothed cross en-
tropy with label smoothing of 0.1. The dropout
probability value used was 0.3 for all layers. For
the baseline model, the size of source (Russian) and
target (Chinese) vocabulary is 16876 and 29500,
respectively. For the direct pivoting model, the size
of source (combined Russian-English) and target
(combined English-Chinese) vocabulary is 34020
and 47052, respectively. The best model for all the
techniques was chosen by calculating the BLEU
(Papineni et al., 2002) scores on the development
set provided by the WMT 2021 organizers and the
choosing the model with best BLEU score.

4.4 Baseline
The baseline model is a transformer model trained
on Russian-Chinese (source-target) parallel corpus.

4.5 Cascade Model
The cascade model consists of two NMT models
trained separately. The first model is a Russian-
English model trained on Russian-English parallel
corpus. The second model is a English-Chinese
model trained on English-Chinese parallel corpus.
For translating a Russian sentence to Chinese, the
sentence is passed through two models.

4.6 Direct Pivoting
The direct pivoting model uses a shared vocabu-
lary of Russian-English (source-pivot) on the en-
coder side and English-Chinese (pivot-target) on
the decoder side. This is done to ensure that the
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Model BLEU score
Baseline 18.2
Cascade 17.2
Direct Pivoting 18.8

Table 2: BLEU scores of Russian-Chinese NMT system using different techniques

encoder and decoder parameters are transferable
as transformers are fixed vocabulary models. The
Russian-English (source-pivot) model is trained
on Russian-English parallel data and the English-
Chinese (pivot-target) model is trained on English-
Chinese parallel data. Then the encoder of Russian-
English model and decoder of English-Chinese
model is used to initialize the encoder and decoder
of Russian-Chinese (source-target) model. Finally,
we fine-tune the Russian-Chinese model on the
Russian-Chinese parallel data.

5 Results and Analysis

The evaluation of the models were performed on
the basis of the BLEU scores. These BLEU scores
were calculated and provided by the WMT 2021
organizers. The BLEU scores were calculated
on a test set provided by WMT 2021 organizers,
which consisted of 1751 sentences. Table 2 shows
the BLEU scores of all the models. The baseline
Russian-Chinese model produced a BLEU score
of 18.2. The cascade model in which the Russian
sentence is first translated to English using Russian-
English model and then the English sentence is
translated to Chinese using the English-Chinese
model, produced a BLEU score of 17.2. The possi-
ble reason for this decrease in BLEU score is that
the errors made by the Russian-English model are
propagated to the English-Chinese model, which
further introduced its own errors. As the source
sentence is passed through the two model each
model introduces its own errors, which decreases
the BLEU score.

The direct pivoting model produced a BLEU
score of 18.8 which improved the BLEU score by
0.6 points over the baseline model. This increase
in BLEU score is because the encoder and decoder
of the Russian-Chinese model are not randomly
initialized; but they are initialized from the en-
coder and decoder of Russian-English and English-
Chinese model respectively. Then the model is
fine-tuned on Russian-Chinese parallel corpus. The
encoder and decoder have already learnt some rep-
resentations which helps in the task of Russian-

Chinese translation. Also as this is a single NMT
model, there is no problem of propagation of errors
or double decoding time.

6 Conclusion and Future Work

In this work, we implement and compared pivot
language-based transfer learning technique to im-
prove the task of translation between non-English
language pair, that is Russian-Chinese. We observe
that pivot language-based transfer learning tech-
nique improves the BLEU score over the baseline
model and is an efficient way to use the resources
of the pivot language. We also observe that the
pivot language-based transfer learning technique
mitigates the problems of double decoding time
and error propagation present in simple cascade-
based models.

In future, we plan to explore various data aug-
mentation techniques that can make use of the re-
sources of the English language to augment data
for the task of translation of non-English language
pair translation. We also plan to use various lan-
guage model pretraining techniques like Masked
Sequence to Sequence Pre-training (MASS) to pre-
train the encoder and decoder before using them
for the downstream task of translation.
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Abstract

This paper describes Naver Papago’s submis-
sion to the WMT21 shared triangular MT task
to enhance the non-English MT system with
tri-language parallel data. The provided paral-
lel data are Russian-Chinese (direct), Russian-
English (indirect), and English-Chinese (indi-
rect) data. This task aims to improve the qual-
ity of the Russian-to-Chinese MT system by
exploiting the direct and indirect parallel re-
sources. The direct parallel data is noisy data
crawled from the web. To alleviate the issue,
we conduct extensive experiments to find ef-
fective data filtering methods. With the empir-
ical knowledge that the performance of bilin-
gual MT is better than multi-lingual MT and
related experiment results, we approach this
task as bilingual MT, where the two indirect
data are transformed to direct data. In addition,
we use the Transformer, a robust translation
model, as our baseline and integrate several
techniques, averaging checkpoints, model en-
semble, and re-ranking. Our final system pro-
vides a 12.7 BLEU points improvement over
a baseline system on the WMT21 triangular
MT development set. In the official evaluation
of the test set, ours is ranked 2nd in terms of
BLEU scores.

1 Introduction

We participate in the WMT21 triangular machine
translation task, using the direct and indirect par-
allel data to improve Russian-to-Chinese machine
translation. The provided data consists of one noisy
web corpus (Russian-Chinese, direct translation)
and two combined bitexts from several public re-
sources (English-Chinese/Russian, indirect). Such
cases frequently occur in both actual translation
services and research. In particular, this task is
crucial in scenarios where we need to improve the
performance of non-English translations or low-
resource languages with high-resource parallel data.

∗Work done during internship at Naver Corp.

Previous works deal with the triangular MT using
several methods such as pivot-translation (Cheng
et al., 2017), transfer learning (Kim et al., 2019),
pre-trained multi-lingual MT (Liu et al., 2020; Tang
et al., 2020) and so on.

In this paper, we explore existing novel tech-
niques to integrate them for the triangular MT tasks.
The original direct parallel degrades the transla-
tion quality of the model due to the noisy parts
containing not well-aligned sentence pairs, erro-
neous characters, or the wrong language ID. To
discard the noise parts of the noisy web corpus,
we filter out data with sequence length, length ra-
tio, language ID, de-duplication, and the sentence
similarity computed with pre-trained multi-lingual
language model (LaBSE, Feng et al., 2020). In pre-
liminary experiments, we approached this task in
three main ways: bilingual MT, multi-lingual MT,
and fine-tuning the pre-trained multi-lingual trans-
lation model (i.e., mBART). As shown in Section 4,
we found that the bilingual MT outperforms the
others. Thus, to augment the Russian-to-Chinese
corpus, we conduct two types of data augmenta-
tion: (1) back-translation on the discarded mono-
lingual Chinese data from noise-refining steps and
(2) translation using English as pivot language on
two indirect bilingual data (e.g., feed English of
English-Chinese data to English-to-Russian trans-
lation model to augment Russian-Chinese data).
In detail, we generate the synthetic data by using
different decoding methods such as beam search,
sampling, and adding noise to beam search outputs.
Our submission systems use 12-layer Transformer
architecture. Furthermore, we exploit ensemble, av-
eraging checkpoints, and noisy-channel re-ranking
techniques to mitigate the over-fitting problem or
improve the generalization capability in the test set.

To find suitable methods for triangular MT, we
conduct extensive experiments, where all neural
machine translation (NMT) systems are evaluated
against the development set released in the WMT21
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triangular MT shared task. Our final submission
improves about 12.7 and 8.9 BLEU points com-
pared to the organizer’s baseline system on the
development set and test set, respectively.

2 Approaches

2.1 Data Pre-processing

On all three corpora, we apply data normalization
such as unifying punctuation marks and parenthe-
ses. For Chinese, we convert the traditional Chi-
nese to Simplified Chinese using the open-source
toolkit HanziConv1 For all languages, we apply a
language-specific tokenizer as a pre-tokenization
step. We use NLTK2 for English and Russian,
jieba3 for Chinese. And then, we apply joint multi-
lingual Byte-Pair Encoding (BPE, Sennrich et al.
2016) to the pre-tokenized corpus with 75K merge-
operations and 10K character limitation using the
open-source toolkit Transformers4.

2.2 Data Filtering

The provided parallel corpus contains a certain
amount of noisy parts, which affects the transla-
tion quality. Thus, we eliminate noisy parts with
the following heuristics rules:

• *Filtering out sentence pairs containing more
than 256 tokens.

• *Filtering out sentence pairs consisting of
characters of other languages than a pre-
defined threshold. For this sake, we use an
in-house language detector. We determine the
threshold experimentally.

• *Filtering out sentence pairs with
source/target length ratio exceeding 1.5
(Ott et al., 2019).

• Filtering out duplication in corpora (Khayral-
lah and Koehn, 2018; Ott et al., 2019). There
are 4 options as follows: filtering out (1) dupli-
cate sentence pairs (It is called Pair-dedup. in
Table 3); (2) duplicate source sentences (Src-
only-dedup.); (3) duplicate target sentences
(Tgt-only-dedup.); (4) duplicate source and
duplicate target sentences (Src&Tgt-dedup.).

1https://github.com/berniey/hanziconv
2https://www.nltk.org
3https://github.com/fxsjy/jieba
4https://github.com/huggingface/transformers

Systems RU-ZH EN-ZH RU-EN

Original 33M 28M 69M

+ Basic Filter 22M 19M 50M
+ De-duplicate 18M 15M 42M
+ LaBSE Filter 13M 12.7M 39.3M

Table 1: The amount of the sentence pairs

• Filtering out sentence pairs according to the
cosine similarity of the sentence pair. To this
end, we feed the sentence pair to LaBSE (Feng
et al., 2020) and calculate the cosine similarity
score of the sentence pair. Then, we discard
sentence pairs whose cosine similarity score
falls below a certain threshold. From here on,
it is called LaBSE filtering,

where the filtering methods marked with * are basic
filtering methods.

We conducted experiments on the de-duplication
and LaBSE filtering to find an optimal combination
of them in subsection 4.1. Based on the results,
we remove the duplicate sentence pairs and set the
threshold of LaBSE filtering to 0.5 in our experi-
ment. Table 1 shows the amount of the sentence
pairs after filtering.

2.3 Data Augmentation

To augment the direct bilingual data (Russian-to-
Chinese), we generate synthetic bilingual sentence
pairs on three data: one monolingual data (Chi-
nese), two indirect parallel data (English-Chinese,
and Russian-English). The Chinese monolingual
corpora filtered out in the filtering step are trans-
lated back to Russian by the Chinese-to-Russian
translation model (back-translation). To utilize
indirect parallel data, we first train English-to-
Chinese and English-to-Russian translation sys-
tems using provided corpora. Then we acquire
synthetic Russian-Chinese pairs translating En-
glish sentences of English-Chinese data to Rus-
sian sentences using the trained English-to-Russian
MT system (back-translated synthetic corpus). In
the same way as before, we also acquire syn-
thetic Russian-Chinese pairs translating English
sentences of Russian-English data to Chinese us-
ing the English-to-Chinese MT system (forward-
translated synthetic corpus). In this paper, we use
the Transformer-Big model to augment the direct
bilingual. In the future, we would thoroughly ex-
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plore several methods to improve further the quality
of augmented data, such as using a bigger model
and iterative back-translation Hoang et al. (2018).

Following Edunov et al. (2018), we use vari-
ous decoding strategies , including maximum a-
posteriori (MAP) and non-MAP methods for ef-
fective data augmentation. In detail, there are five
decoding methods: (1) beam search; (2) sampling;
(3) sampling top 10; (4) noising beam outputs; (5)
noising beam outputs only with sentences longer
than 5. The sampling top 10 method is to restrict
the sampling method to the k highest-scoring out-
puts at every decoding step. The noising beam
outputs method denotes to add three types of noise
such as random permutation over tokens, deleting
some tokens, and masking some tokens. Edunov
et al. (2018) demonstrated that the non-MAP de-
coding methods such as (2)-(5) outperform pure
beam search.

In our experiments, we generate the five syn-
thetic bilingual data using the different decoding
methods. We train five models with each synthetic
data embracing data variation. Performance of each
way is described in Table 4 In the final submission,
we choose a combination of (1) beam search, (2)
sampling, and (3) restricted noising beam outputs
experimentally. After generating the synthetic bilin-
gual data, we apply the data filtering schemes de-
scribed in section 2.2 to them. We upsample bitext
data to maintain a 1-to-1 ratio of real to synthetic
bitext during the training phase.

2.4 Model

In our experiments, we adopt three Transformer
architectures.

• Transformer-Base with a 6-layers encoder-
decoder and a model dimension of 512 as used
in Vaswani et al. (2017).

• Transformer-Big with a 6-layers encoder-
decoder and a model dimension of 1024 as
used in Vaswani et al. (2017).

• Transformer-Large is similar to
Transformer-Big model except that it
uses a 12-layers encoder-decoder with
pre-norm (Wang et al., 2019).

To boost the performance of the translation
model, we average the parameters acquired from
various epochs obtained in a training phase and

then ensemble the averaged checkpoints involv-
ing various variations in terms of data. More-
over, we perform a grid search for decoding hyper-
parameters such as length penalty and beam size
to find the best performance. We conduct prelimi-
nary experiments using the Transformer-Big model
to find (sub)optimal configurations in data filter-
ing, data augmentation, hyper-parameters, and so
on. Then, based on the observations, we apply
the (sub)optimal configurations to the Transformer-
Large model.

2.5 Noisy-Channel Re-ranking
The noisy channel re-ranking (Yee et al., 2019)
applies Bayes’ rule to decoding:

p(y|x) = p(x|y)p(y)
p(x)

, (1)

where x is source sequence and y is hypothesis
sequence in translation task. Since p(x) is con-
stant for all y, re-ranking score for each hypothesis
candidate can be reconstruct as follows:

λ1 log p(y|x) + λ2 log p(x|y) + λ3 log p(y)

|y|α ,

(2)
where λ, α are tunable weights, |y| is length of
hypothesis sequence, and p(y|x), p(x|y), p(y) de-
note score of forward model, backward model, and
language model, respectively.

In a preliminary experiment, we used several
publicly released Chinese language models 5 and
found that they caused performance degradation. In
addition, we used another scoring metric (inverse
document frequency similar to BARTScore (Yuan
et al., 2021)) when re-ranking, but this did not give
any performance gain. Due to time and resource
constraints, we could not fully explore our own
Chinese language model.

3 Experiments and Results

3.1 Experiment Setup
Our base system is based on the Transformer-Large
with an embedding size of 1024, 12 encoder and
decoder layers, 12 attention heads, shared source
and target embedding, the sinusoidal positional em-
bedding, and pre-norm. We train with a batch size
of 3584 tokens and optimize the model parameters
using Adam optimizer with a learning rate 1e-3
β1= 0.9 and β2 = 0.98, learning rate warm-up

5https://huggingface.co
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Systems #Sentence BLEU

Organizer’s Systems
Direct 33M 20.2
Pivot (69+28)M 19.7

Our Systems
Transformer-Base 22M* 26.4
Transformer-Big 22M* 28.7
Transformer-Large 22M* 28.9
+ De-duplication 18M 29.2
+ LaBSE Filter (0.5) 13M 29.8
+ Augmented data (13+45)M 31.3
+ Averaging - 31.9
+ Ensemble - 33.0
+ Re-ranking** - 33.0

Table 2: Performances on the WMT21 triangular MT
Russian-to-Chinese development set in Transformer-
Large. The asterisk(*) mark is a basic filter, and the
double-asterisk(**) denotes our submitted system.

over the first 16k steps. Additionally, we apply
label smoothing with a factor of 0.1. In the training
phase, the dropout is set to 0.1, and the attention
dropout is set to 0.3. We apply the early stop-
ping technique using the WMT21 triangular MT
development set, and all models are trained for a
minimum of 30 and a maximum of 50 epochs. We
trained all our models using FAIRSEQ 6 (Ott et al.,
2019) on 8 NVIDIA Tesla V100 GPUs.

3.2 Experimental Results

As shown in Table 2, our final model outperforms
about +12.7 BLEU compared to the organizer’s
systems. In detail, we got the most significant
performance improvement in scaling up the Trans-
former model. Through the data filtering process,
our model achieved an improvement of about 1
BLEU. By augmenting the Russian-to-Chinese cor-
pus, our model obtained a gain of about 1.5 BLEU.
When model-level methods such as averaging pa-
rameters, ensemble, and re-ranking were applied,
the BLEU score could be raised again by 1.5.

4 Discussions

4.1 Analysis of Data Filtering

In order to verify the impact of various data filter-
ing methods on translation performance, we con-
duct experiments on the direct parallel corpus (i.g.,

6https://github.com/pytorch/fairseq

Systems #Sentence BLEU

Basic filter 22M 28.7

LaBSE filter (0.5) 17M 29.5 (+0.8)
Pair-dedup. 18M 28.7 (+0.0)
+ LaBSE filter 13M 29.7 (+0.9)
Src-only-dedup. 12.6M 28.5 (-0.3)
Tgt-only-dedup. 13M 28.5 (-0.2)
Src&Tgt-dedup. 11M 28.9 (+0.1)
+ LaBSE filter 10.6M 29.8 (+1.0)

Table 3: Further experiment results with different data
filtering methods in Transformer-Big. The Basic filter
contains filtering the sentences by sequence length, lan-
guage ratio, and length ratio. The others are described
in section 2.2. The plus marks denote that the filter-
ing method is applied additionally. For example, the "+
LaBSE filter" in fifth row means that both Pair-dedup
and LaBSE filter are applied.

Russian-to-Chinese). As shown in Table 3, we can
see that the performance improves even though we
have removed more than half of the data, which
means that the original data is quite noisy.

To find the best threshold value for the LaSBE
filtering, we executed an additional experiment in
which the threshold range is set from 0.0 to 0.9.
The threshold 0.0 denotes that the filtering is not
applied, and threshold 0.9 means filtering out the
sentence pairs whose cosine similarity score falls
below 0.9. As can be seen from the results in Fig-
ure 1a, we set the threshold value of LaBSE filter-
ing to 0.5 in our final system. Figure 1b shows the
distribution of cosine similarity scores on training
data. In contrast to the distribution of the train data,
that of the WMT21 triangular MT development set
is clustered around 0.8. It means that the train data
contain many noisy sentence pairs (nearby cosine
similarity score 0.2) in terms of LaBSE sentence
similarity.

4.2 Analysis of Data Augmentation
We evaluate the impact of the different decoding
methods for data augmentation. Table 4 shows
the experiment results, which are consistent with
Edunov et al. (2018). We observed that sampling
and noise beam search are more effective than
vanilla beam search. In particular, it is more effec-
tive to limit adding noise only to sentences longer
than 5 (Noising beam*). As shown in the Table 4,
none of the decoding strategies demonstrates supe-
rior performance. Therefore we ensemble models
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(a) Performances with different threshold values (b) Cosine similarity scores on train data

Figure 1: The LaBSE filtering methods.

Systems #Sentence BLEU

Before augment. 13M 29.6

Beam (13+45)M 30.2 (+0.5)
Sampling (13+54)M 30.7 (+1.0)
Sampling top 10 (13+47)M 30.5 (+0.9)
Noising beam (13+45)M 30.3 (+0.6)
Noising beam* (13+45)M 30.8 (+1.1)

Table 4: Further experiment results with different de-
coding methods for data augmentation in Transformer-
Big. The Before augment. denotes applying the basic
filtering, de-duplication (pair), and LaSBE filtering to
data. The asterisk(*) mark denotes the restriction to
sentences with the length of tokens longer than 5.

trained with the different decoding methods. As
a result, the ensemble model performs better, as
seen in the Table 2. In an additional experiment,
we also find that the performance of the augmen-
tation (back-translation) models has a significant
impact on the performance of the forward model
as suggested in Hoang et al. (2018)

4.3 Bilingual MT vs Multi-lingual MT

We experimented with two ways to fully utilize
the triangular MT data: to transform the indirect
parallel data into direct parallel data and use them
for bilingual MT as described in subsection 2.3;
the another is to use the all provided data for multi-
lingual MT. From the experiment result, we ob-
served that the bilingual MT outperforms the multi-
lingual MT by 1 BLEU point, and the multi-lingual

Systems Data BLEU

Transformer-Large RU2ZH* 31.3

mBART50 RU2ZH 30.3 (-1.0)
mBART50 RU2ZH* 30.9 (-0.4)
mBART50 M2ZH 29.4 (-1.9)
mBART50 M2M 30.3 (-1.1)

Table 5: Comparison between Transformer trained
from scratch and fine-tuned mBART50 in an as-
pect of BLEU score. The asterisk(*) mark de-
notes augmentation with noising beam search. The
M2ZH and M2M indicate RU2ZH&EN2ZH and
RU2ZH&EN2ZH&RU2ZH, respectively.

MT requires more training time due to upsampling
specific direction data.

4.4 Pre-trained Multi-lingual Language
Model

Recently, fine-tuning pre-trained multi-lingual MT
models (Liu et al., 2020; Tang et al., 2020) showed
remarkable performance in multi-lingual transla-
tion scenarios. To explore the effectiveness of fine-
tuning a pre-trained multi-lingual translation model
for triangular MT, in the Table 5, we conducted ex-
periments using mBART50 (Tang et al., 2020) on
several datasets: (1) the augmented RU2ZH with
beam search; (2) the augmented RU2ZH with nois-
ing beam search; (3) the RU-ZH and EN-ZH data;
(4) the RU-ZH, EN-ZH, and RU-EN data. We
use the Transformer-Large equal to mBART50 in
model size as a baseline model for a fair compar-
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ison. For fine-tuning mBART, the WMT21 trian-
gular MT development set is used to compute the
stopping criterion, and the models are fine-tuned
for a minimum of 10 and a maximum of 20 epochs.
In general, mBART transfer learning is known to
be effective in low-resource language data. Fine-
tuning mBART does not work well when large
enough data are available. As can be seen from the
experimental results, it is more effective to train
the model from scratch after data augmentation.

5 Conclusion

This paper depicts Papago’s submissions to the
WMT21 triangular MT shared task. We have con-
ducted extensive experiments using various tech-
niques such as data filtering, data augmentation,
model ensembling, and re-ranking in the triangular
MT scenario. Except for existing techniques, we
also have tried to apply data filtering with LaBSE
sentence score and data augmentation using pivot
language and demonstrated their effectiveness in
translation performance. As a result, our system
achieves the second record according to the re-
leased official results.
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Abstract

In this work, we investigate methods for the
challenging task of translating between low-
resource language pairs that exhibit some
level of similarity. In particular, we consider
the utility of transfer learning for translating
between several Indo-European low-resource
languages from the Germanic and Romance
language families. In particular, we build two
main classes of transfer-based systems to study
how relatedness can benefit the translation per-
formance. The primary system fine-tunes a
model pre-trained on a related language pair
and the contrastive system fine-tunes one pre-
trained on an unrelated language pair. Our
experiments show that although relatedness is
not necessary for transfer learning to work, it
does benefit model performance.

1 Introduction

Machine translation (MT) is currently one of the
hot application areas of deep learning, with neu-
ral machine translation (NMT) achieving outstand-
ing performance where large amounts of paral-
lel data are available (Koehn and Knowles, 2017;
Ranathunga et al., 2021; Luong et al., 2015a;
Nguyen and Chiang, 2017). In low-resource set-
tings, transfer learning methods have proven useful
for improving system performance (Zoph et al.,
2016; Nguyen and Chiang, 2017; Kocmi and Bo-
jar, 2018). In this work, we focus on studying
NMT, including in the low-resource scenario. In
particular, we focus our attention on investigating
the effect of language relatedness on the transfer
process. We define relatedness of a pair of lan-
guages based on belonging to the same language
family. That is, by ‘related’ we mean ‘within the
same language family’ whereas by ‘unrelated’ we
mean ‘belong to two different language families’.
For example, we call English and Swedish related
since they belong to the Germanic language family
but English and French not related since the latter

belongs to the Romance language family. As an
analogy to human learning, we would like to ask:
if there are two translators (pre-trained models),
for example one Catalan→ Spanish translator and
one Catalan → English translator, will they (af-
ter extra training, i.e., fine-tuning/transfer learning
process) have different abilities to translate from
Catalan into Occitan? If the Catalan-Spanish trans-
lator proves to perform better Catalan→ Occitan,
we may attribute this to Spanish and Occitan being
members of the Romance language family while
English being a member of the, Germanic, different
family.

Of particular interest to us are two sets of lan-
guages belonging to two different language fami-
lies, one set to Romance and the other set to Ger-
manic. For the former set, we take Catalan (ca),
Italian (it), Occitan (oc), Romanian (ro), and Span-
ish (es); and we take English (en) for the latter
set. We note that both Romance and Germanic
are two branches of the larger Indo-European lan-
guage family, and hence there are some level of
relatedness between all the languages we study in
this work. Nevertheless, languages in Romance
and Germanic differ in some syntactic structures.
For example, the position of attributive adjectives
in Germanic languages is before the noun while it
is after the noun for Romance languages (Van de
Velde et al., 2014). Despite differences, the writing
system of all languages in this work is the Latin
script. This can be beneficial to transfer learning
because these languages can potentially share com-
mon lexical items or morphemes, which may facil-
itate the transfer learning process.

As mentioned, we adopt transfer learning since
it has been shown to improve translation quality for
low-resource language pairs. For example, Zoph
et al. (2016) sequentially build a parent model and
a child model where each is trained, respectively,
on high-resource and low-resource language pairs
with the child model retaining parameters from
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Lang. Pair Primary Contrastive
ca-it ca-it/ca-es ca-en
ca-oc ca-es ca-en
ca-ro ca-es ca-en

Table 1: Pre-trained model choices for our primary and
contrastive NMT systems.

the parent model. In addition, Nguyen and Chi-
ang (2017) successfully transfer knowledge from a
parent model to a child model where both models
are trained on low-resource but related language
pairs. Kocmi and Bojar (2018) also adopt a similar
approach to these previous works, but based their
work on the Transformer architecture (Vaswani
et al., 2017) instead of using a recurrent encoder-
decoder network with attention (Bahdanau et al.,
2015; Luong et al., 2015b).

Our work builds on these studies. Namely, we
empirically apply transfer learning under different
conditions to members of various language fami-
lies. The outcomes of our work are similar to those
of Zoph et al. (2016); Kocmi and Bojar (2018).
That is, while we find relatedness to be beneficial,
a positive transfer between an unrelated language
pair can still be possible (although with a poten-
tially diminished performance).

The rest of this paper is organized as follows:
In Section 2, we overview related work. We intro-
duce our datasets and experiments in Section 3. In
Section 4, we present and analyze our results. We
conclude in Section 5.

2 Background

2.1 Transfer learning

Transfer learning is a machine learning approach
that aims at transferring the knowledge of one task
to another. As an analogy to human learning, one
who masters the skills to ride a bicycle may transfer
the knowledge to riding a motorcycle because these
two tasks share common abilities such as maintain-
ing balance on a two-wheel moving vehicle (Pan
and Yang, 2009; Weiss et al., 2016). We employ
transfer learning to port knowledge from a model
trained on one pair of languages to another. We
now discuss transfer learning in NMT.

2.2 Transfer learning in Machine Translation

Zoph et al. (2016) design a framework where a
parent model is trained on a high-resource lan-
guage pair while retaining model parameters for

the child model to start fine-tuning with. Using
this method, Zoph et al. (2016) improve system
performance by an average of 5.6 BLEU points.
The improvement is realized by transferring what
is learnt in the high-resource language pair to the
low-resource language pair. The Uzbek-English
model obtains 10.7 BLEU score without the par-
ent model and improves to 15.0 with the French-
English parent model. The Spanish-English model
has 16.4 BLEU score without the parent model and
31.0 with the French-English parent model. These
results show that applying transfer learning con-
tributes 4.3 and 14.6 BLEU points gain. Based
on results from Zoph et al. (2016), the closer the
two source languages, the more performance gain
acquired. Due to the relatedness between Spanish
and French (both are members of the Roman lan-
guage family), performance gain is higher for this
pair.

Following previous work, Nguyen and Chiang
(2017) design a paradigm similar to that of Zoph
et al. (2016) but maintain one major difference.
In particular, Nguyen and Chiang (2017) try to
make use of relatedness between the parent and
child models at the vocabulary level: instead of
randomly mapping tokens in the parent and child
vocabulary, they retain the parent tokens for the
child model if these tokens exist in child language
pair. This approach is based on two assumptions
- (i) the lexicons of the parent and child language
pair have at least some partial overlap and (ii) these
identical tokens have similar meaning. Instead of
the word-level tokenization in Zoph et al. (2016),
Nguyen and Chiang (2017) use Byte Pair Encoding
(BPE) (Gage, 1994; Sennrich et al., 2016) to obtain
subword tokens which may increase the number
of overlapped tokens between the parent and child
models. Improvement of 0.8 and 4.3 in BLEU
score were obtained for the Turkish-English and
Uyghur-English child models as transferred from
an Uzbek-English parent model.

Following the previous two works, Kocmi and
Bojar (2018) take a similar approach but use the
Transformer architecture. They obtain an im-
provement of 3.38 BLEU for an English-Estonian
child model transferred from an English-Czech
parent model. Similarly, Neubig and Hu (2018)
add a second language related to the added low-
resource language to avoid overfitting when fine-
tuning. This mechanism has shown to be effective.
Other works have investigated NMT approaches
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to similar languages by pre-training new language
models on the low-resource languages (Nagoudi
et al., 2021) or without necessarily applying trans-
fer learning (Przystupa and Abdul-Mageed, 2019;
Adebara et al., 2020; Barrault et al., 2019, 2020),
and there are several works on low resource lan-
guages (Adebara et al., 2021). We now introduce
our experimental settings.

3 Experimental Settings

3.1 Languages & Settings

We carry out experiments on three language pairs:
ca-it, ca-oc, and ca-ro. The number of par-
allel sentences of each dataset is shown in Ta-
ble 4. Training data are from OPUS (Tiedemann,
2012), particularly version 1 of the WikiMatrix
datasets (Schwenk et al., 2021). They are data
of child language pair and are used to fine-tune
pre-trained model. Development and test data
are provided by organizers of the Multilingual
Low-Resource Translation for Indo-European Lan-
guages shared task. The shared task is hosted in
EMNLP 2021 Sixth Conference on Machine Trans-
lation (WMT21).

We build two systems: a Primary system and a
Contrastive system. The primary system fine-tunes
pre-trained ca-es and ca-it models, while the con-
trastive system fine-tunes a pre-trained ca-en model
as shown in Table 1. The primary and contrastive
systems serve as context for studying the role of
language relatedness in transfer learning in NMT.
We submitted predictions of the two systems to the
WMT2021 shared task, and evaluation was based
on blind test sets with a number of metrics as run
by shared task organizers. An exception is the ca-it
language pair fine-tuned on top of the ca-es pre-
trained model–we train the model of this pair post
shared task formal evaluation.

3.2 Model Architecture

We leverage publicly accessible pre-trained models
on Huggingface (Wolf et al., 2020) from Helsinki-
NLP (Tiedemann and Thottingal, 2020). The pre-
trained MT models released by Helsinki-NLP are
trained on OPUS. These models are Transformer-
based implemented in the Marian-NMT frame-
work (Junczys-Dowmunt et al., 2018). Each model
has six self-attention layers in both the encoder
and decoder sides, and each layer has eight at-
tention heads. The tokenization method is Sen-
tencePiece (Kudo and Richardson, 2018) which

produces vocabulary of size 49, 621, 21, 528 and
55, 255 for ca-es, ca-it, and ca-en models, respec-
tively.

3.3 Approach
The pre-trained models are chosen based on the de-
gree of relatedness of the original target language
on which the model is trained and the new target
language on which the model is fine-tuned. Pri-
mary system takes related languages while con-
trastive system takes unrelated languages. Since
Catalan, Italian, Occitan, Romanian, and Spanish
are all members of the Roman language family, we
take ca-es as our pre-trained MT model for transfer
learning. As English is a member of the Germanic
language family, we use a ca-en pre-trained model
for our transfer learning. Our model choices are
summarized in Table 1.

Without modifying the architecture of the MT
pre-trained models, all architecture-related hyper-
parameters are identical to the original edition. As
for hyperparameters related to fine-tuning, the num-
ber of beams for beam search is modified from four
for pre-training to six for fine-tuning. The batch
size is set to be 25. Pre-trained models are further
fine-tuned for 30, 000 steps on OPUS bitext. The
checkpoint with the lowest validation loss is then
selected as our best model for prediction.

Similar to Zoph et al. (2016); Nguyen and Chi-
ang (2017); Kocmi and Bojar (2018), to achieve
transfer learning, we retain the parameters of the
parent model when fine-tuning the child model.
Besides, parent and child models share a common
vocabulary. That is, we do not build distinct vocab-
ularies for the parent model and child models. A
shared vocabulary can contribute to better transfer
learning since all our language pairs employ the
same Latin writing system. We suspect a shared
vocabulary is more influential when the two lan-
guages are related to each other since the languages
may have common morphemes, lexical items, or
syntactical structure. For unrelated languages, a
shared vocabulary may not hurt since the token em-
beddings are not frozen throughout the fine-tuning
process. That is, token embeddings can still be up-
dated to attain better representations during train-
ing.

3.4 Baseline Models
To demonstrate the effectiveness of our transfer
learning approach, we provide a baseline model for
each language pair that is simply a parent model (a
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Baseline Our models
Pre-

trained
Model

Lang. Pairs BLEU chrF BLEU chrF TER COMET BertScore

ca-it ca-it 29.31 0.583 35.06 0.622 0.477 0.391 0.886
ca-es ca-it 7.07 0.370 33.13 0.602 0.499 - -
ca-es ca-oc 12.56 0.472 59.93 0.787 0.254 0.538 0.928
ca-es ca-ro 4.43 0.266 11.24 0.354 0.855 -0.908 0.749

Table 2: Primary system results. We did not submit the ca-it language pair fine-tuned on the ca-es pre-trained
model to the WMT2021 shared task, and hence the results are calculated by ourselves with Sacrebleu.

Baseline Our models
Pre-

trained
Model

Lang. Pairs BLEU chrF BLEU chrF TER COMET BertScore

ca-en ca-it 1.97 0.249 25.46 0.539 0.574 -0.263 0.844
ca-en ca-oc 2.16 0.258 51.46 0.736 0.316 0.259 0.905
ca-en ca-ro 1.59 0.209 8.61 0.311 0.884 -1.119 0.725

Table 3: Contrastive system reuslts

Lang. Pairs Train Dev Test
ca-it 1,143,531 1269 1743
ca-oc 138,743 1269 1743
ca-ro 490,064 1269 1743

Table 4: Distribution of dataset

pre-trained model) without any fine-tuning on data
of the child language pair.

3.5 Evaluation
The adopted metrics are BLEU (Papineni et al.,
2002), chrF (Popović, 2015), TER (Olive, 2005),
COMET (Rei et al., 2020), and BERTScore (Zhang
et al., 2019). BLEU, chrF and TER are mea-
sured with the implementation of Sacrebleu (Post,
2018)1.

4 Results and Analysis

4.1 Primary and Contrastive Systems
As can be seen in the rightmost five columns in
Table 2 and Table 3, primary system outperforms
contrastive system across all metrics. We believe
that ca-es pre-trained MT model performs better
transfer learning because Spanish is closer to Ital-
ian, Occitan, and Romanian than English is to these
languages. These results, as such, indicate that
transfer learning between related language pairs

1https://github.com/mjpost/sacrebleu

can produce better performance than between unre-
lated language pairs.

4.2 Baseline and Fine-tuned Models

Our results in Table 2 and Table 3 show the effec-
tiveness of transfer learning for both related and
unrelated language pairs. This is the case since
both systems experience a performance gain after
fine-tuning.

As an interesting observation, it seems counter-
intuitive to have the unrelated language pairs ex-
perience slightly higher performance gain. For
example, regarding ca-oc language pair, the trans-
fer learning provides 47.37 BLEU score improve-
ment transferring from ca-es parent model but 49.3
BLEU score improvement transferring from ca-en
parent model. We suspect this is because in our
work, when fine-tuning, we fix source language
and alter the target language.

Unlike multilingual MT models which requires
target language label to be prepended at the begin-
ning of a source sentence (Johnson et al., 2017)
or notifying the model what target language is for
this forward propagation (Liu et al., 2020), the
pre-trained models we use in this work are bilin-
gual models which lack a mechanism to provide
the model any information about current target lan-
guage. Therefore, the ca-en pre-trained model does
not know it should now be translating Catalan to
Occitan instead of English. Due to producing pre-
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diction in an incorrect target language, the metrics
will be very poor. After fine-tuning the parent mod-
els on data of the child language pairs, the models
are likely abler to produce prediction in the cor-
rect target language. Due to baseline metrics being
too low, the difference in metric values between
non-fine-tuned (baseline) and fine-tuned models
are large and that is why the performance gain can
be higher in contrastive system than in primary
system.

5 Conclusion

In this work, we confirm previous works showing
that transfer learning benefits NMT. Besides, an
empirical comparison between transferring from
related and unrelated languages shows that related-
ness is not strictly required for knowledge transfer,
but it does result in higher performance than trans-
ferring with unrelated languages.
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Loïc Barrault, Ondřej Bojar, Marta R Costa-Jussa,
Christian Federmann, Mark Fishel, Yvette Gra-
ham, Barry Haddow, Matthias Huck, Philipp Koehn,
Shervin Malmasi, et al. 2019. Findings of the 2019
conference on machine translation (wmt19). In
Proceedings of the Fourth Conference on Machine
Translation (Volume 2: Shared Task Papers, Day 1),
pages 1–61.

Philip Gage. 1994. A new algorithm for data compres-
sion. C Users Journal, 12(2):23–38.

Melvin Johnson, Mike Schuster, Quoc V. Le, Maxim
Krikun, Yonghui Wu, Zhifeng Chen, Nikhil Thorat,
Fernanda Viégas, Martin Wattenberg, Greg Corrado,
Macduff Hughes, and Jeffrey Dean. 2017. Google’s
multilingual neural machine translation system: En-
abling zero-shot translation. Transactions of the As-
sociation for Computational Linguistics, 5:339–351.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, André F. T.
Martins, and Alexandra Birch. 2018. Marian: Fast
neural machine translation in C++. In Proceedings
of ACL 2018, System Demonstrations, pages 116–
121, Melbourne, Australia. Association for Compu-
tational Linguistics.

Tom Kocmi and Ondrej Bojar. 2018. Trivial transfer
learning for low-resource neural machine translation.
CoRR, abs/1809.00357.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceed-
ings of the First Workshop on Neural Machine Trans-
lation, pages 28–39, Vancouver. Association for
Computational Linguistics.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for neural text processing. In
Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66–71, Brussels, Belgium.
Association for Computational Linguistics.

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey
Edunov, Marjan Ghazvininejad, Mike Lewis, and
Luke Zettlemoyer. 2020. Multilingual denoising
pre-training for neural machine translation. Transac-
tions of the Association for Computational Linguis-
tics, 8:726–742.

Minh-Thang Luong, Hieu Pham, and Christopher D
Manning. 2015a. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1412–1421.

351



Thang Luong, Hieu Pham, and Christopher D. Man-
ning. 2015b. Effective approaches to attention-
based neural machine translation. In Proceedings of
the 2015 Conference on Empirical Methods in Nat-
ural Language Processing, pages 1412–1421, Lis-
bon, Portugal. Association for Computational Lin-
guistics.

El Moatez Billah Nagoudi, Wei-Rui Chen, Muhammad
Abdul-Mageed, and Hasan Cavusogl. 2021. Indt5:
A text-to-text transformer for 10 indigenous lan-
guages. In Proceedings of the First Workshop on
Natural Language Processing for Indigenous Lan-
guages of the Americas, pages 265–271.

Graham Neubig and Junjie Hu. 2018. Rapid adapta-
tion of neural machine translation to new languages.
In Proceedings of the 2018 Conference on Empiri-
cal Methods in Natural Language Processing, pages
875–880, Brussels, Belgium. Association for Com-
putational Linguistics.

Toan Q. Nguyen and David Chiang. 2017. Transfer
learning across low-resource, related languages for
neural machine translation. CoRR, abs/1708.09803.

Joseph Olive. 2005. Global autonomous language ex-
ploitation (gale). DARPA/IPTO Proposer Informa-
tion Pamphlet.

Sinno Jialin Pan and Qiang Yang. 2009. A survey on
transfer learning. IEEE Transactions on knowledge
and data engineering, 22(10):1345–1359.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of
the 40th Annual Meeting of the Association for Com-
putational Linguistics, pages 311–318, Philadelphia,
Pennsylvania, USA. Association for Computational
Linguistics.
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Abstract
This paper describes Charles University sub-
mission for Multilingual Low-Resource Trans-
lation for Indo-European Languages shared
task at WMT21. We competed in translation
from Catalan into Romanian, Italian and Occi-
tan. Our systems are based on shared multilin-
gual model. We show that using joint model
for multiple similar language pairs improves
upon translation quality in each pair. We
also demonstrate that chararacter-level bilin-
gual models are competitive for very similar
language pairs (Catalan-Occitan) but less so
for more distant pairs. We also describe our
experiments with multi-task learning, where
aside from a textual translation, the models are
also trained to perform grapheme-to-phoneme
conversion.

1 Introduction

The goal of the task was to translate text from
Catalan into Occitan, Italian and Romanian. Ad-
ditionally, use of parallel corpora which combine
the evaluated languages with English, French, Por-
tuguese and Spanish was permitted. The choice of
the languages from the same family invites to ex-
plore how to take advantage of similarities between
the languages.

One way to exploit similarities between the lan-
guages translated by an NMT model is to train a
single joint model for multiple languages. This
way, parameters representing rules and features
which are common for multiple languages can be
shared and better estimated due to a larger amount
of training examples related to them.

Another approach which can be effective when
source and target languages are very similar is
character-level processing of the text. Since most
of the differences between Catalan and Occitan are
straightforward orthographic variations, we hypoth-
esize that the translation model would benefit from
being able to manipulate the text at character level
instead of larger subwords.

We also explore making use of language sim-
ilarity in spoken form, aside from written form.
Languages from the same language group may be
more mutually intelligible in their spoken form
rather than in the written form. For instance, based
on our anecdotal observations, native speakers of
Czech report better understanding of spoken rather
than written Polish. This is mainly due to Polish
orthography, which is regular but uses various di-
graphs, making Polish texts less comprehensible
for common Czech speakers. Phonemic representa-
tions may be even more helpful for languages with
irregular spelling.

Instead of using automatically acquired phone-
mic representation as one of the inputs, we rather
focus on strengthening robustness of our translation
models by teaching them to produce this represen-
tation as an additional task. Some of our models
are thus trained to provide machine translation as
well as grapheme-to-phoneme conversion (G2P) of
the source.

2 Main features of our approach

The core of our approach lies in leveraging multi-
lingual training data, various subword granularity
and phonemic representation of texts by multi-task
learning.

All our models are instances of the Trans-
former architecture (Vaswani et al., 2017) as im-
plemented in the MarianNMT (Junczys-Dowmunt
et al., 2018). For the final submissions, we trained
several models in multiple stages and tuned the
decoding hyperparameters. Moreover, we applied
character-level rescoring for the Catalan-Occitan
submissions.

2.1 Data preparation

In this section we describe our preprocess-
ing steps, the relevant code is available at
https://github.com/ufal/bergamot.
git/wmt21-multi-low-res
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Mulilinguality. It has been shown (e.g. by
Zhang et al. (2020); Fan et al. (2020); Firat et al.
(2016); Tan et al. (2019); Arivazhagan et al. (2019);
Lakew et al. (2018)) that combining multiple trans-
lation directions into one model may be beneficial
for the translation quality (especially for related
languages) in the low-resource scenarios due to
knowledge transfer between the translation direc-
tions, as it allows the model to get better estimates
of the parameters that represent principles which
are shared between the languages.

For our multilingual systems, we use the vanilla
Transformer (single encoder, single decoder), con-
catenate the training data and insert a special token
at the start of each source sentence to mark the
desired target language, e.g. for translation from
Catalan into Occitan: <oc> Tres dels seus
costats tenen porxada.

Subwords granularity and character-level
translation. It has been shown (Sennrich and
Zhang, 2019) that granularity of subword segmen-
tation and thus the resulting vocabulary size has a
large effect on translation quality in low-resource
scenarios. For mid- and high-resource language
pairs, vocabulary size of around 32k subwords is
the usual choice. However, for smaller corpora,
this size causes sparsity problems, since the
vocabulary contains many subwords that were
seen too few times to estimate sufficiently good
embeddings for them. The solution is to split
the words into smaller subwords or even into
single characters. Moreover, we suspected that
for similar languages, like Catalan and Occitan,
small subword or character level translation may
be beneficial because large part of the differences
between the translations are merely orthographic
variations and the ability to work on character
level will allow the model to learn to perform these
variations more easily.

Grapheme-to-phoneme conversion as an extra
task. We hypothesize that teaching the model
both to translate and to perform G2P may increase
the model’s robustness and consequently its perfor-
mance. Multi-task learning (Caruana, 1997) has
been successfully shown in NMT to either incor-
porate linguistic knowledge (Luong et al., 2016;
Eriguchi et al., 2017; Kiperwasser and Ballesteros,
2018) or to exploit monolingual data (Wang et al.,
2020). Although it has been also used in G2P
(Prabhu and Kann, 2020), the two tasks has not

been to the best of our knowledge modelled jointly
so far.

Using a G2P tool, we prepare phonemic repre-
sentation of the source side of the training data and
combine it with the text data in two possible ways.

Vertical combination is an analogy of how mul-
tiple translation directions are combined. We con-
catenate the bitext with the data that consist of the
same source side and its phonemic representation
as the target side. Furthermore, we use a special to-
ken at the start of each source sentence to indicate
the G2P task, e.g. <ca_p> for Catalan phonem-
ization.

In horizontal combination, we attempt to mimic
multi-output learning (Xu et al., 2019), i.e. produc-
ing outputs for multiple tasks at the same time. We
thus enrich each target sentence with the phonemic
representation of the source sentence. The two are
separated by a special symbol <sep>. To evaluate
the MT output, we need to strip off the phonemic
part first.

2.2 Model training and decoding

Learning stages. Some of the models submitted
to the shared task are a result of learning in two con-
secutive stages, each utilizing a different dataset.
In the pre-training stage, we build a general mul-
tilingual model, leveraging most of the available
data sources. In the fine-tuning stage, we continue
training only on selected languages, possibly in
conjunction with learning to convert graphemes to
phonemes.

Decoding. During the beam search, we normal-
ize the scores of each hypothesis by its length (the
score is divided by lengthn). We performed grid
search over the n coefficient and beams size for
our primary submission and we obtained values
n = 1.0 and b = 8. We used these values for all
the systems.

Character-level rescoring. For Catalan-
Occitan, we found character-level models to
be competitive with subword models, but after
manual inspection, we see some of the translations
produced by these models included superfluous
repetitions of groups of characters. For this reason,
we decided to use the character-level model
only for rescoring hypotheses produced by the
subword-level models.
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ca en fr it oc ro

ca - 1305 2501 1756 57 1106
en - - - 6434 37 1445
fr - - - 21721 124 4815

Table 1: Number of lines (in thousands) in corpora for
each language pair used in our systems.

3 Datasets

Apart from the Catalan, Occitan, Romanian and
Italian data, we take advantage of the data in other
languages allowed by the Shared Task organizers:
Spanish, French and English (we did not use Por-
tuguese corpora). We used datasets specified by the
task organizers, namely ParaCrawl, GlobalVoices,
EuroParl, JW300, WikiMatrix, MultiCCaligned,
Opus100, Books and Bible. Table 1 shows num-
ber of lines for each language pairs used in our
experiments.

4 Results

In this section, we report BLEU (Papineni et al.,
2002) and ChrF2 citepopovic-2015-chrf scores on
development and test sets provided by the organiz-
ers. We did not rerun test set evaluations for all the
models, so for a small number of configurations we
only show scores on the development sets.

4.1 Tools

We break the input text into subwords using Sen-
tencePiece (Kudo and Richardson, 2018). We use
MarianNMT (Junczys-Dowmunt et al., 2018) to
train the models and the BLEU and ChrF scores
are computed using SacreBLEU (Post, 2018). For
experiments involving G2P conversion, we used
phonemizer wrapper script1 around Espeak-ng
speech synthesizer2 to produce phonemic represen-
tation of the texts.

4.2 Baselines

We used publicly available services and models as
external baselines, and traditional bilingual Trans-
former models trained on provided corpora as our
own baselines. We use SentencePiece preprocess-
ing with 8k subword models for our bilingual base-
lines. We also trained models to translate from

1https://github.com/bootphon/
phonemizer

2https://github.com/espeak-ng/
espeak-ng

System BLEU ChrF
it ro oc it ro oc

Opus-MT 32.4 - 16.7 0.608 - 0.545
Google 32.3 28.7 - 0.609 0.554 -
Apertium 32.1 14.9 67.0 0.619 0.461 0.834
Bilingual 42.1 29.8 59.2 0.674 0.559 0.789
Pivot 37.7 20.3 0.6 0.636 0.505 0.082

Table 2: Results of the baseline system evalutation, de-
velopment set.

System BLEU ChrF
it ro oc it ro oc

Opus-MT 33.7 - 17.3 0.612 - 0.544
Apertium 34 13.3 67.5 0.624 0.408 0.834
Bilingual 44.9 26.7 59.4 0.687 0.497 0.787

Table 3: Results of the baseline system evaluation, test
set.

Catalan to English and from English to the tar-
get languages to be able to do pivoted translation.
The external baselines include Google Translate
(for Romanian and Italian), Romance multilingual
model3 from Opus-MT project (Tiedemann and
Thottingal, 2020) and Apertium rule-based ma-
chine translation system (Forcada et al., 2011),
which was chosen since we suspected that the rule-
based approach might work better than NMT for
very low resource, but very similar language pairs,
like Catalan-Occitan (and also Apertium is espe-
cially focused on languages of that region). Results
on dev and test sets are presented in Tables 2 and
3, respectively.

We see that even our bilingual baselines outper-
form all other baselines aside from Apertium on
Catalan-Occitan. We were unable to train func-
tional English-Occitan model on the provided data
(only 37k noisy sentence pairs), so the pivoted ap-
proach was not feasible in this direction.

4.3 Improving bilingual models

Before working on multilingual models, we fo-
cused on improving the bilingual systems to be
sure our baselines are sufficiently strong.

First, we add backtranslated data. We trained a
joint multilingual model for translation from the
target languages into Catalan. For Romanian and
Italian, we used this model to translate Wikipedia,4

3https://github.com/Helsinki-NLP/
OPUS-MT-train/tree/master/models/ca+
es+fr+ga+it+la+oc+pt_br+pt-ca+es+fr+ga+
it+la+oc+pt_br+pt

4We obtained the most recent dumps from https://
dumps.wikimedia.org/
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BT BLEU ChrF
it ro oc it ro oc

none 42.1 29.8 59.2 0.674 0.559 0.789
w, scr. 43.5 32.7 64.3 0.680 0.584 0.818
w, finet. - - 62.5 - - 0.810
g, scr. - - 63.4 - - 0.815
g, finet. - - 61.4 - - 0.803
w(c) - - 64.7 - - 0.819
w(c) big - - 65.2 - - 0.821

Table 4: Adding backtranslation, development set. w
denotes backtranslated data originating from Wikipedia
dumps, g denotes general texts, scr. denotes a sys-
tem that was trained from scratch, finet. denotes a sys-
tem that was initialized by a baseline model trained on
parallel data and finetuned, (c) means character-level
model and big means that transfomer-big model was
used instead of base.

BT BLEU ChrF
it ro oc it ro oc

none 44.9 26.7 59.4 0.687 0.497 0.787
w, scr. 45.8 28.4 64.3 0.690 0.511 0.815
w, finet. - - 62.4 - - 0.805
g, scr. - - 63.6 - - 0.813
g, finet. - - 61.6 - - 0.801
w(c) - - 64.8 - - 0.818
w(c) big - - 65.2 - - 0.821

Table 5: Adding backtranslation, test set. Meaning of
the rows is descirbed in previous table.

Vocab BLEU ChrF
it ro oc it ro oc

8k 42.1 29.8 59.2 0.674 0.559 0.789
2k 42.4 30.3 59 0.676 0.565 0.792
char 38.8 28.6 62.6 0.652 0.555 0.808
char-f 41.2 28.3 62.1 0.669 0.554 0.808

Table 6: Results with varying vocabulary size, devel-
opment set. Char-f models are the original 8k models
subsequently finetuned one character-level data.

Vocab BLEU ChrF
it ro oc it ro oc

8k 45 26.7 59.6 0.687 0.497 0.787
2k 44.5 26.1 59.1 0.685 0.495 0.788
char 40.9 24.6 63.5 0.665 0.487 0.812
char-f 43.5 24.8 62.3 0.678 0.489 0.806

Table 7: Results with varying vocabulary size, test set.
Char-f models are the original 8k models subsequently
finetuned one character-level data.

for Occitan, we utilized Apertium and aside from
Wikipedia, we also translated Occitan sides of all
the other provided parallel corpora. The results are
presented in Tables 4 and 5. We see that backtrans-
lation improves results for all the language pairs,
and that for Occitan, wiki translation (rows marked
as w) works better than general corpora backtrans-
lation obtained from Occitan sides of other parallel
corpora (En-Oc, Fr-Oc and Es-Oc). We also ob-
serve that the performance is better when training
with parallel and BT data from the beginning (scr.),
opposed to finetuning parallel-only trained model
on parallel-BT mix (finet.).

We also tried to improve the results by choos-
ing a correct subword granularity. We compared
baseline models, which use SentencePiece vocabu-
lary with 8k tokens, with 2k tokens and character
level translation (see Tables 6 and 7). Based on
observations by Libovický and Fraser (2020), we
trained character level models both from scratch
(row char) and by finetuning the subword models
(row char-f ). We see that the character-level train-
ing works best for Catalan to Occitan translation.
We suppose it partially stems from the lack of re-
sources for the language pair and partially from the
relative similarity of the two languages.

We combined the backtranslation and character
level processing for Occitan to see if the improve-
ments are orthogonal (Tables 4 and 5 ). We also
trained transformer-big models on the same data
for comparison with larger models introduced in
the next section.

4.4 Multilingual models

Our final submission is based on multilingual mod-
els. We combined the datasets allowed for the task
and included a special language tag at the begin-
ning of the source sentence to indicate the target
language. The results on dev and test sets are pre-
sented in Tables 8 and 9. We use 32k vocabulary
for the multilingual models.

Firstly, we trained a model only on the languages
that were evaluated (system 1). We see that just by
using the joint model, we obtained improved results
for all language pairs. We also trained transformer-
big model on the same data, as increasing model ca-
pacity usually improves performance especially for
multilingual settings (system 2), but we observed
same or worse results than with a base model.

Next, we added corpora with the other allowed
translation directions which contain the evaluated
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BLEU ChrF
i Description it ro oc it ro oc
1 ca-oc,ro,it 43.7 33.2 63.8 0.681 0.582 0.816
2 1 + transformer-big 43.1 34.0 63.5 0.681 0.585 0.815

3 ca,fr,es,en-oc,ro,it 42.8 33.7 54.5 0.675 0.584 0.761
4 3 + balanced 41.7 33.6 62.9 0.667 0.583 0.806
5 3 + balanced, bt 41.8 33.0 60.3 0.672 0.585 0.789
6 3 + transformer-big 44.7 35.1 57.4 0.688 0.594 0.778
7 3 + transformer-bigger 42.6 33.7 52.1 0.672 0.582 0.749

8 3 + ca-es, ca-fr, ca-en 44.5 34.6 55.5 0.686 0.591 0.769
9 8 + big 46.7 37.1 59.1 0.700 0.607 0.792
10 8 + bigger (430k updates)* 47.11 38.01 59.8 0.702 0.613 0.794
11 8 + bigger (2.1M updates, converged) 48.5 39.2 62.7 0.714 0.624 0.808
12 10 + bt 46.32 36.52 59.2 0.701 0.608 0.792
13 10 + finetuning for lang pair + bt 44.6 34.4 65.6 0.689 0.597 0.824
14 13 + char-level rescoring - - 67.11 - - 0.833

15 9 + ca-it,oc; vert. multi-task 45.2 - 65.3 0.690 - 0.823
16 9 + ca-it,oc; balanced vert. multi-task 42.9 - 65.7 0.675 - 0.825
17 16 + char-level rescoring - - 66.82 - - 0.832

Table 8: Results of our multilingual models, dev set. 1 marks our primary submissions, 2 is our secondary submis-
sion.

BLEU ChrF
i Description it ro oc it ro oc
1 ca-oc,ro,it 45.9 29.2 63.9 0.692 0.513 0.814
2 1 + transformer-big 45.7 29.0 63.2 0.691 0.511 0.808

3 ca,fr,es,en-oc,ro,it 46.0 29.3 55.1 0.690 0.513 0.760
4 3 + balanced 45.0 29.1 63.3 0.684 0.511 0.803
5 3 + balanced, bt 44.3 28.9 60.8 0.685 0.515 0.788
6 3 + transformer-big 47.7 30.6 58.0 0.701 0.522 0.778
7 3 + transformer-bigger 46.7 30.1 54.8 0.693 0.517 0.759

8 3 + ca-es, ca-fr, ca-en 47.4 29.8 55.5 0.699 0.517 0.764
9 8 + big 49.1 31.7 59.5 0.710 0.531 0.788
10 8 + bigger (430k updates) 50.51 32.81 60.3 0.717 0.533 0.792
11 8 + bigger (2.1M updates, converged) 51.1 33.9 62.6 0.722 0.544 0.804
12 10 + bt 49.52 31.82 59.9 0.713 0.533 0.792
13 10 + finetuning for language pair + bt 47.3 66.6 0.702 0.825
14 13 + char-level rescoring - - 66.91 - - 0.829

15 9 + ca-it,oc; vert. multi-task 48.6 - 65.2 0.706 - 0.819
16 9 + ca-it,oc; balanced vert. multi-task 45.3 - 65.5 0.687 - 0.820
17 16 + char-level rescoring - - 67.12 - - 0.832

Table 9: Multilingual models, test set. 1 marks our primary submissions, 2 is our secondary submission.
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languages on their target side, i.e. French, Spanish
and English into Occitan, Romanian and Italian
(system 3). At the first glance, including addi-
tional related languages did not improve the perfor-
mance (and even hurts the performance for Catalan-
Occitan), but we suspected that this might be a
model capacity and data balancing problem. After
oversampling the smaller training corpora to have
the same number of sentences as the largest one,
we see that performance of the model for this pair
(4) reaches the levels of the previous model. Inter-
estingly, adding backtranslated Wikipedia results in
worse scores, even though backtranslation helped
in bilingual models (5). To see whether increasing
the model capacity while using larger amount and
more diverse training data is beneficial, we trained
transformer-big (6) and transformer-big with 12-
layer encoder instead of 6-layers, which we call
transformer-bigger (7). For transformer-bigger, we
used depth-scaled initialization proposed by Zhang
et al. (2019). We see that in fact, after adding
more data, larger model capacity helps, but the 12-
layered encoder transformer-big performs worse
than the 6-layered one. We believe this is caused by
instability of the training for the deeper models as
in the next paragraph, we see improvements with
the deeper model.

Until now, our goal was to mainly improve the
target language generation by including other cor-
pora with evaluated languages at the target side. We
also tried to improve source-side Catalan encoding
by adding corpora with Catalan on the source side,
namely Catalan to French, English and Spanish (8).
Resulting model shows improvements compared
to the other language combinations, and again, in-
creasing the model size ((9), (10) and (115)) has
even larger effect than for the previous models due
to the amount and diversity of the training data. We
hypothesize that increasing depth of the encoder
helps in this case compared to the previous model
because we added more data with Catalan source
side and the increased encoder capacity could be
used to learn more Catalan-specific features and
rules.

Our primary submissions for Romanian and Ital-
ian are simply translations produced by the largest
multilingual model (10). The training has not fully
converged at the time of the submission and further
training brought improvements in the range of 1-3

5Model available at http://hdl.handle.net/
11234/1-3769

ca2it ca2oc
z-score raw z-score raw

HUMAN 0.8±0.4 4.8±0.6 0.8±0.7 4.0±1.0
CUNI-Primary 0.5±0.7 4.4±0.9 0.5±0.8 3.6±1.1
M2M-100 0.4±0.7 4.2±1.0 -0.7±0.8 2.0±1.0
TenTrans-Primary 0.0±0.8 3.8±1.1 0.3±0.8 3.4±1.2
BSC-Primary -0.1±0.8 3.7±1.1 0.3±0.9 3.4±1.2
UBCNLP-Primary -0.5±1.0 3.1±1.3 0.0±0.9 3.0±1.2
mT5-devFinetuned -1.2±0.9 2.3±1.2 -1.0±0.7 1.7±0.9

Table 10: Results of human evaluation performed by
the organizers.

BLEU. Our secondary submissions for these two
languages were the same models, however, we also
included the backtranslated Wikipedia (12) in the
training dataset. Surprisingly, this approach lead
to decrease in performance in terms of BLEU and
ChrF2. On the other hand, BERT and COMET
scores in the official evaluation are same or slightly
better for the models trained with backtranslation.

Due to the data imbalance, even the largest
model underperforms in Catalan-Occitan. Because
of the time constraints, we did not try oversam-
pling Occitan corpora and training with balanced
data, instead we fine-tuned the multilingual model
for specific language pairs (136). Finally, we
produced 20 best hypotheses for each sentence
and rescored them by the character level Catalan-
Occitan transformer-big introduced earlier (Table
4), leading to a 1.5 BLEU increase on the dev set.
This is our primary system for Catalan-Occitan.

Our submissions were ranked first in all direc-
tions with respect to all metrics except for the
Catalan-Romanian BLEU score, where the M2M
model was 0.2 points better (but after finishing the
training, our model outperforms it by 0.8 BLEU).

For translation into Occitan and Italian, the or-
ganizers also performed human direct assessment
evaluation. Translations produced by different sys-
tems were scored from 1 to 5 (on sentence-level,
but document-level context was provided to the
annotators). The results are shown in Table 10.

4.5 Multi-task models

In our experiments with multi-task learning, we
trained the models to be able to both translate and
perform G2P conversion of the source. Using the
phonemizer script, we automatically acquired
phonemic representations of the Catalan sides in
the Catalan-Italian, Catalan-Romanian and Catalan-
Occitan data. We then combined them with the

6Catalan-Occitan model available at http://hdl.
handle.net/11234/1-3770
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BLEU ChrF
Description it ro oc it ro oc

tgt horiz. 43.2 31.0 62.5 0.680 0.568 0.811
tgt vert. 43.2 31.6 63.6 0.679 0.573 0.817

it,oc horiz. 43.3 – 63.9 0.681 – 0.818
it,oc vert. 42.9 – 64.5 0.678 – 0.821
it,ro,oc horiz. 42.5 32.8 63.4 0.675 0.578 0.814
it,ro,oc vert. 43.1 32.8 63.4 0.678 0.579 0.815

Table 11: Results of multi-task models on dev set. The
source side always consists of Catalan texts. The top
part shows bilingual models, while the models in the
bottom part are multilingual.

original bitexts as proposed in Section 2.1.
As shown in Table 11, we started with training

multi-task transformer-base models from scratch
using vocabularies of 32k tokens.7 Apart from
translation to Italian, multilingual models (in the
bottom part) outperform the bilingual models (in
the bottom). In addition, vertical combination of
texts and phonemes appears to perform better than
the horizontal one.

Comparison of Tables 11 and 8 suggests that
even though trained from scratch multi-task learn-
ing seems to achieve competitive results for
Catalan-Occitan. We thus focus on this language
pair in the following steps. Interestingly, best
scores for Occitan are achieved with a multilingual
model that excludes Romanian. We suppose Occ-
itan is too distant from Romanian to benefit from
it. Therefore, we took the best-performing mul-
tilingual model at the time (system 9 in Tables 8
and 9) and fine-tuned it with the Catalan-Italian
and Catalan-Occitan training sets vertically com-
bined with Catalan phonemes for these datasets
(15). As data balancing in multilingual models
proved to be beneficial for Occitan, we also applied
it before the fine-tuning, which results to even bet-
ter performance for Occitan (168). Finally, we
rescored 20 best hypotheses by char-level Catalan-
Occitan model as in the system 14, resulting in our
contrastive submission for Catalan-Occitan (17).
Within all submitted Catalan-Occitan systems, our
submission was ranked first in all metrics.

5 Conclusion

We described our submission to the shared task,
which ranked first according to the majority of the

7Except for Occitan bilingual model, which uses a vocabu-
lary of 8k tokens.

8Catalan-Occitan model available at http://hdl.
handle.net/11234/1-3772

used metrics for all languages. We used multilin-
gual transformer models and we present results
showing that combining all the languages into sin-
gle model improves upon bilingual baseline by a
large margin. We also present our findings about
using multi-task learning, where aside from transla-
tion of the source, the model also learns to convert
the source sentence from graphemes to its phone-
mic form.
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Abstract

This paper describes the participation of the
BSC team in the WMT2021’s Multilingual
Low-Resource Translation for Indo-European
Languages Shared Task. The system aims to
solve the Subtask 2: Wikipedia cultural her-
itage articles, which involves translation in
four Romance languages: Catalan, Italian, Oc-
citan and Romanian.

The submitted system is a multilingual semi-
supervised machine translation model. It
is based on a pre-trained language model,
namely XLM-RoBERTa, that is later fine-
tuned with parallel data obtained mostly from
OPUS. Unlike other works, we only use XLM
to initialize the encoder and randomly initial-
ize a shallow decoder. The reported results
are robust and perform well for all tested lan-
guages.

1 Introduction

We present the work carried out by the BSC Team
in the context of WMT2021’s first edition of the
Multilingual Low-Resource Translation Shared
Task. The tasks addresses the issue of multi-
linguality in machine translation (MT) for low-
resource languages, focusing on two language fam-
ilies: North Germanic and Romance. We take part
in the Subtask 2, which involves translation in four
Romance languages: Catalan, Italian, Occitan and
Romanian.

2 Background

Machine translation for low-resource languages is
characterised by the lack of sufficient parallel data
of a given language pair, either because the com-
bination is infrequent or because the languages in-
volved are themselves low-resource. Several works
have attempted to overcome this pitfall, using dif-
ferent techniques. A common solution is to employ
back-translation (Sennrich et al., 2016), while other

research focuses on using other languages as piv-
ots to compensate for the lack of data (Firat et al.,
2016; Zoph et al., 2016). Artetxe et al. (2018);
Lample et al. (2018) make use of monolingual data
only.

Our approach is based on multilinguality. Pre-
vious works such as Vergés Boncompte and Ruiz
Costa-Jussà (2020); Tubay and Costa-Jussa (2018)
have shown that the use of multilingual MT is bene-
ficial, as it generalizes better by sharing parameters
among all the languages involved, especially if the
languages belong to the same linguistic family. At
the same time, training of multilingual MT models
from scratch usually requires large parallel corpora
and may not be feasible in a low-resource and zero-
resource translation scenarios.

Pre-training of large language models from
scratch on monolingual data and then fine-tuning
them for the specific downstream tasks, has proved
to be an extremely successful approach for many
natural language processing problems. Cross-
lingual language models such as XLM and XLM-
RoBERTa (Conneau and Lample, 2019; Conneau
et al., 2020), that combine unsupervised (mono-
lingual data) and supervised (parallel data) train-
ing objectives, perform especially well both on
cross-lingual NLU tasks and in machine translation.
The idea of combining the power of pre-trained
cross-lingual language models with a multilingual
machine translation setting naturally follows from
there.

This idea was explored in (Liu et al., 2020)
where a denoising seq2seq auto-encoder (mBART)
based on BART (Lewis et al., 2020) was pre-trained
on extensive monolingual corpora in many lan-
guages. A similar approach is implemented in (Lin
et al., 2020) where alignment information is used to
pre-train a multilingual MT transformer on existing
public parallel datasets. Both approaches require
either a computationally intensive pre-training on
monolingual data or access to extensive large-scale
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parallel data.
Initializing an encoder and decoder of a bilingual

MT seq2seq transformer with a pre-trained cross-
lingual language model was famously proposed in
(Conneau and Lample, 2019). A natural next step is
to initialize a multilingual MT seq2seq transformer
with a shared encoder and a shared decoder by
the XLM-like language encoder which was first
performed in (Ma et al., 2020).

We reuse this idea by initializing the encoder
with a pre-trained XLM-Roberta (Conneau et al.,
2020), as in (Ma et al., 2020). However, unlike (Ma
et al., 2020), we only initialize the encoder, with the
motivation of being able to instantiate a shallower
decoder, following previous works that for a given
compute budget suggest that it is more efficient to
use deeper encoders and shallower decoders (Kasai
et al., 2020). The encoder-only initialization was
already implemented in Fairseq (Ott et al., 2019).1

3 Experimental Framework

3.1 Fine-Tuning Data

To train our MT system, we use all parallel data
available in OPUS2 for the targeted language pairs,
namely ca-it, ca-oc, ca-ro.

We further include a small dataset ca-oc, the
Catalan - Occitan Gencat Crawling, specifically
obtained for the occasion, by leveraging parallel
data from a crawling of the Catalan Government
Internet domains and subdomains. We use the Cor-
pusCleaner3 pipeline to process the WARC files
obtained from the crawling. This allows us to
maintain the metadata and retrieve the original url
per each document. We then extract the content
of the same URLs in both languages and align
them at document level using vecalign4. The final
dataset of 503 sentences was obtained by manually
reviewing 1,237 automatically aligned sentences.
Although smaller than expected, one motivation to
crawl this brand new dataset is to contribute to the
development of MT resources for Occitan, which
is a severely under-resourced language. We are
publicly releasing this new dataset with an open
license.5

1https://github.com/pytorch/fairseq/
tree/v0.9.0

2https://opus.nlpl.eu/
3https://github.com/TeMU-BSC/

corpus-cleaner-acl
4https://github.com/thompsonb/vecalign
5https://github.com/TeMU-BSC/

wmt2021-indoeuropean/tree/master/gencat_
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Romanian

Figure 1: Family tree of Romance languages showing
only the languages targeted by the Shared Task.

The resulting statistics of the corpora used to
train our system can be seen in Table 1. As ex-
pected, the number of aligned sentences is much
larger for Italian and Romanian as target languages,
since Occitan is such a low-resource language.
Nonetheless, we must bear in mind that Catalan
and Occitan belong to the same sub-branch in the
family tree of the Romance languages, as shown
in Figure 1. Thus, their considerable typologi-
cal closeness makes up for the reduced amount
of aligned sentences available for this language
pair.

3.2 Preprocessing

We start by preprocessing our data with a filtering
and a tokenization step.

To ensure that there is no train-test overlap, we
filter all of our training data by removing all sen-
tences from the validation and test sets present in
our train set.

To build our system, we use SentencePiece BPE
tokenization with the original shared vocabulary of
250,000 tokens of XLM-R model (Conneau et al.,
2020; Kudo and Richardson, 2018), and we only
keep sentences with a maximum size of 512 tokens.

The final number of parallel sentences used for
training is shown in Table 1.

3.3 System Description

We base our system on XLM-RoBERTa (Conneau
et al., 2020) and then fine-tune it with the collected
parallel data. As described earlier, the seq2seq mul-
tilingual transformer with shared encoders, shared
decoders and shared embedding tables is initial-
ized by XLM-R BASE pretrained language model
on the encoder side, whereas a shallow decoder
of 3 layers is initialized randomly. Sharing of em-
bedding tables for all directions (ca-it, it-ca, ca-ro,
ro-ca, ca-oc, oc-ca) was initially implemented due

crawling_ca-oc
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Corpus Name ca-it ca-oc ca-ro
EUbookshop v2 2,933 - 769
GlobalVoices v2018q4 6,036 - 468
GNOME v1 2,584 76 2,147
KDE4 v2 140,541 35,416 86,518
MultiCCAligned v1.1 1,335,785 - 890,155
OpenSubtitles v2018 359,798 - 387,044
QED v2.0a 61,013 245 57,279
Tatoeba v2021-03-10 296 - 2
TED2020 v1 49,674 33 46,978
Ubuntu v14.10 6,884 5,764 6,813
WikiMatrix v1 316,208 57,689 110,612
wikimedia v20210402 6,974 11,763 1,064
XLEnt v1.1 590,170 83,982 476,738
Catalan Government - 503 -
Total 2,878,896 195,471 2,066,587
Cleaned 2,878,422 195,430 2,066,273
Tokenized 2,876,680 195,340 2,064,987

Table 1: Number of aligned sentences per corpus. The last row shows the final number of aligned sentences after
the cleaning and tokenization steps.

Language Tokens (M)
ca 1,752
it 4,983
oc -
ro 10,354

Table 2: Number of million tokens per language
present in the training corpus of XLM-R.

to memory constraints but eventually turned out to
work well.

The token indicating the required target language
is prepended to the target sentences, thus the model
is aware to what language it has to translate to, as
in (Wu et al., 2016).

It is important to note that the data used to train
XLM-RoBERTa does not contain any Occitan text,
as can be seen in Table 2. Thus the only knowledge
that the multilingual transformer has about the lan-
guage directions including Occitan comes from the
XLM-R language model being pre-trained on text
in related languages, such as Catalan.

We use default Fairseq parameters for fine-
tuning, first of all, the Adam optimizer (Kingma
and Ba, 2017) with β1 = 0.9 and β2 = 0.98. The
polynomial decay learning rate schedule starts from
5e−04, warmed up to over 1000 updates and grad-
ually decays to 0 over around 60k updates. The
model was fine-tuned for 2 days on 4 NVIDIA

V100 GPUs. The final learning rate was around
3e−04 with a batch size of 3, 072 sentences.

During inference we use the beam search gener-
ation algorithm with a beam size of 5. Since the
languages between which we are translating are
typologically close, we do not assign any length
penalty, and we use the best checkpoint for gener-
ating.

4 Results

Here we report the official evaluation.6 We submit-
ted our results a bit later than the deadline due to
some bottlenecks in our in-house computational re-
sources. Table 3 reports the results obtained by our
system on the evaluation test set, together with the
two official baselines provided by the organisers
(M2M-100 and mt5-devFinetuned).

Out of 7 competing systems and 2 baselines,
our system was ranked 5th in Average, 3rd in the
Catalan-to-Occitan direction, 4th in the Catalan-
to-Romanian direction and 6th in the Catalan-to-
Italian direction.

4.1 Human Evaluation

The organizers of the workshop have recently re-
leased the results of a human evaluation for the

6http://statmt.org/wmt21/
multilingualHeritage-translation-results.
html
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Model ca-it ca-oc ca-ro Avg.
Ours 42.00 57.10 24.90 49.77
M2M-100 46.75 40.24 33.06 40.02
mT5-dev-ft. 30.38 40.14 17.33 29.28

Table 3: Official BLEU scores for the evaluation of the
final test set

language pairs ca-it and ca-oc.7 A sentence level
evaluation has been performed taking into account
the document as context. Each sentence is eval-
uated in a Likert-like scale [1,5] answering the
question of direct assessments. A second human
evaluation is performed where 60 selected terms
(mostly named entities, dates and locations) are
annotated as being either well translated, not trans-
lated or mistranslated, by majority voting among
the annotators. The results can be found in Tables
4 and 5, respectively.

5 Discussion

5.1 Little sisters over big cousins
As seen in Table 3 the average results of our sys-
tem are above both baselines, although it is the
results for Catalan-Occitan that give the greater
leverage, because in the other two scenarios M2M
has a higher BLEU. Actually, the score for Catalan-
Occitan is substantially higher than the score ob-
tained for the other two pairs, although the fine-
tuning data used in this model is, at least, ten times
smaller than the data used in the other two models.
These results are replicated in most of the other
competing systems8. The reason for this apparent
anomaly is clearly due to the linguistic similarity
between the Catalan and Occitan, which in me-
dieval times were practically one and the same
language. This result confirms the intuition that
when two languages are similar enough, less data
is needed.

That said, we also hypothesize a positive impact
of the curated dataset (Catalan - Occitan Gencat
Crawling) added to the rest of parallel data obtained
in the OPUS repository, but there is no definitive
proof of it. Furthermore, we can also hypothesize
that the presence of Spanish in the multilingual
corpus, being a high-resource language and also

7http://www.statmt.org/wmt21/
multilingualHeritage-translation-manual.
html

8http://statmt.org/wmt21/
multilingualHeritage-translation-results.
html

linguistically close to Catalan and Occitan (more so
than to the other two Romance languages involved
in the task), has a beneficial impact on the results.
Indeed, low-resource languages can greatly benefit
from their similarity to other languages present in
the multilingual training. In such scenarios, less
data can lead to satisfactory results, and with a
smaller carbon print, since the models use less com-
putational power for training.

5.2 Human Evaluation results
The human evaluation on two of the test sets shown
in in table 4 validates the relative position of our
system in the global ranking. Interestingly, hu-
man scores correlate well with BLEU for Catalan-
Italian, and less well for Catalan-Occitan. In the
latter case, human scores tend to be lower than
the corresponding BLEU. The reason for this may
again have to do with linguistic similarity between
Catalan and Occitan: "Catalanish" Occitan may be
deemed acceptable by subword-based BLEU, but
not by human evaluators. The performance of our
system as evaluated for term translation, shown in
in table 5 is consistent with the other evaluations
regarding the position of the system in the overall
ranking.

5.3 Vocabulary
One of the shortcomings of our approach is the
big vocabulary size (250k tokens), inherited from
XLM. This big vocabulary size was required by
XLM to cover a very diverse set of languages. How-
ever, this makes it sometimes challenging to fit the
embedding tables in memory, which is especially
inefficient taking into account that a large propor-
tion of tokens are not used (since we focus on a
tiny subset of languages). Thus, either pruning
the vocabulary, or using pre-trained models specif-
ically trained for the Romance languages family
(with a reduced vocabulary size) would be better
alternatives.

5.4 Shallow decoders and transfer learning
While recent works have suggested that allocat-
ing more computation to (deeper) encoders (Kasai
et al., 2020) at the expense of allocating less compu-
tation to (shallower) decoders is more efficient, this
approach is not yet standard in the machine trans-
lation literature, especially when applying trans-
fer learning. This method has the advantage of
not reusing pre-trained weights for the decoder, al-
though a middle ground is perhaps worth exploring.
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ca-it ca-oc
Model z-score raw z-score raw
Human 0.8±0.4 4.8±0.6 0.8±0.7 4.0±1.0
Ours -0.1±0.8 3.7±1.1 0.3±0.9 3.4±1.2
M2M-100 0.4±0.7 4.2±1.0 -0.7±0.8 2.0±1.0
mT5-dev-ft. -1.2±0.9 2.3±1.2 -1.0±0.7 1.7±0.9

Table 4: Official human evaluation scores at sentence level

ca-it ca-oc
Model well mis no

∑
well mis no

∑

Human 53 0 3 56 40 0 2 42
Ours 27 7 5 39 33 4 0 37
M2M-100 33 2 6 41 26 9 0 35
mT5-dev-ft. 20 17 10 47 25 11 4 40

Table 5: Official human evaluation scores for 60 selected terms

Namely, use just some of the pre-trained weights
to initialize the decoder layers. For example reuse
the first N layers of XLM in the decoder, even if
there is no 1-to-1 mapping between layers because
there are less in the fine-tuned model.

6 Conclusions

We have showed that our approach is a simple, yet
effective method for multilingual machine transla-
tion between linguistically similar languages. The
encoder-only initialization allows for having a shal-
low decoder, which is computationally wise. As
future work, we plan to further explore transfer
learning techniques in the context of shallow de-
coders as well as applying different vocabulary
pruning techniques.

Code availability

We release9 with an open license the scripts used
for this work for the sake of reproducibility.
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Abstract

We describe the EdinSaar submission to the
shared task of Multilingual Low-Resource
Translation for North Germanic Languages at
the Sixth Conference on Machine Translation
(WMT2021). We submit multilingual transla-
tion models for translations to/from Icelandic
(is), Norwegian-Bokmål (nb), and Swedish
(sv). We employ various experimental ap-
proaches, including multilingual pre-training,
back-translation, fine-tuning, and ensembling.
In most translation directions, our models out-
perform other submitted systems.

1 Introduction

This paper presents the neural machine translation
(NMT) systems jointly submitted by The Univer-
sity of Edinburgh and Saarland University to the
WMT2021 Multilingual Low-Resource Transla-
tion for Indo-European Languages task, describ-
ing both primary and contrastive systems which
translate to/from the three North Germanic lan-
guages, Icelandic (is), Norwegian-Bokmål (nb),
and Swedish (sv). Our contrastive system, sub-
mitted as “edinsaarContrastive” outperforms the
other submissions across all evaluation metrics ex-
cept for BLEU, for which our “edinsaarPrimary”
system performs best.

Although low-resource MT has recently gained
much attention, there is little prior work on North
Germanic languages. We contribute to this space
by experimenting with both training a multilingual
system from scratch and exploiting model adapta-
tion from a large pre-trained language model. We
fine-tune our initial translation models to the target
languages, and then experiment with further in-
domain fine-tuning. Data is sourced from openly
available data sets in accordance with the corpora
allowed in the shared task. We use parallel data
sets pairing our target languages with each other
and with the allowed high-resource languages, and
monolingual data from Wikipedia.

The rest of the paper is structured as follows: we
review related work in Section 2, we introduce the
methods and experimental settings including data
and model architecture in Section 3, we evaluate
model performance in Section 4, and, finally, we
draw conclusions and suggest avenues for future
work in Section 5.

2 Related Work

Recent work in NMT for North Germanic lan-
guages is limited; however, OPUS-MT (Tiedemann
and Thottingal, 2020), which contains over 1,000
pre-trained, ready-to-use neural MT models includ-
ing models for Danish, Norwegian, and Swedish,
is a notable exception.

Due to the scarcity of parallel data for low-
resource languages, recent work leverages mono-
lingual data, including pivoting from high-resource
languages (Currey and Heafield, 2019; Kim et al.,
2019), and using back-translation (Sennrich et al.,
2016a; Edunov et al., 2018) to generate pseudo-
parallel data with synthetic sources from monolin-
gual data. Since the little parallel data that is avail-
able often comes from noisy web crawls, parallel
corpus filtering is used to develop better translation
models (Koehn et al., 2020). Additional methods
for boosting the performance of low-resource pairs
include transfer learning from models trained on
higher-resource pairs (Zoph et al., 2016; Kocmi and
Bojar, 2018), and developing multilingual systems
to allow models to take advantage of linguistic re-
latedness. Multilingual systems can employ either
separate encoders or decoders for each language
(Dong et al., 2015; Firat et al., 2016), or shared
encoders/decoders, and can additionally make zero-
shot MT possible (Johnson et al., 2017; Ha et al.,
2016), while scaling to hundreds of language pairs
(Aharoni et al., 2019; Fan et al., 2020). Sampling
language pairs in proportion to their prevalence in
the training data can ensure that all directions get
enough coverage by the model (Arivazhagan et al.,
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2019; Fan et al., 2020). Further fine-tuning multi-
lingual systems on target language directions can
improve performance of low-resource pairs (Neu-
big and Hu, 2018; Lakew et al., 2019). Adapting
a multilingual pre-trained language model to the
translation task has led to improvements in trans-
lation quality (Clinchant et al., 2019; Chen et al.,
2020). Finally, combining multiple MT system
checkpoints together by ensembling improves per-
formance of the final system (Sennrich et al., 2017).

3 Method

Given a set of primary languages Lp and secondary
languages Ls, we train a multilingual MT system
on the parallel data between all the language com-
binations {Lp, Ls} ↔ {Lp, Ls}. This is our base-
line. We extend this approach with a combination
of the following methods:

Pre-training: We initialize a base model us-
ing a highly multilingual pre-trained model, in
order to transfer the learned parameters to the
translation task. This is our primary system.
Back-translation: We use the baseline model
to back-translate monolingual corpora in Lp

into all other languages in Lp to obtain a train-
ing data set of back-translations DBT.
Fine-tuning: We fine-tune the baseline model
on the subset of languages {Lp, Ls} ↔ Lp,
on both parallel and back-translated dataDBT.
Our contrastive system is an ensemble of the
last four checkpoints of this model.

3.1 Data

For training our models, we include data from the
target primary low-resource languages, Icelandic
(is), Norwegian-Bokmål (nb), and Swedish (sv),
and the related secondary languages Danish (da),
German (de), English (en).

We use data for all translation directions in-
volving da, de, en, is, nb, sv from the
following parallel corpora from Opus: Bible
(Christodouloupoulos and Steedman, 2014), Books
(Tiedemann, 2012), Europarl (Koehn, 2005), Glob-
alVoices (Tiedemann, 2012), JW300 (Agić and
Vulić, 2019), MultiCCAligned (El-Kishky et al.,
2020), Paracrawl (Esplà et al., 2019), TED2020
(Reimers and Gurevych, 2020), and WikiMatrix
(Schwenk et al., 2019). We also use all corpora
from ELRC1 that include these directions (a total

1https://elrc-share.eu/

of 159 corpora, retrieved in May 2021). These cor-
pora include all corpora allowed by the shared task,
with the exception of the Opus-100 data set, which
we avoided as it had many duplicate sentences with
the above corpora.

We use monolingual data from Wikipedia for
is and nb to augment our data set with back-
translations (Sennrich et al., 2016a). Because the
Wikipedia data for sv was created in large part
by a bot2 and consisted of many stub articles and
tables, we use the sv portion of our training data
as monolingual data for back-translation instead.

Our final data includes 30 language directions:

(a) Lp ↔ Lp: {is,nb,sv}↔ {is,nb,sv}
(b) Lp ↔ Ls: {is,nb,sv}↔ {da,de,en}
(c) Ls ↔ Ls: {da,de,en}↔ {da,de,en}
(d) Lp_bt →Lp: {is,nb,sv} → {is,nb,sv}

where Lp_bt is created from the monolingual
target side back-translated data DBT.

Parallel Data Filtering We filter the parallel
data using rule-based heuristics borrowed from the
Bifixer/Bicleaner tools (Sánchez-Cartagena et al.,
2018; Ramírez-Sánchez et al., 2020) and language
identification using FastText (Joulin et al., 2016,
2017). This repairs common orthographic errors,
including fixing failed renderings of glyphs due
to encoding errors, replacing characters from the
wrong alphabet with correct ones, and un-escaping
html. It also removes any translation pairs where:
the pair is a duplicate, the source and target are
identical, the source or target language is not the
intended language, one side is more than 2x the
length of the other, one side is empty, one side
is longer than 5000 characters, one side is shorter
than 3 words, or one side contains primarily URLs
and symbols rather than text.

Filtering reduces our parallel data to 77% of its
original total size. This data is then reversed in
order to train our multilingual model in all transla-
tion directions, resulting in a total of 421,656,410
parallel sentence pairs in all 30 language directions.
Table 1 lists the filtered data counts and the percent-
age of the original data that these counts represent.

Monolingual In-Domain Data Filtering The
validation set provided by the shared task organiz-
ers, containing thesis abstracts and descriptions, is
dissimilar to our available parallel corpora. There-
fore, we filter the Wikipedia monolingual is and

2https://en.wikipedia.org/wiki/Lsjbot
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de en is nb sv
da 6921831 (48) 20604309 (77) 797806 (68) 10654 (89) 5590356 (65)
de 144890166 (80) 456054 (62) 24963 (91) 5119372 (59)
en 3766342 (78) 279370 (46) 21906032 (78)
is 351833 (60) 597 (89) 446106 (46)
nb 2943733 (44) 14247 (89)

Table 1: Number of sentences after filtering (with % of total raw data remaining after filtering) in each language
direction from source (left) to target (top) from all corpora and for additional monolingual data from Wikipedia.
The parallel data was mirrored in the reverse directions to create 30 total language directions for training.

nb data for similarity to this validation set to cre-
ate in-domain monolingual data for use in back-
translation. We identify in-domain monolingual
instances in our data by calculating the cosine simi-
larity between each sentence in a given language in
the monolingual data to each of the sentences in the
shared task validation data for that language. When
a training instance has a similarity of >= θ with at
least one validation instance, it is added to the in-
domain fine-tuning corpus. We set θ = 0.9 and use
LASER (Artetxe and Schwenk, 2019) to extract
vector representations of sentences for calculating
similarity.

Validation and Test Data We split off 2000 sen-
tence pairs from each language pair in our parallel
data to use as an internal test set. For is-nb
directions, we use the few parallel sentences avail-
able for this, meaning that no parallel data is left
for the training or validation corpus. Therefore,
translating between these directions is a zero-shot
task for our models.

We also split off 2000 sentence pairs from each
language pair in our parallel data for internal val-
idation. For validation of our primary model, we
use the entire collection of 2000 validation sentence
pairs in each language direction. For the baseline
system, we cut this down to a total of ∼ 2000 sen-
tences, because performing validation is quicker
on smaller data. Therefore, we use a subset of 72
validation sentences in each {Lp, Ls} ↔ {Lp, Ls},
except is-nb, resulting in 2016 sentences. For
the contrastive model, we use the same sentences
in only {Lp, Ls} ↔ {Lp}, to which we add 72 sen-
tences from the back-translated data in the is-nb
directions, resulting in a total of 1728 sentences.

We use the shared task validation set, to com-
pare performance between our systems, and do not
use it during model training or fine-tuning. We
additionally report results Section 4 on the shared
task test set, which was provided to the teams af-
ter the completion of the shared task. These test

is nb sv
is 2564234 (87) 10123 (99)
nb 279818 (80) 344583 (78)
sv 299277 (85) 2521823 (86)

Table 2: Number of back-translated filtered sentences
(with % of total data remaining after filtering) between
synthetic source (left) to original target (top).

sets contain approximately 500 sentences in each
language direction.

Back-translation We use the baseline system
(Section 3.3) to create back-translations of our
monolingual in-domain filtered Wikipedia data.
This generates synthetic sources from is to {nb,
sv} and from nb to {is, sv}. We additionally
back-translate the sv side of our parallel nb-sv
corpus into is and our is-sv corpus into nb.
After creating the back-translations, we filter the
new synthetic parallel data sets again using the par-
allel data filtering steps (Section 3.1), in order to
remove sentences that consisted primarily of model
errors or hallucinations. The final counts of filtered
back-translated data are in Table 2, as well as the
percentage of the original total in-domain data that
these counts represent.

3.2 Byte-pair Encoding

To create a vocabulary for our baseline and con-
trastive systems, we train a shared byte-pair en-
coding (BPE) (Sennrich et al., 2016b) model using
SentencePiece (Kudo and Richardson, 2018). We
sample 10 million monolingual sentences from our
parallel training data, based on the amount of mono-
lingual data available for each language. Following
the idea of Arivazhagan et al. (2019), we use tem-
perature sampling, where the probability of sam-
pling any particular data set D in language ` out of
the n total data sets is defined as p` = ( D`∑n

i
Di

)
1
T ,

where we set T = 5. The goal of sampling in this
way is to provide a compromise that allows the BPE
model to view a larger portion of lower resource
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language tokens (unlike sampling according to the
original distribution would), while still providing
extra space in the model for the larger variety of
tokens coming from high-resource corpora (unlike
sampling uniformly would). We use a vocabulary
of 32, 000 tokens. When BPE-ing our training data,
we use BPE-dropout (Provilkov et al., 2020) with
a probability of 0.1.

3.3 Models

Baseline Our baseline system is trained on a con-
catenation of data sets (a), (b), and (c) (see Section
3.1). The data is pre-processed using byte-pair en-
coding as described in Section 3.2. Following the
method of Johnson et al. (2017), we jointly train
the model to translate in all our language directions,
pre-pending a token <2xx> to the source side to
inform the model which target language to translate
into. The system is comprised of a transformer base
model trained using Marian (Junczys-Dowmunt
et al., 2018) with cross-entropy loss, following the
method of (Vaswani et al., 2017) and the default
Marian transformer configuration.

We differ from the default configuration in
the following ways. We fit our mini-batch to
a workspace of 6144 MB, set the learning rate
to 0.0003 with a warm-up increasing linearly for
16000 batches and decaying by 16000√

no. batches
after-

wards. We train on multiple GPUs using Adam
(Kingma and Ba, 2014) with synchronous updates
for optimization, setting β1 = 0.9, β2 = 0.98
and ε = 1e − 09. We set transformer dropout
between layers to 0.01. We use a maximum sen-
tence length of 200 tokens, a maximum target
length as source length factor of 2, and a label
smoothing of 0.01. During validation, we use a
beam size of 6 and normalize the translation score
by translation_length0.6. We check translation
quality on our internal validation set (Section 3.1)
every 5000 model updates and stop training when
performance doesn’t improve for 15 checkpoints.
The model was trained for approximately 66 hours
on four NVIDIA GeForce RTX 3090 GPUs.

Contrastive Our contrastive model fine-tunes
the baseline model directly, using a concatenation
of all data sets that incorporate our target languages,
including parallel and back-translated data (the data
sets (a), (b), and (d) described in Section 3.1). The
fine-tuned model uses the same architecture, train-
ing settings, and stopping criterion as the original
baseline model, essentially allowing us to continue

training further from the original baseline. The
final submitted system is an ensemble of the last
four checkpoints of this model. The model was
trained for approximately 54 hours on two NVIDIA
GeForce RTX 2080 TI GPUs.

Primary For the primary system, we adapt mT5
(Xue et al., 2020), a multilingual pre-trained trans-
former language model, to the translation task. We
use mt5 because of its state-of-the-art performance
and its coverage of all of our target North Ger-
manic languages. We use the SimpleTransform-
ers3 framework which extends HuggingFace (Wolf
et al., 2019), with the default parameters. Since
our model is initialized from the parameters of the
mt5-base system, including the embedding lay-
ers, we use the same byte-pair encoded vocabulary
as the original model. Due to resource constraints,
we sample a total of 100k parallel sentences from
data sets (a) and (b) (described in Section 3.1). We
pre-pend a string to the source side to indicate to
the model which target language to translate into,
and adapt the model for 5 epochs. We further fine-
tune this model on data that includes our target
languages (sets (a) and (b) from Section 3.1) to
create our Primary system. The model was trained
for approximately 46 hours on a single NVIDIA
A100 SXM4 GPU.

4 Evaluation

Table 3 reports results on detokenized SacreBLEU
on each of our internal test set, the shared task
validation set, and the shared task test set4. Com-
paring results on the internal test set and shared
task validation sets show that our models fail to
generalize well to the shared task domain. The
mt5_base_ada_ft performance drops by an
average of −4.2 BLEU points between the in-
ternal test set and the shared task validation set,
while the marian_ft_esmb model performance
drops by an average of −1.0 BLEU points. Perfor-
mance on the shared task test set suffers the most
on the least represented languages (in particular
on is) causing the marian_ft_esmb to lose
an additional −1.7 average BLEU points and the
mt5_base_ada_ft model to lose an additional
−1.8 average BLEU points. In future work, we
would like to experiment with different sampling

3https://github.com/ThilinaRajapakse/
simpletransformers

4BLEU+case.mixed+numrefs.1+smooth.exp
+tok.13a+version.1.4.14
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Model is → nb is → sv nb → is nb → sv sv → is sv → nb Avg.

Internal test

marian 12.5 33.3 11.8 26.7 27.8 18.7 21.8
marian_ft 19.1 41.7 16.1 31.6 38.4 30.3 29.5
marian_ft_esmb 19.3 42.2 16.4 31.6 39.2 30.3 29.8
mT5_base_ada 23.1 42.3 19.4 33.7 42.8 33.9 32.5
mT5_base_ada_ft 26.5 42.9 20.0 33.9 43.3 34.2 33.5

Shared valid

marian 10.9 13.5 15.1 41.3 12.2 24.9 19.7
marian_ft 13.0 18.0 22.9 50.0 19.4 45.9 28.2
marian_ft_esmb 13.9 18.2 23.6 50.6 20.1 46.7 28.8
mT5_base_ada 14.6 19.2 25.8 46.6 20.6 43.2 28.3
mT5_base_ada_ft 17.4 18.7 26.5 47.9 20.8 44.2 29.3

Shared test marian_ft_esmb 13.0 17.3 18.3 45.4 20.2 48.2 27.1
marian_base_ada_ft 16.3 18.8 19.5 42.9 22.4 45.4 27.5

Table 3: SacreBLEU (detokenized) results on the internal test set and the shared task validation and test sets.

methods to boost the performance of the least rep-
resented directions.

Comparing results between models, our pri-
mary mt5_base_ada system outperforms the
marian model trained from scratch by an average
of +10.7 and +8.6 BLEU points on the internal
and shared task validation sets, respectively. The
further fine-tuned variant mt5_base_ada_ft
leads to an additional average improvement of just
under +1 BLEU point on both sets, showing that
the mt5 model already learned a good amount about
our target task and languages from our initial adap-
tation step. The marian model is also outper-
formed by the fine-tuned variant marian_ft, re-
sulting in an average improvement of +7.7 BLEU
points on the internal test set and +8.5 BLEU
points on the shared task validation set.

Both the mt5_base_ada_ft and
marian_ft models are exposed to similar
language data; however, the mt5 language model
we adapted from (mt5-base) is much larger than
our marian model (580 million vs 44 million
parameters), and was trained on more language
data (750 GB vs 46 GB), so it had a much
stronger base to start from. Ensembling the last
4 checkpoints of the fine-tuned marian model for
marian_ft_esmb boosts performance by +0.3
and +0.6 average BLEU on the internal and shared
task validation sets over marian_ft; however,
the mt5_base_ada_ft model still outperforms
the marian_ft_esmb model by +3.7 and +0.5
average BLEU on the internal test set and the
shared task validation set, respectively. Therefore,
we submitted the mt5_base_ada_ft model as
our primary system to the shared task; however,
our contrastive system, the marian_ft_esmb
model, won in the shared task rankings.

In the global automated evaluations of the shared
task, our contrastive system is the best-performing

submitted system5, outperforming the official mT5
baseline by approximately +8.5 BLEU. We hy-
pothesize that the mt5 baseline, while being pre-
trained on massive amounts of partially noisy
monolingual data, has learned the translation task
via training on the development set only, so it has
less informative parallel data available than our
models. The M2M-100 (Fan et al., 2020) baseline
outperforms all submitted systems, despite hav-
ing been trained on noisy parallel data only. We
hypothesize that the highly-multilingual nature of
the M2M-100 model allows the target languages
to benefit from the supervisory signals between
related language combinations.

5 Conclusion and Future Work

We contribute to the growing space of NMT for
North Germanic languages. We explore multilin-
gualism by training a transformer with a shared
encoder and decoder for all language pairs from
scratch, as well as adapting a pre-trained multi-
lingual language model. Fine-tuning these mod-
els to our low-resource language pairs was a key
component in our success in the task, and we ad-
ditionally confirm that employing popular tech-
niques in machine translation, such as data filtering,
back-translation, and model ensembling are bene-
ficial for improving performance on low-resource
directions. In future work, we would like to ex-
periment with fine-tuning additional pre-trained
models such as the M2M-100, incorporating itera-
tive back-translation, and trying different sampling
methods during training to boost lower performing
low-resource language pairs.

5Only our primary model was submitted for manual
evaluation, where it outranked the other submissions. Official
rankings are available at: http://statmt.org/wmt21/
multilingualHeritage-translation-task.
html
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Abstract

This paper describes TenTrans’ submission to
WMT21 Multilingual Low-Resource Transla-
tion shared task for the Romance language
pairs. This task focuses on improving trans-
lation quality from Catalan to Occitan, Roma-
nian and Italian, with the assistance of related
high-resource languages. We mainly utilize
back-translation, pivot-based methods, multi-
lingual models, pre-trained model fine-tuning,
and in-domain knowledge transfer to improve
the translation quality. On the test set, our
best-submitted system achieves an average of
43.45 case-sensitive BLEU scores across all
low-resource pairs. Our data, code, and pre-
trained models used in this work are available
in TenTrans evaluation examples1.

1 Introduction

We participate in the WMT21 Multilingual Low-
Resource Translation shared task. This task fo-
cuses on the multilinguality in the cultural heritage
domain for two Indo-European language families:
North-Germanic and Romance. We devote the re-
search into translations among Romance languages,
including Catalan→Occitan, Catalan→Romanian,
Catalan→Italian. Additionally, this task explicitly
encourages the use of data of four related high-
resource languages (Spanish, French, Portuguese
and English) in the same linguistic family.

For the model architecture, we adopt a universal
encoder-decoder architecture that shares parame-
ters across all languages (Johnson et al., 2017).
And almost all of the subsequent experiments are
based on Transformer base model (Vaswani et al.,
2017).

†This work is done by the author as an intern at TencentMT
Oteam.

*Corresponding author.
1https://github.com/TenTrans/

TenTrans/blob/master/example/WMT21/
WMT21-low-resource-MNMT.md

To effectively exploit low and high resource data
in the multilingual low-resource scenario, we ex-
plore several approaches, and each approach shows
effectiveness. We employ back-translation (Sen-
nrich et al., 2016a) and pivot-based methods to
augment the training corpus. In terms of knowl-
edge transfer, we explore the pre-trained model and
the multilingual model that trained with both low
and high resource language pairs. Moreover, we
extract in-domain corpus by a domain classifier and
adapt the model to the target domain by in-domain
fine-tuning.

This paper is structured as follows: Section 2
introduces used datasets, data statistic and pre-
processing pipeline. Section 3 describes the details
of different approaches. In Section 4 we present
experimental settings and results. Section 5 draws
a brief conclusion of our work in the WMT21.

2 Data

2.1 Datasets
The training datasets are majorly provided by the
publicly available OPUS (Tiedemann, 2012) repos-
itory. We use almost all available datasets provided
in the task, including Europarl, JW300, WikiMa-
trix, MultiCCAligned, OPUS-100, Bible, ELRC,
and 167.2K It-Ro pairs in TED talks as well as
15M/360K sentence pairs of En-It/En-Ro extracted
from Wikipedia dumps. For datasets that can be
found through the resources search form on the
top-level website of OPUS, we use opus-tools2 to
extract low-resource language pairs. As for rest
of the data, we download them in the usual way.
Statistics of different datasets are showed in Table
1.

2.2 Data Pre-processing
Cleaning datasets is necessary when the datasets
are noisy and of low quality. We partially refer to

2https://pypi.org/project/
opustools-pkg/
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Bilingual WikiMatrix MultiCCAligned Bible/Europarl JW300 ELRC OPUS
LRL-LRL 2.7M 11.5M 386.5K 1.2M 0.022K -
HRL-LRL 8.9M 68.7M 5.9M 12.2M 2.7M 2.0M
Monolingual WikiMatrix MultiCCAligned Bible/Europarl JW300 ELRC OPUS
Oc 342.3K - - - - 35.8K
Ro 3.8M 132.6M 470.1K 54.5M 1.1M 1M
It 9.1M 175.2M 23.3M 66.2M 1.6M 1M

Table 1: Number of sentences in different datasets. ‘LRL-LRL’ means the bilingual data between low resource
languages, e.g. Ca-Ro. ‘HRL-LRL’ means the bilingual data between high-low resource languages, e.g. En-Ro.
‘1M’ means we do not use that data though it is provided. Note that OPUS provides En-Oc/Ro/It bilingual pairs,
but we also use the target side Oc/Ro as monolingual data due to lacking data.

Ca-Oc Ca-Ro Ca-It
No filter 138.7K 2.2M 6.3M
Filtered 138.7K 2.1M 5.8M

It-Ro It-Oc Oc-Ro
No filter 7.2M 122K 81K
Filtered 6.9M 122K 81K

Table 2: Number of sentences in low-resource bilingual
data.

M2M-1003 (Fan et al., 2020) data pre-processing
procedures to filter bilingual sentences. We remove
sentences with more than 50% punctuation, dedu-
plicate training data and remove all instances of
evaluation data from the bilingual training data.

We tokenize all data and normalize punctua-
tion with the Moses tokenizer (Koehn et al., 2007).
To enable open-vocabulary and share information
among languages, we use joint Byte-Pair-Encoding
(BPE) with 32K split operations for subword seg-
mentation (Sennrich et al., 2016b). We also remove
sentences longer than 512 as well as sentence pairs
with a source/target length ratio exceeding 3.

For monolingual data, we still employ those
rules except the length ratio filter. See Table 2 for
the statistics of low-resource bilingual data, Table
3 for the statistics of high-low resource bilingual
data and Table 4 for the statistics of low-resource
monolingual data.

3 System Overview

3.1 Base Systems
In multilingual translation scenarios, one can em-
ploy multi-task learning framework using multiple
encoders or multiple decoders (Luong et al., 2016;
Dong et al., 2015; Firat et al., 2016). Either, one

3https://github.com/pytorch/fairseq/
tree/master/examples/m2m_100

can employ a unified model consisting of a shared
encoder and a shared decoder for all the language
pairs (Johnson et al., 2017). We experiment with
these two models and conduct the conclusion that a
universal encoder-decoder model outperforms the
model with multiple decoders. The unified archi-
tecture is adopt in subsequent experiments in this
work. Parameters and vocabulary are shared among
all language pairs and this helps the generalization
across languages improving the translation for the
low-resource language pairs (Aharoni et al., 2019).
We also train three separate bilingual models to
be regarded as contrastive model with multilingual
model. Furthermore, we jointly train on Catalan,
Occitan, Romanian, Italian four low-resource lan-
guages simultaneously to obtain a many-to-many
multilingual model. Detailed results of base sys-
tems are shown in Table 6.

We use the Transformer (Vaswani et al., 2017)
as our model architecture for all of our systems.
We experiment with increasing network capacity
but we find that deep and wide model architectures
bring training hurdles. So almost all subsequent
models are based on the Transformer base archi-
tecture (Vaswani et al., 2017) as implemented in
TenTrans4, expect for pre-trained model M2M-100
trained using FAIRSEQ5 (Ott et al., 2019).

3.2 Back-translation

Back-translation (briefly, BT) (Sennrich et al.,
2016a) is an effective and commonly used data
augmentation technique to incorporate monolin-
gual data into a translation system.

In this work, for translation direction with
more than 5 million bilingual data such as
Catalan→Italian, we train a dedicated bilingual BT

4https://github.com/TenTrans/TenTrans
5https://github.com/pytorch/fairseq
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It Oc Ro Ca

En No filter 22.4M 73K 14.6M 7.1M
Filtered 22.3M 59K 14.5M 7.0M

Es No filter 4.4M 36K 6.4M 12.3M
Filtered 4.3M 36K 4.2M 6.5M

Fr No filter 4.8M 124K 1.6M 7.7M
Filtered 4.7M 124K 1.5M 7.0M

Pt No filter 24.3M 24K 5.7M 4.9M
Filtered 15.6M 24K 5.6M 4.6M

Table 3: Number of sentences in high-low resource bilingual data.

It Oc Ro
No filter 275M 378K 193.5M
Filtered 38.3M 225K 13.4M

Table 4: Number of sentences in low-resource mono-
lingual data.

BT System It-Ca Oc-Ca Ro-Ca
Bilingual model 37.74 - -
Multilingual 4-to-4 31.41 23.72 51.02

Table 5: BLEU scores (%) for reverse models evaluated
on the validation data.

model Italian→Catalan to translate Italian mono-
lingual data into Catalan. For other translation
directions with less than 5 million bilingual data,
we use the jointly pre-trained many-to-many multi-
lingual model with four low-resource languages as
its source and target side (see Section 3.1) to back
translate Occitan and Romanian monolingual data
into Catalan. Beam search with beam size 5 is used
when generating the synthetic sentences. Detailed
results of reverse models are shown in Table 5.

3.3 Multilingual Model

Arivazhagan et al. (2019) shows that multilin-
gual models can improve the translation perfor-
mance of medium and low resource languages, as
multilingual models are often trained on greater
quantities of data compared to individual models.
So we utilize high-low resource paired data such
as English→Occitan in addition to low-resource
bilingual data during training. Training on high-
resource and low-resource language pairs together
may bring knowledge transfer (Zoph et al., 2016),
especially when languages are from the same lin-
guistic family.

In the experiment, we train on four high-resource

languages (Spanish, French, Portuguese and En-
glish) combined with four target-task low-resource
languages together, resulting in an 8-to-4 multi-
lingual model with Ca, Oc, Ro, It as the target
side. We randomly extract 2K sentence pairs from
training data as the validation set for each high-low
resource languages pairs. BPE codes and multilin-
gual vocabulary are shared among all languages,
but a shared multilingual vocabulary runs the risk
of favoring high-resource languages over others,
due to the imbalance of the dataset size the vocabu-
lary is extracted. To reduce the effect of imbalanced
dataset size, we apply a temperature sampling strat-
egy named Vocabulary Sampling to construct a
joined vocabulary. Following Arivazhagan et al.
(2019), we set sampling temperature T = 5.

Table 6 shows results on validation set of our
baseline systems. Obviously, the universal encoder-
decoder model outperforms the model with sepa-
rate decoders for each target language by 7 BLEU
on average. Compared to the bilingual baseline sys-
tem, our universal multilingual 1-to-3 baseline sys-
tem performs great improvement on low-resource
languages, at the cost of sacrificing performance
on relatively rich language Italian. However, the
jointly trained multilingual 4-to-4 system shows
performance degradation. We ascribe this phe-
nomenon to multilingual model capacity is split
for more translation directions, from 3 directions
to 12 translation directions in this case.

3.4 Pivot-based Method

Pivot-based approaches are prevalent when address-
ing the data scarcity problem in machine transla-
tion, nonetheless, they suffer from cascaded trans-
lation errors: the mistakes made in the source-to-
pivot translation will be propagated to the pivot-
to-target translation (Dabre et al., 2020). Another
pivot-based approach used in zero-resource transla-
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Base System Ca-Oc Ca-Ro Ca-It Average BLEU
30.02 - -

Bilingual models - 21.51 - 28.48
- - 33.91

Separate Decoders
Multilingual 1-to-3 25.82 22.03 32.96 26.90

Universal Models
Multilingual 1-to-3 43.40 24.16 32.92 33.78
Multilingual 4-to-4 41.44 22.81 31.01 31.75

Table 6: BLEU scores (%) for baseline systems evaluated in the validation data. And the numbers represent
languages used in models, e.g. 1-to-3 means source side of model is Ca but target side consists of Oc, Ro, It, and
4-to-4 means both the source and target side of model consist of four languages Ca, Oc, Ro and It.

tion scenario is that the pivot side of the pivot-target
parallel corpus is back-translated to the source lan-
guage, creating a synthetic source-target parallel
corpus (Lakew et al., 2018; Gu et al., 2019). In this
work, we adopt the latter pivot-based method.

In practice, we consider four high-resource lan-
guages En, Es, Fr, Pt as pivot languages, thus we
train a pivot-to-source multilingual model to back
translate four pivot languages in pivot-to-target par-
allel data into source language. Owing to relatively
rich data of Catalan-Italian, we only perform ex-
periments on low-resource languages of Occitan
and Romanian. To balance distribution between
genuine parallel data and synthetic parallel data,
we oversample genuine data to be of the same mag-
nitude as synthetic data.

We can combine all synthetic parallel data gener-
ated from back-translation and pivot-based method
with genuine parallel data to jointly train a mul-
tilingual model from scratch, which is named
Combine-All. Source side of this model is com-
prised of four rich-resource and four low-resource
languages, and target side of this model is com-
prised of four low-resource languages.

3.5 Pre-trained Model Fine-tuning

Because of the recent popularity of using large
scale pre-training models to fine-tune specific lan-
guages and tasks, we employ the M2M-100, a true
Many-to-Many multilingual translation model (Fan
et al., 2020) that can translate between 100 lan-
guages which cover four task languages. Our ex-
periments are based on the M2M-100 1.2B model
due to its better performance than the 418M model.
In the subsequent fine-tuning procedure, we fol-
low the parameters setting in fine-tuning mBART
(Liu et al., 2020). In three task directions, we try

fine-tuning M2M-100 model with genuine bilin-
gual data (Bilingual FT) and fine-tuning with gen-
uine multilingual data (Multilingual FT). Moreover,
we try fine-tuning the M2M-100 1.2B model us-
ing Combine-All data with four high-resource plus
low-resource languages as the source side and four
low-resource languages as the target side.

Unfortunately, M2M-100 model trains on Sen-
tencePiece(Kudo and Richardson, 2018) rather
than Byte-Pair-Encoding so that the fine-tuned
model can not be directly combined with the mod-
els that listed above for ensembling. We utilize
synthetic Catalan-Occitan, Catalan-Romanian data
generated through sentence-level knowledge dis-
tillation (Kim and Rush, 2016) to train a ‘student’
model so as to incorporate knowledge of ‘teacher’
model M2M-100 1.2B into ‘student’ model. Con-
cretely, in Catalan→Occitan direction, we employ
multilingual fine-tuning on M2M-100 1.2B model
using Combine-All data for 200K updates (1.1M
updates for each epoch), after that, we continue
with bilingual fine-tuning using genuine Catalan-
Occitan parallel data. As for Catalan→Romanian
direction, we directly use the pre-trained model
without fine-tuning. We continue to train on 8-to-4
multilingual model (See Section 3.3) in three task
translation directions with data obtained through
knowledge distillation and finally get a new model
named M2M-KD. We do not implement knowl-
edge distillation in Catalan→Italian direction since
we find other systems perform equivalently to the
pre-trained model. If time permitted, we believe
that more improvements will be observed.

3.6 Domain Adaptation

Domains of training data are various, whereas vali-
dation and hidden test data belong to the cultural
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System Ca-Oc Ca-Ro Ca-It Average BLEU
Multilingual baseline 43.40 24.16 32.92 33.78

+ Back-translation 48.21 22.66 32.9 34.59
+ Pivot 26.98 26.33 34.2 29.17

Combine-All 26.75 29.59 37.49 31.28
M2M-100 418M

w/o FT 31.04 26.72 34.18 30.65
+ Multilingual FT 40.71 25.26 33.92 33.30

+ Bilingual FT
49.42 - -

- 25.4 - 36.67
- - 35.19

M2M-100 1.2B
w/o FT 34.70 32.21 38.37 35.09

+ Multilingual FT 42.09 28.11 36.62 35.61

+ Bilingual FT
49.79 - -

- 27.83 - 38.24
- - 37.09

+ Combine-All FT 37.15 30.54 37.28 34.99
+ Bilingual FT 49.86 - - -

Multilingual 8-to-4 51.49 29.11 38.26 39.62
+ In-domain-FT 56.60 28.30 38.74 41.21
+ M2M-KD 65.18 32.85 36.19 44.74

Ensemble
†In-domain-FT + M2M-KD 64.70 32.85 39.41 45.65
*In-domain-FT + M2M-KD + Combine-All 64.02 32.63 40.04 45.56

Table 7: BLEU scores (%) for different systems on the validation data. The number 8 means source side of
model consists of both four high-resource languages and four low-resource languages, 4 means target side of
model consists of four low-resource languages Ca, Oc, Ro and It. ‘†’ is the submitted primary system. ‘*’ is the
submitted contrastive system.

heritage domain. Owing to the domain discrepancy,
adapting models to the cultural heritage domain
(Luong et al., 2015) is required.

Due to the scarcity of in-domain data, we uti-
lize pre-trained language model multilingual Bert 6

(Devlin et al., 2019) to train a domain classifier for
extracting in-domain sentences from genuine bilin-
gual data. To train the domain classifier, we con-
sider validation data of three languages Ca, Ro, It
as positive samples, and randomly sample the low-
resource side of high-low resource bilingual data
as negative samples. Then classifier is exploited to
score the source sentences (Ca/Ro/It). We select
sentence pairs whose source is predicted to be pos-
itive with a probability greater than threshold 0.7
to construct in-domain corpus. In the end, we pick
out 60K Catalan-Occitan, 297K Catalan-Romanian
and 815K Catalan-Italian data respectively as in-

6https://huggingface.co/
bert-base-multilingual-cased

domain corpus. We fine-tune 8-to-4 multilingual
model on the in-domain corpus in three task trans-
lation directions and then get the In-domain-FT
model. For the purpose of preventing overfitting,
we set the max-tokens to be 2K with a learning rate
of 3e-5 and we force fine-tuning to stop when fin-
ishing the first epoch. Note that we do not perform
fine-tuning on the validation set.

4 Experiments

4.1 Settings
Except that the pre-training experiments are trained
on 4 NVIDIA V100 GPUs, the rest of our experi-
ments are carried out with 8 NVIDIA P40 GPUs.
Except for the pre-training experiments, the rest
of our experiments use the following settings. Our
models apply Adam (Kingma and Ba, 2015) as op-
timizer to update the parameters with β1 = 0.9 and
β2 = 0.98. We set the label smoothing and dropout
rate to 0.1. The initial learning rate is set to 5e-4
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varied under a warm-up strategy with 4000 steps.
In the training stage, batch size is 8K tokens per
GPU.

We use uncased BLEU scores calculated with
Moses multi-bleu.pl7 toolkit as the evaluation met-
ric. And we choose model checkpoints based on
the BLEU score on average of the validation set.

4.2 Main Results

Table 7 shows that the translation quality is largely
improved with different systems. Although mi-
nority systems encounter the problem of aver-
age performance degradation on the validation
set, they contribute to at least one translation di-
rection. Back-translation gives a solid improve-
ment by nearly 0.8 BLEU on average. Pivot-based
method offers 1∼2 BLEU in Catalan→Romanian,
Catalan→Italian directions, however, pivot de-
grades in Catalan→Occitan direction. When we
train an 8-to-4 multilingual model jointly with both
the high and low resource languages, the model
shows an absolute improvement in three task di-
rections of 6 BLEU on average score. It can
be explained by that a larger quantity of genuine
data leads to robust encoder/decoder or knowledge
can be transferred from high-resource into low-
resource languages. As for the pre-trained model,
we notice that M2M-100 1.2B model performs very
well in Catalan→Romanian, Catalan→Italian di-
rections without fine-tuning. And we find that aver-
age bilingual fine-tuning outperforms multilingual
fine-tuning by about 2.6 BLEU. We also observe
some systems hold a comparable performance with
M2M-100 1.2B model in Catalan→Romanian and
Catalan→Italian directions when training data is
abundant.

Further experiments include the in-domain fine-
tuning and M2M-KD based on the multilingual
8-to-4 system. In-domain fine-tuning is restricted
to in-domain data size, but we also obtain a solid
improvement of 1.5 BLEU on average, especially
in Catalan→Occitan direction. M2M-KD model
yields a greater improvement that we get the best
BLEU in Catalan→Occitan, Catalan→Romanian
directions with 65.18, 32.85 respectively. Ulti-
mately, to take advantages of multiple single mod-
els, two or three top performing models are ensem-
bled to be the submitted systems.

7https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
generic/multi-bleu.perl

5 Conclusions

In this paper, we present the system TenTrans sub-
mitted for the WMT21 Multilingual Low-Resource
Translation for Indo-European Languages shared
task. We focus on Romance languages, translat-
ing from Catalan to Occitan, Romanian and Ital-
ian. Back-translation, pivot-based method, mul-
tilingual model, knowledge distillation using pre-
trained model, domain adaptation and ensembles
are employed and proven effective in the exper-
iments. Our best submitted system achieves an
average of 43.45 case-sensitive BLEU score across
all low-resource languages pairs.
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Abstract

This paper describes the system submitted to
Large-Scale Multilingual Shared Task (Small
Task #2) at WMT 2021. It is based on the mas-
sively multilingual open-source model FLO-
RES101_MM100 model, with selective fine-
tuning. Our best-performing system reported
a 15.72 average BLEU score for the task.

1 Introduction

Massively multilingual models such as Facebook’s
M2M-100 (Fan et al., 2020) model provide an at-
tractive approach to scaling Machine Translation to
many language pairs by sharing encoder-decoder
parameters across languages. By not centering En-
glish in its training process, M2M-100 improves
translation quality substantially (by over 10 BLEU
points) compared to the best single systems of
WMT before 2020 on the “large-scale Many-to-
Many dataset for 100 languages” (Fan et al., 2020).
However, translation quality for low-resource lan-
guages still leaves much room for improvement.

We address the Large-Scale Multilingual Ma-
chine Translation Shared Task (Small Track
#2) at WMT 2021, by fine-tuning the FLO-
RES101_MM100 model for the languages in the
Shared task. We consider different fine-tuning con-
figurations, with a goal to minimize the compu-
tational and data resources required. First, we
consider the impact of finetuning on datasets of
different sizes, and surprisingly show that finetun-
ing with the smaller dataset gives better perfor-
mance for some language pairs. Second, we con-
sider selectively dropping layers during fine-tuning
to reduce the computational cost of working with
a Transformer model with millions of parameters.
We adopt a structure dropout technique, LayerDrop,
which has been shown to have a regularization ef-
fect and to effectively reduce model size for infer-
ence (Fan et al., 2019), as well as to reduce training

*These authors contributed equally to this work

time while preserving decoding quality (Zhang and
He, 2020). We have used LayerDrop so that our
model can run on large datasets for low resource
language pairs.

Our best performing system is fine-tuned on the
large MultiCCAligned training data and yields a
sentence-piece BLEU score (the official Shared
task metric) of 15.72 on the Shared task test set.
However, a model fine-tuned on smaller amounts
of data (bible-uedin) approaches that result, with
a BLEU score of 15.10. This paper describes the
submitted models, as well as experiments with Lay-
erDrop configuration, which show that dropping
the top layers does not help BLEU.

2 Shared Task Data

Training Our training data is provided by the
Shared task organizers and is drawn from the pub-
licly available open-source multilingual parallel
corpus (OPUS) data repository for the languages
of the Shared task (Tiedemann, 2012). It consists
of the MultiCCAligned large dataset which sup-
ports 112 languages (El-Kishky et al., 2020) with
English as the pivot language. The bible-uedin
dataset (Christodouloupoulos and Steedman, 2015)
is comparatively smaller than the MultiCCAligned
dataset and is supported by 102 languages based
on translations from the Bible. Table 1 reflects
the statistics for the datasets from 23 different lan-
guage pairs (3 from bible-uedin with a size of 125
MB and 15 from MultiCCAligned with a size of 16
GB) considering only the 6 languages in the Shared
task which are Indonesian, Javanese, Tamil, Taga-
log, Malay, and English. MultiCCAligned takes
up more than 50% of the dataset while bible-uedin
takes less than 0.2%.

We preprocess the data using the "Sentence-
Piece" module (Kudo and Richardson, 2018) for
tokenization and byte-pair encoding, and remove
duplicate samples.
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Evaluation Sets The Shared task evaluates mod-
els on three distinct datasets: dev, devtest and test.
They are all drawn the FLORES-101 benchmark
for Many-to-Many multilingual translation (Goyal
et al., 2021). It consists of 3001 sentences ex-
tracted from English Wikipedia and covering a
variety of different topics and domains. These sen-
tences have been translated into 101 languages by
professional translators through a carefully con-
trolled process. The Shared task uses a subset of
six languages including English from FLORES-
101. The languages are: Javanese (jav), Indonesian
(ind), Malay(msa), Tagalog (tgl), Tamil (tam), and
English (eng). The dev and devtest sets are both
2.8MB in size. These datasets were evaluation test
set and were therefore held out from our fine-tuning
experiments. The test set were inaccessible to the
Shared Task participants.

source lang_pair lang #lines #words
id 29686 629304id-tl tl 29686 792379
en 62195 1550443en-tl tl 62195 1650384
id 59363 1258405

bible-uedin

en-id en 59363 1491576
en 27005411 229031867en-id id 27005411 219942614
jv 1513975 6736011en-jv en 1513975 6751212
en 5391811 75761505en-ms ms 5391811 73624832
en 880568 13561100en-ta ta 880568 11021555
tl 6593254 46368945en-tl en 6593254 45388545
id 756823 3144256id-jv jv 756823 3084732
id 2790866 37035615id-ms ms 2790866 38179211
id 406980 5326520id-ta ta 406980 4765008
tl 2673325 19793654id-tl id 2673325 17573455
ta 64693 346766jv-ta jv 64693 369599
jv 431117 1909419jv-ms ms 431117 2071297
jv 814883 2747948jv-tl tl 814883 2808677
ms 260338 4340844ms-ta ta 260338 3698516
ms 1341969 12229073ms-tl tl 1341969 13992119
ta 557855 4203473

MultiCCAligned

ta-tl tl 557855 5581043

Table 1: Split of the training datasets

3 Model Configurations

This section describes our base model and the vari-
ous fine-tuning configurations considered.

3.1 Base Model

Figure 1 shows a FLORES101_MM100 model
with the original encoder and decoder.

Figure 1: Baseline FLORES101_MM100 architecture

3.2 Finetuning Strategies
Hyper-parameters Table 2 gives the list of the
hyper-parameter settings we use for all finetuning
in our experiments. Since batch size and learn-
ing rate affect finetuning, we experimented with
two different learning rates, 3e−5 and 3e−7, on the
smaller dataset (bible-uedin). Changing the learn-
ing rate from 3e−5 to 3e−7 boosts the BLEU score
of bible-uedin fine-tuned model to 15.10.

Batch Size 4

Loss Function
Label Smoothed
Cross Entropy

Label Smoothing 0.2

Optimizer Adagrad
Learning Rate 3e−5 / 3e−7

LR Scheduler Inverse Square Root
Warmup updates 2500

Dropout 0.3

Attention Dropout 0.1

Table 2: Hyperparameter setup

Data We compare the impact of using each of
the datasets decribed in Section 2 to fine-tune the
models: bible-uedin and MultiCCAligned.

Activation function In addition to using the stan-
dard ReLu activation function, we experiment with
the GELU nonlinearity, which weighs inputs by
their percentile, rather than gates inputs by their
sign as in ReLUs. Compared to ReLU or leaky
ReLU, GELU has the theoretical advantage of be-
ing differentiable for all values of x.

LayerDrop Fan et al. (2019) introduced a Layer-
Drop technique to generate shallow models from
larger ones by dropping entire layers at inference
time. These dropped layers have a regularization
effect and reduce training time. Inspired by these
results, we fine-tune our model with LayerDrop

384



Dataset Dev DevTest Test

Baseline 12.39 11.78 12.11

Fine-tuned Models
Bible-uedin 15.50 14.89 15.10
MultiCCAligned 16.05 15.45 15.72

Table 3: Impact of fine-tuning data on spBLEU: Multi-
CCAligned data yields the best scores, but Bible-uedin
achieves close results despite being much smaller.

by selectively dropping the last three layers (9, 10,
11) in the encoder and the decoder. We compare
this approach to fine-tuning all layers in our model
without LayerDrop.

4 Results

Aggregate Results The Shared task evaluates
the performance of models using a sentence-piece
BLEU (spBLEU) score, aggregated across all lan-
guage pairs tested. We report results using this
metric and to it as BLEU in this section.

Table 3 reports the BLEU score of our models
finetuned with the different datasets on the three
Shared task evaluation sets. From Table 3, we can
see that the model finetuned with MultiCCAligned
obtains higher BLEU scores across the board com-
pared to the model finetuned with bible-uedin. On
the test set, it obtains a BLEU score of 15.72. How-
ever, the model fine-tuned on bible-uedin, is only
about .6 BLEU point behind (15.10 BLEU), de-
spite being only about 1

340 in size comparing to
the MultiCCAligned. These results suggest that
amount of data is not the most important factor
when selecting a dataset for fine-tuning.

Table 4 shows the BLEU scores obtained with
fine-tuning configurations which vary in the activa-
tion function used and in the use of the LayerDrop
technique for reducing model size. The best results
are obtained with the standard settings: fine-tuning
with the ReLU activation and no LayerDrop. Lay-
erDrop degrades translation quality substantially,
which suggests that it is not a promising strategy to
reduce the computational cost of neural MT.

Per Language Results In addition to aggregate
results, we report BLEU scores per language pair
in Figure 2 for each of the main experimental con-
ditions considered. Since our main motivation is
to improve the performance of the model for low-
resource languages, we would like to fill the gap
between the languages with a higher score and the

Dev DevTest Test

Baseline 12.39 11.78 12.11

GeLu no LD 15.19 14.61 14.83
ReLu LD 7.35 6.94 7.34
ReLu no LD 16.05 15.45 15.72

Table 4: Impact of activation function and LayerDrop
(LD) on spBLEU: the standard settings with ReLu and
without LD yield the best translation quality.

languages with a lower score, i.e. to see more dark
blue squares in the Figure. Comparing the score
break down of the MultiCCAligned model and the
bible-uedin model, the latter one performs better
on almost all translations to Tamil and Tagalog; for
example, there is a 2.33 improvement on eng-tam
and a 6.49 improvement on eng-tgl. Some transla-
tions from Tamil also show improvements, 1.3 on
tam-eng, while the only improvement from Taga-
log is 1.31 on tgl-tam. However, bible-uedin model
performs worse on 19 out of all 30 language pairs
and has a lower average.

5 Submitted System Configuration

The submitted system is fine-tuned with the Multi-
CCAligned dataset for all the language pairs men-
tioned in Table 1. The hyper-parameters are set
as described in Table 2 with learning rate 3e−05.
This system uses ReLu as the activation function
and keeps all the original layers in the encoder and
decoder. The fine-tuning is done for 10 epochs.

6 Conclusion

We described the University of Maryland submis-
sion to the Large-Scale Multilingual Shared Task
(Small Task #2) at WMT 2021. We considered sev-
eral fine-tuning configurations on top of the mas-
sively multilingual FLORES101_MM100, and find
that using MultiCCAligned data and a standard
model configuration give the best result. We also
show that finetuning on the much smaller Bible-
uedin dataset approaches our best result, with a
BLEU score of 15.10. Selecting appropriate fine-
tuning data thus plays a significant role in the qual-
ity of the final model, and the amount of data alone
is a suboptimal selection criterion. Dropping the
last three layers of the encoder and decoder de-
creased the translation quality. Future work is
needed to determine how to reduce the computa-
tional needs of large-scale multilingual MT.
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Layer Select Gelu

MultiCCAligned Bible-uedin

Figure 2: spBLEU score on the test setbreak down for each language pair
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Abstract
We describe TelU-KU models of large-
scale multilingual machine translation for
five Southeast Asian languages: Javanese,
Indonesian, Malay, Tagalog, Tamil, and
English. We explore a variation of hy-
perparameters of flores101_mm100_175M
model using random search with 10% of
datasets to improve BLEU scores of all
thirty language pairs. We submitted
two models, TelU-KU-175M and TelU-KU-
175M_HPO, with average BLEU scores of
12.46 and 13.19, respectively. Our models
show improvement in most language pairs
after optimizing the hyperparameters. We
also identified three language pairs that ob-
tained a BLEU score of more than 15 while
using less than 70 sentences of the train-
ing dataset: Indonesian-Tagalog, Tagalog-
Indonesian, and Malay-Tagalog.

1 Introduction
This paper describes our participation in the
WMT21 shared task of large-scale multilingual
machine translation. Specifically, we chose
small track #2, which involves thirty language
pairs, and used the neural machine translation
(NMT) method. We call our models TelU-KU
(Telkom University - Kumamoto University)
as we use our university name in our submis-
sions.

∗These authors contributed equally. Everyone con-
tributed to writing this paper.

NMT has been widely used in machine trans-
lation research for many languages. Currently
NMT has become the state of the art of ma-
chine translation with a large number of paral-
lel corpus (Bojar et al., 2017; Nakazawa et al.,
2017; Chu and Wang, 2018; Sutskever et al.,
2014). Meanwhile, for low resources cases,
the NMT tends to give poor translation re-
sults (Duh et al., 2013; Sennrich and Zhang,
2019; Zoph et al., 2016; Koehn and Knowles,
2017). In order to get better translation re-
sults of NMT for low resources languages,
some approaches are applied, such as using a
large number of monolingual corpora (Artetxe
et al., 2018a,b; Lample et al., 2018b,a), apply-
ing transfer learning approach to share lexical
and sentence level representation (Gu et al.,
2018), using sub-word representation (Durrani
et al., 2019), and hyperparameter optimiza-
tion (HPO) (Sennrich and Zhang, 2019; Ru-
bino et al., 2020).

HPO is an important part of building an
NMT system in many real-world applications.
In other words, selecting effective hyperparam-
eters is critical to building a strong NMT sys-
tem. However, in many cases, hyperparam-
eters are often set manually based on intu-
ition and heuristics mechanisms, tedious and
error-prone processes that can lead to unre-
liable experimental results and poor perfor-
mance of shared tasks or production systems.
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This is because HPO requires rigorous test-
ing and resources, which makes it a high-cost
process. To deal with this problem, table-
lookup has been proposed as a benchmark pro-
cedure (Zhang and Duh, 2020). Their study
provides evaluation protocols and a bench-
mark dataset for comparing the HPO meth-
ods. Moreover, like other NMT models, trans-
formers require setting various hyperparame-
ters, but researchers often use default param-
eters, even when their data conditions differ
substantially from the data conditions previ-
ously used to determine those default values.

In low-resource languages cases, the perfor-
mance of the transformer is highly dependent
on the hyperparameter settings (Araabi and
Monz, 2020). The experimental results show
that the best-suited combination of hyperpa-
rameters and regularization methods can pro-
duce substantial improvement for low-resource
languages data. On the other side, grid search
and manual search are the most frequently
used strategies for HPO. However, according
to the experiment, random search is actu-
ally better than grid search in several condi-
tions (Bergstra and Bengio, 2012). Random
searches are actually better suited to running
on a cluster of computers than grid searches
when a group of computers fails. Random
search also allows the experimenter to change
the “resolution” on the fly. In addition, they
have advantages in high-dimensional searching
spaces.

In this work, we experimented with two
models, that is, TelU-KU-175M and TelU-
KU-175M_HPO. Both models are based on a
pre-trained model of flores101_mm100_175M.
The TelU-KU-175M is our model that manu-
ally fine-tuning the hyperparameters, whereas
the TelU-KU-175M_HPO is based on hyper-
parameter optimization. We used a random
search method while using 10% of datasets
to find the best hyperparameter optimization.
In addition, we also included the M2M-100
175M model to compare with our results. This
model uses the same pre-trained model as
ours but without fine-tuning. Fine-tuning is
a common practice in NLP to train a pre-
trained model for several epochs on a down-
stream dataset and has proven to improve per-
formance.

Our experimental results show improvement
in most language pairs after optimizing the hy-
perparameters. The TelU-KU-175M is able to
improves the average BLEU scores by 0.35-
0.59 over M2M-100 175M. Meanwhile, the
TelU-KU-175M_HPO improve the scores by
1.08-1.41 over the baseline. We also identified
three language pairs that obtained a BLEU
score of more than 15 while using less than 70
sentences of the training dataset: Id-Tl, Tl-Id,
and Ms-Tl.

This paper is organized as follows. Section 2
explains the experiment. Section 3 shows the
obtained results. Section 4 discusses the effect
of HPO and the multilingual model. Section
5 provides the conclusion and future direction
of this work.

2 Experiments

In this section, we first describe languages
overview of the Southeast Asian language.
Then, we discuss data and preprocessing. Fi-
nally, we discuss the model and architecture
of our model submission.

2.1 Languages overview
We chose small track #2, which involves six
languages from Southeast Asia, namely, Ja-
vanese (Jv), Indonesian (Id), Malay (Ms),
Tagalog (Tl), Tamil (Ta), and English (En).

Indonesian and Malay are considered closely
related languages due to being mutually intel-
ligible in morphology, and both languages be-
long to the Malayo-Polynesian language fam-
ily (Susanto et al., 2012). The base of formal
Indonesian is from Malayo-Riau (Abas, 1987).
The main difference is the influence of the vo-
cabulary. Indonesian is largely influenced by
Dutch, whereas English influences Malay. The
Tagalog language has the same language fam-
ily as Indonesian and Malay. However, it has
different morphology characteristics, and the
vocabulary is influenced by several countries,
such as Spain, America, and Malay. Javanese
is one of the Indonesian ethnic languages used
by more than 42% of Indonesia’s population,
mostly from the central and eastern parts of
Java (Novitasari et al., 2020). Javanese is also
used in Suriname and New Caledonia. Cur-
rently, the Javanese is influenced by Indone-
sian. This is because Indonesian is used in
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Language Family Alphabet
Indonesian Malayo-Polynesian Latin
Malay Malayo-Polynesian Latin
Tagalog Malayo-Polynesian Latin
Tamil Dravidian Tamil
English Germanic Latin
Javanese Malayo-Polynesian Latin

Table 1: Language family and writing system.

formal documents and as a daily conversation.
Last, Tamil belongs to Dravidian, a unique
family where the language is mostly spoken in
a southern state (Tamil Nadu) of India (Ku-
mar and Singh, 2019). Table 1 shows the gen-
eral characteristic of the selected languages.

2.2 Data and preprocessing
We used a dataset provided by the WMT21
organizers. Thus, our system was considered
a constrained system. We used three types
of datasets, that is, training, evaluation, and
hidden test datasets. The training dataset is
a parallel corpus from Opus monolingual and
Wikipedia, as shown in Table 2. The evalua-
tion dataset is a parallel corpus from Flores101
(Goyal et al., 2021). The evaluation dataset
consists of two evaluations, that is, dev and
devtest, as much as, 997 and 1,012 sentences,
respectively. Last, the hidden test dataset is
an unknown parallel corpus provided by the or-
ganizer through the Dynabench leaderboard.1

We tokenized all the training and evaluation
datasets by SentencePiece tokenizer (Sennrich
et al., 2016). This tokenizer is an unsupervised
text tokenizer and detokenizer, where the vo-
cabulary size is predetermined prior to the neu-
ral model training. We preprocessed dataset
according to the guideline,2 that is, encode
and binarize.

2.3 Models & Architectures
We use an NMT system with big Transformer
architecture (Ng et al., 2019; Vaswani et al.,
2017), i.e., transformer_wmt_en_de_big, as
implemented in the Fairseq toolkit (Ott et al.,
2019). We run experiments on Standard NC24
of Microsoft Azure virtual machine consisting
of 4 NVidia Tesla K80 with 12 GB GPU mem-

1https://www.dynabench.org/flores
2https://github.com/facebookresearch/flores

Language pairs Sentences
En - Id 1,019,169
En - Jv 13,049
En - Ms 120,016
En - Ta 95,162
En - Tl 75,447
Id - Jv 42
Id - Ms 1,167
Id - Ta 24,648
Id - Tl 56
Jv - Ms 18
Jv - Ta 1,296
Jv - Tl 2,251
Ms - Ta 3,920
Ms - Tl 5
Ta - Tl 1,478

Table 2: Training datasets of each language pair.

ory.3 We experimented with the following two
models:

• TelU-KU-175M is a pre-trained flo-
res101_mm100_175M with fine-tuning.
We manually tune the hyperparameters,
as shown in Table 3, column 4.

• TelU-KU-175M_HPO is a pre-trained
flores101_mm100_175M with HPO. The
hyperparameters and their ranges are
shown in Table 3. Some of these hyperpa-
rameters are based on (Ravikumar, 2020).
Figure 1 shows the logical flow of our ap-
proach. We run 30 iterations of random
searches for two epochs. Due to costly
training, we only run the optimization us-
ing only 10% training, dev, and devtest.
From those 30 models, we select the best
model based on the results from the de-
vtest. Then, we use the hyperparameter
from the best models to fine-tune the flo-
res101_mm100_175M model. The hyper-
parameter optimization results are shown
in Table 3, column 5.

3 Results
We evaluate the generated texts of our mod-
els using the sentence-piece BLEU (spBLEU).
The spBLEU uses a SentencePiece tokenizer
with 256k tokens, and then the BLEU score is
computed on the SentencePiece tokenized text.
The results are shown in Table 4.

3The source code of our experiments is available at
https://github.com/fatyanosa/WMT21
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Hyper-
parameter Definition Range Hyperparameter value

TelU-KU-175M TelU-KU-175M_HPO
BS Batch size Min: 8, Max: 128 128 15
LR Learning rate Min: 3e-05, Max: 3e-04 3e-05 0.000181463
BT1 Beta1 Min: 0.7, Max: 0.9999 0.9 0.745923
BT2 Beta2 Min: 0.7, Max: 0.9999 0.98 0.948909
EPS Epsilon Min: 9.98e-09, Max: 9.99e-06 1e-06 9.62e-06
WD Weight Decay Min: 0.0, Max: 0.018 0.0 0.00946414
AD Attention Dropout Min: 0.0, Max: 0.5 0.1 0.182843
DR Dropout Min: 0.0, Max: 0.5 0.3 0.0162452
SE Seed Min: 0, Max: 300 222 72

Table 3: Hyperparameter range for each hyperparameter and the values for each model.

Figure 1: Logical flow of hyperparameter optimization.

We also compare our results with the pre-
trained model without fine-tuning (M2M-100
175M) as the baseline. Our models: the
TelU-KU-175M and TelU-KU-175M_HPO,
improved the BLEU scores on 16-17 language
pairs over the M2M-100 175M model. In terms
of the improvement in each language pair,
TelU-KU-175M and TelU-KU-175M_HPO im-
proved BLEU scores by 0.04-5.39 and 0.01-
12.22, respectively. The BLEU scores also de-
creased on several language pairs between 0.1
to 3.25 and 0.02 to 6.5 for TelU-KU-175M and
TelU-KU-175M_HPO, respectively.

4 Discussion
This section discusses the effect of HPO and
NMT of the multilingual model against our
models’ evaluation results.

4.1 Effect of HPO
The main objective of HPO in this task is
to explore a high-dimensional search space in
NMT. As we mentioned in Section 2.3, we
run HPO using random search for 30 itera-
tions using 10% of the dataset. The best hy-
perparameter values were determined based

on devtest. The best configurations based on
the average BLEU scores for each iteration
were saved for running the pretrained model,
M2M-100 175M, using full datasets (TelU-KU-
175M_HPO). The detail of the best configu-
rations is shown in Table 3. The evaluation
results were conducted by translating the dev,
devtest, and test datasets. We show our de-
tailed evaluation results in Table 4, while Ta-
ble 5 is our average evaluation among other
participants.

We found that fine-tuning of 10% dataset
does not lead to the best results for all lan-
guage pairs translation compared to the man-
ual hyperparameter tuning (TelU-KU-175M)
and fine-tuning using 100% dataset (TelU-KU-
175M_HPO). The best HPO using 10% of
datasets resulted in an average BLEU of 12.75
for dev, 12.33 for devtest, and 12.39 for test
datasets. Nevertheless, these values are higher
compared to the baseline (M2M-100 175M) in
Table 5. This means that fine-tuning with only
10% dataset using a basic method, random
search (Bergstra and Bengio, 2012), indeed in-
creases the BLEU scores.
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Dev Devtest Test
Lang pairs M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
En-Id 28.13 33.36 39.58 28.25 33.34 40.47 28.82 32.97 40.33
Id-En 28.42 30.6 35.54 26.92 29.55 35.33 27.48 29.62 35.1
En-Jv 10.13 8.79 7.32 9.79 8.67 7.02 9.5 8.45 7.2
Jv-En 14.98 14.55 11.01 14.62 14.12 11.43 15.12 13.83 10.59
En-Ms 25.86 24.05 27.35 25.13 22.98 27.39 26.32 23.98 27.63
Ms-En 27.45 28.48 31.16 25.89 27.1 29.68 27.06 27.83 30.8
En-Ta 3.83 2.44 2.27 3.43 2.4 2.41 3.82 2.34 2.07
Ta-En 4.76 5.9 4.97 4.29 5.25 4.41 4.71 5.59 4.42
En-Tl 11.16 16.11 21.16 10.46 15.85 21.38 10.67 16.16 21.18
Tl-En 20.44 22.68 24.88 17.94 21.08 23.59 19.26 22.06 24.4
Id-Jv 12.42 10.72 7.24 12.24 10.92 7.79 11.65 10.1 6.7
Jv-Id 17.89 16.9 16.13 18.22 17 16.09 17.9 16.04 15.44
Id-Ms 26.33 23.53 25.21 25.85 22.92 22.32 26.61 23.36 24.08
Ms-Id 28.99 29.03 29.76 28.64 28.54 29.96 28.71 28.74 29.1
Id-Ta 1.02 2.23 2.35 0.89 2.19 2.23 1.02 2.01 2.31
Ta-Id 4.05 4.34 4.12 3.75 4.36 3.9 3.82 4.24 3.89
Id-Tl 8.11 12.98 18.43 7.41 12.4 17.95 7.75 12.78 17.94
Tl-Id 15.73 17.51 20.66 14.85 16.68 20.43 15.91 17.35 19.98
Jv-Ms 15.19 12.99 8.77 14.21 12.82 7.71 14.61 12.84 8.46
Ms-Jv 11.1 9.64 8.43 10.01 9.2 7.81 9.94 8.68 7.12
Jv-Ta 2.48 1.5 1.08 2.32 1.15 1.04 2.49 1.27 1.02
Ta-Jv 0.88 1.39 0.89 0.7 1.31 1.02 0.76 1.23 0.81
Jv-Tl 8.37 8.37 9.1 7.78 8.24 8.81 7.86 8.41 8.65
Tl-Jv 8.12 7.56 5.59 7.58 7.3 4.82 7.91 7.15 5.25
Ms-Ta 2.71 2.81 3.77 2.29 2.53 3.86 2.64 2.53 3.64
Ta-Ms 3.78 3.9 2.1 3.46 3.71 2.29 3.64 3.9 2.18
Ms-Tl 9.57 12.48 16.42 8.88 11.9 16.3 8.91 12.03 16.09
Tl-Ms 14.59 14.24 14.57 12.53 12.24 11.64 13.5 13.12 12.92
Ta-Tl 2.63 3.03 4.62 2.67 3.31 4.35 2.62 3.04 4.17
Tl-Ta 2.64 2.27 2.57 2.4 2.12 2.24 2.42 2.12 2.31

Table 4: Summary of results for all language pairs based on BLEU scores. Blue font means that there is
an improvement over the M2M-100 175M model, while red font means a decline over the M2M-100 175M
model.

The BLEU scores improved even more after
using the full dataset with the same hyperpa-
rameter values (TelU-KU-175M_HPO). This
means that the number of datasets influences
the performance. We left for future work dis-
cussing the effect of the number of datasets in
HPO for NMT.

We also study the hyperparameter impor-
tance of all optimized hyperparameters us-
ing Hyanova4, a python implementation of
a functional analysis of variance (fANOVA)
algorithm (Hutter et al., 2014). The algo-
rithm partitions the observed variation of a
response value into components against its in-
puts (Klein and Hutter, 2019). In this study,
the response value is the BLEU score, while
hyperparameters are the inputs. The higher
the fANOVA values, the more important the
hyperparameter. Table 6 shows that LR is the
most important hyperparameter, while BS is
the least important. This means that the LR

4https://pypi.org/project/hyanova/

influence the achieved BLEU scores. From our
observation, within our selected range in Ta-
ble 3, the higher the learning rate, the higher
the average BLEU score. Therefore, it is im-
portant to tune the LR within a higher range.

Furthermore, we investigate the statistical
significance across language pairs from Table 4
using Wilcoxon signed-rank test with α = 0.05.
We show the p-values of all models in Table 7.
Unfortunately, all the results demonstrate sta-
tistically non-significant as all of the p-values
were more than 0.05. Although the average
BLEU can be increased by optimizing the hy-
perparameter values, this finding shows that
HPO might not contribute much to the per-
formance.

One of the possible causes is the utiliza-
tion of random search, which is categorized
as an uninformed search. This category does
not learn from previous results, and there-
fore, each solution is independent of the
other. Moreover, uninformed search is proven
to be inferior to the informed search, i.e.,
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Model Average Bleu Score
Dev Devtest Test

Other
participants

DeltaLM+Zcode (Microsoft-Small) 34.09 33.94 33.89
615m (Baohao Liao) 33.74 33.51 33.34
TenTrans (Wanying Xie) 29.25 28.94 28.89
adaavg (Danni Liu) 28.70 29.09 28.64
huawei-tsc1 (huaweitsc) 28.64 28.34 28.40
srph-large (jcblaisecruz02) 22.92 23.14 22.97
finetune-saptarashmi (saptab) 16.05 15.45 15.72
615m-new (zizhenlian) 15.50 14.89 15.10

Ours TelU-KU-175M_HPO 13.57 13.19 13.19
TelU-KU-175M 12.81 12.37 12.46

Baseline M2M-100 175M 12.39 11.78 12.11

Table 5: Average BLEU scores from all submitted systems.

Hyper-
parameter Importance value

BS 0.94
LR 1.02

BT1 1.00
BT2 1.00
EPS 1.00
WD 1.00
AD 1.00
DR 1.00
SE 0.99

Table 6: Hyperparameter importance.

bayesian optimization or evolutionary algo-
rithm (Fatyanosa and Aritsugi, 2020, 2021).

This work only calculates the statistical sig-
nificance across language pairs and leaves the
calculation per language pair for future stud-
ies.

4.2 Effect of multilingual model
The TelU-KU-175M and TelU-KU-
175M_HPO models produced 16-17 language
pairs that have higher BLEU scores compared
to M2M-100 175M, as shown in Table 4 with
blue colors. Among them, we identified seven
language pairs that obtained a BLEU score
below 10: Id-Ta, Ta-Id, Ta-Jv, Ms-Ta, Ta-Ms,
Ta-Tl, and Jv-Tl. Most of these language
pairs were related to the Tamil language. We
found that most of the Tamil translation
results had an English sentence as unknown
words (see Tables 8 and 9 in appendix). The
translation results leading to not the same as
a reference file. As a result, these language
pairs had a lower BLEU score.

Surprisingly, we identified three language
pairs that obtained a BLEU score of more than

15: Id-Tl, Tl-Id, and Ms-Tl, while using less
than 70 sentences of the training dataset. This
could be because of the attention mechanism
in NMT of multilingual models. The attention
mechanism, which was initially called a soft-
alignment model in (Bahdanau et al., 2015),
aligns a source phrase to a target word. Train-
ing this attention-based model is done by max-
imizing the conditional log-likelihood. After
training, the model can do translation from
any of the source languages to any of the tar-
get languages included in the parallel training
corpora (Firat et al., 2016).

The Id-Tl, for example, obtained a BLEU
score of 17.94 using only 56 sentences of train-
ing datasets. The NMT system that trained
with fewer training datasets, e.g., below 1M,
usually obtained lower BLEU scores. How-
ever, the Id-Tl results indicated that this lan-
guage pair obtained an advantage from the at-
tention mechanism of the multilingual model
using 30 language pairs. In this study, these 30
language pairs are considered as low-resource
languages and mostly have the same language
family. Table 2 shows that our models used a
small number of training datasets, e.g., below
1M, in all language pairs. Whereas, Table 1
shows that most languages have the same lan-
guage family: Malayo-Polynesian. Therefore,
we argue that low-resource language with the
same language family should be considered in
the NMT of the multilingual model. For ex-
ample, if we want to improve the Tamil lan-
guage performance, we should considered to
add other languages with the same (or closely)
language family as Tamil, e.g., Kannada, Ben-
gali, Hindi.
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Model Dev Devtest Test
M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
M2M-100

175M
TelU-KU-

175M
TelU-KU-

175M_HPO
M2M-100 175M x 0.567 0.399 x 0.360 0.289 x 0.734 0.572
TelU-KU-175M x 0.229 x 0.329 x 0.360
TelU-KU-175M_HPO x x x

Table 7: Results of Wilcoxon signed-rank test.

5 Conclusion
We described our team submission for
WMT21. Our results show improvement in
most language pairs after optimizing the hy-
perparameters.

Furthermore, we also found three language
pairs that obtained a BLEU score of more
than 15 while using less than 70 sentences of
the training dataset. In this study, we used
30 language pairs that are considered as low-
resource language and mostly have the same
language family. This result indicated that
low-resource language with the same language
family should be considered in the NMT of the
multilingual model.

As future work, we plan to use a more
sophisticated optimization algorithm, specifi-
cally informed searches such as bayesian op-
timization or evolutionary algorithm. Addi-
tionally, we want to try other percentages of
the optimized dataset to see the effect of the
number of training data on the performance.
We also plan to use a specific tokenizer for
Tamil, e.g., Indic NLP library (Kunchukuttan,
2020), iNLTK (Arora, 2020). The Tamil lan-
guage needs a particular pre-processing due to
its writing system that differs from other lan-
guages. Last, we plan to clean the dataset
in pre-processing steps, considering that the
dataset used in this work is noisy. We expect
this will maximize the attention mechanism in
the NMT of a multilingual model. Therefore,
our model could produce better translation re-
sults.

Acknowledgements
This project was funded by Compute Grants:
Large-Scale Multilingual Machine Translation
of Conference on Machine Translation (WMT)
and Microsoft Azure. This project was also
funded by the PDT research scheme, Telkom
University.

References
Husen Abas. 1987. Indonesian as a unifying lan-

guage of wider communication : a historical and
sociolinguistic perspective.

Ali Araabi and Christof Monz. 2020. Optimiz-
ing transformer for low-resource neural machine
translation. In Proceedings of the 28th Interna-
tional Conference on Computational Linguistics,
pages 3429–3435, Barcelona, Spain (Online). In-
ternational Committee on Computational Lin-
guistics.

Gaurav Arora. 2020. iNLTK: Natural language
toolkit for indic languages. In Proceedings of
Second Workshop for NLP Open Source Soft-
ware (NLP-OSS), pages 66–71, Online. Associ-
ation for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre.
2018a. Unsupervised statistical machine trans-
lation. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 3632–3642, Brussels, Belgium. As-
sociation for Computational Linguistics.

Mikel Artetxe, Gorka Labaka, Eneko Agirre, and
Kyunghyun Cho. 2018b. Unsupervised neural
machine translation. In International Confer-
ence on Learning Representations.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua
Bengio. 2015. Neural machine translation by
jointly learning to align and translate. In 3rd
International Conference on Learning Represen-
tations, ICLR 2015, San Diego, CA, USA, May
7-9, 2015, Conference Track Proceedings.

James Bergstra and Yoshua Bengio. 2012. Random
search for hyper-parameter optimization. Jour-
nal of Machine Learning Research, 13.

Ondřej Bojar, Rajen Chatterjee, Christian Feder-
mann, Yvette Graham, Barry Haddow, Shujian
Huang, Matthias Huck, Philipp Koehn, Qun Liu,
Varvara Logacheva, Christof Monz, Matteo Ne-
gri, Matt Post, Raphael Rubino, Lucia Specia,
and Marco Turchi. 2017. Findings of the 2017
conference on machine translation (WMT17).
In Proceedings of the Second Conference on Ma-
chine Translation, pages 169–214, Copenhagen,
Denmark. Association for Computational Lin-
guistics.

393



Chenhui Chu and Rui Wang. 2018. A survey of do-
main adaptation for neural machine translation.
In Proceedings of the 27th International Confer-
ence on Computational Linguistics, pages 1304–
1319, Santa Fe, New Mexico, USA. Association
for Computational Linguistics.

Kevin Duh, Graham Neubig, Katsuhito Sudoh,
and Hajime Tsukada. 2013. Adaptation data
selection using neural language models: Exper-
iments in machine translation. In Proceedings
of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 2: Short
Papers), pages 678–683, Sofia, Bulgaria. Associ-
ation for Computational Linguistics.

Nadir Durrani, Fahim Dalvi, Hassan Sajjad,
Yonatan Belinkov, and Preslav Nakov. 2019.
One size does not fit all: Comparing NMT repre-
sentations of different granularities. In Proceed-
ings of the 2019 Conference of the North Amer-
ican Chapter of the Association for Computa-
tional Linguistics: Human Language Technolo-
gies, Volume 1 (Long and Short Papers), pages
1504–1516, Minneapolis, Minnesota. Association
for Computational Linguistics.

Tirana Noor Fatyanosa and Masayoshi Aritsugi.
2020. Effects of the Number of Hyperparame-
ters on the Performance of GA-CNN. In 2020
IEEE/ACM International Conference on Big
Data Computing, Applications and Technologies
(BDCAT), pages 144–153. IEEE.

Tirana Noor Fatyanosa and Masayoshi Aritsugi.
2021. An Automatic Convolutional Neural Net-
work Optimization Using a Diversity-Guided Ge-
netic Algorithm. IEEE Access, 9:91410 – 91426.

Orhan Firat, Kyunghyun Cho, and Yoshua Ben-
gio. 2016. Multi-way, multilingual neural ma-
chine translation with a shared attention mech-
anism. In NAACL HLT 2016, The 2016 Con-
ference of the North American Chapter of the
Association for Computational Linguistics: Hu-
man Language Technologies, San Diego Califor-
nia, USA, June 12-17, 2016, pages 866–875. The
Association for Computational Linguistics.

Naman Goyal, Cynthia Gao, Vishrav Chaudhary,
Peng-Jen Chen, Guillaume Wenzek, Da Ju, San-
jana Krishnan, Marc’Aurelio Ranzato, Fran-
cisco Guzmán, and Angela Fan. 2021. The
FLORES-101 evaluation benchmark for low-
resource and multilingual machine translation.
CoRR, abs/2106.03193.

Jiatao Gu, Hany Hassan, Jacob Devlin, and Vic-
tor O.K. Li. 2018. Universal neural machine
translation for extremely low resource languages.
In Proceedings of the 2018 Conference of the
North American Chapter of the Association for
Computational Linguistics: Human Language
Technologies, Volume 1 (Long Papers), pages
344–354, New Orleans, Louisiana. Association
for Computational Linguistics.

Frank Hutter, Holger Hoos, and Kevin Leyton-
Brown. 2014. An efficient approach for assess-
ing hyperparameter importance. In Proceedings
of the 31st International Conference on Inter-
national Conference on Machine Learning - Vol-
ume 32, ICML’14, page I–754–I–762. JMLR.org.

Aaron Klein and Frank Hutter. 2019. Tabular
benchmarks for joint architecture and hyperpa-
rameter optimization.

Philipp Koehn and Rebecca Knowles. 2017. Six
challenges for neural machine translation. In
Proceedings of the First Workshop on Neural
Machine Translation, pages 28–39, Vancouver.
Association for Computational Linguistics.

Amit Kumar and Anil Kumar Singh. 2019. NL-
PRL at WAT2019: transformer-based tamil -
english indic task neural machine translation
system. In Proceedings of the 6th Workshop
on Asian Translation, WAT@EMNLP-IJCNLP
2019, Hong Kong, China, November 4, 2019,
pages 171–174. Association for Computational
Linguistics.

Anoop Kunchukuttan. 2020. The Indic-
NLP Library. https://github.com/
anoopkunchukuttan/indic_nlp_library/
blob/master/docs/indicnlp.pdf.

Guillaume Lample, Alexis Conneau, Ludovic De-
noyer, and Marc’Aurelio Ranzato. 2018a. Unsu-
pervised machine translation using monolingual
corpora only. In 6th International Conference
on Learning Representations, ICLR 2018, Van-
couver, BC, Canada, April 30 - May 3, 2018,
Conference Track Proceedings. OpenReview.net.

Guillaume Lample, Myle Ott, Alexis Conneau,
Ludovic Denoyer, and Marc’Aurelio Ranzato.
2018b. Phrase-based & neural unsupervised ma-
chine translation. In Proceedings of the 2018
Conference on Empirical Methods in Natural
Language Processing, pages 5039–5049, Brus-
sels, Belgium. Association for Computational
Linguistics.

Toshiaki Nakazawa, Shohei Higashiyama,
Chenchen Ding, Hideya Mino, Isao Goto,
Hideto Kazawa, Yusuke Oda, Graham Neubig,
and Sadao Kurohashi. 2017. Overview of the
4th workshop on Asian translation. In Proceed-
ings of the 4th Workshop on Asian Translation
(WAT2017), pages 1–54, Taipei, Taiwan. Asian
Federation of Natural Language Processing.

Nathan Ng, Kyra Yee, Alexei Baevski, Myle Ott,
Michael Auli, and Sergey Edunov. 2019. Face-
book fair’s WMT19 news translation task sub-
mission. In Proceedings of the Fourth Con-
ference on Machine Translation, WMT 2019,
Florence, Italy, August 1-2, 2019 - Volume 2:
Shared Task Papers, Day 1, pages 314–319. As-
sociation for Computational Linguistics.

394



Sashi Novitasari, Andros Tjandra, Sakriani Sakti,
and Satoshi Nakamura. 2020. Cross-lingual
machine speech chain for javanese, sundanese,
balinese, and bataks speech recognition and
synthesis. In Proceedings of the 1st Joint
Workshop on Spoken Language Technologies
for Under-resourced languages and Collaboration
and Computing for Under-Resourced Languages,
SLTU/CCURL@LREC 2020, Marseille, France,
May 2020, pages 131–138. European Language
Resources association.

Myle Ott, Sergey Edunov, Alexei Baevski, Angela
Fan, Sam Gross, Nathan Ng, David Grangier,
and Michael Auli. 2019. fairseq: A fast, ex-
tensible toolkit for sequence modeling. In Pro-
ceedings of the 2019 Conference of the North
American Chapter of the Association for Com-
putational Linguistics: Human Language Tech-
nologies, NAACL-HLT 2019, Minneapolis, MN,
USA, June 2-7, 2019, Demonstrations, pages 48–
53. Association for Computational Linguistics.

Meghana Ravikumar. 2020. Efficient BERT:
Finding Your Optimal Model with Multimetric
Bayesian Optimization.

Raphael Rubino, Benjamin Marie, Raj Dabre,
Atsushi Fujita, Masao Utiyama, and Eiichiro
Sumita. 2020. Extremely low-resource neural
machine translation for asian languages. Mach.
Transl., 34(4):347–382.

Rico Sennrich, Barry Haddow, and Alexandra
Birch. 2016. Neural machine translation of rare
words with subword units. In Proceedings of the
54th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1715–1725, Berlin, Germany. Association
for Computational Linguistics.

Rico Sennrich and Biao Zhang. 2019. Revisiting
low-resource neural machine translation: A case
study. In Proceedings of the 57th Annual Meet-
ing of the Association for Computational Lin-
guistics, pages 211–221, Florence, Italy. Associ-
ation for Computational Linguistics.

Raymond Hendy Susanto, Septina Dian Larasati,
and Francis M. Tyers. 2012. Rule-based
Machine Translation between Indonesian and
Malaysian. In Proceedings of the 3rd Workshop
on South and Southeast Asian Natural Language
Processing, WSSANLP@COLING 2012, Mum-
bai, India, December 8, 2012, pages 191–200.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le.
2014. Sequence to sequence learning with neural
networks. CoRR, abs/1409.3215.

Ashish Vaswani, Noam Shazeer, Niki Parmar,
Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
Łukasz Kaiser, and Illia Polosukhin. 2017. At-
tention is All You Need. In Proceedings of the
31st International Conference on Neural Infor-
mation Processing Systems, NIPS’17, page 6000–
6010, Red Hook, NY, USA. Curran Associates
Inc.

Xuan Zhang and Kevin Duh. 2020. Reproducible
and Efficient Benchmarks for Hyperparameter
Optimization of Neural Machine Translation
Systems. Transactions of the Association for
Computational Linguistics, 8:393–408.

Barret Zoph, Deniz Yuret, Jonathan May, and
Kevin Knight. 2016. Transfer learning for low-
resource neural machine translation. In Proceed-
ings of the 2016 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1568–
1575, Austin, Texas. Association for Computa-
tional Linguistics.

395



A Appendix
Lang
pairs

Model Text

English Source We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.

En-Id

Reference “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.
M2M-100_175M Kami sekarang memiliki kuku 4 bulan yang tidak diabetik yang digunakan untuk menjadi diabetik, katanya.
TelU-KU-175M Kami sekarang memiliki mice berusia 4 bulan yang bukan diabetik yang digunakan untuk menjadi diabetes,

ia menambahkan.
TelU-KU-175M_HPO Kami sekarang memiliki tikus berusia 4 bulan yang non-diabetik yang digunakan untuk diabetik, dia menam-

bahkan.

En-Jv

Reference Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.
M2M-100_175M Kita ora ana 4 bulan madu yang non-diabetik sing digunakake kanggo diabetes, katanya.
TelU-KU-175M Dhèwèké ya iku mice 4 bulan kang non-diabetik kang digunakaké diabetes,” dhèwèké tambah.
TelU-KU-175M_HPO Nanging, dhèwèké bisa nganti 4 bulan kang ora diwènèhi yèn diwènèhi diapit.

En-Ms

Reference “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,”
beliau menambah.

M2M-100_175M Kami kini mempunyai kuku 4 bulan yang tidak diabetik yang digunakan untuk menjadi diabetik, katanya.
TelU-KU-175M Kami sekarang mempunyai mice berusia 4 bulan yang bukan-diabetik yang digunakan untuk menjadi diabetes,

ia tambah.
TelU-KU-175M_HPO Kami sekarang mempunyai tikus berusia 4 bulan yang bukan-diabetik yang digunakan sebagai diabetik, ia

menambah.

En-Ta

Reference "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

M2M-100_175M நாங்கள் இப்ேபாது 4 மாதங்களுக்குள் கழுைதகள் உள்ளன, இது இரகசியமாக பயன்படுத்தப்படாத இரகசியமாக உள்ளது,
அவர் கூறினார்.

TelU-KU-175M We now have 4-month-old mice that are non-diabetic that are used to be diabetes, he added.
TelU-KU-175M_HPO We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.

En-Tl

Reference Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.

M2M-100_175M Kapag medyo nakarating ka na sa age na alam mo na ang dami mo nangpinagdaanan...
a good soldier must knowwhen to surrender.

TelU-KU-175M Tapos ay may 4-month-old mice na hindi-diabetic na ginagamit upang maging diabetes,” siya ay hinaharap.
TelU-KU-175M_HPO We now have four-month-old mice that are non-diabetic that used to be diabetic, he added.

Indonesia Source “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.

Id-En

Reference We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.
M2M-100_175M “Now there is a age of 4 months of non-diabetes that has long been diabetes,” she said.
TelU-KU-175M This day there is a 4 months old nondiabetes who had previously been diabetes, his debut.
TelU-KU-175M_HPO In this period there is a four-month-old nondiabetes that was formerly diabetes, his tambahnya.

Id-Jv

Reference Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.
M2M-100_175M “Itu ora tumitake umur 4 bulan nondiabetes sing iku diabetes,” tambahnya.
TelU-KU-175M ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ] ]
TelU-KU-175M_HPO “Selang iki duwé umur 4 bulan nondiabetes kang formeré diabetes,” tambahnya.

Id-Ms

Reference “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,”
beliau menambah.

M2M-100_175M “Pada masa ini, ia mempunyai umur 4 bulan nondiabetes yang sejak itu diabetes,” tambahnya.
TelU-KU-175M Saat ini sudah berusia 4 bulan nondiabetes yang dulunya diabetes, tambahnya.
TelU-KU-175M_HPO “Saat ini terdapat anak berusia 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.

Id-Ta

Reference "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

M2M-100_175M இந்த நிைலயில், 4 மாதங்களுக்கு முன்னர் சிகிச்ைச அளிக்கப்பட்டு சிகிச்ைச அளிக்கப்பட்டு சிகிச்ைச ெபற்றுள்ளது.
TelU-KU-175M This time there is a four-month-old nondiabetes that had previously been diabetes, his debut.
TelU-KU-175M_HPO This time there is a four-month-old nondiabetes that was formerly diabetes, his tambahnya.

Id-Tl

Reference Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.

M2M-100_175M Kapag medyo nakarating ka na sa age na alam mo na ang dami mo nangpinagdaanan...
a good soldier must knowwhen to surrender.

TelU-KU-175M Ang ito ay may edad na 4 buwan ng nondiabetes na dating diabetes,” tumutukoy niya.
TelU-KU-175M_HPO Sa panahong ito ay mayroong apat na buwan ng nondiabetes na dating diabetes, kanyang tambahnya.

Javanese Source Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.

Jv-En

Reference We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.
M2M-100_175M Now we have four-year-old age, which are not diagnosed with diabetes, diabetes.
TelU-KU-175M We have four-year-old children who have diabetes, ujare.
TelU-KU-175M_HPO Today we have a four-year-old mice that is not-to-be-diabetes who now has diabetes, then.

Jv-Id

Reference “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.
M2M-100_175M Tetapi kita memiliki usia 4 tahun yang tidak memiliki diabetes yang sering memiliki diabetes, seperti itu.
TelU-KU-175M Saiki kita memiliki tikus berusia 4 tahun yang sekarang-nduweni-diabetes yang memiliki diabetes, ujare.
TelU-KU-175M_HPO Tetapi kita memiliki tikus berusia 4 tahun yang tidak-wangian-diabetes yang sekarang memiliki diabetes, ujare.

Jv-Ms

Reference “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,”
beliau menambah.

M2M-100_175M Sekarang kita mempunyai usia 4 tahun yang tidak mempunyai diabetes yang mempunyai diabetes, boleh.
TelU-KU-175M Saiki kita mempunyai tikus berusia 4-sasi yang sekarang-nduweni-diabetes yang mempunyai diabetes, ujare.
TelU-KU-175M_HPO Terdapat kita mempunyai tikus berusia-4-sasi yang kini mempunyai diabetes, ujare. ”

Jv-Ta

Reference "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

M2M-100_175M நாங்கள் இப்ேபாது 4 வயதில் 4 வயைதக் ெகாண்ேட இருக்கிேறாம், இது ேநாயாளிகளின் ேநாயாளிகள், ேநாயாளிகள்.
TelU-KU-175M We have four-year-old tikus who are now-anduweni-diabetes with diabetes, ujare.

TelU-KU-175M_HPO நாங்கள் 4 வயதிற்குட்பட்ட குழந்ைதகைளக் ெகாண்டிருக்கின்ேறாம்" (ஆங்கிலம்: "ஆங்கிலம்: <unk><unk><unk>
<unk><unk><unk><unk><unk><unk><unk><unk>)”.

Jv-Tl

Reference Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.

M2M-100_175M Sa ngayon, kami ay nagkaroon ng isang edad ng 4 na edad na hindi nag-aalok sa diabetes na may
diabetes, na nag-aalok.

TelU-KU-175M Sa ngayon ay may 4-sasyong babae na hindi-duweni-diabetes na nagkaroon ng diabetes, ujare.

TelU-KU-175M_HPO Sa ngayon ay mayroong 4 taong gulang na mice na hindi-milyang-diabetes na nakarating na may
diabetes, pangalang.”

Table 8: Translation results.
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Lang
pairs

Model Text

Malay Source “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,” beliau
menambah.

Ms-En

Reference We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.
M2M-100_175M “We now have a four-month old baby that has no diabetes,” he added.
TelU-KU-175M We now have a four-month boy that has no diabetes, he added.
TelU-KU-175M_HPO We now have a four-month-old mice child who has no diabetes, he added.

Ms-Id

Reference “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.
M2M-100_175M “Kami sekarang memiliki seekor tikus yang berusia 4 bulan yang belum menderita diabetes,” katanya.
TelU-KU-175M Kami sekarang memiliki seekor tikus berusia 4 bulan yang sudah tidak menghidap diabetes, dia menambahkan.
TelU-KU-175M_HPO “Kami kini memiliki seorang anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,” beliau

menambahkan.

Ms-Jv

Reference Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.
M2M-100_175M “Kita ora nduweni anak tikus 4 bulan lan ora ana diabetes,” tambah.
TelU-KU-175M We now have a four-month boy tikus who has no menghidap diabetes, she added.
TelU-KU-175M_HPO “Kami kini mempunyai seekor anak tikus yang umur 4 bulan yang sudah tidak menghidap diabetes,” beliau

menambahkan.

Ms-Ta

Reference "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

M2M-100_175M “ஒரு வயதிலிருந்து 4 மாதங்களுக்கு முன்னர் ஒரு குழந்ைதையப் ெபற்ேறாம்” என்று அவர் கூறியுள்ளார்.
TelU-KU-175M We now have a four-month-old girl who has no diabetes, she added.
TelU-KU-175M_HPO We now have a four-month-old tikus child who already does not live on diabetes, he added.

Ms-Tl

Reference Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.
M2M-100_175M Kapag medyo nakarating ka na sa age na alam mo na ang dami mo nangpinagdaanan... a good soldier must

know when to surrender.
TelU-KU-175M Tapos ay may isang 4 buwan na anak na hindi nakapagpatuloy ng diabetes,” siya ay nagsasabi.
TelU-KU-175M_HPO “Kami ngayon ay may isang anak na tikus na 4 na buwan na hindi namuhay ng diabetes,” he added.

Tamil Source "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

Ta-En

Reference We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.
M2M-100_175M He said, We have now one of the four-year-old rolls, and it was not until it was long,” he further said.
TelU-KU-175M He said to me, I have a four-thirds light now, but it was not until it was lost.”
TelU-KU-175M_HPO He said, ”I am now one of the four-member elephants, and that it was not until it had been passed.”

Ta-Id

Reference “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.
M2M-100_175M “Kami sudah memiliki satu dari empat orang, dan tidak ada lagi yang terjadi sebelumnya,” katanya.
TelU-KU-175M Ia berkata kepada kami sekarang, ”Saya sudah ada empat jam, dan sebelumnya tidak ada waktu yang lama.”
TelU-KU-175M_HPO Ia berkata, ”Tentara ini sekarang memiliki empat kursi, dan sebelumnya sudah tidak ada lagi,” katanya.

Ta-Jv

Reference Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.
M2M-100_175M Itu uga ana ing kita minangka salah siji saka 4 taun, nanging ora ana ing nganti-nganti iku ing nganti, katanya.
TelU-KU-175M Dhèwèké diprodhuksi déning dhèwèké nganti 4 kaliyan, lan ora diprodhuksi”.
TelU-KU-175M_HPO Piyambakipun nggantosaken ”Sang” ingkang dipunsebat ”Sang” inggih punika ”Sang” ingkang dipunsebat

”Sang” lan ”Sang” punika ”Sang ”Sang” ingkang dipunsebat ”Sang”.

Ta-Ms

Reference “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,” beliau
menambah.

M2M-100_175M Beliau berkata, “Kami mempunyai satu daripada empat orang, dan ia tidak pernah berlaku sebelum ini,”
katanya.

TelU-KU-175M Saya sekarang mempunyai satu lilin empat, ia juga berkata kepada saya tidak akan lama lagi, katanya.
TelU-KU-175M_HPO Lagi ini, ia berkata Terdapat unsur api empat, tetapi ia tidak lagi menyahpepijat.”

Ta-Tl

Reference Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.
M2M-100_175M Kapag medyo nakarating ka na sa age na alam mo na ang dami mo nangpinagdaanan... a good soldier must

know when to surrender.
TelU-KU-175M Siya ay isang seryeng tao, at hindi siya nag-iisip sa kanya.
TelU-KU-175M_HPO Iminungkahi na ”ang isang four-mga relyo sa kami ngayon ay isang relasyon, na hindi ito pinapatakbo nang

hindi ito naganap.”
Tagalog Source Mayroon na tayong 4 na buwang gulang na daga na hindi diabetic na dating diabetic, dagdag niya.

Tl-En

Reference We now have 4-month-old mice that are non-diabetic that used to be diabetic, he added.
M2M-100_175M We have 4 small areas that do not have diabetic dating diabetic, he said.
TelU-KU-175M May we have 4 new gullies that are not diabetic dating diabetesic, he says.
TelU-KU-175M_HPO There are four-year-old, non- diabetic, former diabetic, he added.

Tl-Id

Reference “Saat ini ada mencit umur 4 bulan nondiabetes yang dulunya diabetes,” tambahnya.
M2M-100_175M Kami memiliki 4 negara yang tidak diabetik dan tidak diabetik, kata dia.
TelU-KU-175M Kami memiliki 4 warna putih yang tidak diabetes yang dating diabetes, dia tahu.
TelU-KU-175M_HPO Tetapi ada empat orang tua tua yang tidak diabetik yang sebelumnya diabetic, katanya.

Tl-Jv

Reference Saiki kita nduweni tikus umur-4-sasi sing ora-nduweni-diabetes sing sadurunge nduweni diabetes, ujare.
M2M-100_175M Kita ana 4 negara sing padha padha padha padha diabetes sing ora diabetik, ujar dia.
TelU-KU-175M Dhèwèké dhèwèké dhèwèké nggèké 4 gulang kang tidak diabetes kang dating diabetes,” dhèwèké.
TelU-KU-175M_HPO Tetapi ana 4 gulungan kang umuré lan ora diabetik kang former diabetic, dhèwèké maragani.

Tl-Ms

Reference “Kami kini mempunyai seekor anak tikus yang berusia 4 bulan yang sudah tidak menghidap diabetes,” beliau
menambah.

M2M-100_175M Kami mempunyai 4 buah negara yang tidak diabetik dan tidak diabetik, katanya.
TelU-KU-175M Kami mempunyai 4 warna putih yang tidak diabetes yang dating diabetes, diadagangkan.
TelU-KU-175M_HPO Terdapat ana 4 orang tua yang gaya yang bukan diabetik yang bekas diabetic, kata-kata dia.

Tl-Ta

Reference "எங்களிடம் இப்ேபாது 4-மாத-வயதுைடய எலி ஒன்று உள்ளது, முன்னர் அதற்கு நீரிழிவு இருந்தது தற்ேபாது இல்ைல"
என்று அவர் ேமலும் கூறினார்.

M2M-100_175M நாங்கள் 4 மாதங்கள் கழித்து ேநாய் ேநாய் ேநாய் ேநாயாளிகள் இல்ைல என்று அவர் கூறியுள்ளார்.
TelU-KU-175M We have 4 new colored days that are not diabetesic dating diabetesic, hedaged.

TelU-KU-175M_HPO நாம் 4வது வயதிேலேய, முன்ேனற்றமான, முன்ேனற்றமான, முன்ேனற்றமான, முன்ேனற்றத்தின் முன்ேனற்றத்தில்"
என்று அவர் கூறுகிறார்.

Table 9: Translation results.
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Abstract
In this paper, we focus on the task of mul-
tilingual machine translation for African lan-
guages and describe our contribution in the
2021 WMT Shared Task: Large-Scale Mul-
tilingual Machine Translation. We introduce
MMTAfrica, the first many-to-many multilin-
gual translation system for six African lan-
guages: Fon (fon), Igbo (ibo), Kinyarwanda
(kin), Swahili/Kiswahili (swa), Xhosa (xho),
and Yoruba (yor) and two non-African lan-
guages: English (eng) and French (fra). For
multilingual translation concerning African
languages, we introduce a novel backtransla-
tion and reconstruction objective, BT&REC,
inspired by the random online back trans-
lation and T5 modelling framework respec-
tively, to effectively leverage monolingual
data. Additionally, we report improvements
from MMTAfrica over the FLORES 101
benchmarks (spBLEU gains ranging from
+0.58 in Swahili to French to +19.46 in
French to Xhosa).

In this paper, we make use of the following nota-
tions:

• ~ refers to any language in the set
{eng, fra, ibo, fon, swa, kin, xho, yor}.

• � refers to any language in the set
{eng, fra, ibo, fon}.

• AL(s) refers to African language(s).

• X−→ Y refers to neural machine translation
from language X to language Y.

1 Introduction

Despite the progress of multilingual machine trans-
lation (MMT) and the many efforts towards improv-
ing its performance for low-resource languages,

∗_Authors contributed equally to this work. Cor-
respondence to chris.emezue@gmail.com or femipan-
crace.dossou@gmail.com

†_Independent Research done while interning at Mila Que-
bec AI Institute

African languages suffer from under-representation.
For example, of the 2000 known African lan-
guages (Eberhard et al., 2020) only 17 of them
are available in the FLORES 101 Large-scale
Multilingual Translation Task as at the time of
this research. Furthermore, most research that
look into transfer learning of multlilingual mod-
els from high-resource to low-resource languages
rarely work with ALs in the low-resource sce-
nario. While the consensus is that the outcome
of the research made using the low-resource non-
African languages should be scalable to African
languages, this cross-lingual generalization is not
guaranteed(Orife et al., 2020) and the extent to
which it actually works remains largely under-
studied. Transfer learning from African languages
to African languages sharing the same language
sub-class has been shown to give better translation
quality than from high-resource Anglo-centric lan-
guages (Nyoni and Bassett, 2021) calling for the
need to investigate AL←→AL multilingual trans-
lation.

This low representation of African languages
goes beyond machine translation (Martinus and
Abbott, 2019; Joshi et al., 2020; ∀ et al., 2020).
The analysis conducted by ∀ et al. (2020) revealed
that low-resourcedness of African languages can
be traced to the poor incorporation of African lan-
guages in the NLP research community (Joshi et al.,
2020). All these call for the inclusion of more
African languages in multilingual NLP research
and experiments.

With the high linguistic diversity in Africa, mul-
tilingual machine translation systems are very im-
portant for inter-cultural communication, which is
in turn necessary for peace and progress. For ex-
ample, one widely growing initiative to curb the
large gap in scientific research in Africa is to trans-
late educational content and scientific papers to
various African languages in order to reach far
more African native speakers (Abbott and Mart-

398



inus, 2018; Nordling, 2018; Wild, 2021).
We take a step towards addressing the under-

representation of African languages in MMT and
improving experiments by participating in the
2021 WMT Shared Task: Large-Scale Multilin-
gual Machine Translation with a major target of
ALs←→ALs. In this paper, we focused on 6
African languages and 2 non-African languages
(English and French). Table 1 gives an overview of
our focus African languages in terms of their lan-
guage family, number of speakers and the regions
in Africa where they are spoken (Adelani et al.,
2021b). We chose these languages in an effort to
create some language diversity: the 6 African lan-
guages span the most widely and least spoken lan-
guages in Africa. Additionally, they have some sim-
ilar, as well as contrasting, characteristics which
offer interesting insights for future work in ALs:

• Igbo, Yorùbá and Fon use diacritics in
their language structure while Kinyarwanda,
Swahili and Xhosa do not. Various forms of
code-mixing are prevalent in Igbo (Dossou
and Emezue, 2021b).

• Fon was particularly chosen because there is
only a minuscule amount of online (parallel or
monolingual) corpora compared to the other
5 languages. We wanted to investigate and
provide valuable insights on improving trans-
lation quality of very low-resourced African
languages.

• Kinyarwanda and Fon are the only African
languages in our work not covered in the FLO-
RES Large-Scale Multilingual Machine Trans-
lation Task and also not included in the pre-
training of the original model framework used
for MMTAfrica. Based on this, we were able
to understand the performance of multilingual
translation finetuning involving languages not
used in the original pretraining objective. We
also offered a method to improve the transla-
tion quality of such languages.

Our main contributions are summarized below:

1. MMTAfrica – a many-to-many AL←→AL
multilingual model for 6 African languages.

2. Our novel reconstruction objective (described
in section 4.2) and the BT&REC finetuning
setting, together with our proposals in sec-
tion 5.1 offer a comprehensive strategy for

effectively exploiting monolingual data of
African languages in AL←→AL multilingual
machine translation,

3. Evaluation of MMTAfrica on the
FLORES Test Set reports signifi-

cant gains in spBLEU over the M2M
MMT (Fan et al., 2020) benchmark model
provided by Goyal et al. (2021),

4. We further created a unique highly represen-
tative test set – MMTAfrica Test Set –
and reported benchmark results and insights
using MMTAfrica.

Language Lang ID
(ISO 639-3)

Family Speakers Region

Igbo ibo Niger-Congo-Volta-Niger 27M West

Fon
(Fongbe)

fon Niger-Congo-Volta-
Congo-Gbe

1.7M West

Kinyarwanda kin Niger-Congo-Bantu 12M East

Swahili swa Niger-Congo-Bantu 98M Southern, Central & East

Xhosa xho Niger-Congo-Nguni
Bantu

19.2M Southern

Yorùbá yor Niger-Congo-Volta-Niger 42M West

Table 1: Language, family, number of speakers (Eber-
hard et al., 2020), and regions in Africa. Adapted from
(Adelani et al., 2021b)

2 Related Work

2.1 Multilingual Machine Translation
(MMT)

The great success of the encoder-
decoder (Sutskever et al., 2014; Cho et al.,
2014) NMT on bilingual datasets (Bahdanau
et al., 2015; Vaswani et al., 2017; Barrault et al.,
2019, 2020) inspired the extension of the original
bilingual framework to handle more languages
pairs simultaneously – leading to multilingual
neural machine translation.

Works on multilingual NMT have progressed
from sharing the encoder for one-to-many trans-
lation (Dong et al., 2015), many-to-one transla-
tion (Lee et al., 2017), sharing the attention mech-
anism across multiple language pairs (Firat et al.,
2016a; Dong et al., 2015) to optimizing a single
NMT model (with a universal encoder and decoder)
for the translation of multiple language pairs (Ha
et al., 2016; Johnson et al., 2017). The universal
encoder-decoder approach constructs a shared vo-
cabulary for all languages in the training set, and
uses just one encoder and decoder for multilingual
translation between language pairs. Johnson et al.
(2017) proposed to use a single model and prepend
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special symbols to the source text to indicate the
target language. We adopt their model approach in
this paper.

The current state of multilingual NMT, where
a single NMT model is optimized for the transla-
tion of multiple language pairs (Firat et al., 2016a;
Johnson et al., 2017; Lu et al., 2018; Aharoni et al.,
2019; Arivazhagan et al., 2019b), has become very
appealing for a number of reasons. It is scalable
and easy to deploy or maintan (the ability of a
single model to effectively handle all translation di-
rections from N languages, if properly trained and
designed, surpasses the scalability of O(N2) indi-
vidually trained models using the traditional bilin-
gual framework). Multilingual NMT can encour-
age knowledge transfer among related language
pairs (Lakew et al., 2018; Tan et al., 2019) as
well as positive transfer from higher-resource lan-
guages (Zoph et al., 2016; Neubig and Hu, 2018;
Arivazhagan et al., 2019a; Aharoni et al., 2019;
Johnson et al., 2017) due to its shared representa-
tion, improve low-resource translation (Ha et al.,
2016; Johnson et al., 2017; Arivazhagan et al.,
2019b; Xue et al., 2021) and enable zero-shot trans-
lation (i.e. direct translation between a language
pair never seen during training) (Firat et al., 2016b;
Johnson et al., 2017).

Despite the many advantages of multilingual
NMT it suffers from certain disadvantages. Firstly,
the output vocabulary size is typically fixed regard-
less of the number of languages in the corpus and
increasing the vocabulary size is costly in terms of
computational resources because the training and
inference time scales linearly with the size of the
decoder’s output layer. For example, the training
dataset for all the languages in our work gave a total
vocabulary size of 1, 683, 884 tokens (1, 519, 918
with every sentence lowercased) but we were con-
strained to a decoder vocabulary size of 250, 000.

Another pitfall of massively multilingual NMT is
its poor zero-shot performance (Firat et al., 2016b;
Arivazhagan et al., 2019a; Johnson et al., 2017;
Aharoni et al., 2019), particularly compared to
pivot-based models (two bilingual models that
translate from source to target language through
an intermediate language). Neural machine transla-
tion is heavily reliant on parallel data and so with-
out access to parallel training data for zero-shot
language pairs, multilingual models face the spuri-
ous correlation issue (Gu et al., 2019) and off-target
translation (Johnson et al., 2017) where the model

ignores the given target information and translates
into a wrong language.

Some approaches to improve the performance
(including zero-shot translation) of multilingual
models have relied on leveraging the plentiful
source and target side monolingual data that are
available. For example, generating artificial paral-
lel data with various forms of backtranslation (Sen-
nrich et al., 2015) has been shown to greatly im-
prove the overall (and zero-shot) performance of
multilingual models (Firat et al., 2016b; Gu et al.,
2019; Lakew et al., 2018; Zhang et al., 2020) as
well as bilingual models (Edunov et al., 2018).
Zhang et al. (2020) proposed random online back-
translation to enhance multilingual translation of
unseen training language pairs.

Additionally, leveraging monolingual data by
jointly learning to reconstruct the input while trans-
lating has been shown to improve neural machine
translation quality (Févry and Phang, 2018; Lample
et al., 2017; Cheng et al., 2016; Zhang and Zong,
2016). Siddhant et al. (2020) leveraged monolin-
gual data in a semi-supervised fashion and reported
three major results:

1. Using monolingual data significantly boosts
the translation quality of low resource lan-
guages in multilingual models.

2. Self-supervision improves zero-shot transla-
tion quality in multilingual models.

3. Leveraging monolingual data with self-
supervision provides a viable path towards
adding new languages to multilingual models.

3 Data Methodology

Table 2 presents the size of the gathered and
cleaned parallel sentences for each language di-
rection. We devised preprocessing guidelines for
each of our focus languages taking their linguistic
properties into consideration. We used a maximum
sequence length of 50 (due to computational re-
sources) and a minimum of 2. In the following
sections we will describe the data sources for the
the parallel and monolingual corpora.

Parallel Corpora: As NMT models are very re-
liant on parallel data, we sought to gather more
parallel sentences for each language direction in
an effort to increase the size and domain of each
language direction. To this end, our first source was
JW300 (Agić and Vulić, 2019), a parallel corpus of

400



Target Language
ibo fon kin xho yor swa eng fra

ibo - 3, 179 52, 685 58, 802 134, 219 67, 785 85, 358 57, 458

fon 3, 148 - 3, 060 3, 364 5, 440 3, 434 5, 575 2, 400

kin 53, 955 3, 122 - 70, 307 85, 824 83, 898 77, 271 62, 236

xho 60, 557 3, 439 70, 506 - 64, 179 125, 604 138, 111 113, 453

yor 133, 353 5, 485 83, 866 62, 471 - 117, 875 122, 554 97, 000

swa 69, 633 3, 507 84, 025 125, 307 121, 233 - 186, 622 128, 428

eng 87, 716 5, 692 77, 148 137, 240 125, 927 186, 122 - -

fra 58, 521 2, 444 61, 986 112, 549 98, 986 127, 718 - -

Table 2: Number of parallel samples for each language direction. We highlight the largest and smallest parallel
samples. We see for example that much more research on machine translation and data collation has been carried
out on swa←→eng than fon←→fra, attesting to the under-representation of some African languages.

over 300 languages with around 100 thousand bibli-
cal domain parallel sentences per language pair on
average. Using OpusTools (Aulamo et al., 2020)
we were able to get only very trustworthy trans-
lations by setting t = 1.5 (t is a threshold which
indicates the confidence of the translations). We
collected more parallel sentences from Tatoeba1,
kde42 (Tiedemann, 2012), and some English-based
bilingual samples from MultiParaCrawl3.

Finally, following pointers from the native speak-
ers of these focus languages in the Masakhane com-
munity (∀ et al., 2020) to existing research on ma-
chine translation for African languages which open-
sourced their parallel data, we assembled more
parallel sentences mostly in the {en, fr}←→AL
direction.

From all this we created
MMTAfrica Test Set (explained in

more details in section 3.1), got 5, 424, 578 total
training samples for all languages directions (a
breakdown of data size for each language direction
is provided in Table 2) and 4, 000 for dev.

Monolingual Corpora: Despite our efforts to
gather several parallel data from various domains,
we were faced with some problems: 1) there was
a huge imbalance in parallel samples across the
language directions. In Table 2 we see that the
~ ←→fon direction has the least amount of par-
allel sentences while ~ ←→swa or ~ ←→yor is
made up of relatively larger parallel sentences. 2)

1https://opus.nlpl.eu/Tatoeba.php
2https://huggingface.co/datasets/kde4
3https://www.paracrawl.eu/

the parallel sentences particularly for AL←→AL
span a very small domain (mostly biblical, internet
)

We therefore set out to gather monolingual data
from diverse sources. As our focus is on African
languages, we collated monolingual data in only
these languages. The monolingual sources and
volume are summarized in Table 3.

Language(ID) Monolingual source Size

Xhosa (xho) The CC100-Xhosa Dataset cre-
ated by Conneau et al. (2019), and
OpenSLR (van Niekerk et al., 2017)

158, 660

Yoruba (yor) Yoruba Embeddings Corpus (Alabi et al.,
2020) and MENYO20k (Adelani et al.,
2021a)

45, 218

Fon/Fongbe
(fon)

FFR Dataset (Dossou and Emezue,
2020), and Fon French Daily Dialogues
Parallel Data (Dossou and Emezue,
2021a)

42, 057

Swahili/Kiswahili
(swa)

(Shikali and Refuoe, 2019) 23, 170

Kinyarwanda
(kin)

KINNEWS-and-KIRNEWS (Niy-
ongabo et al., 2020)

7, 586

Igbo (ibo) (Ezeani et al., 2020) 7, 817

Table 3: Monolingual data sources and sizes (number
of samples).

3.1 Data Set Types in our Work
Here we elaborate on the different categories of
data set that we (generated and) used in our work
for training and evaluation.

• FLORES Test Set : This refers to the
dev test set of 1012 parallel sentences in all
101 language directions provided by Goyal
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et al. (2021)4. We performed evaluation on
this test set for all language directions except
~←→fon and ~←→kin.

• MMTAfrica Test Set : This is a sub-
stantial test set we created by taking out a
small but equal number of sentences from
each parallel source domain. As a result, we
have a set from a wide range of domains,
while encompassing samples from many exist-
ing test sets from previous research. Although
this set is small to be fully considered as a test
set, we open-source it because it contains sen-
tences from many domains (making it useful
for evaluation) and we hope that it can be built
upon, by perhaps merging it with other bench-
mark test sets (Abate et al., 2018; Abbott and
Martinus, 2019; Reid et al., 2021).

• Baseline Train/Test Set : We first
conducted baseline experiments with Fon,
Igbo, English and French as explained in sec-
tion 4.4.1. For this we created a special data
set by carefully selecting a small subset of the
FFR Dataset (which already contained paral-
lel sentences in French and Fon), first auto-
matically translating the sentences to English
and Igbo, using the Google Translate API5,
and finally re-translating with the help of Igbo
(7) and English (7) native speakers (we recog-
nized that it was easier for native speakers to
edit/tweak an existing translation rather than
writing the whole translation from scratch).
In so doing, we created a data set of 13, 878
translations in all 4 language directions.

We split the data set into 12, 554 for training
Baseline Train Set , 662 for dev and
662 for test Baseline Test Set .

4 Model and Experiments

4.1 Model
For all our experiments, we used the mT5
model (Xue et al., 2021), a multilingual variant of
the encoder-decoder, transformer-based (Vaswani
et al., 2017) “Text-to-Text Transfer Transformer”
(T5) model (Raffel et al., 2019). In T5 pre-training,
the NLP tasks (including machine translation) were
cast into a “text-to-text” format – that is, a task

4https://dl.fbaipublicfiles.com/
flores101/dataset/flores101_dataset.tar.
gz

5https://cloud.google.com/translate

where the model is fed some text prefix for context
or conditioning and is then asked to produce some
output text. This framework makes it straightfor-
ward to design a number of NLP tasks like machine
translation, summarization, text classification, etc.
Also, it provides a consistent training objective both
for pre-training and finetuning. The mT5 model
was pre-trained with a maximum likelihood objec-
tive using “teacher forcing” (Williams and Zipser,
1989). The mT5 model was also pretrained with
a modification of the masked language modelling
objective (Devlin et al., 2018).

We finetuned the mt5-base model on our
many-to-many machine translation task. While
Xue et al. (2021) suggest that higher versions of
the mT5 model (Large, XL or XXL) give better
performance on downstream multilingual transla-
tion tasks, we were constrained by computational
resources to mt5-base , which has 580M pa-
rameters.

4.2 Setup
For each language directionX → Y we have its set
of n parallel sentences D = {(xi, yi)}ni=1 where
xi is the ith source sentence of language X and yi
is its translation in the target language Y .

Following the approach of Johnson et al. (2017)
and Xue et al. (2021), we model translation in a
text-to-text format. More specifically, we create
the input for the model by prepending the target
language tag to the source sentence. Therefore
for each source sentence xi the input to the model
is <Ytag> xi and the target is yi. Taking a real
example, let’s say we wish to translate the Igbo
sentence Daalu. maka ikwu eziokwu nke Chineke to
English. The input to the model becomes <eng>
Daalu. maka ikwu eziokwu nke Chineke.

4.3 Training
We have a set of language tags L for the lan-
guages we are working with in our multilin-
gual many-to-many translation. In our baseline
setup (section 4.4.1) L = {eng, fra, ibo, fon}
and in our final experiment (section 4.4.2) L =
{eng, fra, ibo, fon, swa, kin, xho, yor}. We car-
ried out many-to-many translation using all the
possible directions from L except eng ←→ fra.
We skipped eng ←→ fra for this fundamental
reason:

• our main focus is on African←→African or
{eng, fra} ←→African. Due to the high-
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resource nature of English and French, adding
the training set for eng ←→ fra would over-
shadow the learning of the other language di-
rections and greatly impede our analyses. Our
intuition draws from the observation of Xue
et al. (2021) as the reason for off-target trans-
lation in the mT5 model: as English-based
finetuning proceeds, the model’s assigned like-
lihood of non-English tokens presumably de-
creases. Therefore since the mt5-base
training set contained predominantly English
(and after other European languages) tokens
and our research is about AL←→AL trans-
lation, removing the eng ←→ fra direction
was our way of ensuring the model designated
more likelihood to AL tokens.

4.3.1 Our Contributions
In addition to the parallel data between the African
languages, we leveraged monolingual data to im-
prove translation quality in two ways:

1. our backtranslation (BT): We designed a
modified form of the random online backtrans-
lation (Zhang et al., 2020) where instead of
randomly selecting a subset of languages to
backtranslate, we selected for each language
num_bt sentences at random from the mono-
lingual data set. This means that the model
gets to backtranslate different (monolingual)
sentences every backtranslation time and in
so doing, we believe, improve the model’s do-
main adaptation because it gets to learn from
various samples from the whole monolingual
data set. We initially tested different values of
num_bt to find a compromise between back-
translation computation time and translation
quality.

Following research works which have shown
the effectiveness of random beam-search over
greedy decoding while generating backtrans-
lations (Lample et al., 2017; Edunov et al.,
2018; Hoang et al., 2018; Zhang et al., 2020),
we generated num_sample prediction sen-
tences from the model and randomly selected
(with equal probability) one for our back-
translated sentence. Naturally the value of
num_sample further affects the computa-
tion time (because the model has to produce
num_sample different output sentences for
each input sentence) and so we finally settled
with num_sample = 2.

2. our reconstruction: Given a monolingual
sentence xm from language m, we applied
random swapping (2 times) and deletion (with
a probability of 0.2) to get a noisy version x̂.
Taking inspiration from Raffel et al. (2019)
we integrated the reconstruction objective into
our model finetuning by prepending the lan-
guage tag <m> to x̂ and setting its target out-
put to xm.

4.4 Experiments
In all our experiments we initialized the pretrained
mT5-base model using Hugging Face’s Auto-

ModelForSeq2SeqLM6 and tracked the training
process with Weights&Biases (Biewald, 2020). We
used the AdamW optimizer (Loshchilov and Hutter,
2017) with a learning rate (lr) of 3e−6 and trans-
former’s get_linear_schedule_with_warmup7

scheduler (where the learning rate decreases lin-
early from the initial lr set in the optimizer to 0,
after a warmup period and then increases linearly
from 0 to the initial lr set in the optimizer.)

4.4.1 Baseline
The goal of our baseline was to understand the
effect of jointly finetuning with backtranslation
and reconstruction on the African←→African lan-
guage translation quality in two scenarios: when
the AL was initially pretrained on the multilingual
model and contrariwise. Using Fon (which was
not initially included in the pretraining) and Igbo
(which was initially included in the pretraining) as
the African languages for our baseline training, we
finetuned our model on a many-to-many translation
in all directions of {eng, fra, ibo, fon}/eng ←→
fra amounting to 10 directions. We used the
Baseline Train Set for training and the
Baseline Test Set for evaluation. We

trained the model for only 3 epochs in three set-
tings:

1. BASE : in this setup we finetune the model
on only the many-to-many translation task: no
backtranslation nor reconstruction.

2. BT : refers to finetuning with our backtransla-
tion objective described in section 4.2. For our

6https://huggingface.co/transformers/
model_doc/auto.html#transformers.
AutoModelForSeq2SeqLM

7https://huggingface.co/transformers/
main_classes/optimizer_schedules.html#
transformers.get_linear_schedule_with_
warmup
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baseline, where we backtranslate using mono-
lingual data in {ibo, fon}, we set num_bt =
500. For our final experiments, we first tried
with 500 but finally reduced to 100 due to the
great deal of computation required.

For our baseline experiment, we ran one epoch
normally and the remaining two with back-
translation. For our final experiments, we first
finetuned the model on 3 epochs before con-
tinuing with backtranslation.

3. BT&REC : refers to joint backtranslation and
reconstruction (explained in section 4.2) while
finetuning. Two important questions were ad-
dressed – 1) the ratio, backtranslation : re-
construction, of monolingual sentences to use
and 2) whether to use the same or different
sentences for backtranslation and reconstruc-
tion. Bearing computation time in mind, we
resolved to go with 500 : 50 for our baseline
and 100 : 50 for our final experiments. We
leave ablation studies on the effect of the ra-
tio on translation quality to future work. For
the second question we decided to randomly
sample (with replacement) different sentences
each for our backtranslation and reconstruc-
tion.

For our baseline, we used a learning rate of 5e−4,
a batch size of 32 sentences, with gradient accumu-
lation up to a batch of 256 sentences and an early
stopping patience of 100 evaluation steps. To fur-
ther analyse the performance of our baseline setups
we ran comparemt 8 (Neubig et al., 2019) on the
model’s predictions.

4.4.2 MMTAfrica
MMTAfrica refers to our final experimental
setup where we finetuned our model on all lan-
guage directions involving all eight languages
L = {eng, fra, ibo, fon, swa, kin, xho, yor} ex-
cept eng←→fra. Taking inspiration from our base-
line results we ran our experiment with our pro-
posed BT&REC setting and made some adjust-
ments along the way.

The long computation time for backtranslating
(with just 100 sentences per language the model
was required to generate around 3, 000 translations
every backtranslation time) was a drawback. To
mitigate the issue we parallelized the process us-

8https://github.com/neulab/compare-mt

ing the multiprocessing package in Python9. We
further slowly reduced the number of sentences for
backtranslation (to 50, and finally 10).

Gradient descent in large multilingual models
has been shown to be more stable when updates
are performed over large batch sizes are used (Xue
et al., 2021). To cope with our computational re-
sources, we used gradient accumulation to increase
updates from an initial batch size of 64 sentences,
up to a batch gradient computation size of 4096
sentences. We further utilized PyTorch’s DataParal-
lel package10 to parallelize the training across the
GPUs. We used a learning rate (lr) of 3e−6

5 Results and Insights

All evaluations were made using spBLEU (sen-
tencepiece (Kudo and Richardson, 2018) + sacre-
BLEU (Post, 2018)) as described in (Goyal et al.,
2021). We further evaluated on the chrF (Popović,
2015) and TER metrics.

5.1 Baseline Results and Insights
Figure 1 compares the spBLEU scores for the three
setups used in our baseline experiments. As a re-
minder, we make use of the symbol � to refer to
any language in the set {eng, fra, ibo, fon}.

BT gives strong improvement over BASE (ex-
cept in eng−→ibo where it’s relatively the same,
and fra−→ibo where it performs worse).

Figure 1: spBLEU scores of the 3 setups explained in
section 4.4.1

When the target language is fon, we observe a
considerable boost in the spBLEU of the BT set-
ting, which also significantly outperformed BASE

9https://docs.python.org/3/library/
multiprocessing.html

10https://pytorch.org/docs/stable/
generated/torch.nn.DataParallel.html
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and BT&REC . BT&REC contributed very little
when compared with BT and sometimes even per-
formed poorly (in eng−→fon). We attribute this
poor performance from the reconstruction objec-
tive to the fact that the mt5-base model was
not originally pretrained on Fon. Therefore, with
only 3 epochs of finetuning (and 1 epoch before
introducing the reconstruction and backtranslation
objectives) the model was not able to meaningfully
utilize both objectives.

Conversely, when the target language is ibo
BT&REC gives best results – even in scenarios

where BT underperforms BASE (as is the case
of fra−→ibo and eng−→ibo). We believe that the
decoder of the model, being originally pretrained
on corpora containing Igbo, was able to better use
our reconstruction to improve translation quaity in
� −→ibo direction.

Drawing insights from fon←→ibo we offer the
following propositions concerning AL←→AL
multilingual translation:

• our backtranslation (section 4.2) from mono-
lingual data improves the cross-lingual map-
ping of the model for low-resource African
languages. While it is computationally expen-
sive, our parallelization and decay of number
of backtranslated sentences are some potential
solutions towards effectively adopting back-
translation using monolingual data.

• Denoising objectives typically have been
known to improve machine translation qual-
ity (Zhang and Zong, 2016; Cheng et al., 2016;
Gu et al., 2019; Zhang et al., 2020; Xue et al.,
2021) because they imbue the model with
more generalizable knowledge (about that lan-
guage) which is used by the decoder to pre-
dict better token likelihoods for that language
during translation. This is a reasonable ex-
planation for the improved quality with the
BT&REC over BT in the � −→ibo. As we

learned from � −→fon, using reconstruction
could perform unsatisfactorily if not handled
well. Some methods we propose are:

1. For African languages that were included
in the original model pretraining (as
was the case of Igbo, Swahili, Xhosa,
and Yorùbá in the mT5 model), using
the BT&REC setting for finetuning pro-
duces best results. While we did not per-
form ablation studies on the data size

ratio for backtranslation and reconstruc-
tion, we believe that our ratio of 2 : 1
(in our final experiments) gives the best
compromise on both computation time
and translation quality.

2. For African languages that were not orig-
inally included in the original model pre-
training (as was the case of Kinyarwanda
and Fon in the mT5 model), reconstruc-
tion together with backtranslation (espe-
cially at an early stage) only introduces
more noise which could harm the cross-
lingual learning. For these languages we
propose:
(a) first finetuning the model on only

our reconstruction (described in sec-
tion 4.2) for fairly long training steps
before using BT&REC . This way,
the initial reconstruction will help the
model learn that language represen-
tation space and increase its the like-
lihood of tokens.

5.2 MMTAfrica Results and Insights
In Table 4, we compared MMTAfrica with the
M2M MMT(Fan et al., 2020) benchmark results
of Goyal et al. (2021) using the same test set they
used – FLORES Test Set . On all language
pairs except swa→eng (which has a comparable
−2.76 spBLEU difference), we report an improve-
ment from MMTAfrica (spBLEU gains ranging
from +0.58 in swa−→fra to +19.46 in fra−→xho).
The lower score of swa→eng presents an intriguing
anomaly, especially given the large availability of
parallel corpora in our training set for this pair. We
plan to investigate this in further work.

In Table 5 we introduce benchmark results of
MMTAfrica on MMTAfrica Test Set . We
also put the test size of each language pair.

Interesting analysis about Fon (fon) and
Yorùbá (yor): For each language, the lowest sp-
BLEU scores in both tables come from the −→yor
direction, except fon←→yor (from Table 5) which
interestingly has the highest spBLEU score com-
pared to the other fon−→ ~ directions. We do
not know the reason for the very low performance
in the ~ −→yor direction, but we offer below a
plausible explanation about fon←→yor.

The oral linguistic history of Fon ties it to the
ancient Yorùbá kingdom (Barnes, 1997). Further-
more, in present day Benin, where Fon is largely
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spoken as a native language, Yoruba is one of the in-
digenuous languages commonly spoken. 11 There-
fore Fon and Yorùbá share some linguistic charac-
teristics and we believe this is one logic behind the
fon←→yor surpassing other fon−→ ~ directions.

This explanation could inspire transfer learning
from Yorùbá, which has received comparably more
research and has more resources for machine trans-
lation, to Fon. We leave this for future work.

Source Target spBLEU (FLORES)↑ spBLEU (Ours)↑ spCHRF↑ spTER↓
ibo swa 4.38 21.84 37.38 71.48

ibo xho 2.44 13.97 31.95 81.37

ibo yor 1.54 10.72 26.55 75.72

ibo eng 7.37 13.62 38.90 76.23

ibo fra 6.02 16.46 35.10 75.48

swa ibo 1.97 19.80 33.95 68.22

swa xho 2.71 21.71 39.86 73.16

swa yor 1.29 11.68 27.44 75.23

swa eng 30.43 27.67 56.12 55.91

swa fra 26.69 27.27 46.20 63.47

xho ibo 3.80 17.02 31.30 70.66

xho swa 6.14 29.47 44.68 63.21

xho yor 1.92 10.42 26.77 76.25

xho eng 10.86 20.77 48.69 64.09

xho fra 8.28 21.48 40.65 69.31

yor ibo 1.85 11.45 25.26 74.99

yor swa 1.93 14.99 30.49 79.90

yor xho 1.94 9.31 26.34 86.08

yor eng 4.18 8.15 30.65 86.94

yor fra 3.57 10.59 27.60 81.32

eng ibo 3.53 21.49 37.24 65.68

eng swa 26.95 40.11 53.13 52.80

eng xho 4.47 27.15 44.93 67.77

eng yor 2.17 12.09 28.34 74.74

fra ibo 1.69 19.48 34.47 68.50

fra swa 17.17 34.21 48.95 58.11

fra xho 2.27 21.73 40.06 73.72

fra yor 1.16 11.42 27.67 75.33

Table 4: Evaluation Scores of the Flores M2M MMT
model and MMTAfrica on FLORES Test Set .

6 Conclusion and Future Work

In this paper, we introduced MMTAfrica, a mul-
tilingual machine translation model on 6 African
Languages, which outperformed the M2M MMT
model Fan et al. (2020). Our results and analy-
ses, including a new reconstruction objective, give
insights on MMT for African languages for fu-
ture research. Moreover, we plan to launch the
model on Masakhane MT and FFRTranslate in or-
der to get human evaluation feedback from the
actual speakers of the languages in the Masakhane
community (Orife et al., 2020) and beyond.

In order to fully test the advantage of
MMTAfrica, we plan to finish comparing it on

11https://en.wikipedia.org/wiki/Benin
(Last Accessed : 30.08.2021).

direct and pivot translations with the Masakhane
benchmark models (∀ et al., 2020). We also
plan to perform human evaluation. All test sets,
results, code and checkpoints will be released
at https://github.com/edaiofficial/
mmtafrica
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Source Target Test size spBLEU↑ spCHRF↑ spTER↓
ibo swa 60 34.89 47.38 68.28

ibo xho 30 36.69 50.66 59.65

ibo yor 30 11.77 29.54 129.84

ibo kin 30 33.92 46.53 67.73

ibo fon 30 35.96 43.14 63.21

ibo eng 90 37.28 60.42 62.05

ibo fra 60 30.86 44.09 69.53

swa ibo 60 33.71 43.02 60.01

swa xho 30 37.28 52.53 55.86

swa yor 30 14.09 27.50 113.63

swa kin 30 23.86 42.59 94.67

swa fon 30 23.29 33.52 65.11

swa eng 60 35.55 60.47 47.32

swa fra 60 30.11 48.33 63.38

xho ibo 30 33.25 45.36 62.83

xho swa 30 39.26 53.75 53.72

xho yor 30 22.00 38.06 70.45

xho kin 30 30.66 46.19 74.70

xho fon 30 25.80 34.87 65.96

xho eng 90 30.25 55.12 62.11

xho fra 30 29.45 45.72 61.03

yor ibo 30 25.11 34.19 74.80

yor swa 30 17.62 34.71 85.18

yor xho 30 29.31 43.13 66.82

yor kin 30 25.16 38.02 72.67

yor fon 30 31.81 37.45 63.39

yor eng 90 17.81 41.73 93.00

yor fra 30 15.44 30.97 90.57

kin ibo 30 31.25 42.36 66.73

kin swa 30 33.65 46.34 72.70

kin xho 30 20.40 39.71 89.97

kin yor 30 18.34 33.53 70.43

kin fon 30 22.43 32.49 67.26

kin eng 60 15.82 43.10 96.55

kin fra 30 16.23 33.51 91.82

fon ibo 30 32.36 46.44 61.82

fon swa 30 29.84 42.96 72.28

fon xho 30 28.82 43.74 66.98

fon yor 30 30.45 42.63 60.72

fon kin 30 23.88 39.59 78.06

fon eng 30 16.63 41.63 69.03

fon fra 60 24.79 43.39 82.15

eng ibo 90 44.24 54.89 63.92

eng swa 60 49.94 61.45 47.83

eng xho 120 31.97 49.74 72.89

eng yor 90 23.93 36.19 84.05

eng kin 90 40.98 56.00 76.37

eng fon 30 27.19 36.86 62.54

fra ibo 60 36.47 46.93 59.91

fra swa 60 36.53 51.42 55.94

fra xho 30 34.35 49.39 60.30

fra yor 30 7.26 25.54 124.53

fra kin 30 31.07 42.26 81.06

fra fon 60 31.07 38.72 75.74

Table 5: Benchmark Evaluation Scores on
MMTAfrica Test Set
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Abstract

This paper describes the submission of LMU
Munich to the WMT 2021 multilingual ma-
chine translation task for small track #1, which
studies translation between 6 languages (Croa-
tian, Hungarian, Estonian, Serbian, Macedo-
nian, English) in 30 directions. We investigate
the extent to which bilingual translation sys-
tems can influence multilingual translation sys-
tems. More specifically, we trained 30 bilin-
gual translation systems, covering all language
pairs, and used data augmentation techniques
such as back-translation and knowledge distil-
lation to improve the multilingual translation
systems. Our best translation system scores 5
to 6 BLEU higher than a strong baseline sys-
tem provided by the organizers (Goyal et al.,
2021). As seen in the Dynalab leaderboard,
our submission is the only fully constrained
submission that uses only the corpus provided
by the organizers and does not use any pre-
trained models.

1 Introduction

Neural Machine Translation (NMT) (Vaswani et al.,
2017) has been shown to be effective with rich and
in-domain bilingual parallel corpora. Although the
NMT model obtained promising performances for
high resource language pairs, it is hardly feasible to
train translation models for all directions of the lan-
guage pairs since the training progress is time- and
resource-consuming. Recent work has shown the
effectiveness of multilingual neural machine trans-
lation (MNMT), which aims to handle the transla-
tion from multiple source languages into multiple
target languages with a single unified model (John-
son et al., 2017; Aharoni et al., 2019; Arivazhagan
et al., 2019; Zhang et al., 2020; Fan et al., 2021;
Goyal et al., 2021).

The MNMT model dramatically reduces train-
ing and serving costs. It is faster to train a MNMT
model than to train bilingual models for all lan-
guage pairs in both directions, and MNMT signif-

icantly simplifies deployment in production sys-
tems (Johnson et al., 2017; Arivazhagan et al.,
2019). Further, parameter sharing across different
languages encourages knowledge transfer, which
improves low-resource translation directions and
potentially enables zero-shot translation (i.e., di-
rect translation of a language pair not seen during
training) (Ha et al., 2017; Gu et al., 2019; Ji et al.,
2020; Zhang et al., 2020).

We participate in the WMT 2021 multilingual
machine translation task for small track #1. The
task aims to train a multilingual model to trans-
late 5 Central/East European languages (Croatian,
Hungarian, Estonian, Serbian, Macedonian) and
English in 30 directions. The multilingual systems
presented in this paper are based on the standard
paradigm of MNMT proposed by Johnson et al.
(2017), which prefixes the source sentence with
a special token to indicate the desired target lan-
guage and does not change the target sentence at
all. Language tags are typically used in MNMT to
identify the language to translate to. A language
code, in the form of a two- or three-character iden-
tification such as en for English, is the main con-
stituent of a language tag and is provided by the
ISO 639 standard1 (International Organization for
Standardization, nd). Following ISO 639 standard,
en indicates English, mk indicates Macedonian,
sr indicates Serbian, et indicates Estonian, hr
indicates Croatian and hu indicates Hungarian in
this paper.

Compared with the other three submissions to
the task, our submissions have the following advan-
tages:

• Our submissions are fully constrained, which
means we using the data only provided by the
organizer, and do not use models pre-trained
on extra data.

• Our model only has 313M parameters, which
1https://en.wikipedia.org/wiki/ISO_639
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Whole Select
No filter 387M 71M
+ punctuation filter 384M 71M
+ deduplicated filter 304M 44M
+ langid filter 302M 43M
+ length filter 274M 42M

Table 1: Number of sentences in bitext datasets (total
in 15 directions) for different filtering schemes. Whole
denotes the use of all data provided by the organizers,
Select denotes the use of data selection.

is smaller than the other submissions.

2 Data

The training data provided by the organizers come
from the public available Opus repository (Tiede-
mann, 2012), which contains data of mixed qual-
ity from a variety of domains (WMT-News, TED,
QED, OpenSubtitles, etc.). In addition to the bilin-
gual parallel corpora, in-domain Wikipedia mono-
lingual data for each language is provided. The
validation and test sets are obtained from the Flo-
res 101 evaluation benchmark (Goyal et al., 2021),
which consists of 3001 sentences extracted from
English Wikipedia covering a variety of different
topics and domains. See Table 1 for details on data
used for training our systems.

2.1 Data Preprocessing

To prepare the data for training, we used the fol-
lowing steps to process all of the corpora:

1. The datasets were truecased and the punctu-
ation was normalized with standard scripts
from the Moses toolkit2(Koehn et al., 2007).

2. Sentences containing 50% punctuation are re-
moved.

3. Duplicate sentences are removed.

4. We used a language detection tool3 (langid)
to filter out sentences with mixed language.

5. SentencePiece4 (Kudo and Richardson, 2018)
was used to produce subword units. We

2https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer

3https://fasttext.cc/docs/en/
language-identification.html

4https://github.com/google/
sentencepiece

trained a model with 0.9995 character cov-
erage to have sufficient coverage of character-
based languages.

6. The length filtering removes sentences that
are too long (more than 250 subwords after
segmentation with Sentencepiece), sentences
with a mismatched length ratio (more than
3.0) between source and target language are
removed.

2.2 Data Selection
Data selection (Moore and Lewis, 2010; Axelrod
et al., 2011; Gascó et al., 2012), aims to select the
most relevant sentences from the out-of-domain
corpora, which improved the in-domain translation
performance. The training data provided by the
organizers is large scale and contains multiple do-
mains. Therefore, the data selection becomes a
key factor affecting the performance of MNMT.
Preliminary experiments (see in Table 1 model #3
and model #4) showed that the performance of
using all corpora provided by the organizer was
poor. Following the original paper (Goyal et al.,
2021), we selected three data sources (CCAligned,
MultiCCAligned, WikiMatrix) for further experi-
mentation.

3 Method Description

We first trained bilingual translation models with 30
directions for all language pairs. Next, we trained
a single multilingual model that can translate all
language pairs. Finally, we use back-translation
and knowledge distillation technologies to further
improve the performance of the multilingual trans-
lation system. The details of these components are
outlined next.

3.1 Bilingual NMT Model
We use Transformer (Vaswani et al., 2017) archi-
tecture for all bilingual models. To achieve the
best BLEU score on the validation dataset, random
search was used to select the hyperparameters since
the datasets are in different sizes. We segment the
data into subword units using SentencePiece jointly
learned for all languages. The details of selected
hyper-parameters are listed in Section 4.1.

3.2 Multilingual NMT Model
The multilingual model architecture is identical
to the bilingual NMT model. To train multilin-
gual models, we used a simple modification to the
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source sentence proposed by Johnson et al. (2017)
which introduce an artificial token at the begin-
ning of the source sentence indicating the target
language (Johnson et al., 2017). For instance, for
the English-Macedonian (en→mk) translation di-
rection, we insert a token like <2mk> at the begin-
ning of all English sentences and do not change the
Macedonian sentences.

3.3 Back Translation
Back-translation (BT) (Sennrich et al., 2016) is a
simple and effective data augmentation technique,
which makes use of monolingual corpora and has
proven to be effective. Back-translation first trains
a target-to-source system that is used to translate
monolingual target data into source sentences, re-
sulting in a pseudo-parallel corpus. Then we mix
the pseudo-parallel corpus with the authentic par-
allel data and train the the desired source-to-target
translation system. Zhang et al. (2020) has shown
how BT can be useful for multilingual MT.

After generating the pseudo parallel corpus, we
tag our BT data by adding an artificial token <BT>
at the beginning of the source sentence (Caswell
et al., 2019), which indicates that the data is gener-
ated by back-translation.

3.4 Knowledge Distillation
Knowledge Distillation (KD) is a commonly used
technique to improve model performance. The stan-
dard KD training (Kim and Rush, 2016) derives a
student model from a teacher model by training the
student model to mimic the outputs of the teacher.
We follow a recent approach to KD proposed by
Wang et al. (2021), which uses selection at the
batch level and at the global level to choose suit-
able samples for distillation.

4 Experiments

4.1 Training Details
We use the Transformer architecture (Vaswani et al.,
2017) as implemented in fairseq5 (Ott et al., 2019).
For training NMT and MNMT systems, we use the
Transformer-Big architecture (hidden state
1024, feed-forward layer 4096, 16 attention heads,
6 encoder layers, 6 decoder layers). For optimiza-
tion, we follow the default settings from the origi-
nal paper (Vaswani et al., 2017) and used the Adam
optimizer with a learning rate of 0.0003. To pre-
vent overfitting, we applied a dropout of 0.3 on all

5https://github.com/pytorch/fairseq

layers. At the time of inference, a beam search
of size 5 is used to balance the decoding time and
accuracy of the search. The number of warm-up
steps was set to 4000 and the vocabulary size is
133k. In addition, we set a length penalty factor of
1.7 to maintain a balance between long and short
sentences. The batch size is set to 128 during de-
coding. We trained our models for approximately 3
weeks on one machine with 8 NVIDIA GTX 2080
Ti 11GB GPUs.

Because of the problems of the international tok-
enization in the standard BLEU score, the organiz-
ers used sentence-piece BLEU (spBLEU)6 (Goyal
et al., 2021) as the official evaluation metric which
operates on strings segmented using a Sentence-
Piece model. Recently, the BLEU score was crit-
icized as an unreliable automatic metric (Mathur
et al., 2020; Kocmi et al., 2021). Therefore, we also
evaluate our models using chrF (Popović, 2015)
and BERTScore (Zhang et al., 2019).

4.2 Systems

All of our systems described in Section 3.2 are
listed as follows:
Flores. As a baseline system, we use the pre-
trained models public available by Flores teams.
We use flores101_mm100_615M tested on the
devtest datasets as our baseline.
Bilingual. We trained the bilingual models using
standard Transformer-Big architecture for 6
languages in 30 directions. The hyperparameters
used are discussed in Section 4.1.
Multilingual. We trained the multilingual transla-
tion model using standard Transformer-Big
architecture and a specific language token to indi-
cate the desired translation target language.
Tagged BT. We augment the training data by
exploring the monolingual corpus using back-
translation proposed by Caswell et al. (2019), with
tagged back-translated source sentences with an
extra token <BT>.
Selective KD. We focused on selective knowledge
distillation proposed by Wang et al. (2021), which
uses batch-level and global-level selections to pick
suitable samples for distillation.

4.3 Results

The results of our systems on the devtest dataset are
presented in Table 2. For models 1–4, we observed

6https://github.com/ngoyal2707/
sacrebleu/tree/adding_spm_tokenized_bleu
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# Systems spBLEU chrF BERTScore BEST BLEU
0 Flores 28.0 0.528 0.867 sr-mk (36.0)
1 Bilingualwhole 21.1 0.477 0.831 en-mk (31.3)
2 Bilingualselect 28.4 0.533 0.863 sr-en (40.6)
3 Multilingualwhole 16.7 0.431 0.827 sr-en (26.1)
4 Multilingualselect 30.9 0.555 0.874 sr-en (40.0)
5 Multilingualselect + TaggedBT(Multilingualselect) 30.7 0.548 0.873 sr-en (40.5)
6 Multilingualselect + TaggedBT(Bilingualselect) 32.3 0.562 0.879 sr-en (41.5)
7* Multilingualselect + TaggedBT(Bilingualselect) + KDbatch 33.2 0.572 0.883 sr-en (42.0)
8* Multilingualselect + TaggedBT(Bilingualselect) + KDglobal 33.9 0.576 0.887 sr-en (42.4)

Table 2: The automatic evaluation metrics on devtest data. spBLEU, chrF, BERTScore denotes the average
scores of spBLEU, chrF and BERTScore respectively, BEST BLEU denotes the language pair with the best
BLEU score. Systems with subscript whole denote the use of all data provided by the organizers, and systems
with subscript select denote the use of data selection. Model #6 is our primary system submitted to the Dynalab
leaderboard. Systems 7∗ and 8∗ were trained after the shared task and were not used for the final submission.
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Figure 1: spBLEU scores on devtest data in 30 direc-
tions

that the amount of training data is not proportional
to the performance of the model for the bilingual or
multilingual translation model. The training data
provided by the organizers contains multiple do-
mains and does not match the dev/devtext/test data
domain. Therefore, we apply the data selection
methods to select data-relevant data from the train-
ing dataset to do the following experiments. Our
multilingual model (#4) performs competitively
with the Flores strong baseline (Model #0).

After these initial experiments, we explored how
the bilingual models can be used to improve the
multilingual model. More specifically, we use the
Bilingualselect model (#2) and Multilingualselect
model (#4) to back-translate the relevant monolin-
gual corpora, and then we use the back-translations
to train a new multilingual model. Although the
overall performance of the Multilingual model
(#4) is better than the Bilingual model (#2), back-

translation using the Bilingual model (model #6)
is better than back-translation using the Multilin-
gual model (model #5). The possible reason is
that the multilingual BT is in fact a form of self-
training, but bilingual BT uses separate models,
which means the knowledge obtained from bilin-
gual BT models is more independent of the knowl-
edge already learned by the baseline multilingual
BT model.

Knowledge Distillation further improves perfor-
mance slightly (Model # 7∗ and Model # 8∗). Based
on Model # 6, selective KD (Wang et al., 2021) is
added to further improve the performance of the
multilingual system.

Our best systems were outperformed by two
other shared task submissions, which however used
models pre-trained on additional data sources.

The performance grid of our best system (Model
# 8∗) is presented in Figure 1. We see from the
results that the sr-en language pair produced the
best results in terms of spBLEU score while the
hu-hr language pair scored the lowest.

5 Conclusions

In this paper, we presented the LMU Munich sys-
tem for the WMT 2021 Large-scale Multilingual
Translation shared task for small track #1. The task
evaluates translation between five central/eastern
European languages and English, in total 30 trans-
lation directions. The system we submitted was
fully constrained, using only the data provided by
the organizers and not using any pre-trained model.
The experiments show that back-translation and
knowledge distillation techniques are effective for
training multilingual machine translation systems.
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Abstract

This paper illustrates our approach to the
shared task on large-scale multilingual ma-
chine translation in the sixth conference on
machine translation (WMT-21). In this work,
we aim to build a single multilingual trans-
lation system with a hypothesis that a uni-
versal cross-language representation leads to
better multilingual translation performance.
We extend the exploration of different back-
translation methods from bilingual translation
to multilingual translation. Better perfor-
mance is obtained by the constrained sam-
pling method, which is different from the find-
ing of the bilingual translation. Besides, we
also explore the effect of vocabularies and the
amount of synthetic data. Surprisingly, the
smaller size of vocabularies perform better,
and the extensive monolingual English data
offers a modest improvement. We submit-
ted to both the small tasks and achieve the
second place. The code and trained models
are available at https://github.com/
BaohaoLiao/multiback.

1 Introduction

Bilingual neural machine translation (NMT) sys-
tems have achieved decent performance with the
help of Transformer (Vaswani et al., 2017). One of
the most exciting recent trends in NMT is training a
single system on multiple languages at once (John-
son et al., 2017b; Aharoni et al., 2019a; Zhang
et al., 2020; Fan et al., 2020). This is a power-
ful paradigm for two reasons: simplifying sys-
tem development and deployment, and improving
the translation quality on low-resource language
pairs by transferring similar knowledge from high-
resource languages.

This paper describes our experiments on the task
of large-scale multilingual machine translation in
WMT-21. We primarily focus on the small tasks, es-
pecially on Small Task 2 which has a small amount
of training data. Small Task 1 contains five Cen-

tral/East European languages and English, having
30 translation directions. Similarly, Small Task
2 contains five South East Asian languages and
English, also having 30 translation directions.

In this work, we mainly concentrate on different
back-translation methods (Sennrich et al., 2016a;
Edunov et al., 2018; Graça et al., 2019) for multi-
lingual machine translation, including beam search
and other sampling methods. Along with it, we also
explore the effect of different sizes of vocabularies
and the effect of various amounts of synthetic data.
On this large-scale multilingual machine transla-
tion task, we achieved the second place for both
small tasks, obtaining 34.96 and 33.34 average sp-
BLEU scores (Goyal et al., 2021) on the hidden
test set for the Small Task 1 and 2, respectively.

2 Related Work

Multilingual Neural Machine Translation has
received increasing attention recently. Since Dong
et al. (2015) extended the traditional bilingual NMT
to one-to-many translation, there has been a mas-
sive increase in work on MT systems that involve
more than two languages (Dabre et al., 2017; Choi
et al., 2018; Chu and Dabre, 2019). The recent
research on multilingual NMT can be split into two
directions: developing language specific compo-
nents (Kim et al., 2019; Escolano et al., 2020) and
training a single model with extensive training data,
including parallel and monolingual data (Fan et al.,
2020). Here, we continue to explore the second
research direction, trying to built a single multilin-
gual NMT model for simple industrial deployment.

Back-translation (Sennrich et al., 2016a) has
been proven as a powerful technique to leverage
monolingual data for improving low-resource lan-
guage pairs. Edunov et al. (2018) and Graça
et al. (2019) explore different sampling methods for
bilingual back-translation, including beam search,
constrained and unconstrained sampling. Con-
strained sampling randomly predicts the next word
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within some candidates that have higher prediction
probability. And unconstrained sampling randomly
predicts the next words from the whole vocabulary
without caring for the output distribution. In this
paper, we extend their exploration to the realm of
multilingualism, where similar languages affect the
results.

3 Experimental Setup

3.1 Data

The organizer offers parallel and monolingual data
for Small Task 1 and 2. Table 1 shows the size of
the data in terms of the number of sentences for
each language. There are five extra sets for evalu-
ation, i.e. dev, devtest, hidden dev, hidden devtest
and test sets. The dev set with 997 parallel sen-
tences among all language pairs and the devtest set
with 1,012 parallel sentences are public. Whereas,
the hidden dev and hidden devtest sets are invisible
to the participants and used for the first submission
period. The hidden test set is also invisible and
used for the final ranking.

Pre-processing is done by a regular Moses toolkit
(Koehn et al., 2007) pipeline that involves tokeniza-
tion, byte pair encoding and removing long sen-
tences. We borrow the 256K vocabularies from
the organizer’s pretrained model and the 128K vo-
cabularies from M2M_100 (Fan et al., 2021), one
shared vocabularies among all languages. Our sub-
missions only use the 256K vocabularies, and the
128K vocabularies is used for ablation experiments.

We also perform back-translation on the mono-
lingual data, and only accept the synthetic sen-
tence pair whose length is less than 250 words, and
whose length ratio between the source and target
sentence length is less than 1.8. In order to balance
the volume across different languages, we apply
temperature sampling D̃i = (Di/

∑
j Dj)

1/T with
T = 5 over the dataset, where Di is the number of
sentences in the ith language.

3.2 Model

All our models are built using the fairseq implemen-
tation (Ott et al., 2019) of the Transformer archi-
tecture (Vaswani et al., 2017). Multilingual models
are built using the same technique as Johnson et al.
(2017a) and Aharoni et al. (2019b), namely adding
a language label to the target sentence.

We apply three types of architectures, i.e.
Trans_small, Trans_base and Trans_big. The de-
tailed settings of these architectures are shown in

Small Task 1 Small Task 2
Language #sent. Language #sent.

en-et 35.7M en-id 54.1M
en-hr 63.7M en-jv 3.0M
en-hu 83.9M en-ms 13.4M
en-mk 2.7M en-ta 2.1M
en-sr 48.3M en-tl 13.6M
et-hr 13.6M id-jv 780.1K
et-hu 21.5M id-ms 4.9M
et-mk 3.1M id-ta 500.8K
et-sr 11.3M id-tl 2.7M
hr-hu 31.2M jv-ms 434.7K
hr-mk 4.4M jv-ta 66.0K
hr-sr 28.4M jv-tl 817.1K
hu-mk 4.1M ms-ta 372.6K
hu-sr 31.2M ms-tl 1.4M
mk-sr 4.2M ta-tl 563.3K
en 126.4M en 126.4M
et 3.0M id 5.5M
hr 3.1M jv 405.8K
hu 9.2M ms 1.9M
mk 1.9M ta 2.1M
sr 4.7M tl 414.1K

Table 1: Number of sentences of the parallel and mono-
lingual data used for two small tasks. The monolingual
English data for the two small tasks are the same.

Table 2. The parameters of all architectures are in
the half-precision floating-point format.

All our submissions on the shared task leader-
board are Trans_base, due to the memory and time
limit of the evaluation system. Trans_small is
mainly used for the ablation experiments. And the
pretrained Trans_big from M2M_100 (Fan et al.,
2021) is finetuned on the parallel corpus to generate
high-quality synthetic sentences.

3.3 Optimization and Evaluation

The following hyper-parameter configuration is
used: Adam optimizer with β1 = 0.90, β2 = 0.98,
a weight-decay of 0.0001, the label smoothed cross-
entropy criterion with a label smoothing of 0.1,
an initial learning rate of 0.0003 with the inverse
square root lr-scheduler and warmup updates of
2,500 steps. The batch size (the number of tokens)
is 4096 × 32 for Trans_small, and 2048 × 64 for
Trans_base and Trans_big.

For ablation experiments, we continue to train
the pretrained Trans_small offered by the organizer
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Model Trans_small Trans_base Trans_big

#vocabularies 256K 256K 128K
Word representation size 512 1,024 1,024

Feed-forward layer dimension 2,048 4,096 8,192
#prenormed encoder/ decoder layer 6 12 24

#attention head 16 16 16
Dropout rate 0.1 0.1 0.1

Layer dropout rate 0.05 0.05 0.05
#parameters 175M 615M 1.2B

Table 2: Settings of different pretrained models. Pretrained Trans_small and Trans_base are provided by the
organizer. And pretrained Trans_big is from Fan et al. (2021).

on the given parallel dataset for one epoch. When
combining both parallel and synthetic data, we fur-
ther train the model finetuned on the parallel data
for another one epoch. For the final submissions,
we train a pretrained Trans_base for two epochs
instead of one epoch. Pretrained Trans_big from
M2M_100 is only further trained on parallel data
for two epochs to generate high-quality synthetic
data. Even though we only train these models for
a few epochs, they seems converged quite well ac-
cording to the spBLEU curve during validation.

The model is validated every 3,000 steps on
the dev set and saved. We use the beam search
with a beam size of five, and stop translation when
ltgt = 1.5 ∗ lsrc + 20, where lsrc and ltgt are the
source and target sentence length, respectively. The
evaluation metric is BLEU based on sentence piece
tokenization (spBLEU) (Goyal et al., 2021). We
submit the average checkpoint of the last 15 check-
points to the evaluation system. While for the abla-
tion experiment, we use the best performed model
on the dev set.

4 Results

4.1 The Role of Vocabularies
There are two pretrained vocabularies, the one with
the size of 256K from the organizer and the one
with the size of 128K from M2M_100 (Fan et al.,
2021). To evaluate which vocabulary is the bet-
ter one, we train two Trans_smalls with these two
vocabularies from scratch on the parallel data of
Small Task 2 for five epochs. To make the parame-
ter sizes of these two models comparable, we set
the following hyper-parameter for the model with
the 128K vocabularies: 5 pre-normed encoder and
decoder layers with a word representation size of
768 and a feed-forward layer dimension of 3072,

Model Ave. spBLEU

128K Trans_small (scratch) 23.14
256K Trans_small (scratch) 21.65
256K Trans_small (pretrained) 23.72

Table 3: Average spBLEU on the devtest set of Small
Task 2 for the models with different vocabularies.

Model Ave. spBLEU

1st finetuned on parallel data 28.27
2nd finetuned on synthetic data 32.16
3rd finetuned on synthetic data 33.01

Table 4: Average spBLEU on the devtest set of Small
Task 2 for Trans_base on different finetuning steps.
These three models are iteratively trained. Trans_base
is first finetuned on the parallel data, and then fine-
tuned on the combination of the parallel data and the
synthetic data generated by Trans_big, and finally fine-
tuned on the combination of the parallel data and the
synthetic data generated by the 2nd step Trans_base.

resulting to 181M parameters. The other settings
stay the same with Trans_small (with 256K vocab-
ularies).

Table 3 shows the performance with different vo-
cabularies. It is obvious that the 128K vocabulary
outperforms the 256K vocabulary, 23.14 vs 21.65
spBLEU. However, if we finetune the pretrained
Trans_small with the 256K vocabulary, 0.58 score
improvement is achieved compared to the 128K
Trans_small. In a word, 128K vocabulary is a better
choice for training from scratch, while pretrained
model offers us more gain.
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Model Ave. spBLEU

1st finetuned on parallel data 32.46
2nd finetuned on synthetic data 34.73

Table 5: Average spBLEU on the devtest set of Small
Task 1 for Trans_base on different steps. These two
models are iteratively trained. Trans_base is first fine-
tuned on the parallel data, and then finetuned on the
combination of the parallel data and the synthetic data
generated by the previous step Trans_base.
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Figure 1: Average spBLEU on the devtest set of Small
Task 2 for different back-translation methods with vari-
ous amount of synthetic data. 80M synthetic data cov-
ers only 6M monolingual English data and all other
monolingual data. We increase the amount of mono-
lingual English data with a interval of 6M for the last
two experiments.

4.2 Different Back-translation Methods

Similar to Edunov et al. (2018), we explore three
types of back-translation methods, i.e. beam search
with the beam size of five (Sennrich et al., 2016a),
unconstrained sampling (Edunov et al., 2018) and
sampling constrained to the most 10 likely words
(Graves, 2013; Ott et al., 2018; Fan et al., 2018).
Unconstrained sampling predicts the next word
from the whole vocabulary without caring for the
model distribution. Whereas constrained sampling
predicts the next words within some candidates that
have the highest prediction probabilities. Both con-
strained and unconstrained sampling can be consid-
ered as adding uncertainty to the greedy search.

Figure 1 shows the back-translation results on
the devtest set of Small Task 2. We combine three
different amount of synthetic data and parallel data
to further train our Trans_smalls after finetuned
on parallel data. 80M synthetic sentences cover
only 6M monolingual English data and all other

monolingual data. In addition to the 80M syn-
thetic sentences, we further increase the amount of
monolingual English data to verify the model per-
formance with respect to the amount of synthetic
English data on the target side. The reason for this
implementation is there are too many monolingual
English sentences compared to other languages.
We try to check whether it is necessary to use all
monolingual English sentences.

As seen in Figure 1, little improvement is ob-
tained with increasing the number of monolingual
English sentences after 6M. Besides, in contrast to
the results in Edunov et al. (2018) where the un-
constrained sampling offers the best performance
among these three methods, the constrained sam-
pling method gives us the best score.

Beam search is the worst among these three
methods. We hypothesize this is because beam
search focuses only on the high probability words,
while both constrained sampling and unconstrained
sampling methods offer rich translations on the
source side. With the diverse synthetic data gen-
erated from the sampling methods, model can be
trained with more generalization.

In contrast to the bilingual translation (English-
German) in Edunov et al. (2018) where uncon-
strained sampling outperforms constrained sam-
pling, multilingual translation of Small Task 2
contains similar languages. We argue that uncon-
strained sampling might result in generating syn-
thetic sentences with a mix of similar languages,
which damages the quality of synthetic data, while
constrained sampling gives us some restriction,
to some extent avoiding the mix of different lan-
guages.

The reason for the slight effect of the synthetic
English (on the source side) data after 6M might be
that English is dissimilar to the other five South
East Asian languages. Less similar knowledge
could be transferred from this synthetic English
(on the source side) data to other languages.

4.3 Final Submissions

Section 4.1 suggests us to employ a pretrained
model with the 128K vocabulary. M2M_100 (Fan
et al., 2021) offers multiple pretrained models with
the 128K vocabularies 1. Their sizes are 418M,
1.2B and 12B, respectively. Considering our lim-
ited GPU budget, we finetune the 1.2B model, i.e.

1https://github.com/pytorch/fairseq/
tree/master/examples/m2m_100
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Small Task devtest hidden dev hidden devtest hidden test

#1 34.73 35.12 35.39 34.96
#2 33.01 33.74 33.51 33.34

Table 6: Average spBLEU on different test sets for both small tasks. The hidden sets are invisible to the participants.
The final ranking is based on the model performance on the hidden test set.
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Figure 2: The spBLEU scores of different language pairs for both small tasks on the devtest set from our final
submissions.

Trans_big, on parallel data of Small Task 2, obtain-
ing 28.78 spBLEU on the devtest set. Whereas,
training a Trans_base on the same data only pro-
vides 28.23 spBLEU. Even though Trans_big out-
performs Trans_base, we only train it for generat-
ing high-quality synthetic data, since it is too large
for the evaluation system.

Section 4.2 advises us to use the constrained sam-
pling method on partial monolingual English data.
With the constrained sampling method, we gener-
ate synthetic sentences with Trans_big that is first
finetuned on the parallel data. Instead of using all
monolingual English data, we synthesize en-id, en-
jv, en-ms, en-ta and en-tl with all, 15M, 60M, 10M
and 60M monolingual English sentences, respec-
tively, a ratio of about 5 : 1 between the number of
parallel sentences and synthetic sentences if there
are enough monolingual data.

Table 4 shows the results for iterative finetuning.
Except for finetuing Trans_base on the combina-
tion of the parallel data and the synthetic data gener-
ated by Trans_big, we use the finetuned Trans_base
to generate the synthetic data secondly and finetune
it again. Finally, it offers us 33.01 spBLEU on the
devtest set for Small Task 2.

Due to time and resource limit, we only conduct

one trial on Small Task 1. We first finetune the
pretrained Trans_base on parallel data. Then we
use this Trans_base to generate synthetic data with
only 20M monolingual English sentences and all
other monolingual sentences. Table 5 shows the
corresponding results. Different with Small Task
2, large amount of monolingual English data might
be helpful for Small Task 1, since Central/East Eu-
ropean languages are more similar to English than
Asian languages. Finally, We leave this exploration
to the future work.

Table 6 summarizes the results of our submis-
sions on different evaluation sets for both small
tasks. And Figure 2 lists the spBLEU scores for all
language pairs of both small tasks on the devtest
set. Finally, our submissions achieve the second
place for both small tasks.

5 Conclusion

We demonstrate that a pretrained model with the
smaller size of vocabularies is a better choice. Be-
cause of the memory and time limit of the evalua-
tion system, we can only apply a 1.2B model with
the smaller vocabularies to generate high-quality
synthetic data. Besides, we have a different obser-
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vation than previous research for bilingual back-
translation: the constrained sampling method per-
forms the best among all three back-translation
methods, including the beam search and the un-
constrained sampling. Finally, we also show that
extensive monolingual English data offers a modest
improvement. Combining these three findings, we
iteratively train our models on partial high-quality
synthetic data, achieving the second place for both
small tasks.
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Abstract

We present our development of the multilin-
gual machine translation system for the large-
scale multilingual machine translation task
at WMT 2021. Starting form the provided
baseline system, we investigated several tech-
niques to improve the translation quality on the
target subset of languages.

We were able to significantly improve the
translation quality by adapting the system
towards the target subset of languages and
by generating synthetic data using the ini-
tial model. Techniques successfully applied
in zero-shot multilingual machine translation
(e.g. similarity regularizer) only had a minor
effect on the final translation performance.

1 Introduction

This paper describes Maastricht University’s par-
ticipation in the large-scale multilingual machine
translation task of WMT 2021. We participate in
Small Track #2. In this track, the task is to build
a translation system between English and 5 South-
east Asian languages. The evaluation is performed
on all 30 possible translation directions between
these languages. We are provided with parallel data
extracted from Wikipedia and other sources for all
language pairs, as well as a large-scale multilingual
machine translation model pretrained on 124 lan-
guages (Goyal et al., 2021) including the languages
in this task.

Starting from the provided baseline models, we
investigate several directions in order to improve
the performance on the 30 target language direc-
tions. As the first step, we focus on methods
to adapt the model to these language directions.
Specifically, we investigate different strategies to
fine-tune the model on the proposed parallel train-
ing data.

Since the provided parallel data is extremely lim-
ited for several translation directions, we investi-
gate the use of synthetic parallel data. We focus on

jv id ms tl ta en

su 44 243 137 440 108 904
jv 644 340 662 46 2,556
id 4,060 2,356 415 48,486
ms 1,174 297 12,023
tl 489 12,348
ta 1,864

Table 1: Number of sentences for each languages pair
after preprocessing (in thousand sentences).

using pivot languages in order to use well perform-
ing language direction to generate training data for
worse performing language directions.

Finally, we investigate the usefulness of tech-
niques to promote the similarity of representation
between different languages. While these tech-
niques were shown essential for models to perform
zero-shot machine translation (Arivazhagan et al.,
2019a; Pham et al., 2019; Liu et al., 2021), in our
experiments the impact of these methods is only
limited.

2 Data

We start by introducing the training data and pre-
processing steps.

2.1 Languages

As required for the small tracks, we only use the
data provided by the organizers. The covered lan-
guages are: Javanese (jv), Indonesian (id), Malay
(ms), Tagalog (tl), Tamil (ta), English (en). Al-
though Sundanese (su) is later excluded from the
evaluations, we still include it in the training data
because of its high relatedness to Javanese (jv), one
of the lowest-resource languages in this track.

2.2 Preprocessing

After de-duplicating, we remove sentences with
more than 50% punctuation marks or digits, and
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sentence pairs of length ratios beyond 1:5 in char-
acter count. We also apply frequency cleaning fol-
lowing M2M-100 (Fan et al., 2021). An overview
of the training data amount after preprocessing is
shown in Table 1.

3 Techniques

Our efforts to improve upon the provided baselines
can be categorized into three directions: finetun-
ing (subsection 3.1), utilizing synthetic data (sub-
section 3.2), encouraging similarities between lan-
guages (subsection 3.3).

3.1 Language Adaptation

While the provided baseline systems are trained on
over 100 languages, our target track focuses on 6
specific languages. Therefore, we investigate differ-
ent fine-tuning methods to adapt the model to the
target languages. In this framework, we initialize
from the pretrained baseline model and continue
training on different subsets of the given training
data. First (§3.1.1), we finetune on each of the lan-
guage pairs. Then (§3.1.2), we apply finetuning
on all the languages jointly. Finally (§3.1.3), in an
attempt to preserve model performance on all other
directions, we use adapter layers dedicated to the
languages of interest.

3.1.1 Language-Specific Adaptation
First, we adapt the model to each translation direc-
tion individually, resulting in 30 different transla-
tion systems. Each of the models is trained on a
single language pair from the provided translation
directions.

While this approach achieves good performance,
the main disadvantage is that we will have 30 indi-
vidual systems. Since all of the individual models
are fine-tuned from the same baseline model, we
hypothesize that the resulting models are relatively
similar. Therefore, we investigate the possibility
of checkpoint-averaging on all the models adapted
to individual language pairs, as successfully done
in previous evaluations of multilingual translation
(Pham et al., 2017).

3.1.2 Language-Independent Adaptation
Similar to the motivation for the checkpoint-
averaging described above, in order to preserve
one single model, we adapt the baseline system
to all the target language pairs jointly by continue
training on all the provided training data.

3.1.3 Adapter Layers

The approaches above update all parameters of the
pretrained baseline model during the fine-tuning
stage. As a result, the models would lose perfor-
mance on translation directions other than those in
the training data. To avoid this catastrophic forget-
ting, we take inspiration from the adapters (Bapna
and Firat, 2019) and insert feedfoward layers after
each encoder/decoder layer. When finetuning, we
only train these parameters while keeping the rest
of the model frozen. At test time, the model keeps
the adapter layers for the languages seen in train-
ing. When handling languages unseen in training,
the model drops the adapters and falls back to the
pretrained baseline.

A main difference to the multilingual adapters
(Bapna and Firat, 2019) is that our adapter layers
are not language-pair-specific. Instead, they are
shared among all the directions. A main reason
for sharing the adapters is that, when scaling to
more languages, a quadratic set of adapters would
be needed.

Due to resource constraints, in this work we only
train one set of adapter layers for the translation
directions in Small Track #2. Nevertheless, we
believe this approach could remain applicable when
scaling to more languages like in Large Track. This
could, for instance, be achieved by multiple sets
of adapter layers dedicated to different language
families.

3.2 Synthetic Data

Motivated by the strong improvements from syn-
thetic data in multilingual speech translation evalu-
ation (Anastasopoulos et al., 2021), we investigate
the creation of synthetic parallel data for all lan-
guage direction with limited available parallel data.
Based on the corpus statistics (Table 1), we select
all languages pairs with less than n parallel sen-
tences as low-resource directions. In the initial
experiments, we choose a threshold of n = 500K
sentences pairs. Following successful initial ex-
periments, we increase n to 2M sentences. For all
the language with k < n parallel sentences, we
generated n−k synthetic sentences. Consequently,
the final system is trained on at least n sentences
for each language pair.

While monolingual data was provided, as the
initial translation system performed poorly on low-
resource directions, we chose not to directly gen-
erate synthetic data from the monolingual data. In-
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stead, we create synthetic data based on parallel
data between the source and a pivot language. Syn-
thetic target-side data is created by translating out
of the pivot language. When selecting the pivot
language, we choose the source-pivot pair with the
highest BLEU scores.1

In this above-described scenario, as the source
sentences are human-generated and the synthetic
target sentences are automatically generated, we
hypothesize that the mistakes are concentrated on
the target side. This is normally addressed by using
back-translation and generating the translation in
the inverse directions. Since we aim to use the gen-
erated languages for both direction (source to target
and target to source) for the sake of efficiency, we
generate half of the sentences in the one direction
and the other half in the inverse direction.

3.3 Encouraging Similar Representations

As shown in the statistics in Table 1, our training
data is highly unbalanced. Extreme low-resource
pairs such as ta↔jv could be considered as few-
shot directions. We therefore explore several tech-
niques shown useful for zero-shot conditions, and
investigate their usefulness in this current scenario.

3.3.1 Similarity Regularization

First shown in (Arivazhagan et al., 2019a; Pham
et al., 2019), an auxiliary loss promoting similari-
ties between source and target languages facilitate
zero-shot translation. Given source sentenceX and
target sentence Y , besides the translation loss, we
minimize the following auxiliary loss:

Lsimilarity = λ · dist(X,Y ), (1)

where dist(·) is the Euclidean distance between
two meanpooled sentence embeddings, and λ is the
weight for this auxiliary loss.

3.3.2 Residual Removal

The residual removal approach was shown help-
ful to zero-shot translation by reducing the posi-
tional information from source sentences (Liu et al.,
2021). Specifically, the residual connections of a
middle encoder layer is removed to relax the strong
positional correspondence between input tokens
and encoder outputs.

1In the later experiments, the best-performing source-pivot
direction is always source-English.

4 Experimental Setup

4.1 Training Details

The provided M2M-100 models (Fan et al., 2021;
Goyal et al., 2021) cover over 100 languages and
have a vocabulary size of 256K. To accelerate train-
ing and reduce GPU memory usage, we trim away
the word embedding of those tokens that do not oc-
cur in our training data. After vocabulary trimming,
our vocabulary size is 165K. An exception where
we do not trim the vocabulary is when training with
adapters, since the goal is to preserve performance
on all languages.

To counteract the data imbalance among the lan-
guage pairs, following previous works (Arivazha-
gan et al., 2019b; Tang et al., 2020), we use a sam-
pling temperature of 5.0 which upsamples the low-
resource pairs.

For the model with similarity regularizer, we use
weight of 0.1 on the auxiliary loss. For the model
with residual removal, the residual layer is skipped
after the third encoder layer. For the adapters, we
use a bottleneck dimension of 256.

4.2 Decoding and Evaluation

When decoding we use a beam size of 5, and limit
the maximum output length to 1.3 * source length +
5. We report translation performance on the FloRes-
101 (Goyal et al., 2021) devtest set. The BLEU re-
ported scores are the spBLEU (Goyal et al., 2021)
variant based on sentencepiece (Kudo and Richard-
son, 2018) tokenization. The systems are also sub-
mitted to Dynabench (Kiela et al., 2021)2 for eval-
uation on a blind test set.

5 Results

In this section, we report the results of the three
directions we explored: finetuning on the focus
languages (subsection 5.1), utilizing synthetic data
(subsection 5.2), and encouraging similarities be-
tween languages (subsection 5.3).

5.1 Language Adaptation

The results of adapting the model towards different
language pairs are shown in Table 2.

5.1.1 Language-Dependent and -Independent
Adaptation

We start with the small baseline model for faster
experiment iterations, with results summarized in

2https://dynabench.org/flores
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System BLEU

baseline small 11.5
+ lang. dep. fine-tune 20.6

+ averaging 5.7
+ lang. indep. fine-tune 19.6

baseline big 15.4
+ lang. indep. fine-tune 27.4
+ shared adapter layers (rest frozen) 23.0

Table 2: Results of different fine-tuning approaches
from the baseline models. Language-dependent fine-
tuning achieves the strongest performance, but creates
individual models for each translation direction. Av-
eraging the models from the individual directions per-
forms poorly. Fine-tuning on all directions falls slightly
behind language-specific fine-tuning but preserves one
single model.

the upper section of Table 2. When adapting to
each language pair individually (lang. dep. fine-
tune), we see large gains with average BLEU score
increasing from 11.5 to 20.6. In contrast to previ-
ous work (Pham et al., 2017), we are not able to
preserve this gain by averaging all the individual
models into one single models. Instead, averaging
the models results in a low average BLEU score
of 5.7. This suggests the adapted individual mod-
els are relatively dissimilar and cannot be simply
averaged.

Nevertheless, by fine-tuning on all 30 language
directions together (lang. indep. fine-tune), we
achieve a comparable gain in performance, results
in a BLEU score of 19.6. Since this is achieved
by a single model instead of 30 individual models,
we continue with jointly training on all directions
in the upcoming experiments on the big baseline
model. Similar to findings on the small model, by
fine-tuning on all the languages, we were able to
improve the average BLEU score of the big base-
line model from 15.4 to 27.4.

5.1.2 Adapters
As shown in the lower section of Table 2, by insert-
ing adapters into the large baseline model and only
training these modules, we achieve 23.0 BLEU on
average. While the gain is less compared to full
parameter tuning, the model preserves performance
on the remaining tens of thousands directions.

As motivated previously (§3.1.3), the adapter
layers are shared across the language directions
rather than language-pair-specific. This could ex-

System jv-ta ta-jv

baseline big 3.8 3.1
+ parallel data 8.5 7.9

+ syn. jv-ta data 10.0 8.2
+ syn. ta-jv data 15.0 10.7
+ both syn. data 15.9 9.7
+ both syn. data big 16.0 11.7

Table 3: Impact of synthetic data on jv↔ta, the lowest-
resource language pair in this task.

plain the performance gap to full parameter tuning.

5.2 Synthetic data
In the first set of experiments, we evaluate the in-
fluence of synthetic data only on the translations
between Javanese (jv) and Tamil (ta), since this
was the language pair with the least data (44K sen-
tences). The synthetic data was always produced
by the system fine-tuned on all the target language
directions. The results are summarized Table 3.
First, although the available parallel data is limited,
we see a clear improvement of the baseline model
when trained on the provided training data.

Adding the synthetic data (225K sentences for
jv-ta and ta-jv each) does improve the performance
compared to only using the parallel data. For both
directions, the data generated from ta-jv was per-
forming better than the other data. Since the combi-
nation of both directions performed the best for the
jv-ta direction and reasonable good for the other di-
rection and it is not clear how we should select the
direction without perfoming test for each langauge
pair, we continued the experiments by always using
synthetic data generated by both directions.

By increasing the amount of synthetic data, so
that the model is not trained on around 500k sen-
tences by 2M sentence, we see additional gains to
the best performance of 16.0 and 11.7 BLEU points
for both directions. This is an improvement nearly
by a factor of 3 compared to the baseline system.

Given the best system so far with 27.4 average
BLEU, we continue fine-tuning with the additional
synthetic data. This leads to an improvement to
27.9 BLEU on average. This improvement is sig-
nificantly lower than expected, considering the gen-
eral positive role of utilizing synthetic data. This
has two potential reasons. First, as all other lan-
guage directions have more data, the gains from
the additional data could be reduced. Furthermore,
the initial model is fine-tuned on the parallel data
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Directions # Sent. ∆ BLEU

jv↔ta 46K +0.6
ms↔ta 297K +0.1
jv↔ms 340K +0.1

Overall 89M +0.0

Table 4: The average change in BLEU after fine-tuning
with residual removal. There is no gain in overall
average BLEU, and limited gain in the top 3 lowest-
resource directions.

of all the language pairs and therefore performing
better.

5.3 Encouraging Similar Representations

Next we report the results of the approaches that
promote language similarity as motivated in sub-
section 3.3.

5.3.1 Similarity Regularizer
Based on the best system trained with synthetic
data (with 27.9 BLEU on average), we continue
fine-tuning with the similarity regularizer described
in §3.3.1. While we observe consistent increase in
the similarity scores on the dev set, fine-tuning with
the similarity regularizer alone does not improve
the system further, achieving 27.7 BLEU on aver-
age. Nevertheless, we see gains when combining
the similarity regularizer and the adapters described
in §3.1.3. As adding the adapter layers expands the
capacity of the existing model, we hypothesize the
similarity regularizer could help combat overfitting.
With this combination, we achieve an average of
28.1 BLEU.

5.3.2 Residual Removal
Based on the baseline big + fine-tune model (with
27.4 BLEU on average), we fine-tune once again
using the residual-removal architecture described
in §3.3.2. In Table 4, we summarize the average
change in BLEU after this additional fine-tuning
step. While there was no improvement in the over-
all average BLEU score, we observe some gain in
the lowest-resource direction of jv↔ta which has
46K parallel data. However, the gain falls largely
for the second and third lowest-resource directions.

5.4 Final System

The final system submitted to the evaluation is pre-
sented in Table 5. In a first step, we fine-tuned on
the provided parallel data. Using this model, we

System BLEU

baseline big 15.4
+ fine-tune 27.4

+ synthetic data 27.9
+ sim. regularizer + adapter 28.1

Table 5: Average BLEU scores on FLoRes-101 devtest
set on 30 directions of the final system.

created additional synthetic data. Fine-tuning the
previous model on the parallel data and the syn-
thetic data gave an additional improvement of 0.5
BLEU.

Finally, on top of the previous improvements,
our best system uses the additional similarity regu-
larization and adapters during training and further
improves the average BLEU by 0.2 points to 28.1.
The submitted system achieves 28.6 BLEU on av-
erage on the blind test set3.

6 Conclusion

This paper summarizes our participation in the
WMT 2021 large-scale multilingual translation
task. We focus on Small Track #2 for English and
5 Southeast Asian languages. Building upon the
provided baseline models, we achieved the largest
gain from fine-tuning on the parallel data of all di-
rections in this task. By further utilizing synthetic
data and a combination of similarity regularization
and adapters, we were able to further improve the
system.
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Abstract

In this paper, we describe the submission
of the joint Samsung Research Philippines-
Konvergen AI team for the WMT’21 Large
Scale Multilingual Translation Task - Small
Track 2. We submit a standard Seq2Seq Trans-
former model to the shared task without any
training or architecture tricks, relying mainly
on the strength of our data preprocessing tech-
niques to boost performance. Our final sub-
mission model scored 22.92 average BLEU
on the FLORES-101 devtest set, and scored
22.97 average BLEU on the contest’s hidden
test set, ranking us sixth overall. Despite us-
ing only a standard Transformer, our model
ranked first in Indonesian → Javanese, show-
ing that data preprocessing matters equally, if
not more, than cutting edge model architec-
tures and training techniques.

1 Introduction

This paper describes the machine translation sys-
tem submitted by the joint team of Samsung
Research Philippines and Konvergen AI for the
WMT’21 Large Scale Multilingual Translation
Task. Our team participated in Small Track #2,
where the task is to produce a multilingual ma-
chine translation system for five Southeast-Asian
languages: Javanese, Indonesian, Malay, Tagalog,
and Tamil1, plus English, in all 30 directions.

We will first describe the filtering heuristics that
we used to preprocess the data, and then outline
the steps we took to train and evaluate our models.
Specific hyperparameters, preprocessing decisions,
and other training parameters will be listed in their
corresponding sections. Finally, we report our re-
sults on the FLORES-101 (Goyal et al., 2021) de-
vtest set, as well as on the competition’s hidden test
set.

∗Equal contribution. Order determined via coinflip.
1Tamil is considered an official language in Singapore, a

Southeast Asian country

2 Parallel Text Preprocessing Heuristics

The contest dataset comprises of vari-
ous bitext sources, including: bible-uedin
(Christodouloupoulos and Steedman, 2015),
CCAligned (El-Kishky et al., 2020), ELRC
29222, MultiCCAligned (El-Kishky et al., 2020),
ParaCrawl 3, TED2020 (Reimers and Gurevych,
2020), WikiMatrix (Schwenk et al., 2019), tico-19,
Ubuntu, OpenSubtitles, QED, Tanzil, Tatoeba,
GlobalVoices, GNOME, KDE4, and WikiMedia
(Tiedemann, 2012).

We preprocess the datasets before training in or-
der to minimize spurious relations that originate
from incorrect text pairs. Our preprocessing re-
moves samples based on a few heuristics that we
developed based on our observation on the datasets.
Each bitext file is applied a different set of pre-
processing based on observation. For example
we filter by number content for datasets such as
CCAAligned while TED2020 is not applied that
same filter.

In this section, we will cover the decisions made
during preprocessing. We observe a score increase
of 1.91 BLEU on our submission model when the
preprocessing is applied. We report the total num-
ber of lines filtered from the bitext for all language
pairs on Table 1.

2.1 Filter by Duplicate

Duplication is present throughout the dataset. Table
2 outlines samples of duplication based on three
distinct types:

• Duplicates within the same language
Within a subset file of a designated language,
multiple lines have the same string while the
its counterpart may feature different transla-
tions.

2https://elrc-share.eu/
3https://www.paracrawl.eu/
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ISO Language Pair Before Preprocessing After Preprocessing Reduction
en-id English - Indonesian 54,075,891 27,186,074 49.73%
en-ms English - Malaysian 13,437,727 7,674,956 42.89%
en-tl English - Tagalog 13,612,403 5,302,768 61.04%
en-jv English - Javanese 3,044,920 388,766 87.23%
en-ta English - Tamil 2,115,925 1,420,827 32.85%
id-ms Indonesian - Malaysian 4,857,321 3,371,777 30.58%
id-tl Indonesian - Tagalog 2,743,305 1,823,140 33.54%
id-jv Indonesian - Javanese 780,119 432,734 44.53%
id-ta Indonesian - Tamil 500,898 393,336 21.47%
ms-tl Malaysian - Tagalog 1,358,486 985,493 27.46%
ms-jv Malaysian - Javanese 434,710 250,070 42.47%
ms-ta Malaysian - Tamil 372,623 351,416 5.69%
tl-jv Tagalog - Javanese 817,146 544,233 33.40%
tl-ta Tagalog - Tamil 563,337 482,618 14.33%
jv-ta Javanese - Tamil 65,997 48,806 26.05%

Table 1: Number of parallel text lines per language pair before and after applying preprocessing

• Partial duplication The whole string of text
in one language is present in its counterpart
translation.

• Duplication among parallel text Both
source and target text line feature exactly the
same string. While this may be correct for
named entities, most of these duplication are
short and can be non-informative.

2.2 Filtering by Language and Letters

In algorithmically-aligned datasets such as
CCAligned, some training examples are not in
the list of contest languages. We find full text
lines that are in Azerbaijani, Turkish, Arabic, and
Japanese. To identify these languages, we use
langdetect4. This filter works for sentences that are
fully foreign. It is also the case that foreign letters
that may refer to named-entity can be found in the
dataset. We consider this to be allowable so long
as the the foreign character string is present in both
source and target text line. To filter this, we use
AlphabetDetector5 and check if detected foreign
letters are present in both text line.

2.3 Filter by Specific Keywords and Symbols

There are a number of cases where the transla-
tions are generally correct but also feature extra
keywords that have no relation to the parallel text.
These keywords are generally in English and are

4https://pypi.org/project/langdetect/
5https://pypi.org/project/alphabet-detector/

consistently present in a number of bitext datasets
such as KDE4, GNOME, and Ubuntu.

Bitexts such as OpenSubtitles feature secondary
information that relates to a particular scene (for
example "(loud music playing)"). These secondary
information may be in parentheses to denote an ac-
tion being done or to signify a song being played.
These secondary information are not always avail-
able for each language. We opt to remove all lines
that have these specific symbols.

2.4 Filtering Number Content

We apply a filter to remove incorrect text lines in
the bitext by checking if both source and target
text lines feature the same numeric values such as
date and quantities. Table 4 shows that filtering by
number can remove text lines that do not relate to
one another as numeric values tend to translate the
same. Due to the limited time allotted for the shared
task, we opt to remove entirely parallel sentences
that do not have matching numbers. We filter this
by using regular expressions.

2.5 Filtering by Length

Text lines with very long lengths are generally not
informative, we find most of these text lines con-
sists of a list of names that would normally be found
in a bibliography. We set an arbitrary max length of
500 characters for both source and target sentences.
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Duplicates within the same file
GNOME.en-tl.en GNOME.en-tl.tl

Error reading from file: %s Error sa pagbasa ng talaksang ’%s’: %s
Error seeking in file: %s Error sa pagbasa ng talaksang ’%s’: %s

Error closing file: %s Error sa pagbasa ng talaksang ’%s’: %s
Partial duplication

WikiMatrix.en-jv.en WikiMatrix.en-jv.jv
CJ E&M Corporation. Drama iki diprodhuksi déning CJ E&M Corporation.

New Orleans, Louisiana. Lair ing New Orleans, Louisiana.
Edward Thomas Hardy. Jeneng dawané ya iku Edward Thomas Hardy.

Duplication among parallel text
OpenSubtitles.en-ta.en OpenSubtitles.en-ta.ta

Those who are invited will find the way. Those who are invited will find the way.
Gazelle, whose face the full moon forms: Gazelle, whose face the full moon forms:

Time has warned us never to approach her. Time has warned us never to approach her.

Table 2: Examples of duplication based on three types

KDE4.en-id.en KDE4.en-id.id
Task Scheduler Penjadwal TugasComment

Configure and schedule tasks Atur dan jadwal tugasName

Table 3: Example of translations that also have an extra keyword. Underlined text are keywords that are misplaced
in correct translations.

MultiCCAligned.id-tl.id MultiCCAligned.id-tl.tl

Removed
Di. 13:00 - 17:30 Mo. 13:00 - 18:00

Di 24 nov. 10h – 18h Sa 23 nov. 10h – 18h

Kept
(Terakhir diperbarui saat: 24/03/2020) (Huling nai-update Sa: 24/03/2020)

Harga / $: 1,2835 presyo / $: 1.2835

Table 4: Incorrect translations can be easily identified by checking whether numeric values in both strings match.
In the first example, the sentence pair was removed due to differing date and time. In the second example, the
sentence pair was kept as we do not check punctuation for numerical values.

3 Experiments

3.1 Model Architecture

For our submission, we wish to measure how much
performance can be boosted by heuristics-based
data preprocessing alone. Given that we anticipate
most, if not all, submissions to the shared task will
be transformer-based models, we opt to use the
standard “vanilla” Sequence-to-Sequence Trans-
former (Vaswani et al., 2017) model with little-
to-no changes. This lets us more clearly compare
the performance boost of our filtering heuristics
against the boost provided by a number of archi-
tecture augmentations and training tricks that other
submissions might have.

In addition to using a standard Transformer
model, we only train the model directly on our

filtered bitext and do not make use of Backtransla-
tion (Sennrich et al., 2015a) for data augmentation.
We also start from-scratch with models initialized
using Glorot Uniform (Glorot and Bengio, 2010),
opting not to use massively-pretrained translation
models such as M2M-100 (Fan et al., 2021) as our
starting checkpoint.

Following Vaswani et al. (2017), we produce two
models: a base model and a large model. For the
sake of simplicity, for the rest of the paper, we will
refer to our models trained with our filtered data as
BaseHeuristics and LargeHeuristics.

The hyperparameters used for our models are
presented in Table 5.
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Base Large
Vocab Size 37,000 37,000
Encoder Layers 6 6
Decoder Layers 6 6
Attention Heads 8 16
Embedding Dim. 512 1024
Feedforward Dim. 2048 4096
Dropout 0.1 0.3
Attention Dropout 0.1 0.3
Pos. Embeddings Sinusoid Sinusoid
Parameters 63M 214M

Table 5: Model hyperparameter choices for the base
and large Transformer variants.

3.2 Data Preformatting and Tokenization

Our models employ one single shared vocabulary
for all languages and directions. We train our to-
kenizer using the SentencePiece6 library, limiting
our vocabulary to 37,000 BPE (Sennrich et al.,
2015b) tokens, and training with a character cover-
age of 0.995.

Before training the tokenizer, we first preformat
the dataset into the format to be used for training
later on. We append the source and target lan-
guage’s ISO-639-1 code enclosed in square brack-
ets at the beginning of each sentence. For example:

[en] [tl] Today is a sunny day.

is the preformatted version of "Today is a sunny
day." when translating from English to Tagalog.

This preformatting is only done for the source
sentences in the training dataset, while the target
sentences are untouched.

For the purpose of training the tokenizer, the
six language tokens ([en], [id], [jv], [ms],
[ta], and [tl]) are treated as special tokens to
ensure that they will not be segmented later on.

3.3 Training Setup

We then compile our filtered, preformatted bitext
and train our base and large models. During train-
ing, we limit all source and target sentences to a
maximum sequence length of 150 subword tokens.
All sentences that are much longer are truncated.

Our models are trained using the Adam (Kingma
and Ba, 2014) optimizer. Following Vaswani et al.
(2017), we also use the “Noam“ learning rate
scheduler, linearly increasing the learning rate from

6https://github.com/google/sentencepiece

0 for the first 8000 steps, then decaying afterward.
We also set Adam’s β2 = 0.998 and use a label
smoothing factor of 0.1.

For batching, we accumulate tokens until we
reach a maximum size of approximately 32,000
tokens per batch, an increase over the 25,000 tokens
used in Vaswani et al. (2017). We then train the
base model and the large model for 100,000 steps
and 300,000 steps, respectively. All our models are
trained on 8 NVIDIA Tesla P100 GPUs in parallel
using the OpenNMT-py (Klein et al., 2017) toolkit.

3.4 Translation

To generate translations using the model, we use
Beam Search with beam size 5 and apply an aver-
age length penalty of 0.6. During generation, we
limit all outputs to a maximum sequence length
of 100, preemptively terminating generation if it
begins to exceed this maximum length. We do not
use sampling during translation, nor increase the
temperature parameter as this induces randomness
(Lopez et al., 2020).

We test our experimental models on the
FLORES-101 devtest set. We report our BLEU
scores using the SPM-BLEU variant of Sacre-
BLEU7 (Post, 2018).

4 Results

After training our models and producing sample
translations from the FLORES-101 devtest set, we
compare the results of our two models with a num-
ber of baselines:

• Transformers with No Heuristics – These
models are essentially identical with our
Transformer models in terms of architecture,
hyperparameters, and training setups, except
the bitext they are training on are the raw train-
ing corpus given in the competition (i.e. the
filtering heuristics were not applied on them).
We train these models as an ablation experi-
ment to be able to identify how much of the
final performance is attributable to the filter-
ing heuristics.

• M2M-100 615M – This is the baseline given
for the WMT’21 Large-scale Multilingual
Translation Task Small Track 2 competition.
This M2M-100 (Fan et al., 2021) model was

7BLEU+case.mixed+numrefs.1+smooth.exp+tok.spm
+version.1.5.0
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trained on CCMatrix and CCaligned with no
further finetuning on the contest dataset.

• DeltaLM+ZCode – This is the best perform-
ing model for the Small Track 2. The model is
a finetuned version of the DeltaLM (Ma et al.,
2021) encoder-decoder pretrained model.

All analyses and results within this section are
based on the public devtest set and not the contest’s
hidden test set, unless specified. A summary of
the BLEU scores for all models and baselines are
available on Table 6.

4.1 Transformer + Heuristics vs. Baselines
We report the results of our BaseHeuristics and
LargeHeuristics models against the M2M-100 615M
model baseline as well as the best performing
model for the shared task.

BaseHeuristics scored an average BLEU of 20.78
on all 30 directions. On the other hand,
LargeHeuristics scored 22.92 average BLEU on all
30 directions, which is 2.14 BLEU points higher
than the base model. Both models outperformed
the M2M-100 615M baseline, with the base model
giving a 5.32 BLEU improvement, and the large
model giving a 7.46 BLEU improvement.

It is worth noting that, while the BaseHeuristics
outperforms the baseline on average, it fails to out-
perform it on four specific translation directions:
en↔id and en↔ms. Note that it is these two lan-
guage pairs that have the most number of training
sentences in the training corpus.

The language pairs that benefit significantly
from training on the contest dataset are language
pairs that are of less volume than en↔id and
en↔ms. This is likely due to these pairs being
less-sampled in M2M100’s training dataset, and
thus were not as learned by the model compared to
pairs with a higher volume of training data.

The same observations can be found when com-
paring the performance of LargeHeuristics against the
baseline model. LargeHeuristics only marginally out-
performed the baseline in one direction (id→en,
+0.07 BLEU), and marginally underperformed
against the baseline in one direction (ms→en, -
0.47 BLEU). This higher performance for M2M-
100 is likely due to the training method used in
the model in addition to the size of the training
corpora used. While M2M-100 is advantageous in
these translation directions, the difference is only
marginal, most likely owing to LargeHeuristics’s size
which gives it higher capacity.

Both our transformer models and the base-
line model are significantly outperformed by the
DeltaLM+ZCode model, which is the best perform-
ing model in the competition. The best model
outperforms our best model (LargeHeuristics) by a
significant 11.02 average BLEU, and the baseline
model by 18.48 average BLEU.

While DeltaLM+ZCode outperforms our model
in terms of average performance, it is worth noting
that our model – a standard Transformer without
any augmentations and training tricks – managed
to outperform DeltaLM+ZCode in one translation
direction: id→jv.

LargeHeuristics scored 23.91 BLEU while
DeltaLM+ZCode scored 23.35 BLEU. While the
difference is marginal (+0.56 BLEU), our model
still outperforms the best model in this direction,
which we attribute to the quality of our data
preprocessing and filtering heuristics.

4.2 Heuristics vs. No Heuristics

To quantify how much our filtering heuristics con-
tributed to the final performance of our models,
we trained two additional models: both identical to
our base and large transformer variants, except the
training corpus used was not processed using our
filtering heuristics. For these ablation experiments,
we use the same BPE tokenizer that is used for our
main transformer models (trained on the filtered
data). This is to ensure full model equivalency. To
prevent confusion, we will refer to these ablation
models simply as Base and Large to differentiate
them from our contest models BaseHeuristics and
LargeHeuristics.

On average, both sizes of models performed
worse when trained without the filtering heuris-
tics. Base scored 19.28 average BLEU on the de-
vtest set, 1.5 points lower than BaseHeuristics. On
the other hand, Large scored average 21.01 BLEU,
which is 1.91 points lower than LargeHeuristics.

It is interesting, however, that Base outperformed
BaseHeuristics in two translation directions: en→ms
and ms→id. This may indicate that the filtering
heuristics work better for a certain subset of lan-
guages. We look towards exploring how filtering
methods such as ours affect multilingual translation
datasets in terms of balance and informativeness in
the future.

On the other hand, Large performed worse than
LargeHeuristics in all 30 directions. This may be
due to the increase in total trainable parameters, as
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BaseHeuristics LargeHeuristics Base Large M2M100 DeltaLM
Baseline +ZCode

en→id 35.94 39.29 35.12 36.51 36.34 50.90
id→en 31.20 33.40 29.22 30.93 33.33 47.35
en→jv 21.53 23.57 16.95 20.98 15.06 27.70
jv→en 22.09 24.61 18.85 21.26 21.38 39.44
en→ms 31.36 36.93 36.63 38.60 32.63 46.77
ms→en 31.92 33.16 30.31 32.97 33.63 47.86
en→ta 9.15 10.64 8.78 9.68 4.24 35.48
ta→en 17.00 19.55 15.83 18.47 7.52 35.29
en→tl 26.91 33.23 27.87 27.56 9.95 40.52
tl→en 31.22 33.65 26.51 29.61 26.59 48.55
id→jv 23.18 23.91 21.41 22.30 15.86 23.35
jv→id 25.45 27.10 24.15 25.15 23.21 34.64
id→ms 30.58 33.94 28.38 33.01 29.32 38.30
ms→id 30.94 33.68 31.29 32.54 31.44 40.36
id→ta 7.04 7.88 6.78 7.09 1.44 29.61
ta→id 13.74 16.46 13.35 14.87 4.99 28.56
id→tl 23.32 25.27 22.30 23.23 9.32 33.56
tl→id 25.31 27.76 23.40 25.03 20.76 38.70
jv→ms 23.36 25.08 19.92 23.63 19.57 33.14
ms→jv 21.08 21.29 12.33 20.97 14.22 23.91
jv→ta 4.70 4.97 3.85 4.62 3.52 24.19
ta→jv 9.25 11.13 7.54 9.22 2.51 18.35
jv→tl 17.43 19.61 15.79 17.31 11.96 28.50
tl→jv 16.96 18.82 14.56 17.00 12.31 23.17
ms→ta 7.01 7.87 6.65 7.23 2.38 28.83
ta→ms 15.09 16.64 14.54 16.44 4.70 26.83
ms→tl 23.30 24.97 22.17 23.01 11.04 32.81
tl→ms 25.86 27.10 23.19 25.85 18.16 36.15
ta→tl 15.26 18.43 14.98 16.05 3.15 26.64
tl→ta 6.27 7.65 5.89 6.60 3.10 28.80
Average 20.78 22.92 19.28 21.01 15.46 33.94

Table 6: Summary of BLEU scores on the FLORES-101 devtest set. The first two columns show the performance
of our Transformer models trained with the data filtering heuristics. The next two columns show the same Trans-
former models, but trained on an unpreprocessed version of the training dataset. We also show the scores of the
M2M-100 615M baseline model, as well as the best performing model (DeltaLM+ZCode) for the Small Track 2.
LargeHeuristics (column 2) is our final submission model for the contest.
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larger models need more data with higher quality
to be effectively trained.

4.3 The Case of Tamil
We observe that our models, including the other
models on the shared task leaderboard, struggled
with Tamil. X↔ta translation is on average much
worse in terms of BLEU score compared to the
other translation directions that do not involve it.

We hypothesize that this is due to two things.
First, Tamil is the most underrepresented lan-

guage in the shared task dataset, with X↔ta having
the least amount of parallel text for every language
X in the training set. This causes the model, to a
certain extent, to underfit on directions that trans-
late to or from Tamil.

Second, Tamil is the only language in the shared
task dataset that does not use the latin alphabet.
Combined with the fact that it is the most under-
represented language in the dataset, there is a pos-
sibility that the model may have treated Tamil as
noise during training. The observation that X→ta
performs worse on average compared to its inverse
direction ta→X lends more credence to this hy-
pothesis. The model is not trained well to represent
sentences in Tamil, and thus, struggles when gen-
erating Tamil translations.

Part of our planned future work includes iden-
tifying methods to improve translation in multi-
lingual datasets where the alphabets used may be
more than one. This is to improve translation to
non-latin alphabet languages in future methods.

4.4 Hidden Test Set Performance
We also report the performance of our models
on the shared task’s hidden test set. We once
more compare our results against the baseline
M2M-100 model as well as the best performing
DeltaLM+ZCode model.

Our final submission for the shared task was
our LargeHeuristics model, which performed with an
average BLEU of 22.97 on the shared task’s hidden
test set. This is a marginal difference from it’s
devtest set score (+0.05 average BLEU).

LargeHeuristics, unsurprisingly, still outperformed
BaseHeuristics (20.73 average BLEU, +2.24 improve-
ment) and the baseline M2M-100 model (14.02
average BLEU, +8.95 improvement) in the hidden
test set. The shared task’s best performing model,
DeltaLM+ZCode, still outperforms all other mod-
els in the hidden test set, scoring 33.89 average
BLEU, a 10.92 improvement over our best model.

Public Hidden Rank
Test Test

M2M-100 615M 15.46 14.02 8
DeltaLM+ZCode 33.94 33.89 1
BaseHeuristics 20.78 20.73 -
LargeHeuristics 22.92 22.97 6

Table 7: Average BLEU scores on the contest’s hidden
test set. The BaseHeuristics model is unranked as it was
not submitted as our final model.

On the hidden test set, LargeHeuristics still ranked
first in the id→jv translation direction, scoring
24.05 BLEU. This outperforms DeltaLM+ZCode’s
23.79 BLEU (+0.26) and M2M-100’s 15.33 BLEU
(+8.72).

A summary of our model’s performance on the
hidden test set, as well as the baseline and best
performing model, can be found on Table 7

5 Conclusion

In this paper, we described the translation sys-
tems submitted by the joint Samsung Research
Philippines-Konvergen AI team for the WMT’21
Large Scale Multilingual Translation Small Track
2 shared task. We outline the filtering heuristics
that we took to preprocess our data. We then train
two models with a bitext preprocessed using our
filtering heuristics, with our best model reaching
an average BLEU score of 22.92 on the devtest
set, and outperforming the baseline model by 7.46
BLEU points. In addition, we rank sixth in the
contest leaderboard overall, scoring 22.97 BLEU
on the hidden test set.

We also reached first place for the id→jv trans-
lation direction, beating all other more complex
models, despite only using a standard transformer
without any special augmentations and training
tricks. This provides empirical evidence that data
quality and preprocessing decisions weigh just as
much, if not even more, than cutting edge model
architectures and training techniques do.
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Abstract

This paper describes TenTrans large-scale
multilingual machine translation system for
WMT 2021. We participate in the Small
Track 2 in five South East Asian languages,
thirty directions: Javanese, Indonesian, Malay,
Tagalog, Tamil, English. We mainly uti-
lized forward/back-translation, in-domain data
selection, knowledge distillation, and grad-
ual fine-tuning from the pre-trained model
FLORES-101. We find that forward/back-
translation significantly improves the trans-
lation results, data selection and gradual
fine-tuning are particularly effective during
adapting domain, while knowledge distillation
brings slight performance improvement. Also,
model averaging is used to further improve
the translation performance based on these sys-
tems. Our final system achieves an average
BLEU score of 28.89 across thirty directions
on the test set.

1 Introduction

We participate in the WMT 2021 large-scale mul-
tilingual machine translation task small track 2
in 6 languages: English, Indonesian, Javanese,
Malay, Tamil, Tagalog (briefly, En, Id, Jv, Ms, Ta,
Tl). Any two of these languages translated into
each other produces a total of 30 directions, in-
cluding English↔Indonesian, English↔Javanese,
English↔Malay, English↔Tamil, English↔ Taga-
log, Indonesian↔Javanese, Indonesian↔Malay,
Indonesian↔Tamil, Indonesian↔Tagalog, Ja-
vanese ↔Malay, Javanese↔Tamil, Javanese↔
Tagalog, Malay↔Tamil, Malay↔Tagalog and
Tamil↔Tagalog. To meet the requirements for
data restrictions, our systems are all built with con-
strained data sets. For all systems, we adopt a
universal encoder-decoder architecture that shares

∗Corresponding author: Qi Ju.
Our code, data, and model can be obtained at

https://github.com/TenTrans/TenTrans

parameters across all languages (Johnson et al.,
2017).

Our systems are based on several techniques and
approaches. We experiment with base and deeper
Transformer (Vaswani et al., 2017) architectures
to get reliable baselines, fine-tune the pre-training
model FLORES-101 (Goyal et al., 2021) to further
improve the baseline system. Moreover, we gener-
ate pseudo bilingual sentences from the large-scale
monolingual data, apply sequence level knowledge
distillation (Kim and Rush, 2016) on partial lan-
guage pairs, and try a more effectively fine-tuning
strategy to domain adaptation (Gu et al., 2021). Par-
ticularly in the language pairs with inferior trans-
lations, we specifically improve their performance.
All of these technologies have improved our sys-
tems, particularly data selection and gradual fine-
tuning. We carefully rethought this strategy and
found the main gain may come from in-domain
knowledge adaptation.

This paper was structured as follows: Section 2
describes the data set. Then, we present a detailed
overview of our systems in Section 3. The experi-
ment settings and main results are shown in Section
4. Finally, we conclude our work in Section 5.

2 Data Prepration

We use FLORES-101 SentencePiece (SPM) 1 tok-
enizer model with 256K tokens to tokenize bitext
and monolingual sentences 2. Since it is important
to clean data strictly (Wang et al., 2018), we follow
m2m-100 data preprocessing procedures 3 to filter
bitext data. The rules are as follows:

• Remove sentences with more than 50% punc-
tuation.

1https://github.com/google/sentencepiece
2https://dl.fbaipublicfiles.com/flores101/pretrained_models/

flores101_mm100_615M.tar.gz
3https://github.com/pytorch/fairseq/tree/master/examples/

m2m_100

439



En↔Id En↔Jv En↔Ms En↔Ta En↔Tl Id↔Jv Id↔Ms Id↔Ta
No filter 36.15M 1.52M 7.43M 1.19M 6.97M 0.75M 4.23M 0.46M
Filtered 33.67M 1.41M 7.03N 1.06M 6.15M 0.67M 3.97M 0.41M

Id↔Tl Jv↔Ms Jv↔Ta Jv↔Tl Ms↔Ta Ms↔Tl Ta↔Tl
No filter 2.56M 0.41M 0.06M 0.74M 0.33M 1.27M 0.53M
Filtered 2.18M 0.36M 0.05N 0.61M 0.30M 1.09M 0.44M

Table 1: Number of sentences in bitext data sets.

En Id Jv Ms Ta Tl
No filter 126.44M 5.46M 0.41M 1.87M 2.06M 0.41M
Filtered 113.36M 5.26M 0.38N 1.85M 2.03M 0.39M

Table 2: Number of sentences in monolingual data sets.

• Deduplicate training data.

• Remove all instances of evaluation data from
the training data.

• Filter sentences that are longer than 250 to-
kens or length ratio upper than 3.

For monolingual data, we still employ those
rules except the length ratio filter. See Table 1
for the statistics of bitext data sets and Table 2 for
monolingual data sets.

3 System Overview

3.1 Base Systems

Our systems are based on the Transformer archi-
tecture (Vaswani et al., 2017) as implemented in
TenTrans 4, a unified end-to-end multilingual and
multi-task training platform. We first train a model
following the Transformer base setup to jointly
training all language pairs as our base system.
Then, inspired by Wang et al. (2019), we exper-
iment with raising network capacity by increasing
encoder/decoder layers and feed-forward networks.
We found that using a deeper encode layer (24) and
a larger feed-forward network size (4096) can pro-
vide reasonable performance improvements while
maintaining manageable network size and not in-
creasing inference time.

Because of the recent popularity of using large-
scale pre-training models to fine-tune specific lan-
guages and tasks (Fan et al., 2020; Liu et al., 2020),
we use the pre-trained model FLORES-101 re-
leased by the organizer to fine-tune on the bitext

4https://github.com/TenTrans/TenTrans

data. This system has further improved our transla-
tion performance in all thirty translation directions.
Note that to fine-tune FLORES-101 we train our
models using FAIRSEQ (Ott et al., 2019).

3.2 Forward-Translation and
Back-Translation

Back-translation is an effective and common way
to boost translation quality by using monolingual
data to produce pseudo training parallel data. As
opposed to back-translation, forward translation
use source-side monolingual data to translate into
the target language, and can be quite effective in
some cases (Bogoychev and Sennrich, 2019). Wu
et al. (2019) has shown that when monolingual data
from source and target languages are used together
to produce pseudo data, the translation quality is
best, and the experimental performance will be
improved with the increase of data.

In this work, considering the excellent perfor-
mance of forward-translation and back-translation,
we use both methods together. For translation di-
rections with more than 5 million bitext data, such
as En↔Id, En↔Ms, En↔Tl, we separately train
an individual model for each direction and use it for
the pseudo-corpus generation. For other translation
directions with less than 5 million bitext data, we
use the baseline system of all language pairs jointly
training for translating pseudo sentences. Due to a
large amount of English monolingual data, English
monolingual sentence was randomly divided into
13.36M, 25M, 25M, 25M, and 25M for En→Id,
En→Jv, En→Ms, En→Ta, and En→Tl translation
respectively. All monolingual data of Id, Jv, Ms, Ta,
and Tl are used in translation to all other directions.

3.3 In-domain Data Selection
The training data is provided by the publicly avail-
able Opus repository, which contains data of var-
ious quality from a variety of domains, while the
hidden test set is the same domain as the provided
dev and devtest datasets. After fine-tuning on a
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En→Id En→Jv En→Ms En→Ta En→Tl Id→En Id→Jv Id→Ms Id→Ta Id→Tl
0.7 3.83M 7.62K 1.15M 0.21M 0.36M 12.32M 0.05M 2.11M 0.23M 0.43M
0.8 3.44M 6.93K 1.05M 0.19M 0.34M 12.12M 0.05M 2.08M 0.22M 0.42M
0.9 2.82M 5.99K 0.89M 0.16M 0.30M 11.82M 0.04M 2.02M 0.22M 0.41M
0.99 1.24M 3.14K 0.44M 0.09M 0.17M 10.73M 0.03M 1.84M 0.20M 0.37M

Jv→En Jv→Id Jv→Ms Jv→Ta Jv→Tl Ms→En Ms→Id Ms→Jv Ms→Ta Ms→Tl
0.7 59.99K 41.90K 15.82K 9.98K 14.77K 3.65M 2.20M 24.77K 0.18M 0.33M
0.8 57.12K 40.74K 14.83K 9.78K 14.29K 3.59M 2.17M 23.32K 0.18M 0.33M
0.9 53.05K 39.07K 13.76K 9.47K 13.61K 3.49M 2.11M 21.24K 0.17M 0.32M
0.99 41.59K 34.07K 10.47K 8.37K 11.39K 3.14M 1.91M 15.36K 0.16M 0.29M

Ta→En Ta→Id Ta→Jv Ta→Ms Ta→Tl Tl→En Tl→Id Tl→Jv Tl→Ms Tl→Ta
0.7 0.72M 0.28M 17.60K 0.21M 0.20M 1.12M 0.43M 17.95K 0.31M 0.15M
0.8 0.71M 0.27M 16.83K 0.20M 0.19M 1.11M 0.42M 17.32K 0.30M 0.15M
0.9 0.69M 0.27M 15.73K 0.20M 0.19M 1.09M 0.41M 16.38K 0.30M 0.15M
0.99 0.63M 0.24M 12.49K 0.18K 0.16M 1.03M 0.38M 0.01M 0.28M 0.13M

Table 3: Data filtered at different thresholds for all language pairs.

mixture of authentic bitext and pseudo-data, we
select domain-specific data from the bitext and con-
tinue to fine-tune to further improve translation
quality.

Due to the scarcity of in-domain data, we
utilize pre-trained language model multilingual
BERT (Devlin et al., 2019) to train a domain clas-
sifier for extracting in-domain sentences from au-
thentic bilingual sentences. To train the domain
classifier, we consider all available dev data as pos-
itive data, and randomly sample bilingual data as
negative samples. At the same domain test set, the
domain classifier recognition accuracy is achieved
at 93.97%. We select sentences predicted to be
positive with a probability greater than threshold
0.7 to form an in-domain corpus.

3.4 Knowledge Distillation

Knowledge distillation (Hinton et al., 2015) is a
way to train a smaller network of students to per-
form better by learning from a larger teacher model.
On this basis, sequence-level knowledge distilla-
tion trains the student model on the new data gen-
erated by the teacher model to further improve the
performance of the student (Kim and Rush, 2016).

A multilingual translation model that trains too
many languages at the same time may degrade per-
formance (Xie et al., 2021), especially involving
30 translation directions in this work. It makes it
harder for the model to accommodate all language
pairs. Based on this, we fine-tune the FLORES-101
model on five language pairs with En→Ta, Id→Ta,
Jv→Ta, Ms→Ta, Tl→Ta to produce an Any-to-Ta
specific translation model (Tan et al., 2019). These

five language pairs are chosen because they do not
perform very well and have more room for improve-
ment. We used this model as the teacher model to
translate the training data of the five language pairs.
The new data was then combined with data of other
language pairs to train the student model.

3.5 Gradual Fine-tuning

Fine-tuning can improve the machine translation
model by adapting the initial model trained on
abundant but less domain-specific examples to the
data in the target domain. This domain adapta-
tion is usually accomplished with a phase of fine-
tuning. While Xu et al. (2021) prove that gradual
fine-tuning over a multi-stage process can yield
substantial further gains. Intuitively, the model is
iteratively trained to convergence on data whose
distribution progressively approaches that of the
in-domain data, similar to the curriculum learning
strategy (Bengio et al., 2009; Kocmi and Bojar,
2017).

In this work, we use gradual fine-tuning com-
bined with in-domain data selection. After training
the domain classifier, authentic bilingual sentences
with positive predictions and probabilities greater
than the thresholds of 0.7, 0.8, 0.9, and 0.99 are
selected to form in-domain corpora with different
similarity degrees. Data statistics with different
thresholds are shown in the Table 3. The higher the
threshold, the more the selected data fits into the
domain of the dev set and test set. We started with
a gradual fine-tuning on the domain-specific data
selected at the 0.7 thresholds, followed by the 0.8
thresholds, and so on.
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System Average BLEU
Transformer 22.25
+ F&B 25.05
+ deep (24) 25.43
FLORES-101 15.38
+ Fine-tuning 24.23
+ F&B 26.50
+ Data Selection 27.24
+ Gradual FT 28.03
+ KD 28.15
+ Recover 12 28.32
Averaging 28.94

Table 4: Average BLEU (%) scores of all systems. The
’+’ means the approach added to the system over the
previous line.

To further improve performance, we selected
12 language pairs that are significantly better
than the baseline system. We consider them
BLEU-sensitive and performance-friendly lan-
guage pairs, which include En→Ta, Id→Ta,
Jv→En, Jv→Ta, Jv→Tl, Ms→Ta, Ta→En, Ta→Id,
Ta→Jv, Ta→Ms, Ta→Tl and Tl→Ta. After the
gradual fine-tuning, we recover all the authentic
bilingual sentences of these 12 language pairs,
while the training sentences of other language pairs
are still the training data when the threshold is 0.99.
We continue to fine-tune the multilingual transla-
tion model. We find that the results still improve
on these 12 language pairs and the performance of
other language pairs is almost unchanged.

3.6 Model Averaging

Model averaging is typically used between 5 or
10 adjacent checkpoints on the same system. It
is almost impossible to average different systems
because neurons or parameters at the same location
in different systems may be responsible for com-
pletely different knowledge or responsibilities. Our
systems kept the random seeds consistent, and the
training data did not differ too much, so we tried a
variety of model averaging methods to see whether
the performance was improved. We finally chose
average multiple checkpoints in a single system,
and then averaged on different systems. In this
way, the translation result can be further improved.

4 Experiments

4.1 Experiment Settings
Except for the FLORES-101 fine-tuning experi-
ments training on 48 NVIDIA P40 GPUs, the rest
of our experiments are carried out with 16 NVIDIA
P40 GPUs. Our model apply Adam (Kingma and
Ba, 2015) as optimizer with β1 = 0.9, β2 = 0.98,
and ε = 10−9. We set the label smoothing to 0.2
and the dropout rate to 0.3. The initial learning
rate is set to 5e-4 varied under a warm-up strat-
egy with 4000 steps. For training, the batch size
is 4096 tokens per GPU. For fine-tuning FLORES-
101, we apply a temperature sampling strategy with
sampling temperature T = 1.5 (Arivazhagan et al.,
2019). During inference, we decode with beam
search and set beam size to 4 for all language pairs.
The translation results we reported is detokenized
and then the quality is evaluated using the 4-gram
case-sensitive BLEU (Papineni et al., 2002) with
the SacreBLEU tool (Post, 2018).5

4.2 Main Results
Results for all of our systems are shown in Table 4.
For convenience, we only report the average BLEU
for 30 language pairs. The detailed BLEU scores
for each language pair of systems implemented
by TenTrans tool are shown in Table 5, and the
relevant systems for fine-tuning FLORES-101 are
shown in Table 6.

As shown in Table 4, we found that the baseline
system with fine-tuning FLORES-101 performed
better than the baseline system with no pre-training
model (24.23 vs. 22.25). Forward-translation
and back-translation (F&B) greatly improved the
translation performance in both TenTrans (25.05
vs. 22.25) and FLORES-101 (26.50 vs. 24.23)
frameworks. The results of individual models for
forward-translation and back-translation are shown
in Table 7. Deep Transformer with 24 encoder
layers further improves translation results, but still
not as high as fine-tuning FLORES-101 systems.
Given the excellent performance of the pre-trained
model, our subsequent series of approaches are
based on fine-tuning FLORES-101.

In-domain data selection is restricted to in-
domain data size (threshold 0.7), but we also ob-
tain a solid improvement of 0.74 BLEU on average.
Gradual fine-tuning (Gradual FT) is also effective,
which enables the model to potentially better fit

5BLEU+case.mixed+numrefs.1+smooth.exp+tok.spm
+version.1.5.0
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System En→Id En→Jv En→Ms En→Ta En→Tl Id→En Id→Jv Id→Ms Id→Ta Id→Tl
Transformer 43.37 18.12 40.44 15.99 29.21 36.39 17.93 33.18 13.98 24.47
+ F&B 42.93 23.54 41.73 22.18 30.65 36.58 21.65 33.70 17.93 24.98
+ deep (24) 44.13 23.61 42.59 22.76 31.38 37.95 21.50 34.34 18.13 25.69

Jv→En Jv→Id Jv→Ms Jv→Ta Jv→Tl Ms→En Ms→Id Ms→Jv Ms→Ta Ms→Tl
Transformer 23.38 24.33 21.60 9.27 16.06 35.21 34.29 16.61 13.72 23.46
+ F&B 26.20 26.04 24.55 14.43 19.39 37.08 34.50 21.09 18.15 24.10
+ deep (24) 26.25 25.72 24.08 14.76 19.95 38.02 34.73 21.13 18.65 24.95

Ta→En Ta→Id Ta→Jv Ta→Ms Ta→Tl Tl→En Tl→Id Tl→Jv Tl→Ms Tl→Ta
Transformer 14.61 13.12 5.83 13.21 14.55 34.28 28.05 13.53 26.35 12.93
+ F&B 21.04 15.76 10.62 16.39 17.55 36.52 27.87 18.48 27.75 18.17
+ deep (24) 21.19 17.02 9.70 17.04 18.20 36.52 28.85 17.89 27.93 18.35

Table 5: Results of the systems implemented by TenTrans on the devtest set.

System En→Id En→Jv En→Ms En→Ta En→Tl Id→En Id→Jv Id→Ms Id→Ta Id→Tl
FLORES-101 37.28 15.35 33.40 3.38 6.38 33.75 16.55 29.45 1.36 8.07
+ Fine-tuning 44.79 17.60 41.39 20.14 30.71 38.86 18.26 34.56 16.64 26.50
+ F&B 44.06 23.43 43.01 22.67 32.49 40.29 21.53 35.31 18.86 26.62
+ Data Selection 44.73 22.02 43.46 24.32 33.14 41.05 20.81 35.66 18.60 28.28
+ Gradual FT 45.30 23.13 43.74 25.77 33.43 41.53 22.04 35.88 19.96 28.68
+ KD 45.49 24.40 43.97 28.21 33.90 40.99 22.07 35.95 23.52 28.99
+ Recover 12 45.52 24.46 44.02 28.89 34.27 40.94 22.08 35.93 23.67 28.82
Averaging 46.15 24.16 44.47 27.24 34.19 42.00 22.64 36.55 22.87 29.45

Jv→En Jv→Id Jv→Ms Jv→Ta Jv→Tl Ms→En Ms→Id Ms→Jv Ms→Ta Ms→Tl
FLORES-101 20.90 22.77 18.98 3.73 12.07 34.24 32.18 15.18 2.22 9.64
+ Fine-tuning 25.38 25.95 23.08 9.78 17.95 38.46 35.87 17.46 16.61 25.02
+ F&B 27.23 26.69 24.98 15.46 20.93 39.38 36.20 21.73 19.34 27.17
+ Data Selection 30.67 28.92 26.57 15.10 21.68 41.60 36.37 21.21 20.33 27.25
+ Gradual FT 31.63 29.69 27.16 16.82 22.40 41.68 36.72 21.63 21.41 27.40
+ KD 30.79 29.44 26.84 17.28 22.93 41.55 36.73 20.80 23.30 28.50
+ Recover 12 30.76 29.55 26.84 17.30 23.05 41.78 36.76 21.57 23.63 28.08
Averaging 31.82 30.22 27.93 18.47 23.74 42.54 37.27 22.15 23.47 28.34

Ta→En Ta→Id Ta→Jv Ta→Ms Ta→Tl Tl→En Tl→Id Tl→Jv Tl→Ms Tl→Ta
FLORES-101 8.41 5.36 3.11 4.89 3.30 26.10 20.43 11.52 18.00 3.46
+ Fine-tuning 19.91 16.44 7.76 15.96 17.04 36.61 30.85 12.68 28.71 15.80
+ F&B 23.68 17.75 10.83 17.61 18.91 39.80 30.84 19.48 29.71 18.97
+ Data Selection 25.11 19.14 10.00 18.91 20.20 41.42 32.71 16.27 30.97 20.61
+ Gradual FT 25.29 20.07 12.86 19.68 20.85 41.42 33.55 18.12 31.33 21.75
+ KD 25.04 19.03 11.27 18.91 21.20 40.95 32.83 17.06 31.19 21.33
+ Recover 12 25.04 19.59 11.08 19.07 20.92 41.17 32.96 18.58 31.30 21.93
Averaging 26.19 21.21 12.75 20.25 21.87 42.06 34.17 19.00 31.93 23.04

Table 6: Results of the systems about FLORES-101 on the devtest set. The ’+’ means the approach added to the
system over the previous line. "Average" stands for averaging the model of the three best checkpoints of the "+
Gradual FT" system and the "+ Recover 12" system respectively.

System En→Id Id→En En→Ms Ms→En En→Tl Tl→En
Individual 46.08 40.72 42.95 38.76 31.84 37.94

Table 7: Results of the individual models for forward-translation and back-translation.

System AVE En→Ta Id→Ta Jv→Ta Ms→Ta Tl→Ta
FLORES-101 + Fine-tuning 15.79 20.14 16.64 9.78 16.61 15.80
Any-to-Ta 22.83 28.75 23.40 17.02 23.27 21.70

Table 8: Results of FLORES-101 fine-tuning on Any-to-TA language pairs only.
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Dataset sp_bleu

flores101-small2-test 28.89
flores101-small2-dev 29.25
flores101-small2-devtest 28.94

Table 9: Flores MT Evaluation (Small task 2) results:
https://dynabench.org/models/460

the distribution of the target domain. The knowl-
edge distillation, however, has not brought much
improvement (28.15 vs. 28.03). The translation
performance of the teacher model is shown in Ta-
ble 8. We guess that it may be because the trans-
lation quality of the teacher model is not excellent
enough, which leads to the improvement of the
student model is not satisfactory. We then recov-
ered bilingual sentences for 12 BLEU-sensitive lan-
guage pairs. As shown in Table 6, the performance
of these 12 language pairs improved significantly,
while the results of the other language pairs barely
changed, so our average BLEU improved further.
For model averaging, we tried different combina-
tions and finally found that averaging the three best
checkpoints in "+ Gradual FT" and "+ Recover 12"
will produce the best performance (28.94).

4.3 Submitted Results
As shown in Table 9, we ultimately chose the best-
performing model on devtest to submit to Dyn-
abench 6 and achieve 28.89 in the hidden test set.

5 Conclusion

This paper introduced our TenTrans submissions
on WMT21 large-scale multilingual machine trans-
lation small task 2. Our main exploration is using
more diversified architectures and fine-tuning strat-
egy, utilizing forward-translation and back trans-
lation and approaches including in-domain data
selection, knowledge distillation, and gradual fine-
tuning. We experimented with these methods and
continuously improve our system performance. On
the whole, all of our systems performed competi-
tively and ranked 3rd on the leaderboard.
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Abstract
This report describes Microsoft’s machine
translation systems for the WMT21 shared
task on large-scale multilingual machine trans-
lation. We participated in all three evaluation
tracks including Large Track and two Small
Tracks where the former one is unconstrained
and the latter two are fully constrained. Our
model submissions to the shared task were ini-
tialized with DeltaLM1, a generic pre-trained
multilingual encoder-decoder model, and fine-
tuned correspondingly with the vast collected
parallel data and allowed data sources ac-
cording to track settings, together with ap-
plying progressive learning and iterative back-
translation approaches to further improve the
performance. Our final submissions ranked
first on three tracks in terms of the automatic
evaluation metric.

1 Introduction

Recently, multilingual neural machine translation
has attracted lots of attention because it enables
one model to translate between multiple languages
(Dong et al., 2015; Johnson et al., 2017; Arivazha-
gan et al., 2019; Dabre et al., 2020; Philip et al.,
2020; Lin et al., 2021). To improve the perfor-
mance of the multilingual translation models, there
are various approaches on the training methods
(Aharoni et al., 2019; Wang et al., 2020a,c), the
model structures (Wang et al., 2018; Gong et al.,
2021; Zhang et al., 2021a), and the data augmenta-
tion (Tan et al., 2019; Pan et al., 2021). M2M (Fan
et al., 2020) leverages the large-scale data mined
from the web data and explore the strategies to
scale the model size and train the model effectively.
Meanwhile, the multilingual pre-trained language
models have proven beneficial for the multilingual
machine translation models. mBART (Liu et al.,
2020) pre-trains a multilingual model with the mul-
tilingual denoising objective to improve the multi-
lingual machine translation.

1https://aka.ms/deltalm

In this work, we explore the effects of differ-
ent advanced approaches for multilingual machine
translation models, especially on the large-scale
dataset. We first explore the way to leverage the
pre-trained language models that have been trained
with large-scale monolingual data. We use the pub-
lic available DeltaLM-Large checkpoint to initial-
ize the model. DeltaLM (Ma et al., 2021) is a multi-
lingual pre-trained encoder-decoder model, which
has been proven useful for multilingual machine
translation.

We further explore the training methods and the
data augmentation to improve the model. For ef-
ficient training, we apply progressive learning (Li
et al., 2020; Zhou et al., 2021; Zhang et al., 2021b)
to our model that continue-trains a shallow model
into a deep model. Specifically, we first train a
model with 24 encoder layers, and then continue-
train it by adding 12 layers on the top of the en-
coder. As for the data augmentation, we implement
iterative back-translation (Hoang et al., 2018; Dou
et al., 2020) that back-translates the data for mul-
tiple rounds. Due to the limits of time and GPU
memories of the shared task, we do not explore
other approaches like mixture-of-experts (MOE)
and model ensemble.

We participated in all three tracks including
Large Track, Small Track #1, and Small Track #2.
Our final submissions are fine-tuned from DeltaLM
with the allowed data sources according to the track
settings, followed by progressive learning and iter-
ative back-translation. The submissions on three
tracks all rank first in terms of the automatic evalu-
ation metric.

2 Data

Large Track The monolingual and bilingual
data are collected from multiple sources, includ-
ing CCAligned (El-Kishky et al., 2020), CCMatrix
(Schwenk et al., 2021), OPUS-100 (Zhang et al.,
2020), JW300 (Agic and Vulic, 2019), Tatoeba
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Figure 1: Dataset statistics of the bilingual data of the 102 languages. For better visualization, we apply the
logarithmic function (base 10 logarithm) to the size of the training data. Each column denotes the data size of a
language that was paired with the remaining 101 languages. For example, the first column denotes the number of
bilingual sentence pairs that contain sentences from language hr.

(Tiedemann, 2012), WMT2021 news track2, mul-
tilingual track data3, and our in-house data. To
improve the translation quality of non-English lan-
guages, we construct dual-pseudo parallel data (or
dual-pseudo data briefly) in which the source and
target sides per each sentence pair are translated
from the same monolingual English sentence re-
spectively. The Wikipedia English monolingual
sentences are translated to other 70 languages by
leveraging various machine translation models in-
cluding in-house MT models, M2M (Fan et al.,
2020), the multilingual model of small tracks, and
our intermediate multilingual MT model.

Finally, the training data was split into three
parts: the bitext data (1.7B parallel sentences from
394 language pairs), the back-translation (1.4B par-
allel sentences from 45 language pairs), and the
dual-pseudo data (8.7B parallel sentences of 70
languages from 4830 language pairs). Figure 1
lists the statistics of the bilingual training data size
of 102 languages.

Small Track #1 We use the constrained mono-
lingual and bilingual data of 6 languages (Croatian,
Hungarian, Estonian, Serbian, Macedonian, and
English) provided by the shared task. According
to the statistics, the bitext data contains 273M sen-
tence pairs of all translation directions. Inspired
by the previous work, we leverage the multilingual
iterative back-translation method with one single
multilingual model to generate parallel pseudo data.

2http://statmt.org/wmt21/
translation-task.html

3http://data.statmt.org/wmt21/
multilingual-task/

For En→X and X→En directions, we generate the
back-translation data of 390M sentence pairs. As
for X→Y directions, we generate the dual-pseudo
data of 1.18B sentence pairs, where X and Y stand
for any two non-English languages.

Small Track #2 The monolingual and bilingual
corpora of 6 languages (Javanese, Indonesian,
Malay, Tagalog, Tamil, and English) provided by
the shared task are used for the multilingual model
training, containing 98M bilingual data, 256M gen-
erated back-translation data, and 860M generated
dual-pseudo data.

3 Large-scale Data Augmentation

In this section, we introduce details about
how to perform the iterative back-translation
method (Hoang et al., 2018) to augment data. We
use different models for data augmentation accord-
ing to different tracks. For the small tracks, the mul-
tilingual models were trained over the constrained
data sets to generate data. For the large track, we
leverage the M2M model (Fan et al., 2020), the in-
termediate multilingual MT models, and in-house
MT models to generate different language pairs’
data respectively, so as to play their respective ad-
vantages to enhance the data generation quality.

In practice, both the monolingual and bilingual
corpora are effectively utilized in three ways: 1)
For the back-translation data of X→En and En→X
directions, we used the best model to generated X
data accordingly by back-translating monolingual
English Wikipedia data; 2) For the dual-pseudo
data of X→Y directions, they are generated by
back-translating the same English text to X and Y
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respectively. Alternatively, when the monolingual
data of either X or Y is enough, we also directly
perform back-translation between X and Y to ob-
tain pseudo parallel data; 3) We try to augment
existing bilingual corpora with the third language.
Given the bilingual corpus (X1, Y1), we generate
pseudo parallel corpus of (X1, Y2) and (X2, Y1) by
back-translating X1 to X2 and Y1 to Y2, where X2

and Y2 are non-English languages.

4 Preprocessing

Filtering To enhance the model performance, we
remove the noisy sentence pairs with the incor-
rect language identification or character encoding.
More specifically, we remove the sentences longer
than 1024 words and truncate the sentence to 512
tokens. We also construct three corpora after to-
kenization with different length ratio limitations,
i.e. {1.5, 2.0, 2.5, 3.0}, between the source and the
target sentence. Our multilingual model is first
trained on the entire noisy data set and then contin-
ually tuned on cleaner data with descending length
ratio, where the number of training directions is
also gradually reduced by removing noisy language
pairs. Therefore, we can progressively fine-tune
the multilingual model in an efficient way (noisy
corpora → clean corpora ∧ numerous directions
→ selected directions ∧ shallow encoder layers→
deep encoder layers). Besides, to clean the back-
translation corpora, we remove the sentences con-
taining unknown tokens ([UNK]). Regarding the
language Sr (Serbian), those sentences comprised
of Latin characters in training data were also dis-
carded since we found that the validation sets use
Cyrillic script for this language instead.

Tokenization After data filtering, we use the Sen-
tencePiece (Kudo and Richardson, 2018) to tok-
enize all raw training, validation, and test data sets,
where the SentencePiece model is consistent with
the one used for DeltaLM (Ma et al., 2021). We
shuffled the whole training dataset before launch-
ing the training of multilingual models. The input
sentence is prefixed with the language tag to indi-
cate the translation direction.

5 Model and Training

5.1 DeltaLM

We adopt the DeltaLM_large architecture as
the backbone model for all our experiments, which
has 24 Transformer encoder layers and 12 inter-

leaved decoder layers with an embedding size
of 1024, a dropout of 0.1, the feed-forward net-
work size of 4096, and 16 attention heads. We
directly initialize our model with the public avail-
able DeltaLM large checkpoint4.

5.2 Multilingual Fine-tuning

The training data was split into the bitext corpora
Db = {D1

b , . . . , D
u
b }, the back-translation corpora

Dbt = {D1
bt, . . . , D

v
bt}, and the dual-pseudo cor-

pora Ddp = {D1
dp, . . . , D

w
dp}, where u, v, w repre-

sent the number of the corpora of different trans-
lation directions. The multilingual model with pa-
rameters Θ is jointly trained over the corpora to
optimize the combined objective as below:

LMT =− λ1
u∑

i=1

Ex,y∈Di
b

[− logP (y|x; Θ)]

− λ2
v∑

i=1

Ex,y∈Di
bt

[− logP (y|x; Θ)]

− λ3
w∑

i=1

Ex,y∈Di
dp

[− logP (y|x; Θ)]

(1)

where x, y denote the sentence pair in the bilingual
corpus. LMT is the combined translation objec-
tive of the multilingual model. λ1, λ2, λ3 (λ1 +
λ2 + λ3 = 1.0) are used to balance the training ob-
jectives of the bitext corpora, the back-translation
corpora, and the dual-pseudo corpora. In this work,
we first set λ1 = 0.33, λ2 = 0.33, λ3 = 0.33 and
then reset λ1 = 0.6, λ2 = 0.2, λ3 = 0.2 to fo-
cus more on the bitext corpora avoiding the noise
introduced by pseudo data.

We follow the dynamic temperature-based data-
sampling strategy (Fan et al., 2020; Wang et al.,
2020b) to ease the underrepresentation of low-
resource languages. The probability of picking
a language is proportional to its number of sen-
tences Dl, i.e., pl = Dl∑

iDi
. We set the temperature

T = 5 to rescale and control the distribution p
1
T
l . It

can balance the samples between the high-resource
languages and the low-resource languages.

5.3 Progressive Learning

We implement the progressive training method to
train the model from shallow to deep (Li et al.,
2020). The training process can be divided into two
stages. In the first stage, the pre-trained DeltaLM
model with 24 encoder layers and 12 decoder lay-
ers is directly adopted to initialize the multilingual

4https://aka.ms/deltalm
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translation model with the same architecture. The
shallow translation model with 24 encoder layers
and 12 decoder layers is fine-tuned on all avail-
able multilingual corpora. In the second stage, we
increase the depth of the encoder from 24 layers
to 36 layers, where the bottom 24 layers of the
encoder are initialized with the shallow model’s
encoder and the top 12 layers are randomly ini-
tialized. Then we perform continue training. The
deeper encoders enlarge the model’s capacity, but
no much extra decoding cost is introduced.

5.4 Training Details

We train multilingual models with the Adam op-
timizer (Kingma and Ba, 2014) (β1 = 0.9, β2 =
0.98). The learning rate is set as 1e-4 with a warm-
up step of 4, 000. The models are trained with the
label smoothing with a ratio of 0.1. All experi-
ments are conducted on 64 NVIDIA V100 or 32
A100 GPUs. The batch size is 1536 or 2048 tokens
per GPU and the model is updated every 32 (for 64
V100 GPUs) or 64 (for 32 A100 GPUs) steps to
simulate the large batch size.

5.5 Decoding

To enhance the performance of low-resource lan-
guage pairs for X→Y directions, we adopt the
pivot-based translation method (Kim et al., 2019).
We use English as the pivot language and employ
a unified model to perform the pivot-based trans-
lation. When the performance of X→Y directions
on the validation set is better than the pivot-based
translation X→En ∧ En→Y, we directly translate
the language X into Y . Otherwise, we translate
them in the pivot way. This approach is used for the
submission to Large Track and Small Track #2. As
for Small Track #1, we do not use the pivot-based
translation.

6 Evaluation Results

Following the previous work (Goyal et al., 2021),
we use the dev and the devtest of the FLORES-
101 benchmark as our validation set and test set
respectively. During the inference, the beam search
strategy is performed with a beam size of 4 for
the target sentence generation. We set the length
penalty as 1.0 by default. The last N checkpoints
(N = {1, 5, 10, 15, 20}) are averaged for evalua-
tion and we select the best checkpoint based on the
performance on the validation set. We report the

SentencePiece-based BLEU using spBLEU5.

6.1 Large Track

Given the unbalanced large-scale multilingual cor-
pora, we use the hybrid strategy for the translation
for Large Track. The pivot-based translation is
more suitable for the low-resource translation di-
rection between non-English languages since the
corpora of X→Y are commonly scarce. Our model
with the 36 encoder layers significantly outper-
forms the shallow counterpart with the 24 encoder
layers, which indicates that using a deep encoder
and shallow decoder is a good trade-off between
the translation quality and the decoding speed. Ta-
ble 1 shows that our model with the hybrid strategy
gets the best performance with less inference cost
than the pivot-based translation which costs double
inference time compared to the direct translation.
We build a massively multilingual neural machine
model, which translates between any pair of 102
languages. In Figure 2 and Figure 3, we reported
the spBLEU scores of the shallow model with 24
encoder layers and 6 decoder layers and our best
multilingual model with 36 encoder layers and 12
decoder layers in all translation directions, where
the languages are ordered alphabetically by the
language code. Nearly 30% translation directions
adopt the pivot-based translation, where the zero-
resource and low-resource translation directions
lack of supervised training data tend to be chosen
for pivot-based translation.

6.2 Small Track #1

In Table 2, we compare the performance of M2M
with our method in different architectures on any
to English (X→En), English to any (En→X), and
the translation between any non-English languages
(X→Y). Both En→X and X→En contain 5 direc-
tions, while X→Y have 20 directions. Given the
enormous bilingual and back-translation data of
Small Track #1, we are able to perform the direct
translation for all X→Y directions. Furthermore,
we explore the deep encoder (36 encoder layers)
and shallow decoder (12 decoder layers) consid-
ering the limited inference time. From Table 2,
we can observe that the largest model (36 encoder
layers and 12 decoder layers) has a significant im-
provement of +9.41 BLEU points over the strong
M2M baseline.

5https://github.com/ngoyal2707/
sacrebleu.git
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#Languages #Params #Layers AvgX→En AvgEn→Y AvgX→Y Avgall

M2M (Fan et al., 2020)
102 175M 6/6 15.43 12.02 5.85 6.00
102 615M 12/12 20.03 16.21 7.66 7.86

DeltaLM + Zcode (Direct)
102 711M 24/6 30.39 23.52 11.21 11.52
102 862M 24/12 33.09 27.21 13.56 13.89
102 1013M 36/12 33.35 27.39 14.34 14.65

DeltaLM + Zcode (Pivot)
102 711M 24/6 31.32 24.04 14.74 14.99
102 862M 24/12 33.09 27.21 17.20 17.45
102 1013M 36/12 33.35 27.39 17.36 17.62

DeltaLM + Zcode (Hybrid)
102 711M 24/6 31.32 24.04 14.76 15.01
102 862M 24/12 33.09 27.21 17.27 17.52
102 1013M 36/12 33.35 27.39 17.44 17.70

Table 1: Evaluation results of Large Track for M2M and our method of 102 languages on the devtest of the
FLORES-101 benchmark. AvgX→En denotes the average score of directions between other languages to English.
AvgX→En denotes the average score of directions between English and other languages. AvgX→Y denotes the
average score of directions between non-English languages to other non-English languages. Avgall denotes the
average result of all translation directions.

#Languages #Params #Layers AvgX→En AvgEn→Y AvgX→Y Avgall

M2M (Fan et al., 2020)
102 175M 6/6 24.60 20.83 20.80 21.44
102 615M 12/12 31.58 29.62 26.66 27.98

DeltaLM + Zcode (Direct) 6 862M 24/12 43.78 41.02 34.38 37.06
6 1013M 36/12 44.34 41.32 34.68 37.39

Table 2: Evaluation results of Small Track #1 for M2M and our method of 6 languages (Croatian, Hungarian,
Estonian, Serbian, Macedonian, English) on the devtest of the FLORES-101 benchmark. DeltaLM + Zcode
(Direct) denotes the strategy that we choose the direct translation for all translation directions, where the target
language symbol is prefixed to the input sentence to indicate the translation direction. Our mutilingual translation
model is only trained on the constrained corpora of 6 languages provided by the shared task.

6.3 Small Track #2

Compared to Small Track #1 (273M bilingual
pairs), Small Track #2 contains smaller while more
unbalanced training data (93M bilingual pairs).
Therefore, we consider the hybrid strategy for
the X→Y translation directions. We separately
calculate the BLEU scores of the direct and the
pivot-based translation on the validation set. For
those directions satisfying BLEUdirect(X,Y ) ≥
BLEUpivot(X,Y ), we employ the direct transla-
tion. Otherwise, we use the pivot-based translation
direction by first translating the source language to
English and then to the target language. According
to Table 3, DeltaLM + Zcode (Hybrid) outper-
forms both the direct and pivot-based translation
by about +0.5 BLEU points. It confirms that the
hybrid strategy is essential since the training data
of the X→En and En→Y is easy to obtain while
the X→Y is hard to obtain. The deep model with
the 36 encoder layers and 12 decoder layers has
comparable performance with the shallow model
with the 24 encoder layers and 12 decoder layers,
which may be caused by the overfitting problem on
the low-resource directions.

6.4 Discussion on Progressive Learning

Given the pre-trained model and large-scale par-
allel data, we adopt progressive learning as an al-
ternative to fine-tune the multilingual model on
the multilingual translation task. Our multilingual
model is first trained on the large-scale noisy data
and then continues to be tuned on the clean data
(Noisy Data → Clean Data), where the model is
denoted as ®. Since the training data of K lan-
guages in the dual-pseudo parallel data is gener-
ated by the same English monolingual data, we are
able to adopt all possible K × (K − 1) training
directions on the clean data. The performance of
many translation directions is improved by the ad-
ditional dual-pseudo data while the performance
of other directions has been degraded compared
to the initial model ¯, due to the poor quality of
some languages in the dual-pseudo data. Therefore,
only the part of K × (K − 1) training directions
is selected to continue training the multilingual
model (Numerous Directions → Selected Direc-
tions), which we denoted as . To further enlarge
the model’s capacity, we extend the shallow model
with 24 encoder layers to the deep model with 36
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#Languages #Params #Layers AvgX→En AvgEn→Y AvgX→Y Avgall

M2M (Fan et al., 2020)
102 175M 6/6 18.95 15.16 9.49 12.01
102 615M 12/12 24.67 19.14 12.11 15.38

DeltaLM + Zcode (Direct)
6 862M 24/12 43.12 39.78 28.69 32.94
6 1013M 36/12 43.56 39.04 28.60 32.83

DeltaLM + Zcode (Pivot)
6 862M 24/12 43.12 39.78 29.02 33.17
6 1013M 36/12 43.56 39.04 28.63 32.85

DeltaLM + Zcode (Hybrid) 6 862M 24/12 43.12 39.78 29.38 33.40
6 1013M 36/12 43.56 39.04 28.99 33.09

Table 3: Evaluation results of Small Track #2 for M2M and our method of 6 languages (Javanese, Indonesian,
Malay, Tagalog, Tamil, English) on the devtest of the FLORES-101 benchmark. DeltaLM + Zcode (Hybrid)
denotes the strategy that we choose the pivot-based translation (X→En, En→X) for low-resource X→Y directions
and direct translation for high-resource X→Y directions.

ID Large Track Avgall

¬ DeltaLM + Zcode 14.65
 ¬ - Shallow Model→ Deep Model 13.89
®  - Numerous Directions→ Selected Directions 13.09
¯ ® - Noisy Data→ Clean Data 12.24

Table 4: Ablation study of the large track on devtest.
DeltaLM + Zcode is fine-tuned on the multilingual
translation task via progressive learning.

encoder layers, where the top 12 encoder layers are
initialized by random parameters (Shallow Model
→ Deep Model). Putting them all together, we
obtain the final model ¬ DeltaLM + Zcode. Ta-
ble 4 summarizes the results of the ablation study of
these approaches. It shows that each approach has
a significant contribution to the final model. This
proves the effectiveness of progressive learning that
can gradually improve performance in different as-
pects.

7 Submissions

Considering the trade-off between the decoding
time and the performance, we submit the model
(24 encoder layers and 12 decoder layers) with the
hybrid strategy to both the Large Track and Small
Track #2, while the deep model (36 encoder layers
and 12 decoder layers) with the direct translation is
submitted to Small Track #1. Table 5 summarizes
the evaluation results of our model on the hidden
test sets. According to the final results on the leader-
board, DeltaLM + Zcode ranks first across three
tracks.

8 Conclusion

This paper describes Microsoft’s submission to the
large-scale multilingual machine translation of the
WMT21 shared task. Our multilingual translation

Track Submission Name Avgall

Large DeltaLM + Zcode (Microsoft) 16.63
Small #1 DeltaLM + Zcode (Microsoft-Small) 37.59
Small #2 DeltaLM + Zcode (Microsoft-Small) 33.89

Table 5: Submission results based on the hidden test
sets of our method on three tracks, including Large
Track, Small Track #1, and Small Track #2.

model achieves substantial improvement over the
baseline systems by fine-tuning the pre-trained lan-
guage model DeltaLM. We further enhance the
model performance with the progressive learning
and the iterative back-translation methods. As a
result, our submitted systems get the top evalua-
tion results on three tracks, including Large Track,
Small Track #1, and Small Track #2.
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31.8 15.8 12.5 9.0 10.4 10.2 6.9 17.2 21.4 14.9 22.3 20.8 24.5 0.1 0.0 26.5 21.4 19.2 55.7 19.3 17.2 20.7 28.1 1.6 28.9 24.0 8.0 9.7 23.9 19.8 21.6 20.0 6.1 9.7 28.3 19.5 19.4 11.4 22.9 5.6 7.1 16.0 9.4 1.0 8.5 4.9 16.8 8.6 21.5 15.7 19.4 7.7 6.9 5.2 10.1 8.6 24.0 34.6 5.9 3.6 24.4 8.0 20.0 21.4 12.8 4.6 9.6 16.8 4.9 8.5 9.0 16.7 28.6 7.7 25.6 19.3 21.8 19.6 8.4 3.9 2.5 19.3 21.9 26.6 19.4 4.5 16.2 12.3 22.1 16.6 22.5 21.0 1.3 11.1 17.9 27.8 4.1 12.2 3.3 16.1 13.3 15.0

32.5 17.0 13.2 6.2 12.0 10.6 14.9 18.9 23.9 31.1 25.2 22.1 29.1 0.2 36.7 0.0 25.2 21.8 49.9 22.6 18.8 24.4 31.3 1.7 30.2 26.8 6.6 9.8 26.8 22.2 25.1 23.3 7.2 9.8 31.0 22.1 21.5 12.1 26.2 5.5 6.7 18.9 10.3 0.6 8.9 5.7 19.4 6.6 24.8 16.8 22.2 8.8 6.7 2.5 11.6 9.5 27.2 35.8 6.5 3.9 25.5 9.0 24.3 26.0 13.3 4.5 10.6 18.3 5.0 8.9 8.9 19.6 32.6 8.2 28.4 22.1 25.1 23.4 9.3 4.0 2.5 22.7 24.7 32.8 20.0 4.5 17.3 12.3 23.2 18.8 25.7 24.4 1.1 12.2 19.6 30.7 4.3 12.8 3.1 18.0 15.9 15.8

28.3 15.8 12.5 7.2 14.2 10.1 14.8 17.6 21.7 23.1 22.5 20.6 25.2 0.2 32.2 27.0 0.0 19.9 43.2 20.1 17.2 21.2 29.0 1.5 26.3 24.6 6.1 8.9 23.4 20.2 22.7 21.0 14.0 9.0 26.3 19.4 20.2 10.9 24.7 4.9 6.2 17.7 9.8 0.6 6.9 11.9 17.7 4.7 21.8 15.5 20.1 8.7 6.4 2.1 11.1 8.7 24.7 31.7 7.4 3.8 22.6 7.6 22.1 21.6 11.2 4.4 9.6 16.9 4.7 8.1 8.0 18.1 29.0 7.5 25.5 20.4 22.6 21.2 8.6 3.6 2.3 20.4 22.9 27.4 18.0 5.3 16.1 11.8 20.9 17.5 22.7 21.7 1.1 11.2 18.1 27.6 3.8 10.9 2.7 15.8 11.9 13.7

23.8 12.4 10.3 6.1 8.4 8.3 10.8 14.2 16.1 21.6 18.0 16.4 19.4 0.1 25.6 20.6 16.3 0.0 33.8 15.4 14.0 16.1 22.3 1.1 21.3 19.2 5.4 7.2 17.8 15.4 16.7 16.4 5.8 8.0 20.1 14.5 15.6 8.5 18.8 4.3 5.3 14.0 7.7 0.8 7.0 4.6 14.0 5.6 17.2 13.1 15.8 5.7 5.6 1.7 8.9 7.2 18.9 25.9 4.8 3.5 16.9 6.9 16.2 15.8 9.7 3.2 8.4 13.5 4.3 7.3 6.5 14.4 22.3 6.5 20.4 15.4 16.4 16.5 6.6 3.3 1.8 15.8 17.6 19.5 14.4 3.7 12.8 9.9 17.4 13.9 17.5 17.0 0.8 9.3 14.4 21.7 3.1 9.6 2.5 13.3 11.6 11.3

48.0 21.9 19.8 9.7 20.6 12.5 17.0 24.1 31.6 40.7 35.3 28.9 38.0 0.2 55.4 44.9 34.4 27.8 0.0 32.9 23.7 31.1 43.9 1.9 41.6 35.2 9.8 11.6 38.0 32.6 34.6 33.4 17.9 12.0 46.7 31.6 29.0 16.1 32.0 5.9 8.3 23.0 12.9 0.8 9.7 13.6 26.0 9.6 37.7 18.9 32.1 11.4 8.1 3.1 20.1 14.8 35.9 52.6 9.7 6.4 43.7 12.5 30.7 36.9 16.4 6.3 13.5 24.1 5.9 11.9 11.5 25.2 47.3 11.6 34.7 31.3 38.2 27.7 14.9 5.2 4.5 28.5 33.5 46.1 27.7 22.0 24.3 14.3 36.2 26.3 33.4 32.8 2.5 16.0 22.7 40.5 3.5 16.5 2.8 26.0 20.0 19.0

26.6 15.5 11.8 6.9 10.6 10.2 14.7 17.6 21.1 27.0 21.5 19.6 25.0 0.1 31.2 25.9 21.2 19.6 36.1 0.0 17.2 22.7 27.2 1.5 26.5 23.6 6.4 8.6 23.0 20.1 23.8 23.2 6.5 9.0 25.7 18.7 19.3 10.6 24.4 5.2 6.3 17.7 9.5 0.7 8.2 5.5 18.1 5.4 22.6 15.2 20.8 7.2 6.4 2.4 10.6 8.8 25.4 30.8 5.6 3.9 21.5 7.2 21.1 20.3 11.4 3.9 9.6 16.3 4.5 8.0 8.2 18.0 27.1 7.5 24.3 20.5 21.6 21.3 8.1 3.5 2.1 20.0 24.4 25.4 17.6 5.4 14.8 12.0 20.5 17.2 22.3 21.4 1.1 11.4 18.3 27.1 3.7 11.2 2.8 16.5 15.0 13.0

21.5 13.9 11.5 7.3 9.1 9.5 11.7 16.1 16.5 21.5 18.1 17.4 19.3 0.1 27.3 19.9 16.9 16.3 32.8 15.9 0.0 16.3 23.1 1.0 23.1 19.4 5.3 7.5 19.4 17.7 16.7 17.0 6.1 7.8 21.2 15.5 16.2 8.9 19.9 4.1 5.7 15.5 8.7 0.5 7.3 5.3 14.6 4.4 17.8 14.1 16.2 6.0 5.2 1.7 9.8 7.7 20.3 26.9 5.1 3.6 18.0 8.0 15.9 16.2 10.3 3.1 8.0 13.9 4.6 8.0 7.5 13.8 22.0 6.9 20.1 16.6 17.3 16.7 7.0 3.4 1.7 16.4 18.1 19.8 15.5 5.5 14.4 11.4 18.4 15.3 18.1 16.8 0.6 10.9 16.8 23.5 2.9 9.8 2.1 14.3 11.0 12.1

24.2 14.5 11.2 6.7 10.1 9.7 13.0 16.9 18.4 24.9 20.0 17.8 22.6 0.1 29.4 24.2 19.0 18.2 33.9 19.5 15.7 0.0 25.3 1.4 24.9 22.0 6.0 7.9 21.4 18.7 19.7 20.0 6.4 8.5 23.7 18.0 18.3 10.0 23.1 4.9 6.0 16.9 8.9 0.6 6.5 5.4 16.6 5.3 20.6 14.8 19.1 7.2 5.9 2.2 9.8 8.1 22.4 28.4 5.1 3.6 19.8 7.3 20.0 18.6 10.8 3.6 8.9 15.2 4.4 7.5 7.6 16.7 25.6 6.9 22.7 18.7 19.4 19.4 7.7 3.3 2.1 18.6 19.9 23.7 16.2 4.2 14.4 11.2 19.1 16.6 20.2 19.8 1.0 10.3 16.6 25.3 3.4 10.1 2.3 15.9 12.9 11.8

28.0 15.0 11.9 8.6 14.5 10.3 14.1 17.4 20.3 19.8 23.4 19.7 24.1 0.1 32.5 26.0 21.8 19.7 43.5 19.7 16.6 20.6 0.0 1.6 26.2 25.4 7.9 9.3 23.8 19.4 21.3 20.5 14.4 9.5 27.1 18.4 21.2 11.1 23.6 5.2 6.7 17.2 9.4 0.7 7.6 5.3 17.0 5.7 21.0 16.2 19.8 8.0 6.6 2.5 10.3 8.4 24.6 32.8 7.9 3.7 22.5 8.7 20.7 20.7 12.8 4.1 9.5 18.1 4.6 8.5 9.0 17.4 29.4 7.3 26.3 19.9 21.6 20.7 10.5 3.8 3.7 20.4 22.0 26.0 18.2 4.9 15.9 12.4 20.8 16.5 22.3 20.7 1.0 10.6 18.2 27.3 4.1 12.4 2.9 16.5 12.2 14.3

3.1 0.9 0.7 1.0 1.8 1.0 1.1 2.6 2.4 3.2 2.6 2.8 2.5 0.0 3.5 2.5 2.8 2.8 4.2 2.2 1.3 1.9 3.5 0.0 2.4 3.0 1.4 1.8 2.4 2.5 2.2 2.7 1.4 1.7 2.4 2.4 2.6 2.0 3.6 1.5 1.3 2.3 1.6 0.4 1.1 1.5 2.5 0.8 1.7 2.3 2.0 1.2 1.4 1.0 2.3 1.5 2.8 3.3 1.0 1.1 2.5 0.7 2.7 2.1 1.7 1.8 1.9 2.3 0.6 0.9 1.3 2.1 3.2 0.8 2.1 1.8 2.4 2.3 1.7 0.4 1.1 3.4 1.7 2.6 2.2 2.1 2.4 1.5 2.7 1.9 2.6 2.7 0.8 0.9 1.1 2.9 1.6 1.8 0.9 1.7 0.9 1.4

26.6 13.5 10.0 7.3 9.2 8.7 10.5 15.1 16.9 21.6 19.1 18.0 20.1 0.2 29.7 22.3 17.7 16.0 40.8 16.6 14.5 17.4 23.6 1.6 0.0 20.0 6.2 8.5 19.5 17.0 18.2 17.2 5.2 8.8 23.1 16.1 16.8 10.1 19.6 5.2 6.1 14.5 7.8 0.9 7.2 4.4 14.2 6.5 17.8 14.2 16.9 6.4 6.2 2.9 8.9 7.5 19.7 28.4 5.1 3.4 20.0 7.4 17.6 17.8 11.2 4.3 8.5 14.3 4.4 7.3 7.5 14.9 23.6 6.7 20.9 16.3 17.9 17.5 7.3 3.3 2.4 17.3 18.3 21.5 16.0 3.9 13.6 10.5 18.4 14.6 18.9 17.2 1.0 9.7 14.6 23.5 3.8 10.8 3.1 13.7 11.2 12.2

27.4 15.5 12.0 7.3 13.3 10.3 14.1 17.7 21.0 27.3 24.6 20.5 24.8 0.1 32.7 26.7 22.3 19.8 41.6 19.9 17.0 20.8 30.1 1.4 27.0 0.0 5.9 9.5 23.6 19.8 22.6 21.0 7.5 9.1 26.7 18.8 21.7 11.2 23.9 5.1 6.0 17.7 9.9 0.7 8.4 5.0 17.4 5.6 21.2 15.7 20.3 8.0 6.3 2.7 10.9 8.7 25.2 32.8 5.6 4.0 22.9 6.8 20.6 20.6 12.4 4.3 9.6 17.7 4.9 8.4 8.0 17.8 30.6 7.5 26.3 20.4 21.5 21.4 8.3 3.3 2.3 22.1 22.5 25.7 18.3 3.9 15.9 12.1 21.4 17.2 22.5 21.0 1.0 11.1 18.1 27.4 4.1 12.0 3.7 16.6 13.4 13.6

18.8 10.4 7.0 7.8 8.2 6.1 7.7 14.0 12.5 15.5 13.9 12.1 14.7 0.1 21.2 16.0 11.5 13.0 26.0 13.2 12.0 12.1 15.7 0.7 18.1 14.2 0.0 5.7 14.0 16.6 13.1 12.8 7.4 6.4 17.0 11.9 11.9 7.5 4.6 3.5 5.9 11.7 5.8 0.6 6.2 7.2 6.3 2.3 13.9 10.5 12.6 4.5 3.9 1.4 11.2 8.0 15.3 22.8 5.4 3.4 10.8 4.8 12.7 13.0 8.0 2.1 6.7 10.6 3.4 6.8 7.6 10.2 16.5 5.8 14.4 11.9 13.4 13.5 6.3 3.1 2.3 12.1 14.3 15.6 12.9 11.9 11.8 8.1 16.5 11.1 11.5 12.6 0.7 9.7 11.0 17.5 2.1 6.6 2.4 9.6 7.6 7.6

13.2 7.5 5.5 3.6 6.9 4.3 4.7 8.7 8.8 10.4 10.5 11.6 9.5 0.1 14.4 10.9 8.3 8.8 18.0 8.8 8.6 7.7 11.4 1.6 11.9 11.0 3.6 0.0 9.4 10.0 9.1 9.3 6.5 6.6 13.4 9.2 8.7 7.0 8.0 3.9 3.5 7.5 4.8 0.7 3.9 5.5 7.8 2.0 9.0 10.6 8.9 4.4 4.9 2.1 6.6 5.4 11.0 15.9 4.1 3.1 11.7 3.0 9.9 9.0 5.1 3.3 7.0 8.6 3.0 3.7 4.6 8.0 12.6 4.1 11.2 8.6 9.1 8.9 7.3 1.9 2.9 9.4 9.6 10.9 10.6 7.4 6.1 6.5 13.2 8.6 9.0 9.3 1.6 5.7 6.1 13.7 3.3 6.6 2.9 8.0 1.7 7.1

27.5 15.1 13.0 7.8 10.9 9.9 13.6 17.5 21.4 27.6 22.4 19.1 24.9 0.2 32.5 26.2 20.9 20.1 39.4 20.2 17.9 20.8 28.3 0.9 27.2 24.0 6.3 8.1 0.0 19.9 21.2 19.8 6.4 8.5 26.5 19.1 19.3 10.1 23.1 4.2 6.1 17.7 8.9 0.5 8.3 5.0 16.8 5.7 21.9 15.4 20.0 7.1 5.8 2.0 10.7 8.7 25.3 32.3 5.6 3.9 21.7 7.6 19.9 20.6 11.5 3.3 9.5 16.4 4.6 7.9 8.4 17.5 28.1 7.4 25.0 20.4 21.5 20.9 8.1 3.7 1.6 19.4 22.5 26.2 18.4 4.1 15.5 12.0 20.9 17.1 21.7 21.4 0.7 11.6 18.1 27.2 2.9 11.5 2.4 16.2 13.0 12.6

24.5 15.4 11.2 9.6 9.8 9.3 12.3 18.1 17.3 23.6 19.1 18.4 20.9 0.2 29.1 22.7 18.1 17.4 37.9 16.8 16.3 17.8 23.7 1.0 24.8 20.8 7.5 7.7 20.0 0.0 18.2 17.9 6.0 8.5 23.3 16.2 16.8 9.9 21.9 4.2 6.8 16.5 9.0 0.5 8.1 5.2 16.2 5.7 19.0 14.1 17.2 6.3 5.4 1.4 11.2 9.3 21.4 29.4 5.8 3.7 20.4 9.5 18.1 17.6 13.6 3.2 9.2 14.6 4.5 9.8 8.9 14.8 24.3 7.9 21.5 17.3 18.3 18.0 7.8 3.9 1.9 16.6 19.4 21.6 16.6 4.5 17.2 11.3 19.8 16.1 19.5 18.2 0.8 11.8 16.8 25.1 2.9 10.2 2.3 15.5 13.6 12.1

26.6 15.3 12.0 7.0 10.8 10.2 15.0 17.6 23.3 28.2 22.4 19.6 26.0 0.1 31.4 26.0 21.3 19.8 38.9 22.2 16.9 20.8 27.5 1.5 27.0 23.8 6.3 8.7 23.7 20.2 0.0 22.8 6.4 9.0 26.6 19.2 20.2 10.6 24.1 4.9 6.3 18.2 9.6 0.6 8.2 5.7 18.2 5.2 22.4 15.8 20.9 7.4 6.2 2.3 10.8 8.7 27.1 31.4 5.5 3.9 22.3 7.6 20.9 20.6 11.7 4.2 9.2 16.3 4.6 8.0 8.2 18.4 28.0 7.6 25.0 20.6 22.7 22.7 8.1 3.4 2.2 20.2 26.4 25.7 17.8 5.2 15.8 12.1 20.9 17.7 22.4 22.3 0.9 11.2 18.0 27.4 3.7 11.3 2.7 16.6 14.5 13.3

25.3 15.0 11.4 6.9 10.5 9.8 13.6 17.3 19.0 26.1 20.7 18.8 23.5 0.2 29.9 24.2 20.7 18.5 37.3 20.9 16.1 20.5 26.7 1.5 25.2 22.3 6.4 8.3 22.0 19.4 22.2 0.0 6.3 8.7 24.5 17.5 18.7 10.0 23.6 5.3 6.1 17.6 9.5 0.7 8.0 5.8 17.5 5.7 20.9 14.8 19.8 7.3 5.8 2.1 10.2 8.3 24.1 29.3 5.6 3.7 20.8 7.6 20.4 19.6 11.8 4.0 9.2 15.9 4.5 7.6 7.9 16.9 26.5 7.2 23.9 18.7 20.7 20.4 7.9 3.2 2.2 19.2 22.3 24.4 17.0 3.7 14.5 11.7 19.7 16.7 21.7 19.8 1.1 10.7 17.3 26.5 3.7 10.5 2.7 16.2 15.4 12.1

21.5 12.0 9.9 8.0 10.7 8.9 10.5 13.7 14.2 21.5 15.8 15.3 16.7 0.1 23.6 18.4 17.7 14.5 31.5 15.4 13.4 15.3 23.7 0.7 19.9 17.3 7.4 6.9 16.0 14.5 16.3 15.6 0.0 7.9 18.9 13.3 14.7 7.9 11.1 3.9 6.8 13.5 7.5 0.6 6.2 6.5 13.7 3.9 17.6 13.6 15.9 5.4 5.0 1.4 10.3 6.6 18.6 24.6 5.0 3.3 15.8 6.7 14.5 14.1 9.6 2.3 7.1 12.3 4.4 7.0 7.2 12.7 19.8 5.8 18.1 16.7 14.9 15.0 6.4 3.1 1.5 16.5 17.1 17.8 14.2 9.2 11.6 11.5 17.1 12.6 16.4 15.5 0.5 9.0 15.4 21.5 2.6 8.9 2.5 8.9 9.6 10.8

14.1 3.5 2.8 2.4 3.1 2.6 2.3 4.3 4.9 6.2 5.7 6.0 5.5 0.1 7.6 6.8 4.6 4.7 16.2 4.8 4.3 4.7 6.6 1.6 6.4 6.3 2.2 3.9 4.9 5.1 5.4 5.6 2.1 0.0 8.0 4.9 5.2 4.3 5.5 3.9 2.2 3.8 2.6 1.1 2.3 2.3 4.6 2.9 4.6 5.2 4.6 2.9 4.4 1.6 3.2 2.8 5.3 7.5 2.0 1.8 7.1 3.1 5.6 5.5 3.1 2.5 3.8 4.8 2.7 2.0 2.3 4.5 7.3 2.5 6.5 4.5 5.2 5.2 3.5 1.2 1.8 5.6 4.6 6.3 5.8 3.4 3.1 3.4 6.3 4.7 5.7 4.6 1.0 2.9 3.4 7.4 2.3 3.8 3.1 4.9 3.7 4.4

27.9 16.5 13.0 7.3 12.8 10.5 13.6 19.1 21.4 25.9 23.1 22.6 25.3 0.2 35.0 27.7 22.5 20.1 44.9 20.3 18.1 20.7 28.6 1.9 28.9 24.9 6.9 10.0 24.4 21.9 22.9 21.3 7.3 9.8 0.0 19.9 20.1 13.8 26.6 5.6 6.8 18.7 10.3 0.6 7.9 5.9 19.1 6.2 22.3 16.4 20.3 8.5 7.1 2.8 11.7 9.7 25.5 33.7 6.4 3.8 33.9 9.0 21.1 22.1 13.6 4.8 10.5 17.5 5.1 8.6 8.9 18.3 29.5 8.2 26.3 20.4 22.0 21.8 9.2 3.8 2.7 20.8 23.0 27.4 20.4 15.7 17.1 12.5 25.8 19.4 23.8 22.2 1.1 12.2 18.8 31.1 4.3 12.8 3.0 17.5 13.1 15.5

24.0 13.5 10.3 5.8 9.6 8.5 12.0 15.3 17.5 22.5 18.7 17.3 20.7 0.2 28.1 23.1 18.3 16.2 33.8 17.1 14.5 18.2 23.0 1.6 23.6 19.8 5.5 8.4 19.2 17.3 19.1 18.1 5.6 8.8 23.1 0.0 16.5 9.9 21.4 5.0 6.0 14.8 8.1 0.8 7.8 5.0 14.7 6.3 18.5 14.5 16.9 7.0 6.2 2.3 9.5 7.8 20.4 27.4 5.0 3.6 19.6 7.6 17.8 17.6 9.9 4.1 9.1 14.0 4.3 7.2 7.2 15.1 22.8 7.2 21.1 16.5 18.3 18.0 7.9 3.1 2.3 16.8 18.3 22.4 16.5 4.3 13.8 10.6 18.7 15.1 19.0 18.1 1.1 9.6 15.5 23.7 4.0 10.7 2.7 14.2 11.9 12.4

23.9 14.8 10.9 7.9 10.2 9.8 13.1 16.3 18.4 22.3 21.6 18.6 21.6 0.1 29.2 22.9 19.6 18.8 34.6 18.1 15.6 18.4 27.4 1.5 24.9 23.7 7.0 8.6 20.9 18.7 19.6 19.4 6.4 8.9 23.2 16.6 0.0 9.8 22.5 5.0 6.1 16.6 9.3 0.8 7.7 4.8 16.0 5.2 19.3 15.4 18.3 7.6 6.1 2.6 10.1 8.0 22.5 29.3 5.3 3.7 19.7 7.0 19.2 18.2 11.7 4.1 8.9 15.8 4.5 7.9 8.5 16.4 26.3 6.9 23.6 17.9 19.4 19.0 7.6 3.4 2.2 20.2 19.9 22.9 16.4 4.3 15.0 11.5 19.2 15.9 20.5 19.4 1.1 10.2 17.3 25.1 3.9 11.2 3.0 15.4 12.5 12.4

18.2 11.0 8.0 5.9 7.4 7.0 8.2 12.9 13.0 17.3 14.8 16.0 15.1 0.1 22.2 17.0 13.1 12.9 30.4 12.5 12.5 12.4 19.1 1.7 18.6 16.3 5.1 8.0 15.0 14.7 13.6 13.7 4.7 7.1 23.3 12.8 13.1 0.0 17.7 4.8 5.1 13.0 7.1 0.5 6.4 3.8 12.6 3.7 12.9 12.2 12.3 6.1 5.2 3.1 8.0 7.0 16.1 22.1 4.2 3.2 21.8 5.3 13.5 13.5 9.1 4.4 7.7 12.5 4.0 6.0 5.9 11.7 18.9 4.9 16.8 12.8 13.4 13.1 6.5 2.8 2.2 14.0 13.7 16.0 13.6 10.3 11.0 9.1 18.1 13.4 15.2 13.4 1.0 7.8 11.9 20.4 3.7 8.9 3.2 12.1 8.0 10.5

20.1 13.3 10.0 7.7 9.6 8.5 11.1 15.3 15.1 21.5 16.9 15.3 19.0 0.1 25.1 19.7 15.8 16.0 28.1 15.3 13.6 16.2 20.6 1.0 22.2 18.2 6.6 6.5 17.7 17.4 16.5 16.5 7.3 7.2 20.5 15.1 15.0 8.5 0.0 4.0 6.3 16.1 7.9 0.6 7.2 7.5 18.0 5.4 17.4 12.4 15.9 5.9 4.7 1.9 9.5 7.3 19.5 25.0 6.0 3.6 16.6 8.6 16.7 15.8 11.2 2.8 7.9 12.7 3.6 6.8 7.1 14.5 20.4 6.0 18.9 15.5 16.6 16.2 6.6 2.9 1.7 15.6 16.6 19.5 13.9 3.4 13.6 10.4 17.3 15.8 17.8 16.4 0.6 9.2 14.4 23.1 2.5 8.9 1.9 20.1 13.3 9.3

7.6 3.1 1.6 2.0 2.9 2.3 2.3 4.4 4.1 6.1 5.6 6.1 4.5 0.1 6.8 5.4 4.6 4.6 9.6 4.0 3.9 3.9 6.1 1.6 5.7 5.6 2.1 3.6 5.2 5.0 4.3 5.1 1.8 3.5 6.6 4.5 5.1 3.8 6.4 0.0 2.2 4.4 2.9 0.8 2.0 2.2 4.9 1.2 3.8 4.9 3.9 2.4 2.9 2.1 2.8 2.7 5.1 7.0 2.0 1.8 6.0 1.4 5.2 4.7 3.0 2.5 3.8 4.6 1.5 2.2 2.4 4.2 6.6 2.1 5.3 4.3 4.2 4.5 3.0 1.1 1.8 5.3 4.0 5.2 4.8 2.8 3.2 3.0 5.9 4.5 5.4 4.5 1.0 2.6 2.7 6.1 2.3 3.4 2.0 4.7 2.4 3.3

15.7 9.6 6.9 7.2 8.4 5.6 7.2 13.6 11.0 14.6 12.8 11.7 13.0 0.2 19.0 14.1 10.4 11.4 21.0 12.0 11.2 10.2 14.1 0.8 16.7 13.3 5.8 5.2 12.2 15.6 11.0 11.9 9.3 6.2 15.0 11.0 10.2 7.1 3.4 3.2 0.0 11.0 5.4 0.6 5.5 8.6 4.7 2.0 12.6 10.0 11.8 4.6 3.8 1.5 10.9 7.7 14.0 20.7 5.7 3.4 8.5 4.5 11.7 11.0 7.7 2.1 6.4 10.0 3.5 6.1 6.6 10.1 15.2 5.2 13.1 11.0 12.1 12.4 6.8 2.9 2.6 11.0 12.7 13.3 11.6 11.9 12.0 7.9 15.7 10.6 10.9 11.4 0.8 8.4 10.6 16.1 2.2 6.5 2.4 8.6 6.9 7.2

19.7 13.1 9.2 7.3 7.2 8.9 12.3 14.7 14.7 20.5 16.4 14.9 17.4 0.1 23.5 18.1 14.9 15.7 26.8 15.3 13.1 14.6 20.1 0.9 20.9 17.4 5.5 6.4 16.8 16.2 15.7 16.0 5.3 7.4 18.1 13.6 14.7 7.8 18.3 4.0 5.3 0.0 8.1 0.6 6.9 4.4 13.9 4.9 17.0 12.3 15.7 5.4 4.9 1.3 8.9 7.1 18.9 24.2 4.6 3.5 15.0 7.4 16.1 14.7 10.3 2.8 7.6 12.6 3.9 6.9 6.7 13.7 19.7 5.9 17.9 14.9 15.6 15.3 6.3 3.1 1.5 15.4 16.4 17.2 13.5 3.7 13.2 10.7 16.1 13.8 16.6 16.0 0.7 9.4 15.1 20.6 2.6 8.5 2.1 13.1 10.8 9.9

17.9 11.5 8.7 7.7 12.6 8.0 9.5 14.0 13.6 18.5 15.8 13.1 15.7 0.1 22.0 17.1 13.6 14.7 23.7 14.9 13.3 13.8 18.9 0.9 19.8 15.8 7.7 6.0 16.1 16.6 13.8 14.8 12.3 6.5 18.2 13.6 13.8 9.0 10.2 3.7 6.4 15.1 0.0 0.6 5.9 13.2 12.5 2.7 16.5 11.7 15.2 7.3 4.3 1.8 10.6 8.4 17.5 23.7 7.0 3.5 10.4 5.9 14.5 14.4 9.2 2.6 7.7 11.6 3.4 6.2 7.5 12.1 18.3 6.2 15.4 15.3 15.7 15.1 7.4 3.3 3.8 14.3 16.3 15.9 13.3 11.9 10.6 10.7 17.1 14.6 15.2 15.8 0.9 9.7 13.7 19.4 2.5 7.0 2.0 11.8 10.2 8.7

23.0 10.6 4.5 5.2 11.1 6.2 9.0 14.0 16.6 21.0 19.1 15.0 18.7 0.1 26.3 21.0 14.0 15.6 33.0 15.7 13.5 15.8 20.4 1.4 21.1 20.7 4.1 6.2 18.2 15.4 16.9 16.3 8.7 6.6 22.2 15.3 16.2 9.3 12.1 3.8 4.0 13.6 6.5 0.0 5.3 7.6 11.9 0.9 17.1 12.0 15.6 6.4 4.7 4.6 6.6 7.1 19.7 27.0 5.3 3.4 18.8 2.1 17.0 17.2 6.4 3.6 8.4 14.9 3.3 3.7 5.1 13.4 28.8 6.6 21.0 14.8 17.5 16.8 9.0 2.5 2.9 17.1 17.8 20.9 15.7 7.3 7.8 8.1 17.4 9.8 16.8 15.9 1.7 9.3 10.5 22.2 3.3 7.3 3.8 14.0 10.6 7.4

16.1 8.5 6.4 5.7 6.9 5.9 6.3 9.8 10.1 13.1 11.5 11.9 11.8 0.1 16.9 12.9 11.9 9.4 23.4 10.4 9.2 9.6 15.1 1.4 14.8 12.3 5.2 6.4 10.8 10.8 10.6 11.0 5.2 7.3 14.4 10.1 10.1 7.3 10.6 4.1 4.8 9.2 5.6 1.1 0.0 3.8 9.6 4.6 11.1 10.9 10.0 4.5 5.5 2.1 6.6 5.0 11.7 18.1 3.8 3.1 12.5 4.6 10.6 10.4 6.9 3.2 6.8 9.3 3.7 5.2 5.2 8.5 13.8 4.8 12.7 9.9 10.2 10.5 5.8 2.2 2.2 10.2 10.6 12.7 10.9 4.8 8.5 8.2 13.0 10.5 11.5 10.1 1.0 7.0 10.2 16.3 3.0 7.5 3.0 9.7 7.0 9.0

15.7 11.3 8.0 6.6 8.3 8.4 10.6 13.2 12.3 17.6 14.0 12.7 14.6 0.1 19.9 15.3 12.8 14.0 20.9 13.4 11.6 12.8 17.4 0.9 17.7 14.8 5.0 6.0 14.7 14.8 13.5 14.2 6.5 6.8 16.0 12.9 12.9 7.3 7.6 3.8 5.2 14.4 8.1 0.5 6.2 0.0 8.9 2.0 15.7 11.7 14.6 4.7 4.6 3.1 9.2 6.9 16.4 21.6 5.4 3.2 11.6 4.1 14.0 12.4 8.1 2.6 7.0 11.0 3.6 5.3 6.3 11.7 17.2 5.4 14.4 14.6 13.2 13.5 6.8 2.7 2.8 13.9 14.1 14.5 12.2 7.7 9.5 9.9 14.5 12.8 13.8 14.2 0.9 8.2 12.9 18.5 2.5 7.0 2.9 12.2 10.1 7.5

21.4 13.7 10.3 7.9 9.3 9.3 11.6 16.1 15.8 22.2 17.7 16.3 20.0 0.1 25.7 20.8 17.1 16.9 30.2 16.3 14.4 16.9 21.8 1.2 22.9 19.0 6.3 7.4 18.3 18.4 17.0 17.6 6.2 8.0 22.1 15.9 15.7 9.1 24.8 4.5 6.3 16.4 8.2 0.6 7.7 4.9 0.0 5.5 18.2 12.9 16.5 6.4 5.4 2.0 10.1 7.8 19.7 25.9 7.1 3.6 18.2 9.1 17.3 16.4 10.7 3.1 8.3 13.5 3.9 7.2 7.9 14.8 22.5 6.6 20.2 15.8 17.5 16.9 7.0 3.4 1.9 16.0 17.5 20.1 14.9 4.2 14.7 10.7 18.4 16.4 19.2 17.3 0.8 10.0 15.2 24.6 2.8 9.2 2.3 20.7 13.5 10.4

19.5 9.7 7.9 6.7 11.8 6.3 7.5 12.9 13.2 15.8 15.0 15.3 15.6 0.2 22.3 17.8 12.3 12.5 27.7 13.9 12.0 12.1 15.8 1.6 19.3 15.6 5.2 7.8 14.3 14.5 13.5 13.7 11.0 8.1 20.9 14.2 12.6 9.7 8.1 4.3 5.4 11.4 6.2 1.1 6.8 8.4 10.5 0.0 14.2 12.9 13.5 7.3 5.3 3.4 9.7 7.6 15.9 22.7 6.4 3.4 12.9 3.5 14.0 14.3 7.0 3.7 8.9 11.8 3.7 5.5 6.0 11.4 17.6 6.3 17.4 12.5 14.7 14.2 9.5 3.0 4.0 12.6 14.4 16.8 15.2 10.7 9.8 9.1 18.2 15.4 13.4 13.5 1.5 9.1 11.7 21.3 3.8 8.5 4.2 11.9 2.9 10.4

25.3 15.2 11.5 6.6 9.5 9.6 14.8 17.2 19.4 26.8 20.7 17.9 24.1 0.2 30.4 24.2 20.2 19.1 38.1 20.5 16.5 20.7 26.2 1.1 25.9 22.4 5.9 7.8 21.7 19.8 21.1 19.9 6.6 8.2 24.2 17.9 18.2 9.8 23.5 4.6 6.0 17.8 9.4 0.6 7.9 11.9 17.3 4.9 0.0 14.3 21.5 6.8 5.4 1.7 10.2 8.6 23.5 30.2 6.2 3.8 19.9 7.3 19.8 18.5 11.3 3.2 9.1 15.1 4.4 7.6 7.5 17.5 26.2 7.3 23.0 20.3 20.8 20.6 7.5 3.3 1.7 18.8 21.4 24.0 16.5 4.1 15.3 11.1 19.4 16.9 21.0 20.9 0.8 11.0 18.1 26.2 3.0 9.9 2.7 16.2 14.2 12.2

14.7 8.2 5.1 4.5 6.5 5.1 6.1 9.6 9.8 12.3 11.9 11.4 11.1 0.1 16.2 13.1 9.3 9.7 18.9 10.6 9.3 9.8 13.2 1.5 14.2 12.5 3.7 7.0 10.9 10.2 10.0 10.5 6.3 7.3 14.6 9.6 10.3 7.5 8.5 4.4 3.9 9.0 5.5 0.9 5.4 5.7 8.5 1.3 10.1 0.0 9.8 4.7 5.3 2.3 6.7 5.6 11.9 17.5 4.3 2.9 11.7 2.9 11.4 10.4 5.6 3.7 8.1 9.5 3.3 4.0 5.2 8.9 13.8 4.9 12.6 9.5 10.6 11.0 8.5 2.1 3.1 10.5 10.6 12.8 11.6 6.9 6.0 7.2 12.8 7.4 10.5 10.1 1.9 6.6 7.5 14.9 3.5 7.6 3.9 9.5 8.0 7.1

24.1 14.5 11.1 6.3 9.6 9.0 14.6 16.6 19.4 25.4 19.6 17.8 22.9 0.2 28.6 23.2 19.2 18.0 34.7 19.2 15.8 19.2 25.0 1.4 24.9 21.4 5.3 8.0 20.8 18.6 20.6 19.4 6.3 8.1 23.2 17.1 18.0 9.8 22.7 4.5 5.6 17.6 9.3 0.6 7.5 11.8 16.4 5.1 21.5 14.5 0.0 6.9 5.5 1.8 9.8 8.1 22.8 28.5 5.6 3.7 19.8 7.3 19.2 18.1 11.0 3.6 9.0 15.1 4.3 7.4 7.0 16.9 24.8 7.0 22.4 19.2 19.8 20.0 7.8 3.2 2.1 18.3 20.3 22.1 16.1 3.8 14.5 10.7 18.8 16.2 20.5 19.9 1.0 10.6 16.9 24.8 3.3 9.6 2.8 15.6 13.9 12.3

22.9 8.9 7.0 6.3 7.5 6.1 8.0 11.1 12.5 16.7 14.2 12.4 14.7 0.1 19.7 17.2 16.6 12.3 29.1 13.1 10.5 12.6 18.5 1.5 16.7 15.9 5.8 5.8 14.6 12.6 13.2 13.5 5.1 6.1 16.4 11.4 12.8 7.7 15.4 4.0 4.6 11.4 6.2 0.9 5.4 4.5 11.8 4.1 12.8 9.9 11.9 0.0 4.6 2.2 6.9 5.8 15.0 20.7 4.3 2.7 14.3 5.1 14.3 14.3 8.1 3.3 6.5 11.7 3.3 5.4 5.9 10.8 17.8 4.8 15.5 12.4 13.7 13.3 5.3 2.3 2.1 12.8 13.7 17.0 11.1 3.8 9.8 8.2 13.4 10.6 14.1 12.8 1.0 6.7 9.7 17.0 3.1 7.3 2.2 10.0 8.2 8.0

11.0 5.2 3.5 3.0 4.1 3.0 3.4 5.9 6.2 8.1 7.5 8.2 6.9 0.1 10.5 8.2 6.4 6.2 13.5 6.3 5.6 5.5 8.5 1.5 8.8 8.1 2.6 5.1 6.5 7.1 6.4 6.9 3.3 5.1 9.5 6.6 6.9 5.5 7.6 3.4 2.7 5.9 3.6 0.9 3.3 3.3 6.1 1.4 5.7 7.6 6.2 3.6 0.0 2.5 4.2 3.7 7.8 11.4 2.7 2.4 9.1 1.8 7.0 6.9 3.8 3.3 6.0 6.2 2.4 2.7 3.3 5.7 8.9 3.0 8.1 6.1 6.4 6.5 5.5 1.6 2.0 7.1 6.6 7.7 7.4 4.4 4.0 5.1 8.7 5.8 6.6 6.2 1.4 4.0 4.6 9.4 2.8 5.0 2.9 6.4 3.6 5.0

14.2 7.9 3.2 3.9 6.2 4.8 5.1 8.6 9.1 11.3 10.7 10.7 10.0 0.1 14.6 11.7 8.7 9.3 18.0 9.8 7.6 8.7 11.6 1.5 12.7 10.7 3.1 6.5 9.8 9.2 9.3 9.5 5.9 6.4 13.0 9.5 8.8 6.4 5.6 4.0 3.6 8.3 4.9 0.8 2.9 6.7 6.3 0.8 9.8 11.3 8.7 4.0 4.6 0.0 5.6 5.4 10.9 16.0 4.4 2.6 10.5 2.1 10.1 9.3 5.5 3.4 8.1 8.5 2.8 3.4 4.6 7.8 12.5 4.7 10.0 9.0 10.3 9.9 8.5 1.8 3.2 9.4 9.6 11.4 11.2 6.4 5.0 7.1 11.3 4.3 8.3 8.5 2.1 5.5 5.8 13.3 3.1 6.8 3.7 9.8 6.8 5.9

16.5 10.1 7.8 7.7 6.0 7.3 7.6 13.1 10.5 15.5 12.7 12.8 12.7 0.1 19.8 14.6 12.1 11.5 28.0 11.3 11.1 11.1 16.7 0.8 17.4 13.9 6.0 5.5 13.3 13.9 10.9 12.2 4.7 6.6 14.7 10.9 11.7 6.9 15.0 3.5 6.0 11.5 6.3 0.6 5.6 3.1 10.8 4.7 12.3 11.3 11.8 4.9 4.6 1.7 0.0 6.8 14.0 21.2 3.7 3.4 13.0 6.2 12.2 11.9 8.9 2.5 6.4 10.6 3.7 6.8 7.0 9.9 15.6 5.2 14.2 11.2 12.0 11.7 5.5 2.4 1.3 11.8 12.4 13.8 11.7 3.4 12.4 9.3 14.4 11.3 13.0 11.9 0.5 8.5 12.1 16.9 2.1 7.8 2.2 10.5 7.4 7.5

18.3 12.1 8.6 8.5 7.1 8.4 9.3 14.7 12.5 18.0 14.7 14.7 15.2 0.1 22.7 16.5 14.3 13.8 29.5 13.2 12.6 13.1 19.2 0.9 19.6 15.6 7.0 6.7 15.1 16.6 13.3 13.8 5.1 7.3 17.9 12.3 12.7 8.1 18.0 3.9 6.7 13.0 7.6 0.6 6.0 3.5 13.0 5.5 14.5 12.4 13.0 5.4 4.7 1.5 8.9 0.0 16.3 23.7 4.3 3.5 15.2 7.1 13.6 13.2 11.1 2.8 7.3 11.8 3.8 7.6 8.1 11.5 18.2 5.7 16.3 13.1 13.7 13.3 5.9 2.8 1.4 13.6 14.5 16.4 13.1 4.0 13.5 9.9 16.1 12.6 15.3 13.8 0.6 9.6 14.0 19.9 2.7 8.8 2.2 11.9 10.0 9.2

27.1 15.5 12.5 6.7 10.3 10.2 14.7 17.9 22.6 29.7 22.0 20.3 25.4 0.1 32.2 25.9 21.6 20.2 42.4 21.9 17.0 20.7 28.2 1.2 26.8 24.2 6.2 8.7 24.1 20.6 27.0 21.9 6.7 8.8 26.6 18.6 19.7 10.5 24.0 4.7 6.3 18.3 9.9 0.6 8.0 5.8 17.8 5.0 21.6 15.3 20.6 7.2 5.9 2.0 10.7 8.5 0.0 32.2 5.8 3.7 22.4 7.7 20.4 20.2 11.7 3.6 9.4 16.4 4.6 8.4 8.2 17.5 28.1 7.3 25.0 21.3 22.0 21.9 7.8 3.4 1.9 19.9 28.0 25.5 18.1 4.1 15.8 12.6 21.1 17.4 21.8 22.2 0.8 11.5 18.9 27.4 3.2 11.3 2.7 17.3 15.0 13.9

32.5 9.4 7.4 6.1 8.0 6.5 7.7 10.2 13.9 16.7 15.0 13.1 16.1 0.2 21.2 18.0 14.0 11.9 47.4 12.9 10.6 13.6 18.4 1.9 16.6 16.3 5.4 6.9 14.9 12.2 14.7 13.6 3.5 8.2 19.1 12.3 13.0 7.6 14.5 5.1 4.8 10.0 6.0 1.3 5.1 3.4 10.9 6.9 13.5 10.5 12.6 5.6 6.2 2.8 6.2 5.2 14.6 0.0 3.5 3.0 15.9 6.2 13.9 13.6 8.6 3.8 6.6 11.4 4.2 5.4 5.9 11.4 19.7 5.0 16.7 12.3 14.1 13.6 5.6 2.2 2.2 13.2 14.2 16.8 12.3 2.6 9.6 8.1 13.6 10.5 14.9 13.4 1.3 6.7 10.2 17.8 3.3 8.2 3.0 10.2 9.2 9.7

16.4 11.1 8.1 6.6 7.4 7.4 8.7 13.1 11.9 16.8 13.6 13.2 13.4 0.1 20.1 15.0 12.5 12.6 21.9 13.0 11.9 12.3 16.3 1.0 18.1 14.5 5.2 6.3 13.9 14.0 13.4 13.5 6.7 6.9 16.3 12.0 11.9 7.6 8.5 3.8 5.4 13.0 7.1 0.5 6.1 7.6 8.9 2.7 13.9 11.9 12.7 5.2 4.7 3.8 9.4 6.7 15.7 21.7 0.0 3.3 13.8 4.2 12.9 12.0 7.9 2.6 7.1 10.9 3.7 5.7 6.3 11.0 16.1 5.4 15.1 12.5 12.6 13.0 6.6 2.5 1.7 13.0 14.0 14.2 12.4 6.8 9.8 9.3 15.4 12.6 13.5 13.0 0.8 8.5 12.8 19.1 2.7 7.2 3.0 10.5 9.6 8.5

3.2 1.4 1.1 1.8 1.3 1.3 1.5 2.2 2.1 3.2 2.8 3.2 2.4 0.0 4.2 2.5 2.2 2.5 10.2 2.2 1.7 2.1 3.3 0.7 3.6 2.8 1.1 1.5 2.5 2.3 2.2 2.4 0.5 2.5 2.8 2.3 2.8 1.7 3.2 1.9 0.9 2.6 1.4 0.6 1.3 0.7 2.3 1.0 2.2 3.0 2.1 1.9 1.5 1.4 1.1 1.2 2.8 5.2 0.6 0.0 2.4 1.3 2.6 2.4 1.2 1.6 1.6 2.4 0.9 0.8 1.3 2.0 3.1 0.9 2.8 2.0 2.2 2.3 1.5 0.3 0.8 2.9 2.3 2.6 1.8 0.6 1.1 1.6 3.7 2.6 2.4 2.3 0.4 1.1 1.2 3.3 1.1 1.8 1.2 2.5 1.4 1.8

27.2 16.4 12.4 7.5 10.7 10.5 13.3 18.5 20.2 25.6 21.8 22.1 23.8 0.2 33.4 25.8 21.6 19.2 45.1 19.0 17.5 19.5 27.8 1.8 27.0 23.9 6.9 10.1 23.1 21.2 21.3 20.1 7.3 9.8 34.2 18.9 19.4 13.7 24.6 5.8 6.9 17.3 9.9 0.6 8.2 5.4 17.7 7.4 20.5 16.1 19.0 8.0 7.1 2.8 11.6 9.4 24.3 32.4 6.2 4.0 0.0 9.0 20.1 21.2 13.2 5.0 10.5 16.4 5.0 9.0 8.4 17.2 27.9 8.0 24.7 19.5 20.1 20.3 8.8 3.7 2.8 19.6 21.4 25.4 20.1 13.2 17.0 12.2 25.3 19.0 22.5 20.9 1.2 11.7 18.4 29.3 4.3 12.5 3.0 17.2 12.9 15.5

16.2 7.5 5.9 5.5 6.7 4.7 5.0 9.0 8.1 10.8 9.4 9.3 9.3 0.2 14.4 11.0 8.1 8.5 19.7 8.6 7.9 8.2 12.0 0.7 12.4 9.9 5.5 4.7 8.8 9.5 8.5 9.3 6.9 6.3 12.1 8.5 8.8 5.8 8.9 3.4 4.4 7.9 4.0 0.6 4.7 3.8 8.7 4.8 9.2 8.6 8.4 3.4 4.2 1.6 6.9 4.6 9.9 15.6 4.2 2.7 10.9 0.0 9.3 8.6 6.1 2.1 5.2 7.4 3.4 4.5 5.1 7.0 11.6 4.1 10.3 8.2 8.5 9.2 4.6 2.2 1.8 8.7 8.8 10.1 8.9 8.1 7.7 6.7 12.0 9.0 9.4 7.8 0.6 5.8 8.2 13.6 1.7 5.5 1.8 8.3 1.4 6.7

24.7 14.6 10.7 6.7 13.0 9.4 13.0 16.1 18.2 23.6 20.3 18.2 22.3 0.1 28.4 23.8 19.6 18.0 34.4 17.4 15.2 19.3 24.9 1.5 25.0 21.6 6.1 8.2 20.3 18.9 20.1 19.5 6.8 8.4 23.3 17.1 18.2 9.9 22.9 5.0 6.0 16.4 8.9 0.6 7.7 5.5 16.3 6.1 19.1 14.5 18.1 7.9 6.1 2.4 9.9 8.0 21.8 28.5 5.4 3.6 19.8 8.0 0.0 19.7 10.7 4.1 8.9 14.9 4.4 7.8 7.6 16.7 25.2 7.1 22.0 17.5 19.7 18.9 7.8 3.6 2.4 18.9 19.3 23.4 15.8 4.0 15.0 10.7 18.8 16.1 19.8 19.1 1.0 10.1 16.0 24.4 3.8 10.5 2.5 15.1 13.1 12.0

29.3 16.4 12.5 6.4 11.1 10.2 14.0 18.1 21.7 29.0 23.5 20.7 26.3 0.1 34.5 29.5 22.7 20.1 45.7 21.1 17.3 21.9 29.0 1.6 28.2 25.2 6.4 9.2 24.6 21.0 22.9 21.0 6.6 9.3 28.4 20.3 20.4 11.5 24.8 5.2 6.6 18.3 10.0 0.7 8.7 5.6 18.5 5.9 22.0 15.9 20.5 8.3 6.5 2.4 10.6 9.0 25.4 33.6 5.9 3.8 23.9 9.0 22.9 0.0 12.7 4.5 10.1 17.1 4.7 8.4 8.4 18.4 30.3 7.9 26.0 20.3 22.8 21.8 8.6 3.7 2.5 21.1 22.6 29.7 18.8 4.8 16.7 11.8 21.7 17.9 23.4 22.3 1.1 11.6 18.6 28.6 4.1 12.0 2.9 17.3 14.5 13.9

22.6 14.3 10.4 9.0 10.2 8.3 10.4 17.0 15.4 20.7 17.6 17.0 18.2 0.2 26.7 20.3 17.1 15.6 31.4 16.5 14.9 16.1 22.9 1.2 22.3 18.9 7.3 7.2 17.5 19.6 17.5 17.1 8.0 7.6 21.6 14.7 15.6 9.3 18.4 4.2 7.0 15.0 7.2 0.6 7.6 6.0 14.8 4.6 16.9 12.9 15.6 5.9 5.2 1.7 12.1 8.8 19.6 27.5 6.3 3.7 19.0 8.1 16.1 15.7 0.0 2.9 8.3 14.1 4.4 8.8 8.6 13.6 21.6 7.0 19.8 15.2 16.3 15.8 7.2 3.7 2.2 16.1 18.6 19.6 15.6 10.3 15.3 10.5 18.8 14.9 18.1 16.1 0.8 11.0 15.5 23.4 3.0 9.1 2.4 14.3 9.7 11.2

7.1 3.1 1.5 1.9 2.9 1.9 2.2 3.3 4.0 5.6 5.0 5.9 4.7 0.1 6.7 5.2 4.8 4.6 8.7 4.4 3.1 4.1 5.7 1.9 4.9 5.3 2.2 3.4 5.1 4.4 4.3 4.8 1.9 2.9 5.6 4.6 5.0 3.5 5.9 2.7 2.0 4.1 2.2 0.9 2.0 1.7 4.8 1.1 4.0 4.2 4.0 3.1 2.2 1.9 2.9 2.4 4.8 6.7 1.6 2.0 5.1 1.7 5.0 4.7 2.7 0.0 3.4 4.3 1.2 1.9 2.1 4.3 5.8 1.5 5.1 3.5 4.7 4.3 3.0 0.9 2.0 5.3 3.7 5.2 3.5 3.3 3.4 3.0 5.5 4.2 5.1 4.2 0.9 1.7 2.4 6.1 2.2 2.9 1.5 3.7 2.1 3.2

12.6 7.0 5.3 4.2 4.8 4.6 5.1 7.9 7.7 10.6 9.5 10.8 8.9 0.2 13.3 10.0 8.7 7.7 19.1 7.7 7.5 7.5 12.2 1.6 11.1 10.2 3.6 6.3 8.7 8.7 8.4 8.7 2.8 6.4 11.6 8.1 8.4 6.6 11.2 4.7 3.7 7.3 4.9 0.9 4.2 2.6 8.0 3.5 7.5 10.3 7.6 4.6 5.4 2.1 4.8 4.5 9.8 14.2 2.5 2.9 10.5 3.6 8.7 8.2 5.6 3.9 0.0 8.2 3.3 4.2 4.9 7.2 11.0 4.0 10.3 7.9 8.3 8.3 5.8 1.7 2.2 8.8 8.1 9.5 9.3 2.6 6.5 6.4 10.5 7.7 9.2 8.4 1.1 5.0 6.8 11.5 3.2 7.3 3.0 7.4 6.1 8.2

28.6 13.0 10.2 8.0 9.6 9.1 11.5 15.1 17.7 23.9 20.8 17.8 20.8 0.1 29.0 23.2 19.4 17.0 42.9 16.6 14.6 17.4 28.5 1.7 23.0 22.7 7.2 8.1 20.0 16.9 18.9 17.7 5.9 8.2 24.4 15.9 18.2 9.9 20.4 4.8 6.0 14.7 8.1 0.8 7.3 4.4 14.7 5.4 17.7 14.0 16.8 7.2 5.9 2.4 8.9 7.3 21.2 29.9 4.8 3.3 20.3 5.9 18.4 18.2 11.2 4.0 8.3 0.0 4.1 7.3 8.0 14.7 27.0 6.4 23.2 16.7 18.7 18.2 7.1 3.0 2.4 18.9 19.3 23.0 15.7 3.4 13.1 10.4 18.7 14.6 19.2 18.3 1.1 9.5 15.2 23.6 3.8 10.6 3.0 13.8 11.5 11.5

6.4 3.3 2.0 2.2 2.8 1.9 1.5 4.2 3.1 4.3 4.4 4.8 3.8 0.1 6.1 4.5 3.4 3.7 8.1 3.5 4.2 3.2 4.4 0.7 3.7 4.5 2.3 2.9 3.7 4.6 3.2 4.1 2.4 3.8 4.7 3.6 3.5 2.6 3.3 2.1 2.2 3.8 2.1 0.6 2.1 3.0 3.7 1.2 3.8 5.0 3.8 1.7 2.5 1.1 3.1 2.6 4.5 7.4 1.9 2.1 3.4 1.9 3.8 3.2 2.7 1.4 3.3 3.8 0.0 2.2 2.3 3.1 4.8 2.0 3.9 3.3 3.7 3.9 3.3 1.1 1.5 3.8 3.7 4.1 4.0 3.5 3.2 3.4 5.3 3.5 3.3 3.4 0.9 2.8 2.8 5.4 1.4 2.6 1.3 3.4 0.6 3.0

13.9 7.3 5.7 7.7 7.9 4.6 4.9 12.3 8.5 11.2 9.3 9.5 9.9 0.1 14.9 11.2 8.4 8.8 19.3 9.2 9.1 7.7 11.5 0.7 12.2 9.9 7.0 4.6 9.1 13.9 8.1 9.2 8.0 4.9 12.3 8.8 8.2 6.2 7.8 2.8 5.5 8.4 4.6 0.7 4.4 7.4 7.3 2.2 9.8 8.3 8.7 6.0 3.4 1.6 8.1 7.9 10.5 16.4 4.5 3.4 8.3 5.1 8.8 9.1 7.8 2.0 5.8 8.0 2.8 0.0 6.5 6.8 11.5 5.4 9.0 8.4 9.5 9.1 6.0 3.1 2.5 8.7 9.5 10.3 9.3 8.7 9.4 7.1 12.3 9.0 9.7 8.6 1.1 8.0 8.0 12.6 1.9 5.4 1.7 7.4 2.4 6.3

19.0 9.3 7.2 7.5 8.7 5.8 6.7 12.3 10.2 14.8 12.3 11.9 12.6 0.1 18.4 14.7 11.2 10.9 25.7 11.5 10.7 10.4 15.5 1.0 15.8 12.6 7.0 5.7 11.6 14.7 11.1 11.7 6.8 6.5 14.7 10.0 10.6 6.9 6.5 3.6 5.7 9.4 5.2 0.8 5.4 6.4 8.4 3.5 12.2 9.7 11.4 4.6 4.0 1.4 9.9 6.8 13.3 19.8 5.1 3.2 10.5 6.4 11.2 11.3 9.0 2.4 6.7 9.5 3.7 6.8 0.0 8.8 15.2 5.6 13.4 10.6 11.1 11.4 5.8 3.2 2.2 10.8 12.0 13.0 11.0 10.5 11.2 8.0 14.0 10.1 11.8 10.8 0.7 8.5 10.2 16.1 2.1 6.8 2.1 8.6 7.1 8.1

22.1 14.1 10.3 6.4 9.3 9.0 14.1 15.6 18.0 23.8 19.4 16.8 21.9 0.1 26.8 21.6 17.7 17.3 31.6 17.4 14.6 18.8 23.8 1.5 23.3 20.5 5.1 8.1 19.9 17.4 18.8 18.3 6.0 8.3 21.7 16.0 18.1 9.2 21.7 5.0 5.4 16.6 8.9 0.7 6.5 5.5 15.5 4.2 19.2 14.3 18.3 6.5 5.8 2.2 9.2 7.5 21.0 27.4 5.4 3.6 18.8 6.7 18.5 17.2 10.1 3.8 8.4 14.3 4.3 6.9 7.0 0.0 23.1 7.0 21.5 17.6 19.3 18.5 7.5 3.1 2.1 18.2 18.4 20.9 15.6 3.5 13.7 10.8 18.3 15.4 18.8 19.0 1.0 9.8 15.8 24.1 3.6 9.6 2.5 14.9 12.3 11.5

30.6 16.9 13.1 7.4 16.2 10.6 14.3 18.5 23.7 27.9 26.0 22.6 27.0 0.2 36.4 30.1 23.5 21.5 49.3 21.3 18.6 22.4 32.2 1.7 29.3 28.2 6.6 9.7 25.9 21.7 23.9 22.3 6.9 9.7 30.5 20.2 22.3 11.9 25.2 5.4 6.6 18.7 10.2 0.7 9.1 5.6 18.9 5.3 23.4 16.8 21.7 8.7 6.8 2.5 11.3 9.1 26.5 36.3 6.1 3.9 25.3 8.0 22.6 23.0 13.2 4.7 10.4 18.8 5.2 8.6 8.6 19.1 0.0 8.1 28.8 21.7 23.6 22.7 9.1 3.7 2.3 23.6 24.5 29.1 20.3 4.9 16.9 12.4 22.6 18.5 24.8 23.7 1.1 12.2 19.2 30.3 4.1 12.3 3.4 17.2 14.4 15.3

15.4 9.7 7.4 6.3 6.9 6.1 6.8 11.7 10.4 13.4 12.5 13.1 12.4 0.1 18.2 13.4 12.3 10.8 23.7 10.7 10.7 10.9 16.3 1.0 15.7 13.2 5.1 5.9 12.1 12.9 11.0 11.4 5.4 6.1 14.1 10.3 10.6 6.9 13.7 3.7 4.6 10.8 5.9 0.6 5.4 3.7 9.6 4.2 11.2 10.5 10.8 5.1 4.1 1.7 7.6 6.2 13.5 19.7 4.0 3.2 12.7 6.0 11.2 10.5 7.7 2.6 6.1 10.0 3.6 6.0 6.0 9.0 14.6 0.0 13.4 10.5 11.1 10.9 5.7 2.7 1.6 11.1 12.0 13.1 11.4 6.7 10.6 8.2 13.7 10.4 12.1 11.0 0.7 8.5 11.2 16.0 2.4 7.0 1.8 9.6 6.8 8.2

28.3 15.5 12.5 7.6 11.0 10.6 14.9 18.0 22.2 28.5 23.8 20.4 25.5 0.1 33.0 26.8 21.9 20.6 44.1 20.3 17.1 21.3 29.9 1.7 27.5 26.0 6.5 9.1 23.9 20.5 22.7 21.2 6.5 9.2 27.8 19.0 21.1 11.1 24.7 5.4 6.5 17.9 9.8 0.8 8.4 5.3 17.8 5.4 22.3 16.1 20.7 7.7 6.5 2.5 10.5 8.6 25.5 33.6 5.8 3.8 22.9 7.9 20.9 21.0 12.2 4.4 10.0 17.5 4.8 8.5 8.5 18.6 30.5 7.5 0.0 21.2 22.0 22.2 8.3 3.8 2.4 21.1 22.5 26.6 18.2 4.0 16.0 12.3 21.9 17.8 23.3 22.3 1.1 11.2 18.5 28.2 4.1 12.3 2.9 17.1 12.8 14.2

23.8 15.0 11.1 7.6 11.9 10.4 16.8 16.5 18.8 25.6 20.2 18.3 23.0 0.1 28.7 22.9 19.8 18.9 35.4 18.8 15.7 19.1 25.3 1.1 24.2 22.2 6.3 7.6 21.1 18.4 20.8 18.8 6.8 8.3 23.0 17.3 18.1 9.6 22.5 4.3 6.4 17.7 10.1 0.5 6.5 13.3 16.4 5.2 21.3 14.6 19.4 7.4 5.7 1.6 10.2 8.2 23.1 28.8 5.5 3.6 19.5 8.7 18.5 18.0 10.9 3.3 8.6 14.8 4.2 7.9 8.0 17.3 25.1 6.8 22.7 0.0 19.9 19.7 7.7 3.6 1.7 18.5 20.8 22.3 16.3 5.9 15.5 12.4 18.6 16.3 20.0 22.3 0.8 10.8 18.1 25.3 3.1 10.5 2.1 20.9 15.6 12.4

27.2 15.7 12.2 6.6 10.9 10.2 15.2 17.7 22.4 28.8 22.3 19.6 28.5 0.2 32.1 26.9 22.2 19.8 40.9 21.2 17.3 22.0 28.0 1.5 27.3 24.4 5.9 9.0 23.3 20.6 23.5 22.3 6.3 9.0 26.8 19.3 20.5 10.8 24.3 5.0 6.2 18.6 9.7 0.6 8.3 5.5 17.9 5.6 22.4 15.8 20.9 7.9 6.2 2.3 10.5 8.7 25.4 32.0 5.6 3.8 22.1 7.7 21.9 21.2 11.7 4.2 9.4 16.7 4.6 8.0 8.0 18.9 28.5 7.7 25.7 21.0 0.0 23.2 8.2 3.6 2.3 20.4 23.5 26.2 17.8 4.7 15.9 12.1 20.9 17.5 23.0 22.8 1.1 11.2 18.5 27.6 3.8 11.3 2.7 16.8 14.9 13.2

25.6 15.2 11.2 6.4 10.1 9.9 14.7 17.1 21.3 27.4 21.9 18.8 25.0 0.2 30.2 25.3 20.7 19.1 36.3 20.2 16.1 21.3 26.3 1.4 25.8 23.5 5.8 8.4 22.2 19.9 23.1 21.1 6.3 8.8 24.9 18.5 19.7 10.1 23.4 5.0 6.1 18.0 9.4 0.6 7.9 5.6 17.3 5.7 21.9 15.2 20.1 7.0 6.1 2.1 10.5 8.4 24.7 29.8 5.5 3.7 20.8 7.2 20.8 20.2 11.8 4.0 9.1 15.9 4.5 7.8 8.0 18.7 27.0 7.3 24.0 20.0 22.4 0.0 8.1 3.3 2.1 19.8 22.1 25.0 17.0 3.7 15.1 11.8 20.0 16.6 21.7 21.4 0.9 10.9 17.4 26.2 3.4 10.9 2.7 16.0 14.2 12.6

14.3 7.3 5.1 4.0 5.1 4.9 5.2 8.3 8.0 11.0 9.6 10.8 9.5 0.1 13.6 10.6 9.0 8.4 20.6 7.8 8.0 7.8 12.0 1.6 11.7 10.1 3.5 6.6 9.0 8.9 8.6 8.9 3.0 6.8 11.6 8.1 8.8 6.6 11.2 4.7 3.9 7.6 4.8 1.0 4.4 2.8 8.1 2.9 8.1 10.8 8.0 4.8 5.4 2.3 5.2 4.5 9.9 14.6 2.8 2.6 10.7 3.7 9.1 8.3 5.8 3.9 6.9 8.3 3.2 4.1 4.7 7.4 11.5 3.9 10.5 8.2 8.3 8.7 0.0 2.1 1.9 9.2 8.7 10.3 9.5 3.1 6.7 6.7 10.7 7.9 9.5 8.3 1.1 5.1 7.6 12.4 3.2 7.6 3.5 7.6 6.2 8.4

11.6 5.6 5.2 6.0 6.8 3.7 3.6 9.7 7.4 9.1 9.2 8.9 8.6 0.1 14.6 9.5 7.9 7.6 16.6 8.2 8.0 7.2 11.1 0.6 10.2 9.0 5.4 3.9 8.3 12.4 7.3 8.5 7.0 4.0 10.2 8.1 7.9 5.1 5.3 2.3 4.3 8.3 3.4 0.4 3.8 6.4 5.1 1.9 8.8 7.3 7.8 4.4 2.4 1.4 6.0 6.5 9.6 15.3 4.1 2.9 6.2 3.9 8.1 7.6 6.2 1.3 5.2 7.5 1.7 4.5 5.7 6.3 10.7 5.3 8.1 7.4 8.3 8.0 5.1 0.0 2.1 7.5 9.0 9.4 8.1 7.6 7.8 5.6 11.8 7.2 8.1 7.8 1.0 9.0 7.1 11.6 1.5 4.2 1.2 6.2 4.4 4.8

12.5 7.3 5.7 4.7 6.8 4.6 4.5 8.8 8.3 10.3 10.1 10.9 9.2 0.1 14.1 10.5 8.5 8.4 16.5 8.1 8.1 7.6 11.0 1.4 11.1 10.5 4.6 5.9 8.9 9.5 8.5 8.8 4.9 6.4 11.9 8.7 8.8 6.6 8.3 4.2 4.0 7.6 4.5 0.8 4.8 4.8 7.8 2.6 8.5 10.0 8.7 4.6 4.5 2.4 6.3 5.1 10.2 16.3 3.7 2.8 10.6 3.3 8.6 7.5 5.5 3.5 6.9 8.3 3.2 4.6 4.7 7.3 11.4 4.1 9.7 8.0 8.6 8.5 6.5 1.9 0.0 8.7 8.9 10.3 10.4 7.4 6.4 6.8 12.3 8.2 8.3 8.2 1.5 5.6 6.7 13.2 3.0 6.5 2.5 7.8 4.2 7.1

23.5 14.2 10.9 5.9 12.8 9.0 13.1 16.1 18.1 18.8 21.7 18.6 21.7 0.1 29.1 23.0 18.9 18.3 31.0 17.9 15.1 18.6 26.3 1.3 25.2 22.7 5.3 8.1 21.1 18.1 19.6 19.2 13.5 8.5 23.4 16.9 19.6 9.7 21.9 4.8 5.5 16.7 9.3 0.7 6.5 5.9 15.4 4.2 19.4 15.0 18.4 7.0 5.9 1.9 10.0 7.9 22.2 28.8 5.5 3.7 19.3 6.7 19.6 18.0 10.4 4.0 9.0 15.5 4.4 7.8 7.2 16.8 27.0 6.9 22.7 17.6 19.2 19.2 7.9 3.5 2.2 0.0 19.3 22.6 16.1 4.5 14.7 10.8 18.6 15.8 20.2 18.7 1.0 10.4 16.7 24.8 3.7 10.5 2.8 14.7 12.3 13.0

28.1 15.9 12.5 7.5 10.7 10.4 15.2 18.0 24.0 29.7 22.2 19.8 25.8 0.1 32.8 26.6 22.0 20.4 43.3 23.9 17.5 20.9 29.3 1.1 27.3 25.0 6.1 8.7 24.3 20.7 30.0 23.4 6.6 8.7 27.0 18.6 19.6 10.5 23.9 4.6 6.8 18.6 10.1 0.5 8.0 5.9 18.0 6.1 22.9 15.5 21.0 7.1 6.0 2.0 10.5 8.8 30.5 33.0 5.6 3.8 22.1 8.2 20.4 20.4 12.0 3.5 9.2 16.9 4.8 8.4 8.3 18.0 28.3 7.4 25.1 21.5 22.5 22.3 7.7 3.4 1.7 20.0 0.0 26.0 18.3 5.1 16.4 12.6 21.1 17.4 21.7 23.0 0.6 11.6 18.8 28.0 3.2 11.3 2.6 16.7 15.3 13.8

31.2 16.7 13.2 6.3 12.5 10.5 14.4 18.9 23.2 30.9 24.8 21.7 28.0 0.2 35.6 32.3 24.6 21.6 48.6 22.4 18.3 23.9 31.0 1.7 29.8 26.4 6.7 9.6 25.9 21.8 24.8 23.0 7.0 9.6 30.3 21.7 21.3 12.0 26.1 5.2 6.8 18.8 9.9 0.7 8.7 6.4 19.1 5.9 24.3 16.4 21.4 9.1 7.0 2.5 11.4 9.2 27.1 34.8 5.8 3.9 25.0 8.9 24.1 25.4 13.1 4.5 10.4 18.0 4.9 8.4 8.5 19.7 32.3 8.3 27.6 21.9 24.5 23.5 9.0 4.0 2.5 22.0 24.5 0.0 19.7 4.6 17.4 12.3 22.5 18.7 24.7 23.8 1.2 11.9 19.0 30.2 4.2 12.6 2.9 17.7 15.2 15.1

20.9 12.8 10.3 6.3 7.9 8.1 9.8 14.8 15.0 19.9 16.8 17.3 16.9 0.2 25.8 18.7 15.8 14.1 32.8 14.6 14.3 14.4 21.4 1.4 21.5 18.1 5.2 9.3 17.0 16.0 15.3 14.9 5.5 9.0 21.3 14.8 14.7 10.3 18.7 5.2 6.0 13.1 8.2 0.7 7.7 4.2 12.5 5.1 15.7 15.3 15.0 6.6 6.5 2.3 8.9 7.4 18.1 26.0 4.9 3.8 19.6 5.9 15.0 15.1 9.9 4.4 9.5 13.5 4.5 7.0 7.4 12.4 21.0 6.6 19.3 15.1 15.3 15.5 8.2 3.1 2.3 14.7 16.3 19.0 0.0 4.4 12.5 10.4 18.5 13.1 16.3 16.0 1.0 9.9 14.2 22.3 3.9 11.1 3.6 12.8 10.1 13.2

17.3 10.7 7.4 7.5 6.0 7.3 8.4 12.4 10.6 15.7 12.7 13.4 12.9 0.1 19.8 13.9 13.1 11.6 27.8 11.4 11.2 11.1 18.1 0.8 16.7 13.9 6.1 6.1 12.7 13.6 11.3 12.0 5.0 7.2 18.9 11.1 11.4 7.9 14.9 3.7 6.4 11.3 6.3 0.6 5.8 3.3 11.4 4.6 12.6 11.9 11.7 4.7 4.4 1.5 9.6 6.6 13.8 21.1 3.9 3.2 18.4 7.7 11.7 11.1 9.1 2.5 6.2 10.4 3.9 6.6 6.6 9.7 15.6 4.9 13.7 11.0 11.2 11.6 5.2 2.5 1.3 12.1 12.1 13.8 11.6 0.0 12.4 9.2 17.9 10.9 12.7 11.5 0.5 8.1 12.7 17.5 2.3 8.1 2.1 11.0 8.1 9.3

21.7 13.4 9.7 9.0 8.6 7.8 9.3 15.7 13.5 19.8 16.3 16.2 16.6 0.2 24.7 17.8 16.2 14.4 32.9 14.2 13.6 14.0 21.4 1.0 21.3 16.9 7.4 7.0 16.3 17.5 15.2 14.8 7.2 7.4 20.1 13.7 14.2 8.9 16.8 4.0 7.4 13.6 7.3 0.7 6.8 5.1 13.9 4.0 15.3 12.1 14.4 5.8 4.9 3.6 12.8 8.1 17.8 25.7 5.8 3.6 18.1 8.1 14.7 14.8 10.4 3.2 8.0 12.5 4.2 7.7 8.1 12.5 20.0 6.4 17.8 14.2 14.7 14.8 6.8 3.7 1.9 15.0 15.5 18.0 14.8 11.9 0.0 9.9 17.7 13.8 16.6 14.3 0.6 9.9 14.6 21.8 2.9 8.9 3.1 13.3 6.1 11.0

17.5 4.8 3.1 2.7 4.8 3.6 4.0 5.8 6.8 7.9 7.6 6.2 7.8 0.1 9.6 8.1 5.9 6.7 19.7 6.8 6.2 6.4 7.6 1.0 8.3 8.2 2.4 3.7 7.0 6.3 6.9 6.8 4.3 6.4 8.8 6.3 6.4 4.2 2.9 4.0 2.5 5.8 3.4 1.0 3.0 4.9 3.4 1.9 7.4 6.0 6.8 2.6 4.4 2.8 4.1 3.3 7.8 10.6 2.9 2.0 6.5 3.3 7.2 6.6 3.5 1.8 4.0 5.7 3.3 2.2 2.8 5.9 8.7 3.0 7.8 6.7 7.3 7.2 4.3 1.2 2.0 6.7 7.1 8.2 7.0 4.8 4.1 0.0 7.5 5.0 6.4 6.9 0.9 3.5 4.4 9.1 1.9 3.8 3.6 5.7 5.1 6.0

25.7 14.1 10.4 7.5 9.4 9.1 11.6 15.9 17.9 23.2 19.2 20.8 20.3 0.2 28.8 22.6 18.0 16.6 43.6 16.5 14.9 17.2 24.2 1.7 23.7 20.4 7.3 9.4 19.9 17.8 18.3 17.3 5.8 9.3 27.9 16.6 16.8 11.5 20.4 5.4 6.7 15.0 9.0 0.8 7.3 4.1 15.4 5.7 17.7 15.2 16.7 7.1 6.5 2.4 9.0 7.9 21.2 29.1 4.7 3.6 26.7 7.0 17.6 17.7 11.8 4.7 9.1 14.7 4.8 7.4 8.2 14.9 24.2 6.5 21.6 16.4 18.0 17.8 7.7 3.2 2.2 17.4 18.8 21.5 16.9 14.6 15.0 11.4 0.0 15.0 19.1 18.5 1.0 9.8 15.8 24.7 4.0 11.9 3.1 14.2 12.1 14.6

21.1 13.6 11.1 8.5 8.7 9.3 10.9 16.1 16.8 23.0 18.3 17.3 20.9 0.1 27.1 21.9 17.4 17.0 31.0 16.8 15.5 17.0 22.4 1.3 23.6 20.0 6.8 8.2 18.9 18.0 17.9 17.7 5.9 8.5 24.0 16.8 16.5 9.9 22.6 4.7 6.4 15.9 8.1 0.8 7.8 4.1 17.0 6.5 18.6 14.4 17.1 6.4 6.1 2.7 9.8 8.1 20.7 27.1 5.0 3.7 19.4 7.4 17.6 16.9 11.3 3.9 8.7 13.7 4.2 7.1 8.3 15.5 22.5 6.6 20.6 17.0 18.1 17.6 7.7 3.0 2.0 16.6 18.2 20.9 16.1 4.3 14.2 11.0 19.2 0.0 19.0 18.0 0.8 10.3 15.0 26.0 3.4 10.9 2.5 19.2 7.5 11.5

26.0 16.3 11.9 7.6 11.3 12.0 13.6 18.0 19.6 26.9 21.5 19.2 23.2 0.2 30.9 25.3 20.6 19.1 38.3 19.5 17.0 20.0 26.8 1.5 26.3 23.2 6.6 8.4 22.5 20.1 20.5 20.3 7.0 8.8 25.9 18.6 19.3 11.1 24.5 5.2 6.5 18.2 9.5 0.6 8.2 11.4 18.1 5.9 20.7 14.6 19.3 7.3 6.2 2.1 10.8 8.8 23.2 30.7 6.3 3.6 22.0 8.6 20.4 19.5 12.5 4.0 9.6 16.3 4.8 7.8 8.3 16.7 28.1 7.5 24.3 19.0 20.7 20.5 8.1 3.7 3.7 19.7 20.8 24.1 17.9 6.1 15.1 11.7 20.7 17.7 0.0 20.2 1.1 11.4 19.1 27.1 3.8 10.6 2.7 16.5 14.1 13.0

26.1 14.9 12.1 7.7 10.4 10.5 16.7 17.4 21.0 28.0 21.0 18.5 24.8 0.1 31.2 24.7 20.6 19.5 39.4 19.9 16.7 20.2 26.9 1.1 26.0 23.0 6.4 7.9 23.4 19.6 21.1 19.9 6.6 8.3 25.3 18.2 18.5 10.2 23.8 4.5 6.4 18.7 10.1 0.6 8.0 6.1 17.3 5.5 22.2 14.9 20.4 7.1 5.9 1.6 10.4 8.5 24.5 31.0 5.6 3.6 20.9 7.7 19.9 19.6 11.9 3.3 9.3 15.6 4.3 8.0 8.2 18.3 27.0 7.3 24.0 22.5 21.4 20.5 7.7 3.4 1.8 19.5 22.7 24.5 17.4 4.2 15.3 12.6 20.3 16.8 21.4 0.0 0.6 11.1 18.3 26.8 3.0 10.7 2.4 16.7 14.1 12.6

6.1 2.7 1.7 1.7 2.1 1.7 1.9 3.3 3.4 4.5 4.5 4.8 3.6 0.1 5.3 4.1 3.5 3.5 7.2 3.1 2.8 3.0 4.9 1.3 4.2 4.5 1.6 2.9 3.8 3.7 3.3 3.9 1.7 3.2 4.9 3.5 3.9 3.1 5.4 2.3 1.7 3.3 2.4 0.7 1.7 1.7 3.8 1.0 3.0 4.7 3.2 2.4 2.4 1.3 2.6 2.1 4.4 6.0 1.4 1.8 4.8 1.3 4.0 3.8 2.3 2.1 2.9 4.0 1.4 1.6 1.9 3.2 5.4 1.4 4.4 3.5 3.2 3.8 2.7 0.8 1.4 4.3 3.4 3.9 3.5 2.6 2.8 3.1 4.6 3.3 3.9 3.7 0.0 1.8 2.3 4.9 1.8 2.8 1.6 3.7 1.5 2.7

18.3 12.0 9.0 9.0 7.5 8.0 8.6 14.8 12.2 16.5 14.0 14.6 14.9 0.1 22.3 16.5 14.0 13.2 27.8 12.7 12.8 13.0 19.1 0.7 19.3 15.3 7.8 6.3 14.3 15.6 13.0 13.4 6.5 7.1 16.5 12.0 12.5 7.3 16.6 3.6 6.4 13.0 6.7 0.5 6.6 3.8 12.2 6.2 14.5 11.8 13.2 5.1 4.5 1.6 9.9 7.6 16.1 23.6 4.7 3.4 15.0 8.2 13.2 12.5 10.5 2.0 7.0 11.6 4.2 7.9 8.4 11.4 17.6 6.0 16.1 13.1 13.3 13.5 5.9 3.6 1.4 13.2 14.4 16.0 13.0 6.5 13.4 9.9 16.1 12.1 14.5 13.6 0.4 0.0 13.4 18.9 2.0 8.5 1.4 11.9 8.0 9.7

21.8 13.3 10.6 8.0 9.7 10.1 11.4 15.0 15.3 22.5 16.8 15.3 18.3 0.1 24.7 20.0 16.1 15.6 29.4 17.3 14.6 15.8 22.3 1.0 21.1 18.1 7.6 6.8 16.8 16.7 16.5 16.6 7.0 7.4 20.1 14.5 15.5 8.9 14.4 3.9 6.5 15.4 8.4 0.5 6.9 13.0 14.1 6.1 19.3 12.5 17.5 6.0 4.9 2.0 11.4 7.6 19.6 26.1 6.0 3.4 16.4 7.6 15.5 15.6 10.4 2.8 7.7 13.3 4.0 7.2 7.9 14.2 21.5 6.4 19.1 16.7 17.3 16.3 7.0 3.2 2.9 16.3 17.9 18.4 14.8 14.2 12.9 11.6 18.0 14.8 18.5 16.7 0.8 9.9 0.0 23.2 2.6 8.4 2.1 13.9 10.9 9.9

24.8 14.4 11.5 7.0 10.1 9.3 12.1 16.8 18.3 23.9 19.6 19.2 21.5 0.2 29.5 23.9 18.7 18.0 36.7 17.6 16.3 18.8 25.0 1.7 24.5 21.8 6.1 9.5 21.1 18.8 19.3 19.2 6.5 9.2 26.5 18.1 17.7 11.2 23.3 5.3 6.2 16.1 8.9 0.6 6.9 5.2 17.4 6.2 19.8 15.4 18.4 7.3 6.5 2.4 9.8 8.5 22.2 29.2 5.6 3.8 22.6 8.2 18.7 18.7 11.6 4.4 9.4 15.3 4.7 7.7 7.6 15.9 25.4 7.1 22.7 18.0 19.1 18.9 8.6 3.5 2.4 18.1 19.6 23.0 17.4 5.8 15.2 11.4 20.1 17.5 20.2 19.4 1.0 10.4 16.0 0.0 4.0 11.5 2.7 21.4 15.0 13.5

7.7 3.9 1.7 2.4 4.3 2.2 2.6 4.6 4.7 6.1 5.9 6.3 5.3 0.1 7.7 6.2 4.7 5.6 9.7 5.1 4.0 4.5 5.9 1.5 3.9 6.0 2.5 3.7 5.6 5.7 4.9 5.6 3.3 3.9 6.7 5.1 5.1 3.5 4.9 2.9 2.4 5.2 2.8 0.9 2.3 3.3 5.3 0.7 4.4 5.9 4.6 2.8 2.9 1.7 3.6 3.5 5.7 8.2 2.5 1.8 5.9 1.5 5.7 5.4 3.3 2.8 4.0 5.3 1.7 2.1 2.7 4.8 6.6 2.5 5.0 4.8 5.5 5.2 3.9 1.1 2.1 4.9 4.5 6.2 5.0 3.9 3.7 3.5 6.2 4.7 5.3 4.6 1.3 2.5 2.5 6.5 0.0 3.5 2.2 5.4 2.9 3.8

19.2 9.0 7.0 5.8 6.9 5.6 6.0 10.2 9.8 14.0 11.9 13.4 11.4 0.2 17.3 13.4 10.9 10.0 27.1 10.8 9.6 9.7 15.4 1.4 14.7 12.7 5.4 7.6 11.2 10.9 10.7 10.8 4.2 7.7 16.1 10.0 10.5 8.2 13.1 4.9 4.9 8.9 5.6 1.0 5.5 3.9 9.9 4.4 10.4 11.9 10.1 5.4 5.2 2.6 8.2 5.7 12.4 18.5 3.7 3.2 16.3 5.7 11.0 10.6 7.1 4.0 7.9 9.9 3.8 5.5 6.0 9.1 14.7 4.9 13.3 10.4 10.0 10.7 7.2 2.6 2.8 11.4 10.6 12.7 12.0 9.5 8.5 8.3 14.6 9.9 11.5 10.3 1.2 6.4 9.3 15.8 3.1 0.0 2.5 9.4 6.7 11.6

8.4 1.7 1.7 1.1 2.2 1.5 0.9 2.3 2.9 3.3 3.4 3.5 3.2 0.1 4.2 3.9 3.4 2.7 7.9 2.8 2.6 2.7 4.0 1.4 1.8 3.7 1.4 2.7 2.9 3.0 3.0 3.3 1.4 4.4 4.8 2.8 3.4 2.8 3.9 3.0 1.3 2.4 1.8 0.9 1.5 1.2 3.0 2.6 2.6 3.3 2.9 1.9 3.3 1.4 1.4 1.6 3.0 4.1 1.1 1.3 3.6 2.3 3.7 3.4 1.9 1.6 2.7 2.9 1.1 1.4 1.3 2.9 4.4 1.7 3.5 2.4 3.1 3.1 2.4 0.7 1.5 3.3 2.3 3.9 3.4 2.1 2.1 2.0 3.5 2.6 3.5 2.7 0.8 1.4 1.9 3.2 1.4 1.6 0.0 2.9 1.5 2.8

19.7 13.2 10.1 7.8 9.1 9.2 11.9 15.6 14.8 21.4 17.2 16.2 19.4 0.2 25.7 19.9 16.0 16.1 30.0 15.5 14.5 16.2 22.1 1.1 22.1 19.0 6.8 7.0 18.4 17.8 16.8 17.5 7.6 7.9 21.0 15.5 15.9 8.9 23.8 4.2 5.8 16.3 8.4 0.6 7.6 4.8 20.4 6.6 17.6 13.4 16.2 6.2 5.1 2.0 9.9 7.9 19.3 25.1 5.6 3.6 17.6 8.9 16.7 15.8 11.5 3.2 7.7 13.4 4.0 7.1 7.0 14.3 21.0 6.0 19.4 19.4 16.7 16.5 6.8 3.0 1.6 16.2 16.9 19.2 14.2 5.7 13.7 11.0 17.9 20.3 17.9 16.7 0.7 9.6 15.0 28.2 2.8 9.3 2.1 0.0 25.2 10.7

18.4 12.4 9.7 7.5 9.2 8.6 11.3 14.9 14.4 19.3 16.3 15.5 17.7 0.2 24.2 18.9 16.0 15.2 27.2 15.0 14.0 15.5 21.4 0.8 21.4 17.7 6.2 6.5 17.0 16.6 15.8 16.4 9.5 7.4 20.5 14.3 14.9 8.2 22.5 3.7 5.8 15.5 7.7 0.5 7.2 5.0 18.6 5.8 17.1 12.6 16.0 6.2 4.7 1.7 9.9 7.3 18.6 24.2 5.9 3.6 17.1 8.6 15.3 15.2 10.9 2.6 7.2 12.6 4.0 6.8 6.7 13.0 19.7 5.7 18.2 17.4 15.3 15.4 6.6 3.1 1.4 15.6 16.3 18.0 13.6 7.9 12.7 10.7 17.3 19.5 16.8 15.3 0.5 9.3 14.6 26.6 2.4 8.7 1.8 23.8 0.0 10.5

18.6 8.2 6.3 5.1 5.8 5.3 5.7 8.8 8.9 12.9 10.8 12.4 10.1 0.1 15.5 12.2 10.8 9.0 25.5 9.8 9.1 8.4 13.9 1.5 13.2 11.7 4.9 7.4 10.0 10.2 9.8 9.8 3.8 7.4 15.1 9.1 9.8 7.5 12.0 4.4 4.3 7.8 5.0 0.9 5.3 3.3 8.5 4.5 9.5 11.5 9.0 4.9 5.5 2.2 7.4 5.1 11.2 17.0 3.5 3.0 15.5 5.8 9.7 9.5 6.5 3.8 7.4 8.8 3.7 4.9 5.3 7.9 13.4 4.4 11.9 9.2 9.1 9.5 6.5 2.4 2.2 10.2 9.9 11.5 11.4 9.2 7.8 7.8 14.2 8.5 11.0 9.1 1.0 6.1 8.9 14.5 2.6 9.5 2.4 8.4 5.7 0.0 0
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Figure 2: Evaluation results of our multilingual model (24 encoder layers and 6 decoder layers) on all translation
directions on the FLORES-101 devtest set. The language x in the i-th row and language y in the j-th column
denotes the translation direction from the language x to language y. For example, the cell of the 1-th row (af) and
the 2-th column (am) represents the result of the translation direction af→am. The table shows the results of all
translation directions of 102 languages.
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af am ar as ast az be bn bs bg ca ceb cs ku cy da de el en et fa fi fr ff ga gl gu ha he hi hr hu hy ig id is it jv ja kam kn ka kk kea km ky ko lo lv ln lt lb lg luo ml mr mk mt mn mi ms my nl no ne ns ny oc om or pa pl pt ps ro ru sk sl sn sd so es sr sv sw ta te tg tl th tr uk umb ur uz vi wo xh yo zh zt zu
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0.0 22.0 17.2 8.4 23.5 14.0 19.6 20.6 25.8 29.0 26.9 24.5 30.6 0.2 41.0 35.9 30.7 24.1 61.0 24.9 20.6 26.5 36.8 1.5 32.3 28.1 11.9 13.0 30.0 26.0 31.2 26.0 22.8 14.6 34.3 23.1 22.8 12.8 28.3 6.4 11.8 20.7 12.6 1.2 9.5 18.6 20.6 12.6 25.9 19.6 24.0 10.4 9.3 1.2 23.3 12.9 35.5 46.5 12.7 4.3 36.9 14.8 25.5 26.5 17.8 7.2 11.2 20.7 8.3 18.5 13.1 21.7 35.9 8.8 30.6 23.0 26.6 25.3 12.8 6.2 4.8 24.0 27.3 33.5 22.0 23.8 26.4 15.8 25.4 20.9 29.0 25.7 3.3 13.3 24.3 32.9 5.5 18.1 8.4 19.1 17.6 20.0

22.5 0.0 13.1 9.6 15.8 10.7 14.7 17.2 16.5 23.7 18.6 18.3 20.0 0.2 27.5 22.1 18.8 17.1 31.7 17.1 15.6 17.2 24.8 0.9 23.6 18.9 10.3 9.6 19.5 19.1 19.6 17.6 17.8 11.9 21.7 16.4 16.2 9.6 18.3 4.8 10.0 16.1 9.3 1.4 7.7 15.0 15.9 9.7 18.3 15.9 17.3 6.2 7.2 1.4 18.6 11.2 23.6 32.1 10.6 4.3 21.4 13.3 16.8 16.7 13.4 4.7 8.4 14.1 7.9 13.9 10.9 14.5 23.0 6.6 20.8 16.4 17.4 17.7 11.6 5.1 4.5 18.0 18.5 20.2 16.5 19.2 19.7 13.5 19.4 16.1 19.9 17.4 2.8 11.0 17.2 24.4 4.4 13.3 6.4 15.8 5.1 15.7

21.2 15.8 0.0 9.0 16.8 11.5 15.4 14.9 16.3 17.3 18.3 17.4 19.2 0.1 26.8 20.1 20.5 16.9 36.6 16.8 15.9 17.0 26.6 0.6 23.0 19.0 9.0 9.5 19.7 17.9 22.6 17.2 18.1 11.9 20.4 15.6 16.0 8.8 20.0 4.6 8.7 15.8 9.8 0.8 6.9 14.9 14.6 9.2 17.7 16.7 16.8 7.4 7.2 0.8 14.8 8.1 24.9 32.2 10.3 4.2 25.4 14.0 15.8 16.1 13.3 4.9 7.9 13.8 6.8 15.2 10.6 14.3 21.5 5.8 20.8 16.3 17.7 15.5 10.6 5.5 3.9 16.3 18.3 19.8 15.3 13.1 17.2 14.6 18.9 15.3 18.2 17.0 2.0 10.2 19.7 23.4 4.4 13.3 6.2 14.5 9.1 14.7

16.6 12.7 7.2 0.0 11.4 7.5 11.6 16.0 13.9 17.1 14.1 14.3 14.8 0.2 22.3 12.3 13.4 15.2 25.8 14.2 11.5 11.7 18.1 0.6 20.6 15.0 10.2 8.0 14.1 17.7 15.7 12.2 14.0 9.9 15.4 13.9 13.5 6.5 5.7 3.9 8.9 14.5 7.1 1.0 3.0 12.1 6.1 6.2 15.3 13.2 13.7 6.2 5.8 1.1 14.2 12.1 18.6 23.2 6.8 4.0 8.8 9.9 13.5 11.4 10.4 3.9 9.2 10.4 5.5 12.5 10.4 11.3 18.4 6.1 14.1 13.5 14.1 14.9 11.0 3.9 3.7 14.4 15.8 14.5 14.6 14.8 14.6 11.6 16.9 7.3 10.6 13.8 2.5 9.5 11.8 14.4 3.2 10.6 5.1 10.1 10.5 12.0

26.3 17.2 13.9 8.9 0.0 11.7 17.1 17.1 20.6 25.9 24.3 19.9 24.0 0.2 31.4 26.2 23.1 20.4 36.9 20.1 16.9 20.9 32.6 1.3 26.3 25.8 10.4 10.3 23.5 20.7 26.1 21.7 19.6 12.2 26.2 18.8 20.9 11.3 23.2 5.7 10.0 17.9 10.9 1.2 7.6 14.3 17.8 11.7 20.8 18.3 19.8 7.7 8.2 1.0 15.1 10.7 28.8 36.4 10.0 4.2 27.2 11.3 21.4 20.3 15.2 5.9 9.6 17.8 6.6 14.9 11.3 18.1 30.1 6.9 24.9 20.7 21.2 21.0 12.1 5.5 4.6 22.6 22.6 25.1 18.2 14.3 19.2 14.3 21.0 17.4 22.3 20.8 2.8 11.1 18.9 27.4 5.3 14.6 6.8 16.8 14.0 15.7

18.6 14.7 11.6 6.6 13.3 0.0 15.4 16.4 16.9 21.5 17.5 15.7 18.4 0.2 25.5 19.8 16.6 18.9 25.3 18.6 14.9 16.7 21.6 0.9 23.4 18.9 9.0 8.5 19.3 18.1 18.1 17.9 17.1 10.4 21.3 17.2 17.3 9.2 7.5 4.4 8.7 18.5 9.1 1.2 3.4 15.9 9.0 5.3 19.6 14.4 18.7 7.3 6.5 1.3 14.2 12.5 21.7 26.1 9.3 4.3 18.1 9.6 17.9 16.6 11.3 4.3 9.8 13.2 6.6 10.7 10.1 15.2 22.2 6.7 18.3 19.0 18.8 18.6 12.7 4.3 4.8 17.3 19.1 19.1 16.5 17.2 14.8 13.1 19.7 12.2 19.7 17.4 2.9 11.3 16.5 23.0 4.3 11.5 6.0 7.6 13.2 13.1

18.0 14.7 12.1 8.3 15.1 10.7 0.0 14.6 15.5 22.4 17.5 16.3 18.8 0.1 23.2 19.2 18.5 17.3 20.4 17.5 13.4 17.2 23.6 0.8 20.7 17.6 8.7 8.1 19.3 17.2 18.5 17.5 16.8 10.4 17.7 14.1 15.9 7.6 20.0 4.1 8.3 18.3 10.0 1.3 5.4 16.3 14.9 5.5 18.8 14.0 17.8 6.1 6.2 1.4 16.6 9.5 22.4 28.7 9.7 4.1 18.1 12.5 16.8 14.8 11.4 4.3 6.8 12.8 6.0 12.4 10.1 16.1 19.9 5.7 18.2 18.0 16.4 17.2 9.6 4.4 3.8 18.0 17.0 17.7 12.6 17.4 16.9 13.8 16.8 15.7 17.9 18.5 2.6 8.8 17.1 21.7 3.7 11.1 5.6 16.2 9.9 12.9

19.9 16.2 11.4 10.9 14.8 10.3 15.1 0.0 14.9 20.7 16.7 15.9 18.4 0.2 25.2 19.3 18.8 16.4 32.7 15.6 14.7 16.1 24.4 0.9 22.0 17.6 10.7 9.3 18.5 19.0 20.0 16.6 13.1 11.1 19.8 15.0 14.8 8.5 20.8 4.8 9.5 15.5 9.7 0.9 6.7 13.8 15.0 10.8 16.1 15.6 15.7 6.0 6.9 1.1 14.9 9.2 21.4 29.3 7.0 4.1 23.0 11.6 15.4 15.3 14.3 5.0 7.9 12.8 6.7 16.5 11.6 13.4 20.6 5.7 18.9 14.7 15.8 16.0 7.9 5.2 2.6 15.4 17.3 18.3 14.8 10.4 18.8 13.6 17.9 14.7 17.8 16.1 1.5 10.2 18.0 21.8 4.2 13.0 5.9 14.2 12.0 14.0

28.7 19.3 15.7 7.6 22.2 12.9 21.3 18.5 0.0 33.8 24.9 22.0 28.8 0.1 35.6 30.4 27.3 23.1 46.2 29.8 18.4 25.0 35.2 1.3 29.3 25.8 11.2 11.4 27.4 23.4 36.5 29.0 20.9 13.2 29.9 21.3 22.0 11.7 26.3 6.0 10.3 21.1 12.3 1.3 8.8 17.1 20.3 9.6 25.5 19.1 24.0 7.7 8.6 1.2 19.3 11.1 38.1 41.0 11.0 4.7 31.6 13.2 23.1 23.4 16.2 6.4 9.6 17.9 7.8 17.0 12.1 21.3 31.7 7.0 27.5 22.4 26.0 27.3 10.5 5.9 4.3 22.5 37.0 29.7 19.0 19.8 22.6 15.7 23.4 19.4 26.0 24.7 3.0 12.0 23.5 31.3 5.2 16.4 7.4 18.7 16.3 17.9

28.2 20.3 15.5 8.4 21.0 12.7 21.7 19.3 23.3 0.0 24.4 21.3 26.9 0.2 34.9 29.8 26.4 23.0 44.1 23.5 18.7 23.7 33.2 1.1 28.5 25.1 10.1 10.6 26.6 23.5 29.4 23.9 21.4 12.2 28.3 20.4 21.5 10.9 26.0 5.6 9.9 20.5 12.4 1.2 8.4 17.8 19.5 8.6 24.4 18.0 22.8 7.6 7.9 1.1 19.1 10.6 34.4 39.2 11.5 4.4 29.8 13.2 22.2 22.4 15.6 5.7 9.2 17.8 7.6 16.1 11.8 20.2 30.6 7.5 26.8 22.0 23.7 23.0 11.2 5.9 4.3 22.0 25.4 28.2 18.7 14.9 23.0 15.3 22.3 19.2 25.1 24.5 3.0 12.0 21.9 29.8 4.9 15.2 7.2 17.8 17.3 18.2

28.1 15.6 14.5 11.0 22.9 13.4 15.1 17.7 21.6 10.1 0.0 22.7 25.5 0.1 33.5 25.1 26.0 21.8 44.1 21.7 17.2 23.0 34.7 1.4 28.1 26.6 12.2 11.6 25.0 22.0 26.7 22.1 22.9 13.7 28.1 19.7 21.9 11.0 24.4 5.7 11.1 18.4 11.0 1.3 8.1 13.7 18.2 15.0 22.3 18.6 20.5 8.1 8.2 1.0 15.0 10.4 30.8 38.8 11.1 4.2 28.3 11.1 22.2 21.6 16.5 6.2 9.6 18.4 6.7 16.4 12.7 19.2 32.4 7.1 27.1 20.7 22.5 17.0 11.3 6.1 5.1 23.3 23.0 28.1 19.0 16.0 21.0 16.5 22.1 18.5 24.1 22.5 3.2 11.2 21.0 28.5 5.3 15.9 7.5 17.1 14.3 16.2

27.2 17.9 13.8 8.6 18.9 11.1 16.1 15.7 18.4 26.1 21.3 0.0 21.6 0.1 29.9 27.0 22.4 19.0 42.0 19.0 16.3 19.3 29.1 1.6 25.1 22.0 11.3 11.9 21.6 19.7 22.6 19.8 17.6 13.8 32.2 17.8 18.3 14.0 23.5 6.0 10.5 16.9 10.5 1.0 7.4 14.2 16.4 12.2 19.0 18.2 17.9 7.4 8.4 0.8 20.2 10.4 26.5 35.7 9.8 3.9 30.5 12.8 18.1 19.1 14.9 7.1 9.2 15.9 7.3 14.9 12.5 16.3 27.2 6.5 22.5 17.7 20.1 20.6 12.0 5.6 5.2 19.5 19.9 23.5 18.2 21.9 19.9 15.2 27.7 17.3 20.8 19.5 3.5 11.1 18.0 28.2 5.2 16.2 7.3 16.0 14.3 18.9

27.7 19.6 14.8 6.7 20.7 12.4 19.9 18.6 23.5 18.2 23.6 21.3 0.0 0.2 34.1 26.6 27.1 22.5 42.7 23.1 17.7 24.1 33.4 1.4 28.3 25.1 9.0 10.7 26.2 22.3 30.7 24.2 20.9 12.2 28.1 20.3 20.9 11.2 26.4 5.5 9.6 19.7 11.6 1.3 8.6 16.7 19.3 7.2 23.8 17.9 22.5 9.6 8.0 1.3 17.2 10.6 33.0 38.1 10.7 4.3 29.9 12.8 22.6 22.2 14.9 6.0 9.8 17.4 7.2 15.8 10.8 21.1 30.7 7.6 26.5 21.5 25.8 22.8 11.6 5.3 4.9 21.6 24.2 28.2 18.7 14.0 21.9 14.5 22.1 19.2 24.9 23.9 3.1 11.7 21.5 29.7 5.3 14.5 7.2 18.2 16.5 17.2

4.8 4.0 3.0 4.9 4.4 3.2 3.6 3.8 3.3 5.4 4.6 5.0 3.8 0.0 6.2 4.4 5.1 4.6 7.3 3.6 4.0 3.3 7.0 0.6 5.5 4.6 3.2 3.2 4.7 4.5 4.2 4.2 4.6 4.6 4.6 3.5 4.2 3.2 5.7 2.3 2.3 4.3 3.1 0.6 1.6 2.8 3.3 4.5 3.9 5.2 3.6 3.1 2.3 0.6 3.5 2.2 5.8 9.2 2.0 2.4 5.2 3.7 3.8 3.4 3.3 2.6 2.3 3.4 2.1 4.9 3.5 3.5 4.8 1.7 4.6 4.0 3.7 4.1 2.4 2.1 1.4 4.4 3.8 4.2 3.5 3.6 4.3 5.6 5.0 4.4 3.6 3.6 0.9 2.7 4.7 5.5 1.8 3.5 2.5 3.5 3.2 4.0

27.2 19.7 17.1 9.4 22.6 14.6 9.8 20.1 24.4 2.7 27.2 25.4 28.5 0.2 0.0 6.4 27.9 23.9 60.3 24.4 19.9 25.6 33.3 1.6 32.6 27.2 11.7 13.0 28.7 24.5 25.5 24.8 24.0 14.9 32.6 22.6 22.4 12.9 27.5 6.3 11.4 19.8 12.4 1.1 9.1 18.1 19.6 16.0 24.9 19.7 23.4 8.9 9.4 0.9 17.0 11.5 33.7 43.0 13.0 4.5 35.0 14.4 23.9 24.6 18.7 7.1 11.0 19.6 8.4 18.6 13.3 20.3 34.5 8.0 29.9 22.6 24.4 4.8 14.4 6.4 5.8 23.1 26.3 31.5 21.9 20.4 24.2 17.6 25.3 20.6 27.1 25.1 3.3 13.0 25.0 32.2 5.4 18.4 8.3 19.0 16.0 21.1

33.0 20.4 16.2 5.7 22.1 12.9 17.9 19.7 25.1 15.2 26.4 23.1 30.0 0.2 38.4 0.0 30.3 23.9 51.9 25.5 19.8 26.4 35.6 1.6 30.9 27.2 10.9 11.6 28.7 24.4 30.9 25.9 22.0 13.8 32.2 23.6 22.2 12.2 27.9 6.3 10.3 20.3 12.3 1.2 9.1 16.8 20.9 9.9 25.9 19.2 24.0 10.6 8.9 1.2 20.4 12.3 34.1 42.5 12.0 4.3 34.3 13.3 25.5 27.1 16.0 6.7 10.8 19.4 7.9 17.5 11.8 21.5 34.6 8.4 29.5 22.2 26.9 20.8 12.3 5.8 5.2 23.7 25.7 34.3 20.6 18.7 24.2 15.1 24.2 20.5 27.5 25.7 3.5 12.8 23.2 32.8 5.5 16.4 7.8 19.2 17.1 18.9

30.0 17.9 15.6 8.5 21.4 12.7 16.7 18.2 23.1 6.1 24.8 21.8 26.9 0.2 34.4 23.0 0.0 21.8 45.0 22.1 18.1 24.2 32.7 1.4 27.7 25.8 9.3 10.8 26.3 22.5 28.5 24.2 22.0 12.6 28.2 20.9 21.8 12.1 25.8 5.6 10.1 19.3 11.8 1.3 6.9 17.1 18.9 8.4 22.7 18.5 21.9 10.7 8.2 1.1 17.6 13.0 33.8 39.0 11.8 4.3 30.2 14.3 23.0 22.9 14.5 6.3 9.7 18.6 7.6 16.4 11.4 20.2 30.1 7.3 27.2 21.4 24.2 14.7 14.7 5.5 5.9 21.7 24.8 29.3 18.7 22.0 22.4 14.5 22.3 19.5 24.2 23.1 3.4 11.5 21.3 29.3 5.4 14.7 7.2 18.6 6.3 16.6

24.9 17.6 14.5 8.3 19.4 12.2 18.2 16.9 19.8 10.0 22.4 19.6 24.5 0.2 30.8 22.8 24.0 0.0 37.2 20.0 17.1 21.0 30.8 1.0 25.5 22.7 9.7 10.2 23.1 20.2 25.7 20.9 20.9 12.4 25.0 18.3 19.5 9.9 24.7 5.0 9.3 18.6 10.7 1.3 8.0 17.1 17.5 7.4 21.5 17.1 19.9 6.8 7.3 1.4 17.9 9.8 30.0 35.4 10.5 4.0 26.7 13.2 20.0 19.1 14.3 5.5 9.3 16.3 7.4 16.1 10.9 18.2 27.6 6.9 25.0 19.1 20.7 18.5 10.0 5.3 4.1 20.1 21.9 24.5 16.6 16.1 20.2 15.2 20.5 18.0 22.4 21.8 2.4 10.9 21.1 27.3 4.4 14.7 6.8 16.6 11.2 16.1

48.3 25.7 27.1 10.8 28.3 15.7 21.5 30.0 36.3 44.4 36.9 31.4 40.1 0.2 57.5 48.1 39.0 30.6 0.0 37.3 27.9 33.7 49.2 1.6 43.3 37.9 13.3 15.9 41.1 36.0 37.9 35.6 27.4 16.9 48.4 33.8 32.4 21.0 34.5 6.5 13.3 25.4 15.0 1.8 9.2 19.8 27.3 22.6 40.2 21.9 34.4 14.4 10.5 1.5 28.9 25.4 42.4 59.2 16.6 25.1 45.2 18.1 32.9 38.1 21.8 8.6 17.3 27.6 8.6 20.7 16.1 27.8 50.6 13.2 40.7 33.4 41.9 31.1 19.3 8.4 7.7 30.6 40.3 49.1 34.4 31.5 37.0 19.5 38.2 27.8 36.0 34.7 4.0 17.1 28.9 41.8 5.9 22.3 3.3 29.5 22.4 25.0

27.7 18.8 14.6 6.4 20.4 12.2 20.4 18.9 22.1 31.5 23.1 20.2 26.4 0.1 33.2 29.1 25.3 21.6 40.6 0.0 17.9 25.2 33.1 1.4 27.7 24.1 10.0 10.2 25.3 22.2 29.6 28.3 20.0 12.0 26.7 19.8 20.3 11.0 25.6 5.7 9.2 19.6 11.7 1.4 8.3 16.4 19.4 6.8 24.0 18.0 22.6 7.6 8.4 1.5 19.4 10.8 32.0 39.0 10.5 4.3 29.1 12.4 22.3 21.7 14.2 5.7 9.5 17.3 7.5 14.8 10.9 19.2 29.4 7.4 25.7 20.3 23.1 25.3 11.0 5.4 4.4 21.3 29.9 27.0 18.7 20.5 21.7 14.7 21.9 18.8 25.1 23.3 2.9 11.6 20.9 29.1 5.2 14.9 7.2 17.5 16.7 17.2

23.0 17.3 13.5 8.3 17.7 12.0 17.0 16.2 17.2 24.6 18.9 18.5 20.4 0.2 28.3 22.6 21.2 17.8 35.3 18.2 0.0 18.7 27.4 0.8 24.0 20.4 9.2 9.4 21.0 19.4 23.6 18.8 20.2 11.3 22.0 16.5 17.3 9.4 21.1 4.9 9.9 17.1 10.4 0.9 7.5 15.9 15.6 8.8 19.0 16.6 18.2 6.8 7.4 0.8 15.4 8.5 26.5 33.4 10.9 4.3 26.0 12.8 16.5 16.8 14.3 5.4 7.7 15.2 7.5 16.0 10.8 15.3 23.0 6.3 21.5 17.2 18.4 18.2 10.2 6.1 4.1 17.6 19.5 21.0 16.2 15.0 19.6 14.9 19.3 16.5 20.0 18.3 2.4 10.9 20.5 24.9 4.7 13.7 6.5 15.7 12.9 15.7

25.1 18.1 13.6 6.6 19.1 11.9 17.3 17.3 20.1 16.4 21.9 19.4 24.5 0.1 31.1 25.1 23.0 20.6 36.9 22.3 16.0 0.0 31.1 1.2 26.1 22.7 9.0 10.1 23.6 20.8 26.3 22.3 19.4 11.4 25.0 19.2 19.5 10.2 25.7 5.5 8.7 18.6 11.2 1.1 5.9 16.3 17.9 5.8 21.8 17.1 21.4 8.3 7.9 1.1 17.0 10.1 29.6 36.0 10.8 4.2 26.8 12.7 21.2 20.1 13.1 5.4 8.8 16.4 6.9 14.5 10.2 18.5 27.2 6.5 24.2 19.4 22.1 19.9 11.2 5.1 4.3 20.5 21.8 25.9 17.1 15.5 20.3 13.4 20.3 18.2 22.8 21.4 2.6 10.8 20.0 27.5 4.9 14.0 6.7 17.5 14.0 15.9

28.0 19.1 15.8 10.4 23.1 13.2 9.5 18.6 23.4 5.5 26.7 23.0 26.2 0.1 34.6 10.4 27.2 22.3 45.0 22.5 18.3 24.0 0.0 1.4 28.5 26.9 11.3 11.7 26.3 22.3 24.2 23.2 23.6 14.3 29.1 20.1 23.8 11.7 26.2 5.7 10.9 19.0 11.4 1.4 7.8 18.7 19.0 12.7 23.0 19.2 22.0 9.7 8.4 1.2 15.3 11.9 33.1 40.5 12.6 4.4 26.8 13.8 22.4 22.0 14.6 6.3 10.0 20.3 7.5 16.6 12.4 20.2 31.7 7.5 28.7 21.9 23.2 8.3 16.7 5.9 6.3 22.7 24.8 28.4 19.2 22.4 22.1 16.2 22.4 19.4 24.8 23.0 3.5 11.8 21.3 30.1 5.5 16.1 7.6 18.5 10.4 17.7

3.8 1.4 2.1 3.0 3.4 2.1 2.0 3.8 3.2 4.5 3.4 3.2 3.0 0.1 4.3 3.0 3.3 4.0 2.4 2.5 2.5 2.3 4.6 0.0 3.2 3.9 3.2 2.4 3.8 4.6 2.9 3.4 4.3 2.0 3.4 3.4 3.9 2.3 4.6 2.2 2.7 3.9 2.7 1.3 2.0 3.0 3.7 1.9 2.5 2.7 2.2 2.1 1.9 1.2 3.5 3.5 4.3 3.6 2.4 1.9 3.2 2.1 3.3 3.0 2.5 2.1 2.5 3.5 0.9 2.9 2.8 3.1 4.8 1.5 2.9 3.5 2.9 2.6 2.3 1.3 1.5 4.1 3.1 3.4 2.9 3.5 4.5 2.6 3.3 2.6 3.7 3.3 1.2 2.0 1.8 3.3 1.5 2.4 1.0 2.4 0.8 2.2

28.2 18.3 14.6 8.2 19.4 12.6 8.9 17.9 20.9 4.0 23.4 22.1 24.5 0.2 35.3 15.0 23.9 20.7 45.0 20.6 17.7 22.3 30.8 1.5 0.0 23.8 11.0 11.7 24.9 22.2 26.3 21.8 18.8 14.0 27.9 19.9 20.3 11.5 25.1 5.9 10.7 18.6 11.2 1.5 7.9 15.7 18.3 10.2 22.0 18.1 20.7 7.7 8.3 1.3 18.6 10.5 29.8 40.0 10.5 4.3 30.1 15.2 20.9 21.4 15.8 6.7 9.6 17.5 7.6 16.5 12.3 18.3 28.7 7.0 25.2 19.1 22.0 8.7 11.3 5.7 4.0 21.0 22.0 26.5 18.8 18.5 22.8 15.8 22.1 18.4 23.9 21.6 2.7 11.4 22.1 28.4 4.9 16.2 8.0 16.9 15.6 19.0

28.4 19.2 15.1 8.6 23.7 13.2 18.9 18.5 22.4 20.4 25.9 21.7 26.7 0.2 34.4 28.0 26.8 22.0 41.1 22.3 18.4 23.1 34.7 1.3 28.4 0.0 9.6 11.4 25.5 22.2 29.2 23.4 21.2 13.0 28.4 19.9 23.3 11.6 25.9 5.9 9.9 19.4 11.9 1.6 8.4 17.0 18.8 9.6 22.8 18.8 22.2 8.4 8.7 1.5 16.6 11.1 32.5 40.0 11.0 4.5 28.5 12.7 22.0 22.1 16.6 6.4 9.7 19.4 7.7 16.9 11.5 19.9 32.3 7.4 28.0 21.6 23.5 21.3 12.3 6.0 5.1 23.7 24.4 27.7 18.8 15.7 21.9 15.4 22.2 19.0 24.9 23.0 3.2 11.8 21.8 30.0 5.5 15.8 7.5 18.2 16.0 17.4

19.6 14.3 10.4 10.7 13.5 8.7 12.9 18.2 16.2 20.2 16.3 15.7 17.9 0.1 26.5 17.9 16.0 17.8 30.4 17.8 14.5 15.2 20.2 0.7 23.4 18.5 0.0 8.3 18.1 19.7 17.6 16.1 15.4 10.0 20.6 16.6 15.3 8.5 4.8 4.2 10.0 16.3 8.1 1.0 3.3 13.2 6.5 5.2 18.0 14.1 16.5 6.7 6.4 0.8 16.6 14.0 21.5 26.3 8.2 4.3 12.7 9.9 16.2 15.5 12.5 4.3 9.6 13.3 6.1 13.0 12.7 13.3 22.2 6.7 18.7 16.2 17.4 17.2 12.5 4.8 4.1 16.1 18.4 18.8 17.0 17.4 17.3 12.3 19.6 9.8 15.0 16.9 2.6 12.1 14.4 21.8 3.6 11.5 5.4 11.6 6.6 13.0

14.4 9.7 7.8 5.9 11.3 6.6 8.6 11.4 12.1 14.5 12.8 14.1 12.3 0.1 19.2 14.2 11.1 12.3 20.5 12.5 10.7 10.6 15.0 1.5 16.7 14.2 6.5 0.0 12.5 13.5 12.3 11.9 11.5 10.0 16.7 12.3 11.5 8.3 8.8 5.2 6.2 10.7 6.7 1.3 2.7 9.5 7.7 4.6 12.5 13.5 11.8 6.2 6.8 1.2 8.8 9.4 15.2 19.5 6.5 4.0 16.5 7.6 11.9 11.8 7.8 5.2 9.6 11.2 5.3 8.1 7.2 10.4 16.1 5.2 13.7 12.2 12.7 12.4 11.4 3.5 4.5 12.2 13.5 14.1 13.6 11.8 9.9 9.5 16.5 9.2 11.0 12.4 3.0 7.7 8.8 16.6 4.6 10.2 5.9 9.8 6.5 11.1

28.2 19.2 15.8 8.2 20.3 12.3 19.4 18.5 22.5 29.7 23.6 21.1 26.2 0.2 34.9 29.2 25.1 22.4 43.4 22.3 18.9 23.3 32.7 0.9 28.5 25.0 9.6 10.4 0.0 22.1 28.4 22.4 19.5 12.8 28.3 20.4 20.3 10.9 25.5 5.1 9.8 19.5 11.4 1.1 8.6 15.9 18.9 9.8 22.9 18.2 21.7 7.3 7.7 1.1 18.0 10.6 31.4 38.5 10.9 4.3 30.9 13.4 21.3 21.4 15.1 5.4 9.4 17.5 7.5 16.3 11.6 19.3 30.4 7.5 26.6 21.3 23.6 22.6 10.1 5.7 3.5 21.2 24.4 27.7 18.8 16.0 22.1 15.6 22.1 19.0 24.5 23.6 2.0 11.9 22.3 29.1 4.5 15.4 7.0 17.8 17.0 17.9

26.1 19.9 14.3 12.5 18.9 12.1 18.0 19.8 19.4 26.3 21.6 20.4 22.8 0.2 32.1 25.8 22.8 19.9 41.7 20.3 17.9 20.8 29.2 1.0 27.2 22.4 12.3 10.6 23.5 0.0 24.6 21.0 20.3 12.6 25.5 18.7 18.5 10.5 24.9 5.3 11.5 18.6 10.7 1.2 8.4 16.2 18.6 10.5 21.3 16.7 19.8 7.1 7.5 1.2 20.9 11.2 27.5 36.1 11.5 4.2 29.4 13.7 20.2 19.9 17.7 5.5 9.7 16.1 7.5 19.0 13.9 16.9 27.6 7.9 23.9 18.3 20.7 19.9 10.4 7.0 3.8 19.3 21.6 24.6 18.2 18.3 24.6 15.3 21.4 18.2 23.2 21.0 2.4 12.9 21.2 28.1 4.4 14.7 7.0 17.1 12.4 16.6

27.4 18.7 15.1 7.3 20.9 12.6 20.1 18.5 24.1 31.2 24.2 21.0 27.6 0.2 33.1 28.9 26.0 22.1 40.6 28.3 17.9 23.5 33.3 1.4 28.0 25.0 10.5 10.9 26.0 22.2 0.0 27.4 20.0 12.7 28.3 20.4 21.2 11.2 26.3 5.8 9.9 19.9 12.0 1.4 8.6 17.0 19.3 8.8 23.7 18.5 22.9 7.7 8.5 1.2 18.8 10.9 35.4 37.8 11.0 4.3 29.6 12.8 22.5 22.1 15.2 6.1 9.4 17.3 7.6 16.3 11.2 20.4 30.2 7.0 26.4 21.7 24.5 26.1 10.5 5.6 4.6 21.3 33.3 28.0 18.7 20.3 22.4 15.1 21.7 19.0 24.2 23.9 2.9 11.6 21.6 29.6 5.0 15.1 7.5 18.1 16.1 17.4

26.1 18.5 13.9 6.0 19.6 12.8 19.5 17.8 21.4 30.6 23.2 19.9 25.8 0.2 31.7 27.8 25.4 20.9 40.2 28.0 16.8 23.1 33.2 1.5 27.0 23.3 9.5 10.4 24.7 21.9 27.6 0.0 20.0 12.3 26.0 19.4 20.6 10.5 25.7 5.7 9.7 19.2 11.2 1.8 7.8 16.6 18.5 8.1 22.3 17.4 21.5 8.8 7.9 1.6 18.5 11.4 30.6 37.8 11.2 4.2 29.1 12.5 21.7 21.0 14.1 5.7 9.1 17.0 7.5 15.4 10.9 19.1 28.5 7.2 25.1 19.7 22.1 23.7 11.0 5.0 4.4 21.0 28.5 26.2 17.7 19.2 21.6 14.5 21.1 18.8 24.1 22.0 3.2 11.0 21.1 28.8 5.2 14.0 7.3 17.8 17.7 16.5

24.6 17.6 15.4 11.5 16.5 12.9 17.6 14.9 17.3 28.4 18.9 19.2 22.0 0.1 26.4 24.1 23.3 17.5 36.1 19.7 15.4 19.7 30.4 0.7 22.8 20.0 12.4 10.1 20.3 19.6 23.1 19.4 0.0 12.6 22.8 15.8 18.3 9.1 14.9 4.8 10.6 17.7 10.2 1.5 7.4 17.6 17.8 10.8 21.2 16.2 18.8 6.7 7.1 1.3 16.8 9.8 27.4 33.5 11.5 4.4 19.1 12.0 17.6 16.5 15.2 4.6 7.6 14.4 7.0 15.3 11.4 17.2 24.5 5.9 21.3 21.1 19.3 20.8 10.5 5.2 4.6 21.6 19.0 20.4 14.8 15.3 18.4 15.4 20.0 15.8 21.0 17.9 2.4 10.5 21.4 27.4 4.4 14.2 6.6 9.2 10.6 16.5

14.1 10.5 8.4 6.6 11.1 6.9 9.2 11.3 11.8 15.8 13.5 14.3 12.7 0.2 19.4 15.2 11.4 12.7 21.3 12.5 11.2 11.5 15.8 1.3 17.1 14.2 8.1 9.0 13.4 14.2 12.8 12.5 12.3 0.0 16.7 12.9 12.1 8.7 8.7 4.5 6.9 10.5 6.6 2.0 4.3 9.9 9.0 8.0 13.1 12.7 12.2 6.2 6.1 1.8 10.6 9.1 15.5 21.8 7.3 3.6 16.0 8.5 12.2 12.4 8.3 5.4 8.1 11.0 5.3 9.5 8.3 11.0 17.1 4.5 14.2 12.5 13.1 12.9 11.2 3.2 4.6 13.1 13.6 14.3 12.9 12.6 11.1 10.1 16.3 10.6 11.9 12.2 3.1 7.7 9.5 17.4 4.0 10.5 6.0 10.6 8.7 11.8

31.5 19.6 15.5 7.5 21.1 13.0 17.2 19.6 23.0 19.5 24.4 24.2 26.8 0.2 35.8 24.4 25.8 22.4 47.2 23.0 18.5 23.3 32.7 1.6 29.5 25.1 9.9 11.7 26.5 23.7 28.6 23.7 21.4 13.1 0.0 21.2 21.0 18.1 27.2 6.3 9.9 19.9 11.7 1.1 7.4 16.8 20.4 12.5 23.7 19.1 22.1 9.4 8.7 0.8 20.6 12.3 31.4 40.5 12.6 4.4 37.7 14.6 22.3 22.8 15.9 7.2 10.9 18.4 8.1 17.1 11.8 19.9 31.6 8.3 27.0 20.8 24.1 19.0 14.4 6.1 6.0 21.8 24.3 28.9 20.8 23.5 23.6 14.8 28.6 20.9 26.0 23.5 3.4 12.8 22.3 34.0 5.7 16.3 7.8 19.0 11.1 20.4

24.8 17.3 13.5 6.7 18.4 11.0 16.7 17.1 19.8 20.7 21.5 19.3 23.4 0.2 30.4 25.3 22.4 19.7 36.1 20.3 16.0 20.9 27.9 1.5 25.9 21.7 10.5 10.6 22.2 20.3 24.8 20.5 18.0 12.9 25.5 0.0 18.4 10.7 24.1 5.9 9.0 17.6 10.5 1.5 8.4 14.6 17.0 8.1 20.6 17.5 19.5 8.0 8.2 1.4 16.2 10.1 27.5 34.4 9.4 4.2 26.1 12.2 20.2 19.9 13.6 6.1 9.6 15.9 6.8 14.1 10.8 17.0 26.6 7.2 23.6 18.3 20.8 19.7 11.0 5.0 4.2 19.0 21.1 25.4 17.9 15.0 19.4 13.8 20.4 17.4 22.0 20.3 2.7 10.7 19.3 26.9 5.4 14.4 7.3 15.9 14.0 16.0

24.9 16.3 14.4 8.8 20.6 12.8 11.7 17.3 20.0 5.6 23.7 20.5 23.6 0.2 30.7 15.0 24.6 21.0 36.4 20.8 16.9 21.2 31.0 1.5 25.7 24.9 9.3 10.6 23.2 20.5 24.3 21.8 21.3 12.3 24.9 18.2 0.0 10.6 24.5 5.5 9.7 18.4 11.1 1.4 8.2 17.2 17.6 11.4 21.5 17.5 20.0 9.1 7.9 1.4 15.6 10.6 29.8 36.8 11.5 4.1 21.9 12.4 20.3 20.1 13.6 5.8 9.3 17.8 6.9 15.8 11.6 19.0 28.0 7.1 25.5 19.7 21.8 9.9 13.0 5.6 5.3 21.8 22.2 25.0 17.0 18.5 21.0 15.1 20.7 18.1 22.4 21.2 3.5 10.8 20.9 27.7 5.3 14.7 6.9 16.7 11.3 16.2

21.2 14.7 11.2 6.0 15.7 9.3 13.5 13.9 15.0 21.4 17.4 18.1 17.8 0.2 24.2 20.5 15.2 15.3 33.5 15.5 13.7 15.2 21.3 1.6 21.0 18.2 8.8 9.3 18.0 16.6 18.5 16.3 14.5 10.1 29.6 15.0 15.0 0.0 18.9 5.5 7.7 14.8 8.7 1.0 6.5 12.4 14.6 9.0 15.4 14.8 14.9 7.1 7.3 0.7 14.7 9.5 21.7 29.3 9.0 4.0 28.4 10.4 15.5 15.5 11.7 6.3 9.0 14.1 6.2 12.1 8.8 13.7 21.8 5.5 19.1 15.0 16.4 16.8 11.7 4.5 4.9 15.4 17.1 18.7 15.5 17.6 15.9 11.0 21.4 15.6 17.5 15.6 3.1 8.9 14.4 24.3 5.0 12.0 6.7 13.7 11.7 14.9

20.3 15.9 12.1 7.9 15.9 10.9 16.5 16.4 16.6 24.5 18.8 16.7 20.5 0.1 26.8 21.0 19.1 18.3 29.8 17.0 14.6 18.3 24.2 0.7 23.5 18.9 10.1 9.0 20.0 19.6 21.0 18.1 19.4 11.3 22.0 16.4 16.6 8.7 0.0 4.5 9.8 17.5 9.3 1.3 7.8 16.2 19.3 11.8 18.9 15.2 17.6 5.7 6.6 1.3 14.8 8.9 23.0 30.1 10.3 3.9 23.3 14.2 17.4 16.7 14.7 4.6 7.7 14.1 6.4 14.6 10.5 15.7 22.3 5.6 20.2 16.1 17.4 18.1 9.8 5.1 4.0 17.4 17.5 20.6 14.5 11.3 19.0 13.6 18.0 17.5 19.8 18.5 2.0 9.6 19.0 25.1 3.9 12.3 6.0 22.7 15.0 13.2

6.8 4.6 3.0 3.8 6.4 3.8 4.2 5.6 5.4 8.2 6.9 7.7 6.1 0.1 8.8 6.8 6.1 7.2 10.1 5.6 4.2 5.0 8.5 1.7 7.1 7.1 4.5 4.7 6.8 6.7 5.6 6.1 6.9 5.0 7.6 6.1 6.6 4.4 5.3 0.0 4.0 6.4 4.3 1.4 1.8 5.0 4.2 3.3 5.6 7.3 5.5 3.4 4.0 1.4 4.6 4.6 8.2 8.9 4.0 2.3 7.9 4.1 6.7 6.1 5.0 3.6 4.9 5.6 2.3 4.8 4.3 5.5 8.9 2.6 6.7 5.8 6.1 6.2 5.9 2.0 2.7 7.2 5.8 6.5 6.4 6.2 6.0 5.1 7.4 4.4 5.4 5.4 2.3 2.9 4.2 7.9 2.8 5.4 3.0 4.0 2.6 5.5

15.9 12.9 8.5 8.8 11.4 7.9 11.1 15.7 13.2 17.1 14.0 14.1 15.0 0.2 21.9 14.7 13.6 15.4 24.0 14.6 12.4 13.0 17.6 0.6 20.0 15.4 10.1 7.3 15.0 16.5 14.5 13.3 13.8 9.1 17.5 14.2 12.9 7.5 4.1 3.9 0.0 14.0 7.8 0.7 2.6 12.5 5.4 3.9 16.0 13.3 14.1 5.9 5.9 0.8 14.4 12.4 17.8 20.1 7.5 3.9 12.0 7.7 14.2 12.6 10.6 3.6 9.2 11.4 5.7 10.3 10.4 11.9 18.8 5.8 15.1 13.4 14.8 14.8 11.4 4.1 4.2 14.5 15.3 15.1 15.1 16.5 15.6 11.0 18.4 7.8 12.9 13.8 2.5 9.7 13.3 18.1 3.6 10.2 5.2 8.3 7.0 11.2

20.3 16.0 11.9 9.2 16.2 11.2 18.9 15.9 16.9 25.0 18.4 17.4 19.6 0.2 26.3 20.7 19.9 18.7 28.7 18.1 14.9 18.4 25.1 0.8 23.3 19.2 9.5 9.0 20.3 19.2 21.6 19.0 16.8 10.8 20.1 15.5 17.2 8.7 21.7 4.7 8.8 0.0 10.4 1.1 7.0 15.9 16.3 7.1 19.6 15.1 18.3 6.1 6.8 1.1 17.0 8.9 25.9 31.5 9.5 4.2 21.4 12.2 17.2 16.3 12.8 4.8 7.5 14.0 6.8 13.6 10.8 15.9 22.0 5.9 20.4 17.2 18.2 18.0 8.1 4.9 2.7 18.6 18.2 19.3 13.9 12.8 18.9 14.2 18.3 16.5 19.6 18.9 1.9 9.7 18.5 22.9 4.1 12.8 5.8 15.1 13.6 14.2

19.0 14.6 11.4 10.0 12.7 10.2 14.5 16.4 15.8 21.2 17.0 15.7 17.3 0.2 25.3 19.3 15.6 17.7 26.3 17.8 14.7 16.0 22.1 0.9 23.1 18.5 11.0 8.4 19.3 18.4 17.2 16.9 16.8 9.9 20.2 16.1 15.8 9.1 10.2 4.2 9.8 18.0 0.0 1.4 7.8 16.5 15.8 11.2 19.5 14.1 17.8 7.6 6.3 1.4 14.1 11.8 20.6 27.9 9.4 4.4 11.9 9.4 16.4 15.6 12.3 4.6 10.0 12.5 5.9 11.9 11.6 14.1 21.3 6.7 17.6 18.7 18.1 18.0 11.6 4.7 4.6 15.9 19.0 18.4 15.9 14.7 15.9 13.2 19.0 16.3 17.5 18.1 2.9 10.7 18.1 20.7 4.1 11.2 5.4 8.8 11.7 12.5

21.0 13.1 5.4 5.5 16.4 8.3 14.0 14.5 18.4 22.0 20.3 16.1 19.0 0.2 29.0 20.7 13.9 19.6 33.7 19.6 13.6 18.1 20.8 1.4 25.0 22.0 7.0 8.1 20.5 16.9 18.6 17.5 14.7 8.7 22.6 18.3 18.8 10.4 8.6 4.5 6.8 15.5 8.7 0.0 3.4 12.2 10.9 4.2 19.2 13.4 17.3 8.0 6.7 0.8 8.3 9.5 22.1 26.3 7.5 4.5 20.5 4.7 18.8 18.9 8.9 5.0 10.3 16.9 5.8 8.6 7.8 15.3 34.0 7.0 22.1 16.4 18.8 18.4 13.0 3.6 4.9 18.9 20.6 21.4 17.8 12.1 12.3 10.2 20.0 8.8 18.7 17.5 3.2 9.5 11.9 23.0 4.2 10.0 4.3 13.7 13.6 11.7

19.2 13.5 10.3 9.2 14.1 9.3 13.2 13.3 14.5 19.8 15.3 16.8 16.5 0.1 23.0 17.8 17.8 14.6 28.7 15.0 13.2 14.2 24.4 1.2 19.4 16.7 9.7 10.1 16.0 16.0 17.3 15.4 15.3 12.0 19.4 13.8 14.2 9.6 16.7 4.9 7.9 14.1 9.0 1.2 0.0 12.1 13.3 10.4 16.0 15.0 14.4 6.7 7.2 1.1 13.1 8.6 19.9 26.7 8.1 3.7 17.6 11.3 13.9 13.9 11.2 5.7 7.5 12.2 6.3 13.5 9.4 12.7 18.9 5.4 17.7 15.4 15.1 15.9 10.3 4.5 4.3 15.4 15.4 17.3 14.1 14.3 15.1 12.7 18.3 14.9 15.9 15.0 2.7 8.7 14.5 20.7 4.4 12.6 5.9 13.7 11.1 15.0

16.4 13.8 10.3 8.0 13.0 10.6 14.7 14.7 13.6 19.6 15.3 14.5 16.2 0.1 21.9 16.9 14.9 15.7 22.1 15.5 12.6 15.0 19.6 1.0 20.0 16.2 8.9 8.1 16.9 16.5 16.7 16.0 14.9 9.7 17.7 14.5 14.9 7.8 6.3 4.5 8.2 16.0 9.0 0.9 4.6 0.0 10.3 4.9 18.0 14.9 17.0 5.8 6.4 0.9 12.8 9.4 19.8 23.8 8.7 4.0 11.6 8.1 15.4 13.7 10.5 4.3 8.5 12.1 6.1 9.9 9.6 13.7 19.7 5.5 16.5 16.7 16.3 16.1 11.8 4.0 4.4 16.4 15.9 16.0 13.5 12.9 13.7 12.7 16.4 12.3 15.3 15.8 2.7 9.1 14.3 20.9 4.0 10.9 5.6 13.6 12.9 11.5

21.8 17.3 13.0 9.3 16.5 12.4 16.6 16.7 17.5 23.4 19.7 18.6 21.4 0.2 27.4 23.2 20.3 18.4 32.3 18.1 15.8 19.1 25.5 1.1 24.6 19.9 10.1 9.5 20.8 20.2 22.0 19.2 19.7 12.3 23.5 16.7 16.9 9.4 26.7 5.2 10.3 18.0 9.8 1.4 8.0 15.9 0.0 11.0 19.2 15.8 17.8 6.4 7.2 1.4 18.3 9.7 24.7 32.1 11.9 4.0 25.1 14.7 18.7 17.7 14.6 4.8 8.4 14.8 6.7 15.3 11.3 16.2 24.7 6.4 21.6 16.6 18.5 19.2 10.6 5.2 3.8 17.8 18.7 22.0 15.3 12.3 21.0 13.7 19.2 18.4 21.2 18.7 2.2 10.1 19.8 26.6 4.3 12.9 6.4 23.5 17.0 14.9

20.7 14.3 11.1 7.9 14.9 9.1 13.4 16.7 16.8 21.2 18.2 18.1 18.9 0.2 27.4 19.6 16.0 16.7 31.3 18.1 14.8 15.9 20.0 1.5 23.8 19.7 9.9 10.5 19.0 18.4 18.4 17.1 16.3 12.4 24.5 18.0 16.0 10.2 9.5 5.4 9.0 15.6 9.1 1.8 4.8 14.0 11.1 0.0 18.4 16.1 16.8 8.2 7.8 1.6 16.0 12.2 22.1 29.3 9.1 4.1 15.1 10.6 17.0 17.2 11.3 6.1 11.0 14.2 6.5 12.1 10.4 14.5 22.7 7.2 20.1 17.3 18.5 18.1 14.3 4.5 5.8 15.8 19.2 20.0 17.9 16.8 15.1 12.9 21.3 17.0 16.7 17.5 3.5 10.9 14.0 23.5 4.9 13.0 6.5 14.8 7.9 15.5

26.0 18.7 14.7 6.6 18.9 12.3 20.5 18.4 21.4 22.8 22.4 20.1 26.1 0.2 32.3 26.7 24.2 21.6 40.2 23.7 17.6 23.7 30.5 1.0 28.1 23.6 9.9 9.8 25.0 22.5 28.4 23.1 19.5 12.2 26.8 19.8 20.0 10.3 26.0 5.3 8.9 20.0 11.8 1.5 7.9 16.5 18.9 5.8 0.0 17.1 23.5 7.6 7.5 1.5 16.8 10.5 31.5 36.9 10.4 4.4 28.1 12.1 21.1 20.8 13.9 5.0 9.3 16.6 7.2 14.7 10.7 19.7 29.1 7.0 25.2 21.2 22.8 22.2 10.3 5.0 4.0 20.6 24.2 26.1 18.0 17.0 20.5 13.8 21.3 19.1 23.8 23.3 2.5 11.7 20.8 28.4 4.4 13.9 6.6 17.6 16.6 15.8

15.1 12.0 7.9 6.5 11.9 7.3 10.4 12.7 13.3 16.5 13.8 14.5 13.8 0.1 19.3 15.6 11.9 14.7 21.5 14.0 11.2 12.6 17.7 1.6 18.4 15.5 7.0 9.7 14.2 13.6 13.8 13.3 12.7 11.2 17.3 13.9 13.3 7.8 4.5 5.5 7.1 12.8 7.6 2.2 1.1 11.3 5.0 3.4 14.3 0.0 13.4 6.9 7.4 1.8 10.0 10.2 16.6 17.2 7.3 3.6 15.1 5.6 13.9 12.9 8.7 6.2 11.5 11.8 6.6 7.5 8.5 11.5 17.8 5.4 14.8 13.2 14.5 15.2 13.8 3.5 4.9 14.4 14.9 15.3 15.0 12.5 10.5 10.9 15.9 4.9 12.0 13.4 3.4 7.8 9.2 18.8 5.0 11.6 5.9 10.5 11.5 12.1

24.3 17.6 13.8 7.3 18.6 11.6 20.0 17.4 20.5 25.6 21.5 19.0 24.4 0.2 30.6 25.6 22.2 20.6 36.8 21.8 16.8 22.0 28.6 1.3 26.3 22.1 9.7 10.0 23.5 20.6 27.6 21.4 18.8 11.9 25.0 18.7 19.4 10.5 25.0 5.3 8.8 19.3 10.9 1.4 7.7 15.9 17.7 5.7 23.0 17.2 0.0 7.2 7.4 1.3 16.6 9.9 30.1 34.6 10.4 4.1 27.0 12.3 20.8 19.3 13.7 5.3 9.3 16.0 7.2 14.4 10.6 18.8 27.1 7.0 24.0 20.0 21.5 21.5 10.4 4.9 4.3 19.5 22.2 24.7 17.2 15.9 19.6 13.5 20.2 18.4 22.2 21.6 2.8 11.0 19.2 27.3 4.8 13.6 6.8 16.7 16.9 15.2

25.9 15.7 12.7 10.0 17.5 11.0 16.0 16.2 18.6 26.2 21.0 18.2 22.3 0.1 29.4 26.5 27.0 19.0 32.2 19.6 15.6 19.4 29.2 1.3 24.6 22.7 11.0 9.7 21.4 19.6 22.5 20.6 19.6 11.8 24.0 17.8 19.2 10.9 20.8 5.1 9.2 17.5 9.5 1.2 7.2 15.5 16.3 13.6 19.6 15.5 18.0 0.0 7.1 1.1 15.9 10.1 26.7 34.0 10.0 4.1 24.4 11.3 20.4 20.2 14.1 5.7 8.5 16.8 6.0 14.6 11.4 16.4 26.4 6.5 23.0 18.6 21.4 20.5 10.6 5.1 4.2 18.3 20.8 24.8 16.5 14.2 18.0 14.0 20.2 17.1 20.5 19.5 2.6 10.0 17.4 24.7 4.9 13.2 6.1 14.4 12.1 14.7

11.6 8.7 5.7 4.8 8.6 5.1 7.0 9.0 9.1 11.9 9.7 11.2 9.8 0.1 13.9 11.2 8.5 10.3 16.0 9.4 7.6 8.4 12.3 1.6 12.9 10.8 5.3 7.0 9.7 10.0 9.1 9.3 9.2 8.4 11.9 9.7 9.4 6.4 4.7 4.9 4.9 8.9 5.5 1.4 1.7 7.4 4.8 3.9 9.2 11.9 8.7 4.9 0.0 1.1 7.2 7.1 11.8 13.8 5.2 3.4 11.9 4.7 9.4 9.7 6.5 5.3 8.8 8.6 4.5 5.8 6.0 8.3 13.1 4.0 10.4 9.4 10.1 10.0 10.4 2.7 3.8 9.9 10.1 10.7 10.3 9.1 7.7 7.8 12.1 5.5 8.4 9.2 2.9 5.7 6.3 12.9 4.2 8.3 4.9 7.8 6.7 9.3

14.4 11.7 7.3 5.4 11.1 6.9 9.6 11.6 12.5 15.1 12.5 13.6 12.7 0.1 18.4 14.7 11.1 14.2 21.4 12.8 10.1 12.0 15.2 1.4 17.2 13.5 6.9 9.4 12.3 12.3 12.6 11.8 12.0 10.9 16.0 12.8 12.2 7.1 4.5 5.3 6.7 12.3 7.0 1.7 2.1 10.1 4.7 3.8 13.4 14.9 12.4 6.3 7.4 0.0 8.9 9.7 14.9 16.8 6.7 4.9 14.6 6.2 12.7 11.8 8.5 5.7 11.2 10.3 5.3 7.4 7.8 10.6 17.0 4.8 12.4 12.2 13.2 13.5 13.5 3.3 4.6 12.9 13.5 14.1 14.6 11.5 9.2 10.0 15.5 5.0 10.9 11.6 3.1 7.6 8.7 16.6 4.6 10.7 5.6 9.8 9.8 11.9

19.2 15.0 10.9 9.8 13.8 10.6 14.6 15.1 14.3 19.5 15.9 16.0 17.4 0.1 24.1 18.4 18.6 15.8 33.7 15.3 13.8 15.7 23.6 0.7 21.2 17.2 10.7 9.1 17.8 17.9 18.7 16.3 10.9 11.1 19.0 14.3 14.8 8.2 19.9 4.5 9.7 15.3 9.6 0.7 6.8 13.6 14.8 11.4 15.9 15.6 15.3 5.5 6.8 0.7 0.0 8.9 19.6 29.7 6.5 4.1 22.2 12.1 14.8 14.7 13.7 4.4 7.1 12.3 5.9 14.9 11.3 13.4 19.5 5.5 18.1 14.2 15.6 15.5 7.4 4.4 1.9 15.3 15.4 17.7 13.3 9.8 19.2 13.9 17.7 14.7 17.1 15.6 1.1 9.5 18.0 21.0 3.8 12.8 5.2 13.8 9.5 12.6

18.9 14.7 10.6 10.3 13.4 10.1 14.3 14.9 14.3 19.7 16.3 15.7 16.5 0.1 24.4 18.6 19.3 16.4 34.8 15.4 13.6 15.3 23.8 0.7 21.6 17.6 11.4 8.9 17.7 18.8 20.1 15.7 12.2 11.1 19.4 14.4 14.4 8.8 20.8 4.7 9.7 15.3 9.5 0.8 6.3 12.0 14.4 10.8 16.4 15.4 15.1 5.5 6.6 1.0 13.1 0.0 22.0 29.1 5.8 4.1 21.0 10.8 14.8 14.7 14.0 4.6 6.9 12.4 5.6 14.9 11.1 13.6 19.6 5.2 18.5 14.2 15.2 15.2 7.4 4.8 2.2 15.8 15.9 17.4 14.1 7.7 17.8 13.4 17.7 14.7 17.7 16.0 1.4 9.5 17.9 21.4 4.2 12.3 5.1 14.0 10.1 12.2

28.3 19.6 15.9 9.1 21.5 13.2 20.7 18.8 23.9 34.9 23.9 21.3 26.2 0.2 34.0 29.3 28.5 22.1 45.6 28.5 18.7 23.2 35.9 1.0 28.0 25.0 10.5 10.8 26.5 22.4 32.7 27.8 22.4 12.7 28.2 20.2 20.7 11.1 25.6 5.6 10.5 19.9 12.2 1.1 8.2 17.9 18.9 9.3 23.3 18.3 22.2 7.8 8.0 1.2 20.3 11.1 0.0 40.2 12.1 4.4 30.5 13.6 21.7 21.2 15.9 5.6 9.7 18.0 7.8 17.0 11.5 19.4 29.4 7.6 27.1 22.0 23.3 25.2 11.8 6.0 4.6 21.0 34.8 27.3 18.8 16.2 22.4 15.7 22.1 18.8 24.4 23.3 3.1 11.8 22.6 29.9 5.0 15.6 7.2 18.5 16.6 18.2

33.2 20.5 17.0 9.5 23.0 13.5 19.3 20.1 25.9 23.1 27.5 24.4 29.8 0.2 40.4 32.6 29.1 24.6 58.6 24.8 20.2 25.9 37.4 1.5 32.6 28.4 13.5 13.2 29.6 25.0 31.4 25.0 20.0 15.3 33.8 22.2 23.6 13.2 28.7 6.1 12.0 20.5 12.7 1.8 8.9 16.1 20.7 14.2 25.1 20.0 23.9 8.3 9.2 1.7 18.7 11.8 34.7 0.0 9.7 4.5 36.9 13.6 24.3 25.1 18.5 7.0 10.6 20.5 8.2 18.5 13.9 21.1 35.4 8.2 30.8 22.7 26.4 25.1 11.9 6.2 4.0 24.1 27.6 31.6 21.8 17.0 23.6 18.0 25.2 20.5 27.8 26.1 2.9 12.7 24.8 32.7 4.9 18.8 7.8 19.2 18.8 20.2

18.3 14.1 11.1 8.0 13.2 9.8 12.8 14.1 13.9 19.8 15.7 15.6 16.5 0.1 22.8 17.7 15.3 15.2 25.7 15.4 13.6 14.5 20.4 0.8 20.7 16.1 9.3 8.5 16.5 16.6 16.9 15.7 16.1 10.3 18.6 13.9 13.9 8.7 10.0 4.5 8.5 14.7 9.0 1.0 5.9 14.2 11.3 6.1 16.8 14.3 15.3 6.0 6.7 1.1 13.1 8.8 19.3 26.4 0.0 3.9 17.1 9.3 14.5 14.0 10.8 4.6 7.4 12.0 6.3 11.2 9.8 12.9 18.9 5.4 17.1 15.6 15.3 16.1 11.8 4.2 4.3 15.2 16.6 16.3 13.3 10.8 14.9 12.5 17.3 14.3 16.3 15.3 2.6 9.3 15.4 22.1 4.1 11.4 5.6 8.7 11.5 12.6

4.1 2.3 1.7 3.9 3.3 2.7 3.8 3.1 3.3 5.3 4.4 3.4 3.8 0.0 6.5 4.4 4.5 4.4 23.8 3.9 2.2 3.4 6.7 1.3 5.4 4.4 1.4 2.7 4.3 3.2 4.0 3.5 1.6 4.3 4.9 3.6 4.6 2.8 4.2 2.2 1.2 4.3 1.9 0.4 1.7 1.5 3.0 4.9 3.6 4.6 3.6 2.7 2.2 0.6 2.1 1.6 5.1 8.0 0.8 0.0 6.9 2.7 4.2 3.5 1.6 3.4 1.9 3.3 0.9 2.8 0.9 3.7 5.2 1.1 4.6 3.7 3.6 3.7 1.8 0.3 1.0 4.1 3.9 4.3 2.9 3.0 2.3 3.3 4.2 4.9 2.5 4.3 0.5 1.8 3.0 5.7 1.5 3.1 1.8 3.8 2.3 3.0

30.6 19.1 15.2 7.9 20.7 12.4 16.5 19.0 21.4 23.9 22.9 23.6 24.8 0.2 34.0 27.2 25.4 20.7 47.0 21.8 18.4 21.8 32.3 1.6 27.7 24.2 9.7 11.6 24.6 22.8 26.9 22.2 20.9 12.8 37.3 19.5 20.2 15.5 25.5 6.5 10.2 18.1 11.7 1.3 7.9 16.5 18.7 11.4 21.3 18.9 20.3 9.0 8.8 1.1 20.2 12.0 30.0 38.4 11.7 4.5 0.0 14.3 21.4 21.1 16.1 7.2 10.7 17.8 8.0 17.3 11.4 18.2 29.7 7.9 25.9 19.9 21.9 20.7 14.4 6.0 5.9 20.2 23.2 26.4 20.2 23.2 23.0 14.1 27.6 19.8 24.3 21.9 3.4 12.2 21.5 32.3 5.7 15.8 8.2 17.9 15.2 19.4

18.3 13.9 11.4 9.3 12.7 8.8 11.5 15.1 15.2 18.7 16.2 15.7 16.7 0.1 24.3 18.6 15.6 15.7 24.2 16.4 13.8 14.6 20.7 0.6 21.6 16.8 10.3 8.9 16.9 17.6 16.2 16.6 15.4 10.6 19.8 15.3 15.1 9.2 14.1 3.9 8.9 15.0 7.0 1.1 6.8 13.4 14.6 12.0 17.6 13.7 15.7 7.0 5.9 1.1 15.6 11.9 18.9 28.6 8.8 4.2 17.4 0.0 15.7 14.3 11.3 4.0 7.5 12.0 5.9 12.5 10.6 12.7 20.5 6.2 18.0 14.5 16.4 16.4 11.5 4.5 4.1 15.2 15.8 18.2 14.4 16.5 16.6 12.4 18.9 15.5 16.0 14.7 2.4 10.8 14.0 21.3 3.3 11.3 5.6 12.5 2.7 13.4

26.1 17.6 13.1 6.9 17.9 12.0 11.5 17.0 19.6 8.0 22.3 19.3 23.6 0.2 30.0 19.9 24.0 19.5 36.3 20.5 15.8 21.6 29.3 1.4 25.9 22.3 8.8 10.0 22.6 20.5 25.0 21.5 19.2 11.6 24.6 18.5 19.0 9.9 24.3 5.6 9.2 17.5 10.5 1.2 7.7 15.5 17.5 8.3 20.3 17.2 19.5 9.2 7.7 1.1 17.8 10.5 28.3 35.4 10.4 4.3 25.6 13.0 0.0 20.4 13.5 5.7 9.0 16.2 6.5 15.5 10.6 17.9 27.0 6.9 23.1 18.0 20.9 13.1 12.1 5.2 4.9 19.9 21.1 25.0 16.4 19.4 21.1 13.4 19.9 17.8 21.8 19.5 3.2 10.8 19.0 26.3 5.2 14.0 7.3 16.2 11.9 15.7

30.9 20.2 15.1 5.7 20.8 12.3 18.6 18.6 23.3 21.0 24.6 22.0 27.7 0.2 36.0 33.2 27.0 22.0 47.3 23.5 18.2 24.0 33.6 1.3 29.2 25.3 10.3 11.1 26.9 23.7 27.8 24.2 21.5 13.2 30.3 21.8 21.4 11.8 26.2 6.2 9.9 19.5 11.7 1.3 9.0 16.4 19.2 9.4 23.5 18.5 22.4 9.5 8.5 1.2 18.8 11.8 32.0 40.0 10.9 4.4 31.4 13.6 24.0 0.0 16.0 6.6 10.3 18.3 7.4 16.4 11.4 19.9 31.7 7.9 27.2 20.4 24.3 23.1 11.9 5.8 5.0 22.3 24.2 30.5 18.9 18.8 23.5 14.7 22.8 19.0 25.5 23.7 3.2 12.2 22.0 30.4 5.4 15.9 7.9 18.2 16.3 17.7

25.0 17.8 14.0 11.4 16.6 10.5 15.7 19.2 19.1 25.7 20.9 19.2 22.1 0.2 30.8 24.0 20.3 19.1 35.9 21.0 17.2 19.9 26.5 1.0 26.2 20.8 11.8 9.7 21.8 24.6 21.9 20.8 18.4 11.5 24.7 17.8 18.3 10.2 17.3 5.0 11.0 17.6 9.8 1.4 7.5 15.5 16.4 7.5 20.9 15.9 19.4 7.2 7.4 1.6 20.2 13.9 26.3 34.9 9.9 4.4 17.3 13.5 18.4 18.5 0.0 5.0 8.9 15.7 7.0 15.6 13.1 16.1 26.1 7.4 22.5 18.7 19.9 20.7 13.3 5.8 5.2 19.1 20.8 23.2 17.3 20.0 21.6 14.0 21.2 17.6 21.3 18.9 3.0 12.5 17.5 27.2 4.6 13.3 6.3 16.7 8.3 15.9

8.3 5.1 4.2 4.9 6.7 4.1 5.3 5.8 6.8 8.9 7.5 8.3 6.7 0.1 10.2 8.6 7.1 8.8 8.4 6.7 5.4 6.4 10.1 1.8 8.5 8.6 5.4 4.5 7.8 8.2 7.4 7.3 7.5 5.2 9.0 7.3 7.7 5.1 8.8 3.4 4.0 7.5 4.1 1.8 3.1 4.8 7.7 4.8 6.7 6.2 6.5 4.9 3.3 1.8 5.4 5.2 8.6 11.1 3.7 2.5 9.0 5.4 7.8 7.0 4.5 0.0 5.0 7.4 2.4 5.4 5.2 6.9 10.4 2.6 7.2 7.7 7.5 6.7 5.8 2.1 2.9 8.3 7.1 7.5 5.9 6.5 7.1 6.3 9.3 7.2 7.4 7.2 2.3 3.6 4.3 9.0 2.4 5.9 2.8 5.7 3.5 6.4

14.9 11.5 7.9 6.2 12.1 7.2 10.0 10.2 10.9 15.6 13.1 14.2 12.4 0.1 17.2 14.3 12.8 11.8 22.8 11.2 9.9 10.7 16.9 1.6 15.1 13.2 7.4 9.1 13.0 12.2 13.3 11.8 10.3 10.7 15.5 11.1 11.5 9.0 15.5 5.5 6.4 10.7 7.4 1.0 5.0 9.1 10.7 6.0 11.3 14.9 10.9 5.8 7.2 0.9 9.0 6.7 15.4 21.2 5.1 3.4 18.1 8.0 11.2 11.3 8.9 6.3 0.0 10.4 5.6 9.7 8.0 10.2 15.3 4.5 13.6 10.7 11.3 12.0 9.3 3.6 3.4 12.1 11.5 13.0 11.3 10.7 11.7 10.5 14.1 11.3 12.7 11.4 2.8 6.6 10.6 15.7 4.8 11.4 6.3 10.0 7.0 12.9

29.6 18.4 15.0 10.3 23.0 13.2 18.3 17.9 22.0 27.9 25.6 22.2 25.8 0.2 34.3 30.1 26.1 21.5 40.9 21.8 18.1 23.4 37.6 1.5 27.4 27.4 12.5 11.5 25.8 22.5 28.3 22.5 21.6 13.9 28.7 19.3 22.4 12.3 25.2 5.7 11.5 18.8 11.4 1.3 8.4 14.3 18.4 14.9 22.1 18.5 21.0 8.2 8.3 1.2 15.9 10.6 31.2 40.3 11.0 4.2 31.3 12.8 21.8 21.9 16.7 6.7 9.2 0.0 7.5 17.0 12.7 18.8 32.4 6.8 28.2 21.0 23.9 23.6 12.8 5.6 4.9 23.0 24.3 28.4 19.0 15.2 20.9 16.0 23.1 18.7 24.3 22.7 2.6 11.4 21.7 29.1 5.3 16.4 7.3 17.4 15.6 17.6

7.9 7.0 4.9 5.7 6.4 4.6 4.6 7.8 6.7 8.6 7.0 8.3 6.8 0.1 11.9 7.9 6.0 7.8 8.6 6.8 6.8 5.9 8.8 0.7 10.4 8.4 5.7 5.1 8.0 9.2 6.6 7.6 7.8 6.8 8.2 7.4 7.0 4.3 6.8 3.2 4.1 8.4 3.9 0.9 4.0 6.6 7.0 5.9 7.5 8.2 7.4 4.2 3.9 0.7 5.8 5.5 8.8 14.2 4.8 3.3 7.5 6.6 6.5 6.4 5.4 2.5 5.8 6.8 0.0 5.6 5.6 5.6 9.2 3.5 7.3 6.8 6.8 7.1 6.6 2.7 2.4 7.0 7.6 7.3 7.4 7.3 7.4 7.5 8.8 7.5 5.5 6.8 2.0 5.4 6.1 10.0 2.4 6.1 3.6 4.3 2.4 6.8

15.0 10.7 8.7 11.3 9.9 7.4 8.7 16.0 11.6 14.9 12.8 12.6 13.0 0.1 20.1 14.4 12.0 12.4 19.7 12.4 12.3 10.9 15.9 0.7 18.0 13.4 10.6 7.1 13.0 17.8 12.1 12.7 12.5 8.5 15.1 12.1 11.6 7.5 12.3 3.6 8.4 12.5 6.1 0.8 6.4 10.6 12.2 9.6 13.7 10.9 12.5 6.7 4.7 0.8 13.2 11.7 14.7 22.5 7.1 4.2 10.9 10.0 11.7 11.7 11.5 3.9 6.7 10.9 4.9 0.0 11.3 9.8 16.3 5.9 14.0 11.6 13.0 12.9 9.0 5.2 3.5 11.6 13.2 14.2 11.9 13.3 15.4 11.3 15.3 12.4 12.7 12.3 2.3 10.4 11.3 16.4 2.9 8.8 4.3 9.1 5.2 10.2

20.7 15.1 12.1 11.8 13.5 9.7 13.2 17.7 16.3 22.0 18.1 17.1 18.6 0.2 26.3 21.0 17.5 16.8 30.5 17.7 15.8 16.8 22.6 0.7 23.4 18.0 12.3 9.4 18.8 23.4 18.0 17.3 16.9 11.2 21.7 15.6 16.1 9.0 9.7 4.3 10.5 15.1 8.4 1.2 6.3 14.3 12.2 6.7 18.7 14.5 17.2 6.8 6.6 1.3 18.3 13.0 22.1 30.5 9.0 4.2 17.6 11.5 16.9 16.1 14.0 4.6 8.7 13.8 6.7 14.3 0.0 14.1 23.3 6.9 19.7 17.3 18.3 18.2 11.8 5.3 4.5 16.9 18.0 19.9 16.0 18.5 18.6 13.7 19.7 15.1 17.5 16.8 2.8 12.4 15.7 22.8 3.8 12.1 5.9 12.7 8.8 14.8

22.9 16.7 12.9 6.8 18.2 11.1 18.9 16.6 19.0 11.7 21.2 19.1 23.4 0.2 28.9 21.7 22.1 19.8 33.1 20.5 15.8 21.4 27.6 1.4 25.2 22.0 8.2 9.8 22.6 19.7 24.7 20.7 19.1 11.1 23.5 18.0 19.3 9.8 24.2 5.4 8.2 18.2 10.7 1.5 6.1 15.5 17.1 5.8 20.5 16.8 20.1 7.6 7.4 1.4 15.6 9.8 28.0 33.3 10.2 4.0 25.3 12.1 20.3 18.6 13.0 5.7 8.7 16.1 6.6 14.2 9.9 0.0 25.5 6.6 22.8 19.0 20.7 18.0 11.5 4.9 4.7 19.7 20.1 22.6 16.3 17.7 19.5 13.1 19.2 17.6 21.2 20.7 2.9 10.4 18.7 25.9 4.8 13.6 6.7 16.4 13.9 15.5

32.5 19.6 16.4 8.5 24.1 13.3 17.2 19.8 24.9 9.4 28.3 24.1 29.0 0.2 37.8 23.8 28.6 23.6 51.6 23.8 19.4 25.1 36.4 1.4 30.6 29.0 9.7 11.9 28.6 25.0 30.4 24.8 22.4 13.4 32.4 21.9 23.8 12.4 27.0 6.2 10.2 19.8 11.9 1.6 9.3 17.8 20.2 8.7 25.2 19.4 23.2 10.6 8.9 1.4 17.7 11.7 34.3 43.4 12.3 4.5 34.0 13.1 24.2 24.8 16.0 6.7 10.6 20.4 8.2 17.0 12.1 21.1 0.0 8.3 30.4 22.9 25.8 13.7 13.8 6.0 5.8 24.5 27.0 31.3 21.1 23.7 24.1 15.4 24.2 20.4 27.3 25.4 3.6 13.0 23.0 32.6 5.6 16.5 8.2 18.8 15.3 19.0

18.4 13.4 10.7 9.0 13.1 9.0 11.5 13.7 13.1 18.4 15.0 15.6 15.0 0.1 21.4 17.5 16.2 13.8 26.6 14.0 13.2 13.1 21.3 0.9 18.8 15.4 9.7 8.2 15.3 15.8 16.3 14.2 15.0 9.9 16.5 12.5 13.1 8.2 16.4 4.3 8.3 13.7 7.8 0.9 6.2 12.9 12.7 9.0 14.6 13.7 13.7 6.6 6.0 0.8 14.3 9.0 19.0 27.3 8.6 3.8 18.5 11.4 13.4 12.5 11.5 4.7 6.9 11.8 6.0 13.1 10.1 11.7 17.2 0.0 16.3 13.6 13.8 14.3 9.4 5.1 3.7 13.6 14.0 15.3 12.7 15.3 16.6 11.7 16.0 13.1 15.3 13.4 2.2 9.2 15.7 20.1 3.8 10.8 5.8 11.7 6.1 12.7

29.5 19.4 15.9 8.4 22.6 13.2 19.9 19.3 23.3 18.6 25.7 22.2 27.7 0.2 35.0 29.7 27.2 22.9 45.5 23.4 18.8 23.9 36.9 1.5 28.7 27.0 10.0 11.2 26.5 22.9 30.6 24.4 22.0 13.2 29.0 20.5 23.1 12.2 26.2 5.9 10.3 19.5 11.8 1.7 8.8 17.7 19.3 11.4 24.0 19.0 22.6 8.3 8.3 1.5 18.2 11.3 33.5 40.4 11.5 4.4 31.7 13.3 22.1 22.4 16.1 6.4 10.0 18.9 7.7 17.1 11.8 20.4 32.2 7.6 0.0 22.1 24.3 22.9 13.1 6.0 4.9 22.7 25.3 28.6 19.5 18.2 23.6 15.6 22.7 19.4 25.3 24.0 3.1 11.9 22.8 30.4 5.5 16.0 7.5 18.8 17.4 18.3

26.1 18.1 13.9 10.1 19.7 13.5 23.6 17.0 20.1 27.6 22.1 19.8 23.9 0.1 30.5 26.6 25.3 20.7 38.0 21.6 16.9 22.0 31.8 0.9 25.4 23.1 10.4 10.2 23.9 20.6 27.8 21.2 22.0 11.8 24.1 18.4 19.1 10.1 24.3 4.9 10.0 19.5 11.9 1.2 6.3 18.7 17.5 7.8 22.1 17.7 21.6 8.7 7.6 1.0 17.1 10.6 31.1 35.1 11.2 4.2 27.8 13.6 19.0 19.1 14.1 5.1 8.3 16.9 7.0 15.2 11.9 18.2 26.3 6.3 24.3 0.0 21.1 21.4 13.3 5.4 4.8 20.1 23.6 23.9 17.1 18.5 20.7 16.4 20.2 17.8 22.2 23.7 2.8 10.8 21.5 28.4 4.5 14.4 6.7 23.9 12.8 16.4

28.1 19.7 14.7 6.8 20.3 12.2 21.0 18.5 24.0 30.2 24.0 21.1 29.8 0.2 34.6 29.6 26.8 22.5 42.9 24.3 18.2 24.7 33.1 1.4 28.7 25.1 9.9 10.7 26.3 23.0 31.2 24.1 20.6 12.1 28.6 20.7 21.5 11.3 26.1 5.8 9.5 20.3 11.4 1.5 8.9 16.8 19.4 8.0 24.0 18.2 23.1 8.3 8.2 1.4 18.3 10.7 33.4 38.3 10.7 4.3 30.0 12.7 23.2 22.4 15.1 6.1 9.8 17.7 7.4 15.9 10.8 21.1 30.9 7.5 27.0 21.9 0.0 26.2 11.4 5.4 4.8 22.0 25.4 28.2 18.8 17.4 22.5 14.9 21.8 19.2 25.3 24.5 2.9 11.7 21.0 29.8 5.2 15.1 7.3 18.1 15.7 17.0

25.8 18.3 14.0 7.3 19.9 12.5 20.1 17.9 22.2 27.3 22.7 19.9 26.1 0.2 31.7 26.9 24.1 20.9 38.1 22.8 17.0 23.2 30.3 1.3 27.4 23.4 9.7 10.1 24.4 21.5 30.4 22.8 19.8 12.1 26.5 19.7 20.4 10.6 25.4 5.6 9.2 19.5 11.3 1.4 8.3 16.4 18.1 7.0 22.7 17.7 21.5 7.0 8.0 1.2 16.8 10.4 31.6 35.9 10.5 4.3 26.4 12.0 21.9 20.9 14.6 5.7 9.3 16.9 7.2 15.8 10.8 19.9 28.7 7.0 24.7 20.8 23.1 0.0 10.3 5.3 4.1 20.7 23.1 26.0 17.9 14.5 21.2 14.0 21.1 18.2 24.1 22.5 2.5 11.2 20.6 27.8 5.0 14.8 6.7 16.9 15.7 16.1

16.4 12.6 8.9 6.4 13.1 8.1 10.7 12.2 12.6 17.4 14.4 15.1 14.0 0.2 19.2 16.9 13.2 13.2 24.3 12.5 11.6 12.9 18.0 1.5 17.0 14.8 7.5 9.7 14.6 14.1 14.9 13.0 12.6 11.4 17.4 12.2 13.1 9.2 13.2 5.4 7.2 11.5 7.6 1.4 5.2 11.0 11.3 3.7 12.9 15.7 12.3 6.7 7.6 1.2 11.3 8.6 17.5 21.6 7.2 3.7 17.5 7.0 12.6 12.5 9.1 6.6 9.1 11.2 6.4 8.3 8.5 11.5 17.4 4.8 15.6 12.5 13.3 14.7 0.0 3.5 4.6 14.1 12.9 15.4 13.6 13.9 12.5 10.9 15.0 11.7 14.5 12.9 3.4 7.9 10.4 18.3 4.9 12.5 6.1 11.2 10.5 13.4

15.0 8.2 7.7 9.4 8.9 6.5 8.4 13.5 11.3 14.3 12.8 12.3 12.0 0.2 20.8 14.7 11.6 11.9 21.7 12.1 11.7 10.7 15.8 0.5 17.9 12.7 9.9 6.4 12.5 17.2 11.9 11.4 11.2 7.6 15.4 11.6 11.1 7.6 9.2 3.1 6.8 12.0 5.4 0.8 5.9 9.9 11.0 7.4 13.0 9.9 11.6 6.0 4.3 1.0 10.3 10.9 14.4 21.6 6.4 4.3 13.1 8.1 11.4 11.6 9.7 2.9 6.9 10.5 3.9 10.7 10.1 9.0 15.9 6.2 13.0 12.0 12.4 12.1 8.6 0.0 3.1 10.7 12.7 13.3 12.1 12.3 13.3 9.2 15.8 11.9 12.3 11.8 2.1 11.8 10.6 16.2 2.7 8.2 4.6 7.4 4.2 8.6

14.4 10.6 8.4 7.4 10.4 6.9 8.5 12.4 11.8 14.8 11.8 14.2 12.2 0.2 18.7 14.3 11.2 12.1 19.1 11.7 11.0 10.3 14.0 1.4 17.2 13.5 8.1 9.2 12.7 13.3 12.4 12.4 11.1 10.1 16.1 11.8 11.2 8.6 11.1 5.0 6.9 11.6 6.5 1.2 5.3 9.6 10.8 7.4 12.1 13.5 11.8 6.6 6.6 1.2 10.0 9.3 14.4 22.6 6.9 4.0 13.4 9.2 11.8 11.2 8.8 5.3 9.7 10.6 5.0 9.1 8.3 10.1 15.3 5.6 13.1 11.6 12.3 12.3 11.1 3.7 0.0 11.3 13.0 13.5 13.6 11.7 11.4 10.0 15.8 11.7 10.6 11.1 3.1 8.2 9.3 16.7 4.5 10.4 5.7 9.2 6.5 12.0

23.8 16.8 14.3 7.2 21.4 11.7 10.8 17.0 20.7 4.5 24.2 20.3 23.0 0.2 31.0 12.3 23.1 21.2 32.7 20.5 16.4 21.3 30.9 1.2 26.5 23.8 8.2 10.2 23.5 20.9 22.2 21.6 19.1 11.2 25.1 18.5 21.1 10.9 24.1 5.3 8.3 18.2 10.8 1.1 6.3 15.9 17.7 6.8 21.4 17.0 20.2 9.7 7.7 0.9 14.9 10.6 28.6 35.5 10.7 4.3 24.1 12.8 21.2 20.1 13.2 6.2 9.0 17.5 7.3 15.5 10.1 18.7 29.2 6.8 24.5 19.3 20.9 7.9 14.1 5.4 5.6 0.0 21.8 24.7 16.9 19.9 19.9 13.8 20.6 18.0 22.5 20.9 3.3 10.8 19.0 27.0 5.2 14.2 7.1 17.3 9.6 16.4

29.1 19.6 16.2 9.0 22.0 12.9 21.2 18.6 25.0 35.6 23.7 21.6 26.8 0.1 34.0 30.3 28.8 22.3 44.4 30.7 19.0 23.6 36.7 1.0 28.7 25.5 11.1 10.9 26.6 22.7 33.8 29.3 22.0 12.8 28.3 20.1 21.1 10.8 25.8 5.5 10.1 20.0 11.8 1.2 8.5 18.4 18.8 8.5 24.3 17.9 23.1 8.1 8.2 1.1 20.6 11.6 38.7 41.0 11.8 4.4 30.9 13.2 21.6 21.6 16.1 5.4 9.3 18.6 7.5 16.8 12.0 19.6 30.1 7.2 27.1 22.6 24.6 26.2 11.5 6.0 4.2 20.9 0.0 28.1 19.1 18.8 23.0 16.0 22.4 19.0 24.4 24.1 2.8 12.3 22.7 30.2 4.6 15.4 6.9 18.5 17.3 18.3

32.5 20.3 15.8 6.8 21.8 13.1 18.0 19.5 24.5 20.1 26.2 22.7 29.6 0.2 37.0 36.0 29.6 23.5 50.5 24.9 19.1 26.4 34.9 1.5 30.4 27.1 10.2 11.4 28.4 24.1 31.1 25.4 21.5 12.8 31.3 22.9 22.7 12.3 27.8 6.3 10.3 20.2 11.8 1.2 9.1 16.9 20.5 9.6 25.4 19.0 23.3 9.7 8.7 1.2 18.1 11.9 34.6 42.3 11.6 4.4 33.8 12.8 25.2 26.3 16.2 6.4 10.9 19.2 7.8 16.6 11.4 21.2 33.6 8.1 29.0 22.2 26.2 23.0 12.8 5.7 5.1 23.1 26.4 0.0 19.9 17.6 23.2 14.7 23.6 19.9 26.9 24.9 3.2 12.4 22.6 31.9 5.4 16.5 7.9 19.0 16.8 18.5

23.0 15.2 12.1 7.1 16.8 9.6 12.8 14.7 15.9 16.7 18.1 18.0 18.5 0.2 27.6 19.4 19.6 15.9 36.7 16.7 15.2 16.5 26.4 1.5 22.7 19.1 9.9 11.3 18.6 17.7 20.3 16.7 15.5 12.5 22.4 15.8 15.2 10.7 20.1 6.2 8.9 14.2 9.8 1.2 7.5 12.9 13.6 8.5 16.9 17.9 16.4 7.4 8.6 1.0 13.3 9.1 22.9 31.4 8.7 4.0 26.6 10.5 16.2 16.5 12.8 6.3 9.5 14.8 6.5 13.6 10.3 13.9 23.1 6.5 20.8 15.7 16.7 14.2 11.8 5.0 4.6 15.8 17.6 19.9 0.0 14.9 16.5 13.1 19.3 14.7 18.4 17.2 2.9 9.8 16.6 23.5 5.4 14.7 6.8 13.8 9.6 15.8

20.4 14.4 10.4 9.5 12.7 10.5 13.3 13.6 13.1 19.4 15.3 16.0 15.2 0.1 22.5 17.9 19.0 14.6 33.1 14.5 12.9 14.3 23.8 0.8 20.2 16.2 10.1 9.1 15.6 16.4 18.2 15.3 15.4 11.2 24.0 13.9 14.3 10.6 18.3 4.4 9.9 14.3 9.3 0.9 6.3 14.1 13.1 9.8 15.1 15.3 14.0 5.7 6.5 0.9 18.1 8.5 20.1 27.8 9.0 3.7 24.2 13.1 14.1 13.5 11.9 4.1 6.6 11.5 5.5 13.9 10.7 12.0 18.4 4.8 16.8 13.5 14.5 15.0 10.5 4.8 3.5 14.1 14.8 16.4 13.1 0.0 19.2 13.3 22.3 13.5 16.6 13.8 1.7 8.6 16.9 21.7 4.0 12.4 5.4 13.4 11.4 13.1

24.9 18.5 14.4 10.6 17.6 11.4 15.6 18.3 17.8 24.8 20.7 19.8 21.5 0.2 29.9 24.0 21.7 18.8 39.7 18.2 16.6 18.6 28.0 0.9 26.7 20.7 11.6 10.1 21.4 22.0 22.5 19.5 18.8 11.1 27.2 17.3 17.9 11.5 23.0 4.8 11.4 17.3 10.0 1.2 7.6 15.4 16.8 9.5 19.8 16.4 19.0 6.7 7.0 1.2 22.6 11.7 25.6 34.7 10.7 4.4 26.7 14.5 18.4 18.0 15.7 5.1 8.7 15.3 6.7 16.3 12.5 15.9 26.6 6.8 22.2 17.6 20.2 18.8 13.0 5.8 4.9 19.1 19.3 22.8 16.9 22.3 0.0 14.1 24.1 16.9 21.4 19.2 2.9 11.4 19.3 27.0 4.5 13.6 6.7 18.6 9.5 16.5

18.0 13.6 8.5 8.1 12.4 9.4 14.2 15.0 15.9 19.6 16.1 15.0 17.1 0.2 24.3 17.2 13.5 18.1 26.5 17.0 13.9 14.8 19.1 0.8 22.0 18.1 9.0 8.9 18.2 15.3 17.1 15.7 15.9 10.1 19.0 15.8 15.3 7.8 4.3 4.1 7.9 17.0 8.9 1.0 2.5 14.0 5.0 4.4 18.3 14.4 16.6 7.4 6.0 1.1 10.5 11.1 20.4 22.4 8.1 4.3 12.7 7.7 16.0 14.6 10.2 4.4 10.0 12.4 6.0 10.0 9.9 13.8 20.9 6.0 17.7 17.0 17.7 17.6 13.0 3.5 4.2 16.1 19.1 17.7 15.4 14.2 12.4 0.0 18.3 6.5 14.4 16.6 2.9 9.0 13.2 20.6 3.6 11.5 5.3 10.3 13.2 12.7

29.1 17.5 14.3 8.9 19.6 12.8 18.0 17.2 20.6 28.0 22.3 24.0 23.4 0.1 32.2 28.2 24.7 20.9 47.3 20.0 16.9 20.9 31.2 1.5 27.0 23.3 11.8 12.8 24.0 21.9 25.6 21.0 18.3 14.8 35.0 19.0 19.7 13.6 24.6 6.1 11.3 18.1 11.9 0.9 7.7 14.9 17.8 12.7 20.9 19.2 19.5 7.7 8.6 0.8 20.0 10.1 28.6 37.6 7.6 4.3 34.2 14.0 19.4 20.0 17.2 7.2 9.0 16.3 8.1 17.4 13.3 17.9 28.3 6.0 25.1 18.9 21.3 20.6 9.7 5.6 4.1 20.3 21.6 25.0 18.4 25.2 21.6 16.9 0.0 18.1 22.9 21.1 2.7 10.6 22.8 28.8 5.2 17.7 7.6 16.7 14.9 20.1

22.1 15.7 13.0 10.1 17.5 11.5 17.0 16.4 17.9 25.0 19.8 18.7 21.3 0.2 28.4 23.2 20.2 18.7 34.1 18.6 16.0 19.7 26.1 1.1 25.2 20.6 10.8 10.5 22.0 19.5 21.5 19.5 18.0 12.3 24.9 17.7 17.7 10.7 24.5 5.4 9.6 17.7 10.6 1.8 8.1 14.7 18.0 14.2 19.8 16.5 18.8 6.3 7.6 1.9 15.6 9.2 24.0 31.6 9.5 4.0 26.1 13.4 18.2 17.9 14.7 5.5 8.4 14.4 7.2 15.8 11.1 16.8 23.5 6.3 22.1 17.4 19.8 19.8 9.6 5.5 2.6 18.3 19.3 22.4 16.2 11.2 19.9 14.2 20.0 0.0 21.6 19.4 2.2 10.3 19.6 27.2 4.6 14.1 6.7 22.4 14.1 15.5

28.0 19.4 14.8 6.2 19.7 14.6 18.0 18.5 20.9 27.8 23.0 21.2 25.0 0.2 32.8 27.5 25.0 20.6 40.9 21.9 17.9 22.1 31.1 1.4 27.7 23.7 10.3 10.5 24.5 22.2 25.8 22.2 20.2 12.9 27.0 19.8 20.2 11.3 25.8 6.0 10.2 19.6 10.8 1.3 8.4 17.5 19.2 9.6 22.0 18.1 21.4 7.8 8.3 1.2 18.5 10.3 28.9 36.8 11.0 4.2 28.7 13.7 21.7 20.7 15.2 5.7 9.7 17.1 7.7 16.2 11.3 18.8 29.6 7.4 25.9 19.7 22.1 22.2 12.0 5.8 6.1 20.9 22.1 26.0 18.7 20.8 22.9 14.8 22.0 19.2 0.0 22.3 3.2 11.9 21.8 28.3 5.1 15.0 7.5 17.5 15.5 17.2
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Figure 3: Evaluation results of our multilingual model (36 encoder layers and 12 decoder layers) on all translation
directions on the FLORES-101 devtest set. The language x in the i-th row and language y in the j-th column
denotes the translation direction from the language x to language y. For example, the cell of the 1-th row (af) and
the 2-th column (am) represents the result of the translation direction af→am. The table shows the results of all
translation directions of 102 languages.
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Abstract

This paper presents the submission of Huawei
Translation Services Center (HW-TSC) to the
WMT 2021 Large-Scale Multilingual Transla-
tion Task. We participate in Small Track #2,
including 6 languages: Javanese (Jv), Indone-
sian (Id), Malay (Ms), Tagalog (Tl), Tamil (Ta)
and English (En) with 30 directions under the
constrained condition. We use Transformer ar-
chitecture and obtain the best performance via
multiple variants with larger parameter sizes.
We train a single multilingual model to trans-
late all the 30 directions. We perform detailed
pre-processing and filtering on the provided
large-scale bilingual and monolingual datasets.
Several commonly used strategies are used
to train our models, such as Back Transla-
tion, Forward Translation, Ensemble Knowl-
edge Distillation, Adapter Fine-tuning. Our
model obtains competitive results in the end.

1 Introduction

This paper introduces our submission to the WMT
2021 Large-Scale Multilingual Translation Task.
We participate in Small Track #2, including 6 lan-
guages: Javanese (Jv), Indonesian (Id), Malay (Ms),
Tagalog (Tl), Tamil (Ta) and English (En) with
30 directions. We consider that the officially pro-
vided dataset has the acceptable size and quality
and therefore only participate in the constrained
evaluation. Our method is mainly based on pre-
vious works but with fine-grained data cleaning
techniques and a multi-step multilingual training
strategy.

For each language pair, we perform multi-step
data cleaning on the provided dataset and only keep
a high-quality subset for training. At the same time,
several training strategies are tested in a pipeline,
including Backward (Edunov et al., 2018) and For-
ward (Wu et al., 2019a) Translation, Multilingual
Translation (Johnson et al., 2017), Iterative Joint

Training (Zhang et al., 2018), Ensemble Knowl-
edge Distillation (Freitag et al., 2017; Li et al.,
2019), Adapter Fine-Tuning (Bapna et al., 2019),
and Ensemble (Garmash and Monz, 2016).

Based on the task requirements, we train a single
multilingual model that translates all 30 directions.
We refer to (Johnson et al., 2017) and employ lan-
guage tags (Wu et al., 2021). By combining mul-
tiple strategies, our model achieves considerable
quality improvements in all directions.

Section 2 focuses on our data processing strate-
gies while section 3 describes our training tech-
niques, including model architecture and the iter-
ative training strategy, etc. Section 4 explains our
experiment settings and training processes and sec-
tion 5 presents our experiment results.

2 Data

2.1 Data Source

For all language pairs, we follow the constrained
data requirements and take full advantage of the
bilingual and monolingual training data available.
Table 1 lists the data sizes of each language pair
before and after filtering.

2.2 Data Pre-processing

We conduct the following steps to pre-process the
data:

• Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Convert XML escape characters.

• Normalize punctuations using Moses (Koehn
et al., 2007).

• Delete html tags, non-UTF-8 characters, uni-
code characters and invisible characters.

• Filter out sentences with mismatched paren-
theses and quotation marks; sentences of
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Figure 1: This figure shows the training process for the WMT 2021 Large-Scale Multilingual Translation Task,
which consists of three stages. In stage 1, one Multi→Multi model as baseline and five Multi→XX models are
trained. In stage 2, the synthetic data by forward and sampling back translation (FTST) is used to train the second
round Multi→XX models. In stage 3, second round synthetic FTST data is used to train three Multi→Multi models.
Finally, adapter fine-tune and model ensemble are used to enhance the performance.

which punctuation percentage exceeds 0.3;
sentences with the character-to-word ratio
greater than 12 or less than 1.5; sentences of
which the source-to-target token ratio higher
than 3 or lowers than 0.3; and sentences with
more than 120 tokens. Based on our experi-
ence in the industry, this strategy can reduce
the low-level errors in model inference and
the problem of missing translations.

• Apply langid (Joulin et al., 2016b,a) to filter
sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

• Use LaBSE (Feng et al., 2020) to rank and
filter the monolingual data.

Data sizes before and after cleaning are listed in
Table 1.

2.3 Data Selection
According to (Arivazhagan et al., 2019), high-
resource language pairs may squeeze the living
space of low-resource language pairs. In other
words, different data sizes across languages may
lead to uneven translation quality in a multilingual
model. Since we incorporate all 30 directions in
one multilingual model, this issues should be ad-
dressed. We use temperature sampling strategy

(Zoph et al., 2016) with T=5 to over-sample the
low-resource language pairs.

We train all 30 directions under the constrained
condition. To improve the performance of back-
translation, we combine officially provided mono-
lingual data with the monolingual data extracted
from corresponding bilingual corpora. Data sizes
are listed in Table 1. The detailed bilingual data
size after forward translation and sampling back
translation (FTST) and over-sampling are listed in
Table 3.

3 System Overview

3.1 Model
Transformer (Vaswani et al., 2017) has been widely
used for machine translation in recent years, which
has achieved good performance even with the most
primitive architecture without much modifications.
Therefore, we choose to start from Transformer-
Deep (Sun et al., 2019) and consider it as a base-
line. The detailed model parameters are as follow:
35-layer encoder, 3-layer decoder, 512 hidden units
and a batch size of 4096. We used the Adam opti-
mizer (Kingma and Ba, 2014) with β1 = 0.9 and β2
= 0.98, and the same warmup and decay strategy
for learning rate as (Vaswani et al., 2017), with
4,000 warmup steps. During training, we employ
label smoothing with a value of 0.1 (Szegedy et al.,
2016). For evaluation, we use beam search with
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Language pairs Raw bi data Filtered bi data Mono data
En/Id 54M 16.5M En: 80M
En/Jv 3M 2.2M
En/Ms 13.4M 12.1M
En/Ta 2.1M 1.9M
En/Tl 13.6M 8.7M
Id/Jv 0.78M 0.51M Id: 58M
Id/Ms 4.8M 4.3M
Id/Ta 0.5M 0.4M
Id/Tl 2.7M 1.6M
Jv/Ms 0.43M 0.26M Jv: 3.8M
Jv/Ta 0.06M 0.037M
Jv/Tl 0.8M 0.32M
Ms/Ta 0.37M 0.32M Ms: 19.7M
Ms/Tl 1.3M 0.8M Tl: 12.2M
Ta/Tl 0.5M 0.3M Ta: 5M

Table 1: Bilingual data sizes before and after filtering, and monolingual data used in the task. The monolingual
data includes officially provided monolingual data and the mono data extracted from the bilingual corpus of corre-
sponding languages.

a beam size of 4 and length penalty α = 0.6 (Wu
et al., 2016).

3.2 Data Augmentation
Back-translation (Edunov et al., 2018) is an effec-
tive way to enhance translation quality by using
monolingual sentences to generate synthetic train-
ing parallel data. As described in (Wu et al., 2019b),
similar to back translation, the monolingual corpus
in source language can also be used to generate
forward translation text with a trained MT model,
and the generated forward and backward transla-
tion data can both be merged with the authentic
bilingual data. This strategy can increase the data
size to a large extent.

We take full advantage of the officially provided
monolingual data for data augmentation. In terms
of back translation, we adopt top-k sampling for
high-resource languages, and adopt beam search
for low-resource languages. With regard to forward
translation, we translate monolingual data using
beam search. Through sampling, we ensure that
the sizes of data generated by forward and back
translation are relatively equal. In this paper, we
refer to the combination of forward and sampling
back translation as FTST.

3.3 Multilingual Strategy
Johnson et al. (2017) propose a simple solution to
use a single neural machine translation model to
translate among multiple languages, and the model

requires no change to the model architecture. In-
stead, the model introduces an artificial token at
the beginning of the input sentence to specify the
required target language. According to (Wu et al.,
2021), we add “2XX” (XX indicates the target lan-
guage, e.g. 2id) at the beginning of the source
sentence. All languages use a shared vocabulary.
We train the hybrid SentencePiece model (Kudo
and Richardson, 2018) in conjunction with all 6
languages as the shared word segmentation system
for all language pairs. We keep the vocabulary
within 40k, including tokens of all 6 languages
(En/Id/Jv/Ms/Ta/Tl).

Two mainstream methods about multilin-
gual training are available: two models with
XX→Multi and Multi→XX separately and a
mono Multi→Multi model. According to (John-
son et al., 2017), Multi→XX performs better
than Multi→Multi and XX→Multi in general.
Multi→Multi model contains too many languages
pairs (30 in this case), so conflicts and confusions
may occur among language pairs in different di-
rections. However, due to the requirements of the
task, we need to provide a Multi→Multi model
that includes all 30 directions. In our experiment,
we divide 30 language pairs into five Multi→XX
multilingual models as step 1. Than we use five
Multi→XX multilingual models to conduct back-
translation and train a Multi→Multi model as step
2 and step 3, as shown in Figure 1.
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3.4 Iterative Joint Training

Zhang et al. (2018) propose a new iterative joint
training method, that is, using monolingual data
from both source and target sides to train a source-
to-target (forward) model and a target-to-source
(backward) model at the same time. The two mod-
els generate synthetic data for each other. The ad-
vantage of such method is that both of the two mod-
els gain improvement after each iteration with the
synthetic data provided by the other, and then can
generate synthetic data with higher quality. Such
training procedure is repeated after the two models
converge.

3.5 Language independence Adapter
Fine-tuning

Previous works demonstrate that fine-tuning a
model with in-domain data could effectively im-
prove the model performance. However, due to lim-
itations of a multilingual translation model, once
the model is trained, when fine-tuning one of the
language pairs, the performance of others will go
worse. Thanks to the finding of Adapter (Bapna
et al., 2019), we are able to fine-tune each language
pair without impacting the performance of others.
In the experiment, we set the adapter size to 512
and fine-tune the model on the bilingual data for
each language pair in 30 directions with 3,000 to-
kens per batch for one epoch.

3.6 Ensemble Knowledge Distillation (EKD)

Ensemble Knowledge Distillation (Freitag et al.,
2017; Li et al., 2019) improves the performance
of a student model by distilling knowledge from a
group of trained teacher models. Comparing with
some soft label distillation methods, the EKD for
NMT is relatively straightforward, which can be
implemented by training the student models on the
combination of the original training set and the
translation from the ensembled teacher model on
the training set. In our experiments, we ensem-
ble models as the teacher model to translate the
FLORES dev set, and use the translation results to
further fine-tune models.

3.7 Ensemble

Model ensemble is a widely used technique in
previous WMT workshops (Garmash and Monz,
2016), which can improve the performance by com-
bining the predictions of several models at each
decoding step. In our work, we ensemble mod-

System FLORES FLORES
dev devtest

baseline M2M 26.9 26.8
FTST1 28.2 (+1.3) 28.1 (+1.3)
FTST2 29.4 (+1.2) 29.6 (+1.5)
Adapter Fine-Tune 30.2 (+0.8) 30.1 (+0.5)
ensemble 30.7 (+0.5) 30.9 (+0.8)
wmt21 final submit 28.6 28.3

Table 2: The experimental results on FLORES
dev/devtest, BLEU scores in table are the average of
30 directions.

els with different architectures to further improve
system performances.

4 Experiment Settings

4.1 Settings

We use the open-source fairseq (Ott et al., 2019)
for training and SentencePieceBLEU to measure
system performances. Each model is trained using
8 GPUs. The architectures and main parameters we
used are described in section 3.1. Marian (Junczys-
Dowmunt et al., 2018) is used for decoding during
inference.

4.2 Training Process

We employ iterative training and phase-based data
augmentation. Figure 1 shows our training process
in details. The specific steps are as follows:

1) Process data using methods described in sec-
tion 2.2. Train one Multi→Multi model as
baseline and five Multi→XX models as for-
ward models and backward models.

2) Generate back translation and forward transla-
tion data. Mix the data with parallel training
data and train second round five Multi→XX
models.

3) Generate back translation and forward trans-
lation data using models trained in step 2.
Mix data with bilingual training data and train
three Multi→Multi models.

4) Average the last eight checkpoints of each
model and adapter fine-tune it with bilingual
data. Ensemble models to produce the final
system.
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5 Results and analysis

We use methods described in Section 2.2 for data
processing. Model architecture mentioned in Sec-
tion 3.1 is employed to increase system diversity.
On the basis of Multi→Multi baselines model, we
use FTST data augmentation to further enhance
model performance.

Table 2 lists the results of our experiment on
FLORES dev set and devtest set (Goyal et al.,
2021). Comparing with the baseline model, the first
round FTST Multi→XX models leads to 1.3 BLEU
increase on average for the 30 directions. Further,
the second round FTST achieves 1.2 BLEU in-
crease on average. We fine-tune the model using
bilingual data with adapter and achieve 0.8 BLEU
increase on average. Finally, ensemble further
leads to 0.5 BLEU increase. When submitting the
final results, because of time limits, we only finish
round-two FTST. As for model inference, there is a
problem with our fairseq architecture, resulting in
poor model quality that seriously affects the FTST
results. The final model we submitted achieves
28.64 BLEU on FLORES dev and 28.34 BLEU on
FLORES devtest. After the submission, we fixed
the problem and continued our experiments, even-
tually achieving 30.7 BLEU on on FLORES dev
and 30.9 BLEU on FLORES devtest. The detailed
experiment results are listed in Table 4.

In our experiment, due to the inference problem
mentioned above, we have not seen much perfor-
mance improvements. The low quality of model
inference leads to poor FT results, which made no
contributions to the model. And even worse, it off-
sets the gain brought by BT results to the model.
We also found that the Multi→en model does sur-
pass the Multi→Multi model in quality, which is
the same as the results observed by the industry.

6 Conclusion

This paper presents the submissions of HW-TSC
to the WMT 2021 Large-Scale Multilingual Trans-
lation Task. We perform experiments with a series
of pre-processing and training strategies. The ef-
fectiveness of each strategy is demonstrated. We
finally achieve competitive results.
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Language pairs Bilingual data Bi + FTST data Over-Sampling T=5
En/Id 46M 56M 56M
En/Jv 2.2M 5M 34M
En/Ms 12M 22M 47M
En/Ta 1.9M 12M 41M
En/Tl 8.7M 18.7M 45M
Id/Jv 0.5M 8.1M 38M
Id/Ms 4.3M 24M 47M
Id/Ta 0.4M 10.6M 40M
Id/Tl 1.6M 21.6M 46.8M
Jv/Ms 0.2M 7.8M 38M
Jv/Ta 0.03M 8.9M 39M
Jv/Tl 0.3M 7.9M 38M
Ms/Ta 0.3M 10.5M 40.4M
Ms/Tl 0.8M 20M 46M
Ta/Tl 0.3M 10M 40M

Table 3: Bilingual data sizes before and after FTST, and Bilingual data sizes after over sampling.
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Language Pair Baseline Final Submit FTST1 FTST2 Adapter Fine-Tune Ensemble
En2Id 46.6 49.2 49.4 49.4 49.5 49.8
Id2En 42.8 43.5 43.7 44.1 44.3 44.8
En2Jv 24.6 26.5 26.3 27.1 27.4 28.3
Jv2En 30.6 31.1 30.9 32.4 32.4 33.3
En2Ms 44.4 45.1 44.8 46.7 46.8 47.8
Ms2En 43.6 42.9 42.7 44.3 44.5 46
En2Ta 24.8 24.8 24.6 26.5 26.6 27.2
Ta2En 24.6 24.6 24.3 26.3 26.4 27.3
En2Tl 33.5 35.3 35.2 36.7 37.9 38.6
Tl2En 41.7 42.1 40.9 43.7 43.9 44.7
Id2Jv 19.5 21.3 20.9 23.5 23.8 24.7
Jv2Id 25.9 28.8 28.6 28.9 28.9 29.6
Id2Ms 35.2 36.9 36.7 38 38.8 39.6
Ms2Id 34 38.2 37.8 38.7 38.8 39.7
Id2Ta 20 21.2 20.9 22 22.7 23.2
Ta2Id 17.1 18.8 18.9 19.1 20.3 21
Id2Tl 26.6 28.7 28.4 29.7 30 30.8
Tl2Id 31 33.7 33.9 35 36.2 36.8
Jv2Ms 24.8 26.8 26.9 28.9 29.8 30.2
Ms2Jv 19.7 21.2 21.4 22.5 23.4 23.8
Jv2Ta 13 14.3 13.9 15 16.2 17.5
Ta2Jv 8.6 9.8 10 11.2 12.8 13.1
Jv2Tl 17.6 20.5 19.9 22.3 22.7 23.4
Tl2Jv 15.5 17 17.2 19.4 19.9 20.2
Ms2Ta 20.2 22.1 20.5 24.1 24.3 24.9
Ta2Ms 19.3 20.4 20.5 22.3 22.5 23.2
Ms2Tl 27.7 28 27.6 30.2 30.6 31.5
Tl2Ms 31 32.5 32 33.7 34.1 34.8
Ta2Tl 18.4 20.8 20.1 21.9 23.1 23.7
Tl2Ta 21.9 23.1 23.2 24.9 26.2 27.1
Average 26.8 28.3 28.1 29.6 30.1 30.9

Table 4: BLEU for each direction on FLORES devtest

463



Proceedings of the Sixth Conference on Machine Translation (WMT), pages 464–477
November 10–11, 2021. ©2021 Association for Computational Linguistics

On the Stability of System Rankings at WMT

Rebecca Knowles
National Research Council Canada

Rebecca.Knowles@nrc-cnrc.gc.ca

Abstract

The current approach to collecting human
judgments of machine translation quality for
the news translation task at WMT – segment
rating with document context – is the most
recent in a sequence of changes to WMT hu-
man annotation protocol. As these annotation
protocols have changed over time, they have
drifted away from some of the initial statisti-
cal assumptions underpinning them, with con-
sequences that call the validity of WMT news
task system rankings into question. In simu-
lations based on real data, we show that the
rankings can be influenced by the presence of
outliers (high- or low-quality systems), result-
ing in different system rankings and cluster-
ings. We also examine questions of annotation
task composition and how ease or difficulty of
translating different documents may influence
system rankings. We provide discussion of
ways to analyze these issues when considering
future changes to annotation protocols.

1 Introduction

At the WMT (now Conference on Machine Trans-
lation) shared task on news translation, research
groups build machine translation systems to accu-
rately translate news data, as tested on test sets of
recent news documents. The systems are clustered
and ranked on their performance as judged by hu-
man annotators. The way that human judgments of
translation quality have been collected has varied
over the course of WMT’s history.

In this work, we examine how changes in the
collection of human judgments over the last three
years have resulted in rankings that are now less
robust to the effects of outliers (high- or low-
performing systems) and overall annotation task
composition. We replicate the human judgment
rankings from 2018-2020, perform simulations for
reranking, and examine issues of annotation task
composition and translation difficulty. We find that
sampling sentences for annotators to annotate by

document – intended as a step towards evaluat-
ing sentences in context – reintroduces a known
problem from the earlier era of relative rankings,
namely that systems suffer or benefit in their rank-
ings based on the quality of the other data being
rated alongside them in the same annotation tasks.

We begin with a discussion of the progression of
direct assessment (DA) styles employed in WMT
evaluations (§2) and how scoring is performed (§3),
before delving into theoretical and practical under-
standings of the z-scores used to rank systems (§4
and §5), including simulations and analysis of spe-
cific examples. We also discuss issues around doc-
ument distribution and translation difficulty (§6),
and close with considerations for downstream im-
pacts (§7) and future study (§8).

2 Historical Context

In 2016, WMT added direct assessment (DA) scor-
ing of system outputs as an investigatory ranking,
with relative ranking (RR) remaining the official
scoring mechanism (Bojar et al., 2016). In relative
ranking, five system outputs for a given segment
were ranked in comparison to one another, from
which pairwise translation comparisons were gen-
erated; these were then used to produce overall sys-
tem rankings by means of the TrueSkill algorithm
(Herbrich et al., 2007; Sakaguchi et al., 2014). Rel-
ative ranking can be used to compare systems, but
does not provide an absolute score, thus obscuring
how close a good system is to a “perfect” transla-
tion or, at the other extreme, how poor a system is
as compared to others.

The following year, 2017, WMT adopted DA
as its main assessment format on the basis of high
Pearson correlations between RR and DA in the
previous year’s investigations (Bojar et al., 2017).
In DA (Graham et al., 2013, 2014, 2016), annota-
tors provide an absolute numerical score (0-100)
for MT output adequacy (at the sentence level or at
the document level) using a sliding scale.
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The use of DA has changed since it was first
introduced to WMT. In 2016, it was trialed for
monolingual evaluations of translation fluency and
monolingual evaluations of adequacy. Here we pro-
vide an overview of changes from the 2016 task to
the present, based on Findings papers descriptions.

Bojar et al. (2016) noted that the 2016 version of
DA assessments has the potential to avoid a known
bias of the RR setup. In RR, each rating task con-
sisted of ranking the outputs of five systems on
the same input segment, and “a system may suffer
more losses if often compared to the reference, and
similarly it may benefit from being compared to a
poor competitor” (Bojar et al., 2011). In the 2016
DA setup, translations were annotated in sets of
100, including quality assurance tasks, but each
segment was annotated individually, rather than in
direct comparison to other system output for the
same segment.1 Quality assurance tasks can in-
clude references (which should score highly), “bad”
references (which should score poorly; these are
produced by randomly replacing substrings in ref-
erences to degrade quality), and repeat assessments
of a segment (which should be scored consistently).

In 2017, DA was adopted as the main annotation
style, with exact duplicate segment translations be-
ing able to be scored just once (rather than once
per system that produced them) and with human
assessment scores “standardized according to each
individual human assessor’s overall mean and stan-
dard deviation score” (Bojar et al., 2017).

Bojar et al. (2018) describes two setups for the
2018 DA tasks, a standard structure (with repeat
pairs, “bad” references, and references, as quality
assurance) and an alternate setup where an addi-
tional constraint was imposed, such that within
each 100-translation task, for each input the task
would include the corresponding output of all MT
systems. This makes a tradeoff between the aim
of DA (to make absolute score judgments rather
than relative ones) and getting a single annotator to
provide scores for all systems’ output of the same
source input (which risks reintroducing some form
of relative judgement to the task). This is also the
first year that the findings paper explicitly spells out
the goal of the way tasks (referred to here using the
Amazon Mechanical Turk nomenclature “Human
Intelligence Task” or HIT) are built in the standard
HIT structure:

1It is still possible that there may be biases based on the
segments observed in any given set of 100.

[...] within each 100-translation HIT, the
same proportion of translations are in-
cluded from each participating system
for that language pair. This ensures the fi-
nal dataset for a given language pair con-
tains roughly equivalent numbers of as-
sessments for each participating system.
This serves three purposes for making
the evaluation fair. Firstly, for the point
estimates used to rank systems to be re-
liable, a sufficient sample size is needed
and the most efficient way to reach a suf-
ficient sample size for all systems is to
keep total numbers of judgments roughly
equal as more and more judgments are
collected. Secondly, it helps to make the
evaluation fair because each system will
suffer or benefit equally from an overly
lenient/harsh human judge. Thirdly, de-
spite DA judgments being absolute, it is
known that judges “calibrate” the way
they use the scale depending on the gen-
eral observed translation quality. With
each HIT including all participating sys-
tems, this effect is averaged out.2

The 2018 shared task also introduced source-
based DA, trialling a bilingual version of the task.
Rather than scoring MT output against a reference,
this version scores it against the source segment,
which allows human references to be scored as a
“human system” rather than solely as a QA task.
They raise a number of potential cautions against
drawing strong conclusions, namely that bilingual
DA is not yet validated, the alternate task structure
may introduce biases, the year’s sample size for
source-based DA was smaller than 1,500 judgments
per system, and that there may be quality issues
with some reference segments.

In 2019, WMT introduced additional versions
of DA (Barrault et al., 2019). They used monolin-
gual (reference-based) assessment for translation
into English and for language pairs that did not
include English at all. For translation out of En-
glish, they performed bilingual (source-based) DA.
The style of DA used in previous years is renamed
to SR–DC (Segment Rating without Document
Context), as a new style, SR+DC (Segment Rating
with Document Context) is introduced. In the new
SR+DC style, the full translation of a single docu-

2Here we reproduce this quote from Barrault et al. (2019),
though it appears consistent 2018-2020.
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ment by a single MT system is shown to the annota-
tor in order (but still scored segment-by-segment);3

a task consists of multiple such documents. The
generation of annotation tasks is described as fol-
lows: all documents translated by all systems are
pooled, then sampled (without replacement) until
up to 70 segments are selected, at which point qual-
ity control documents are added, and finally the
order of documents in the task is shuffled. Barrault
et al. (2020) uses both SR–DC and SR+DC styles.

3 Scoring

In order to experiment with questions surrounding
human evaluation, it is necessary to understand and
be able to replicate the official scores produced
by WMT. For the human annotations of interest
(segment-level evaluation, with or without docu-
ment context), there are two main types of scores:
raw scores and z-scores, with the latter used as the
official ranking. These are presented in a table, or-
dered by z-score, and clusters of systems deemed
statistically significantly different (according to a
Wilcoxon rank-sum test p < 0.05) are separated by
horizontal lines.4

Following the approach used at WMT, after re-
moving any HITs deemed unacceptable due to qual-
ity issues, we calculate raw and z-scores for sys-
tems as follows. First, any worker ID whose scores
have a standard deviation of 0 is removed. Given a
raw score x generated by the worker with worker
ID W , its corresponding z-score z is computed as

z =
x−mean(y ∈W )

std(y ∈W )
(1)

where mean(y ∈W ) is the mean of all raw scores
generated by worker W , and std(y ∈ W ) is the
standard deviation of all raw scores generated by
that worker. When we say that the mean and stan-
dard deviation are computed from all raw scores
from a given worker ID, this includes references
(which are treated as systems in SR+DC but are
treated as quality assurance in SR–DC), “bad ref-
erences” (which are only ever used for quality as-
surance), and repeats.5 However, after computing

3There is also a Document Rating with Document Context
DR+DC, but we do not examine that in this work.

4A horizontal line is drawn below a system if and only if
it is significantly better (p < 0.05) than every system with a
lower z-score than it.

5We compute mean and standard deviation using
ad-latest.csv, but use ad-good-raw-redup.csv
to compute the individual z-scores and averages. The files are

the mean and standard deviation, only a subset of
scores are used to actually compute system aver-
ages: those with type “SYSTEM” or “REPEAT”
(discarding “BAD_REF” and “REF” types).6 To
compute averages (raw or z-score), first an aver-
age is computed for any “SYSTEM” or “REPEAT”
scores that share the same system ID, the same
document ID, and the same sentence ID; that is,
if a given sentence of a given document was an-
notated multiple times for a particular system, we
first average those scores (so that more frequently
annotated sentences do not receive more weight).
Then, for each system, all of its “SYSTEM” or
“REPEAT” type scores are averaged, resulting in a
system-level score.

We note that the 2019 and 2020 document con-
text (SR+DC) evaluations differ in their quality
assurance (see Table 1). In both 2019 and 2020,
references are treated as a “Human” system, to
be ranked alongside the other systems; which
may explain the lack of “REF” labeled segment
types in the data. In 2019, the Appraise interface
data used to generate the rankings did not include
any segments labeled as “REPEAT”, “REF”, or
“BAD_REF”, though these are described as being
included in the HITs (Barrault et al., 2019); per-
haps they were removed before processing the data.
In 2020, the Appraise data did include segments
labeled as “BAD_REF”, but none labeled as “RE-
PEAT” or as “REF”, while the 2020 Mechanical
Turk document-level ones included all three. The
2019 data collected using the Turkle platform con-
tains no human or reference data and we do not use
it for any of our analysis in this work.

We reimplemented the scoring system using
python and plan to release code for this paper. We
were able to exactly replicate the raw scores and
z-scores for most of the language pairs of inter-
est from 2018-2020,7 as well as the significance
clusters.8 See Appendix A for details. We use this
reimplementation of the WMT scoring scripts in or-

downloaded from 2018-2020 WMT websites: http://www.
statmt.org/wmt18/results.html, http://www.
statmt.org/wmt19/results.html, and http://
www.statmt.org/wmt20/results.html.

6“SYSTEM” type are system outputs, while the remainder
are quality assurance: “REPEAT” are repeated system outputs
which are also valid for computing averages, “BAD_REF” are
degraded references, and “REF” are references.

7In order to match the z-scores generated by the R pack-
ages used for WMT, we set ddof equal to 1 when using the
stats.zscore function from scipy.

8We replicated the significance clusters using scipy’s
stats.mannwhitneyu function.
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Dataset SYSTEM REPEAT REF BAD_REF
newstest2018-humaneval 265387 26489 26003 36924
appraise-doclevel-humaneval-newstest2019 194625 0 0 0
mturk-sntlevel-humaneval-newstest2019 92164 13266 13177 13113
turkle-sntlevel-humaneval-newstest2019 47799 0 0 0
appraise-doclevel-humaneval-newstest2020 186663 0 0 26856
mturk-sntlevel-humaneval-newstest2020 26262 3741 3746 3773
mturk-doclevel-humaneval-newstest2020 93777 12887 12939 12965

Table 1: Counts of sentence types in ad-good-raw-redup.csv files from 2018-2020. We omit the Turkle data from
most of our analysis because it contains neither human systems nor reference data.

der to score authentic and modified WMT data, to
examine underlying assumptions and hypothesize
about how these may impact final system rankings.

For 21 language pairs annotated in SR–DC style
and 25 in SR+DC style from 2018-2020, we were
able to exactly replicate rankings, nearly replicate
rankings (e.g., with rounding difference related
changes to one significance line), or produce rank-
ings whose differences could be explained by de-
lays in data collection (2020 en-iu).9 Appendix A
provides more details on replication. We use our
recalculated rankings and clusters as the starting
point for all remaining analysis in this paper.

4 Understanding z-scores

While we’ve described how the z-score is calcu-
lated in the setting of the WMT human annotations,
it’s important to take a closer look at z-scores to
understand how they behave in different scenar-
ios. In this section, we explore z-scores and their
underlying assumptions in hypothetical scenarios.

Given a raw score x, a mean µ, and a standard
deviation σ, the z-score (or standard score) is the
number of standard deviations above or below the
mean that x falls. The z-score for a given raw score
x can be computed as follows:

z =
x− µ
σ

(2)

This is a linear transformation; the shape of the
distribution of z-scores is the same as that of the
raw scores, but now with a mean of 0 and a standard
deviation of 1. It is a unitless score.

Intuitively, the z-score provides a potential way
of comparing scores from different annotators, but
it requires a careful examination of underlying as-
sumptions. If we think of the z-score as a unitless
score, perhaps we can think of each annotator as

9Language codes: Chinese (zh), Czech (cs), German (de),
English (en), Estonian (et), Finnish (fi), Gujarati (gu), Inuktitut
(iu), Japanese (ja), Kazakh (kk), Khmer (km), Lithuanian (lt),
Pashto (ps), Polish (pl), Russian (ru), Tamil (ta), Turkish (tr).

having their own measurement units: we might
have a lenient annotator and a harsh annotator, such
that a raw score of 50 by the lenient annotator is
quite bad while a raw score of 50 for the harsh an-
notator is actually quite good. In order to directly
compare the two annotators’ scores, we would like
to map them to a shared scale, a unitless z-score.
Under what assumptions is it appropriate to calcu-
late z-scores to compare annotators’ scores?

We start with perhaps the most obvious (but fre-
quently unstated) assumption: there exists some
latent “quality” of a given translation, which can
be judged by a human annotator, such that annota-
tors roughly agree about what constitutes a “good”
or a “bad” translation. In practice, human anno-
tators may disagree – for any number of reasons
(Basile et al., 2021) – about which of two transla-
tions of “similar quality” is better, but we assume
that the disagreement is not extreme; i.e., we hope
that under a correlation coefficient like Pearson’s
r or Spearman’s ρ, the correlation between anno-
tators’ scores would be much closer to 1 than to
-1. For the sake of simplicity in the following ex-
amples, we will assume there exists a “true” and
“objective” score for every translation.

Suppose that we have some translations with a
true mean score of µ and a true standard deviation
of σ. A lenient annotator scores all of the transla-
tions such that the distribution of their scores has a
mean of µ+n and a standard deviation of σ, while
a harsh annotator scores all of the translations such
that the distribution of their scores has a mean of
µ−m and a standard deviation of σ.10 When we
compute their z-scores, it is easier to directly com-
pare sentence scores, since they are now on the
same scale. This seems like a reasonable use of
z-scores, but in this scenario annotators are scor-
ing exactly the same data, which doesn’t scale to
WMT-style annotations; annotators simply don’t

10We use the same standard deviation for simplicity, with
arbitrary positive values of n and m.
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have time to score all of the data.
Now suppose that we have two disjoint sets of

sentences scored by two different annotators: the
set SX of sentences scored by annotator X and
the set SY of sentences scored by annotator Y .
From these raw scores, we can compute µX and
µY along with σX and σY . If µX > µY , can we
conclude that annotator X is a more lenient anno-
tator than annotator Y and resolve this by comput-
ing z-scores? Not without additional information!
Imagine that we could see the “true” mean scores
of SX and SY , as annotated by a perfect omniscient
annotator. It could be the case that the true means
are identical and annotator X is indeed more le-
nient, but it could also be the case that the true
mean of the scores in set SX is actually higher. In
the latter case, the annotators could be equally le-
nient, or it is even possible that annotator Y could
be more lenient! In short, without a shared basis
for comparison, we don’t know whether computing
z-scores is normalizing out annotator differences,
differences in the data itself, or a combination.

5 z-scores in practice

This raises the question: what is happening in prac-
tice when we compute z-scores on WMT DAs? Are
we really normalizing away inter-annotator differ-
ences, or is the normalization also doing something
else, such as normalizing away real differences in
HIT and system quality? If it is the latter, even
z-scores for DAs may suffer the same bias from
comparisons to better (or worse) systems.

We don’t have access to an oracle, and we don’t
have a direct or reliable way to compute interan-
notator agreement, because in some collections it
is rare that two annotators annotate the same text
(and for the Appraise data, we only have HIT in-
formation, not annotator information). However,
we can still examine this in the existing data and
modifications thereof. Bojar et al. (2011) noted
that systems might suffer from being compared to
the reference too frequently under relative ranking,
or might benefit from being compared to particu-
larly poor systems. The same could hold true in
DA. Consider the following toy example: a HIT
contains 4 sentences, with raw scores of 25, 50, 50,
75, respectively. A sentence with a raw score of 50
in this HIT would have a z-score of 0. If, instead,
the raw scores were 0, 25, 50, 75, a sentence with
a raw score of 50 would have a z-score of 0.39,
while for a HIT with raw scores of 25, 50, 75, 100,

a sentence with a raw score of 50 would have a
z-score of -0.39. While it is possible that such a
set of scores could reflect differences in annotator
behavior, we could also easily imagine that they
might reflect differences in HIT composition, with
one containing only system scores, one contain-
ing system scores and a bad reference, and one
containing system scores and a (good) reference.

5.1 HIT Composition
Thus we examine HIT composition, or, more ac-
curately, the composition of data annotated by
any given worker/worker ID. In 2018, all sys-
tems were SR–DC, and 100% of workers anno-
tated “BAD_REF” data.11 However, an “Alter-
nate DA HIT Structure” was employed for a sub-
set of researcher HITs (run in Appraise), which
used only “BAD_REF” segments for quality as-
surance, “omitting repeat pairs and good reference
pairs” while also attempting to include “the output
of all participating systems for each source input”
(to have the same annotator produce annotations
across systems). The percentage of (non-rejected)
workers who annotated data containing “REF” in
2018 ranged from 4.9% (en-et) to 98.8% (zh-en);
the former is an outlier, as the next two lowest are
25.8% (en-cs) and 47.4% (en-fi).

In 2019 annotations into English, 100% of work-
ers annotated both “REF” and “BAD_REF” seg-
ments. In 2019 annotations out of English, the
final output data does not include any “REF” or
“BAD_REF” segments (though these are described
as having been included for QA), but human refer-
ences are treated as systems, and between 37.8%
(en-de) and 61.5% (en-kk) of workers annotated at
least some human reference data.

The 2020 Appraise annotations differed from
prior years as well: 100% of the 2020 into En-
glish (Mechanical Turk) workers annotated both
“REF” and “BAD_REF” segments. In 2020 anno-
tations out of English (Appraise), between 95.8%
(en-iu) and 100% (en-{ja, ta, zh}) of workers12

annotated “BAD_REF” data. The percentage of
Appraise “workers” that annotated data containing
human references (treated as a system) ranged from
8.3% (en-iu) to 73.4% (en-zh).

11These values are calculated on ad-good-raw-redup.csv
files, so only include annotators who successfully passed QA.

12The definition of “worker” is really a bit fuzzy here; the
“WorkerID” produced by Appraise is really a HIT ID, so aver-
ages are not necessarily being computed across all of a given
worker’s annotations, but rather each HIT is being treated as a
unique worker.
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5.2 Analysis

In an ideal world where z-score normalization is
only correcting for annotator variation, removing
one system should not result in changes to the rel-
ative rankings of the remaining systems. That is
to say, the z-scores themselves may be expected
to change (shifting up if a very good system is
removed, shifting down if a low-quality system
is removed), but we wouldn’t expect the relative
ranking of two systems to change. After all, one
stated motivation of the shift to DA was to avoid
the known bias in RR of systems being unfairly pe-
nalized or benefiting unfairly from comparisons to
stronger/weaker systems (Bojar et al., 2016). Sim-
ilarly, replacing one system – for example with a
much better or much worse system – should not
result in other systems switching places in the rank-
ings. We simulate these two scenarios using the
existing data, and show that rankings produced in
SR+DC settings are much more sensitive to re-
moval or modification of systems than SR–DC.

Year/Type ∆ Rank ∆ Cluster ∆ Both
’18 (–DC) 1/13 0/13 0/13
’19 (–DC, MTurk) 2/5 1/5 0/5
’20 (–DC, MT.) 1/3 0/3 0/3
ALL SR–DC 4/21 1/21 0/21
’19 (+DC, MT.) 1/2 1/2 1/2
’19 (+DC, A.) 6/8 3/8 1/8
’20 (+DC, MT.) 7/7 3/7 3/7
’20 (+DC, A.) 4/8 5/8 3/8
ALL SR+DC 18/25 12/25 8/25

Table 2: Effect of removing human and “REF” scores
from annotations and recalculating rankings by year,
platform (MTurk or Appraise), and annotation style.
Values indicate the fraction of language pairs that had
changes in rank, clustering, or both rank and clustering.

We first examine removing human systems and
“REF” – acting as though they had never been an-
notated at all, so all z-scores are calculated without
“REF” or human system scores.13 We then compute
rankings and significance clusters. We compare
these against the original rankings generated from
all available data, with the significance clusters re-
computed after removal of human systems.14 For
each pair of rankings, we check whether there is
any change in the order of systems (ignoring sig-
nificance clusters; we call this ∆ Rank), whether
there is any change in clusters (different number

13We observe similar results if we only remove “REF”, but
in that setting we cannot examine the 2019 and 2020 Appraise
SR+DC rankings, as they do not make use of “REF” at all.

14Relevant to clusters containing or above human system(s).

or composition of clusters; we call this ∆ Cluster),
and/or changes in both (∆ Both). Table 2 shows
the results. Rank changes (ignoring significance
clusters) are the most common, and many of these
occur within significance clusters as we would ex-
pect. However, there are also a number of changes
to the significance clusters (clusters merging, split-
ting, or rearranging), as well as pairs for which both
rank and cluster changes occur. Most strikingly, all
of these changes are much more common in the
SR+DC settings than in the SR–DC. Removing hu-
man and “REF” data results in cluster changes to
almost half (12/25) of the SR+DC rankings, but
less than 5% (1/21) of the SR–DC rankings. No
SR–DC rankings exhibit changes in both rank and
clusters, but 32% of SR+DC rankings do. This is
evidence that the SR+DC rankings are less stable,
and consequently less reliable, than the SR–DC
rankings. We replicate this result with removing
the highest and lowest ranked systems, respectively,
as shown in Table 3; the SR+DC rankings are much
less robust than the SR–DC rankings to the removal
of the best or worst single system.

Removed/Type ∆ Rank ∆ Cluster ∆ Both
Lowest (SR–DC) 4/21 3/21 1/21
Lowest (SR+DC) 18/25 10/25 7/25
Highest (SR–DC) 0/21 1/21 0/21
Highest (SR+DC) 17/25 10/25 5/25

Table 3: Effect of removing single lowest ranked or
highest ranked system across all years, by data collec-
tion type (–/+DC). Values indicate the fraction of lan-
guage pairs that had changes in rank, clustering, or both
rank and clustering.

One might worry that some of this instability is
due to the shrinking number of datapoints avail-
able when we remove “REF” and human systems,
or the highest/lowest ranked systems. To account
for this, we run the same experiment and measure
the same changes, but instead of removing “REF”
and human systems, we degrade their raw scores
(dividing each score by 1.25, 1.5, 2, 4, and 10) be-
fore computing z-scores, rankings, and significance
clusters. This could be viewed as a simulation of
what would occur if the high-quality human sys-
tem were replaced with mediocre (or, in the case
of division by 10, very low-quality) systems.15

We visualize the result in Figure 1. Once again,
the SR+DC evaluations are more brittle to these

15The reverse – inflating scores of low-performing systems
– has a similar effect, but requires consideration of how to
handle scores of zero.
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Figure 1: Effect of dividing raw human system and “REF” scores on overall (z-score) rankings for all SR–DC and
SR+DC shown in Table 2. The x-axis shows the divisor (ranging from 1.25 to 10) and the y-axis shows the fraction
of pairs for which the rankings, clusters, or both ranks and clusters changed.

changes. However, we see that even the SR–DC
evaluations are not immune to the effects of ex-
treme outliers on rankings and clusterings – as the
divisor used increases, so does the fraction of pairs
that have ranking and/or clustering changes. This
makes sense intuitively: if most systems are of sim-
ilar quality, a slight imbalance in which systems
are compared to one another likely won’t have dra-
matic effects, but if one system is much worse (or
much better) than the rest, systems that are com-
pared against it more or less frequently than oth-
ers will see their z-scores benefit or suffer accord-
ingly. We also examined monolingual vs. bilingual
tasks in the SR+DC context (all SR–DC tasks were
monolingual), but note similar rates of changes to
ranks, clusters, and both across the two settings.

We have used a very coarse measurement here:
counting whether the ranks or clusters changed at
all rather than whether multiple clusters or large
numbers of systems were reranked. Indeed, many
of these changes are quite subtle, with just a sin-
gle new significance line appearing or two clus-
ters merging, or two close systems switching ranks
(within or across clusters). If that is the case, why
should we be concerned with this? The first reason
is to better understand what it is that is actually
being measured and whether the WMT annotation
protocol is succeeding in its goals. If the inclu-
sion of outliers or the degradation of system scores
results in other systems shifting ranks, this indi-
cates that the current approach does suffer from
a similar comparison bias to RR. Thus we can’t
always be confident that what is being measured
is a property of the system itself and not closely
intertwined with HIT composition – this approach
is doing something other than only normalizing

away interannotator differences. The second rea-
son is to highlight these goals and assumptions so
that they can be considered when making future
modifications to the annotation process. Many of
these issues are currently resulting in small incon-
sistencies, but if future modifications are made to
the annotation process without considering the un-
derlying assumptions and goals, there is no reason
to expect that the errors will cancel one another out
rather than compound. If we are aware of the under-
lying assumptions when changes are introduced to
the annotation process, we will be better positioned
to consider potential problems in the hypothetical
and then examine the real data to see if they appear
in practice. There is also the question of effects on
downstream tasks (§7). Finally, it also helps us to
consider ways to mitigate these challenges before
they grow, and we discuss some options for future
consideration in §8.

5.3 Case Study
We manually select for examination a relatively dra-
matic case of rankings and clusters changing, from
en-de 2020, pictured in Figure 2. This is an unusual
case since it contained multiple human-based sys-
tems.16Nevertheless, it incorporates several issues
we raised in hypotheticals, so we discuss it here.

Figure 2 shows the rankings for the original data
(human systems were dropped only for the pur-
pose of computing clusters, but were used for cal-
culating z-scores), and each of the rankings com-
puted by degrading raw scores by dividing them
by 1.25 through 10 (denoted d-n where n is the
divisor). We begin by focusing on PROMT_NMT,
whose rank increases with increased degradation

16See Appendix A for details.
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Figure 2: Plot showing z-score rankings (top is best) for
2020 en-de (SR+DC), from original rankings and five
divisors for raw human scores. Significance lines are
marked with black “x”. Human systems were used in
calculating z-scores but were removed prior to comput-
ing clusters for ease of visualization and comparison.

of the human systems. In the original ranking,
AFRL and PROMT_NMT appear in the same
cluster, with AFRL having a higher score than
PROMT_NMT, but not statistically significantly
so. When degrading the human raw scores by 1.25
or 1.5, AFRL is in a higher significance cluster
than PROMT_NMT, but when dividing by 2, this
is reversed: PROMT_NMT is now ranked as sig-
nificantly better than AFRL, while with a divisor
of 4 or 10, they return to the same cluster but with
PROMT_NMT scoring higher. Thus we see, purely
by degrading the raw scores of other systems, we
observe the full range of possible relative rank-
ings and clusterings for this pair of systems. The
same holds true for PROMT_NMT compared with
Online-A.

The en-de 2020 rankings may have suffered
somewhat from having fewer annotations (1123.6
assessments per system), so we also show results
for one of the most-assessed pairs that year: zh-en
(2035.1 assessments per system). This is shown
in Figure 3.17 Here we focus on the top system:
VolcTrans, which was ranked in Barrault et al.
(2020) as significantly better than all systems. As
we degrade the human systems, we see it begin to
drop in rank, and this significance cluster merges
with the one below it, raising the possibility that
the initial finding was an artifact of the distribution
of data across HITs rather than an inherent property

17Note that in the original rankings shown, the human sys-
tem was omitted when computing significance clusters, and
in this case a new significance line (separating Online-A and
Online-G appears) where it had been, which was not there in
the published rankings that do include human systems.
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Figure 3: Rankings for 2020 zh-en (SR+DC), from
original rankings and with divisors, as in Figure 2.
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Figure 4: Co-occurrence matrix of systems for en-lt
2019 (SR+DC). Each cell shows the number of HITs
that contained segments from the systems at those x
and y values. The diagonal shows the total number of
HITs that contained each system.

of the MT quality of that particular system.

5.4 System Comparisons

There is a distinct difference in the way that sys-
tems are distributed across HITs in the SR–DC and
SR+DC annotation styles. In SR–DC, almost all
HITs contain segments from every single system
(though there is no guarantee that they appear in
exactly equal proportions to one another).

In SR+DC, this is not the case, owing to the fact
that HITs are limited to 100 segments, there are
often 10 or more systems, and documents are often
longer than 10 segments. This means that it may be
numerically impossible for a given HIT to cover all
systems. We see this in Figure 4. A given system
may be paired with any other system in less than
half of the HITs in which it appears. These kinds
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of imbalances mean that systems may be more
frequently compared to better or worse systems,
resulting in unfair effects on their rankings.

6 Documents

In both SR+DC and SR–DC styles, we don’t have a
guarantee that every segment-system pair is judged
by an annotator, nor that at least one segment from
every document-system pair is judged. If we as-
sume approximately uniform translation difficulty
across the test set, this isn’t necessarily too much
of a concern. However, is that really the case, or
are some documents “easy” and others “hard”?

Figure 5 shows a matrix of document-system
pairs, with each cell showing the average of all of
the segment raw scores for that system-document
pair.18 The documents are ranked from highest
average raw score to lowest average score (top to
bottom), while the systems are ranked by highest
average raw score to lowest average raw score (left
to right). In the leftmost column, we see the “HU-
MAN” system, which has high scores across all
documents. If all documents were equally diffi-
cult to translate, we would expect to see a gradient
along the x-axis (i.e., across systems), with min-
imal variation along the y-axis (i.e., across docu-
ments). What we observe instead in this en-lt pair
from 2019 (and across a number of other language
pairs) is a rough gradient from the top left to the
bottom right (with the exception of the “HUMAN”
system, which remains strong throughout). This
suggests that there are some documents that are
“easy” for most systems to translate (top) and some
that are “hard” (bottom). This raises a concern:
when we attempt to compare two systems of very
similar quality, they are not being measured on the
same test set. An unlucky sample of documents
might see one system judged on a “harder” set of
documents, calling the resulting rankings into ques-
tion.

7 Downstream Consequences

While researchers building MT systems for the
shared task may view the human judgment rank-
ings as the end result, the rankings are the input
to the metrics tasks at WMT. Thus the reliabil-
ity of the rankings has a direct impact on the re-
liability of the metrics task – which in the long
term feeds into MT research as researchers decide

18We can also produce such a matrix using z-scores or
automatic metric scores, and results are comparable.
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Figure 5: Average raw scores for document-system
pairs from en-lt 2019 (SR+DC). Empty cells indicate
pair was not judged. Documents are ranked by average
raw score (highest: top) as are systems (highest: left).

which automatic metrics to use for evaluating their
systems. In system-level metric evaluation at the
WMT Metrics shared task, Pearson correlations are
computed between metric scores and the z-score
human rankings (Mathur et al., 2020b). Note that
these correlations are directly between the system
average z-scores and the metric scores, and as such
do not treat all systems within a given cluster as
tied. In practice, this means that even rank-only per-
turbations in the official ranking can be expected
to cause changes to metrics task results.

Metrics scores are run on the full test set, not
the various human-annotated subsets. Citing Gra-
ham et al. (2013), the Metrics task papers note that
system-level DA scores are “consistent and have
been found to be reproducible” even though differ-
ent sets of segments are assessed for each system.
However, that work predates the shift to sampling
by document, and our analysis of instability and
document difficulty suggest revisiting it.

Recent work has shown that outliers have a
concerning impact on metric correlations (Mathur
et al., 2020a), and organizers have worked to miti-
gate this (Mathur et al., 2020b). This paper is a step
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towards answering questions raised in Mathur et al.
(2020b) regarding outliers and unfair advantages. It
may seem tempting to remove outliers from human
judgment tasks, but this will not solve the other
problems and could instead mask their presence.

8 Proposals for Future Work

The issues discussed in this paper raise concerns
about changes to the human evaluation protocols
used at WMT and their effects on the validity of
WMT system rankings. A partial solution would
be to return to SR–DC annotations, perhaps after
validation of the 2018 alternate HIT structure that
guarantees that for every segment in the HIT, the
HIT contains every MT system’s output for that
sentence. But this may be an unsatisfactory con-
clusion, and fails to address the interest in pushing
MT evaluation toward whole documents.

Document-level and context-inclusive evalua-
tions are growing in popularity, but there is limited
study on document-level assessment methodolo-
gies for MT. Castilho (2021) examines setups com-
parable to SR–DC, SR+DC, and document rating
with document context (which we omitted from
this work), and finds in a controlled experiment
using Likert scale ratings that a methodology com-
parable to SR+DC produces higher levels of in-
terannotator agreement and fewer misevaluations
than either whole document scores or individual
sentences without context. However, that experi-
mental setup does not suffer from the same task
composition issues we observe in WMT; in fact
these may be orthogonal issues.

If the choice is made to use SR+DC style anno-
tations, there are some improvements to consider,
but as noted in Castilho (2020), it remains “es-
sential to test which methodologies will be best
suited for different tasks and domains” prior to
adopting them. One option would be to create
2018-alternate-structure style HITs with document
context, where a HIT contains all systems’ out-
put for one or more documents. The downside to
this is that it would likely require longer HITs or
HITs that only contain a small number of docu-
ments; if systems are of similar quality, we might
be concerned about annotator fatigue from repeti-
tion. The amount of context needed to adequately
assess translations is still a question under consider-
ation (Castilho et al., 2020; Castilho, 2021), which
ties into issues of document and HIT length.

Another possibility to consider would be to al-

ways normalize over annotators (rather than over
HITs), but this isn’t a solution on its own – it is still
necessary to make sure that annotators see compa-
rable distributions of systems and documents, or
the same problems will be reintroduced. Having
annotators do calibration HITs, i.e., a set of anno-
tations that all annotators complete, could also be
considered. The calibration HITs would provide a
consistent basis for computing the parameters of an
annotator-specific z-score transformation, which
could then be applied to the remainder of the anno-
tator’s judgments. This could untangle the issue of
annotator strictness/leniency, but would still merit
study before implementation (as annotator behavior
may depend on HIT composition, so the z-scores
learned in calibration may not be as applicable as
one might hope if there is a mismatch between cal-
ibration HITs and the remainder of the HITs). One
could also consider additional ways of modeling
annotator behavior beyond z-score normalization
(Paun et al., 2018).

A simpler starting point to deal with the issue
of different systems being annotated over different
documents would be to guarantee that all systems
are scored over the same subset of documents.

All of these are (partially) orthogonal to the ques-
tions of what type of annotation tasks result in the
most reliable ratings – whether it be direct assess-
ment, ranking, or detailed error annotation – or
questions of annotator skills and knowledge (Fre-
itag et al., 2021).

9 Conclusions

We have shown that the current judgment collec-
tion methodology at the WMT news translation
task results in SR+DC judgments that are more
prone to variation on the basis of outliers than SR–
DC judgments, and that HIT composition issues
have helped reintroduce the relative ranking prob-
lem of unfair comparisons to the WMT rankings.
We examined issues of document difficulty and
how this interacts with the decision to sample docu-
ments (rather than sentences) for judgment. These
issues risk undermining the validity of WMT rank-
ings, with real consequences for MT research and
downstream tasks on automatic metrics. In exam-
ining these issues, we’ve also presented several
approaches to diving into the WMT ranking data
that may be helpful to consider when planning fu-
ture changes to WMT human judgment collection
procedures.
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Omar Zaidan. 2011. A grain of salt for the WMT
manual evaluation. In Proceedings of the Sixth
Workshop on Statistical Machine Translation, pages
1–11, Edinburgh, Scotland. Association for Compu-
tational Linguistics.
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A Notes on Replication

As shown in Table 4, we are able to duplicate
the following rankings exactly (or with minor
differences, as noted). Code to replicate this
work will be available at https://github.
com/nrc-cnrc/WMT-Stability/. Lan-
guage codes are as follows: Chinese (zh), Czech
(cs), German (de), English (en), Estonian (et),
Finnish (fi), Gujarati (gu), Inuktitut (iu), Japanese
(ja), Kazakh (kk), Khmer (km), Lithuanian (lt),
Pashto (ps), Polish (pl), Russian (ru), Tamil (ta),
Turkish (tr).

• 2018, Mechanical Turk, SR–DC: en-{cs, de,
et, fi, ru, tr, zh} and {cs, de, et, fi, ru, zh}-en,
but we do not successfully replicate the scores
for tr-en (we omit tr-en 2018 from future ex-
periments).

• 2019, Appraise, SR+DC: en-{cs, de, fi, gu, kk,
lt, ru, zh}, though we note that en-kk contains
a duplicate system that is omitted from the
published table.

• 2019, Mechanical Turk, SR–DC: {gu, kk, lt,
ru}-en, and fi-en is nearly replicated, but our
replication of it is missing a significance line
between two clusters due to a rounding differ-
ence when computing the significance value.

• 2019, Mechanical Turk, SR+DC: {de, zh}-en
are successfully replicated.

• 2019, Turkle, SR–DC: de-cs, de-fr, fr-de, zh-
en, are all successfully replicated but are not
included in the analyses.

• 2020, Appraise, SR+DC: en-{cs, ja, ru, ta,
zh}, are successfully replicated, while en-pl is
missing one significance line due to rounding
differences. The ranking for en-de has iden-
tical scores except for Human-A and Human-
paraphrase. The original en-de ranking in Bar-
rault et al. (2020) included Human-A, Human-
B, and Human-paraphrase. The released en-de
data only contained Human-A and Human-B,
though Human-A was about twice as large as
Human-B, suggesting that it may have incor-
porated the Human-paraphrase data. Finally,
the ranking for en-iu is quite different, though
we expect this is because of delays in data col-
lection resulting in a mismatch between the
reported scores in the findings paper and the

released scores. The en-iu scores also con-
tain an additional low-scoring system that was
omitted from the published table.

• 2020, Mechanical Turk, SR+DC: {cs, de, ja,
pl, ru, ta, zh}-en were all replicated exactly.

• 2020, Mechanical Turk, SR–DC: {iu, km, ps}-
en were all replicated exactly.

• 2020 en-{km, ps} appear to be missing from
the released data.
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Lang. Year –DC +DC Mono./Bi. Tool Replicated/Notes
en-cs 18 X M X
en-de 18 X M X
en-et 18 X M X
en-fi 18 X M X
en-ru 18 X M X
en-tr 18 X M X
en-zh 18 X M X
cs-en 18 X M X
de-en 18 X M XMatches clusters from Table 15, Appendix A, not Table 8.
et-en 18 X M X
fi-en 18 X M X
ru-en 18 X M X
*tr-en 18 X M Not successfully replicated.
zh-en 18 X M X
en-cs 19 X B Appraise X
en-de 19 X B Appraise X
en-fi 19 X B Appraise X
en-gu 19 X B Appraise X
en-kk 19 X B Appraise XContains a duplicate of one system.
en-lt 19 X B Appraise X
en-ru 19 X B Appraise X
en-zh 19 X B Appraise XMatches clusters from Table 33, Appendix A, not Table 11.
de-en 19 X M MTurk X
fi-en 19 X M MTurk Missing a significance line (rounding difference).
gu-en 19 X M MTurk X
kk-en 19 X M MTurk X
lt-en 19 X M MTurk X
ru-en 19 X M MTurk XMatches clusters from Table 45, Appendix A, not Table 11.
zh-en 19 X M MTurk XNote that this appears in Table 15.
*de-cs 19 X M Turkle X
*de-fr 19 X M Turkle X
*fr-de 19 X M Turkle X
*zh-en 19 X M Turkle XThis is the Table 11 ranking.
en-cs 20 X B Appraise X
en-de 20 X B Appraise Human-paraphrase missing (subsumed under Human-A?).
en-iu 20 X B Appraise Different scores/different data? Contains additional system.
en-ja 20 X B Appraise X
*en-km 20 ? ? Does not appear to exist.
en-pl 20 X B Appraise Missing a significance line (rounding difference).
*en-ps 20 ? ? Does not appear to exist.
en-ru 20 X B Appraise X
en-ta 20 X B Appraise X
en-zh 20 X B Appraise X
cs-en 20 X M MTurk X
de-en 20 X M MTurk X
iu-en 20 X M MTurk X
ja-en 20 X M MTurk X
km-en 20 X M MTurk X
pl-en 20 X M MTurk X
ps-en 20 X M MTurk X
ru-en 20 X M MTurk X
ta-en 20 X M MTurk X
zh-en 20 X M MTurk X

Table 4: Notes on Findings paper ranking replications, including information about language pairs, year, SR–DC
vs. SR+DC, monolingual vs. bilingual evaluation, tool used for data collection, and success or failure to replicate.
Systems marked with * were not included in any additional analysis.
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Abstract

Automatic metrics are commonly used as the
exclusive tool for declaring the superiority of
one machine translation system’s quality over
another. The community choice of automatic
metric guides research directions and indus-
trial developments by deciding which models
are deemed better. Evaluating metrics correla-
tions with sets of human judgements has been
limited by the size of these sets. In this pa-
per, we corroborate how reliable metrics are
in contrast to human judgements on – to the
best of our knowledge – the largest collection
of judgements reported in the literature. Ar-
guably, pairwise rankings of two systems are
the most common evaluation tasks in research
or deployment scenarios. Taking human judge-
ment as a gold standard, we investigate which
metrics have the highest accuracy in predict-
ing translation quality rankings for such sys-
tem pairs. Furthermore, we evaluate the per-
formance of various metrics across different
language pairs and domains. Lastly, we show
that the sole use of BLEU impeded the devel-
opment of improved models leading to bad de-
ployment decisions. We release the collection
of 2.3 M sentence-level human judgements for
4380 systems for further analysis and replica-
tion of our work.

1 Introduction

Automatic evaluation metrics are commonly used
as the main tool for comparing the translation qual-
ity of a pair of machine translation (MT) systems
(Marie et al., 2021). The decision of which of the
two systems is better is often done without the help
of human quality evaluation which can be expen-
sive and time-consuming. However, as we confirm
in this paper, metrics badly approximate human
judgement (Mathur et al., 2020b), can be affected
by specific phenomena (Zhang and Toral, 2019;
Graham et al., 2020; Mathur et al., 2020a; Freitag
et al., 2021) or ignore the severity of translation

errors (Freitag et al., 2021), and thus may mis-
lead system development by incorrect judgements.
Therefore, it is important to study the reliability of
automatic metrics and follow best practices for the
automatic evaluation of systems.

Significant research effort has been applied to
evaluate automatic metrics in the past decade, in-
cluding annual metrics evaluation at the WMT con-
ference and other studies (Callison-Burch et al.,
2007; Przybocki et al., 2009; Stanojević et al.,
2015; Mathur et al., 2020b). Most research has fo-
cused on comparing sentence-level (also known as
segment-level) correlations between metric scores
and human judgements; or system-level (e.g., scor-
ing an entire test set) correlations of individual
system scores with human judgement. Mathur et al.
(2020a) emphasize that this scenario is not identi-
cal to the common use of metrics, where instead,
researchers and practitioners use automatic scores
to compare a pair of systems, for example when
claiming a new state-of-the-art, evaluating different
model architectures, deciding whether to publish
results or to deploy new production systems.

The main objective of this study is to find an
automatic metric that is best suited for making
a pairwise ranking of systems and measure how
much we can rely on the metric’s binary verdicts
that one MT system is better than the other. We
design a new methodology for pairwise system-
level evaluation of metrics and use it on – to the
best of our knowledge – the largest collection of
human judgement of machine translation outputs
which we release publicly with this research. We
investigate the reliability of metrics across differ-
ent language pairs, text domains and how statistical
tests over automatic metrics can help to increase
decision confidence. We examine how the com-
mon use of BLEU over the past years has possibly
negatively affected research decisions. Lastly, we
re-evaluate past findings and put them in perspec-
tive with our work. This research evaluates not
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only the utility of MT metrics in making pairwise
comparisons specifically – it also contributes to the
general assessment of MT metrics.

Based on our findings, we suggest the following
best practices for the use of automatic metrics:

1. Use a pretrained metric as the main automatic
metric; we recommend COMET. Use a string-
based metric for unsupported languages and
as a secondary metric, for instance ChrF. Do
not use BLEU, it is inferior to other metrics,
and it has been overused.

2. Run a paired significance test to reduce metric
misjudgement by random sampling variation.

3. Publish your system outputs on public test
sets to allow comparison and recalculation of
different metric scores.

2 Data

In this section, we describe test sets, the process
for collecting human assessments, and MT systems
used in our analysis. We publish all human
judgements, metadata, calculated metrics scores,
and the code with replication of our findings and
promoting further research. We cannot release the
proprietary test sets and so system outputs for legal
reasons. The collection is available at https:
//github.com/MicrosoftTranslator/
ToShipOrNotToShip. Moreover, we plan to
evaluate new metrics emerging in the future.

2.1 Test sets
When evaluating our models, we use internal test
sets where references are translated by professional
translators from monolingual data. Freitag et al.
(2020) have demonstrated that the quality of test
set references plays an important role in automatic
metric quality and correlation with human judge-
ment. To maintain a high quality of our test sets,
we create them by a two-step translation process:
the first professional translator translates the text
manually without post-editing followed by a sec-
ond independent translator confirming the quality
of the translations. The human translators are asked
to translate sentences in isolation; however, they
see context from other sentences.

The test sets are created from authentic source
sentences, mostly drawn from news articles (news
domain) or cleaned transcripts of parliamentary dis-
cussions (discussion domain). The news domain
test sets are used in both directions, where the au-
thentic side is mostly English, Chinese, French, or

German. The discussion domain test sets are used
in the direction from authentic source to transla-
tionese reference, e.g., we have two distinct test
sets, one for English to Polish and second for Pol-
ish to English. Furthermore, some systems are
evaluated using various other test sets.

We evaluate 101 different languages within 232
translation directions.1 The size of the test sets can
vary, and more than one test set or its subsets can be
used for a single language direction. The average
size of our test sets is 1017 sentences. The distri-
bution of evaluated systems is not uniform, some
language pairs are evaluated only a few times and
while others repeatedly with different systems. The
majority of the language pairs are English-centric,
however, we evaluate a small set of French, Ger-
man, and Chinese-centric systems (together only
90 system pairs). Details about the system counts
of evaluated language pairs and average test set
sizes can be found in the Appendix in Table 7.

2.2 Manual quality assessment

Our human evaluation is run periodically to con-
firm translation quality improvements by human
judgements. For this analysis, we use human an-
notations performed from the middle of 2018 until
early 2021. All human judgements were collected
with identical settings with the same pool of human
annotators. Thus, the human annotations should
have similar distributions and characteristics.

The base unit of our human evaluation is called
a campaign, in which we commonly compare two
to four systems in equal conditions: We randomly
draw around 500 sentences from a test set, translate
them with each system and send them to human as-
sessment. Each human annotator on average anno-
tates 200 sentences, thus a system pair is evaluated
by five different annotators (each annotating dis-
tinct set of sentences translated by both systems).

We use source-based Direct Assessment (DA,
Graham et al., 2013) for collecting human judge-
ments, where bilingual annotators are asked to rate
all translated sentences on a continuous scale be-
tween 0 to 100 against source sentence without
access to reference translations. This eliminates
reference bias from human judgement by design.

We use the implementation of DA in the Ap-
praise evaluation framework (Federmann, 2018),

1We compare metrics only over the intersection of lan-
guages supported by all evaluated metrics, which means that
we use only 39 different target languages when Prism is part
of the evaluation.
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the same as is used in WMT since 2016 for out-of-
English human evaluation (Bojar et al., 2016a).

We do not use crowd workers as human annota-
tors. Instead, we use paid bi-lingual speakers that
are familiar with the topic and well-qualified in
the annotation process. Moreover, we track their
performance, and those who fail quality control
(Graham et al., 2013) are permanently removed
from the pool of annotators, so are their latest an-
notations. This increases the overall quality of our
human quality assessment.

We have two additional constraints in contrast to
the original DA. Firstly, each system is compared
on the same set of sentences which removes the
problem of a system potentially benefitting from
an easier set of randomly selected sentences. More-
over, it allows us to use a stronger paired test that
compares differences in scoring of equal sentences
instead of an unpaired one that evaluates scores of
both systems in isolation. We use the Wilcoxon
signed-rank test (Wilcoxon, 1946) in contrast to the
Mann-Whitney U-test (Mann and Whitney, 1947)
originally suggested for DA (Graham et al., 2017).
Secondly, each annotator is assigned the same num-
ber of sentences for each evaluated system which
mitigates bias from different rating strategies as
each system is affected evenly by each annotator.

When calculating the system score, we take the
average of human judgements.2 We analyze human
judgements for 4380 systems and 2.3 M annotated
sentences. This data is one and a half orders of
magnitude larger than the data used at WMT Metric
Shared Tasks, which evaluate around 170 systems
each year (see Section 6).

2.3 Systems

We evaluate competing systems against human
judgement. The system pairs could be separated
into three groups: (1) model improvements, (2)
state-of-the-art evaluation, and (3) comparisons
with third-party models. The first group contains
system pairs where one system is a strong base-
line (usually our highest quality system so far)
and the second system is an improved candidate
model; this group evaluates stand-alone models
without additional pre- and post-processing steps
(e.g., rule-based named entity matching). The sec-
ond group contains pairs of the candidate for the
new best performing system and the current best

2We do not assume a normal distribution of annotator’s
annotations; therefore, we do not use z-score transformation.
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BERTScore D — D — 104
BLEURT D D D — *
COMET D D D — 100
ESIM D D D — 104
Prism D — D — 39
COMET-src D D — n/a 100
Prism-src D — — n/a 39

Table 1: Comparison of selected string-based and pre-
trained automatic evaluation metrics. We mark met-
rics designed to work at sentence-level, fine-tuned
on human judgements, requiring reference(s), or sup-
porting multiple references, and report the number of
supported languages. *BLEURT is built on top of
English-only BERT (Devlin et al., 2019) in contrast to
BERTScore and ESIM that use multilingual BERT.

performing system. The third group compares our
best-performing model at the time with a publicly
available third-party MT system.

Analyzing the variety of systems, hyperparame-
ters, training data, and even architectures is out of
the scope of this paper. However, all models are
based on neural architectures.

3 Automatic metrics

In this study, we investigate metrics that were
shown to provide promising performance in re-
cent studies (see Section 6) and currently most
widely used metrics in the MT field.3 We focus
on language-agnostic metrics, therefore we do not
include metrics supporting only a small set of lan-
guages. The full list of evaluated metrics and their
main features is presented in Table 1.

Two categories of automatic machine translation
metrics can be distinguished: (1) string-based met-
rics and (2) metrics using pretrained models. The
former compares the coverage of various substrings
between the human reference and MT output texts.
String-based methods largely depend on the quality
of reference translations. However, their advantage
is that their performance is predictable as it can be

3The YiSi – high correlating metric (Ma et al., 2019) – was
not publicly available at the time of our evaluation.
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Figure 1: Each point represents a difference in average human judgement (y-axis) and a difference in automatic
metric (x-axis) over a pair of systems. Blue points are system pairs translating from English; green points into
English; red points are non-English system pairs (a few French, German, or Chinese-centric system pairs). We
report Spearman’s ρ correlation in the top left corner and Pearson’s r in the bottom right corner. Metrics disagree
with human ranking for system pairs in pink quadrants. Other metrics are in Figure 2 in the Appendix.

easily diagnosed which substrings affect the score
the most. The latter category of pretrained meth-
ods consists of metrics that use pretrained neural
models to evaluate the quality of MT output texts
given the source sentence, the human reference, or
both. They are not strictly dependent on the trans-
lation quality of the human reference (for example,
they can better evaluate synonyms or paraphrases).
However, their performance is influenced by the
data on which they have been trained. Moreover,
the pretrained models introduce a black-box prob-
lem where it is difficult to diagnose potential un-
expected behavior of the metric, such as various
biases learned from training data.

For all metrics, we use the recommended imple-
mentation. See Appendix A for implementation
details. Most metrics aim to achieve a positive cor-
relation with human assessments, but some error
metrics, such as TER, aim for a negative corre-
lation. We simply negate scores of metrics with
anticipated negative correlations. Pretrained met-
rics usually do not support all languages, therefore
to ensure comparability, we evaluate metrics on a
set of language pairs supported by all metrics.

4 Evaluation

4.1 Pairwise score differences

Most previous works studied the system-level eval-
uation of MT metrics in an isolated scenario corre-
lating individual systems with human judgements
(Callison-Burch et al., 2007; Mathur et al., 2020b).
They have mostly employed Pearson’s correlation
(see Section 6) as suggested by Macháček and Bo-
jar (2014) and evaluated each language direction
separately. However, Mathur et al. (2020a) suggest

using a pairwise comparison as a more accurate
scenario for the general use of metrics.

As the primary unit, we use the difference in
metric (or human) scores between system A and B:

∆ = score(System A)− score(System B)

We gather all system pairs from each campaign
separately as only systems within a campaign are
evaluated under equal conditions. All campaigns
compare two, three, or four systems, which results
in one, three, or six system pairs, respectively.

To understand the relationship between metrics
and absolute human differences, we plot these dif-
ferences and calculate Pearson’s and Spearman’s
correlations in Figure 1. All metrics exhibit a
positive correlation with human judgements but
differ in behavior. For example, COMET has
the smallest deviation which results in the high-
est correlation with human judgements. However,
when we evaluate into-English and from-English
language directions separately, we observe that
COMET, Prism, and mainly BLEURT have incon-
sistent value ranges for different language pairs.4

Hence, we cannot assume equal scales for one
metric and different language pairs, so we can not
use Pearson’s nor Spearman’s correlation in pair-
wise metrics evaluation. Nonetheless, we provide
both correlations in Appendix Table 8 for the com-
plete picture.

4.2 Pairwise system-level metric quality
As standard correlation cannot be used, we inves-
tigate a different approach to evaluation. We ad-
vocate that the most important aspect of a metric

4A possible explanation for BLEURT is that it is trained
on English-only. But this does not explain other metrics.
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is to make reliable binary pairwise decisions (i.e.,
which of two systems provides a higher translation
quality) without the focus on the magnitude of dif-
ference.5 Therefore, given the size of our data set,
we propose to use accuracy on binary comparisons:
which system is better when human rankings are
considered gold labels.

We define the accuracy as follows. For each sys-
tem pair, we calculate the difference of the metric
scores (metric∆) and the difference in average hu-
man judgements (human∆). We calculate accuracy
for a given metric as the number of rank agree-
ments between metric and human deltas divided by
the total number of comparisons:

Accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|

Assuming human judgements as a gold labels, ac-
curacy gets an intrinsic meaning of how „reliable”
a given metric is when making pairwise compar-
isons. On the other hand, accuracy does not take
into account that two systems can have comparable
quality, and thus the accuracy of a metric can be
over-estimated by chance if a small human score
difference has the same sign as the difference in
a metric score. To overcome this issue, we also
calculate accuracy over a subset of system pairs,
where we remove system pairs that are deemed to
not be different based on Wilcoxon’s signed-rank
test over human judgements.

In order to estimate the confidence interval for
accuracy, we use the bootstrap method (Efron and
Tibshirani, 1994), for more details see Appendix B.
We consider all metrics that fall into the 95% con-
fidence interval of the best performing metric to
be comparable. We visualize the clusters of best-
performing metrics in our analysis with a grey back-
ground of table cells.

5 Results

5.1 Which metric is best suited for pairwise
comparison?

In this section, we examine all available system
pairs and investigate which metric is best suited for
making a pairwise comparison.

The results presented in Table 2 show that pre-
trained methods (except for Prism-src) generally
have higher accuracy than string-based methods,

5The value of score difference (e.g., a difference of 2
BLEU) is important mainly to measure the confidence of
a ranking decision.

All 0.05 0.01 0.001 Within
n 3344 1717 1420 1176 541

COMET 83.4 96.5 98.7 99.2 90.6
COMET-src 83.2 95.3 97.4 98.1 89.1
Prism 80.6 94.5 97.0 98.3 86.3
BLEURT 80.0 93.8 95.6 98.2 84.1
ESIM 78.7 92.9 95.6 97.5 82.8
BERTScore 78.3 92.2 95.2 97.4 81.0
ChrF 75.6 89.5 93.5 96.2 75.0
TER 75.6 89.2 93.0 96.2 73.9
CharacTER 74.9 88.6 91.9 95.2 74.1
BLEU 74.6 88.2 91.7 94.6 74.3
Prism-src 73.4 85.3 87.6 88.9 77.4
EED 68.8 79.4 82.4 84.6 68.2

Table 2: Accuracies for binary comparisons for rank-
ing system pairs. Column “All” shows the results for
system pairs. Each following column evaluates accu-
racy over a subset of systems that are deemed different
based on human judgement and a given alpha level in
Wilcoxon’s test. Column “Within” represents a subset
of systems where the human judgement p-value is be-
tween 0.05 and 0.001. “n” represents the number of
system pairs used to calculate accuracies in a given col-
umn. Only the scores in each column are comparable.
Results with a grey background are considered to be
tied with the best metric.

which confirms findings from other studies (Ma
et al., 2018, 2019; Mathur et al., 2020b). COMET
reaches the highest accuracy and therefore is the
most suited for ranking system pairs. The runner-
up is COMET-src, which is a surprising result be-
cause, as a quality estimation metric, it does not use
a human reference. This opens possibilities to use
monolingual data in machine translation systems
evaluation in an effective way. On the other hand,
the second reference-less method Prism-src does
not reach high accuracy, struggling mainly with
into-English translation directions (see Figure 2 in
the Appendix). In terms of string-based metrics,
the highest accuracy is achieved by ChrF, which
makes it a better choice for comparing system pairs
than the widely used BLEU.

To minimize the risk of being affected by ran-
dom flips due to a small human score delta, we
also explore the accuracy after removing sys-
tems with comparable performance with respect
to Wilcoxon’s test over human judgements. We in-
crementally remove system pairs not significantly
different with alpha levels of 0.05, 0.01, and 0.001.
As expected, removing pairs of most likely equal-
quality systems increases the accuracy, however,
no metric reaches 100% accuracy even for a set of
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Everything Into EN From EN Non Latin Logograms Non WMT Discussion
n 1717 ↓ 922 768 131 44 484 78

COMET 96.5 95.3 98.3 96.2 90.9 97.3 93.6
COMET-src 95.3 93.5 97.7 95.4 88.6 96.7 93.6
Prism 94.5 92.2 98.2 96.2 90.9 96.9 83.3
BLEURT 93.8 93.8 95.1 93.1 84.1 94.6 89.7
ESIM 92.9 90.6 96.6 93.9 86.4 94.8 76.9
BERTScore 92.2 91.2 94.1 95.4 88.6 92.8 71.8
ChrF 89.5 88.7 91.0 95.4 88.6 89.7 57.7
TER 89.2 87.6 91.7 90.1 72.7 90.9 70.5
CharacTER 88.6 86.4 91.7 88.5 70.5 91.9 69.2
BLEU 88.2 86.9 90.5 92.4 79.5 89.9 61.5
Prism-src 85.3 80.8 91.4 84.0 65.9 91.7 84.6
EED 79.4 75.1 84.8 82.4 54.5 83.1 60.3

Table 3: Accuracies for ranking system pairs. Each column represents a different subset of significantly different
system pairs with alpha level 0.05. Results with a grey background are considered to be tied with the best metric.
Accuracies across columns are not comparable as they compare different sets of systems.

strongly different systems with an alpha level of
0.001. This implies that either current metrics can-
not fully replace human evaluation or remaining
systems are incorrectly assessed by human anno-
tators.6 Moreover, we observe that the ordering of
metrics by accuracy remains the same even after re-
moving system pairs with comparable performance,
which implies that accuracy is not negatively af-
fected by non-significantly different system pairs.
Due to that where we analyze only subsets of the
data, we use systems that are statistically different
by human judgement with an alpha level of 0.05.

Ma et al. (2019) have observed that system out-
liers, i.e., systems easily differentiated from other
systems, can inflate Pearson’s correlation values.
Moreso, Mathur et al. (2020a) demonstrated that af-
ter removing outliers some metrics would actually
have negative correlation with humans. To analyze
if outliers might affect our accuracy measurements
and the ordering of metrics, we analyze a subset of
systems with human judgement p-values between
0.05 and 0.001, i.e. removing system pairs that
have equal quality and outlier system pairs that
are easily distinguished. From column “Within”
in Table 2, we see that the ordering of metrics re-
mains unchanged. This shows that accuracy is not
affected by outliers making it more suitable for
metrics evaluation than Pearson’s ρ.

6An alpha level of 0.001 could (mis)lead to the conclusion
that 0.1% of human judgements are incorrect. However, the
alpha level only determines if two systems are different enough
and cannot be used to conclude that a human pairwise rank
decision is incorrect.

5.2 Are metrics reliable for non-English
languages and other scenarios?

The superior performance of pretrained metrics
raises the question if unbalanced annotation data
might be responsible; around half of the systems
translate into English. Moreover, COMET and
BLEURT are fine-tuned on human annotations
from WMT on the news domain. This could lead
to an unfair advantage when being evaluated w.r.t.
human judgements.7 To shed more light on metrics
behavior and robustness, we analyze various sub-
sets, including into and from English translation
directions, languages with non-Latin scripts, and
non-news domain.

We showed in Section 4.1 that some metrics per-
form differently for systems translating from and
into English. Analyzing this scenario in Table 3
reveals that BLEURT does better (the second best
metric) for “into English” translation compared to
other metrics. It is surprising that BLEURT has
a high accuracy for unseen “from English” pairs
which suggests that BLEURT might have learned
some kind of string-matching. We also observe
in Table 3 gains for Prism for the “from English”
directions. The overall ranking of metrics, how-
ever, remains similar which confirms that the high
accuracy of pretrained methods compared to the
string-based ones cannot be attributed to the abun-
dance of system pairs with English as the target.

7We double-checked and removed all campaigns contain-
ing test sets from WMT 2015 to 2020 from our work and
analysis.
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When investigating language pairs with non-
Latin (Arabic, Russian, Chinese, ...) or logogram-
based scripts (Chinese, Korean and Japanese) as
the target languages, we observe a slight drop in
metric ranks for some pretrained metric in contrast
to higher score for ChrF. This indicates that non-
Latin scripts might be a challenge for pretrained
metrics but more analysis would be required here.
For an summary on individual language pairs, refer
to Table 9 in the Appendix.

We also investigate if some pretrained methods
might have an unfair advantage due to being fine-
tuned on human assessments in the news domain.
For this, we analyze a subset of news test sets with
target languages that were not part of WMT human
evaluation (i.e., languages which those methods
have not been fine-tuned on) and call this set “non-
WMT”, and also system pairs evaluated on a propri-
etary test sets in the EU parliamentary discussions
domain covering ten languages. Neither results on
non-WMT nor discussion domains in Table 3 show
a change in the ranking of metrics, suggesting that
COMET is not overfitted to the WMT news domain
or WMT languages. Somewhat surprisingly, we
actually see a drop in accuracy for the string-based
metrics for the discussion domain. We speculate
this might be due to their inability to forgivingly
match disfluent utterances to expected fluent trans-
lations (Salesky et al., 2019).

Overall, the results for various subsets show a
similar ordering of metrics based on their accuracy,
confirming the general validity of our results.

5.3 Are statistical tests on automatic metric
worth it?

Mathur et al. (2020a) studied the effects of statisti-
cal testing of automatic metrics and observed that
even large metric score differences can disagree
with human judgement. They have shown that even
for a BLEU delta of 3 to 5 points, a quarter of these
systems are judged by humans to differ insignifi-
cantly in quality or to contradict the verdict of the
metric. In our analysis, we have 203 system pairs
deemed statistically significant by humans (p-value
smaller than 0.05) for which using BLEU results
in a flipped ranking compared to humans. The
median BLEU difference for these system pairs
is 1.3 BLEU points. This is concerning as BLEU
differences higher than one or two BLEU points
are commonly and historically considered to be
reliable by the field.

No test Boot. ↓ Type II Err.

COMET 83.4 95.1 204 (17.3%)
COMET-src 83.2 94.2 242 (19.4%)
BLEURT 80.0 92.0 349 (25.4%)
Prism 80.6 91.3 200 (18.3%)
BERTScore 78.3 87.9 244 (20.9%)
ChrF 75.6 85.4 350 (27.3%)
BLEU 74.6 83.4 378 (27.4%)
Prism-src 73.4 81.5 325 (29.4%)

Table 4: The first column shows accuracy for all sys-
tem pairs and represent situation, where we would trust
any small score difference. The second column shows
accuracy, where we ignore systems considered to be
tied with respect to the paired bootstrap resampling
test. The third column represents the number of system
pairs incorrectly decided to be non-significantly differ-
ent by the paired bootstrap resampling and the percent-
age from all non-significant systems.

In this section, we corroborate that statistical
significance testing can largely increase the confi-
dence of the MT quality improvement and increase
the accuracy of metrics. We compare how accu-
rate a metric would be under two situations: either
when not using statistical testing and solely trust-
ing in the metric score difference; or when using
statistical testing and throwing away systems that
are not statistically different.

We evaluated the first situation in Section 5.1
and the results are equal with the first column of
Table 2. For the second situation, we calculate
accuracy only over the system pairs that are statisti-
cally different. We use paired bootstrap resampling
(Koehn, 2004), a non-parametric test, to calculate
the statistical significance for a pair of systems.8

Additionally, the second situation introduces
type II errors which represent systems where the
statistical significance test rejected a system pair
as being non-significant, but humans would judge
the given pair as significantly different. In other
words, it shows how many system pairs are incor-
rectly rejected as non-significantly different. See
Appendix C for a detailed explanation.

From the results in Table 4, we can see that
if we apply paired bootstrap resampling on auto-
matic metrics with an alpha level 0.05 the accuracy
increases by around 10% for all metrics in con-

8Approximate randomization (Riezler and Maxwell III,
2005) can be used as an alternative test, and for metrics based
on the average of sentence-level scores, we can use also tests
such as the Student t-test.
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trast to not using statistical testing. On the other
hand, when using statistical testing, we introduce
type II errors, where 17.3%, for COMET, of non-
significantly different system pairs are deemed sig-
nificantly different by humans.9

In conclusion, we corroborate that using statis-
tical significance tests largely increases reliability
in automatic metric decisions. We encourage the
usage of statistical significance testing, especially
in the light of Marie et al. (2021) who show that
statistical significance tests are widely ignored.

5.4 Does BLEU sabotage progress in MT?

Freitag et al. (2020) have shown that reference
translations with string-based metrics may system-
atically bias against modeling techniques known to
improve human-judged quality and raised the ques-
tion of whether previous research has incorrectly
discarded approaches that improved the quality of
MT due to the use of such references and BLEU.
They argue that the use of BLEU might have mis-
lead many researcher in their decisions.

In this section, we investigate the hypothesis if
the usage of BLEU negatively affects model selec-
tion. To do so, we compare two groups of system
pairs based on the premise if they could be directly
affected by BLEU. The first group contains pairs
of incremental improvements of our systems. We
can assume that incremental models use similar
architecture, data, and settings, although we do
not study particular changes. We use BLEU as the
main automatic metric to guide model development.
If BLEU shows improvements, we evaluate models
with human judgements to make a final deployment
decision. Therefore, systems with degraded BLEU
scores which would be deemed improved by hu-
mans are missing in this group as we reject them
based on BLEU scores during development. The
second group contains independent system pairs,
which use different architectures, data, settings,
and therefore BLEU has not been used to preselect
them. In this group, we compare our systems with
publicly available third-party MT systems.

We compare three models within the same cam-
paign, two internal10 and one external system.
Thus, the same annotators annotated the same sen-
tences from all three systems under the same con-
ditions. We call system pairs comparisons between

9Wilcoxon’s test on human judgement and alpha level 0.05.
10The pair of internal models contains the best model from

the last year and our latest improved model.

Incremental Independent
n 161 ↓ 246

BLEU 99.4 90.7
BERTScore 98.8 91.5
ESIM 98.8 92.3
Prism 98.1 94.3
ChrF 98.1 91.5
COMET 98.1 98.4
COMET-src 97.5 98.8
CharacTER 97.5 89.8
Prism-src 96.9 92.7
BLEURT 96.9 93.5
TER 95.7 91.5
EED 78.9 78.0

Table 5: Evaluation of incremental and independent
system pairs. We use a subset of 333 system pairs sig-
nificantly different based on Wilcoxon’s test and alpha
level of 0.05 over human judgement. Results with grey
background are considered tied with the best metric.

two internal models “incremental”, and compar-
isons between the newer internal model and the
external model as “independent”.

Over the past three years we carried out 333
campaigns across 17 language pairs (each cam-
paign comparing three models), resulting in almost
530000 human annotations.

The results in Table 5 show that for independent
systems, the ranking of the metrics is comparable
with results in Table 3. Pretrained metrics generally
outperform string-based ones and COMET is in the
lead. However, when inspecting the incremental
systems, BLEU wins. This indicates that BLEU
influenced our model development and we rejected
models that would have been preferred by humans.

Another possible explanation is that systems pre-
selected by BLEU are easy to differentiate by all
metrics. This could explain why all metrics have
high accuracy in contrast to the “Independent” col-
umn and most of them are in a single cluster.

In conclusion, results showing BLEU as the met-
ric with the highest accuracy where we would ex-
pect pretrained metrics to dominate, suggests that
BLEU affected system development and we re-
jected improved models due to the erroneous degra-
dation seen in the BLEU score. However, this
is indirect evidence as for sound conclusions we
would need to evaluate those rejected systems with
other metrics and human judgement as well.
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WMT Metric task 2020b 2020b 2019 2018 2017 2016b 2015 2014 2013
↓ n 168 (no outliers) 184 225 149 152 120 121 92 135

st
ri

ng
-b

as
ed

BLEU .740 (.727) .837 (.832) .906 .955 .910 .873 .841 .910 .845
CharacTER .735 (.723) .873 (.871) .942 .964 .932 .938
ChrF .743 (.730) .743 (.864) .948 .959 .942 .911 .908
EED .762 (.750) .888 (.885) .951
METEOR .900 .884 .878
NIST .860 .970 .921 .870 .854 .899 .834
TER .609 (.668) .704 (.763) .922 .953 .918 .863 .837 .860 .788
WER .917 .934 .913 .846 .829 .818 .752

pr
et

ra
in

ed

BEER .942 .973 .938 .925 .942
BLEURT .764 (.752) .902 (.900)
COMET .711 (.762) .853 (.908)
ESIM .770 (.755) .906 (.902)
Prism .677 (.710) .846 (.886)
YiSi-1 .759 (.744) .894 (.890) .967 .973

Table 6: “n” is sum of systems in each study used to calculate aggregated correlation. The results in brackets are
without systems on English into Chinese. Correlations are comparable only within columns.

6 Meta Analysis

We analyze findings from past research to put our
results in the broader context. We focus on the
results on the system-level evaluation, however, a
large part of the research studied a sentence-level
evaluation. The largest source of metrics evalu-
ation is yearly WMT Metric Shared Task occur-
ring over more than the past ten years (Callison-
Burch et al., 2007), where various methods are
evaluated with human judgement over the set of
submitted systems and language pairs in WMT
News Translation Shared Tasks. Recently, Freitag
et al. (2021) reevaluated two translation directions
from WMT 2020 with the multidimensional quality
metric framework and raised a concern that gen-
eral crowd-sourced annotators used in into-English
evaluation in WMT prefer literal translations and
have a lower quality than some automatic metrics.

Past studies evaluate system-level correlations
with Pearson’s correlation calculated for each trans-
lation direction separately. We are interested in how
metrics correlate with human judgement in general
across different language pairs. Thus, to general-
ize the past findings, we use the Hunter-Schmidt
method (Hunter and Schmidt, 2004), which allows
combining already calculated correlations with var-
ious sizes. We use it to generalize correlations
within each study across all language pairs. For this
purpose, Hunter-Schmidt is effectively a weighted
mean of the raw correlation coefficients.

Although past studies evaluated a larger number
of methods and their variants, we have selected a
subset of metrics that are evaluated in more than
one study or showed promising performance over

other metrics in a given study. When a study eval-
uated several variants of a metric with various pa-
rameters, we selected the setting closest to either
the recommended setting in the recent years, such
as SacreBLEU, or a setting that is used in the later
evaluation study, mainly in Mathur et al. (2020b).

Meta-analysis in Table 6 shows that pretrained
methods outperform string-based methods as con-
cluded by Mathur et al. (2020b); Ma et al. (2019,
2018). The second important observation is that
there was not a single year where BLEU had a
higher correlation than ChrF. This supports our
conclusions and shows that the MT community
had results supporting the deprecation of BLEU as
a standard metric for several years. Comparing the
pretrained methods, ESIM is the best performing
method in general (Mathur et al., 2020b), while
COMET is the best performing method when re-
moving the suspicious system.

In the study by Mathur et al. (2020b), COMET
under-performed other pretrained metrics. We
found out that submitted COMET scores failed to
score one English-Chinese system with tokenized
output. However, we obtain valid COMET scores
on that system output when replicating the results.
Moreover, we have not seen any problems with
COMET on Chinese. As this one system largely
skews Pearson’s correlation, we also present analy-
sis without English-Chinese systems in Table 6.

7 Discussion

We corroborate results from past studies that pre-
trained methods are superior to string-based ones.
However, pretrained methods are relatively new
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techniques and we can potentially discover signif-
icant drawbacks, for example, they could resem-
ble biases from training data, fail on particular do-
mains, or prefer fluency over adequacy. Another
problem could arise if an MT system would be
trained on the same data as the metric was or if it in-
corporates the same pretrained model, for example,
XLM-R (Conneau et al., 2020) used by COMET.
Pretrained methods support only a selected set of
languages and the quality can differ for each of
them. Thus, we argue that the string-based method
should be used as a secondary metric.

An interesting solution to dissipate potential
drawbacks of any metric would be if different re-
search groups preselect a different primary pre-
trained metric in advance to lead their research
decisions and to discover improvements not appar-
ent under other metrics. However, we fear that it
could lead to “metric-hacking”, i.e., picking a met-
ric that confirms results. Therefore, we recommend
using COMET as the primary metric. And to use
ChrF, the best performing string-based method, as
a secondary metric and for unsupported languages.

A surprising results is the high accuracy of
COMET-src, a reference-free metric. It allows auto-
matic evaluation over monolingual domain-specific
testsets as suggested by Agrawal et al. (2021).

Limitations of BLEU are well-known (Reiter,
2018; Mathur et al., 2020a). Callison-Burch et al.
(2006) argued that MT community is overly re-
liant on it, which Marie et al. (2021) confirmed by
showing that 98.8% of MT papers use BLEU. We
present indirect evidence that the over-use of BLEU
negatively affects MT development and support
deprecation of BLEU as the evaluation standard.

We show that the reliability of metrics decisions
can be increased with statistical significance tests.
However, Dror et al. (2018) point out the assump-
tion of statistical significance tests that data sam-
ples are independent and adequately distributed is
rarely true. Also, statistical significance tests do not
account for random seed variation across training
runs. Thus, one should be cautious when making
conclusions based on small metrics improvements.
Wasserstein et al. (2019) give recommendations for
a better use of statistical significance testing.

Marie et al. (2021) have shown that almost 40%
of MT papers from 2020 copied score from dif-
ferent papers without recalculating them, which is
a concerning trend. Also, new and better metrics
will emerge and there is no need to permanently

adhering to a single metric. Instead, the simplest
and most effective solution to avoid the need to
copy scores or stick to obsolete metric is to always
publish translated outputs of test sets along with
the paper. This allows anyone to recalculate scores
with different tools and/or metrics and makes com-
parisons with past (and future) research easier.

There are some shortcomings in our analysis.
We have only a handful of non-English systems,
therefore we cannot conclude anything about the
behaviour of the metrics for language pairs without
English. Similarly, the majority of our language
pairs are high-resource, therefore, we cannot con-
clude the reliability of metrics for low-resource lan-
guages. Lastly, many of our translation directions
are from translationese into authentic, which as
Zhang and Toral (2019) showed is the easier direc-
tion for systems to score high by human judgement.
These are potential directions of future work.

Lastly, we assume that human judgement is the
gold standard. However, we need to keep in mind
that there can be potential drawbacks of the method
used for human judgement or human annotators fail
to capture true assessment as Freitag et al. (2021)
observe. For example, humans cannot explicitly
mark critical errors in DA and instead they usually
assign low assessment scores.

8 Conclusion

We show that metrics can use a different scale for
different languages, so Pearson’s correlation cannot
be used. We introduce accuracy as a novel evalua-
tion of metrics in a pairwise system comparison.

We use and release a large collection of the hu-
man judgement confirming that pretrained metrics
are superior to string-based. COMET is the best
performing metric in our study, and ChrF is the best
performing string-based method. The surprising
effectiveness of COMET-src could allow the use of
large monolingual test sets for quality estimation.

We do not see any drawbacks of the metrics
when investigating various languages or domains,
especially, for methods pretrained on human judge-
ment. We present indirect evidence that the over-
use of BLEU negatively affects MT development.

We show that statistical testing of automatic met-
rics largely increases the reliability of a pairwise
decision based on automatic metric scores.

We endorse the recommendation for publishing
translated outputs of research systems to allow com-
parisons and recalculation of scores in the future.
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Ondřej Bojar, Yvette Graham, Amir Kamran, and
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Miloš Stanojević, Amir Kamran, Philipp Koehn, and
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A Metrics Implementation Details

We use the most common implementation with
default or recommended parameters to simulate
standard metric usage.

For BLEU (Papineni et al., 2002), ChrF
(Popović, 2015) and TER (Snover et al., 2006) met-
rics, we use SacreBLEU implementation https:
//github.com/mjpost/sacrebleu/ ver-
sion 1.5.0. We use “mteval-v13a” tokenizer for

all language pairs except for Chinese and Japanese
which use their own tokenizer, as is recommended.

For CharacTER (Wang et al., 2016), we
use https://github.com/rwth-i6/
CharacTER commit c4b25cb.

For EED (Stanchev et al., 2019), we
use https://github.com/rwth-i6/
ExtendedEditDistance commit f944adc.

For BERTScore (Zhang et al., 2020), we use
https://github.com/Tiiiger/bert_
score version 0.3.7.

For BLEURT (Sellam et al., 2020), we
use the recommended model “bleurt-base-128”
and implementation https://github.com/
google-research/bleurt version 0.0.1. It
is important to mention, that BLEURT is fine-tuned
for English only. Additionally, we evaluated other
variants and “bleurt-large-512” performed better
than recommended variant. We add it in Table 8.

For COMET (Rei et al., 2020), we use rec-
ommended model “wmt-large-da-estimator-1719”
and for COMET-src we use “wmt-large-qe-
estimator-1719”. The implementation is https:
//github.com/Unbabel/COMET in version
0.0.6. We evaluated all other COMET models, but
neither performed better than recommended model.

For Prism and Prism-src (Thompson and
Post, 2020), we use https://github.com/
thompsonb/prism commit 06f10da.

For ESIM (Mathur et al., 2019), we
use https://github.com/nitikam/
mteval-in-context.

B Confidence Interval for Metric
Accuracy

To estimate the confidence interval for the best
performing metric, we use the bootstrap method
(Efron and Tibshirani, 1994). It creates multiple
resamples (with replacement) from a set of obser-
vations and calculates accuracy on each of these
resamples. We employ modified paired bootstrap
resampling (Koehn, 2004), a method which we also
use for testing statistical significance of the metric
difference in Section 5.3. However, the usage is
different.

To calculate the bootstrap resampling. First, we
note the best performing metric on all system pairs
from the collection as metric α. We create 10 000
resamples by drawing system pairs with replace-
ments from the collection of all. For each resample,
we calculate accuracy for all metrics. We note
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which metrics have equal or higher accuracy than
metric α in a given resample.

If metric α outperforms metric X by less than
95% of the time, we draw the conclusion that met-
ric X performs on par with 95% statistical signifi-
cance to the winning metric α.

C Comparing Statistical Tests

The problem if two systems have the same MT
quality is still an open question. Applying statisti-
cal tests over the metric scores allows us to confirm
if the difference in score is significant or due to a
random change based on the set of translated sen-
tences and a given alpha level. To get the gold truth
about system equivalence, we employ Wilcoxon’s
test on human judgement and alpha level 0.05. We
use paired bootstrap resampling approach as the
statistical test for automatic metrics. Unfortunately,
we cannot directly compare the outputs of two sta-
tistical tests (for example, the Wilcoxon test on
human judgements with the bootstrap resampling
on metric scores) as even with the same alpha level,
these tests have a different power. Therefore, we
need to investigate it in isolation.

The null hypothesis in our setting is that both
evaluated systems have the same translation quality.
There are two possible outcomes of a statistical
test: accept the null hypothesis (i.e. MT quality
of systems is not significantly different) or reject
the null hypothesis (i.e. MT quality of systems is
significantly different). When observing outcomes
of statistical tests over human judgement and over
automatic metric, we get four possible outcomes:

Statistical test on a metric
Signif. Not signif.

H
um

an
s Signif.

Truly differing
system pair

Type II
Error

Not
signif.

Type I.
Error

Systems with the
equal MT Quality

There are two outcomes for the statistical test
over a metric that we investigate separately.

In the first scenario, the bootstrap resampling
confirms the statistical difference between systems.
However, even when both tests agree that systems
have statistically different MT quality, it still may
happen that humans and metrics disagree on which
system is better than the other. The goal is to evalu-
ate how accurate metric decisions are if we employ
statistical testing. Therefore, we are interested in

the accuracy of a metric over system pairs that
are deemed statistically different according to the
paired bootstrap resampling, in other words, accu-
racy for system pairs that are either truly different
(top left quadrant) or fall into type I. error (bottom
left quadrant).

In the second scenario, we want to find out how
many system pairs are diagnosed as non-significant
even though human judgements would deem them
different. For this scenario, we investigate for how
many system pairs bootstrap resampling fails to
reject the null hypothesis. However, keep in mind
that two statistical tests cannot be directly com-
pared because different tests have different power
and the type II error will differ based on that.
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Figure 2: Each point represents a difference in average human judgement (y-axis) and a difference in automatic
metric (x-axis) over a pair of systems. Blue points are system pairs translating from English; green points are into
English; red points are non-English systems (French, German, and Chinese centric). Spearman’s ρ correlation is
in top left corner, while Pearson’s r is in the bottom right corner. Metrics disagree with human ranking for system
pairs in pink quadrants. For better visualization, we have clipped few outliers in BLEU, ChrF, and TER plots.
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Language pair Sys. Size Language pair Sys. Size Language pair Sys. Size

English - French 145 1034 English - Hindi 58 540 English - Ukrainian 25 988
English - German 139 2544 Polish - English 57 1229 English - Slovak 25 1776
French - English 131 1119 Portuguese - English 57 878 English - Irish 24 463
German - English 122 1212 Swedish - English 57 1116 English - Persian 24 510
Japanese - English 78 925 English - Arabic 56 1054 Slovak - English 23 1476
Chinese - English 74 1029 Korean - English 56 1462 Greek - English 23 1526
Italian - English 71 1156 Czech - English 55 1105 English - Croatian 22 1625
English - Portuguese 70 1679 English - Hungarian 55 1018 English - Welsh 22 497
English - Japanese 67 998 English - Korean 55 550 English - Norwegian 22 1533
English - Swedish 66 1219 English - Turkish 55 1043 English - Hebrew 22 940
English - Chinese 65 2443 English - Thai 54 510 English - Vietnamese 20 1857
English - Danish 64 1186 Hindi - English 54 816 Welsh - English 20 1686
English - Italian 64 1505 Turkish - English 54 1037 Vietnamese - English 20 1697
English - Polish 64 1188 Danish - English 52 986 Catalan - English 20 928
Spanish - English 64 1223 English - Russian 49 1159 English - Urdu 18 448
Dutch - English 63 927 Russian - English 44 736 English - Finnish 17 1802
English - Dutch 61 991 Thai - English 39 457 Tamil - English 16 834
English - Indonesian 61 948 English - Catalan 30 981 English - Lithuanian 16 1997
Indonesian - English 60 703 Hebrew - English 28 870 Lithuanian - English 16 1997
English - Czech 59 1329 English - Romanian 27 1056 English - Maltese 16 489
Arabic - English 59 2674 Romanian - English 27 1094 English - Kiswahili 16 457
English - Spanish 58 1172 English - Greek 27 1936
Hungarian - English 58 976 Persian - English 26 1372

Table 7: The column “Sys.” represents the number of systems for a given translation direction. We list only
translation directions with more than 15 evaluated systems. The column “Size” represents the average test set size
for the given direction. We evaluate 232 translation directions in total.

All 0.05 Within Spearman Pearson
n 3344 1717 541 3347 3347

COMET 83.4 96.5 90.6 0.879 0.919
COMET-src 83.2 95.3 89.1 0.824 0.855
Prism 80.6 94.5 86.3 0.827 0.839
BLEURT-large 80.1 94.4 85.4 0.808 0.748
BLEURT 80.0 93.8 84.1 0.787 0.729
ESIM 78.7 92.9 82.8 0.780 0.835
BERTScore 78.3 92.2 81.0 0.772 0.824
ChrF 75.6 89.5 75.0 0.716 0.739
TER 75.6 89.2 73.9 0.708 0.321
CharacTER 74.9 88.6 74.1 0.700 0.757
BLEU 74.6 88.2 74.3 0.661 0.640
Prism-src 73.4 85.3 77.4 0.661 0.631
EED 68.8 79.4 68.2 0.531 0.541

Table 8: Extended Table 2 with Spearman’s and Pear-
son’s correlations over all system pairs. Remaining
columns are identical to original table. This table also
contain additional BLEURT-large.
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Abstract

In this paper, we show that automatically-
generated questions and answers can be used
to evaluate the quality of Machine Translation
systems. Building on recent work on the eval-
uation of abstractive text summarization, we
propose a new metric for system-level Ma-
chine Translation evaluation, compare it with
other state-of-the-art solutions, and show its
robustness by conducting experiments for var-
ious translation directions.

1 Introduction

The goal of automatic Machine Translation (MT)
evaluation is to automatically evaluate the output
quality produced by MT systems. Metrics used for
this task assign a score by comparing the MT output
to either a reference translation or to the source
sentence (the latter is called Quality Estimation).

The main indicator that is used to assess the
performance of a specific metric is the correlation
with human judgement computed for outputs from
several systems. It was recently shown that metrics
based on contextualized embeddings, such as YISI

(Lo, 2019) or ESIM (Mathur et al., 2019), are able
to achieve better performance than the most widely
used BLEU (Papineni et al., 2002).

In this paper, we propose a new method for au-
tomatic evaluation of MT systems – MTEQA1

(Machine Translation Evaluation with Question
Answering), building on previous works on eval-
uating abstractive summaries. We build upon the
fact that state-of-the-art (neural) MT systems tend
to produce a fluent output but sometimes fail in
adequacy of the translation. We leverage the re-
cent progress in Question Generation (QG) and
Question Answering (QA) to formulate and answer
human readable questions about the MT system out-
put. Our experiments show that the effectiveness of
the proposed metric is comparable to performance

1https://github.com/ufal/MTEQA

of other automatic metrics, while considering only
a certain amount of information from the whole
translation. We also examine the robustness of the
metric by considering several translation directions
and target languages.

The remainder of this paper is structured as fol-
lows. In Section 2, we introduce relevant research
on question-based evaluation. In Section 3, we de-
scribe our metric in detail. In Section 4, we present
and discuss the results of our experiments including
s the influence of different human scoring methods.
Section 5 presents conclusions.

2 Related Work

Metrics that are most widely used for automatic
evaluation of MT outputs produce a score by com-
paring surface-level forms of hypothesis and refer-
ence translation. The most dominant one, BLEU
(Papineni et al., 2002), is a version of n-gram preci-
sion calculated by averaging over different values
of n with penalization for overly short translations
(brevity penalty). Another one, CHRF (Popović,
2015), considers the character-level n-grams, mak-
ing it possible to reward partial token matches.
The standardised implementation provided in the
sacreBLEU2 package takes care of pre-processing
and enables direct comparison between MT out-
puts.

Recently, various works (e.g., Lo, 2019; Mathur
et al., 2019; Bawden et al., 2020) explored the us-
age of contextualized word-level or sentence-level
embeddings to compare the numerical representa-
tions of reference and hypothesis. Such metrics en-
able explicit regression towards the desired human-
produced labels.

2.1 Evaluation of Summarization

The task of automatic text summarization is to pro-
duce a concise summary of a given document that

2https://github.com/mjpost/sacrebleu
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would preserve all the key information from the
document. One of the most popular metrics used
for evaluating summary quality is ROUGE (Lin,
2004), which compares overlapping n-grams be-
tween the model output and the reference summary.

To step beyond the n-grams comparison, Eyal
et al. (2019) proposed the APES metric. They
used the reference summary to produce fill-in-the-
blank type of questions by finding all possible en-
tities using a NER system. The APES score for
a given summarization model is the percentage of
questions that were answered correctly (using an
Question Answering system), averaged over the
whole test-set. The authors reported a higher cor-
relation with the Pyramid method (Nenkova et al.,
2007) for manual evaluation than the ROUGE met-
ric. Scialom et al. (2019) extended their work into
unsupervised settings by generating questions from
the source document. Closest to our work are the
metrics FEQA (Durmus et al., 2020) and QAGS
(Wang et al., 2020), which automatically generate
the natural language questions from the summary
and/or document.

2.2 Question-based Evaluation of MT

Tomita et al. (1993) were the first to use the reading
comprehension tests to measure the quality of MT
systems. They translated several passages from
TOEFL (Test of English as a Foreign Language)
guide book into Japanese, using a selection of MT
systems, while corresponding questions and an-
swers were translated into Japanese by professional
translators. The MT systems were evaluated by
measuring the percentage of questions answered
correctly by the Japanese speaking human annota-
tors, using the MT output as a context.

Fuji et al. (2001) used the reading comprehen-
sion tests to examine the “usefulness” of machine-
translated text. In their experiment, participants
take the reading comprehension test in a foreign
language (English), while also being presented
with the text translated by the MT system into their
mother language (Japanese). Authors claim that
presenting the MT output yields a higher compre-
hension performance.

Castilho and Guerberof Arenas (2018) examine
the user satisfaction when completing the compre-
hension type of test, using the context translated by
the MT system. They collect the eye-tracking data
to analyse the cognitive effort of the participants.

Scarton and Specia (2016) approached the prob-

lem of document-level Quality Estimation (QE) by
extending the CREG corpus (Ott et al., 2012) of
German documents designed for reading compre-
hension exercises. They use professional transla-
tors to translate the questions and answers to En-
glish. They examine the document-level translation
quality by translating the documents by MT sys-
tems and asking the human annotators to complete
the reading comprehension test using the MT out-
put as a context. Forcada et al. (2018) used the
same corpus to examine the usage of automatically
generated gap-filling closure type of testing.

Berka et al. (2011) used the yes/no type of ques-
tions for manual evaluation of MT systems, exam-
ining the English-to-Czech direction. The authors
prepared a set of English texts from various do-
mains and used human annotators to come up with
three content-based question-answer pairs in Czech
for each of the texts. In the next step, the annotators
were given the outputs from MT systems (in Czech)
and were tasked to answer the questions using the
corresponding translation as the context. For each
system, the percentage of properly answered ques-
tions was measured.

We believe no prior work examines the usage of
automatically generated questions and answers to
assess the quality of MT systems.

2.3 Keyphrase Extraction

Keyphrases are representative and characteristic
phrases from a text that express the key aspects
of its content (Papagiannopoulou and Tsoumakas,
2020). In our work, keyphrases play the role of
answers, i.e., the pieces of information which we
test to be preserved in translation.

In recent years, a wide range of supervised and
unsupervised keyphrase extraction methods have
been proposed. Unsupervised methods normally
perform two main steps to extract keyphrases: 1)
select candidate phrases based on some heuristics
such as matching with a specific part-of-speech
pattern; 2) rank the candidates and select the top
ones. Various approaches have been proposed to
address this problem such as statistics-based (Won
et al., 2019), graph-based (Mihalcea and Tarau,
2004), topic models-based (Liu et al., 2010), and
language model-based (Tomokiyo and Hurst, 2003)
methods.

On the other hand, supervised methods are re-
lying on labeled data in which keyphrases are an-
notated in the documents. Supervised methods
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It is said, when Richard got 
sick, Salahudin sent him 

few Plum fruit which were 
kept in the snow.

Reference MT output

Extracted Answers

Plum fruit

Salahudin

Generated Questions

What did Salahudin send to Richard when 
he got sick?

Who sent Richard Plum fruit when he got 
sick?

It is said that when Richard 
got sick, Salahuddin sent 

him some aloof, which was 
kept in the snow.

MT Answers

some aloof

Salahuddin

in the 
snow

in the 
snow

Where were the Plum fruit kept when 
Richard got sick?

Figure 1: An illustration of the MTEQA pipeline. One of the MT answers is clearly wrong, one is correct but the
other differs with just a single character, raising a question about the choice of the answer-comparison metric.

generally model the keyphrase extraction problem
as binary classification to predict whether a can-
didate phrase is a keyphrase or not (Wang and Li,
2017), learning to rank to learn a ranking func-
tion that sorts the candidate phrases based on their
score (Zhang et al., 2017), and sequence labeling
problem (Zhang et al., 2016).

3 MTEQA

Our idea of evaluating MT quality by asking and
answering questions is based on the assumption
that a good translation should preserve all of the key
information that one can extract from the reference.
We propose to use a question answering framework
as the proxy to measure this.

To check whether a piece of information is pre-
served, we automatically generate pairs of a ques-
tion and its (gold-standard) answer from the refer-
ence translation and employ a question answering
system to provide a new (test) answer given the
question and the MT output (translation) used as
the context. The generated (test) answer is then
compared to the gold-standard answer.

We assume that if it was possible to answer a
question looking only at the reference, it should
also be possible to answer this question looking
only at the MT output and that the two answers
should be identical or very similar.

In principle, the proposed MTEQA metric re-
quires solving the following tasks:
1) Answer extraction identifies the key informa-
tion in a sentence (keyphrases) which should be
also present in the MT output. This extraction can
be treated in a hierarchical/nested manner. For in-
stance, given the sentence “Today for dinner I had
an organic pasta with garlic.”, the question “What
did you have for dinner today?” can be correctly
answered by all the following phrases pasta, or-
ganic pasta and organic pasta with garlic. Thus,
answer extraction is performed first and the ques-
tions are generated afterwards for each of the an-
swers independently. The same question can be
paired with multiple (nested) answers which allows
capturing a partial correspondence.
2) Question generation, given a reference trans-
lation, produces a human readable question, for
which a given keyphrase is the correct answer. For
each of the extracted answers, each question is gen-
erated independently from the other answers.
3) Question answering generates an answer, given
a natural language question and a sentence used
as a context. Since we assume that the MT output
should carry enough information to answer any
question asked based on the reference, we do not
consider the non-answerable questions.
4) Answer comparison assesses to what extent
the generated answer is correct, given the gold-
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Pattern Extracted Answer Sentence
NOUN Coldplay ... the British rock group Coldplay with special guest performers ...
ADJ NOUN natural grass As is customary for Super Bowl games played at natural grass stadiums ...
DET NOUN a fumble ... including a fumble which they recovered for a touchdown ...
NUM NOUN 10 times The South Florida/Miami area has previously hosted the event 10 times ...
PROPN PROPN Carolina Panthers ... the National Football Conference (NFC) champion Carolina Panthers ...
DET ADJ NOUN A professional fundraiser A professional fundraiser will aid in finding business sponsors ...
DET VERB NOUN a broken arm ... went down with a broken arm in the NFC Championship Game ...
NUM PUNCT NUM 15–1 The Panthers finished the regular season with a 15–1 record ...
DET NOUN ADP NOUN the application of electricity Tesla theorized that the application of electricity to the brain ...

Table 1: Examples of the most frequent POS patterns of gold-standard answers in the XQuAD dataset.

BLEU ROUGE-L F1
Question Answering - - 90.27
Question Generation 21.01 43.25 -

Table 2: Performance of the baseline model used in our
experiments on the development set of SQuADv1.

standard answer extracted from the reference. Met-
rics based on exact match should be avoided be-
cause they are too strict. For example, given
the gold-standard answer “Tchaikovsky”, both the

“Tchaikovski” and “Beethoven” would get the same
score.

3.1 Scoring Procedure
The entire procedure of MTEQA is illustrated in
Figure 1. Formally, for a given segment si, ref-
erence translation ri and MT system output ti, it
proceeds as follows:

1. Generate the gold-standard answers
ai1, ai2, . . . , aik from the reference ri

2. For each answer aij and reference ri, generate
a natural language question qij

3. Answer each question qij using the MT output
ti as a context, obtaining answer ãij

4. The final score for a given translation of a
segment si, is the average over all generated
questions:

MTEQA(ti) =

∑k
1D(aij , ãij)

k
,

where D(·, ·) is a string-comparison metric
used to compare the two answers and k is the
number of gold-standard answers extracted
from the reference.

For the task of comparing MT systems on the
entire test-set (i.e. system-level comparison) or at
the document-level, we simply report the average
of the segment-level scores. When more than one
reference r̂i is available for a given segment, we can
use it to generate additional questions and answers.

3.2 Baseline Implementation
Our implementation of the proposed MTEQA met-
ric is based on the state-of-the-art system capable
of solving the initial three tasks of the procedure:
answer extraction, question generation, question
answering. It is the T5 model (Raffel et al., 2020)
fine-tuned on the SQuADv1 dataset (Rajpurkar
et al., 2016) by Patil (2020) and available from
GitHub3. Performance on the development set of
SQuADv1 in Table 2. We report word-level F1 for
question answering and BLEU and ROUGE-L for
question generation.

The SQuAD dataset was created manually by
tasking the crowd-workers to create up to five
questions-answer pairs from a single paragraph
from Wikipedia. While the crowd-workers were
encouraged to formulate the questions in their own
words, the answers were restricted to be continuous
sub-sequences of words from the given paragraph.
In MTEQA, the answers generated by this model
are also continuous sub-sequences of words from
the reference and test translations.

The same system is also used for question an-
swering and question generation by prompting the
model with a different initial token in the input –
for Question Answering:

"question: {question_text}
context: {context_text}"

for Question Generation:
"answer: {answer_text}
context: {context_text}" .

3.3 Generating Additional Answers
Since the QG system generates a single question
for each sub-sequence of words marked as an ex-
tracted answer, the limit factor is the number of
gold-standard answers we extract. To generate
more questions, we need more keyphrases to for-
mulate a question about.

3https://github.com/patil-suraj/
question_generation
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cs-en de-en zh-en en-de en-cs
12 12 16 avg 14 12

MTEQA F1 0.782∗ 0.997∗ 0.952∗ 0.893∗ 0.946∗ 0.845∗

MTEQA CHRF KEYPHRASE 0.890∗ 0.998∗ 0.951∗ 0.905∗ 0.952∗ 0.859∗

SENTBLEU 0.844 0.978 0.948 0.859 0.934 0.840
BLEU 0.851 0.985 0.956 0.854 0.928 0.825
PRISM 0.818 0.998 0.957 0.880 0.958 0.949
YISI-2 0.764 0.988 0.964 0.821 0.899 0.714

Table 3: System-level Pearson correlation for selected metrics used for measuring MT quality with DA human
assessment over MT systems using the newstest2020 references. Average (avg) is computed over all to-English
directions available. Number below the language pair indicates the number of systems considered. Figures without
∗ are taken from Mathur et al. (2020a).

Considering the whole predictive power of our
metric is based on questions, we propose two meth-
ods of generating additional questions.
1) We exploit the MT output as an additional source
of question/answer pairs. After following the stan-
dard procedure, we swap the roles of MT output
and reference – we generate gold-standard answers
and questions from the MT output, and use refer-
ence as a context to answer it. As a final score we
take the sum of the two scores.
2) We add keyphrases extracted by linguistic pro-
cessing of the sentences based on Part-of-Speech
(POS) pattern matching and Named Entity Recog-
nition (NER). Given a sentence as the input, first,
we parse the sentence using UDPipe (Straka et al.,
2016) to extract part of speech (POS) tags. Then,
we extract phrases that are matched with one of
the patterns in our POS pattern bank. The POS
pattern bank is created by parsing the sentences
from XQuAD (Artetxe et al., 2020) dataset, ex-
tracting the POS patterns corresponding to the
gold-standard answers, and taking the most fre-
quent patterns. This dataset contains professional
translations of the development set of SQuADv1,
translated into various languages from different lan-
guage families and using different scripts. Table 1
shows some examples of the extracted POS pat-
terns. Second, we extract named entities mentioned
in the input sentence using a combination of two
multilingual NER models, POLYGLOT-NER (Al-
Rfou et al., 2015), and Stanza (Qi et al., 2020). Fi-
nally, we output the union of the extracted phrases
and named entities as the potential answers.

3.4 Choice of the D(·, ·) Metric

As already pointed, selection of the D(·, ·) might
be crucial for optimal performance of the proposed
metric and thus we consider several options. Moti-
vated by QA evaluation, we employ the word-level
F1 (Rajpurkar et al., 2016; Trischler et al., 2017;

Chen et al., 2019; Durmus et al., 2020). Motivated
by MT evaluation we also consider the BLEU (Pa-
pineni et al., 2002) metric and the CHRF (Popović,
2015) metric. Finally we also employ “exact match”
(Rajpurkar et al., 2016) score, mainly for compari-
son. All of the metrics we use operate on a surface
level and assign a similarity score for a pair of
strings. In the future, it may be worth to explore
e.g. cosine similarity between word embeddings.

4 Experiments

We evaluate the proposed MTEQA metric using
the submissions to the WMT20 News translation
task (Barrault et al., 2020) and their (direct) human
assessments (DA). For each of the MT systems par-
ticipating in the task, we compute a single score
as the average of segment-level scores and report
the system-level Pearson correlation with the hu-
man assessment. We report individual results for
selected translation directions into English plus
aggregated results (averages) for all to-English di-
rections which were part of the WTM20 Metric
Task (Mathur et al., 2020b) evaluation campaign4.

4.1 Baseline

The baseline implementation is described in Sec-
tion 3. It is based on the T5 model tuned on the
SQuADv1 dataset and used to generate: 1) the
gold-standard answers from the reference transla-
tions, 2) a question for each gold-standard answer,
3) a test answer for each question and MT output
(context) pair. The test answers are compared by
the word-level F1 score (Section 3.4).

The results of this system are shown in Table 3
labeled as MTEQA F1 together with other metrics
for comparison. We experiment with the to-English
direction, since the SQuADv1 dataset used for fine-
tuning is in English. On average, the baseline

4cs, de, ja, pl, ru, ta, zh, iu, km, ps → en
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cs-en de-en zh-en ja-en ru-en ps-en en-de en-cs
avg 14 12

MTEQA F1 0.782 0.997 0.952 0.982 0.908 0.982 0.893 0.946 0.845
MTEQA CHRF 0.796 0.996 0.959 0.982 0.901 0.980 0.887 0.950 0.815
MTEQA BLEU 0.762 0.998 0.954 0.983 0.925 0.985 0.894 0.957 0.840
MTEQA EXACT 0.762 0.998 0.954 0.966 0.910 0.986 0.883 0.950 0.874
MTEQA F1 OUT 0.808 0.998 0.949 0.980 0.917 0.984 0.891 - -
MTEQA CHRF OUT 0.835 0.997 0.957 0.979 0.910 0.986 0.891 - -
MTEQA BLEU OUT 0.809 0.998 0.950 0.981 0.929 0.984 0.896 - -
MTEQA EXACT OUT 0.827 0.999 0.948 0.969 0.902 0.983 0.884 - -
MTEQA F1 KEYPHRASE 0.851 0.998 0.944 0.978 0.930 0.986 0.896 0.941 0.877
MTEQA CHRF KEYPHRASE 0.890 0.998 0.951 0.978 0.927 0.981 0.905 0.952 0.859
MTEQA BLEU KEYPHRASE 0.844 0.998 0.939 0.973 0.945 0.991 0.900 0.943 0.873
MTEQA EXACT KEYPHRASE 0.858 0.997 0.938 0.959 0.936 0.990 0.893 0.948 0.915
MTEQA F1 OUT KEYPHRASE 0.831 0.998 0.942 0.978 0.914 0.992 0.893 - -
MTEQA CHRF OUT KEYPHRASE 0.851 0.998 0.947 0.977 0.917 0.990 0.902 - -
MTEQA BLEU OUT KEYPHRASE 0.842 0.998 0.938 0.971 0.913 0.990 0.895 - -
MTEQA EXACT OUT KEYPHRASE 0.838 0.998 0.936 0.960 0.918 0.992 0.887 - -

Table 4: System-level Pearson correlation for various variants of the proposed metric with DA human assessment
over MT systems using the newstest2020 references. Average is computed over all to-English directions available.

outperforms the traditional MT evaluation metrics
(SENTBLEU, BLEU) as well as the recently pro-
posed ones that performed very well in the WTM20
Metric Task (PRISM (Thompson and Post, 2020),
YISI-2), though for some of the translation direc-
tions (e.g. Czech-English) MTEQA F1 is much
worse (but for Czech-English, YISI-2 also does
not beat BLEU).

4.2 Variants of the D(·, ·) metric

To assess the effect of choice of the D(·, ·) metric,
we modified the baseline to exploit other options
(see Section 3.4). The results are shown in the
first section of Table 4. Unsurprisingly, the worst
results are achieved by MTEQA EXACT which
requires exact match of the test answer and the gold-
standard one. But overall, the differences here are
not large.

4.3 Generating Additional Answers

In general, the T5 model fine-tuned on the
SQuADv1 dataset does not generate plentiful ques-
tion/answer pairs. In fact, the average number of
such pairs that are generated for an English sen-
tence is only around two. Table 5 (row baseline)
presents exact figures from our experiments, i.e.,
the average numbers of questions generated from a
single segment of the newstest2020 reference files
for selected translation directions and the average
computed for all directions into English.

To increase the number of question/answer pairs,
we implemented the two methods described in Sec-
tion 3.3 and present the results in Table 4. The
systems denoted as OUT exploit question/answer

pairs extracted from the references and MT outputs
and the systems denoted as KEYPHRASE extract
the pairs by POS pattern matching and NER.

The average correlation obtained using the MT
output to generate questions (denoted as OUT) was
very similar, but slightly worse than the one using
just the questions from the reference. However,
the method based on POS pattern matching and
NER (denoted as KEYPHRASE) yielded improve-
ments over various translation directions and an-
swer comparison methods. The average numbers
of question/answer pairs obtained by this method
is shown in Table 5. It increased by the factor of
4 (approximately). Together with the CHRF met-
ric used for answer comparison, it forms the best-
performing configuration of the proposed metric.
We also include its results in Table 3 . From now
on, we will report our results using this variant.
See Appendix A for examples of usage of different
evaluation methods.

4.4 Non-English Reference

So far, all the experiments were conducted for
the translations directions into English. This is
given by the limitation of the T5 model which was
trained on English data and most importantly by the
SQuADv1 dataset which was used for fine-tuning
and which is in English.

To overcome that, we used the multilingual mT5
model (Xue et al., 2021) and fine-tuned it on ma-
chine translation of SQuADv1 dataset into German
by Lewis et al. (2020) and into Czech by (Mack-
ová and Straka, 2020). The results for English-
Czech and English-German are included in both
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cs-en de-en ja-en pl-en zh-en en-cs en-de
avg

BASELINE 2.87 2.75 1.74 1.36 1.65 1.76 1.66 1.41
KEYPHRASE 13.36 12.01 6.66 5.10 8.79 6.98 9.45 8.71

Table 5: Average number of questions generated from a single segment in the newstest2020 reference file by
the baseline system (fine-tuned T5) and the keyphrase extraction method (POS pattern matching and NER). The
average is computed over all to-English directions.

Tables 3 and 4. Overall, MTEQA still performs
very well. It is better than the traditional metrics
(SENTBLEU, BLEU) and also YISI-2 and compa-
rable with PRISM for English-German. However,
it is substantially worse than PRISM for English-
Czech. Given the fact, that the system is multilin-
gual and fine-tuned on machine-translated data, the
results are encouraging and open doors for a cross-
lingual setting which would not require reference
translations.

4.5 Comparison with MQM Scores

Recently, Freitag et al. (2021) demonstrated that
the WMT DA method traditionally used for hu-
man evaluations has actually lower correlation
with expert-based labels than the Multidimensional
Quality Metrics (MQM) scoring method developed
in the EU QTLaunchPad and QT21 projects.

To provide a more complete picture of the per-
formance of the proposed MTEQA metric, we also
report correlation with the MQM assessments. Ta-
ble 6 presents the system-level Pearson correlation
of the proposed metric with both the MQM and DA
labels for 8 systems that were re-annotated by Fre-
itag et al. (2021) and are available from GitHub5.

The results are surprising and to a large extent
unintuitive. Metrics performing well in comparison
with MQM are bad in comparison with DA. This
issue was already discussed by Freitag et al. (2021)
and we leave deeper analysis of the difference for
the future when MQM labels will be available for
more data and for more translation directions.

5 Conclusions

In this paper we introduced a new metric for auto-
matic evaluation of Machine Translation systems.
We showed that the degree to which the MT output
can be used to answer questions about the reference
can be used as a proxy to evaluate the translation
quality. We proved that our metric is robust by
conducting experiments over multiple translation

5https://github.com/google/
wmt-mqm-human-evaluation

directions.
We examined a linguistically motivated way

of extracting key phrases from the sentence and
showed that it boosts the final performance. We
checked the influence of various word-level com-
parison metrics used to compare the test and gold-
standard answers, and reported how it affects the
correlation with human scores. In our work, we
focused on translation directions into English. The
only limiting factor in applying our metric to other
translation directions is the availability of Question
Generation and Question Answering systems in a
given language. However, automatic translation of
SQuAD can be an effective way to obtain data for
training such systems.

Finally, we examined the performance against
the MQM labels and compared the performance
against the DA labels. While for the DA labels our
metric performs close to state-of-the-art solutions,
for the MQM labels there is a noticeable drop in
performance.

In the future, we plan to examine the cross-
lingual approach – instead of generating questions
and answers from the reference, one may instead
use the source directly.
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Marta R. Costa-jussà, Christian Federmann, Yvette
Graham, Roman Grundkiewicz, Barry Haddow,
Matthias Huck, Eric Joanis, Tom Kocmi, Philipp
Koehn, Chi-kiu Lo, Nikola Ljubešić, Christof
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song Ma, and Ondřej Bojar. 2020a. Results of
the WMT20 metrics shared task. In Proceedings
of the Fifth Conference on Machine Translation,
pages 688–725, Online. Association for Computa-
tional Linguistics.

Nitika Mathur, Johnny Wei, Markus Freitag, Qingsong
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A Appendix

A.1 Answer extraction
Below we show the difference in the answer extraction process using the baseline approach as opposed to
the proposed method based on POS patterns and NER tags. In both cases the same system is used for
question generation.

Answer Question
Answers extracted using the method based on POS sequences and NER tags
the stadium Where did the cat fall from?
an American football match At what event did spectators catch a cat?
upper deck What part of the stadium did the cat fall from?
A cat What animal was caught by spectators at an American football match in Miami Gardens?
Florida Where is Miami Gardens located?
spectators Who caught a cat at an American football match in Miami Gardens?
Miami Gardens Where was a cat caught by spectators at an American football match?
Answers extracted using the baseline model
cat What animal was caught by spectators at a football match in Miami Gardens?
Miami Gardens Where was a cat caught by spectators at an American football match?

Table 7: Extracted keyphrases and generated corresponding questions for the sentence: A cat was caught by
spectators at an American football match in Miami Gardens, Florida, after it fell
from the stadium’s upper deck.

Answer Question
Answers extracted using the method based on POS sequences and NER tags
Liberal What party did Ed Davey belong to?’
vaccine passports What did Ed Davey call ’divisive, unworkable and expensive’?
opposition What type of opposition was there on the Covid Recovery Group?
the Covid Recovery Group What group did Tory MPs oppose?
Ed Davey Which Liberal Democrat leader called vaccine passports ’divisive, unworkable and expen-

sive’?
Tory What political party opposed vaccine passports?
leader Who is Ed Davey?
Democrats Along with Tory MPs, what party opposed vaccine passports?
Answers extracted using the baseline model
Ed Davey Which Liberal Democrat leader called vaccine passports ’divisive, unworkable and expen-

sive’?
vaccine passports What did Ed Davey call ’divisive, unworkable and expensive’

Table 8: Extracted keyphrases and generated corresponding questions for the sentence: There had been opposition
from Tory MPs on the Covid Recovery Group as well as the Liberal Democrats, whose
leader Ed Davey called vaccine passports ’divisive, unworkable and expensive’.

Answer Question
Answers extracted using the method based on POS sequences and NER tags
russischen Welche Nationalität sind die Pelmeni?
Pelmeni Wie ist der russische Name für Pirggen?
Piroggen Was wird manchmal mit gebrannten Zwiebeln angerichtet?
gebratenen Zwiebeln Mit welchen Arten von Zwiebeln werden die russischen Pelmeni angerichtet?
Answers extracted using the baseline model
- -

Table 9: Extracted keyphrases and generated corresponding questions for the sentence: Ähnlich wie die russischen
Pelmeni werden Piroggen manchmal mit gebratenen Zwiebeln angerichtet.
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A.2 Answer comparison
Below we show the difference between gold-standard answers extracted from the reference and test
answers obtained with the Question Answering system, using the MT output as context.

Question Gold-standard Answer Test Answer
MT Output: The men‘s 100 metres semi-final begins at Sunnybrown Haquim (left).
In what distance is Sani Brown Hakim in the men‘s semifinals? 100m 100 metres
Who is Sani Brown Hakim in the 100m semifinals? the men Sunnybrown Haquim
Who started in the men‘s 100m semifinals? Sani Brown Hakim Sunnybrown Haquim
MT Output: Sani Brown Hakeem (left) will start the men‘s 100 metres semi-final.
In what distance is Sani Brown Hakim in the men‘s semifinals? 100m 100 metres
Who is Sani Brown Hakim in the 100m semifinals? the men Sani Brown Hakeem
Who started in the men‘s 100m semifinals? Sani Brown Hakim Sani Brown Hakeem

Table 10: Extracted keyphrases, generated corresponding questions and answers extracted from MT output for the reference:
Sani Brown Hakim (left) starting in the men‘s 100m semifinal.

Question Gold-standard Answer Test Answer
MT Output: Recently I flew from Moscow, where I was trained," Andrei Borovikoff said.
Who said that he flew from Moscow to study? Andrei Borovikov Andrei Borovikoff
Where was I studying? Moscow Moscow
MT Output: Recently, I flew from Moscow, where he was trained ", Andrey Borovikov told.
Who said that he flew from Moscow to study? Andrei Borovikov Andrey Borovikov
Where was I studying? Moscow Moscow

Table 11: Extracted keyphrases, generated corresponding questions and answers extracted from MT output for the reference:
Recently I flew from Moscow where I was studying," said Andrei Borovikov.
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Abstract

BERTScore (Zhang et al., 2020), a recently
proposed automatic metric for machine trans-
lation quality, uses BERT (Devlin et al., 2019),
a large pre-trained language model to eval-
uate candidate translations with respect to a
gold translation. Taking advantage of BERT’s
semantic and syntactic abilities, BERTScore
seeks to avoid the flaws of earlier approaches
like BLEU, instead scoring candidate trans-
lations based on their semantic similarity to
the gold sentence. However, BERT is not in-
fallible; while its performance on NLP tasks
set a new state of the art in general, studies
of specific syntactic and semantic phenomena
have shown where BERT’s performance devi-
ates from that of humans more generally.

This naturally raises the questions we address
in this paper: what are the strengths and weak-
nesses of BERTScore? Do they relate to
known weaknesses on the part of BERT? We
find that while BERTScore can detect when a
candidate differs from a reference in important
content words, it is less sensitive to smaller er-
rors, especially if the candidate is lexically or
stylistically similar to the reference.

1 Introduction

While manual, human evaluation of machine trans-
lation (MT) systems is still the gold standard, auto-
matic evaluation metrics have long been used for
their relative speed and inexpensiveness. Early au-
tomatic metrics were easy to implement and some-
what correlated with human judgements, but have
clear limitations: BLEU (Papineni et al., 2002) re-
lies on n-gram overlap, and is thus not robust to
differing word order or choice. In contrast, ME-
TEOR (Lavie and Agarwal, 2007) requires training,
but depends on token alignment, which is also a
fraught task.

With the advent of deep learning, new automatic
metrics have arisen, both in response to and mak-
ing use of the technical advances brought by deep

learning. In particular, metrics like COMET (Rei
et al., 2020) and BERTScore use large pre-trained
language models (LLMs) to generate scores for can-
didate sentences. The use of these LLMs allows
for metrics that take advantage of the linguistic ca-
pabilities of these LLMs, and no longer rely solely
on surface-level features such as n-grams.

The expressiveness of these models is both a
boon and a danger. While they can (and do, based
on correlation with human judgments) generate
more useful scores for translations, how they arrive
at the score, and which types of sentences they will
score accurately is not immediately obvious.

Moreover, these LLMs are known to have flaws.
BERT in particular has been shown to be, in certain
scenarios, insensitive to negation (Ettinger, 2020)
and word order (Pham et al., 2020). BERT also
has inexact representations of numbers (Wallace
et al., 2019) and fails to be robust to named enti-
ties (Balasubramanian et al., 2020). All of these
phenomena could result in poor-quality scores
from BERTScore. However, it is difficult to say
for certain how these issues might manifest in
BERTScore, as it employs BERT in an unsuper-
vised scenario distinct from that of these analyses.

Thus, in this paper, we analyze BERTScore. We
first formally define desiderata for a MT metric.
Then, we consider how BERTScore fulfills these
requirements under conditions of interest. We find
that BERTScore violates some of these require-
ments, specifically the requirement that incorrect
translations be rated below correct ones; this occurs
most often when the incorrect translation is lexi-
cally similar to the reference, or especially if the
difference is only in function (not content) words.

2 Desiderata for MT metric quality

The most common method of measuring the quality
of a MT metric is correlation with human judg-
ments (Fomicheva and Specia, 2019); however,
these correlations provide little information regard-
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ing when and why an MT metric differs from hu-
man judgment. In this paper, we consider three
ways of examining MT metric quality, with the aim
of determining the failure cases of MT metrics.

In all of our experiments, we assume the fol-
lowing setup. We have a MT metric, which we
take to be a function M that takes as input a refer-
ence and candidate translation, and outputs a score
in [0, 1]. We also have a dataset D, consisting of
triples (x, Y,B) where x is a source sentence, Y
is a list of at least two reference translations, and
B is a list of at least one “bad” translation, which
contains errors.

Then we state that a good MT metric1 M ful-
fills, for any triple (x, Y,B) ∈ D, where Y =
{y1, y2, . . . , yn}, and B = {b1, b2, . . . , bm}, the
following conditions:

(i) For any pair (y, y′) of reference translations
from Y , M(y, y′) ≈M(y, y′) ≈ 1.

(ii) For any reference translation y ∈ Y and can-
didate translation b ∈ B, M(y, b) < 1 and
M(b, y) < 1. It follows that given another
reference translation y′ ∈ Y , we should have
that M(y, b) < M(y, y′) and so on.

(iii) If we know the relative quality of the bad
translations in B, let B be a list sorted in
decreasing order of translation quality, such
that b1 is better than b2, and so on. Then for
any reference translation y, and bad transla-
tions bi, bj from B, where i < j, M(y, bi) >
M(y, bj).

Put simply, (i) reference translations should be
scored near 1 when compared to each other, (ii) bad
candidate translations should be scored worse than
reference translations, and (iii) the scoring of bad
candidate translations should reflect their relative
quality.

To use this framework to investigate the failure
points of MT metrics, we simply need a dataset
that contains phenomena of interest; for example,
we might be interested in knowing if a MT metric
is able to distinguish between translations that do
and do not correctly render negation. Then, we
simply compute the quantities discussed in condi-
tions (i) through (iii) for each example, and see
which, if any, conditions are violated. If, for exam-
ple, condition (i) is violated when two equivalent

1We assume WLOG that the metric’s scores are normalized
such that better translations receive higher mean scores, and
equally good candidates receive a score near 1.

references employ different types of negation, this
might imply that our metric is not robust to this
sort of negation phenomenon.

Note that these desiderata only concern the
scores given to the reference and candidate sen-
tences; the source-language sentence is ignored.
This is because we define these desiderata keep-
ing in mind that many MT metrics (including
BERTScore) operate only in the target language2.
We can thus avoid assuming the existence of a
source sentence whatsoever, allowing the construc-
tion of datasets consisting only of reference and
bad candidate translations that exhibit phenomena
of interest. However, it may be desirable to use real
translations, so that the dataset reflects the distribu-
tion of real-world translation errors.

3 BERTScore and BERT

3.1 BERTScore

In this paper, our metric of interest is BERTScore
(Zhang et al., 2020). To compute BERTScore, we
first feed a reference and candidate translation for a
given sentence into BERT, and retrieve their token
level vector representations. Let z be the represen-
tations of the reference and ẑ those of the candidate.
Then we compute the precision and recall metrics
for BERTScore by comparing each token represen-
tation zi of the reference translation to each token
representation ẑj of the candidate translation as
follows:

PBERT =
1

|ẑ|
∑

ẑj∈ẑ
max
zi∈z

z>i ẑj

RBERT =
1

|z|
∑

zi∈z
max
ẑj∈ẑ

z>i ẑj

The F1 score can be defined as usual. As
BERTScore can range from -1 to 1, but most of-
ten inhabits the upper end of that range, its creators
suggest the use of baseline scaling, which generally
leaves BERTScore in the range [0,1], as desired for
use with our prior formalization. Baseline rescaling
is performed for PBERT as

P̂BERT =
PBERT − a

1− a
and likewise for RBERT ; a is an empirical lower
bound on observed BERTScore.

2In the long term, explicit inclusion of the source sentence
in MT evaluation would be useful but that is not the concern
of this work.
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The form of BERTScore naturally leads to its
interpretation as a similarity-based metric. It pe-
nalizes candidates containing words whose repre-
sentations are not similar to any of the reference’s
words’ representations (precision), and vice-versa
(recall). As a result, the quality and characteristics
of these representations, derived from BERT, will
play a key role in the quality of BERTScore.

3.2 BERT

What, then, is known about BERT, and its syntactic
and semantic capabilities? Of the two, it is syntax
that BERT is most widely claimed to capture within
its internal representations: Hewitt and Manning
(2019) use structural probing to find dependency
trees in BERT’s vector geometry, while Tenney
et al. (2019) use probing to find part of speech
tags and dependency arc labels, among other types
of syntactic information. Analysis of BERT’s at-
tention has shown that certain heads attend to not
only relevant linguistic units such as determiners of
nouns and coreferent mentions (Clark et al., 2019),
but also dependency relations (Htut et al., 2019).

However, these analyses of internal representa-
tions and the information contained therein occa-
sionally come at odds with targeted evaluations of
BERT’s syntactic abilities. Despite BERT’s sup-
posed knowledge of syntax, its predictions often
remain the same, even when its inputs are shuffled
(Pham et al., 2020). Moreover, BERT does not
seem to understand negation (Ettinger, 2020); this
may be due to BERT encoding syntactic informa-
tion, but not necessarily using it in its predictions
(Glavas and Vulić, 2021).

For semantics, the situation is even more com-
plicated. While BERT’s performance on natural
language understanding tasks set a new state of
the art, more targeted tests of its semantic abili-
ties have yielded less positive results. BERT has
limited knowledge of lexical semantic relations
such as hypernymy (Ravichander et al., 2020) and
antonymy (Staliunaite and Iacobacci, 2020). More-
over, it has fragile representations of named enti-
ties (Balasubramanian et al., 2020), and imprecise
representations of numbers (Wallace et al., 2019).
These flaws comprise specific linguistic phenom-
ena that BERTScore, due to its use of BERT, might
be unable to handle, and thus merit investigation.

German Source: Ich habe mich konzentriert.
Good Translation 1: I focused.
Good Translation 2: I’ve been concentrating.
Bad Translation 1: I’ve focused me.
Bad Translation 2: I have focussed.
Broad phenomenon: Verb Tense / Aspect /
Mood
Specific phenomenon: Reflexive - Perfect

Figure 1: Example data from TQ-AutoTest.

4 Experiments

For our experiments, we utilize the framework de-
scribed in Section 2 to investigate the questions
about BERT described in Section 3. As the number
of datasets that fit our framework is few, we limit
ourselves to three primary experiments.

4.1 TQ-AutoTest
First, we apply our framework to the TQ-AutoTest
dataset (Macketanz et al., 2018). Originally used
for targeted evaluation of MT systems, it includes
German source sentences that each exhibit one of
14 different linguistic phenomena, such as ambigu-
ity, composition, and subordination.

Each example contains a source sentence, an-
notated with the broader and more specific phe-
nomenon it exhibits, as well as 1-2 reference trans-
lations and 0-2 incorrect translations; see Figure 1
for a sample. As the dataset released is small, we
filter out phenomena containing fewer than 5 ex-
amples.

We can thus test condition (i) by computing the
BERTScore between the two references, and ver-
ifying it is close to 1. We also test condition (ii)
by comparing the BERTScore assigned (with re-
spect to a given reference) to the other reference,
and that which is assigned to a bad translation; the
former should be greater than the latter. We cannot
test condition (iii), as the dataset does not provide
multiple bad translations sorted by quality.

4.2 PE2rr
Second, we use the PE2rr dataset (Popović and
Arčan, 2016), which is a manually annotated error
analysis of MT output. Each example in the dataset
consists of a source sentence, one MT output, and
two correct translations, along with two error anno-
tations. These annotations are word-level annota-
tions into 8 broadly non-linguistic classes, such as
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German Source: Frauen , die in Burkina Faso
zu Hexen abgestempelt werden , weisen in
der Regel einige gemeinsame gesellschaftliche
Merkmale auf .
Original Translation (Annotated): Women
in Burkina Faso [miss] are branded as
witches , usually [miss] some common so-
cial features .
Post-edit: Women in Burkina Faso who are
branded as witches usually have some common
social features .
Original Reference: Women declared as
witches in Burkina Faso usually have several
common characteristics .

Figure 2: Example data from PE2rr. The “[miss]”
tokens inserted in the original translation correspond
to one of the annotator’s error notations, indicating a
missing word.

“addition”, “lexical error”, or “untranslated”. See
Figure 2 for an example.

Despite the difference in annotation type, we
apply our framework just as with the prior exper-
iment. For consistency with the prior experiment,
we use only the portion of the dataset where the tar-
get language is English (i.e., the German-English
portion). We also filter out any examples in which
the machine translation output is totally correct,
as this would leave no bad examples with which
to test conditions other than (i). This once more
allows us to test conditions (i) and (ii).

4.3 Grammatical Error Correction
Finally, we use two non-MT datasets for gram-
matical error correction (GEC): the CoNLL 2014
shared task dataset (Ng et al., 2014), as well as
additional annotations released by Bryant and Ng
(2015). The former consists of non-native English
speakers’ essays on genetic testing, paired with an-
notated corrections from two annotators for each
sentence. The latter adds additional annotators’
corrections for each sentence, yielding 11 in total.

Of special interest in this dataset is the pres-
ence of, for each example, an incorrect sentence
and 11 sets of error-annotated corrections that can
be applied to obtain correct sentences. Thus, for
each original, ungrammatical sentence, we have
10 (often distinct) grammatical sentences, whose
meaning should be roughly the same; these act as
reference sentences. This allows us to test condi-

tions (i) and (ii).
We can also test condition (iii) by using the fol-

lowing moderate assumption: a sentence, originally
grammatically incorrect, is more correct if more
corrections have been applied to it. That is, apply-
ing one or more corrections (from the same annota-
tor) brings an incorrect candidate sentence closer
to the shared meaning of the reference sentences.
This assumption can be false: sometimes a group
of corrections, rather than one alone, is needed to
increase the grammaticality of a sentence. But, this
assumption allows us to apply an arbitrary num-
ber of corrections to an initially incorrect sentence,
to generate intermediate incorrect sentences, with
controlled, graded, levels of incorrectness.

So, we generate two incorrect candidates by ap-
plying different numbers of edits from the same an-
notator to one original sentence. We then generate a
reference sentence by applying all of another anno-
tator’s edits. Finally, we calculate the BERTScore
of each candidate with respect to this reference; the
candidate that received more edits should receive a
higher BERTScore. Note that the reference must
be generated by a different set of edits; comparing
partially-corrected sentences to a correct sentence
generated from same edits would make this a trivial
string comparison problem. Figure 3 provides an
example of this process.

5 Results

In the following section, we detail the experiments
performed and their results. In all experiments, the
original authors’ implementation of BERTScore3

is used, with default baseline rescaling.

5.1 TQ-Autotest

As discussed in Section 4.1, we test conditions (i)
and (ii) with the TQ-Autotest dataset. First, we
filter the dataset to include only those examples
for which there are at least two good translations
(y, y′). Then, to test condition (i), we compute the
BERTScore (BERTScore(y, y′)) assigned to the
pair of good translations, then compute the mean
score for each category.

Note that one should not make absolute compar-
isons between the mean BERTScore assigned to
each category and the desired value (1.0) of the
mean score. Because BERTScore can easily be
rescaled, it is more useful to verify that good trans-
lation pairs receive similar scores across categories;

3Available at https://github.com/Tiiiger/bert_score
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Original: As a result , if the situation keep go
on in this unexpected trend , it will cause a bad
effect on the young generation .
Corrections (Annotator 2):
(7, 8, ‘keeps’, subject-verb agreement)
(8, 10, ‘following’, word choice)
(10, 11, ‘’, preposition)
(17, 18, ‘have’, word choice)
(23, 24, ‘younger’, word form)
Original + 1 correction (b1): As a result , if
the situation keeps go on in this unexpected
trend , it will cause a bad effect on the young
generation .
Original + 4 corrections (b4): As a result , if
the situation keeps following this unexpected
trend , it will have a bad effect on the young
generation .
Alternate reference (Annotator 7) (y): As a
result , if the situation keeps going on in this
unexpected trend , it will have a bad effect on
younger generations .

Figure 3: Creation of graded ungrammatical sen-
tences from GEC data. Each correction is a tu-
ple of (start index, end index, new text, error
made). We apply a correction via string replace-
ment (i.e. in Python: original[start_index:
end_index] = new_text). Having received
more corrections, b4 should be closer to y than b1
is. Thus, we should have BERTScore(y, b4) >
BERTScore(y, b1).

Linguistic Phenomenon BERTScore (F1)
LDD & interrogatives 0.849

Composition 0.852
Punctuation 0.864

Function word 0.712
Subordination 0.763

Non-verbal agreement 0.830
Ambiguity 0.804

Verb tense/aspect/mood 0.795
Coordination & ellipsis 0.885
Named entitiy & term. 0.859

MWE 0.874
Average 0.815

Table 1: TQ-AutoTest: Mean BERTScore (F1) as-
signed to gold reference, gold candidate pairs, by lin-
guistic phenomenon

Linguistic Phenomenon Accuracy
LDD & interrogatives 82.4

Composition 60.0
Punctuation 40.0

Function word 42.9
Subordination 75.0

Non-verbal agreement 60.0
Ambiguity 100.0

Verb tense/aspect/mood 73.6
Coordination & ellipsis 80.0

Named entity & terminology 85.7
MWE 100.0

Average 75.5

Table 2: TQ-AutoTest: Average Accuracy by
broad linguistic phenomenon. Credit is given when
BERTScore(y, y′) is greater than BERTScore(y, b), and
BERTScore(y, b′), if a b′ is provided.

these scores could then easily be rescaled to 1.0.
Thus, in this section, we explore only which types
of correct sentence pairs BERTScore is more or
less able to assign a high score, compared to the
average score given to correct sentence pairs.

We see in table Table 1 that the average
BERTScore for each category falls near the average.
There are some notable exceptions: for example,
the “function word” category, which falls well be-
low the mean. This indicates that BERTScore gives
different correct translations of the same sentence
lower scores, when that sentence contains difficult
function words. In contrast, the “coordination & el-
lipses” and “multi-word error” categories fall well
above the mean, suggesting that alternate correct
translations of sentences containing these phenom-
ena are scored more highly.

In the second experiment, we test condition
(ii) via the following procedure. Once more,
we filter the dataset, such that every example in-
cludes two good translations and one bad transla-
tion, (y, y′, b), with potentially another bad trans-
lation b′ as well. Then, we test the accuracy
of BERTScore on these examples. BERTScore
is deemed to correctly answer an example if
BERTScore(y, y′) > BERTScore(y, b). If b′ is
present, as in 71% of examples, it is also neces-
sary that BERTScore(y, y′) > BERTScore(y, b′).
We then report the mean accuracy for each category
of linguistic phenomenon.

In this second experiment, see Table 2, the dif-
ferences are more pronounced. In some categories,
namely those such as “ambiguity”, and “multi-
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Error Type Count BERTScore (F1)
reordering 135 0.560

untranslated 55 0.553
lexical 171 0.584

inflection 72 0.571
derivation 16 0.537
missing 164 0.578

contraction 14 0.560
Average 90 0.587

Table 3: PE2rr: Mean BERTScore (F1) for reference
sentence pairs where the original machine translation
contains at least one error of the given type.

word error” which are likely to result in totally
incorrect word choice (i.e. an obvious lexical differ-
ence), BERTScore has a high accuracy. In contrast,
BERTScore struggles with difficult punctuation as
well as composition errors and function words; no-
tably, the last category also has the lowest score
in Table 1. These errors are all somewhat subtle.
Errors in function words are by definition not er-
rors in more obvious content words. Similarly, in
compositional phenomena like phrasal verbs, an er-
ror can appear simply as the omission or incorrect
substitution of a mere preposition.

In order to provide context for these results, we
also run the second experiment (which corresponds
to Table 2) using BLEU score4 as our metric. As
with BERTScore, we mark an example as correct
when BLEU(y, y′) is greater than BLEU(y, b), and
BLEU(y, b′), if a b′ is provided. We omit the
category-level results for brevity, but find that the
mean accuracy for BLEU is significantly lower, at
36.2%, compared to 75.5% in Table 2. This sug-
gests that although BERTScore is flawed, it is at
least more accurate than BLEU.

5.2 PE2rr

Using the PE2rr dataset, we again test conditions
(i) and (ii). We use an approach like that taken
with the TQ-AutoTest dataset. First, we filter out
examples in which the two references translations
provided are identical; in this case, the BERTScore
will be trivially 1. For all other examples (y, y′),
we compute BERTScore(y, y′). Then, for each
error category, we compute the mean BERTScore
(F1) among all examples that contain at least one

4We calculate BLEU as implemented in the
multi-bleu.perl script at https://github.com/
moses-smt/mosesdecoder/blob/master/
scripts/generic/multi-bleu.perl

Error Type Acc. (Easy) Acc. (Hard)
reordering 97.0 44.4

untranslated 100.0 72.7
lexical 98.2 46.2

inflection 100.0 50.0
derivation 100.0 50.0
missing 97.0 46.3

contraction 100.0 50.0

Table 4: PE2rr: Average accuracy by error type, for
both the easy and hard problem scenarios. Credit
is given when BERTScore(y, y′) is greater than
BERTScore(y, b).

Figure 4: PE2rr: BERTScore accuracy on sentences
with n errors, in the easy and hard scenarios.

of that error. Results are reported in Table 3.
We find that the average BERTScore assigned to

pairs of correct translations in this dataset, 0.587,
is much lower than in TQ-AutoTest, where the av-
erage BERTScore assigned to correct translations
pairs was 0.815. Moreover, PE2rr examples with
no errors in their machine translation have a higher
BERTScore assigned to their correct translations.

Testing condition (ii) with the PE2rr dataset is
somewhat more challenging. First, we filter out
any of the machine translations that have no errors
(as we need a bad translation to test condition (ii)).
Normally, the next step would be to compute and
compare, using our two references translations y, y′

and one bad translation b, BERTScore(y, y′) and
BERTScore(y, b).

However, a difficulty arises: while each example
has two correct translations, and one incorrect ma-
chine translation, the two correct translations are
not generated in the same way. One is a post-edit
of the machine translation, while the other is an
original reference, generated from the German text
without the machine translation.
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If we choose the original reference to be y, and
the post-edit to be y′, this is a fair comparison; how-
ever, if we choose the post-edit to be y, the task
becomes much more challenging. This is because
BERTScore(y, b) will be comparing a post-edited
machine translation to the original machine trans-
lation, and there will naturally be a good deal of
overlap, even though b contains errors. So, we re-
port results in two cases in Table 4: the easy case,
where y is the original reference, and the hard case,
where y is the post-edit.

This choice has a major effect on the ability of
BERTScore to distinguish good translations from
bad ones. When we choose the original reference
as y, BERTScore has a high accuracy in all cat-
egories. In contrast, in the hard problem setting,
BERTScore does poorly (at or below chance) in all
categories except sentences with an untranslated
word, which is likely easy for BERTScore to detect.

We again compare BERTScore to BLEU to con-
textualize our results for condition (ii) (in Table 4).
We find that once more BERTScore outperforms
BLEU, which achieves accuracies below 50% in
all categories in the easy setting, and below 13%
in the hard setting. The disparity between the easy
and hard setting performance reflects the fact that
BLEU also struggles to penalize bad translations
with high n-gram overlap, compared to those with
less overlap.

Finally, to provide an alternate explanation for
the trend in BERTScore accuracies, we plot in Fig-
ure 4 the BERTScore accuracy for examples with n
errors, in both the easy and hard scenarios. While in
the easy scenario, BERTScore has an accuracy near
1 for n >= 5, in the hard scenario, the accuracy is
lower, but increases with n. This suggests that it is
easier for BERTScore to distinguish between trans-
lations that are good and those that are bad, but
lexically similar to the postedited reference, when
the latter contain more errors. Alternatively, we
can view this as BERTScore being less sensitive
to translation errors (except when they are numer-
ous), and relatively more sensitive to the stylistic
differences that exist between the post-edited and
original reference sentences.

5.3 Grammatical Error Correction

For GEC, we test all three conditions. To test the
first, we use the 11 annotators’ corrections to create
post-edited versions (y1, . . . , y11) of the original
sentences; these should all have the same mean-

Figure 5: GEC: Heatmap of Average BERTScore (F1)
assigned when comparing references from a given pair
of annotators

n: # of bn: With b0: Without y′: Alternate
Errors Errors Errors Reference

1 0.841 0.850 0.865
2 0.830 0.844 0.860
3 0.820 0.839 0.856
4 0.814 0.828 0.847
5 0.812 0.821 0.842

Table 5: GEC: Average BERTScore (F1) assigned
when comparing a reference y to a) bn, a sentence with
n errors in it, b) b0, the same sentence, but with all
errors corrected, and c) y′, an alternate reference sen-
tence.

ing. Then, we compute the mean BERTScore (F1)
for each pair of annotators’ post edits; these are
reported in Figure 5. The mean BERTScore falls in
a very narrow range (0.84-0.88), except for Anno-
tators 1 and 8, who provided similar annotations.

We test conditions (ii) and (iii) jointly. To do so,
we need two correct translations, created indepen-
dently of one another. We also need two partially
correct translations (of different levels of correct-
ness) and one correct translation; these must be
created from the same set of edits, independent of
the first two. To create these, we first select three
annotators, and assign them roles: reference an-
notator, alternate reference annotator, and “error”
annotator. Next, for n = 1, . . . , 5, we filter out
all examples where the error annotator made fewer
than n error annotations. Then, for each example,
the reference and alternate reference annotators’ an-
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notations are used to create one reference sentence
(y) and alternate reference sentence (y′). The error
annotator’s annotations are used to create both a
third, fully corrected sentence (b0), and a sentence
with n errors in it (bn); the errors that remain are
chosen at random.

Finally, we compute BERTScore(y, y′),
BERTScore(y, b0), and BERTScore(y, bn); the
mean values for each of these is reported in Table 5.
Note that although b0 and y′ have no errors, their
mean BERTScore still changes with n because
we filter out examples that have fewer than n
errors according to the error annotator. Thus,
the downward trend with growing n reflects the
fact that, as the number of errors in a sentence
increases, the annotators’ corrections diverge.

We can see that BERTScore does respect condi-
tions (ii) and (iii) within the GEC data. The alter-
nate reference and error-free sentence are always
assigned a higher score than the sentence with er-
rors (ii). Moreover, the sentences with more errors
are assigned a lower score than those containing
fewer errors (iii).

Also of note is the absolute magnitude of the
BERTScores assigned in this experiment, which
is much higher than those in the prior PE2rr ex-
periment. The mean BERTScore assigned to even
examples containing 5 errors (0.812, Table 5), is
much higher than the mean BERTScore assigned to
PE2rr reference pairs (0.587, Table 3). As before,
we suggest that this occurs due to sensitivity to
style. Although b5 contains errors, it is stylistically
similar to the reference, as they are both edits of the
same sentence; in contrast, the two references in
the PE2rr dataset are very distinct from one another.

Finally, we perform this same evaluation with
BLEU, again omitting full results for brevity. We
find that BLEU, regardless of n, gives the alternate
reference y′ a higher score than the other sentences.
However, the BLEU scores assigned to bn and b0
were similar, and b0 did not consistently receive
higher scores. Thus, we conclude that BERTScore
also performs better on this task.

6 Discussion

From our experiments on three datasets, we draw
three main findings. First, we find that the perfor-
mance of BERTScore with respect to conditions
(i) and (ii) can vary based on linguistic phenom-
ena. Second, while BERTScore is generally capa-
ble, it has difficulties on a challenge dataset that

tasks it with penalizing lexically similar incorrect
translations and preferring translations that are lexi-
cally different but more correct. Third, BERTScore
does, in certain circumstances, respect our third
condition—it ranks worse bad translations below
better bad translations.

With respect to the first finding, penalizing
translations that incorrectly render function words
seems to be the most difficult for BERTScore. In
TQ-Autotest, this includes sentences with tag ques-
tions; in one example, the reference is “You’re
crazy, aren’t you?”, and secondary good translation
is “You’re crazy, right?”, while incorrect sentences
are “You’re crazy, or?” and “You’re crazy, are
not you?”. That is, the differences do not affect the
main content of the sentence. In contrast, sentences
with incorrectly resolved word ambiguity or larger,
multi-word errors were easily penalized.

The second finding also confirms that
BERTScore can more easily detect bad translations
when there is less lexical overlap. In the easy
problem setting, where both the good and bad
candidate translations were lexically distinct from
the reference, BERTScore easily distinguished the
good translation from the bad. But, in the hard
problem setting, where the bad translation has high
lexical overlap with and was stylistically similar to
the reference, BERTScore struggled. Due to this
style sensitivity, BERTScore may be better-suited
to scoring candidates from widely-differing
systems, as opposed to closely-related systems, or
multiple candidates from one system.

Our third finding, provides more positive results.
In the GEC scenario, BERTScore was able to fulfill
all three of the conditions we defined. It not only
gave high scores to similar sentences and worse
scores to sentences with errors; it also gave better
scores to more grammatically correct sentences,
even when they were not perfectly correct.

Unfortunately, the GEC dataset does not nec-
essarily reflect the kinds of errors that occur in
machine translation. It focuses primarily on gram-
matical errors, and thus contains fewer semantic er-
rors. Moreover, since the GEC annotators had only
the incorrect text, and no source text to work with,
their annotations are occasionally in disagreement,
as they each independently inferred the intended
meaning of the incorrect text.
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7 Related Work

The original paper introducing BERTScore (Zhang
et al., 2020) naturally compared BERTScore’s cor-
relations with human judgments to that of other
metrics. However, various other surveys of MT
metrics, as well as datasets and methodologies have
been conducted, offering insights into how MT sys-
tem and metric performance should be measured.

Naturally, the WMT Metrics task, most recently
run in 2020 (Mathur et al., 2020b) is one such
forum for the evaluation of metrics. In this last
iteration, metrics were evaluated based on their
correlation with human judgment scores on the sen-
tence, paragraph, and document level. BERTScore
was not included even in the most recent iteration
of the metrics task.

More recently, Kocmi et al. (2021) run a
large-scale comparison of MT metrics, including
BERTScore using a large dataset of translations
with human judgments; they find that BERTScore’s
performance is middle-of-the-road, though better
than BLEU, and recommend COMET (Rei et al.,
2020) for general use.

Unfortunately, while these studies evaluate MT
metrics, using human judgments alone cannot tell
us when or why they may succeed or fail. In re-
sponse to the results of 2019 WMT Metrics Task
(Ma et al., 2019), Mathur et al. (2020a) note that
correlations of metrics with human judgment can
be highly sensitive to the number of systems in
question, as well as outliers.

Fomicheva and Specia (2019) propose moving
beyond correlation with human judgment alone
as a standard for MT metric evaluation. To this
end, they conduct a comprehensive study of MT
metrics, and review datasets that have more fine-
grained error and quality annotations. Despite this,
datasets for MT metric evaluation with linguistic
annotations or other annotations regarding sentence
content are few.

8 Conclusion

BERTScore is a new metric for MT evaluation
that uses BERT, and is as a result difficult to in-
terpret. We define desiderata for BERTScore and
other such metrics’ performance, and use targeted
datasets to find when BERTScore fails. We find
that BERTScore fails to assign low scores when
a bad candidate sentence has high lexical overlap
with the reference in terms of content words. De-
spite this, in less challenging scenarios, BERTscore

does well, and is able to rank sentences in order of
their quality. Moreover, BERTScore outperforms
BLEU score across the datasets and conditions we
tested. However, these experiments are limited in
scope, due to limited available data with appropri-
ate annotations. Development of datasets for MT
metric evaluation with linguistic annotation would
aid in further work on this topic.
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Abstract

Despite the increasing number of large and
comprehensive machine translation (MT) sys-
tems, evaluation of these methods in various
languages has been restrained by the lack of
high-quality parallel corpora as well as en-
gagement with the people that speak these lan-
guages. In this study, we present an evaluation
of state-of-the-art approaches to training and
evaluating MT systems in 22 languages from
the Turkic language family, most of which
being extremely under-explored (Joshi et al.,
2019). First, we adopt the TIL Corpus (Mirza-
khalov et al., 2021) with a few key improve-
ments to the training and the evaluation sets.
Then, we train 26 bilingual baselines as well
as a multi-way neural MT (MNMT) model us-
ing the corpus and perform an extensive anal-
ysis using automatic metrics as well as human
evaluations. We find that the MNMT model
outperforms almost all bilingual baselines in
the out-of-domain test sets and finetuning the
model on a downstream task of a single pair
also results in a huge performance boost in
both low- and high-resource scenarios. Our at-
tentive analysis of evaluation criteria for MT
models in Turkic languages also points to the
necessity for further research in this direction.
We release the corpus splits, test sets as well as
models to the public1.

1 Introduction

The last few years have seen encouraging ad-
vances in low-resource MT development with the
increasing availability of public multilingual cor-
pora (Agić and Vulić, 2019; Ortiz Suárez et al.,
2019; Schwenk et al., 2019; El-Kishky et al., 2020;
Tiedemann, 2020; Goyal et al., 2021; ∀ et al., 2020)
and more inclusive multilingual MT models (Ari-
vazhagan et al., 2019; Tiedemann and Thottingal,
2020; Fan et al., 2020). In this study, we take the

1https://github.com/
turkic-interlingua/til-mt

Figure 1: Performance comparison between bilingual
baselines and the MNMT model on X-WMT test set.

Turkic language family into focus, which has not
been studied at large in MT research (detailed re-
view in Section 2). Most recently, in a wide evalua-
tion of translation between hundreds of languages
with a multilingual model (M2M-124) trained on
large web-mined parallel data, translation into,
from, and between Turkic languages was shown to
be very challenging compared to other language
families (Goyal et al., 2021). With the promise
of strong transfer capabilities of multilingual mod-
els especially for related languages, we hope that
the inclusion of a wider set of Turkic languages
into a joint model can unlock automatic translation
even for the very low-resourced Turkic languages
where no prior translation models exist (Koehn,
2005; Choudhary and Jha, 2011; Post et al., 2012;
Nomoto et al., 2018; Esplà-Gomis et al., 2019; ∀
et al., 2020).

To this aim, we adopt the TIL Corpus (Mirza-
khalov et al., 2021) compiled by the Turkic Inter-
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Name Codes Speakers Data MT?

English en, eng 400.0M 38.6M 3

Russian ru, rus 258.0M 23.3M 3

Turkish tr, tur 85.0M 52.6M 3

Kazakh kk, kaz 13.2M 5.3M 3

Uzbek uz, uzb 27.0M 2.9M 3

Azerbaijani az, aze 23.0M 2.2M 3

Tatar tt, tat 5.2M 1.8M 3

Kyrgyz ky, kir 4.3M 1.7M 3

Chuvash cv, chv 1.0M 1.5M 3

Turkmen tk, tuk 6.7M 910.4K 3

Bashkir ba, bak 1.4M 880.5K 3

Uyghur ug, uig 10.0M 334.8K 3

Karakalpak kaa 583.0K 253.8K 7

Khakas kjh 43.0K 219.0K 7

Altai alt 56.0K 192.6K 7

Crimean Tatar crh 540.0K 185.3K 7

Karachay-Balkar krc 310.0K 162.8K 7

Gagauz gag 148.0K 157.4K 7

Sakha sah 450.0K 157.1K 3

Kumyk kum 450.0K 156.8K 7

Tuvinian tyv 280.0K 100.3K 7

Shor cjs 3.0K 2.3K 7

Salar slr 70.0K 766 7

Urum uum 190.0K 491 7

Table 1: (The table indicates the language codes used
for the Turkic languages along with the number of L1
speakers, amount of available data (in sentences) in our
corpus. The column MT? indicates if there are cur-
rently available online machine translation systems for
the language. K: thousand, M: million.)

lingua2 community (Mirzakhalov, 2021) including
X-WMT test sets with a few key improvements
(Section 3). We train a multi-way NMT (MNMT)
model on the entire parallel corpus, which consti-
tutes the first large-scale multilingual translation
model specifically for Turkic languages (Section 4).
We perform an extensive analysis of the strengths
and weaknesses of this model, comparing it to the
bilingual baselines and evaluating it under a domain
shift. We find that the MNMT model outperforms
almost all bilingual baselines in the out-of-domain
tests while it performs comparably or underper-
forms in the in-domain tests. We further analyze
its capacity for transfer learning by fine-tuning the
model on several language pairs all of which expe-
rience gains, both in- and out-of-domain scenarios.
In addition, we complement the automatic evalu-
ation with a human evaluation study for multiple
languages (Section 5), gaining insights into types
of common mistakes that the model makes and the
suitability of different automatic metrics for Tur-

2https://turkicinterlingua.org/

kic languages. We plan on releasing the improved
corpus, evaluation sets, and all the models to the
public.

This work will not only enrich the landscape of
languages currently considered in MT research and
spur future research on NLP for Turkic languages
but will hopefully also inspire the building of new
translation engines and derived technologies for
populations with millions of native speakers (Ta-
ble 1).

2 Related Work

This section discusses the previous work on MT
of these languages including the available cor-
pora and languages resources. The 19 Turkic lan-
guages covered in the study are: Altai, Azerbai-
jani, Bashkir, Crimean Tatar, Chuvash, Gagauz,
Karachay-Balkar, Karakalpak, Khakas, Kazakh,
Kumyk, Kyrgyz, Sakha, Turkmen, Turkish, Tatar,
Tuvan, Uyghur, and Uzbek. There are several other
widely spoken languages that are left out from our
study such as Shor, Salar, Urum, Nogai, Khorasani
Turkic, Qashqai, and Khalaj, due to the lack (or
very limited amount) of any available parallel cor-
pora. Future work will focus on extending the
corpus to these languages as well.

2.1 MT of Turkic Languages

The need for more comprehensive and diverse mul-
tilingual parallel corpora has sped up the creation of
such large-scale resources for many language fam-
ilies and linguistic regions (Koehn, 2005; Choud-
hary and Jha, 2011; Post et al., 2012; Nomoto et al.,
2018; Esplà-Gomis et al., 2019; ∀ et al., 2020).
Tiedemann (2020) released a large-scale corpus for
over 500 languages covering thousands of transla-
tion directions. The corpus currently includes 14
Turkic languages and provides bilingual baselines
for all translation directions present in the corpus.
However, most of the 14 Turkic languages contain
a few hundred or a dozen samples. In addition,
the varying and limited size of the test sets does
not allow for the extensive analysis and compar-
isons between different model artifacts, linguistic
features, and translation domains. More recently,
Goyal et al. (2021) extended the previous Flores
benchmark by providing human translated evalua-
tion sets for 101 languages, among which 5 of them
are from the Turkic family: Azerbaijani, Kazakh,
Kyrgyz, Turkish, and Uzbek. Similarly, they train
a large MNMT model and evaluate its performance
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using the benchmark.
A Russian-Turkic parallel corpus was curated

for 6 different Turkic languages, and their bilingual
baselines have been reported for both directions
using different NMT-based approaches Khusainov
et al. (2020). However, the dataset, test sets, and
models are not released to the public which limits
its use to serve as a comparable benchmark. Ad-
ditionally, a rule-based MT framework for Turkic
languages has been presented with 4 language pairs
Alkım and Çebi (2019). Also, several rule-based
MT systems have been built for Turkic languages
which are publicly available through the Apertium3

website Washington et al. (2019).
For individual languages in our corpus, there

are several proposed MT systems and linguistic
resources: Azerbaijani (Hamzaoglu, 1993; Fatul-
layev et al., 2008), Bashkir (Tyers et al., 2012),
Crimean Tatar (Gökırmak et al., 2019; Altıntaş,
2001), Karakalpak (Kadirov, 2015), Kazakh (As-
sylbekov and Nurkas, 2014; Sundetova et al.,
2015; Littell et al., 2019; Briakou and Carpuat,
2019; Tukeyev et al., 2019), Kyrgyz (Çetin and Is-
mailova), Sakha (Ivanova et al., 2019), Turkmen
(Tantuğ and Adalı, 2018), Turkish (Turhan, 1997;
El-Kahlout and Oflazer, 2006; Bisazza and Fed-
erico, 2009; Tantuğ et al., 2011; Ataman et al.,
2017), Tatar (Salimzyanov et al., 2013; Khusainov
et al., 2018; Valeev et al., 2019; Gökırmak et al.,
2019), Tuvan (Killackey, 2013), Uyghur (Mahsut
et al., 2004; Nimaiti and Izumi, 2012; Song and Dai,
2015; Wang et al., 2020), and Uzbek (Axmedova
et al., 2019). Yet to our knowledge, there has not
been a study that covers Turkic languages to such
a large extent as ours, both in terms of multilingual
parallel corpora and multiway NMT benchmarks
across these languages.

3 TIL Corpus

As we adopt the TIL Corpus as the training data,
we perform a few key modifications to better the
quality of the datasets.

First, we notice that the alignments for the Bible4

and TedTalks5 datasets were not optimal as most
”sentences” were actually comprised of multiple
sentences in order to preserve the quality of the
alignment with target sequence. For example, in

3https://www.apertium.org/
4https://bible.is/
5https://www.ted.com/participate/

translate

the case of TedTalks, the original speech utterance
may have been 2-3 sentences in text but the trans-
lation of that speech may end up differing by 1
or even more sentences depending on the trans-
lator. Common practice in this situation, as seen
through multiple corpora across OPUS6, is to leave
the entire utterance as is to preserve the quality of
the alignment even if the number of sentences do
not match. Instead, we drop the examples where
the total number of sentences do not match and
split (and realign) the cases where they do. This
naturally increased the overall number of sentence
alignments in both the Bible and TedTalks corpora
for all language pairs.

Second, we perform a corpus-wide length and
length-ration filtering where we drop sentence pairs
that are single words as well as the entries where
source and target ratio is over 2.

Third, we re-curate the in-domain evaluation sets
following the improvements to the corpus. Details
on the evaluation sets are described further in Sec-
tion 3.1.

3.1 Curation of evaluation sets

The original TIL Corpus introduced three evalua-
tion sets with different domains (Bible, TedTalks,
and X-WMT). To simplify the analysis of the mod-
els, we re-curate the in-domain evaluation sets by
randomly sampling from each corpora. X-WMT is
used as the out-of-domain test set since it is from
the news domain with substantial amount of new
words/terms that most of the language pairs lack.
The curation steps for the test sets are presented
below.

3.1.1 In-domain Evaluation Sets

In-domain development and test sets are randomly
sampled from each language pair and can serve as
evaluation sets for both bilingual and multilingual
models. The size of the development and test sets
depends on the amount of training data available.
More specifically, development and test sizes are
5k each if the train size is over 1 million parallel
sentences, 2.5k if over 100k, 1k if over 10k, and
500 if over 2.5k. All test and development samples
are removed from the training corpus for that lan-
guage pair. Overall, this yields development and
test sets for exactly 400 language pairs.

6https://opus.nlpl.eu/
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en ru ba tr uz ky kk az sah kaa

en —
ru 1000 —
ba 1000 1000 —
tr 800 800 800 —
uz 900 900 900 600 —
ky 500 500 500 400 500 —
kk 700 700 700 500 700 500 —
az 600 600 600 500 600 500 500 —
sah 300 300 300 300 300 300 300 300 —
kaa 300 300 300 300 300 300 300 300 300 —

Table 2: X-WMT test sets. Bolded entries indicate the
original translation direction.

3.1.2 X-WMT Test Set
X-WMT is a challenging and human-translated test
set in the news domain based on the profession-
ally translated test sets in English-Russian from the
WMT 2020 Shared Task (Mathur et al., 2020). It
was originally introduced in the TIL Corpus and we
adopt the test sets as they are. Currently, the test set
extends into 8 Turkic languages (Bashkir, Uzbek,
Turkish, Kazakh, Kyrgyz, Azerbaijani, Karakalpak,
and Sakha) paired with English and Russian. Ta-
ble 2 highlights the currently available test set di-
rections. Bolded entries in the table indicate the
original direction of the translation.

4 Experimental Setup

4.1 Bilingual Experiments

To serve as initial baselines, we train 26 bilingual
baselines using the corpus and report the perfor-
mance on the in-domain test set as well as the X-
WMT set (out-of-domain) as described in Section
3.1.2. The selection of the language pairs was con-
stricted by the availability of both in-domain and
out-of-domain test sets to enable more meaningful
insights from the experiments.

4.1.1 Model details
All models are Transformers (transformer-base)
(Vaswani et al., 2017b) and are trained using the
JoeyNMT framework (Kreutzer et al., 2019). In the
preprocessing stage, we use Sacremoses for tok-
enization and apply byte pair encoding (BPE) (Sen-
nrich et al., 2015; Dong et al., 2015) with a joint
vocabulary size of 4k and 32k. Models use 512-
dimensional word embeddings and hidden layers
and are trained with the Adam optimizer (Kingma
and Ba, 2015). A learning rate of 3∗10−4 is applied
along with a dropout rate of 0.3. We use a batch
size of 4096 BPE tokens with 8 accumulations to
simulate training on 8 GPU machines. All mod-

Figure 2: Performance comparison between bilingual
baselines and the MNMT model on the in-domain test
set.

els, except English-Turkish and Turkish-English,
are trained on Google Colab’s freely availably pre-
emptible GPUs.

4.2 Multilingual Experiments
To examine the extent of transfer learning and gen-
eralization within our corpus, we train a multiway
multilingual NMT model on the entire dataset cov-
ering almost 400 language directions. We then
compare the performance of the model on the in-
domain and out-of-domain test sets across a range
of language pairs.

4.2.1 Data Preprocessing
Similar to the bilingual data preprocessing, the en-
tire corpus has been tokenized using Sacremoses7

and samples longer than 300 words have been fil-
tered out. In addition, we perform cross-filtering
of test and dev sets of all language pairs from the
training corpus, as it is very necessary to do so in
any MNMT model using a multiway corpus. Since
the corpus is relatively unbalanced, we perform a
temperature-based sampling with a value of 1.25.
Although a higher temperature value between 2
and 3 would further balance our corpus, it would
increase the dataset size by 8x with t=2 and 25x
with t=3. This increase would limit our ability to
train the model due to the restrained compute re-
sources. Originally, the overall training set size is
at around 133 million samples and this increases to
244 million after the sampling procedure. We ap-

7https://github.com/alvations/sacremoses
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In-Domain Test X-WMT Test
Pairs Train size Bilingual MNMT Bilingual MNMT

BLEU Chrf BLEU Chrf PPL BLEU Chrf BLEU Chrf PPL
en-tr 35.8M 31.45 0.51 33.09 0.51 8.18 16.04 0.55 26.74 0.56 12.76
tr-en 35.8M 31.37 0.50 35.48 0.52 7.19 20.39 0.51 24.66 0.55 10.88
ru-uz 1.3M 53.12 0.76 44.73 0.71 3.02 6.58 0.41 6.70 0.42 82.20
uz-ru 1.3M 55.39 0.76 46.42 0.71 3.27 6.08 0.36 9.16 0.39 16.70
en-kk 564.8K 24.53 0.54 18.92 0.49 10.45 7.82 0.40 9.92 0.43 10.02
kk-en 564.8K 29.17 0.51 24.67 0.48 7.47 12.00 0.42 15.71 0.44 26.02
az-en 548.9K 26.65 0.48 20.47 0.42 7.70 12.01 0.41 20.41 0.49 14.46
en-az 548.9K 34.73 0.56 15.27 0.42 8.74 6.79 0.38 9.71 0.43 10.59
en-uz 529.6K 45.95 0.66 27.80 0.51 6.04 6.34 0.40 9.89 0.42 47.45
uz-en 529.6K 38.72 0.58 32.44 0.50 6.15 4.81 0.24 14.45 0.45 19.08
ba-ru 523.7K 46.02 0.69 40.59 0.64 3.75 24.39 0.58 24.57 0.57 5.49
ru-ba 523.7K 51.26 0.74 43.44 0.67 3.24 24.31 0.59 23.13 0.56 6.29
az-tr 410.1K 23.47 0.48 18.40 0.43 8.87 10.61 0.43 19.63 0.48 23.42
tr-az 410.1K 29.97 0.53 15.71 0.42 8.37 7.78 0.39 8.21 0.42 14.51
en-ky 312.6K 21.66 0.44 14.54 0.38 10.77 2.33 0.27 4.64 0.34 19.57
ky-en 312.6K 24.96 0.42 18.01 0.38 11.02 4.65 0.29 10.87 0.39 35.64
ky-ru 293.7K 19.63 0.40 16.30 0.38 10.04 5.23 0.30 14.08 0.44 9.43
ru-ky 293.7K 18.57 0.43 14.82 0.40 9.58 4.42 0.35 10.35 0.45 11.52
ba-en 34.3K 21.51 0.36 17.79 0.37 10.81 0.32 0.19 10.55 0.40 37.89
en-ba 34.3K 17.78 0.33 17.29 0.35 10.52 0.16 0.14 8.35 0.34 21.43
en-kaa 17.1K 15.34 0.40 19.42 0.46 8.83 0.31 0.19 2.82 0.27 77.93
kaa-en 17.1K 22.82 0.43 21.95 0.48 8.56 1.04 0.21 10.21 0.38 38.17
ru-sah 9.2K 13.26 0.35 5.46 0.19 30.82 0.12 0.16 4.64 0.17 58.01
sah-ru 9.2K 16.35 0.36 13.11 0.26 23.00 0.42 0.18 4.41 0.25 40.68
en-sah 8.1K 13.45 0.36 4.98 0.18 34.31 0.04 0.14 3.46 0.12 75.38
sah-en 8.1K 22.19 0.40 5.90 0.23 24.58 0.16 0.21 3.38 0.24 110.50

Table 3: Experiments results from bilingual baselines and MNMT model evaluated on the in-domain and out-of-
domain test sets. BLEU and Chrf uses the SacreBLEU implementation and PPL refers to the internal perplexity
of the MNMT model.

ply the sentencepiece8 implementation of the byte
pair encoding (BPE) (Sennrich et al., 2016) with a
joint vocabulary size of 64k. Following the method
from Ha et al. (2016) and Johnson et al. (2017),
we prepend a target language token to the source
sentences to enable many-to-many translation.

4.2.2 Model details
We train the model using the Transformer architec-
ture in the transformer-base configuration. More
specifically, we use the transformer wmt en de ver-
sion from Fairseq (Ott et al., 2019) implementa-
tion9 with 6 layers both in the encoder and decoder.
Configuration of the model closely follows the orig-
inal implementation of the Transformer (Vaswani
et al., 2017a) with the model dimension set at 512
and hidden dimension size at 2048. We apply a

8https://github.com/google/sentencepiece
9https://github.com/pytorch/fairseq/

tree/master/examples/translation

dropout rate of 0.3, the learning rate of 5 ∗ 10−4,
and warm-up updates of 40k. The effective batch
size is 16,384 BPE tokens. The model is trained
using 4 NVIDIA V100 GPU machines for a little
over 1 million steps which takes about 36-48 hours.

4.3 Evaluation of Models

Automatic evaluation metrics used to compare the
performance of bilingual baselines and MNMT are
token-based corpus BLEU (Papineni et al., 2002)
and character-based Chrf (Popović, 2015). While
corpus BLEU is the de-facto standard in MT (Marie
et al., 2021), Chrf might work better for morpholog-
ically rich languages because it can reward partially
correct words. We also report the MNMT model’s
internal perplexity to better highlight the language
pairs in which the model struggles most. We evalu-
ate the models on the in-domain and X-WMT eval-
uation sets. The gap between scores on in-domain
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Bilingual MNMT Gain
BLEU Chrf BLEU Chrf BLEU Chrf

XX-En 6.92 0.31 13.78 0.42 +6.86 +0.11
En-XX 4.57 0.30 9.37 0.36 +4.80 +0.06
XX-Ru 9.03 0.36 13.06 0.41 +4.03 +0.06
Ru-XX 8.86 0.38 11.21 0.40 +2.35 +0.02
XX-XX 8.99 0.38 12.49 0.41 +3.49 +0.04

Table 4: Performance comparison with different lan-
guage groups and their overall gains in the MNMT
setup. XX refers to the Turkic languages in the corpus.

versus out-of-domain translations is particularly in-
teresting since it gives us an estimate of domain
robustness and generalization, as well as mimics a
realistic shift from the training domain to the do-
main of interest for potential users or downstream
applications.

4.4 Bilingual baselines vs MNMT

Table 3 shows all the results for the bilingual base-
lines and MNMT as evaluated on two test tests. The
first obvious trend in the table is the dominance of
the bilingual baselines on the in-domain test sets as
they overperform the MNMT model in most of the
high- to mid-resource language pairs. As the train
size decreases, the results become more compara-
ble in terms of BLEU and even better for MNMT
when evaluated in Chrf. When tested under a do-
main shift with the X-WMT set, MNMT results in
gains across almost all pairs. However, it is impor-
tant to note that there is a noticeable performance
drop that follows the domain shift as can be seen
in Figures 1 and 2. This highlights a realistic phe-
nomenon of generalization and sets an expectation
of the model’s capabilities in real-world use cases.

Another observation in Table 3 is that all of the
language pairs having fewer than 100k training
samples (8 total) in our bilingual baselines barely
pass the mark of 1 BLEU score or 0.2 Chrf in
the out-of-domain test. However, in the MNMT
setup, the average BLEU and Chrf score for those
8 low-resource pairs are 5.98 and 0.27 respectively.
While these scores indicate that these pairs are still
extremely low in quality and potentially unusable
in practice, gains are promising given the amount of
resources and a moderately-sized MNMT model.

To examine the generalization of the MNMT
model into different language groups, we calcu-
late the average gains for all pairs translating into
English (XX-En), from English (En-XX), into Rus-
sian (XX-Ru), from Russian (Ru-XX), and direct
pairs (XX-XX). Table 4 shows the average gains

Adequacy Fluency
Avg k LL UL Avg k LL UL

en-tr 2.97 0.33 0.23 0.43 3.20 0.12 0.04 0.21
tr-en 2.95 0.45 0.36 0.55 3.18 0.40 0.30 0.50
en-uz 2.77 0.18 0.10 0.26 2.93 0.28 0.17 0.38
uz-en 3.05 0.28 0.20 0.37 3.19 0.29 0.18 0.39
ba-ru 2.74 0.58 0.48 0.67 3.34 0.63 0.54 0.73
ru-ba 2.81 0.27 0.17 0.37 3.06 0.19 0.09 0.29

Table 5: Avg represents the average score for either Ad-
equacy or Fluency given by the annotators for each lan-
guage pair. k represents the Cohen’s Kappa score. LL
represents the Lower Limit within 95% confidence. UL
represents the Upper Limit within 95% confidence.

per category in terms of BLEU and Chrf. As it
looks, translating from and into English sees the
most gains, which is very consistent with the find-
ings from the community (Arivazhagan et al., 2019;
Goyal et al., 2021). A positive trend is the increas-
ing quality of direct pairs which are very compa-
rable to the non-Turkic pairs. We hypothesize that
one of the main reasons for this is that the TIL
Corpus is a multi-centric dataset with training data
between almost all language pairs which allows us
to train a complete Multilingual Neural Machine
Translation (cMNMT) (Freitag and Firat, 2020).
As shown in (Freitag and Firat, 2020; Fan et al.,
2021), MNMT models trained on multi-centric par-
allel corpora tend to result in performance gains
between non-English pairs.

4.5 BLEU vs Chrf

Figure 3 compares BLEU and Chrf for all bilingual
and multilingual models on X-WMT. We distin-
guish between translating into and from Turkic
languages since all Turkic languages feature agglu-
tination. As hinted above, we suspect that BLEU
might underestimate translation quality when trans-
lating into Turkic languages. The graph shows a
clear distinction that confirms this: For translations
into non-Turkic languages, the relation between
Chrf and BLEU is almost linear, with a Pearson
correlation of 0.98 and a rank correlation of 0.98 as
well. For translation into Turkic, the trend follows
a more curved line, with a largely higher Chrf-to-
BLEU ratio. The Pearson correlation is much lower
at 0.87, but the rank correlation is only slightly
lower than for non-Turkic languages at 0.92. Con-
sequently, we can expect the same BLEU score to
correspond to a higher Chrf score when translat-
ing into Turkic languages than from them. This
means that while Chrf and BLEU are likely to pro-
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Figure 3: Correlations between BLEU and Chrf scores when the target language is Turkic and non-Turkic.

duce similar rankings of systems (at least in our
scenario with standard comparable Transformer
models), the Chrf score might better characterize
the absolute translation quality. Our human evalua-
tion does not cover sufficient language pairs (three
from and three into Turkic languages) to yield a
reliable empirical confirmation for this hypothe-
sis. Future studies of larger scale as in the WMT
metrics shared task (Mathur et al., 2020) will be
needed.

5 Human Evaluation of MNMT

5.1 Human evaluation setup

To facilitate analysis on how well evaluation met-
rics measure the quality of the translations, we
conduct human evaluations using the outputs from
the MNMT model on the X-WMT set. We use Di-
rect Assessment (DA) and follow the TAUS guide-
lines10 with the only exception being the number of
annotators per language pair, where we employ 2
annotators per language pair instead of 411. In our
DA, two hundred sentences of the MNMT model’s
output per language pair are evaluated based on its
adequacy and fluency on respective 1-4 point scales.
Annotators received an explanation of the rating
scales with the task (e.g. “Adequacy: On a 4-point
scale rate how much of the meaning is represented
in the translation: 4: Everything 3: Most 2: Little
1: None”). To measure the inter-annotator agree-

10https://rb.gy/eqlgbm
11Due to limited resources.

ment (IAA) between the two annotators of each
language pair, we compute the Weighted Cohen’s
Kappa statistic (Cohen, 1960).

The language pairs involved in this human study
are English-Turkish, Turkish-English, Bashkir-
Russian, Russian-Bashkir, Uzbek-English, and
English-Uzbek. These pairs were selected on the
basis of language and script diversity, their perfor-
mance on the X-WMT test set, and the availability
of annotators.

5.2 Discussion and Results

The results of the average adequacy and fluency for
each language pair are shown by Table 5. Most of
the chosen language pairs received an average score
of around 3 for both adequacy and fluency. This
indicates that the model was largely able to con-
vey most intended meaning in a good grammatical
sense to a native speaker. Fluency is consistently
rated higher than adequacy, which is a common
theme in NMT evaluation (Martindale et al., 2019).
The large difference in BLEU (5 BLEU points) be-
tween en-uz and uz-en is still noticeable, but much
smaller according to the human evaluation. Chrf
estimates a quality difference of 0.3 here, which is
closer to the human estimate.

The Cohen’s Kappa scores for each language
pair are present in Table 5. As Cohen’s Kappa is a
measure from 0–1 of how well the two annotators
agreed with their evaluations while removing pos-
sible agreements by chance, Cohen’s Kappa score
serves as one metric in deciding the reliability of
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en-tr
Adequacy: 3.00 — Fluency: 4.00 — Fluent Output with Inadequate Verbal Tense
Reference Toyota, Subaru’daki hissesini ’den fa-
zla artıracağını söyledi.

Hypothesis Toyota, Subaru’daki hisseyi ’den fa-
zla artırdığını söyledi.

Adequacy: 4.00 — Fluency: 3.00 — Lexical choice preserves meaning, still not the natural construction
Reference Başka birisi ağır yaralandı. Hypothesis Başka bir kişi kötü yaralandı.

tr-en
Adequacy: 3.00 — Fluency: 2.00 — Some of the translations made lost the original meaning
Reference The schoolgirl who died from catas-
trophic injuries following a suspected hit-and-run in
Newcastle has been pictured for the first time.

Hypothesis After a suspicious hit-and-run in
Newcastle’s, the student who died badly was first
seen.

Adequacy: 3.00 — Fluency: 4.00 — Maintains grammatical form, but changes the meaning
Reference He further dismissed the embargo as
an attack on the rights of citizens.

Hypothesis He also denied the ambargo by de-
fending an attack on citizens’ rights.

ba-ru
Adequacy: 2.00 — Fluency: 3.00 — ”kiss” translates to ”kill” and changes the meaning completely
Reference В ночь после выборов, пишет Ло
Бьянко в своей книге, Карен Пенс отказалась
поцеловать мужа.

Hypothesis В свою книгу Ло Бьянко, в ночь
после выборов, Карен Пенс отказывается от
смерти мужа.

Adequacy: 3.00 — Fluency: 2.00 — Incorrect pronoun (”she” to ”he”). Few awkward translations
Reference Поэтому она откликнулась на ва-
кансию в Fast Trak Management, маленькой
компании, которая называет себя "маркетин-
говой фирмой номер один в Северной Вирджи-
нии".

HypothesisПоэтому он согласился на вакан-
сию Fast Trak Management в малой компании,
которая называла себя "Первую маркетинго-
вую фирму в Северной Вирджинии".

ru-ba
Adequacy: 3.00 — Fluency: 2.00 — When several verbs are present, some are omitted from the translation
Reference Видео Пирзаданың бер нисә йы-
лан һәм аллигаторҙо тотоп торғанын күрһәтә.

Hypothesis Дәүләт еренә йәмәғәт access Ви-
деоға ярашлы, Пирзада бер нисә йылан һәм
алгигатор менән нисек эш итә.

Adequacy: 2.00 — Fluency: 3.00 — A whole part of the original sentence is omitted from the translation
Reference iHandy тарафынан киң билдәле
эмодзи-ҡушымталар серияһы сығарылды, әм-
мә улар ҙа Google Play Store системаһынан
шунда уҡ юйылды.

Hypothesis iHandy Google Play Store-ҙан сы-
ғарылған популяр эмодзи-приложениялар се-
рияһы булдырылды.

uz-en
Adequacy: 2.00 — Fluency: 2.00 — Changed the order events
Reference Antonio Brown has indicated he’s not
retiring from the NFL, only a few days after announc-
ing he was done with the league in a rant.

Hypothesis Antonio Braun said that after a few
days after the NFL, he won’t leave after he announced
that he was engaged in league.

Adequacy: 2.00 — Fluency: 4.00 — Improper changes from original nouns, and different sense of ”hold”
Reference Harker says Fed should ’hold firm’
on interest rates

Hypothesis Everyone thinks that this is how to
hold the Federal rate percentages.

en-uz
Adequacy: 3.00 — Fluency: 3.00 — ”Gumonlanuvchi”:”a suspect”.”Shubhachi”:”someone who suspects”
Reference Keyin ushbu mashinadan uch nafar gu-
monlanuvchi tushayotganini ko ’rishdi.

Hypothesis Keyinchalik uchta shubhachi
mashinadan chiqib ketganini ko’rishdi.

Adequacy: 2.00 — Fluency: 2.00 — Use of a correct but a foreign word (başarısız)
Reference WeWork’s Neumann muvaffaqiyatsiz
IPO o ’tkazilgandan so’ng o ’zini bosh direktor lavoz-
imidan chetlatishga ovoz berdi

Hypothesis Biz Work”s Neumann IPO
başarısız bo’lganidan so’ng O’zbekiston Bosh
direktori sifatida ovoz berdi

Table 6: Qualitative Analysis of the MNMT model output for 6 language pairs. The Reference sentence shows
the intended translation while the Hypothesis shows the MNMT model output.
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Pairs Train Size In-Domain X-WMT
BLEU Chrf BLEU Chrf

ru-ba 523.7K 54.48 (+11.04) 0.743 (+0.07) 24.85 (+0.54) 0.569 (-0.02)
ky-en 312.6K 24.21 (+6.2) 0.42 (+0.05) 10.26 (+5.61) 0.38 (+0.09)
en-ba 34.3K 30.43 (+13.14) 0.46 (+0.11) 4.56 (+4.4) 0.22 (+0.08)
ru-sah 9.2K 49.46 (+44.00) 0.585 (0.4) 22.05 (+21.93) 0.348 (+0.19)

Table 7: Experiment results from the finetuning of the MNMT model.

the evaluations. We see that the reliability varies
across language pairs and between adequacy and
fluency. Translation into English or Russian has a
higher agreement on average than in the opposite
direction (en/tr is a tie).

5.3 Qualitative Analysis
To gain better qualitative insight into the model
outputs in each of the 6 language directions, we
asked the annotators to identify 2 examples that
highlight the most commonly witnessed mistakes
during their review. Table 6 showcases those exam-
ples along with a brief explanation for their scores.
From this analysis, it seems that the severity of mis-
takes that the MNMT model makes in adequacy
tends to range from certain words being translated
to a slightly different meaning to the original in-
tention of the sentence being lost. As for fluency,
the errors seem to range from awkward wording to
clear grammatical mistakes. There are a few cases
where there is an off-target translation for a word
or a segment of the sentence.

6 The Promise of MNMT: Cross-lingual
Knowledge Transfer

One of the biggest advantages of a large MNMT
model is its capacity for transfer learning as can be
accomplished through fine-tuning. Since we plan
on releasing the model to the public, we believe
many understudied and underperforming language
pairs could benefit from cross-lingual knowledge
transfer. This phenomenon is well-known in the
broader NLP community as well as in MT research.
To test this hypothesis, we fine-tune our MNMT
model on 4 language pairs ranging from high(er)-
resource to extremely low-resource in training data
available. Table 7 shows the results of the experi-
ments. As it can be seen, the performance of the
models improves steadily across all resource types,
low-resource cases experiencing gains up to 44
BLEU points (or 0.4 Chrf) from the bilingual base-
lines in the in-domain evaluation. However, in
out-of-domain scenarios, gains are not as signifi-

cant. Mid- to high-resource pairs improve modestly
in the range of 1–5 BLEU points (or 0–0.1 Chrf)
while a low-resource pair, Russian-Sakha gains up
to 22 BLEU points (0.19 Chrf).

7 Future Work and Conclusion

In this work, we train and evaluate the first large-
scale MNMT model for the Turkic language family
which consists of many underexplored languages.
Among many results, we find it very promising
to train and finetune a MNMT model with a lan-
guage family corpus as it boosts the cross-lingual
knowledge transfer between the related languages
and consistently improves over the strong bilingual
baselines in out-of-domain scenarios. Our analysis
also shows that Chrf and BLEU do not correlate in
the same when the target language group if differ-
ent: BLEU underestimates the translations for the
Turkic languages.

In the future work, we hope to include more of
the underrepresented Turkic language pairs in the
study and explore the potential of transfer learn-
ing into the translation of unseen languages and
language pairs (”zero-shot”).
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Abstract

Human gender bias is reflected in language
and text production. Because state-of-the-art
machine translation (MT) systems are trained
on large corpora of text, mostly generated by
humans, gender bias can also be found in MT.
For instance when occupations are translated
from a language like English, which mostly
uses gender neutral words, to a language like
German, which mostly uses a feminine and a
masculine version for an occupation, a deci-
sion must be made by the MT System. Re-
cent research showed that MT systems are bi-
ased towards stereotypical translation of occu-
pations. In 2019 the first, and so far only, chal-
lenge set, explicitly designed to measure the
extent of gender bias in MT systems has been
published. In this set measurement of gender
bias is solely based on the translation of oc-
cupations. With our paper we present an ex-
tension of this challenge set, called WiBeMT1,
which adds gender-biased adjectives and sen-
tences with gender-biased verbs. The result-
ing challenge set consists of over 70, 000 sen-
tences and has been translated with three com-
mercial MT systems: DeepL Translator, Mi-
crosoft Translator, and Google Translate. Re-
sults show a gender bias for all three MT sys-
tems. This gender bias is to a great extent
significantly influenced by adjectives and to a
lesser extent by verbs.

1 Introduction

The problem of unfair and biased models has been
recognized as an important problem for many appli-
cations of machine learning (Mehrabi et al., 2019).
The source of unfairness typically is based on bi-
ases in the training data. In many domains, un-
fairness is caused by sampling biases. In machine
translation (MT), however, the main source of un-
fairness is due to historical or social biases when
there is a misalignment between the world as it

1Our test set and related data is available at: www.
github.com/JDtroles/WiBeMTdata.git

is and the values or objectives to be encoded and
propagated in a model (Suresh and Guttag, 2019;
Bolukbasi et al., 2016). One source of imbalance
in natural language is the association of specific
occupations with gender. Typically, occupations
in more technical domains as well as occupations
with high social status are associated with male
gender (Cheryan et al., 2017).

In natural language processing (NLP), gender
bias has been investigated for word embeddings
(Bolukbasi et al., 2016). Analogy puzzles such
as “man is to king as woman is to x” generated
with word2vec2 yield x = queen while for “man
is to computer programmer as woman is to x”, the
output is x = homemaker. Only few publica-
tions exist that directly address gender bias and
MT. Although gender bias is particularly relevant
for translations into gender-inflected languages, for
instance from English to German, where biased
models can result in translation errors (Saunders
and Byrne, 2020). For the English sentence “The
doctor told the nurse that she had been busy.”, a
human translator would resolve the co-reference
of ‘she’ to the doctor, correctly translating it to
‘die Ärztin’. However, a neural machine translation
model (NMT) trained on a biased dataset, in which
most doctors are male might incorrectly default to
the masculine form, ‘der Arzt’. Hovy et al. (2020)
investigated the prediction of age and gender of
a text’s author before and after translation. They
found that Bing Translator, DeepL Translator, and
Google Translate all skew the predictions to be
older and more masculine, which shows that NMT
systems and the expression of gender interact.

According to Saunders and Byrne (2020), the
first systematic analysis of gender bias in MT is
from Stanovsky et al. (2019). They introduce
WinoMT which is the first challenge set explic-
itly designed to quantify gender bias in MT sys-

2www.code.google.com/archive/p/
word2vec/
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tems. Furthermore, they introduce an automatic
evaluation method for eight different languages.
Evaluating six MT systems, they found a strong
preference for masculine translations in all eight
gender-inflected languages. The above example
sentence, where ’doctor’ has been errouneousely
translated into its male German form (Arzt) is one
of the 3, 888 sentences used in WinoMT.

WinoMT focuses solely on the translation of oc-
cupations to evaluate gender bias. In this paper, we
present the extended data set WiBeMT to uncover
gender bias in neural machine translation systems.
Gender stereotypical occupations are augmented
by gender stereotypical adjectives and verbs and we
investigate how congruent and incongruent com-
binations impact translation accuracy of the NMT
systems DeepL, Microsoft Translator and Google
Translate. In the next section, the original WinoMT
data set is introduced together with our extensions.
Afterwards, results for the three NMT systems
based on 70,686 sentences are presented, followed
by a discussion and an outlook.

2 Constructing the Extended Challenge
Set WiBeMT

To construct a more diverse challenge set, we ex-
tend WinoMT, respectively its core data base Wino-
Bias. Therefore, we identify verbs and adjectives
of high stereotypicality with respect to gender. A
gender score is determined by the cosine similarity
of these words to a list of gender specific words. To
calculate the similarity different pretrained word
embeddings are used, where each of these words
is represented by a vector. With the resulting most
feminine and masculine adjectives the original sen-
tences of WinoBias are extended. Furthermore, new
sentences are created combining occupations with
gender stereotypical verbs.

2.1 WinoBias and its Extension

WinoMT is based on two previous challenge sets,
Winogender (Rudinger et al., 2018) and WinoBias
(Zhao et al., 2018). Both were introduced to quan-
tify gender bias in co-reference resolution systems.
Since WinoBias constitutes 81.5% of WinoMT, we
use it as basis for our extension. In total WinoBias
consists of 3, 168 sentences, of which 1, 582 are
feminine and 1, 586 are masculine sentences. The
sentences are based on 40 occupations. An exam-
ple sentence of WinoBias involving a cleaner and a
developer is:

• WinoBias sentence: The cleaner hates the
developer because she always leaves the room
dirty.

• DeepL translation: Die Reinigungskraft hasst
den Entwickler, weil sie das Zimmer immer
schmutzig hinterlässt.

DeepL fails to correctly translate developer to the
female inflection die Entwicklerin, but instead fa-
vors the stereotypical male inflection der Entwick-
ler.

The WinoBias set is constructed such that each
sentence is given in a stereotypical and an anti-
stereotypical version. Stereotypical in this con-
text means that the gender of the pronoun matches
the predominant gender in the sentences occupa-
tion. The example sentence above is the anti-
stereotypical version for the occupational noun ’de-
veloper’, where the stereotypical version contains
a ’he’ instead of a ’she’.

We argue that a measurement of gender bias
solely based on the translation of occupational
nouns does not do justice to the complexity of lan-
guage. Therefore, we want to diversify the given
approach by taking gender-stereotypical adjectives
and verbs into account. This is realized in two
steps: First, WinoBias sentences are extended such
that each occupational noun is preceded with an
adjective which is congruent or incongruent with
respect to the gender stereotypical interpretation
of the occupation. For instance, a developer might
be eminent (male) or brunette (female). By adding
feminine and masculine adjectives to each Wino-
Bias sentence, we create a new subset of extended
WinoBias sentences.

Second, we create completely new sentences
based on feminine and masculine verbs. One exam-
ple with a feminine verb being: “The X dances in
the club”, and one with a masculine verb: “The X
boasts about the new car.”. Those base sentences
are then extended with 99 occupations from Zhao
et al. (2018), Rudinger et al. (2018), and Garg et al.
(2018), resulting in a new subset of verb sentences.
All 100 occupational nouns used in WinoBias and
in the new verb sentences are listed in Table 1
which is based on numbers from the US Bureau of
Labor Statistics3. After concatenating both subsets,
the complete extended gender-bias challenge set
consists of 70, 686 sentences. Overall, 100 occupa-

3Labor Force Statistics from the Current Population Sur-
vey: www.bls.gov/cps/cpsaat11.htm
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Table 1: All 100 occupations, used for this work with the corresponding percentage of women in the occupation in
the US. Numbers with an asterisk are taken from the WinoBias paper and are from 2017 (Zhao et al., 2018). All
other numbers are from 2019 from the US Bureau of Labor Statistics. Occupations in bold font are used in the
WinoBias challenge set. All occupations without corresponding percentage were not listed by the US Bureau of
Labor Statistics.

Occupation % Occupation % Occupation % Occupation % Occupation %

electrician 2 athlete 35 pharmacist 60 receptionist 89 examiner –
carpenter 3 lawyer 36 accountant 62 nurse 90* gardener –
firefighter 3 janitor 37 auditor 62 paralegal 90 geologist –
plumber 3 musician 37 editor 63 dietitian 92 hygienist –
construction-
worker 4 CEO 39* writer 63* hairdresser 92 inspector –

laborer 4* analyst 41* author 64 nutritionist 92 investigator –
mechanic 4* physician 41 instructor 65 secretary 93 mathematician –
driver 6* surgeon 41 veterinarian 68 administrator – officer –
machinist 6 cook 42 cashier 71 advisor – pathologist –
painter 9 chemist 43 clerk 72* appraiser – physicist –
mover 18* manager 43* tailor 75 broker – practitioner –
sheriff 18 supervisor 44* attendant 76* CFO – professor –
developer 20* salesperson 48* counselor 76 collector – sailor –
programmer 20 photographer 49 teacher 78* conductor – scientist –
guard 22* bartender 53 planner 79 CTO – soldier –
architect 25 dispatcher 53 librarian 80 dancer – specialist –
farmer 25 judge 53 psychologist 80 doctor – student –
chief 28 artist 54 assistant 85* economist – surveyor –
dentist 34 designer 54 cleaner 89* educator – technician –
paramedic 34 baker 60 housekeeper 89* engineer – therapist –

tions are used in the set, 42 gender-verbs, and 20
gender-adjectives.

We hypothesize that gender-stereotypical verbs
and adjectives influence the gender of the transla-
tion of the occupational nouns, when translating
from English to the gender-inflected language Ger-
man:

Hypothesis 1
1 Sentences with a feminine verb result in sig-

nificantly more translations into the female
inflection of an occupation than sentences
with a masculine verb.

Hypotheses 2
2a WinoBias sentences extended with a fem-

inine adjective result in significantly more
translations into the female inflection of
an occupation than original WinoBias sen-
tences (without a preceded adjective).

2b WinoBias sentences extended with a mas-
culine adjective result in significantly more
translations into the masculine inflection of
an occupation than original WinoBias sen-
tences (without a preceded adjective).

2.2 Finding Gender-Stereotypical Verbs and
Adjectives

To determine gender-stereotypicality of adjectives
and verbs, large collections of these word types

have been scored with respect to their similarity to
a list of gender specific words given by Bolukbasi
et al. (2016). As input we used a list of 3.250 verbs
from patternbasedwriting.com4 and a combined list
of 4.889 adjectives from patternbasedwriting.com
and from Garg et al. (2018).

Calculation of gender score is based on word
embeddings and the cosine-similarity, following
the work of Bolukbasi et al. (2016) and Garg et al.
(2018). In their work similarity of the words to
the pronouns “she” and “he” has been used. We
extended scoring using a longer list of feminine
and masculine words such as “mother”, “uncle”,
“menopause” or “semen” to enhance robustness of
the gender-score. This list, containing 95 feminine
and 108 masculine words, is taken from Boluk-
basi et al. (2016), who used it for their debiasing
methods of word embeddings.

Two families of word embeddings were used:
two pre-trained versions of fastText5 from Mikolov
et al. (2017) and two pre-trained versions of GloVe6

from Pennington et al. (2014). All four word em-
beddings have a vector size of 300 dimensions.

4www.patternbasedwriting.com offers teaching
materials for primary school children.

5Downloaded from: www.fasttext.cc/docs/en/
english-vectors.html

6Downloaded from: www.nlp.stanford.edu/
projects/glove/
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Table 2: Summary of the origin of training corpora and their corresponding size for each word embedding.

Size [billion]

corpora fastText-small fastText-large GloVe-small GloVe-large

Wikipedia 2014 — — 1.6 —
Gigaword 5 — — 4.3 —
Wikipedia meta-page 2017 9.2 — — —
Statmt.org News 4.2 — — —
UMBC News 3.2 — — —
Common Crawl — 630 — 840

Table 2 gives an overview of all word embeddings
and their training data.

Cosine Similarity is a measure of similarity be-
tween two normalized and non-zero vectors and
can take values in the range between -1 and 1. Equa-
tion 1 shows the calculation of the cosine similarity
between the vectors a and b of two words:

cos(θ) =
a · b
‖a‖‖b‖ =

n∑
i=1

aibi
√

n∑
i=1

a2i

√
n∑

i=1
b2i

(1)

where ai and bi are components of vector a and b
respectively.

Since word embeddings inherit to some extend
the meaning of words, it is possible to use the
cosine similarity as a measure for the similar-
ity in meaning or, furthermore, the relationships
between words. This enables mathematical op-
erations on the vectors representing words such
that: cos(

−−−−−→
brunette · −→her) ≥ cos(

−−−−−→
brunette · −−→him)

becomes true for “brunette” and other gender-
biased adjectives. If the feminine-gender value
(cos(

−−−−−→
brunette · −→her)) is then subtracted from the

masculine-gender value (cos(
−−−−−→
brunette · −−→him)) the

resulting single float value indicates whether a
word is gender-biased in the word embedding with
which the cosine-similarity was computed.

The total gender-score is the sum of eight single
scores resulting from the combination of the four
different word embeddings with the cosine similar-
ity with “she” and “he” and with the list of feminine
and masculine words. Since different word embed-
dings vary in the strength of the inherited gender-
bias and all word embeddings should have equal
impact on the overall score, the interim results were
normalized to fit a range between a = −1 and

b = 1, as Equation 2 shows:

x′ = a+
(x−min(x))(b− a)

max(x)−min(x)
(2)

To validate the procedure to determine a gender
score for adjectives and verbs, the same method
has been applied to the occupations given in Ta-
ble 1. The gender-score for these occupations
shows a strong correlation to the percentage of
women working in each given occupation (see Fig-
ure 1).

Gender-score has been calculated for all verbs
and adjectives for which word embeddings existed.
They were sorted ascending from the most negative
– and therefore most feminine – score value, to the
most positive, i.e., most masculine, value.

Verbs: Of the 3, 250 verbs, 3, 210 could be
ranked (med = 0.151, std = 0.165). After sorting
the verbs by their gender-score, the most stereo-
typical verbs which could be used in a sentence
in which person P actively does action A were
picked. The gender score of the 21 selected femi-
nine verbs ranges from −0.772 to −0.233 and of
the masculine verbs from 0.445 to 0.733:

• Feminine verbs: crochet, sew, accessorize,
bake, embroider, primp, gossip, shriek, dance,
undress, milk, giggle, marry, knit, twirl, wed,
flirt, allure, shower, seduce, kiss.

• Masculine verbs: draft, tackle, swagger, trade,
brawl, reckon, preach, sanction, build, boast,
gamble, succeed, regard, retire, chuck, over-
throw, rev, resign, apprehend, appoint, fool.

Adjectives: Of the 5, 441 adjectives, 4, 762
could be ranked (med = 0.189, std = 0.142).
After calculating the gender-score for the 4, 762
adjectives, beginning with the most feminine, re-
spectively, most masculine, adjectives were tested
for their suitability considering the extension of
existing WinoBias sentences until 10 most femi-
nine and suitable as well as 10 most masculine and
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Figure 1: Scatter plot of the 99 single word occupations with the percentage of women in the profession y-axis and
the gender score on the x-axis.

suitable adjectives had been selected. Words that
semantically could not be combined with occupa-
tions were discarded (examples: hormonal, satin,
luminous, philosophical, topographical). Further-
more, adjectives like “pregnant” – which only ap-
ply to persons with a uterus – were also discarded.
The gender score of the 10 selected feminine ad-
jectives ranges from −0.600 to −0.205 and of the
masculine adjectives from 0.480 to 0.654:

• Feminine adjectives: sassy, perky, brunette,
blonde, lovely, vivacious, saucy, bubbly, allur-
ing, married.

• Masculine adjectives: grizzled, affable, jovial,
suave, debonair, wiry, rascally, arrogant,
shifty, eminent.

2.3 Translation of WiBeMT and Evaluation
Design

To test the extent to which machine translation sys-
tems inherit a gender-bias, three different services
were tested with WiBeMT: Google Translate, Mi-
crosoft Translator, and DeepL Translator. All three
NMT systems were accessed via their API, and all
translation processes took place in July 2020.

To test our hypotheses that adjectives and verbs
significantly influence the gender in translations of
NMT systems, translations from English to Ger-
man have to be categorized as either (correctly)
feminine, masculine, neutral, or wrong. Stanovsky
et al. (2019) use an automated method in the form

of different morphological analyzers such as spaCy
to determine the gender of the occupation in the
translated sentence. While this method is con-
venient for an automated approach that other re-
searchers can use with different data, it also suffers
from a certain degree of inaccuracy. To measure
the accuracy of their automated evaluation method,
Stanovsky et al. (2019) compared the automated
evaluations with a random sample of samples eval-
uated by native speakers. They found an average
agreement of 87% between automated and native
speaker evaluations. To evaluate NMT systems
with respect to WiBeMT, we preferred to augment
automated evaluation by “manual” evaluation to
gain higher accuracy.

Evaluating the gender of all translations is based
on a nested list, we refer to as classification-list,
and a set of rules for automated evaluation and
manual evaluation for all remaining ambiguous
translations. The classification-list contains four
sublists for each occupation: a sublist of correct
feminine translations, a sublist of correct masculine
translations, a sublist of correct neutral translations,
and a sublist of inconclusive or wrong translations.
The gender of the translated occupation is then clas-
sified by checking in which sublist the occupation
is listed and the gender is labeled as the sublist’s
category.

To control classifications for possible errors,
N = 665 (1%) of the WinoBias sentences ex-
tended by adjectives were manually controlled for
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each translation system (in total N = 1, 995 sen-
tences). Not a single one was miscategorized. Of
the verb-sentences translations, even 5% were man-
ually controlled by the authors, and here also, not
a single one of the 618 translations was miscatego-
rized.

3 Results

After the creation of the WiBeMT challenge set and
the translation of all 70, 686 sentences with each
NMT system, the translations were categorized
as feminine, masculine, neutral, or inconclusive /
wrong. The latter will be referred to as “wrong”.
Due to these discrete categories the Chi2 test of
independence will be used for all statistical tests.
As the extended WinoBias sentences include a pro-
noun that defines the gender, the results considering
these data can be divided into true and false, and
feminine and masculine translations. On the other
hand, the verb sentences do not include any cue for
a correct gender in the translation. Therefore, they
are just analyzed for feminine and masculine trans-
lations. The calculated feminine-ratio (%TFG)
results from all feminine-translations divided by
the sum of feminine- and masculine-translations.
The calculated correct-gender-ratio (%TCG) re-
sults from all translations with correct gender di-
vided by the sum of all translations with correct
and incorrect gender. All Chi2-tests were, if neces-
sary, Bonferroni corrected. First, the results for the
verb-sentences; Second, the results for the extended
WinoBias sentences; And third, further results are
presented.

3.1 Hypothesis 1: Verb Sentences

The statistical tests regarding Hypothesis 1 yielded
mixed results, depending on which NMT system
is looked at. Of the 2.079 sentences with a femi-
nine verb DeepL translated the occupations in 242
(11.9%) sentences into the female gender (%TFG)
compared to Microsoft Translator with 149 (7.5%),
and Google Translate with 120 (6.0%). Of the
2.079 sentences with a masculine verb DeepL (DL)
translated the occupations in 135 (6.6%) sentences
into the female gender compared to Microsoft
Translator (MS) with 104 (5.2%), and Google
Translate (GT) with 109 (5.4%). For DeepL and
Microsoft Translate the difference becomes signifi-
cant with ∆%TFGDL = 5.3%, Chi2DL = 33.7
and pDL < 0.001, and ∆%TFGMS = 2.3%,
Chi2MS = 8.4 and pMS = 0.004. For Google

Translate the difference does not become signifi-
cant. As two of three NMT systems inherit a gen-
der bias that is influenced as expected by verbs,
meaning that translations of sentences with femi-
nine verbs result in a significantly higher %TFG
than translations of sentences with masculine verbs,
H1 is accepted. Figure 2 gives an overview of the
translations to the female gender (%TFG) for all
three NMT systems and the two categories of verb
sentences.

3.2 Hypothesis 2: Extended WinoBias
Sentences

Both hypotheses assume that adjectives that inherit
a gender-bias in word embeddings also influence
the gender of translations from English to German.
While the results confirm the assumptions of Hy-
pothesis H2a, they also yield unexpected results for
Hypothesis H2b. Of the 3,168 original WinoBias
sentences DeepL translated 1, 259 (41.7%), Mi-
crosoft Translator translated 1, 041 (35.8%), and
Google Translate translated 976 (33.2%) to the fe-
male inflection of the occupation. These percent-
ages are used as the baseline to test, whether femi-
nine and masculine adjectives skew the outcome of
translations into the expected direction.

Of the sentences extended with a feminine ad-
jective DeepL translated 49.5%, Microsoft Trans-
lator translated 42.5%, and Google Translate trans-
lated 40.1% to the female inflection. The differ-
ence to the percentage of translations to the fe-
male inflection of the original WinoBias sentences
becomes significant for all three NMT systems:
∆%TFGDL = 7.8%, Chi2DL = 66.3 and pDL <
0.001; ∆%TFGMS = 6.7%, Chi2MS = 49.0
and pMS < 0.001; and ∆%TFGGT = 6.9%,
Chi2GT = 53.8 and pGT < 0.001. Therefore Hy-
pothesis H2a is accepted.

Of the sentences extended with a masculine ad-
jective DeepL translated 44.6%, Microsoft Trans-
lator translated 39.3%, and Google Translate trans-
lated 37.9% to the female inflection. The differ-
ence to the percentage of translations to the fe-
male inflection of the original WinoBias sentences
becomes significant for all three NMT systems:
∆%TFGDL = 2.9%, Chi2DL = 9.1 and pDL =
0.008; ∆%TFGMS = 3.5%, Chi2MS = 13.3
and pMS < 0.001; and ∆%TFGGT = 4.7%,
Chi2GT = 25.1 and pGT < 0.001. While all differ-
ences are significant, they contradict our assump-
tion that preceding masculine adjectives to Wino-
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Figure 2: Percentage of translations to female gender (%TFG) of occupations in verb sentences, organized by the
category of verbs.

Bias sentences results in less translations to the
female inflection. Instead the preceded masculine
adjectives have the opposite effect. Therefore, Hy-
pothesis H2b is rejected. Figure 3 gives an overview
of the translations to the female gender (%TFG)
for all three NMT systems and the three categories
of sentences. Table 3 lists all numbers of different
translation categories for a deeper insight.

3.3 Influence of Gender-Stereotypical Verbs
and Adjectives on Translations

Our findings show that gender stereotypical verbs
and adjectives influence gender bias in translations
of NMT systems. In the following, we discuss our
results in more detail.

Hypothesis 1: In general, the results from verb
sentences differ drastically from the ones of the
extended WinoBias sentences, with far fewer sen-
tences being translated to their feminine gender.
The percentage of sentences translated to their fem-
inine gender (%TFG) in the verb sentences ranges
from 5.2% for masculine verb sentences translated
by Microsoft Translator, to 11.9% for feminine
verb sentences translated by DeepL. In compari-
son to that, %TFG ranges from 33.2% in original
WinoBias sentences without adjective translated by
Google Translate, to 49.5% in extended WinoBias
sentences with feminine adjectives translated by
DeepL Translator.

Two reasons could be responsible for the low
%TFG. Firstly, the generic masculine in German:

As mostly the masculine gender is used to address
all genders, this must be present in the training
data of all three NMT systems. Therefore, they
tend to use the male inflection whenever the gender
bias for a specific occupation does not outweigh
the bias by the generic masculine. Secondly, the
verb-sentences lack a gender pronoun like “her”
or “him”, which urges the NMT system to decide
which gender would be correct in the translation.
This probably leads to the strong bias towards male
inflections in translations.

To check whether the bias induced by occupa-
tions and the generic masculine outweighed an
existing bias of verbs, we analyzed the data of
the verb sentences again, looking at the different
groups of occupations7: feminine, neutral and mas-
culine. For all three NMT systems the %TFG for
verb sentences with neutral and masculine occupa-
tions was below 2% regardless of the stereotypical
feminine verbs. The %TFG in sentences with fe-
male occupations was 25.1% in DeepL, 19.0% in
Microsoft Translator and 17.6% in Google Trans-
late. All differences to sentences with neutral
and masculine occupations were significant with
p-values below 0.001 and Chi2 values reaching
from 352 to 256.

Hypotheses 2a & 2b: As gender bias works both
ways in word embeddings, meaning that words can
be stereotypical feminine or stereotypical mascu-

7With the calculated gender score we split the list of occu-
pations in three equally sized categories (each n = 33)
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line, we assumed that, depending on their gender-
score derived from word embeddings, feminine
adjectives would skew translations of NMT sys-
tems more often to their feminine gender and vice
versa that masculine adjectives would skew trans-
lations more often to their masculine gender. This
assumption was also supported by the findings of
Stanovsky et al. (2019), who preceded “handsome”
to occupations of sentences which would be correct,
if translated to their masculine gender, and “pretty”
to occupations of sentences which would be cor-
rect if translated to their feminine gender. With this
measure, they could improve the accuracy of NMT
systems and reduce gender bias.

Contrary to the prior assumptions, adjectives
preceded to occupations led to significantly more
translations with feminine gender, regardless of
their gender-score derived from word embeddings.
Finding that masculine adjectives also lead to more
translations with feminine gender does not only
result in the rejection of H2b, but also weakens the
acceptance of H2a. Therefore, we introduce a new
Hypothesis H2c: “WinoBias sentences extended
with a feminine adjective result in significantly
more translations into the female inflection of an
occupation than WinoBias sentences extended with
a masculine adjective.”.

The difference between the percentage of trans-
lations to the female inflection of WinoBias sen-
tences extended with feminine and WinoBias sen-
tences extended with masculine adjectives be-

comes significant for all three NMT systems:
∆%TFGDL = 4.9%, Chi2DL = 147.6 and
pDL < 0.001; ∆%TFGMS = 3.2%, Chi2MS =
59.1 and pMS < 0.001; and ∆%TFGGT = 2.2%,
Chi2GT = 29.2 and pGT < 0.001. Therefore, Hy-
pothesis H2c is accepted which strengthens H2a,
as stereotypical feminine adjectives preceded to
occupational nouns lead to significantly more trans-
lations to the female gender than stereotypical mas-
culine adjectives preceded to occupational nouns.

3.4 Influence of Adjectives on Correct
Gender in Translations

The comparison of all three NMT systems was not
one of the main research questions. Nevertheless,
the extent of gender bias in the NMT systems can
be of interest to users. Therefore, and because of
the surprising findings considering Hypothesis 2b
a short comparison is presented in the following
paragraphs.

To better understand our results regarding hy-
potheses H2a, H2b and H2c we plotted percentage
of translations with the correct gender (%TCG)
organized by NMT systems and the type of sen-
tence: original WinoBias sentence (no adjective),
with masculine adjective extended WinoBias sen-
tence (M adjective), and with feminine adjective
extended WinoBias sentence (F adjective). Addi-
tionally, we split each type of sentence into sen-
tences with male pronouns (M pronouns) and sen-
tences with female pronouns (F pronouns). Figure
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Table 3: Numbers of the categorizations of the gender of translations of extended WinoBias sentences sorted by
the gender-class of the adjective.

NMT system

adjective gender translation category DeepL Microsoft Google

feminine

true feminine
false masculine
true masculine
false feminine
neutral
wrong

13,341
1,553

13,833
1,751

550
652

11,352
3,405

13,814
1,382

440
1,287

10,177
4,593

13,312
1,826

472
1,300

masculine

true feminine
false masculine
true masculine
false feminine
neutral
wrong

12,497
2,378

14,425
1,028

483
869

8,966
3,405

11,943
963
346

6,057

8,724
4,533

12,128
1,450

447
4,398

no adjective

true feminine
false masculine
true masculine
false feminine
neutral
wrong

1,162
324

1,434
97
75
76

916
503

1,365
125

77
182

812
652

1,313
164

53
174

4 shows the resulting plot.
The results are quite astonishing: while the

%TCG slightly decreases for sentences with male
pronouns and any adjective (1 ≤ ∆%TCG ≤ 5) it
drastically improves for sentences with female pro-
nouns and any adjective (12 ≤ ∆%TCG ≤ 13).
Considering that sentences with female and male
pronouns are equally prevalent in original Wino-
Bias sentences and extended WinoBias sentences,
it shows that preceding an occupational noun with
any adjective likely improves the overall percent-
age of translations to the correct gender inflec-
tion. This reflects the findings of Stanovsky et al.
(2019), who preceded “handsome” and “pretty” to
occupational nouns of WinoMT sentences. With
this measure, they could improve the accuracy
hence %TCG of NMT systems and reduce gen-
der bias. Our findings give more insight to this
result: Stanovsky et al. (2019) very likely could
have added either “handsome” or “pretty” to all
sentences, regardless of their pronoun and would
nonetheless have been able to record a higher accu-
racy.

Furthermore, Figure 4 shows that DeepL Trans-
lator performed best when it comes to %TCG.
Google Translate and Microsoft Translator again
show more similar results, but Google Translate
performed notably worse than Microsoft Transla-
tor. With the least discrepancy in %TCG between
sentences with a feminine pronoun and sentences

with a masculine pronoun in all three conditions
(feminine adjective, masculine adjective, no ad-
jective) DeepL Translator, therefore, inherits the
lowest gender bias.

4 Conclusions and Further Work

The three neural machine translation systems eval-
uated with respect of their gender bias are black
boxes, in so far as the architecture is not publicly
available and – even more important – it is not
transparent on what data these systems are trained.
It is most likely that the gender bias in all three
systems is inherited from the data used for training
and their use of word embeddings.

To give a closer look on gender-bias of the NMT
systems DeepL, Microsoft, and Google Trans-
late, an extension of the WinoMT challenge set
– the first challenge set designed to measure gen-
der bias in NMT systems – has been presented.
While WinoMT relies solely on the gender of
the translation of occupations, our extended set
WiBeMT includes gender-adjectives and gender-
verbs. Thereby, a more detailed assessment of
gender bias has been possible. The number of
sentences in our challenge set is, with over 70, 000
sentences, nearly 20 times as large as the original
WinoMT challenge set. This makes it less prone to
overfitting when used to evaluate or reduce gender
bias in NMT systems.

We could show that adjectives do significantly
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Figure 4: Bar plot of the percentage of translations into the correct gender (%TCG) of original WinoBias sentences
and extended WinoBias sentences.

influence the gender of translated occupations.
Against the hypotheses, feminine as well as mas-
culine adjectives skew the translations of NMT
systems to more translations with the feminine gen-
der. Nevertheless, feminine adjectives still produce
significantly more translations with the feminine
gender than masculine adjectives do.

All three NMT systems prefer translations to
the generic masculine when no pronoun defines
a correct gender for the translation. Despite this
preference, 5.7% to 9.3% of all verb sentences are
translated to their feminine gender by the MT sys-
tems. This can mostly be attributed to a gender
bias in translating occupations, as our results re-
garding verb sentences and occupation categories
show. The effect of gender-verbs on the gender
of translations only became significant in DeepL
and Microsoft Translator and was smaller than the
effect of the occupations gender-categories. It can
be assumed that Google Translate only performed
better on the verb sentences task, as it generally
has the strongest tendency to translate sentences to
their masculine gender.

Surprisingly, gender-adjectives drastically im-
prove the overall accuracy of all three NMT sys-
tems when it comes to the correct gender in trans-
lations. While the accuracy slightly drops for
sentences with masculine pronouns, it drastically
improves for sentences with feminine pronouns.
Therefore, the discrepancy in accuracy between
masculine and feminine pronoun sentences de-

creases, resulting in lower discrimination. One
could even argue that gender-adjectives reduce gen-
der bias in the output of NMT systems, but at the
same time, it can be discriminating in itself that,
as soon as you add an adjective to describe a per-
son, the instance of this person is more likely to be
translated to its feminine gender. Further research
is certainly needed to find reasons for this effect
and to assess the potentials of discrimination.

The sentences in our WiBeMT challenge set are –
as the original WinoMT challenge set – constructed
in a systematic way. While this allows for a con-
trolled experiment environment, it might also intro-
duce some artificial biases (Stanovsky et al., 2019).
A solution could be to collect real-world examples
of sentences, which are suitable for gender bias de-
tection. Furthermore, the limitation on one source
language (English) and one target language (Ger-
man) does not allow for a generalization of the
results.

Another limitation of our study – as most other
studies – is that it does not take into account
that gender should not be seen as a binary, but
rather a continuous variable. Cao and Daumé
(2019), for example, outline why “trans exclusion-
ary” co-reference resolution systems can cause
harm, which is probably also valid for MT systems.
A further extension of the challenge set could help
to shine a light on the shortcomings of the inclusion
of transgender persons of NMT systems.
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Abstract

This paper proposes a technique for adding
a new source or target language to an ex-
isting multilingual NMT model without re-
training it on the initial set of languages. It
consists in replacing the shared vocabulary
with a small language-specific vocabulary and
fine-tuning the new embeddings on the new
language’s parallel data. Some additional
language-specific components may be trained
to improve performance (e.g., Transformer lay-
ers or adapter modules). Because the param-
eters of the original model are not modified,
its performance on the initial languages does
not degrade. We show on two sets of exper-
iments (small-scale on TED Talks, and large-
scale on ParaCrawl) that this approach per-
forms as well or better as the more costly alter-
natives; and that it has excellent zero-shot per-
formance: training on English-centric data is
enough to translate between the new language
and any of the initial languages.

1 Introduction

Multilingual Neural Machine Translation models
are trained on multilingual data to translate from
and/or into multiple languages (Firat et al., 2016;
Johnson et al., 2017). Multilingual NMT is a com-
pelling approach in production, as one only needs
to train, deploy and maintain one model (instead
of 2 × N ones, where N is the number of lan-
guages). It has also been shown to improve MT
quality for low-resource languages (at the cost of
a slight degradation for high-resource languages)
and it can allow translation between languages that
have no aligned data (“zero-shot translation”).

However, such models can be costly to train, as
they usually involve larger architectures and large
datasets. Moreover, because they are trained jointly
on all the languages, they require to know in ad-
vance the full set of languages. Adding a new
language to an existing model usually means re-
training the model on the full multilingual dataset.

Naively fine-tuning the original model on the new
language’s data is not an option because of vocab-
ulary mismatch (the shared vocabulary needs to
be modified to include the new language’s tokens)
and catastrophic forgetting (the model will quickly
forget how to translate in the other languages).

In this paper, we study the problem of multilin-
gual NMT incremental training or continual learn-
ing and propose a novel way to efficiently add a
new source or target language.

Some desirable properties of an incremental
training method are:

• No degradation on the existing language pairs;
• Efficient training (e.g., no re-training on the

existing language pairs);
• Minimal amount of added parameters: the

approach should scale to many languages and
the model fit on a single GPU;

• Minimal degradation in inference speed;
• Good zero-shot performance: when training

with X-EN (or EN-X) data, where X is a new
language, we would like the model to be able
to translate from X to any known language Y
(resp. from Y to X).

We propose a novel technique for incrementally
adding a new source or target language, which con-
sists in substituting the shared embedding matrix
with a language-specific embedding matrix, which
is fine-tuned on the new language’s data only while
freezing the other parameters of the model. In some
cases (e.g., when the new language is on the target
size), a small number of additional parameters (e.g.,
adapter modules) have to be trained to match the
performance of the re-training baseline. We per-
form two sets of experiments, with a 20-language
Transformer Base trained on TED Talks, and a 20-
language Transformer Big (with deep encoder and
shallow decoder) trained on ParaCrawl; and show
that this approach is fast and parameter-efficient
and that it performs as well or better as the more
costly alternatives.
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2 Related work

Some previous works study how to adapt a multilin-
gual MT model to unseen low-resource languages,
but without seeking to maintain good performance
in the initial languages (Neubig and Hu, 2018;
Lakew et al., 2019). Garcia et al. (2021) introduce
a “vocabulary substitution” approach for adding
new languages to a multilingual NMT model. They
create a new shared BPE vocabulary that includes
the new language and initialize the embeddings of
the overlapping tokens with their previous values.
Then they fine-tune the entire model on the initial
model’s training data combined with parallel or
monolingual data in the new language. Contrary
to ours, their approach assumes access to the ini-
tial model’s training data and results in a small
performance drop in the existing languages.

Lyu et al. (2020) and Escolano et al. (2020, 2019,
2021) propose multi-decoder / multi-encoder archi-
tectures which they show to be compatible with
incremental training. To add a new target (resp.
source) language, one just has to freeze the model’s
encoder (resp. decoder) and train a new language-
specific decoder (resp. encoder). However, this
results in an enormous number of parameters.

Artetxe et al. (2020); Pfeiffer et al. (2021) incre-
mentally train language-specific embeddings for
cross-lingual transfer of BERT classification mod-
els. This approach consists of four stages: 1) train
a monolingual BERT on language L1; 2) train em-
beddings on language L2 using the masked LM
objective while freezing the other parameters; 3)
fine-tune the L1 BERT model on the desired classi-
fication task using labeled data in language L1; 4)
substitute the L1 embeddings with the L2 embed-
dings in the classification model and use it for L2-
language classification. Artetxe et al. (2020) also
combine their approach with L2-specific adapter
layers and position embeddings. While this algo-
rithm is close to ours, it is used on encoder-only
Transformers for classification tasks. Our work
extends this algorithm to encoder-decoder Trans-
formers for multilingual MT.

Also similar to our technique, Thompson et al.
(2018) do domain adaptation by freezing most of
the NMT parameters and only fine-tuning one com-
ponent (e.g., the source embeddings). Philip et al.
(2020) show that adapter modules can be used to
adapt an English-centric multilingual model to un-
seen language pairs, but whose source and target
languages are known. We wanted to go further and

use adapter layers to adapt a multilingual model to
unseen languages. However, we obtained the sur-
prising result that adapting the embedding matrix
is sometimes enough. In the other cases, adapter
modules can be used sparingly to match baseline
performance. Üstün et al. (2021) introduce “de-
noising adapters” which they show can be used to
incrementally adapt a multilingual MT model to
new languages using monolingual data only.

3 Techniques

Figures 1 and 2 illustrate our technique for a new
source and a new target language respectively.

The initial model is a many-to-many model
with a shared vocabulary and source-side language
codes (to indicate the target language).

3.1 New source language
To add a new source language (e.g., Greek), we
build a new (smaller) vocabulary for this language
only and replace the source embedding matrix with
a new embedding matrix corresponding to that vo-
cabulary. Note that some tokens may appear in both
vocabularies. Similarly to Pfeiffer et al. (2021);
Garcia et al. (2021), we initialize the new embed-
dings for those tokens with the existing embedding
values. We train this new embedding matrix on
Greek-English parallel data while freezing all the
other parameters. There is no loss in performance
in the existing languages as we do not modify the
original parameters. At inference, to translate from
the initial set of languages, we use the initial shared
vocabulary and embeddings. To translate from
Greek, we use the Greek embeddings and vocab.

To better adapt to the new source language, we
also try combining this language-specific embed-
ding matrix with other language-specific compo-
nents in the encoder. We either fine-tune the first
encoder layer while freezing the other layers, train
the full encoder, or plug in adapter modules after
encoder layers (Bapna and Firat, 2019) and train
these while freezing the Transformer parameters.

Data augmentation As we will show in the ex-
periments, source lang-specific parameters tend to
give poor zero-shot results, i.e., when training them
on Greek-English data, the resulting model might
have trouble translating into other languages than
English. For this reason, we try training such mod-
els on additional data. One solution is to use a
multi-aligned Greek corpus (i.e., Greek paired with
all the initial languages), but this might not always
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be possible. We experiment with tiny amounts
of such data (e.g., 1000 line pairs per initial lan-
guage); and with synthetic data: translate the En-
glish side of the Greek-English corpus into the
other languages with the initial model, then use the
resulting fake line pairs for training. We call this
approach “back-translation” (BT) even though it is
arguably closer to distillation than back-translation
because the synthetic text will be on the target side.

3.2 New target language
The same incremental training techniques can be
used to learn a new target language (e.g., Greek)
with some modifications. The decoder has a tar-
get embedding matrix and vocabulary projection
matrix, which are usually tied and shared with the
source embeddings (i.e., the same parameters are
used for all 3 purposes). We need to adapt both
the target embeddings and output projection to the
new Greek vocabulary. Like in the initial model,
we tie these two parameters. Additionally, the ini-
tial model does not have a “translate into Greek”
language code. We add this language code to the
source embedding matrix and freeze all source em-
beddings but this one. It is initialized with the “to
English” language code embedding of the initial
model. We combine this approach with language-
specific parameters (adapter modules or fine-tuned
Transformer layers) in the decoder and/or encoder.

3.3 New source and target languages
To translate between two new languages (e.g.,
Greek to Ukrainian), we train language-specific pa-
rameters for each of these languages separately, as
described previously. Then, at inference time, we
combine these parameters. This is done by taking
the new source Greek embedding matrix and target
Ukrainian embedding matrix (and vocabulary pro-
jection). The “translate into Ukrainian” language
code embedding is concatenated to the Greek em-
bedding matrix. Similarly, the combined model in-
cludes language-specific layers and adapters from
both models. When both models have adapter mod-
ules at the same layers (e.g., last encoder layer),
we stack them: the target-language adapters are
plugged in after the source-language adapters.

3.4 Baselines
We compare our incremental training techniques
with two types of baselines: bilingual models
trained from scratch with only the new language’s
parallel data; and re-training, i.e., training a new

Encoder 
(frozen)

Greek 
embeds

Decoder 
(frozen)

Shared 
embeds 
(frozen)

Shared 
embeds

Figure 1: Adding a new source language with our incre-
mental training technique. The source embedding ma-
trix is replaced with the new language’s embeddings
and fine-tuned on the new language’s data, while the
other parameters are frozen.

Encoder 
(partially frozen)

Shared embeds 
(partially frozen)

Decoder 
(partially frozen) Greek

embedsGreek paramsGreek code

Shared 
embeds

Greek params

Figure 2: Adding a new target language with our in-
cremental training technique. The tied target embed-
ding matrix and output projection are replaced with the
new language’s embeddings. Some language-specific
parameters can be added in the decoder or encoder, and
a new language code is added in the source embedding
matrix. Everything is kept frozen except for these new
parameters.

multilingual model that includes the new language.
To save computation time, similarly to Garcia et al.
(2021), we start from the initial model and substi-
tute its vocabulary with a new vocabulary trained
with the same settings and data as before plus text
in the new language. This ensures a large overlap
between the old and new vocabularies. Then, we
initialize the embeddings of the overlapping tokens
with their previous values and fine-tune the full
model on the entire dataset.

Note that these baselines do not meet our criteria
for a good incremental training technique. Bilin-
gual models are parameter-inefficient and cannot
do zero-shot translation (except via pivot transla-
tion, which is twice as slow). Re-training assumes
access to the initial model’s training data and can
be very slow. It could also result in a drop in per-
formance in the initial languages.

4 TED Talks Experiments

We adapt a 20-language model trained on TED
Talks to Greek (EL), either on the source side or tar-
get side. We pick Greek as the new language as it is
from an unseen language family and uses an unseen
alphabet. We also do experiments with Ukrainian
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(UK), Indonesian (ID), or Swedish (SV) as the new
language,1 which are shown in Appendix.

4.1 Data and hyper-parameters
We use the TED Talks corpus (Qi et al., 2018) with
the same set of 20 languages as Philip et al. (2020);
Bérard et al. (2021).2 This corpus is multi-parallel,
i.e., it has training data for all 380 (20×19) lan-
guage pairs. It also includes official valid and test
splits for all these language pairs. Table 8 in Ap-
pendix shows the training data size per language.

The initial model is the “multi-parallel” base-
line from Bérard et al. (2021), a Transformer
Base (Vaswani et al., 2017) trained in two stages:
English-centric training (38 directions) for 120
epochs; then multi-parallel fine-tuning (380 direc-
tions) for 10 epochs.3 More hyper-parameters are
given in Appendix (Table 23).

The shared vocabulary is created using BPE
(Sennrich et al., 2016) with 64k merge operations
and inline casing (Bérard et al., 2019). Both BPE
and NMT training use temperature sampling with
T = 5 (Arivazhagan et al., 2019). Single char-
acters with a total frequency higher than 10 are
added to the vocabulary. The Greek vocabulary is
obtained with the same BPE settings but on Greek
monolingual data with 4k merge operations. The
bilingual baselines use a joint BPE model of size
8k and the same settings as in Philip et al. (2020).
Our re-training baselines are obtained by creating
a new shared BPE model of size 64k including all
20 initial languages plus Greek and fine-tuning the
multi-parallel model for 10 more epochs with this
vocabulary. Note that there is a vocabulary mis-
match with the initial model (which did not have
Greek). We initialize the known embeddings with
their previous values and the new ones at random
and reset the learning rate scheduler and optimizer.
We also do a re-training baseline that includes all
4 new languages. Note that contrary to our incre-
mental training approach, those models are trained
with the new language(s) on both sides and use
multi-aligned parallel data.

Finally, we train a model that follows more
closely Garcia et al. (2021): we fine-tune the multi-
parallel model for 10 epochs, by replacing the ini-

1They all use a known script (Latin or Cyrillic). Indonesian
is from an unseen language family.

2{en, ar, he, ru, ko, it, ja, zh_cn, es, fr, pt_br, nl, tr, ro, pl,
bg, vi, de, fa, hu}

3Note that an “epoch” when using multi-parallel data cor-
responds to approximately 9 English-centric epochs in terms
of updates.

Model →EN ←EN / EN
1 SOTA – bilingual 32.4 24.4 15.0
2 SOTA – multilingual 30.9 22.3 14.8
3 English-centric 31.8 24.2 13.5
4 (3) + multi-parallel 32.8 24.3 16.3
5 (4) + EL 33.3 24.3 16.6
6 (4) + {EL,UK,SV,ID} 33.2 24.0 16.5

Table 1: BLEU scores (average to English, from En-
glish, and between non-English languages) of the base-
line models on TED test. “SOTA” corresponds to the
bilingual and multi-parallel baselines of Philip et al.
(2020). (3) and (4) are from Bérard et al. (2021).

tial vocabulary with a vocabulary of the exact same
size that includes Greek, and whose new tokens are
initialized with the outdated embeddings from the
old model. Like Garcia et al. (2021), we upscale
the new data’s sampling frequency by a factor of 5.

4.2 Evaluation settings

The TED Talks models are evaluated on the pro-
vided multi-parallel validation and test sets. Since
those are already word-tokenized, we run Sacre-
BLEU with the --tok none option.4

We report BLEU scores from/into English and
average BLEU from/into the 19 other languages
than English (which correspond to a zero-shot
setting when the incremental training is done on
Greek-English only data). We also report chrF
scores obtained with SacreBLEU on the test and
validation sets in Appendix.5

4.3 Results and analysis

Table 29 in Appendix details the notations used in
this paper and the tables.

Baselines. Table 1 compares our initial models
and re-training baselines against the state of the art
on the initial set of 20 languages. In this instance,
fine-tuning the initial model with more languages
(5, 6) does not degrade BLEU. Appendix Table 9
shows valid and test chrF on more baselines, in-
cluding our implementation of the vocabulary sub-
stitution approach of Garcia et al. (2021).

New source language. Table 2 shows the test
BLEU scores of several incrementally-trained mod-
els with Greek as a new source language. More re-

4SacreBLEU signature: BLEU+c.mixed+#.1+
s.exp+tok.none+v.1.5.1

5chrF2+numchars.6+space.false+
version.1.5.1
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ID Model Params EL→ EN EL→ / EN
1 Bilingual baselines 35.7M 38.4 17.1
5 Re-training + EL – 40.4 19.4
6 Re-training + {EL,UK,SV,ID} – 40.2 19.4
7 Only embed 2.13M 38.9 18.8
8 (7) + random embed init 2.13M 38.8 18.7?

9 (7) + enc-norm + enc-biases 2.17M 39.5 17.7
10 (7) + enc-adapters-first (dim=64) 2.19M 39.3 0.6
11 (7) + enc-adapters-all (d=64) 2.53M 40.3 0.6
12 (7) + enc-adapters-all (d=512) 5.28M 41.0 0.6
13 (7) + enc-adapters-{1,2,3} (d=1024) 5.28M 41.0 0.6
14 (7) + enc-first-layer 5.28M 40.1 0.7
15 (7) + all-enc-layers 21.0M 40.4 0.6
16 (12) + EL multi-aligned 5.28M 40.5 19.5
17 (12) + EL multi-aligned (BT) 5.28M 40.2 19.0
18 (12) + 1k lines per lang 5.28M 40.9 18.2
19 (12) + 1k lines per lang (BT) 5.28M 41.2 17.8
20 (14) + 1k lines per lang (BT) 5.28M 40.3 18.9
21 (12) + 100 lines per lang (BT) 5.28M 40.9 17.4
22 (7) + {EL,UK,SV,ID} 8.30M 39.3 18.9
23 (14) + {EL,UK,SV,ID} 11.5M 39.9 2.9

Table 2: TED test BLEU scores of incremental training with Greek on the source side. “EL→ / EN” corresponds
to an average BLEU from Greek into all 19 non-English languages. “Params” gives the number of new parameters
introduced by each approach. The initial model (4) has 80.2M parameters in total. (?) obtained by using the
“translate into X" lang code embeddings from the initial model. The table is divided in 4 parts: baselines trained
with multi-aligned data; Greek-English incremental training; incremental training with multi-aligned data (i.e., line
pairs between Greek and all 20 languages); and multilingual English-centric incremental training (i.e., on 4 new
source languages at once).

sults on Greek, Ukrainian, Indonesian and Swedish
are given in Appendix (Tables 10, 11, 12, and 13).

Training the source embeddings only (7) outper-
forms the bilingual baselines (1) and comes close
to the costly re-training baselines (5, 6). In particu-
lar, it nearly matches the performance of the latter
in the zero-shot EL→ / EN directions, even though
the baselines have training data for those directions.
Initializing the known tokens in the new vocabulary
with their old embeddings does not improve final
performance (7 vs 8). But using language code em-
beddings from the initial model is necessary to be
able to translate into non-English languages. Fig-
ure 4 shows that such initialization improves final
performance under low-resource settings. Figure 7
in Appendix also shows that it speeds up training.

Training additional components in the encoder,
like adapter modules (11, 12, 13) or the first en-
coder layer (14) helps improve EL→ EN perfor-
mance and outperform all baselines, though it is
less useful when the new language is from a known
family (see Ukrainian and Swedish scores in Ap-

pendix Tables 11 and 13). However, this results
in abysmal zero-shot performance (EL → / EN).
As they only encounter the “to English” language
code during training, those models quickly forget
how to interpret the other lang codes. This catas-
trophic forgetting is illustrated by Figure 3, where
we see a plunge in EL → FR performance after
just a few epochs of training. Only tuning the en-
coder layer norm parameters and biases (9) gives
slightly higher EL → EN performance without
suffering from catastrophic forgetting in the other
languages. Note that language code forgetting is
less pronounced when the initial model is English-
centric (see Table 18 in Appendix). In this setting,
adapter modules do not hurt zero-shot translation.

The third quarter of Table 2 shows how multi-
aligned Greek data can be used to achieve excellent
performance in both EL → EN and EL → / EN
directions. The best tradeoff between EL → EN
and EL→ / EN performance is achieved by incre-
mentally training with the entire Greek dataset of
2.41M line pairs. However, such data might not
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ID Model Params EN→ EL / EN→ EL
1 Bilingual baselines 35.7M 32.2 18.3
5 Re-training + EL – 32.5 21.1
6 Re-training + {EL,UK,SV,ID} – 32.1 21.1

24 Only embed 2.13M 25.7 16.7
25 (24) + non-tied 4.25M 27.1 17.8
26 (24) + dec-adapters-all (dim=64) 2.53M 29.8 19.3
27 (24) + adapters-all (d=64) 2.93M 32.7 19.6
28 (24) + enc-adapters-last (d=1024) 3.18M 32.0 20.0
29 (26) + enc-adapters-last (d=1024) 3.58M 33.5 20.6
30 (24) + dec-last-layer 6.33M 32.6 20.5
31 (30) + enc-adapters-last (d=1024) 7.38M 34.0 20.8
32 (24) + adapters-all (d=430) 7.43M 34.0 18.2
33 (24) + dec-adapters-all (d=690) + enc-adapters-last (d=1024) 7.43M 33.8 20.8
34 (30) + adapters-all (d=90) 7.36M 34.2 19.8
35 (30) + enc-adapters-all (d=170) 7.38M 34.1 19.0
36 (31) + EL multi-aligned 7.35M 32.9 21.1
37 (31) + {EL,UK,SV,ID} 13.5M 33.0 20.4

Table 3: TED test BLEU scores of incremental training with Greek on the target side. “/ EN→ EL” corresponds
to an average BLEU from the 19 non-English languages to Greek. “Params” gives the number of new parameters
introduced by each approach.

always be accessible for the new language. Close
performance can be reached by training with the
same amounts of synthetic data instead (17). And
more interestingly, only a tiny amount of real (18)
or back-translated data (19, 20, 21) in the other
19 languages is needed to obtain good zero-shot
results without any loss in EL→ EN performance.

New target language. Table 3 shows test BLEU
scores when incrementally adding Greek on the
target side. Additional results on Greek, Ukrainian,
Indonesian and Swedish are provided in Appendix
(Tables 14, 15, 16, and 17).

With new target languages, only adapting the
embedding matrix (tied with vocabulary projec-
tion) is not enough and strongly underperforms the
baselines (24 vs 1, 5 and 6). Training decoder-side
adapter modules (26) gets us closer to baseline per-
formance; and tuning the last decoder layer (30)
bridges the gap with the baselines. However, the
most effective strategy is to train some components
in both the encoder and decoder (27, 29, 31, 32,
33, 34, 35). We observed that it was important for
the model to have a way to modify the output of
the encoder before it is read by frozen decoder
components. Interestingly, only having a large
adapter module after the last encoder layer (28)
is enough to match baseline performance. Adding
small adapters after each decoder layer (29) fur-

ther improves BLEU and brings the best parameter
count / performance tradeoff.

At the same parameter budget, training adapter
modules after every encoder layer (32, 34, 35)
gives worse / EN → EL performance than an
adapter at the last encoder layer combined with
decoder-side parameters (31, 33), which is likely
caused by the encoder overfitting to English.

In this setting, there is no clear advantage to
incremental training with multi-aligned Greek data
(36), as this hurts EN→ EL performance, without
any notable improvement for / EN→ EL. Finally,
multilingual incremental training (with 4 new target
languages at once) is entirely possible (37) and
gives competitive results to the baselines.

Table 25 in Appendix analyzes the usefulness of
learning a new language code, by comparing with
three other strategies: incremental training without
any language code; with the “to English” language
code; or with the language code of a similar lan-
guage. Interestingly, the more new parameters are
learned (esp. encoder-side), the less useful it is
to learn a new language code. Moreover, adapt-
ing to Swedish by using a fixed English language
code gives reasonable performance as the two lan-
guages are from the same family. And the proxy
“to Russian” language code gives the same results
as learning a new language code when adapting to
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Figure 3: TED validation BLEU on EL-EN and EL-FR while incrementally training with EL-EN data only (7, 9,
10, 11, 12, 14).

Source model Target model BLEU
1 Bilingual 14.9
1 Bilingual (pivot through English) 18.5
6 Re-training + {EL,UK,SV,ID} 22.0

7 Only embed
30 Dec-last-layer 21.1
31 Dec-last-layer + enc-adapters-last (d=1024) 21.0

14 Enc-first-layer
30 Dec-last-layer 20.7
31 Dec-last-layer + enc-adapters-last (d=1024) 21.3
31 Pivot through English? 21.6

20 Enc-first-layer + 1k (BT)
30 Dec-last-layer 21.2
31 Dec-last-layer + enc-adapters-last (d=1024) 21.3

19 Enc-adapters-all (d=512) + 1k (BT)
30 Dec-last-layer 20.4
31 Dec-last-layer + enc-adapters-last (d=1024) 20.7

Table 4: TED test BLEU scores on {EL,UK,SV,ID}→{EL,UK,SV,ID} (average over 12 directions) by combining
source-language and target-language incrementally-trained parameters. (?) instead of combining model parame-
ters, translate to English with (14), then to the target language with (31).

Ukrainian because both languages are very similar.

New source and target languages Table 4 com-
bines incrementally-trained parameters at inference
time to translate between two new languages. In-
terestingly, combining target-language parameters
with source-language parameters that had very poor
zero-shot performance (14) gives excellent results.
We hypothesize that the language code forgetting
issue is less pronounced here because solely activat-
ing some language-specific parameters will make
the model translate into that language.

Despite showing the best EL→ EN performance,
source-language encoder adapters (19) tend to per-
form more poorly when combined with target-
language parameters. While better performance is
obtained by pivot translation through English with
two incrementally trained models (14 and 31), com-
bining the parameters of these two models gives

close results at a faster inference speed.

Discussion Figure 4 shows final BLEU scores of
our techniques when training with smaller amounts
of data. We observe that incremental training is
more data-efficient than bilingual models and can
achieve decent performance even with tiny amounts
of training data, making it a good fit for adaptation
to low-resource languages.

Figure 7 in Appendix illustrates the training
speed of our approach compared to our implemen-
tation of Garcia et al. (2021). In addition to main-
taining the exact same performance on the previous
languages and needing only English-centric data,
our approach reaches higher performance in much
fewer updates than the alternatives. Note that re-
training might be an efficient solution if one wants
to add several languages at once and on both sides.

Finally, Tables 18 and 19 in Appendix show that
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Figure 4: TED validation BLEU from Greek (left) and to Greek (right) by training corpus size, with incremental
training (7, 8, 24, 27) versus bilingual baselines (1).

ID Model →EN ←EN / EN
38 M2M-124 32.4 31.9 25.7
39 Big 6-6 EN-centric 38.8 36.4 18.5
40 Big 12-2 EN-centric 39.6 37.1 21.1
41 (40) + pivot (EN) – – 27.6
42 (40) + multi-para. 39.0 36.2 27.6
43 (40) + {AR,RU,ZH} 39.6 36.6 21.0
44 (42) + {AR,RU,ZH} 39.0 35.8 27.5

Table 5: FLORES devtest spBLEU scores of the
ParaCrawl/UNPC baselines. Average to English (19
directions), from English (19 directions) and between
non-English languages (342 directions). (39, 40, 41,
42) are the same models as in (Bérard et al., 2021).

our incremental training approach can be applied to
English-centric initial models with similar results.

5 ParaCrawl Experiments

In this section, we test our approach in a more re-
alistic, large-scale setting: a 20-language Trans-
former Big initial model trained on ParaCrawl
(Bañón et al., 2020). The incremental training
experiments are done in three languages: Arabic
(AR), Russian (RU), and Chinese (ZH). Arabic and
Chinese are both from unseen language families
and use unseen scripts. Russian is close to a known
language (Bulgarian) and uses the same script. For
training on those languages, we use UNPC (Ziem-
ski et al., 2016).

5.1 Data and hyper-parameters

We download ParaCrawl v7.1 in the 19 highest-
resource languages paired with English.6 Then,

6{fr, de, es, it, pt, nl, nb, cs, pl, sv, da, el, fi, hr, hu, bg, ro,
sk, lt}

like Freitag and Firat (2020), we build a multi-
parallel corpus by aligning all pairs of languages
through their English side (effectively removing
any English duplicate). See Appendix Table 21 for
training data statistics. We create a shared BPE
vocab with 64k merge operations and inline casing,
by sampling from this data with T = 5 and include
all characters whose frequency is higher than 100.

Our initial model is the Transformer Big 12-2
(i.e., with a deep encoder and shallow decoder)
multi-parallel model of Bérard et al. (2021). Like
in the previous section, it was trained in two stages:
English-centric training (with T = 5) for 1M steps;
then multi-parallel fine-tuning (with T = 2) for
200k more steps. More hyper-parameters are given
in Appendix (Table 24).

Incremental training is done for 120k steps with
English-centric data from UNPC v1.0 (see Table 22
in Appendix for statistics), which we clean by re-
moving any line pairs where either side is detected
as being in the wrong language by langid.py
(Lui and Baldwin, 2012). We use monolingual BPE
models of size 8k. The Chinese data is tokenized
with Jieba7 before learning the BPE model.

The English-centric bilingual baselines are
Transformer Big 6-6 models trained on UNPC for
120k steps with joint BPE vocabularies of size 16k.
We do two “re-training” baselines, by fine-tuning
either the English-centric or multi-parallel model
on their initial ParaCrawl data plus UNPC data in
all three new languages. We sample UNPC line
pairs in each of the new directions with probabil-
ity 0.05. The remaining 0.7 probability mass is
distributed among the initial ParaCrawl directions
with T = 5. The new BPE vocabulary is trained

7https://github.com/fxsjy/jieba
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ID Model Params
AR RU ZH AR RU ZH

→ EN → / EN
38 M2M-124 (Goyal et al., 2021) – 25.5 27.5 20.9 19.6 24.0 18.7
45 Bilingual baselines (pivot through English) 193M 32.1 29.9 23.7 23.2 23.9 19.6
43 English-centric (40) + {AR,RU,ZH} – 30.0 31.7 22.6 14.6 16.9 11.8
44 Multi-parallel (42) + {AR,RU,ZH} – 31.0 31.6 23.1 19.2 23.5 15.9
50 (44) + pivot through English – – – – 22.2 24.5 19.1
46 Only embed 8.6M 24.2 30.8 20.5 16.5 23.8 15.6
47 (46) + enc-adapters-all (dim=512) 21.3M 31.7 31.3 23.5 1.0 1.5 1.5
48 (46) + enc-first-layer 21.2M 30.3 31.2 23.2 1.0 2.6 1.5
49 (48) + 20k lines per lang (BT) 21.2M 30.1 31.4 22.8 20.8 24.6 17.8

ID Model Params
EN→ / EN→

AR RU ZH AR RU ZH
38 M2M-124 (Goyal et al., 2021) – 17.9 27.1 19.3 13.8 23.0 16.6
45 Bilingual baselines (pivot through English) 193M 29.1 27.5 22.9 21.2 22.5 18.2
43 English-centric (40) + {AR,RU,ZH} – 26.5 26.8 18.4 15.7 19.3 11.3
44 Multi-parallel (42) + {AR,RU,ZH} – 28.3 27.3 20.6 16.6 21.6 13.1
50 (44) + pivot through English – – – – 20.2 21.8 16.3
51 Only embed 8.6M 11.6 19.7 14.0 9.3 15.8 11.5
52 (51) + enc-adapt-last + dec-adapt-all (1024) 14.9M 27.0 26.2 20.9 18.8 20.8 16.8
53 (51) + dec-last-layer 25.4M 26.5 26.9 21.5 19.1 20.9 17.4
54 (53) + enc-adapters-last (dim=1024) 27.5M 28.2 28.0 22.5 20.0 21.8 18.0
55 (54) without lang ID filtering 27.5M 18.0 19.0 13.6 5.2 10.3 5.0
56 (51) + all-dec-layers 42.2M 28.6 28.1 22.4 20.1 21.9 18.1

Table 6: FLORES devtest spBLEU scores of the ParaCrawl/UNPC incrementally-trained models. The top half
of each table corresponds to the baselines (SOTA, bilingual or re-training). “Params” gives the number of new
parameters introduced by each approach. The incremental training is always done on one language only (i.e., one
row can correspond to 3 different models). Note that the parameter counts given in this table are for Arabic (8.63M
embedding parameters). Russian and Chinese embeddings have respectively 8.51M and 13.60M parameters.

with the monolingual ParaCrawl/UNPC data in all
23 languages (with T = 5). The new embeddings
for the known tokens are initialized with their old
values and the other embeddings at random.8 Note
that contrary to the TED Talks experiments, we do
not have multi-aligned data for the new languages.

5.2 Evaluation settings

For validation, we use our own split from TED2020
(Reimers and Gurevych, 2020): 3000 random line
pairs for each translation direction. We report chrF
scores9 computed on these valid sets in Appendix.

As test sets, we use FLORES devtest (Goyal
et al., 2021). We report scores computed with their
new “spBLEU” metric,10 which runs BLEU on top
of a standardized multilingual BPE tokenization.

878% of the new tokens were in the initial vocabulary, and
84% of the old tokens are in the new vocabulary.

9chrF2+n.6+s.false+v.1.5.1
10BLEU+c.mixed+#.1+s.exp+tok.spm+v.1.5.1

(https://github.com/ngoyal2707/sacrebleu)

5.3 Results and analysis

Baselines. Table 5 compares our initial model
(42) with other baselines. Our multi-parallel model
beats the M2M-124 model of Goyal et al. (2021)
in all three settings. This is not so surprising, as
their model only has 615M parameters for 124
languages, compared to 255M parameters for our
20-language model. Last, we can observe that our
“re-training” baselines (43 and 44) perform almost
as well as the initial 20-language models (40, 42).

New source or target language. Training only
source embeddings (46) is a good strategy for
Russian, but underperforms the baselines in the
more linguistically distant Arabic and Chinese.
Learning more parameters (+8% per source lan-
guage) can match baseline performance in all 3 lan-
guages (47 and 48), but gives poor zero-shot perfor-
mance. Adding small amounts of “back-translated”
data (49) achieves close non-English performance
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Source model Target model spBLEU
38 M2M-124 (Goyal et al., 2021) 15.0
45 Bilingual baselines (pivot through English) 18.3
44 Multi-parallel (42) + {AR,RU,ZH} 13.0
50 (44) + pivot through English 16.8

46 Only embed
53 Dec-last-layer 13.5
54 Dec-last-layer + enc-adapters-last (d=1024) 13.9

47 Enc-adapters-all (dim=512)
53 Dec-last-layer 13.0
54 Dec-last-layer + enc-adapters-last (d=1024) 13.8
54 Pivot through English 17.7

48 Enc-first-layer
53 Dec-last-layer 10.2
54 Dec-last-layer + enc-adapters-last (d=1024) 10.6

49 Enc-first-layer + 20k (BT)
53 Dec-last-layer 12.4
54 Dec-last-layer + enc-adapters-last (d=1024) 12.7

Table 7: FLORES devtest spBLEU scores of the ParaCrawl/UNPC models on {AR,RU,ZH}→{AR,RU,ZH} (av-
erage over 6 directions) by combining source-language and target-language incrementally-trained parameters.

to the pivot translation baselines without hurting
English-centric scores. For new target languages,
the best strategy is to train the last decoder layer
with an adapter module at the last encoder layer
(54), which matches the re-training baselines in
all 3 languages and gets close performance to the
parameter-inefficient bilingual baselines. Interest-
ingly, target-side incremental training is very sen-
sitive to training data noise. In a first iteration of
our experiments, we trained with unfiltered UNPC
data and observed catastrophic performance (55).
Simple language ID filtering solved this issue.

New source and target languages. Table 7
combines source-language with target-language
incrementally-trained parameters to translate be-
tween two new languages. The results are not
as good as in our TED Talks experiments. The
best combination in this setting (46 with 54)
performs considerably worse than pivot transla-
tion through English with the baselines. How-
ever, it outperforms the “re-training” baseline (44),
which has only seen English-centric data for the
new languages. And pivot translation with two
incrementally-trained models (47 with 54) gives
excellent results, close to the bilingual baselines.

6 Conclusion

We propose a new technique for incrementally
training multilingual NMT models on a new source
or target language. It consists in creating a new
monolingual BPE vocabulary for that language,
substituting the shared embedding matrix with
language-specific embeddings, and training those

while freezing the other model parameters. At in-
ference, translating in any of the initial languages
is done by using the initial shared embeddings,
and translating in the new language is done by us-
ing the newly trained embeddings. This approach
does not change performance on the initial lan-
guages as the initial parameters are kept aside
and not modified. For new source languages, it
can achieve close performance to the more costly
and less flexible bilingual and re-training baselines.
For new target languages, this technique can be
combined with language-specific parameters (fine-
tuned Transformer layers or adapter modules) to
match baseline performance at a small parameter
cost. We validate this technique on two sets of
experiments: small-scale on TED Talks and large-
scale on ParaCrawl; and show that it is compatible
with two architectures: Transformer Base 6-6 and
Big 12-2. We also show that incremental training
on data aligned with English is enough to learn
to translate between the new language and any of
the initial languages. Translation between a new
source and a new target language is also possible
by combining their respective parameters at infer-
ence. Finally, we provide supplementary material
to facilitate reproducibility.11

11https://europe.naverlabs.com/
research/natural-language-processing/
efficient-multilingual-machine-translation
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A Appendix

Language Code Family Script X-EN lines X-* lines
English en Germanic Latin 3.56M 3.56M
Arabic ar Semitic Arabic 214.1k 3.43M
Hebrew he Semitic Hebrew 211.8k 3.40M
Russian ru Slavic Cyrillic 208.5k 3.38M
Korean ko Koreanic Hangul 205.6k 3.35M
Italian it Romance Latin 204.5k 3.35M

Japanese ja Japonic Chinese + Kana 204.1k 3.31M
Mandarin Chinese zh_cn Sinitic Chinese 199.9k 3.30M

Spanish es Romance Latin 196.0k 3.23M
French fr Romance Latin 192.3k 3.19M

Brazilian Portuguese pt_br Romance Latin 184.8k 3.11M
Dutch nl Germanic Latin 183.8k 3.05M

Turkish tr Turkic Latin 182.5k 3.02M
Romanian ro Romance Latin 180.5k 3.06M

Polish pl Slavic Latin 176.2k 3.00M
Bulgarian bg Slavic Cyrillic 174.4k 2.95M

Vietnamese vi Vietic Latin 172.0k 2.81M
German de Germanic Latin 167.9k 2.90M
Persian fa Iranian Arabic 151.0k 2.41M

Hungarian hu Uralic Latin 147.2k 2.47M
Greek el Hellenic Greek 134.3k 2.41M

Ukrainian uk Slavic Cyrillic 108.5k 1.81M
Indonesian id Malayic Latin 87.4k 1.61M
Swedish sv Germanic Latin 56.6k 978.0k

Total all – – 7.11M 62.27M

Table 8: Size of the Top 20 TED Talks corpus. English has 253.3k unique lines.
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Figure 5: TED validation EN-EL BLEU by training corpus size, with incremental training (24, 27) with or without
known embedding initialization, versus bilingual baselines (1).
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amount of data (real or back-translated) in the 19 other languages.
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Figure 7: TED validation BLEU on EL-EN (left) and EN-EL (right) while training. Comparison of different
incremental training approaches with the Garcia et al. (2021) baseline.

ID Model
Valid chrF Test chrF

→EN ←EN / EN →EN ←EN / EN
1 Bilingual (pivot) .542 .484 .385 .542 .484 .385
3 English-centric .530 .487 .371 .529 .486 .370
4 (3) + multi-parallel training .541 .482 .395 .540 .482 .395

57 (3) + EL .528 .488 .372 .527 .488 .371
58 (3) + {EL, UK, ID, SV} .526 .485 .370 .526 .485 .370
5 (4) + EL .545 .481 .398 .545 .482 .398
6 (4) + {EL, UK, ID, SV} .545 .480 .398 .544 .481 .397

59 (4) + EL (Garcia et al., 2021) .539 .480 .394 .539 .479 .394
60 (59) @100k steps .537 .479 .393 .538 .478 .392

Table 9: TED valid and test chrF scores of the baseline models. (59) corresponds to the best checkpoint according
to validation loss (after 3 epochs, or 320k updates) and (60) is after just 100k updates.
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ID Model
Valid chrF Test chrF

EL→ EN EL→ / EN EL→ EN EL→ / EN
1 Bilingual baselines .577 .399 .583 .400
5 Re-training + EL .591 .426 .596 .425
6 Re-training + {EL,UK,SV,ID} .590 .425 .594 .424

59 Re-training + EL (Garcia et al., 2021) .587 .424 .594 .424
60 (59) @100k .582 .421 .587 .420
7 Only embed .577 .417 .581 .417
8 (7) + random embed init .577 .417? .580 .417?

9 (7) + enc-norm + enc-biases .582 .407 .587 .407
10 (7) + enc-adapters-first (d=64) .578 .102 .584 .100
11 (7) + enc-adapters-all (d=64) .587 .102 .593 .100
12 (7) + enc-adapters-all (d=512) .593 .102 .602 .100
13 (7) + enc-adapters-{1,2,3} (d=1024) .595 .103 .603 .101
14 (7) + enc-first-layer .590 .105 .595 .102
15 (7) + enc-all-layers .590 .102 .598 .100
16 (12) + EL multi-aligned .592 .427 .599 .428
18 (12) + 1k lines per lang .594 .412 .601 .413
19 (12) + 1k lines per lang (BT) .595 .411 .603 .411
20 (14) + 1k lines per lang (BT) .589 .422 .596 .422
21 (12) + 100 lines per lang (BT) .595 .405 .601 .406
22 (7) + {EL,UK,SV,ID} .582 .419 .585 .419
61 (12) + {EL,UK,SV,ID} .593 .103 .597 .100
23 (14) + {EL,UK,SV,ID} .587 .158 .592 .154

Table 10: TED valid and test chrF scores of incremental training with Greek on the source side. (?) obtained by
using the “translate into X" lang code embeddings from the initial model.

ID Model
Valid chrF Test chrF

UK→ EN UK→ / EN UK→ EN UK→ / EN
1 Bilingual baselines .484 – .494 –
6 Re-training + {EL,UK,SV,ID} .522 .402 .534 .402
7 Only embed .516 .397 .525 .395
9 (7) + enc-norm + enc-biases .518 .386 .526 .385

10 (7) + enc-adapters-first (d=64) .519 .100 .525 .099
11 (7) + enc-adapters-all (d=64) .520 .100 .529 .100
12 (7) + enc-adapters-all (d=512) .520 .100 .529 .099
13 (7) + enc-adapters-{1,2,3} (d=1024) .523 .100 .530 .100
14 (7) + enc-first-layer .521 .136 .529 .134
15 (7) + enc-all-layers .517 .100 .525 .099
16 (12) + UK multi-aligned .522 .402 .530 .401
18 (12) + 1k lines per lang .523 .389 .531 .387
19 (12) + 1k lines per lang (BT) .520 .384 .528 .382
20 (14) + 1k lines per lang (BT) .522 .397 .528 .396
21 (12) + 100 lines per lang (BT) .520 .382 .527 .382
22 (7) + {EL,UK,SV,ID} .518 .398 .526 .396
61 (12) + {EL,UK,SV,ID} .524 .101 .532 .100
23 (14) + {EL,UK,SV,ID} .522 .132 .527 .130

Table 11: TED valid and test chrF scores of incremental training with Ukrainian on the source side.
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ID Model
Valid chrF Test chrF

ID→ EN ID→ / EN ID→ EN ID→ / EN
1 Bilingual baselines .516 – .533 –
6 Re-training + {EL,UK,SV,ID} .541 .397 .554 .404
7 Only embed .533 .390 .548 .399
8 (7) + random embed init .529 .385? .547 .395?

9 (7) + enc-norm + enc-biases .537 .379 .551 .389
10 (7) + enc-adapters-first (d=64) .535 .100 .551 .101
11 (7) + enc-adapters-all (d=64) .540 .101 .557 .102
12 (7) + enc-adapters-all (d=512) .541 .101 .558 .102
13 (7) + enc-adapters-{1,2,3} (d=1024) .545 .101 .558 .102
14 (7) + enc-first-layer .540 .101 .554 .102
15 (7) + enc-all-layers .535 .100 .552 .101
16 (12) + ID multi-aligned .540 .397 .556 .405
18 (12) + 1k lines per lang .541 .383 .556 .390
19 (12) + 1k lines per lang (BT) .542 .382 .558 .388
20 (14) + 1k lines per lang (BT) .536 .389 .553 .399
21 (12) + 100 lines per lang (BT) .542 .380 .557 .389
22 (7) + {EL,UK,SV,ID} .530 .388 .547 .397
61 (12) + {EL,UK,SV,ID} .543 .101 .560 .102
23 (14) + {EL,UK,SV,ID} .539 .125 .553 .126

Table 12: TED valid and test chrF scores of incremental training with Indonesian on the source side. (?) obtained
by using the “translate into X" lang code embeddings from the initial model.

ID Model
Valid chrF Test chrF

SV→ EN SV→ / EN SV→ EN SV→ / EN
1 Bilingual baselines .577 – .579 –
6 Re-training + {EL,UK,SV,ID} .611 .424 .615 .426
7 Only embed .601 .417 .607 .420
8 (7) + random embed init .596 .414? .605 .417?

9 (7) + enc-norm + enc-biases .604 .413 .613 .415
10 (7) + enc-adapters-first (d=64) .606 .100 .613 .102
11 (7) + enc-adapters-all (d=64) .610 .100 .617 .102
12 (7) + enc-adapters-all (d=512) .608 .100 .613 .102
13 (7) + enc-adapters-{1,2,3} (d=1024) .612 .100 .619 .102
14 (7) + enc-first-layer .608 .102 .617 .104
15 (7) + enc-all-layers .601 .099 .605 .101
16 (12) + SV multi-aligned .609 .421 .615 .424
18 (12) + 1k lines per lang .606 .408 .613 .410
19 (12) + 1k lines per lang (BT) .607 .406 .611 .409
20 (14) + 1k lines per lang (BT) .605 .417 .613 .420
21 (12) + 100 lines per lang (BT) .605 .402 .611 .405
22 (7) + {EL,UK,SV,ID} .601 .417 .605 .418
61 (12) + {EL,UK,SV,ID} .616 .100 .620 .102
23 (14) + {EL,UK,SV,ID} .607 .164 .615 .172

Table 13: TED valid and test chrF scores of incremental training with Swedish on the source side. (?) obtained by
using the “translate into X" lang code embeddings from the initial model.
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ID Model
Valid chrF Test chrF

EN→ EL / EN→ EL EN→ EL / EN→ EL
1 Bilingual baselines .551 .421 .570 .432
5 Re-training + EL .551 .452 .569 .460
6 Re-training + {EL,UK,SV,ID} .550 .451 .568 .460
59 Re-training + EL (Garcia et al., 2021) .553 .449 .570 .458
60 (59) @100k .553 .450 .572 .459
24 Only embed .504 .415 .518 .423
25 (24) + non-tied .517 .423 .530 .432
26 (24) + dec-adapters-all (d=64) .533 .435 .551 .444
27 (24) + adapters-all (d=64) .556 .440 .574 .449
28 (24) + enc-adapters-last (d=1024) .555 .445 .571 .455
29 (26) + enc-adapters-last (d=1024) .560 .450 .580 .459
30 (24) + dec-last-layer .556 .449 .576 .458
31 (30) + enc-adapters-last (d=1024) .566 .452 .585 .461
32 (24) + adapters-all (d=430) .566 .426 .585 .436
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .566 .451 .584 .461
34 (30) + adapters-all (d=90) .565 .442 .585 .453
35 (30) + enc-adapters-all (d=170) .567 .435 .586 .444
62 (24) + dec-all-layers .562 .448 .577 .457
36 (31) + EL multi-aligned .554 .451 .573 .462
37 (31) + {EL,UK,SV,ID} .558 .449 .578 .458

Table 14: TED valid and test chrF scores of incremental training with Greek on the target side.

ID Model
Valid chrF Test chrF

EN→ UK / EN→ UK EN→ UK / EN→ UK
1 Bilingual baselines .441 – .440 –
6 Re-training + {EL,UK,SV,ID} .460 .401 .459 .394
24 Only embed .446 .386 .445 .380
25 (24) + non-tied .452 .390 .449 .384
26 (24) + dec-adapters-all (d=64) .457 .394 .453 .387
27 (24) + adapters-all (d=64) .466 .397 .465 .391
28 (24) + enc-adapters-last (d=1024) .464 .400 .463 .393
29 (26) + enc-adapters-last (d=1024) .469 .402 .465 .394
30 (24) + dec-last-layer .468 .402 .464 .394
31 (30) + enc-adapters-last (d=1024) .471 .403 .467 .395
32 (24) + adapters-all (d=430) .470 .386 .468 .380
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .468 .402 .466 .394
34 (30) + adapters-all (d=90) .469 .400 .467 .393
35 (30) + enc-adapters-all (d=170) .470 .393 .469 .387
62 (24) + dec-all-layers .468 .400 .463 .391
36 (31) + UK multi-aligned .460 .400 .458 .393
37 (31) + {EL,UK,SV,ID} .467 .402 .465 .395

Table 15: TED valid and test chrF scores of incremental training with Ukrainian on the target side.
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ID Model
Valid chrF Test chrF

EN→ ID / EN→ ID EN→ ID / EN→ ID
1 Bilingual baselines .568 – .579 –
6 Re-training + {EL,UK,SV,ID} .579 .498 .591 .504
24 Only embed .562 .483 .575 .491
25 (24) + non-tied .569 .487 .582 .496
26 (24) + dec-adapters-all (d=64) .579 .492 .591 .501
27 (24) + adapters-all (d=64) .585 .489 .599 .498
28 (24) + enc-adapters-last (d=1024) .586 .493 .600 .501
29 (26) + enc-adapters-last (d=1024) .589 .495 .602 .504
30 (24) + dec-last-layer .588 .496 .598 .503
31 (30) + enc-adapters-last (d=1024) .587 .496 .601 .503
32 (24) + adapters-all (d=430) .589 .480 .599 .489
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .586 .494 .599 .502
34 (30) + adapters-all (d=90) .588 .493 .603 .502
35 (30) + enc-adapters-all (d=170) .589 .489 .602 .496
62 (24) + dec-all-layers .588 .497 .600 .506
36 (31) + ID multi-aligned .579 .496 .589 .502
37 (31) + {EL,UK,SV,ID} .584 .493 .597 .501

Table 16: TED valid and test chrF scores of incremental training with Indonesian on the target side.

ID Model
Valid chrF Test chrF

EN→ SV / EN→ SV EN→ SV / EN→ SV
1 Bilingual baselines .557 – .557 –
6 Re-training + {EL,UK,SV,ID} .568 .453 .567 .455
24 Only embed .547 .436 .548 .438
25 (24) + non-tied .552 .441 .556 .443
26 (24) + dec-adapters-all (d=64) .569 .451 .572 .453
27 (24) + adapters-all (d=64) .584 .444 .589 .448
28 (24) + enc-adapters-last (d=1024) .583 .451 .586 .455
29 (26) + enc-adapters-last (d=1024) .587 .452 .590 .457
30 (24) + dec-last-layer .580 .452 .584 .458
31 (30) + enc-adapters-last (d=1024) .589 .454 .590 .458
32 (24) + adapters-all (d=430) .587 .437 .597 .443
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .584 .452 .587 .457
34 (30) + adapters-all (d=90) .587 .449 .590 .453
35 (30) + enc-adapters-all (d=170) .588 .443 .591 .449
62 (24) + dec-all-layers .583 .452 .586 .457
36 (31) + SV multi-aligned .570 .454 .569 .456
37 (31) + {EL,UK,SV,ID} .589 .455 .591 .459

Table 17: TED valid and test chrF scores of incremental training with Swedish on the target side.
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ID Model
Valid chrF Test chrF

EL→ EN EL→ / EN EL→ EN EL→ / EN
1 Bilingual baselines (pivot) .577 .407 .583 .407
57 Re-training + EL (pivot) .575 .408 .578 .408
58 Re-training + {EL,UK,SV,ID} (pivot) .572 .405 .573 .404
7 Only embed .571 .402 .579 .403
9 (7) + enc-norm + enc-biases .574 .403 .581 .403
10 (7) + enc-adapters-first (d=64) .575 .404 .582 .404
11 (7) + enc-adapters-all (d=64) .581 .401 .587 .401
12 (7) + enc-adapters-all (d=512) .584 .386 .589 .387
13 (7) + enc-adapters-{1,2,3} (d=1024) .584 .403 .591 .404
14 (7) + enc-first-layer .581 .114 .588 .111
15 (7) + enc-all-layers .579 .102 .590 .100
18 (12) + 1k lines per lang .581 .394 .589 .393
19 (12) + 1k lines per lang (BT) .583 .396 .588 .396
20 (14) + 1k lines per lang (BT) .579 .404 .587 .404
21 (12) + 100 lines per lang (BT) .583 .391 .590 .391

Table 18: TED valid and test chrF scores of incremental training with Greek on the source side when the initial
model is English-centric (3).

ID Model
Valid chrF Test chrF

EN→ EL / EN→ EL EN→ EL / EN→ EL
1 Bilingual baselines (pivot) .551 .435 .570 .444
57 Re-training + EL (pivot) .557 .430 .577 .440
58 Re-training + {EL,UK,SV,ID} (pivot) .556 .428 .573 .438
24 Only embed .518 .401 .534 .409
25 (24) + non-tied .529 .407 .545 .416
26 (24) + dec-adapters-all (d=64) .545 .415 .561 .424
27 (24) + adapters-all (d=64) .564 .414 .584 .423
28 (24) + enc-adapters-last (d=1024) .562 .420 .581 .429
29 (26) + enc-adapters-last (d=1024) .568 .424 .586 .432
30 (24) + dec-last-layer .565 .427 .585 .435
31 (30) + enc-adapters-last (d=1024) .571 .426 .589 .435
32 (24) + adapters-all (d=430) .573 .408 .591 .416
33 (24) + dec-ad-all (690) + enc-ad-last (1024) .568 .425 .589 .434
34 (30) + adapters-all (d=90) .573 .420 .592 .428
35 (30) + enc-adapters-all (d=170) .572 .417 .594 .426
62 (24) + dec-all-layers .566 .426 .583 .434
36 (31) + EL multi-aligned .553 .441 .570 .450

Table 19: TED valid and test chrF scores of incremental training with Greek on the target side when the initial
model is English-centric (3).
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Source model Target model Valid Test
1 Bilingual .384 .388
1 Bilingual (pivot through English) .428 .437
6 Re-training + {EL,UK,SV,ID} .461 .470

7 Only embed
30 Dec-last-layer .456 .465
31 Dec-last-layer + enc-ad-last (d=1024) .457 .466

14 Enc-first-layer
30 Dec-last-layer .453 .463
31 Dec-last-layer + enc-ad-last (d=1024) .461 .470
31 Pivot through English? .460 .469

20 Enc-first-layer + 1k (BT)
30 Dec-last-layer .459 .468
31 Dec-last-layer + enc-ad-last (d=1024) .461 .470

19 Enc-adapters-all (d=512) + 1k (BT)
30 Dec-last-layer .451 .459
31 Dec-last-layer + enc-ad-last (d=1024) .453 .462

Table 20: TED valid and test chrF scores on {EL,UK,SV,ID}→{EL,UK,SV,ID} (average over 12 directions) by
combining source-language and target-language incrementally-trained parameters. (?) instead of combining model
parameters, translate with (14) to English, then to the target language with (31).

Language Code Family X-EN lines X-* lines
English en Germanic 450.30M 450.30M
French fr Romance 95.43M 215.63M
German de Romance 76.49M 192.67M
Spanish es Romance 72.97M 191.71M
Italian it Romance 38.05M 136.11M

Portuguese pt Romance 29.18M 117.68M
Dutch nl Germanic 27.36M 104.35M

Norwegian nb Germanic 15.38M 65.37M
Czech cs Slavic 12.92M 65.55M
Polish pl Slavic 12.88M 69.27M

Swedish sv Germanic 10.97M 60.16M
Danish da Germanic 9.79M 61.28M
Greek? el Hellenic 8.92M 48.29M
Finnish fi Uralic 6.83M 47.62M
Croatian hr Slavic 6.34M 30.47M

Hungarian hu Uralic 6.29M 42.53M
Bulgarian? bg Slavic 6.10M 36.84M
Romanian ro Romance 5.79M 40.52M

Slovak sk Slavic 4.56M 36.39M
Lithuanian lt Baltic 4.03M 30.21M

Total all – 900.60M 2.043B

Table 21: Size of the Top 20 ParaCrawl corpus. English has 271.85M unique lines. (?) all languages use the
Latin script, except for Greek and Bulgarian (Cyrillic).

Language Code Family X-EN lines
Russian ru Slavic 25.17M
Arabic ar Semitic 20.04M

Mandarin Chinese zh Sinitic 17.45M

Table 22: Size of the UNPC corpus.
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Parameter name Parameter value
share_all_embeddings True / False5,6

share_decoder_input_output_embed True
arch transformer

lr_scheduler inverse_sqrt
optimizer adam

adam_betas 0.9,0.999
fp16 True

clip_norm 0.0
lr 0.0005 / 0.00014

warmup_updates 4000
warmup_init_lr 1e-07

criterion label_smoothed_cross_entropy
label_smoothing 0.1

dropout 0.3 / 0.12,3,4

max_tokens 4000
max_epoch 1201,5 / 102,4 / 203,6

save-interval 1 / 55

validate-interval 1 / 55

update_freq? 4
reset_* True

lang_temperature† 5

Table 23: fairseq v0.10.2 hyper-parameters of the TED Talks models. (?) we normalize this value by the number of GPUs
to have a constant batch size. For instance, models trained on 4 GPUs use update_freq=1. (1) English-centric training
stage of the initial model; (2) multi-parallel training stage; (3) our re-training approach; (4) our implementation of Garcia
et al. (2021); (5) English-centric incremental training; (6) multi-aligned incremental training. The bilingual baselines use the
transformer_iwslt_de_en architecture and are trained for 25k steps with validation every 500 steps and patience 3. (†)
we implement an on-the-fly data loading pipeline that builds heterogeneous batches by sampling language pair k with probability:
pk = D

1/T
k /(

∑
D

1/T
i ) where T is the temperature and Dk is the total number of line pairs for that language pair (Aharoni

et al., 2019).

Parameter name Parameter value
max_source_positions 256
max_target_positions 256
share_all_embeddings True / False5

share_decoder_input_output_embed True
arch transformer_vaswani_wmt_en_de_big

encoder_layers 12 / 64

decoder_layers 2 / 64

lr_scheduler inverse_sqrt
optimizer adam

adam_betas 0.9,0.98
fp16 True

clip_norm 1.0
lr 0.0005

warmup_updates 4000
warmup_init_lr 1e-07

criterion label_smoothed_cross_entropy
label_smoothing 0.1

dropout 0.1
max_tokens 8000
max_update 10000001 / 2000002 / 3600003 / 1200004,5

save_interval_updates 20000 / 100004 / 50005

validate_interval_updates 20000 / 100004 / 50005

update_freq? 32
reset_* True

lang_temperature† 5 / 22,3

Table 24: fairseq hyper-parameters of the ParaCrawl/UNPC models. (?) (†) see Table 23. (1) English-centric training stage of
the initial model; (2) multi-parallel training stage; (3) our re-training approach; (4) bilingual baselines; (5) incremental training.
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ID Model Lang code
EN→ / EN→

EL UK ID SV EL UK ID SV

24 Embed only
None -17 -18 -19 -10 -15 -18 -18 -8
EN -18 -19 -17 -5 -14 -16 -17 -7

Proxy -6 -2 -2 -13 -3 +0 -2 -6

30 (24) + dec-last-layer
None -2 -4 -3 +3 -4 -6 -3 -1
EN +0 -2 -1 +5 -3 -5 -3 +0

Proxy +3 +1 -1 +4 +0 +1 -1 +2
31 (30) + enc-adapters-last (d=1024) None -1 -4 +2 -6 -2 -5 -3 -2
32 Enc-adapters-all (dim=430) None +2 -1 -1 +1 -8 +1 +1 -3

33 (24) + enc-adapters-last (d=1024)
None -1 -1 1 -1 -2 -4 -1 -4

+ dec-adapters-all (d=690)

Table 25: TED valid chrF delta (×1000) of target-side incremental learning techniques with fixed language codes,
compared to models with learned language codes. “None” corresponds to training and decoding without any
language code. “EN” trains and decodes with the pre-trained (and frozen) “to English” language code. “Proxy”
uses the closest pre-trained language code (RU for UK, BG for EL, DE for SV and VI for ID). This is an oracle,
obtained by computing the Euclidean distance between trained language codes in (6).

ID Model →EN ←EN / EN
39 Big 6-6 English-centric .582 .571 .400
40 Big 12-2 English-centric .587 .577 .435
42 (40) + multi-parallel training .583 .573 .486
41 (40) + pivot through English – – .488
43 (40) + {AR,RU,ZH} .585 .574 .433
44 (42) + {AR,RU,ZH} .580 .569 .486

Table 26: TED2020-valid chrF scores of the ParaCrawl/UNPC baselines.
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ID Model
AR RU ZH AR RU ZH

→ EN → / EN
45 Bilingual baselines (pivot through English) .499 .460 .430 .429 .423 .381
43 English-centric (40) + {AR,RU,ZH} .488 .480 .430 .372 .385 .337
44 Multi-parallel (42) + {AR,RU,ZH} .494 .479 .430 .395 .418 .345
50 (44) + pivot through English – – – .424 .433 .382
46 Only embed .447 .469 .416 .378 .425 .365
63 (46) without lang ID filtering .447 .469 .416 .378 .425 .365
47 (46) + enc-adapters-all (d=512) .502 .478 .434 .154 .157 .152
48 (46) + enc-first-layer .491 .474 .428 .154 .168 .152
64 (48) without lang ID filtering .488 .474 .427 .154 .158 .151
49 (48) + 20k lines per lang (BT) .492 .474 .427 .417 .433 .376
65 (49) without lang ID filtering .433 .457 .385 .148 .158 .148

ID Model
EN→ / EN→

AR RU ZH AR RU ZH
45 Bilingual baselines (pivot through English) .423 .437 .187 .358 .400 .156
43 English-centric (40) + {AR,RU,ZH} .412 .439 .179 .295 .384 .115
44 Multi-parallel (42) + {AR,RU,ZH} .423 .443 .182 .300 .402 .126
50 (44) + pivot through English – – – .356 .402 .153
51 Only embed .314 .398 .158 .277 .364 .134
66 (51) without lang ID filtering .282 .395 .130 .224 .301 .084
52 (51) + enc-adapters-last + dec-adapters-all (d=1024) .417 .437 .187 .348 .397 .153
53 (51) + dec-last-layer .412 .441 .187 .348 .401 .154
54 (53) + enc-adapters-last (d=1024) .426 .446 .192 .356 .404 .156
55 (54) without lang ID filtering .312 .363 .107 .072 .185 .037
56 (51) + dec-all-layers .426 .446 .193 .357 .404 .159

Table 27: TED2020-valid chrF scores of the ParaCrawl/UNPC incrementally-trained models.

Source model Target model chrF
45 Bilingual baselines (pivot through English) .274
44 Multi-parallel (42) + {AR,RU,ZH} .237
50 (44) + pivot through English .271

46 Only embed
53 Dec-last-layer .248
54 Dec-last-layer + enc-adapters-last (d=1024) .252

47 Enc-adapters-all (d=512)
53 Dec-last-layer .242
54 Dec-last-layer + enc-adapters-last (d=1024) .251
54 Pivot through English? .274

48 Enc-first-layer
53 Dec-last-layer .223
54 Dec-last-layer + enc-adapters-last (d=1024) .234

49 Enc-first-layer + 20k (BT)
53 Dec-last-layer .243
54 Dec-last-layer + enc-adapters-last (d=1024) .251

Table 28: TED2020-valid chrF scores of the ParaCrawl/UNPC models on {AR,RU,ZH}→{AR,RU,ZH} (average
over 6 directions) by combining source-language and target-language incrementally-trained parameters. (?) instead
of combining model parameters, translate to English with (48), then to the target language with (54).
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English-centric Denotes a parallel corpus that only has alignments with English
(i.e., 38 language pairs in our settings). Also denotes many-to-many
models that are trained with such data. In this setting, translation
between non-English language pairs is called “zero-shot.”

Multi-parallel Denotes a parallel corpus that has alignments between all possible
language pairs (380 in our case), and by extension, models that are
trained with such data (AKA “complete multilingual NMT”, Freitag
and Firat, 2020).

Enc-adapters-X (d = N ) Train adapter modules of bottleneck dimension N after the encoder
layer X .

Enc-adapters-all (d = N ) Train adapter modules of bottleneck dimension N after all encoder
layers.

Enc-layer-X Fine-tune the Xth Transformer encoder layer.
Enc-norm + enc-biases Fine-tune the layer norm parameters and all the biases in the Trans-

former encoder.
+ random embed init Initialize the new language-specific embeddings at random, instead of

initializing the embeddings of the known tokens with their previous
values.

+ non-tied Train separate target embeddings and output projection matrix (by
default they are tied, i.e., they correspond to the same parameter).

+ EL multi-aligned Train with multi-aligned EL data: not just paired with English, but
with all of the 20 languages (2.41M lines pairs instead of 134k).

+ EL multi-aligned (BT) Like above, but the non-EN data is obtained by translating the English
side of the EL-EN corpus to the other 19 languages with (3). For
better comparison with the above method, we back-translate the same
number of lines per language as in the multi-aligned EL corpus.

+ N lines per lang Append to the EL-EN training data N line pairs for each of the 19
non-English languages.

+ N lines per lang (BT) Like above, but the N line pairs per language are obtained by trans-
lating the English side of the EL-EN corpus with (3).

/ EN 19 non-English languages in the initial model. As a column header,
it means an average score over all 342 non-English translation direc-
tions.

→ EN Average score over all 19 X→ EN translation directions.
← EN Average score over all 19 EN→ Y translation directions.
Re-training + {L1, L2 . . .} Fine-tune the initial model with an updated BPE vocabulary and

embedding matrix that include the new languages (L1, L2, etc.), and
on the multi-aligned data of all the 20 initial languages plus the new
ones.

(K) + {L1, L2 . . .} Use the incremental training technique K, but on several languages
at once (L1, L2, etc.) This means that a single shared BPE is trained
for all these languages (whose size is multiplied by the number of
languages) and the newly-trained parameters are shared between
them.

Table 29: Summary of the notations used in this paper.
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Abstract
Recently, the Machine Translation (MT)
community has become more interested in
document-level evaluation especially in light
of reactions to claims of "human parity", since
examining the quality at the level of the doc-
ument rather than at the sentence level allows
for the assessment of suprasentential context,
providing a more reliable evaluation. This
paper presents a document-level corpus an-
notated in English with context-aware issues
that arise when translating from English into
Brazilian Portuguese, namely ellipsis, gender,
lexical ambiguity, number, reference, and ter-
minology, with six different domains. The cor-
pus can be used as a challenge test set for eval-
uation and as a training/testing corpus for MT
as well as for deep linguistic analysis of con-
text issues. To the best of our knowledge, this
is the first corpus of its kind.

1 Introduction

Machine translation (MT) is now widely used in
a variety of fields, mainly due to advancements in
neural models (Sutskever et al., 2014; Bahdanau
et al., 2015; Vaswani et al., 2017). As a result
of these recent advances, scientists have been in-
creasingly attempting to include discourse into
neural machine translation (NMT) systems (Wang,
2019; Lopes et al., 2020). Thus, researchers started
to consider a more suitable evaluation for these
document-level systems as the standard MT auto-
matic evaluation metrics have been shown to un-
derestimate the quality of NMT systems (Shteri-
onov et al., 2018) and the appropriateness of these
metrics for document-level systems has been chal-
lenged (Smith, 2017) since they are not sensitive to
their improvements (Voita et al., 2019).

Accordingly, document-level human evaluation
of MT has attracted the community’s attention
since it allows for a more thorough examination

of the output quality with context. While a few
works have taken into account document-level hu-
man evaluation (Läubli et al., 2018; Toral et al.,
2018; Barrault et al., 2019; Castilho, 2020, 2021),
one common practice for document-level evalua-
tion is the usage of test suites with context-aware
markers (Bawden et al., 2018; Guillou et al., 2018;
Müller et al., 2018; Voita et al., 2019; Cai and
Xiong, 2020). However, the concept of document-
level evaluation, in terms of how much text must
be shown, remains uncertain (Castilho et al., 2020).
While most research on document-level MT evalu-
ation works with contrastive pairs, very few works
have tried to use full documents for human evalua-
tion (Läubli et al., 2018; Castilho, 2020, 2021) and
challenge test sets (Rysová et al., 2019; Vojtěchová
et al., 2019). Methodologies for assessing MT at
the document-level have been looked into (Barrault
et al., 2019, 2020) as well as the types of issues
that come with different methodologies (Castilho,
2020, 2021).

We present a document-level corpus annotated
with context-aware issues when translating from
English (EN) into Brazilian-Portuguese (PT-BR).
In total, 60 documents from six different domains
(literary, subtitles, news, reviews, medical, and eu-
roparl) were annotated with context-aware issues,
namely gender, number, ellipsis, reference, lexical
ambiguity, and terminology. The corpus can be
used as a challenge test set for the evaluation and
as a training/testing corpus for MT and quality es-
timation, as well as for deep linguistic analysis of
context issues. Moreover, we believe that the anno-
tation can be also used for close-related languages
such as Spanish.

2 Related Work

Document-level MT evaluation has attracted inter-
est in the field as it allows for the evaluation of
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suprasentential content, which in turn, provides
more meaningful insights on the MT output. How-
ever, the definition of what constitutes a document-
level MT evaluation is still unclear (Castilho et al.,
2020).

Context plays an important role as it is widely
used in translation and interpreting literature
(Baker, 2006), although it lacks a precise defini-
tion for practical purposes, including in everyday
work of a professional translator (Melby and Foster,
2010). For Melby and Foster (2010, p 3), context in
translation could be studied "either for the purpose
of analysing existing translations or for the purpose
of improving the production of new translations".
For the authors, context can be categorised into non-
text (non-linguistic variables) and text (linguistic
aspects), where the latter is divided into four as-
pects of context: relating to the source text: co-text
(the version of the document itself) and chron-text
(past and future versions); and relating to other text:
rel-text (monolingual related texts) and bi-tex (bilin-
gual related texts). In this work, we adopt Melby
and Foster’s view of context that is important to the
analysis of translations, and focus (i) on the co-text,
i.e. the boundaries within the document translated,
and (ii) in the non-text, where the name of the au-
thors, speakers, and products have an effect on the
translation.

In a survey with native speakers, Castilho et al.
(2020) tested the context span for the transla-
tion of 300 sentences in three different domains,
namely reviews, subtitles, and literature. The re-
sults showed that over 33% of the sentences tested
were found to require more context than the sen-
tence itself to be translated or evaluated, and from
those, 23% required more than two previous sen-
tences to be properly evaluated. The authors found
that ambiguity, terminology, and gender agreement
were the most common issues to hinder translation.
Moreover, differences in issues and context span
were found between domains. Their recommen-
dations include to show whole documents when
possible, include information on text type, topic,
product, hotel and movie names in case of reviews,
and include visual context whenever possible (non-
text). This shows that document-level evaluation
enables the assessment of textual cohesion and co-
herence types of errors which are impossible at
times to recognise at sentence level.

Regarding overall MT evaluation, a few attempts
have been made to perform human evaluation with

document-level set-ups. Läubli et al. (2018) com-
pared sentence-level evaluation versus document-
level evaluation with pairwise rankings of fluency
and adequacy to evaluate the quality of MT against
human translation (HT) with professional trans-
lators. Their results show that document-level
raters clearly preferred HT over MT, especially in
terms of fluency. The authors argue that document-
level evaluation enables the identification of certain
types of errors, such as ambiguous words, or errors
related to textual cohesion and coherence.

The Conference for Machine Translation
(WMT), which has been running since 2006 and
only evaluated sentences, attempted document-
level human evaluation for the news domain for
the first time in 2019 (Barrault et al., 2019). Their
direct assessment (DA) (Graham et al., 2016) re-
quired crowdworkers to assign a score (0-100) to
each sentence. They asked raters to evaluate (i)
whole texts, (ii) single consecutive segments in
their original order, and (iii) single random phrases.
In the following year, WMT20 changed the ap-
proach and expanded the context span to include
full papers, requiring raters to evaluate specific seg-
ments while seeing the complete document, as well
as to assess the content’s translation (Barrault et al.,
2020).

Castilho (2020, 2021) tested for the differences
in inter-annotator agreement (IAA) between single
sentence and document-level set-ups. In Castilho
(2020), the author asked translators to evaluate the
MT output of freely available online systems in
terms of fluency, adequacy (Likert scale), rank-
ing and error annotation in two different set-ups:
(i) translators give one score per single isolated
sentence, and (ii) translators give one score per
document. The results showed that IAA scores
for the document-level set-up reached negative lev-
els, and the level of satisfaction of translators with
that methodology was also very low. Nonetheless,
it avoided cases of misevaluation that happen in
isolated single sentences. Following on from that
work, Castilho (2021) modifies the document-level
set-up and re-runs the experiment with more trans-
lators, where she compares the IAA in evaluation
of (i) random single sentences, (ii) evaluation of in-
dividual sentences where translators have access to
the full source and MT output, and (iii) evaluation
of full documents. Results showed that a methodol-
ogy where translators assess individual sentences
within the context of a document yields a good level
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of IAA compared to the random single-sentence
methodology, while a methodology where trans-
lators give one score per document shows a very
low level of IAA. The author demonstrates that
the methodology of assigning one score per sen-
tence in context avoids misevaluation cases which
are extremely common in the random sentences-
based evaluation set-ups. Moreover, the author
posits that the higher IAA agreement in the random
single sentence set-up is because "raters tend to
accept the translation when adequacy is ambigu-
ous but the translation is correct, especially if it is
fluent" (Castilho, 2021, p 42), and asserts that the
single random sentence evaluation method should
be avoided as the misevaluation issue is especially
problematic when assessing the quality of NMT
systems as they have an improved fluency level.

One current way of evaluating document-level is-
sues is the use of test suites designed to better eval-
uate translation of the addressed discourse-level
phenomena. Commonly, these test suites are con-
trastive, that is, each sample sentence in the test
has both correct and wrong translations for a given
phenomena (Bawden et al., 2018; Guillou et al.,
2018; Müller et al., 2018; Voita et al., 2019; Cai
and Xiong, 2020). The higher the accuracy of
the model in rating correct translations over in-
correct ones, the better the quality is deemed to
be. Test suites with document-level boundaries are
still scarce, e.g. Vojtěchová et al. (2019) present
a test suite designed to evaluate coherence when
testing MT models trained for the news domain on
audit reports, and Rysová et al. (2019) designed a
document-level test suite to assess three document-
level discourse phenomena, namely information
structure, discourse connectives, and alternative
lexicalisation of connectives.

Given the above, the need to move toward
document-level methodologies in MT is indis-
putable. Moreover, with the lack of resources for
the topic of document-level MT, the document-
level corpus annotated with context-aware issues
presented here can be used as a challenge test set
for evaluation and as a training/testing corpus for
MT as well as for deep linguistic analysis of con-
text issues.

3 Corpus Compilation

The corpus was collected from a variety of freely
available sources. Following a pre-determined list
of context issues found in Castilho et al. (2020) that

hindered the translation of single sentences and sen-
tence pairs, the annotators searched for challenging
English texts for the MT systems when translating
into PT-BR. In total, 60 full documents (57217 to-
kens) were collected from six different domains:
literary, subtitles, news, reviews, medical, and leg-
islation (europarl). Table 1 shows the statistics of
the corpus.

Domains #Docs #Sent. Av. Sent. Lgth
Subtitles 9 1074 18.69
Literary 4 756 9.76
News 15 634 17.17
Reviews 28 608 13.42
Medical 3 339 13.02
Legislation 1 272 23.70
TOTAL 60 3683 15.57

Table 1: Full corpus statistics, where average sentence
length is calculated as words per sentence.

Each domain has their plain text and .xls ver-
sions of the documents segmented into sentences
with sentence id and document boundary tags, and
all documents contain the source (url or corpus)
where the documents were retrieved from. What
follows is a detailed description of each domain is
provided.1

3.1 Subtitles
To compile the corpus for the subtitle domain, nine
full TED Talks were selected from the Opus Cor-
pus (Tiedemann, 2012) from a variety of different
topics and speakers, where: doc1: education, doc2:
climate change, doc3: astronomy, doc4: computers,
doc5: creativity, doc6: science, doc7: technology,
doc8: anthropology, and doc9: psychology. We
chose these talks specifically in order to obtain a
blend of different topics and speakers’ genders.

#Sent. #Tokens Av. Sent. Lgth
doc1 105 1671 15.91
doc2 98 1309 13.35
doc3 40 650 16.66
doc4 71 1213 17.08
doc5 176 3654 20.88
doc6 130 2485 19.26
doc7 77 1384 18.45
doc8 167 4213 25.53
doc9 210 3346 16.00
TOTAL 1074 19925 18.55

Table 2: Corpus statistics for each document in the sub-
title domain.

1Although some of the documents were already segmented
by sentence (i.e. Opus and WMT), the full corpus was manu-
ally checked for sentence segmentation.
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3.2 Literary

#Sent. #Tokens Av. Sent. Lgth
doc1 205 2921 14.24
doc2 122 2002 16.40
doc3 76 689 9.06
doc4 353 1767 5.00
TOTAL 756 7379 9.76

Table 3: Corpus statistics for each document in the Lit-
erary domain.

To compile the corpus for the literature domain,
four documents2 were selected:
doc1: one chapter from a fan-fiction story.3

doc2: one excerpt from "The Road to Oz" book.4

doc3: a short story generated with the PlotGenera-
tor website.5

doc4: a short play generated with the PlotGenerator
website.

Note that a blend of contemporary and classic
excerpts, combining descriptive and fast moving
styles, were gathered. Note too that the synthetic
stories (doc3 and doc4) were generated as they
allowed the researchers to add a good number of
possible issues, including lexical ambiguities cases
that can only be solved with a larger context than
two consecutive sentences which is rather difficult
to find in "natural" texts. Nonetheless, English
native speakers then revised both stories for fluency
and readability. Table 3 shows the statistics for each
document in the literary domain.6

3.3 News
The news domain was compiled with 15 documents
gathered from different sources. Table 4 shows the
statistics of the corpus.7

Five documents were gathered from the WMT
series (four documents from WMT198 and one

2Excerpts of two copyrighted books are in the process of
being granted permission, and if so, they will be added to the
corpus.

3"Harmonic Resonances" (based on the Carrie film) fan
fiction (archiveofourown.org/works/26524723/
chapters/64650841), last accessed 01 June 2021.

4Chapter 3 "Queer Village" (www.gutenberg.org/
files/485/485-h/485-h.htm#chap03), last ac-
cessed 21 June 2021.

5https://www.plot-generator.org.uk/ last
accessed 21 June 2021.

6Note that the Av. Sent. Lgth for the literature domain is
skewed because of doc4, which – due to its play format where
the names of each character is given in a single line before
they speak – contains a great number of very short sentences.
The Av. Sent. Lgth for literature when doc4 is left out is 13.9.

7Note that for the news domain, we grouped documents
due to space constraints.

8http://www.statmt.org/wmt19/

from WMT209), and their size varied from 13 to
32 sentences. Ten documents were gathered from
several news websites,10 and they varied from 23-
35 sentences.

#Sent. #Tokens Av. Sent. Lgth
docs 1-5 112 2293 20.47
docs 6-15 521 8578 16.46
TOTAL 633 10871 17.17

Table 4: Corpus statistics for each document in the
news domain.

3.4 Reviews

The reviews domain was compiled with 28 doc-
uments gathered from reviews available on Ama-
zon11 and TripAdvisor12 websites. Table 5 shows
the statistics of the corpus.13

Reviews gathered from Amazon consist of users’
reviews about a variety of products and movies, to-
talling 25 reviews, and vary from 6 to 84 sentences.
The reviews were sought by searching products that
could generate lexical ambiguities, such as "plant",
"ship", etc. Reviews gathered from TripAdvisor
consist of 3 reviews about places, and vary from
23-35 sentences.

#Sent. #Tokens Av. Sent. Lgth
docs 1-25 520 6901 13.27
docs 26-28 88 1261 14.32
TOTAL 608 8162 13.42

Table 5: Corpus statistics for each document in the
review domain. Documents 1-25 are product reviews
gathered on the Amazon website, and documents 26-28
are location reviews gathered on the TripAdvisor web-
site.

3.5 Medical

The medical domain corpus was compiled with
three full documents, where two of them were col-
lected from Autopsy reports available on the Med-
ical Transcriptions website,14 and one document
was collected from the leaflets available on the

9http://www.statmt.org/wmt20/
10mercurynews.com, zdnet.com, usmagazine.com, ma-

chinedesign.com, nytimes.com, thejournal.ie, thesun.ie, the-
conversation.com, goodhousekeeping.com, allthatsinterest-
ing.com, last accessed 01 June 2021.

11amazon.com
12tripadvisor.com
13Note that for the review domain, we grouped documents

due to space constraints.
14mtsamples.com
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Royal College of Obstetricians and Gynaecologists
(RCOG).15

#Sent. #Tokens Av. Sent. Lgth
docs 1-2 243 2912 11.98
doc 3 96 1503 15.65
TOTAL 339 4415 13.02

Table 6: Corpus statistics for documents in the medical
domain. Documents 1-2 were compiled from autopsy
reports, while document 3 was compiled from medical
leaflets

3.6 Legislation
For the legislation domain, we chose an excerpt
of Europarl (Koehn, 2005)16 taken from the Opus
Corpus (Tiedemann, 2012).

#Sent. #Tokens Av. Sent. Lgth
doc 1 272 6465 23.7

Table 7: Corpus statistics for documents in the legisla-
tion domain extracted from the Europarl corpus.

4 Methodology for Annotation

Following literature on document-level test suites
(see Section 2), together with issues found when
trying to define how much context span is needed
to translate and evaluate MT (Castilho et al., 2020),
we compiled a list of context-aware issues that are
challenging for MT when translating from EN into
PT-BR to be annotated:

1- Gender 2- Number
3- Ellipsis 4- Reference
5- Lexical Ambiguity 6- Terminology

Three annotators tagged those issues that might
occur in a translation from EN into PT-BR when
no context information is given. For example, in
the following single sentence given to a translator
to translate:

"And thanks for the case."
The translator will not be able to translate this sen-
tence with absolute certainty because:
i) it is not possible to know the gender of the
person who is saying ‘thanks’ as Portuguese
differentiates between masculine and feminine
genders.
ii) it is not possible to know what the word “case”
is as this word has a few different meanings that

15Copyright permission was granted by both websites.
16http://www.statmt.org/europarl/

would fit this sentence, i.e it could be some type of
protective box (a case for my phone, a case for my
glasses), a woman’s bag, a pencil case, a folder, a
suitcase, or a police case to be investigated, each
one with a different translation in Portuguese.
Consequently, the translation of “for” will have a
different gender depending on the meaning of the
word “case”.

When evaluating the translation of the source
sentence given by 3 different MT systems (Google
Translate17 (GG), Microsoft Bing18 (MS) and
DeepL19 (DPL) the translator has to evaluate all
three systems’ outputs as correct:
GG: “E obrigado pelo caso.” (masculine, police
case)
MS: “E obrigado pelo estojo.” (masculine, pencil
case)
DPL: “E obrigado pela caixa.” (masculine, box)

That is because without a wider context, it is
impossible to know the correct translation or the
sentence, which should be:

HT: “E obrigada pela capa.” (feminine, phone
case)

Therefore, the issues tagged in the corpus are
issues that might arise in the translation of sen-
tences when the full context is not given. Annota-
tors used different MT systems to help check for
issues that would go unnoticed when only looking
at the source text.

Moreover, a few modifications to the source text
were performed in order to add those issues and
make the translation more challenging for MT, such
as modifying the gender, substituting the name of
a product for ‘it’, splitting a sentence into two, etc.
These modifications are explained in the spread-
sheet file for each line modified, so researchers can
decide if they can use or not documents that had
the source modified.

4.1 Annotation of Context-Related Issues
As previously mentioned, six context-related issues
were tagged in the corpus when they could not be
solved within the sentence they appeared. A de-
tailed guideline was developed as the annotators
gathered the corpus and discussed how the anno-
tation would be better performed. Figure 1 shows
the decision tree that guides the annotation of the
context-related issues.

17https://translate.google.com/
18https://www.bing.com/translator
19https://www.deepl.com/en/translator

570



Figure 1: Decision tree used to guide the annotation of context-related issues.

4.1.1 Reference

Reference is associated with the notion that
"anaphoric references and noun phrase organizers
may serve as cohesive ties linking separate sen-
tences into unified paragraphs [aiding] the reader’s
memory structure" (Fishman, 1978, p 159). Dif-
ferently from ellipsis which is generally dependent
on the previous clause, reference can reach back a
long way in the text and extend over a long passage
(Halliday and Matthiessen, 2013), thus being of
significance for the present work.

In the annotation guide, we annotated the refer-
ence whenever we faced a disruption or ambiguity
in the referential chain, e.g., we only annotated
dependent referential units. Moreover, and similar
to all annotated categories, the disagreement had
to be expressed at the document level, e.g. the
issue could not be solved only by looking at the
sentence. In example A), we annotate the second
individual it as being a referential issue because
there is not enough lexical material in the sentence
to properly establish the referent, thus affect-
ing translation correctness and final text readability.

A) It is understandable though since it was

shipped from China.
reference –> it = the ship
it = o navio.

In example B), we annotated they as being a
referential unit issue, due to the fact that there
is not enough lexical material in the sentence to
determine its referent. Moreover, we also tagged
this issue as a gender problem since there is no
information in the source sentence that allows one
to determine that the referential unit should be
translated into PT-BR as a plural feminine pronoun.

B) They actually hurt
reference –> they = the choices
gender –> they = feminine
They actually hurt = Elas / As escolhas realmente
machucam.

4.1.2 Ellipsis
Ellipsis is a form of anaphoric cohesion where there
is an omission from a clause, and, so, the reader
must "presuppose something by means of what is
left out" (Halliday and Matthiessen, 2013, p 635).
Ellipsis differs from reference as the relationship it
entails is lexicogrammatical rather than semantic
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(Halliday and Matthiessen, 2013).
In the annotation guide, we annotate ellipsis

exclusively when the omission of information
affects the translation of that specific single
sentence which needs a broader context to be
understood. For example, in C), ellipsis is tagged
because the omission with the explicit indication
of "do" causes lexical ambiguity that cannot be
solved within the sentence.20 Therefore, the tags
and the solution for the issues are both ellipsis
and lexical ambiguity, with the translation of
the ellipsis also containing an explanation of the
lexical ambiguity caused by it.

C) In my laughter, I bellied out a “YES, I do!!”
ellipsis –> do = think
lexical ambiguity –> do = make (incorrect) vs
think (correct)
Sim, eu faço! (Yes, I make, incorrect) vs
Sim, eu acho! (Yes, I "think", correct)

In example D), ellipsis is tagged because the
omission causes gender issues that cannot be
solved within the sentence. Therefore, the tags
and the solution for the issues are both ellipsis
and gender, with the translation of the ellipsis also
containing an explanation of the lexical ambiguity
caused by the ellipsis:

D) Several more are planned for the rest
of the year, including The Angry Beavers
Seasons 1 & 2, Danny Phantom Season 1,
Aaahh!! Real Monsters Season 1, Catdog Season
1 Part 1 and The Wild Thornberrys Season 2 Part 1.

ellipsis –> several more = releases
gender –> several more are planned = feminine
Several more are planned... = Várias outras estão
planejadas..."

Sentence E) is an example of ellipsis with the
auxiliary do that has not been tagged in the corpus
because the omission is solved within the sentence:

E) Also, not once did I feel a blast of hot air like
I do when taking things out of the oven.
do = feel a blast of hot air

20It is only with the previous sentence "He came back in the
house and said ‘So you think this is funny?!’ up the stairway
at me and I LOST IT" that we can solve "I do" as being "I
think so".

4.1.3 Gender
As Portuguese is a language in which grammatical
gender (feminine and masculine) plays a very sig-
nificant role, the definition of gender used is from
a grammatical standpoint, where word classes like
adjectives, articles or pronouns are bound to respect
and reflect a word’s gender (Grosjean et al., 1994).

In the annotation guide, we annotated gender
whenever facing a gender issue e.g., gender
disagreement, unsolvable within the sentence
itself and requiring broader context information.21

For example, in example F), gender (feminine)
is tagged because the issue is not possible to be
solved within the sentence. Since the default of
the PT-BR is to have everything in the masculine,
translations (both HT and MT) follow the same
pattern. Therefore, we tag the word that needs to
be in a different gender and the solution for its
gender marker, with the translation containing an
explanation:

F) I’m surprised to see you back so early.
gender –> surprised = feminine
surprised = surpresa

In example G), we note that not only the
pronoun "they" needs to be tagged with the
feminine gender tag, but also the expression
"staying at", as it is translated with an adjective in
Portuguese:

G) She waited for a few minutes longer, but
nothing happened, no one followed her, so she
made her way back to the motel they were staying
at.
gender –> they = feminine
gender –> staying at = feminine
they were staying at = elas estavam hospedadas

Gender was also tagged even when the most
used translation for the the given term was a
neutral one, because the adjective could still be
translated with one of its synonyms. For instance,
in example H), the adjective "glad" has its most
common translation as "feliz" which is used
for both masculine and feminine gender. If a

21Note that gender was most exclusively tagged as feminine
when a problem with the agreement was obvious. As the
MT systems typically tend to translate the gender into the
masculine form (when no specific gender markers are given
in the single sentence) for PT-BR, the masculine gender was
only tagged when there was an ambiguity in the sentence.
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translator chooses to translate the text as "I’m
glad = Estou feliz", no gender marking is needed.
However, synonyms of that translation would need
to be translated into feminine (satisfeita, grata,
encantada, animada), and so, gender is tagged for
that case:

H) I’m so glad that it comes with the extender, so
I have more levels to use to continue to get smaller.
gender –> glad = feminine
reference –> it = waist cincher

4.1.4 Number
Number agreement is one of the basic coherence
devices within a text, and it is "part of the code,
used to signal that linguistic constituents carrying
the same number are linked regardless of whether
they appear together or apart in an utterance"(Bock
et al., 1999, p 330), in the entirety of the text, and
thus is significant for the present work.

In the annotation guide, we annotated number
whenever we faced a number disagreement within
the referential chain, e.g. (i) noun or pronoun, (ii)
verb and noun/pronoun, (iii) adjective, caused by
lack of enough contextual information within the
sentence.22 In example I), the number category
was applied to the word you because it is not
possible to identify within this single sentence
whether we are facing a pronoun in the plural or
singular.

I) I was praying for you.
number –> you = plural
you –> vocês

Example J) depicts a mistranslated number
agreement chain into PT-BR which originated
from the absence of contextual evidence in the
sentence that allowed us to determine whether you
should be translated in the plural rather than in
the singular. Furthermore, as a consequence of
this initial mistranslation, the adjective agreeable
was affected, being translated in the singular rather
than the plural.

J) You should be more agreeable.

22Note that number was most exclusively tagged as
plural for the pronoun "you" (and its referential chain
(verb/adjectives)) when a problem with the agreement was
obvious. As the MT systems typically tend to translate "you"
in the singular (when no specific plural markers are given in
the single sentence) for PT-BR, the pronoun was only tagged
for singular when there was an ambiguity in the sentence.

number –> you = plural
number –> agreeable = plural
number –> should be = plural
gender –> agreeable = feminine
You should be more agreeable. –> Vocês deveriam
ser mais simpáticas/ agradáveis.

4.1.5 Lexical Ambiguity
Lexical ambiguity refers to the fact that "a single
word form can refer to more than one different
concept" (Rodd, 2018, p 2). Lexical ambiguity
can be divided into two categories: (i) one takes
into account a word’s morphological aspect (verbs,
adjectives) referred to as syntactic ambiguity, e.g.
the word "play" can be either the act of taking part
in a sport or the conducting of a sporting match; and
(ii) the second focuses on the fact that a word can
assume different meanings according to context,
e.g. the word "ball" as in They danced till dawn
at the ball versus This dog can be entertained all
day with a ball (Small et al., 2013, p 4), which is
referred as semantic ambiguity.

In the annotation guide, we annotated lexical
ambiguity, the more generic term, whenever we
faced one of the two cases above ((i) and (ii))
and whenever they appeared to be detrimental to
the translation and understandable only within
the broader context, rather than at sentence
level. In example K), lexical ambiguity is tagged
because the clause I lost it, without context, can be
interpreted either as someone losing something or
someone losing control:

K) He came back in the house and said “So you
think this is funny?!” up the stairway at me and I
LOST IT.

lexical ambiguity –> lose something vs to lose
control
I lost it –> Eu o/a perdi vs Eu perdi o controle

In example L), lexical ambiguity is tagged
because the word Period is polysemic, meaning
simultaneously menstruation, a portion of time,
and a punctuation mark, and by the fact that there
is not enough lexical information at a sentence
level to disambiguate the complete meaning.

L) Period.
lexical ambiguity –> period = era/menstruation vs
full stop
Período vs Ponto final
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4.1.6 Terminology

Terminology, according to Sager and Nkwenti-
Azeh (1990) (as cited in (Kast-Aigner, 2018)), can
have three different definitions: (i) the theory be-
hind the relationship between a concept and a term;
(ii) terminology curatorship activities, e.g. collec-
tion, description, processing and presentation of
terms; and (iii) the vocabulary of a specific field.
In the present work, we perceived terminology as
(iii) i.e. the lexical expression of a domain-specific
area.

In the annotation guide, we annotated terminol-
ogy whenever we faced a wrongly domain-specific
word translation caused by contextual poor
sentences. In the following example M), the
category terminology was applied to the word
‘farm’ because its meaning shifts from "a piece
of land used for crops and cattle raising", its
more generalised conceptualisation, into a more
domain-specific concept, "an area of land with
a group of energy-producing windmills or wind
turbines".

M) The center will also conduct testing (power
curve, mechanical loads, noise, and power quality)
at its own experimental wind farm
terminology –> generalised lexic (farm) vs domain-
specific lexic (park)
wind farm –> parque eólico

4.2 Format

The annotation was performed for each sentence,
which are tagged one per line, in the order they
appear in the sentence, followed by their explana-
tion/solution, along with modifications performed
in the source (if any) and translations of some cases
and notes. Sentences with no context-related issues
are followed by two Xs for the issue and the so-
lution. For Reference and Ellipsis, the term that
contains the issue is stated along with an equals
sign (=) and the explanation of what it refers to.
For Gender and Number, the issue is tagged along
with an equals sign (=) and the solution (femi-
nine/masculine or singular/plural) is given. For
Lexical Ambiguity and Terminology, the term (or
terms) is stated along with an equals sign (=) and a
contrasting solution is given, the wrong meaning(s)
compared to (vs) the correct one. Table 8 illustrates
how the annotation format is performed for each
issue.

The corpus will be made freely available in two

formats. One is a spreadsheet (.xls) containing the
tagged corpus in all domains and full information.
This .xls format will allow for filtering specific is-
sues or sentences and enable users/researchers to
see the rationale of the annotation. The corpus will
be also available in plain text (.txt) format, contain-
ing the segment id, sentence, issue and explanation
all in one line.23 This format will allow for an au-
tomatic use of the corpus, for training or as a test
suite. Figure 2 shows the .xls and .txt formats.

4.3 Agreement
As previously mentioned, three annotators com-
piled and annotated the corpus. Their backgrounds
include linguistics, translation and computational
linguistics. Throughout the process of compilation
and annotation, the annotators worked closely to-
gether to discuss the corpus compilation and also
what issues should be tagged. Disagreements were
discussed and resolved, and then the annotation
process would resume. This process helped to re-
fine the list of issues as well as to develop and
finalise the guidelines. The corpus annotation car-
ried out by the three first annotators was corrected
at the final stage in order to ensure that it follows
the established version of the guidelines.

In order to reveal some possible weaknesses of
the annotation guidelines and the decision tree, an-
other expert annotator was involved at the final
stage. The fourth annotator worked with 9% of the
documents from the original collection, where at
least one document of each domain was selected
randomly. The annotation was done according to
the guidelines and the decision tree used by the
first three annotators (see Figure 1). During the
annotation process, the annotator was given the
guidelines, decision tree and was explained what
the goal of the annotation was, but was not allowed
to communicate with the other annotators. We then
calculated inter-annotator agreement using Cohen’s
Kappa (Cohen, 1960) treating the first annotation
(performed by the three annotators) as the gold
standard.

Results show that the overall Kappa score was
0.61 meaning that, by using the guidelines and
the decision tree on a first try, we could reach a
substantial agreement (Landis and Koch, 1977).
We note that the majority of disagreement cases
are related to agreeing whether or not a sentence
contains an issue to be annotated, while our gold

23Modifications and translation are not provided in this
format.
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Issue Explanation (solution) Translation & notes
Reference it = support group o grupo de suporte
Ellipsis I do = I think Eu acho
Gender it = feminine Ela
Number surrender = plural Entreguem-se
Lexical ambiguity paper = news (wrong) vs research article (right) O jornal vs O artigo
Terminology wind farm = farm (wrong) vs park (right) Fazenda eólica vs Parque eólico

Table 8: Annotation format for every context-related issue.

Figure 2: Example of one excerpt of the corpus in the .xls and .txt format

standard has 170 issues annotated in this portion of
the corpus, the fourth annotator found 106 issues.
After this IAA was calculated, we discussed the
annotation produced by annotator 4 and revised the
corpus.

5 Conclusion

We have presented a document-level corpus anno-
tated with context-aware issues when translating
from EN into PT-BR, namely gender, number, el-
lipsis, reference, lexical ambiguity, and terminol-
ogy. This first version of the corpus contains 60
documents, with 3680 sentences, in six different
domains: subtitles, literary, news, reviews, medical
and legislation. To the best of our knowledge, this
is the first corpus of its kind.24

With the rise in NMT quality and the claims of
human parity, the need to move towards a more
fine-grained evaluation involving the whole docu-
ment is beyond question. Moreover, with the lack
of resources for the document-level MT area, this
document-level corpus can be used as a challenge

24The corpus and guidelines will be freely avail-
able at https://github.com/SheilaCastilho/
DELA-Project

test set for evaluation and as a training/testing cor-
pus for MT as well as for deep linguistic analysis
of context issues. We believe that the annotation
can be also used for closely-related languages such
as Spanish.

We intend to increase the corpus, adding more
documents, domains and more context-aware is-
sues. The full translation into PT-BR is ongoing,
and we want to annotate it for other languages,
starting with the Romance language family.
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Abstract

Adapter layers are lightweight, learnable units
inserted between transformer layers. Recent
work explores using such layers for neural ma-
chine translation (NMT), to adapt pre-trained
models to new domains or language pairs,
training only a small set of parameters for
each new setting (language pair or domain).
In this work we study the compositionality
of language and domain adapters in the con-
text of Machine Translation. We aim to study,
1) parameter-efficient adaptation to multiple
domains and languages simultaneously (full-
resource scenario) and 2) cross-lingual transfer
in domains where parallel data is unavailable
for certain language pairs (partial-resource sce-
nario). We find that in the partial resource sce-
nario a naive combination of domain-specific
and language-specific adapters often results
in ‘catastrophic forgetting’ of the missing lan-
guages. We study other ways to combine the
adapters to alleviate this issue and maximize
cross-lingual transfer. With our best adapter
combinations, we obtain improvements of 3-
4 BLEU on average for source languages that
do not have in-domain data. For target lan-
guages without in-domain data, we achieve a
similar improvement by combining adapters
with back-translation. Supplementary material
is available at https://tinyurl.com/
r66stbxj.

1 Introduction

Multilingual Neural Machine Translation (NMT)
has made a lot of progress recently (Johnson et al.,
2017; Bapna and Firat, 2019; Aharoni et al., 2019;
Zhang et al., 2020; Fan et al., 2020a) and is now
widely adopted by the community and MT service
providers. Multilingual NMT models handle multi-
ple language directions at once and allow for knowl-
edge transfer to low-resource languages. Machine

∗Work done during an internship at NAVER LABS Eu-
rope.

translation systems often need to be adapted to spe-
cific domains like legal or medical text. However,
when adapting multilingual systems, in-domain
data for most language pairs might not exist. We
would like to be able to leverage data in a subset
of language pairs to transfer domain knowledge to
other languages.

Straightforward methods of domain adaptation
include fine-tuning (Freitag and Al-Onaizan, 2016)
or usage of domain tags (Kobus et al., 2017; Britz
et al., 2017) for different domains. For these meth-
ods each new domain request would require re-
training the whole model, which is a costly proce-
dure. And naive training on a subset of languages
typically reduces performance on all other lan-
guages (Garcia et al., 2021), a phenomenon known
as ‘catastrophic forgetting’ (McCloskey and Cohen,
1989).

An alternative technique for adapting such mod-
els to new language-pairs or domains are ‘adapter
layers’ (Bapna and Firat, 2019), lightweight, learn-
able units inserted between transformer layers. A
previously trained large multilingual model can
be adapted to each language-pair by learning only
these small units, and keeping the rest of the model
frozen. This procedure also allows for the incre-
mental adding of new language pairs and/or do-
mains to the pre-trained model, reducing the cost
of adaptation. Previous studies have shown it is
possible to combine language-specific (as opposed
to language-pair specific) adapters (Philip et al.,
2020), or language and task adapters (Pfeiffer et al.,
2020) trained independently, enabling zero-shot
compositions of adapters. Our ultimate goal is, for
ease of deployment and storage, a single model that
can handle all languages and domains. In this work
we analyse how to combine language adapters with
domain adapters in multilingual NMT, and study
to what extent the domain knowledge can be trans-
ferred across languages.

First, we show it is hard to decouple language
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knowledge from domain knowledge when fine-
tuning multilingual MT systems on new domains.
In Section 5.2 we demonstrate that adapters learnt
on a subset of language pairs fail to generate into
languages not in that subset. Such generation into
the wrong language is referred to as ‘off-target’
translation. We additionally find combinations of
domain and language adapters not seen at training
time lead to bad performance. We examine how
adapter placement and other techniques can im-
prove the compositionality of language and domain
adapters when dealing with source or target lan-
guages that do not have in-domain data (which we
refer to throughout this work as “out-of-domain
languages”). Our key contributions are:

• We examine domain adaptation capacity in
the multi-lingual, multi-domain setting. We
find that encoder-only adapters can be just as
effective as default adapters added in every
layer, and that composing domain adapters
with language adapters outperforms language
adapters alone, although fine-tuning with do-
main tags performs better for most domains.

• We improve the cross-lingual transfer of do-
main knowledge for adapters. We analyse
different language and domain adapter com-
binations that improve performance and re-
duce off-target translations. Our best results
for translation into out-of-domain languages
use decoder-only domain adapters, regular-
isation with domain adapter dropout, and
data augmentation with English-centric back-
translation.

2 Related Work

Cross-lingual transfer Many works have
demonstrated that large pre-trained multilingual
models (Devlin et al., 2019; Conneau et al., 2020;
Liu et al., 2020) fine-tuned on high-resource
languages (or language pairs) can transfer to
lower-resource languages in various tasks: Natural
Language Inference (Conneau et al., 2018),
Question Answering (Clark et al., 2020), Named
Entity Recognition (Pires et al., 2019; K et al.,
2020), Neural Machine Translation (Liu et al.,
2020) and others (Hu et al., 2020).

Domain adaptation in NMT Domain adapta-
tion has been discussed extensively for bilingual
NMT models. A typical approach is to fine-tune a
model trained on a large corpus of ‘generic’ data on

a smaller in-domain corpus (Luong and Manning,
2015; Neubig and Hu, 2018). A common technique
to make use of monolingual in-domain data is to
do back-translation (Sennrich et al., 2016a; Berard
et al., 2019a; Jin et al., 2020). Although effective,
it is expensive to create back-translated data, espe-
cially when one needs to cover multiple language
pairs. Multi-domain models can be trained with
domain tags (Kobus et al., 2017; Britz et al., 2017;
Berard et al., 2019a; Stergiadis et al., 2021) that
can encode domain-specific information. However,
domain tags do not allow incrementally adding new
domains to a model: each new domain adaptation
requires retraining the full model (as opposed to
adapter layers that can be trained independently
for each language/domain). There are a number of
works (Jiang et al., 2020; Britz et al., 2017; Dabre
et al., 2020) trying to explicitly decouple domain-
specific representations from domain independent
representations in bilingual settings. In our work
we try to decouple language and domain specific
representations through adapter layers.

Adapter layers Bapna and Firat (2019) intro-
duce adapter layers for NMT as a lightweight al-
ternative to fine-tuning. They study both adding
language-pair specific adapters to multilingual
NMT models to match the performance of a bilin-
gual version, and domain-specific adapters for
parameter-efficient domain adaptation. Philip et al.
(2020) train adapters for each language instead
of language-pair and show that composing such
adapters improves zero-shot translation in English-
centric settings, and can adapt a model to all lan-
guage directions in a scalable way. Pfeiffer et al.
(2020, 2021) study adapter layers for pre-trained
language models evaluated on NLU tasks. They
show it is possible to compose language and task
adapters. Combining language adapters trained
with a masked language modelling objective for
language x and task adapters trained on a classifica-
tion task in language y can transfer to classification
in language x. We have a similar objective to Pfeif-
fer et al. (2020), but for NMT where in addition
to encoding sentences we need to generate text for
new language and domain combinations.

To the best of our knowledge none of the works
above study composing language and domain
adapters for generation tasks (such as translation)
which is the goal of this work.
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3 Composing Adapter Modules

Adapter modules (Rebuffi et al., 2017; Houlsby
et al., 2019) are randomly initialised modules in-
serted between the layers of a pre-trained net-
work and fine-tuned on new data. An adapter
layer is typically a down projection to a bottle-
neck dimension followed by an up projection to
the initial dimension, which we write as FFN(h) =
Wupf(Wdownh), with f(·) a non-linearity. The bot-
tleneck controls the parameter count of the mod-
ule; typically NMT requires slightly larger parame-
ter counts than classification to match fine-tuning
(Bapna and Firat, 2019; Cooper Stickland et al.,
2021). With a residual connection and a near-
identity initialization the original model is (ap-
proximately) retained at the beginning of optimiza-
tion, keeping at least the performance of the parent
model.

3.1 Stacking Domain and Language
Adapters

In this work we study ‘stacking’ adapter modules,
i.e. each language and domain has a unique adapter
module associated with it. When passing a batch
with source language x, target language y, and do-
main z, we only ‘activate’ the adapters for {x, y, z}.
The encoder adapters for x and decoder adapters
for y are activated.

We mostly follow the architecture of Bapna and
Firat (2019). Language adapters LA are defined as:

LA(hl) = FFNlg(LNlg(hl)) + hl (1)

where hl is the Transformer hidden state at layer
l and LNlg is a newly initialised layer-norm. Let
z = LA(hl); when stacking domain and language
adapters, the layer output hl,out is given by:

hl,out = FFNdom(LNdom(z)) + z (2)

For all models without any stacking we obtain layer
output as in Eq. 2 but replace LA(·) with the iden-
tity operation.

Pfeiffer et al. (2020) use a different formulation
that empirically performed well for them, but that
in initial experiments produced worse results in our
setting. We list the corresponding equations and
results in Appendix B and Appendix D.

3.2 Improving the Compositionality of
Adapters

In our initial experiments (Section 5.2) we found
that (unlike Pfeiffer et al., 2020) naive stacking of

language and domain adapters does not work very
well for unseen combinations of language and do-
mains, and often results in off-target translation (i.e.
translations into the wrong language). Therefore,
we study several strategies to improve the compo-
sitionality of adapters in the context of NMT:

1) Using decoder-only domain adapters when
translating from an out-of-domain source language
into an in-domain1 target language, and encoder-
only domain adapters when translating from an in-
domain source language into an out-of-domain tar-
get language. This means we never stack together
a combination of language and domain adapter that
was not seen at training time. We also find empir-
ically that decoder-only adapters work well with
back-translation, perhaps because they can ‘ignore’
the noisy synthetic source-side data.

2) Domain adapter dropout (DADrop). Simi-
lar to layer-drop (Fan et al., 2020b) but specialised
to adapter layers, or AdapterDrop (Rücklé et al.,
2020) but without targeting specific layers, we ran-
domly ‘drop’ (i.e. skip) the domain adapter2 and
only pass the hidden state through the language
adapter. This means the adapter stack in the layer
above can more easily adapt to unfamiliar input,
and encourages domain and language adapters to
be more independent of each other.

3) Data augmentation. We often have access
to monolingual data in a domain even when no
parallel data is available. In this work we leverage
English-centric back-translation (BT), i.e. trans-
lating monolingual data in some languages into
English (thus avoiding the more expensive step of
translating from each language into every other
language). We examine the ability of such data
to help cross-lingual transfer to unseen combina-
tions of source and target language (BT means we
have artificial data for every language in combina-
tion with English). We briefly explore ‘denoising
auto-encoder’ style objectives as in unsupervised
MT (Lample et al., 2018) or sequence-to-sequence
pre-training (Lewis et al., 2020).

1Reminder we refer to the subset of languages we have
parallel data for in a particular domain as ‘in-domain’, and all
other languages as ‘out-of-domain’.

2We could additionally drop the language adapter, but
since this was frozen in many experiments we limit ourselves
to domain adapters for simplicity
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4 Experimental Settings

4.1 Data

For studying the domain transfer across languages
we select four diverse domains that have data avail-
able in most language directions: translations of
the Koran (Koran); medical text from the Euro-
pean Medicines Agency (Medical); translation of
TED Talks transcriptions (TED); various technical
IT text, e.g. the Ubuntu manual (IT). All data was
obtained from the OPUS repository (Tiedemann,
2012). We create validation and test sets of around
2000 sentences each, and avoid overlap with train-
ing data (including parallel sentences in any lan-
guage) with a procedure described in Appendix A.
Note that Medical, Koran and IT are from the same
source as those of Aharoni and Goldberg (2020),
although the train/test splits are different due to
expanding the number of languages and wanting a
consistent pipeline for obtaining the data.

Domain Langs. Avg size (lines)

ParaCrawl 12 125M
Koran 10† 52k

Medical 11‡ 500k
IT 12 196k

TED 12 138k

Table 1: Basic statistics for the datasets we use; number
of languages covered, and average number of training
examples across all language directions. †: missing nb
& da, ‡: missing nb.

4.2 Models

In multilingual settings we concentrate on 12
high-resource European languages3 due to the
availability of domain-specific parallel data for
most language pairs. Our baseline model is a
Transformer Base (Vaswani et al., 2017) trained on
English-centric ParaCrawl v7.1 data (Bañón et al.,
2020) with all 12 languages (803M line pairs in
total). It is trained with fairseq (Ott et al., 2019) for
800k updates, with a batch size of maximum 4000
tokens and accumulated gradients over 64 steps
(Ott et al., 2018).4 The source/target embeddings
are shared and tied with the output layer. We to-
kenize the data with a shared BPE model of size
64k with inline casing (Berard et al., 2019b) Both

3{cs, da, de, en, es, fr, it, nb, nl, pl, pt, sv}
4This corresponds to an effective batch size of ≈207k

tokens and training length of 7 epochs.

the multilingual models and BPE model are trained
with temperature-based sampling with T = 5 (Ari-
vazhagan et al., 2019). We calculate all BLEU
scores with Sacrebleu5 (Post, 2018). On the recom-
mendation of Marie et al. (2021) we additionally
report chrF (Popović, 2015) calculated using Sacre-
bleu6 for most models in the Appendix. We use
adapter bottleneck size of 1024 unless stated other-
wise, and when using DADrop (Section 3.2) use a
20% chance of skipping the domain adapter.

We additionally train monolingual language
adapters (Philip et al., 2020) for all 12 languages on
multi-parallel ParaCrawl data, which we obtain by
aligning all languages through their English side,
like Freitag and Firat (2020). The adapters are
trained for another 1M steps, without accumulated
gradients. We report the results of models fine-
tuned on both all the domains simultaneously, or
each domain separately, with access to in-domain
data available for all the languages. Both serve as
a potential upper bound for cross-lingual transfer.

We train the same model (i.e. with access to all
languages) with domain tags: one special token per
domain prepended to each source sequence (Kobus
et al., 2017). We also measure the cross-lingual
transfer ability of domain tags, by training a model
with domain tags on all 4 domains but with in-
domain data in only 4 languages (fr, de, cs and
en). Because the latter model exhibits catastrophic
forgetting issues in the other languages, we also
train the same model with ParaCrawl data in all lan-
guage directions (with a “paracrawl” domain tag).
ParaCrawl line pairs are sampled with probability
0.5. More training hyper-parameters are given in
Appendix A.

4.3 Our model pipelines

We perform two series of experiments.
Multilingual multi-domain models. Firstly,

we experiment with different ways of multi-domain
adaptation of multilingual models. We adapt the
English-centric ParaCrawl pre-trained model to
four domains (Koran, Medical, IT and TED) and
every language direction simultaneously. We test
models with language adapters, language + do-
main adapters, and domain tags. There is no cross-
lingual domain transfer needed7 since all language

5Signature: BLEU+case.mixed+lang.m2m-
en+numrefs.1+smooth.exp+tok.13a+version.1.5.0.

6Signature: chrF2+numchars.6+space.false+version.1.5.1
7There is obviously cross-lingual domain transfer that may

take place when all the domains are trained jointly, but we do
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{Paracrawl en-fr, en-de,
fr-en, de-en}

{Paracrawl en-fr, en-de,
fr-de, de-fr, fr-en, de-en}

{Koran en-fr, fr-en}

Encoder

Decoder

Src LA

Tgt LA

Enc. DA

Finetuned

Frozen

1) 2) 3)

Figure 1: Toy diagram showing one of our proposed pipelines for training language and domain adapters, on a
example subset of languages: {en,fr,de}, with ‘domain-agnostic’ data from ParaCrawl and specialised data from
the Koran. Red indicates a fine-tuned model component, blue indicates a frozen component. LA = language
adapter, DA = domain adapter. From left to right we show: 1) Training an encoder-decoder model with English-
centric ParaCrawl. 2) Training mononlingual language adapters with multiparallel Paracrawl data. 3) Training
domain adapters stacked on language adapters in the encoder, on a subset (here {en, fr}) of languages for the
domain of interest (e.g. Koran). Here we show domain adapters added only to the encoder, but we consider various
other configurations in this work.

directions are included in the training data. Results
for this scenario are reported in Section 5.1.

Cross-lingual domain transfer. In the second
experiment we try to decouple the notion of domain
from language via analysing the zero-shot compo-
sition of domain and language adapters. This is
described in a toy diagram in Figure 1. We first
extend the baseline multilingual English-centric
model with 12 (one for each language) monolin-
gual language adapters (Philip et al., 2020) trained
on multi-parallel ParaCrawl. We then test the cross-
lingual domain transfer ability of our proposed
combinations of adapters by training on data in
a particular domain with a subset of four languages
(referred to as ‘in-domain’; in Figure 1 en and fr
would be in-domain). We test our model on all
language directions from the set of all twelve lan-
guages. This will include cases where we don’t
have in-domain data for either the source or target
language, which we refer to as ‘out-of-domain’
(in Figure 1 de would be out-of-domain).

Finally, we extend the above mentioned scenario
with back-translated (BT) data from out-of-domain
languages into English. To create the BT data, we
use the model with language adapters trained on
ParaCrawl (11) (which has not seen any in-domain
data) on the English-aligned training data for each

not explicitly study this in the first experiment.

language and domain, and use beam search with
a beam size of 5. Results for this scenario are
reported in Section 5.2.

To train language and domain adapters, we
freeze all model parameters except for adapter pa-
rameters, and use a fixed learning rate schedule
with learning rate 5 × 10−5. Following Philip
et al. (2020), when training language adapters
without domain adapters we build homogeneous
batches (i.e. only containing sentences for one lan-
guage direction) and activate only the correspond-
ing adapters. When training language and domain
adapters together, we build homogeneous batches
that only contain sentences for the same combina-
tion of language direction and domain.

5 Results and Discussion

First, in Section 5.1 we discuss the results of ex-
periments testing the domain adaptation capacity
of various models, assuming access to data for
all language pairs. In Section 5.2 we analyse do-
main transfer across languages with adapters and
other methods. We first demonstrate problems
with cross-lingual generalisation during domain
adaption for ‘naive’ methods, and then propose
potential solutions. Note we concentrate on the
medical domain and a particular language sub-
set for convenience. Appendix D has results in
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ID Model IT Koran Medical TED Params (M)

(1) Base (En-centric) 23.2 7.0 25.7 19.0 N/A

(2) Finetuned 40.8 16.0 42.7 26.6 79
(3) Finetuned + domain tags 43.6 20.3 46.0 27.2 79

(4) Single adapter per layer (d = 1024) 39.6 14.7 41.8 26.2 12.6
(5) LA (d = 1365) 42.0 17.6 43.7 26.8 202
(6) LA (d = 2048) 42.2 18.1 43.8 26.9 303
(7) LA + dec. DA (d = 1024) 42.1 18.5 43.6 27.1 177
(8) LA + enc. DA (d = 1024) 42.3 19.3 43.8 27.5 177
(9) LA + enc & dec. DA (d = 1024) 42.7 20.1 44.0 27.7 202

Table 2: BLEU scores averaged across all the language-directions for various multilingual multi-domain adap-
tation strategies, i.e. training on all language directions from the 12 languages and all domains. LA = language
adapters, DA = domain adapters. ‘Params (M)’ refers to the number of trainable parameters in millions. Note that
unlike in Table 3 the LA here are not pre-trained on ParaCrawl; they are trained jointly with domain adapters.

ID Model All In→in Out→in In→out Out→out

Oracles
(10) Finetune (all langs) 44.3 43.9 44.8 44.2 44.2
(3) FT (all langs & domains) + dom. tags 46.0 45.3 46.3 45.9 46.0

Baselines
(1) Base (En-centric) 25.7 27.0 27.2 25.9 24.3
(11) (1) + ParaCrawl LA 30.2 29.6 30.8 30.0 30.0

Straightforward Methods
(12) (1) + Domain adapters only 23.0 44.7 37.8 13.4 (7%) 13.4 (11%)
(13) Freeze LA + enc. & dec. DA 26.9 44.0 36.7 20.1 (71%) 19.9 (76%)
(14) Freeze LA + enc. DA 29.6 42.6 34.0 27.0 (89%) 24.6 (88%)
(15) Freeze LA + dec. DA 29.0 41.7 40.7 22.5 (77%) 22.0 (77%)
(16) FT (all domains) + dom. tags 15.6 46.8 13.2 (55%) 12.0 (1%) 10.7 (2%)

Improving Off-target Translation
(17) (16) + ParaCrawl 34.7 42.2 39.6 32.4 31.0
(18) (13) + BT 33.9 43.2 36.8 35.9 28.0 (85%)
(19) (14) + BT 32.5 41.8 35.0 34.7 26.8 (83%)
(20) (15) + BT 36.9 40.9 38.2 36.4 35.1

(21) (13) + DADrop 28.0 42.6 36.7 22.9 (82%) 21.5 (82%)
(22) (13) + BT + DADrop 34.8 42.2 37.0 36.5 30.2

(23) Unfreeze LA + dec. DA 14.3 45.8 36.6 0.0 (1%) 0.0 (2%)
(24) (23) + DADrop 31.1 45.5 36.9 23.9 (82%) 27.8
(25) (23) + DADrop + BT 35.2 44.5 33.4 38.2 31.8

Table 3: BLEU score of various models trained on the {en, fr, de, cs} subset of the Medical domain, except
‘Oracle’ models trained on all language pairs. LA = language adapters, DA = domain adapters. ‘Out→in’ is the
average score when translating from an out-of-domain source language into {en, fr, de, cs}. ‘In→out’ corresponds
to when the out-of-domain language is the target language. ‘In→in’ refers to average score when source and target
are in the set {en, fr, de, cs}. ‘Out→out’ is the average score when both the source and target language are unseen
during domain adaptation. We note percentage of on-target (correct language) translations in brackets, when it is
less than 90% only.
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other domains and language subsets, and also chrF
(Popović, 2015) scores; we find similar trends to
those reported in Section 5.2.

5.1 Multilingual multi-domain models

Table 2 reports the results from the challenging task
of adapting a multilingual NMT model to multiple
domains and language directions simultaneously.
In this scenario, we assume access to in-domain
data in all the language directions, and so we are
testing the capacity of various models for domain
adaptation, rather than cross-lingual transfer. Mod-
els are compared against a baseline (1) not trained
on in-domain data.

We report the results for naive fine-tuning on
the concatenation of in-domain parallel datasets
for all the languages and all the domains (2). On
all domains we improve on these results by fine-
tuning with domain tags (3) (a similar result to
Jiang et al. (2020) in the bilingual setting). Fine-
tuning with domain tags (3) outperforms the model
with stacked adapters (9). A fine-grained compari-
son of these models is in Figure 5 in the Appendix.
For the IT and Medical domains the model with
tags (3) is clearly better for all language directions.
For the lowest resource domains, Koran and TED,
most of the differences are not statistically signifi-
cant, except for English-centric language pairs for
TED, where the adapter model (9) is better. Explor-
ing the combination of domain tags and adapters
could be an interesting future research direction.

Stacking domain and language adapters (9) re-
sults in better performance than a model with
the same parameter budget devoted to language
adapters only (5). We believe this is because it
allows the model to (partially) decouple domain
from language-specific information, and better ex-
ploit the allocated parameter budget. Even a higher
capacity language adapter model (6) does not per-
form as well.

We also note that usage of encoder-only domain
adapters (8) outperforms the decoder-only domain
adapter model (7). This is perhaps because the en-
coder representations influence the whole model
(it is directly connected to the decoder at all layers
with encoder-decoder attention) as opposed to the
the decoder adapters that only impact decoder rep-
resentations. We find a similar trend in bilingual
domain adaptation, see Appendix C.

The strong performance of encoder-only
adapters has interesting implications for inference

speed. With an auto-regressive decoder, the com-
putational bottleneck is on the decoder side. The
encoder output is computed all at once, while com-
puting the decoder output requires L steps, where
L is the output length. This implies devoting more
capacity to encoder adapters would achieve similar
performance and faster inference (more details in
Appendix C).

5.2 Cross-lingual Domain Transfer

To study the capacity of our models to transfer
domain knowledge across languages, we perform
domain adaptation using parallel datasets for a sub-
set of language pairs, and evaluate on the test sets
available for all language pairs. In this section we
report the results for adaptation to the medical do-
main using the subset of all the language directions
including {en, fr, de, cs} languages (Table 3). We
refer to these languages as in-domain languages,
and out-of-domain languages would include all the
other languages, {de, nl, sv, es, it, pt, pl } (referred
to as In and Out respectively in Table 3).

We report BLEU scores averaged across test
sets of different categories of language-directions
depending on whether the source/target language
was observed during the domain adaptation train-
ing: In→in for language pairs observed during DA,
Out→out for fully zero-shot DA performance, and
In→out, Out→in for translation directions combin-
ing in-domain and out-of-domain languages.

First, we report the results for Oracle models pro-
viding an upper bound for the scores models could
achieve with access to in-domain data for all the
languages: model (10) was fine-tuned on medical
data for all the language directions8, and a model
with domain tags (3) discussed in section 5.1.

Baseline models include the default multilingual
English-centric model (1), as well as model (11)
with language adapters trained on multi-parallel
ParaCrawl data. Comparing against this base-
line shows us improvements from domain-specific
(rather than language-specific) information.

Straightforward Methods We train several
‘straightforward’ adapter models for the subset of
in-domain languages on the top of the baseline
model, one with no language adapters, model (12),
and model (13) with domain and language adapters
(where language adapters are frozen), stacking
them in the encoder and decoder.

8This is different from the model (3) which was fine-tuned
on all the domains and all the language directions.
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Both of these models achieve good scores when
translating into in-domain languages (the In→in
and Out→in categories), on par or better than Ora-
cle scores and much higher than the baselines. On
the other hand they suffer from significant drops in
performance when translating into out-of-domain
languages (the In→out and Out→out categories).

The model (16) trained with tags on a subset of
in-domain languages suffers from the same low per-
formance translating into out-of-domain languages
and additionally has low performance with out-of-
domain source languages.

Looking closer at the translations of the above
models, we see that many translations are either
generated in English, copy the source language,
or mix words between English and the true target
language; see Table 4 in the Appendix for illus-
trative examples. We refer to this phenomenon
as "off-target" translation. We report the percent-
age of translations generated in the correct target
language in Table 3 when it is lower than 90% 9.

We believe this phenomenon is partly due to de-
coder domain adapters having never been exposed
to out-of-domain language generation. Encoder
domain adapters seem to be less sensitive to com-
position with new language adapters (as observed
by Pfeiffer et al. (2020) for NLU tasks, and Table 3
in the Out→In column).

To investigate this, we train models (14) and
(15) with encoder-only and decoder-only adapters.
Figure 2 compares the performances of these mod-
els as well as model (13) trained with encoder
and decoder domain adapters, (14), (15) against
the baseline model (11). The decoder-only model
(15) can better translate from out-of-domain lan-
guages and the encoder-only model (14) slightly
improves for translations into out-of-domain lan-
guages. However the problem of off-target transla-
tion persists for both models and neither improves
over ParaCrawl LA (11). Therefore, we conclude
that a straightforward combination of domain and
language adapters leads to catastrophic forgetting
both in the encoder and the decoder, but the encoder
is less important for this effect.

Effect of data augmentation We train models
(17),(18) (19), (20) with additional data (either a

9This percentage is computed against the ref-
erence translations that were correctly tagged
by ‘langdetect’, a Python language identifier
(https://pypi.org/project/langdetect/).
This is to exclude very short and numerical examples which
can be quite frequent in some domains.

portion of ParaCrawl data, or back-translation of
in-domain data) to alleviate potential forgetting of
representations for out-of-domain languages. All
of these models improve the translation quality into
out-of-domain languages. The model with tags (17)
reaches competitive results and can be considered
as a strong baseline.

For models with back-translation data, the
decoder-only adapter (20) model outperforms the
encoder-only adapter (19) model on out-of-domain
target languages (as opposed to the case without
BT) and has the strongest results overall on trans-
lating into out-of-domain languages. While the
BT models are trained on exactly the same data,
this effect is possibly due the encoder adapters
being more influenced by potentially noisy syn-
thetic source-side data, whereas decoder adapters
are more influenced by clean reference translations.
The decoder-only BT model (20) improves over
the baseline for all the language directions except
for translation into English; see Figure 3.

We report results for the other data augmentation
methods (see Section 3.2) in Appendix D; these
only improve over the ParaCrawl LA baseline in
limited settings.

Domain adapter dropout Models (21) and (22)
trained with dropping domain adapters (DADrop;
see Section 3.2) also allow to reduce catastrophic
forgetting, although only combining DADrop with
Data Augmentation (model (22)) allows to solve
the problem of off-target translation. We also
note slight decreases in in-domain performance
for those models, perhaps due to underfitting.

Increasing adaptation capacity When naively
increasing model capacity by unfreezing LA
stacked with decoder DA (23), the model seems
to mostly devote this capacity to In→in category,
and suffers on other language pair groups. This
trend seems to be similar to the un-augmented
model with tags (16). However, once regular-
ized with DADrop (24), and augmented with back-
translation (25) it reaches very competitive results.

Figure 4 shows fine-grained results for differ-
ent models with DADrop, back-translation and un-
frozen LA. Back-translation improves performance
on the Out→out and In→out groups, but decreases
performance on the Out→in group. Finally, un-
freezing language adapters decreases the perfor-
mance on Out→in but improves on the Out→out
group.
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Figure 2: Comparing models with encoder-decoder adapters, encoder-only adapters and decoder-only adapters.
x-axis shows the target language and y-axis shows the source language. Languages are grouped so the in-domain
languages are in the top left corner. Top: Difference in BLEU compared to the baseline (11) (negative scores
indicate a decrease w.r.t. the baseline, "*" indicates not statistically significant). Bottom: proportion translating
into the wrong target language. Best viewed in .pdf form.
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Figure 3: Comparing adapter models trained with back-translation. Top: Difference in BLEU compared to the
baseline (11) ("*" indicates not statistically significant). Bottom: proportion translating into the wrong target
language. See Figure 2 for more details.

Adapters vs. tags As mentioned previously,
model (17) with tags augmenteed with ParaCrawl
reaches competitive scores overall. Note that this
model was trained on a concatenation of all the
domains, unlike the models with adapters which
were trained only on the medical domain. There-
fore it has been exposed to more data overall. On
the other hand, several of our models fine-tune only
a single adapter per-layer and use frozen LA. Thus,
encoder-only or decoder-only models only require
6.3 million tunable parameters, compared to 79
million for tag-based models. Additionally adapter
models can easily be ‘mixed-and-matched’ by acti-
vating a particular adapter for a particular language
pair. For example we could activate model (15) on
‘Out→in’ (out-of-domain source, in-domain target)
data, model (18) on in-domain data and model (20)
otherwise. Such models could easily be extended to

new domains by training more adapters, in contrast
to tag-based models which update all parameters
for each domain adaptation request.

6 Conclusion

In this work we studied multilingual domain adap-
tation both in the full resource setting where in-
domain parallel data is available for all the lan-
guage pairs, as well as the partial resource setting,
where in-domain data is only available for a small
set of languages.

In particular, we study how to better compose
language and domain adapter modules in the con-
text of NMT. We find that while adapters for en-
coder architectures like BERT can be safely com-
posed, this is not true for NMT adapters: domain
adapters learnt in the partial resource scenario strug-
gle to generate into languages they were not trained
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Figure 4: Comparing models with DADrop, back-translation and unfrozen language adapters. Difference in BLEU
compared to the baseline (11) ("*" indicates not statistically significant). See Figure 2 for more details.

on, even though the original model they are inserted
in was trained on those languages. We found that
randomly dropping the domain adapter and back-
translation can regularize the training and lead to
less catastrophic forgetting for when generating
into out-of-domain languages, although they do not
fully solve the problem of off-target translation.

We experimented with different adapter place-
ment and found that devoting additional capacity
to encoder adapters can lead to better results com-
pared to when the same capacity is shared between
the encoder and the decoder. Similarly, in the par-
tial resource scenario, models with encoder-only
domain adapters suffer less from catastrophic for-
getting when translating into out-of-domain lan-
guages. In contrast, decoder-only domain adapters
perform well when translating from out-of-domain
into in-domain languages, and combine well with
back-translation, perhaps due to their ability to ig-
nore noisy synthetic source data.

Finally we note that a model fine-tuned with do-
main tags serves as a very competitive baseline
for multilingual domain adaptation. On the other
hand, domain adaptation with adapters offers mod-
ularity, and allows incrementally adapting to new
domains without retraining the full model. Future
research directions could explore multi-task train-
ing combining parallel and monolingual in-domain
data in other ways to alleviate the need for back-
translation.

Our work is the first attempt to combine domain

adapters and language adapters for a generation
task (NMT). Although such combinations have
shown to be successful for NLU tasks, obtaining
good representations for generating unseen target
languages proves to be a difficult problem. We be-
lieve a fine-grained study of where to use language
or domain-specific capacity could lead to better
cross-lingual domain transfer in future. Finally, we
provide supplementary material to facilitate repro-
ducibility.10
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A Data and Hyper-parameters

For bilingual domain adaptation we use a Trans-
former Base (Vaswani et al., 2017) model trained
for 12 epochs on German to English WMT20 data
(47M parallel lines), with a joint BPE (Sennrich
et al., 2016b) vocabulary of size 24k with inline
casing (Berard et al., 2019b) (i.e. wordpieces are
put in lowercase with a special token indicating
their case.). For bilingual domain adaption we use
the same datasets as Aharoni and Goldberg (2020),
namely parallel text in German and English from
five diverse domains: Koran, Medical, IT, Law and
Subtitles.

For multilingual settings we use the following
hyper-parameters. We share embeddings between
encoder and decoder. We use the Adam optimizer
(Kingma and Ba, 2014) with an inverse square root
learning rate schedule for pre-training, and a fixed
learning rate schedule for training adapters. We
speed up training with 16 bit floating point arith-
metic. We use label smoothing 0.1 and dropout 0.1.
We train for either 20 epochs or 1 million updates,
whichever corresponds to the smallest number of
training updates. We use early stopping, check-
ing performance after each epoch or every 100,000
training steps, and use average validation negative-
log-likelihood on all of the training data (but not
out-of-domain language data) as our criteria for
choosing the best model. We otherwise use default
Fairseq (Ott et al., 2019) parameters. We train all
models on a single Nvidia V100 GPU, and training
takes between 8 and 36 hours depending on dataset
size.

In order to create validation and test splits that
had no overlap with training data in any language,
we first set aside a number of English sentences.
Then we aligned all language pairs to these sen-
tences, i.e. the German to French test set is com-
posed of German and French sentences that share
the same English sentence. Finally we remove all
sentences in any language from the train splits of
all parallel data if those sentences are aligned with
any English sentences in the subset we set aside
for validation/test splits. Both validation sets and
test sets contain around 2000 examples for every
domain and language-pair.

B MAD-X Style Stacking

Pfeiffer et al. (2020) use the following stacking

formulation,

LA(hl, rl) = FFNlg(hl) + rl. (3)

The residual connection rl is the output of the
Transformer’s feed-forward layer whereas hl is
the output of the subsequent layer normalisation.
When stacking domain and language adapters the
layer output is given by applying the model’s pre-
trained layer norm LNpre,

hl,out = LNpre(FFNdom(LA(hl, rl)) + rl) (4)

and using the output of the Transformer’s feed-
forward layer as a residual instead of the language
adapter output. We refer to this as ‘MAD-X’ style
after Pfeiffer et al. (2020). This leaves the layer
output ‘closer’ to the pre-trained model, with the
same layer-norm and residual connection, contrary
to Eq. 2 which has a newly initialised layer-norm
and a residual connection. For all models without
any stacking we obtain layer output as in Eq. 4 but
replace LA(·) with the identity operation.

C Additional Results for Bilingual
Domain Adaptation

Before studying multilingual domain adaptation,
we validate some of our ideas on a simpler, bilin-
gual German → English domain adaptation set-
ting. Table 11 reports the results of this experiment.
First, we note that encoder-only adapters perform
similarly to encoder & decoder adapters, while
decoder-only adapters perform worse.

Moreover, adding adapters to only the last three
layers of the encoder almost matches the per-
formance of adapting every layer, while adding
adapters to the first three layers decreases perfor-
mance. We believe this is because the last encoder
layer directly influences every layer of the decoder
through cross-attention.

Table 12 presents results of bilingual domain
adaption with smaller adapter bottleneck dimen-
sion. The same trends emerge: encoder-only
adapters perform better, and the last three layers
of the encoder are better than the first three. The
last three encoder layers also perform better than
the first three for a multilingual model, see Table 7
models (38) and (39). Interestingly the multilin-
gual last three encoder layer DA model is roughly
halfway between encoder-only and decoder-only
on Out→in and In→out performance, suggesting
it might be a useful compromise between the two.
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Figure 5: Difference in BLEU score for each domain between the model trained with adapters (9) and model
trained with domain tags (3), for the multilingual multi-domain models. A positive number corresponds to the
case where model (3) has higher score than the model (9). The "*" indicates the cases when the difference is not
statistically significant.

D Additional Results for Cross-lingual
Transfer

Does language diversity increase transfer? Ta-
ble 5 compares models trained on a mix of language
families (fr, de, cs, en) and mostly romance lan-
guages (fr, it, es, en) to test whether diversity of
languages in our in-domain training set improved
transfer. Positive numbers in this table indicate di-
versity of training languages improves performance.
Diversity helps for translating out-of-domain lan-
guages into in-domain. We have unclear results for
when both source and target are out-of-domain; it
seems when using back-translation (BT), i.e. when
all languages have been seen (albeit with artificial
English parallel data) diversity helps, but without
BT it mostly hurts performance. We speculate that
training on mostly romance languages means the
domain adapter encodes less ‘language informa-
tion’, but leave further exploration to future work.

Additional results and metrics We present ad-
ditional results for the setting discussed in Sec-
tion 5.2 of the main paper in Table 9 (Koran do-
main), Table 10 (Koran results for the romance
language subset), and Table 7 (additional Medi-
cal results). We use the chrF metric as discussed
in the main paper, and find the conclusions based
on BLEU score are unchanged. For the Koran
domain, we see similar trends with decoder-only
domain adapters (DA) performing best on out-of-
domain source to in-domain target languages, and
vice versa for encoder-only DA. Additionally we
see as before that combining BT with decoder-only
DA works the best, and achieves the highest over-
all performance. We report on-target (correct lan-
guage) percentage for all medical domain models
in Table 8.

We briefly experiment with denoising objectives,
where we simply copy target data in out-of-domain
languages to the source side (and optionally add
‘noise’ to the source side, e.g. swap tokens or mask
tokens (Lewis et al., 2020)). Although we got rea-
sonable improvements (models (42) and (41)) for
out-of-domain target languages, we were mostly
unable to improve over the pre-trained ParaCrawl
LA, and so concentrate on back-translation.

We experiment with a setting where we jointly
train on all language directions for IT, Koran and
TED Talks domains and a subset of languages for
Medical, and similarly with only a subset of Ko-
ran (models (43), (44) etc.). These models stack
language and domain adapters. Such models don’t
require any pre-trained LA, and improve out-of-
domain performance and decrease off-target trans-
lation compared to freezing ParaCrawl LA and
training DA. However these scores are still worse
than simply using pre-trained ‘domain-agnostic’
ParaCrawl LA (11).

592



source (fr) ref (pt) (12) (13)
La durée du traitement
dépend de la nature et de la
sévérité de l’ infection et de
la réponse observée.

A duração do tratamento de-
pende da natureza e da gravi-
dade da infecção e da re-
sposta verificada.

The duration of treatment
depends on the nature and
severity of the infection and
on the response observed.

A duração do tratamento de-
pende da nature e severidade
da infecção e da resposta ob-
served.

Insuman Comb 50 40 UI/ ml
suspension injectable en fla-
con

Insuman Comb 50 40 UI/
ml, Suspensão injectável
num frasco para injectáveis

Insuman Comb 50 40 IU/ ml
suspension injectable en fla-
con

Insuman Comb 50 40 IU/ ml
suspension for injection in
vial

A quoi ressemble TAX-
OTERE et contenu de l’
emballage extérieur TAX-
OTERE 80 mg, solution à
diluer pour perfusion est une
solution visqueuse, limpide,
jaune à jaune marron.

Qual o aspecto de TAX-
OTERE e contéudo da
embalagem TAXOTERE
80 - mg concentrado para
solução para perfusão
é uma solução viscosa
transparente amarela ou
amarela- acastanhada.

What TAXOTERE looks
like and contents of the pack
TAXOTERE 80 mg concen-
trate para solution for infu-
sion is a solution visqueuse,
limpida, de jaune à marron.

TAXOTERE 80 mg, Diluted
for Solution for Infusion é
uma solution viscous, limpa,
yellow to marrom.

Table 4: Some examples of translations generated by straight-forward adapter training settings, in this case from a
known source language, fr into a target language unseen during domain adaptation, pt, and for the medical domain.

Model Out→ {en,fr} Out→Out

Koran
LA + Dec. DA 0.6 -0.9
LA + Dec. DA 0.3 -0.3

Unfr. LA + Dec. DA 0.1 -0.4
LA + Enc & Dec. DA 1.3 -1.3

Koran + BT
LA + Dec. DA 0.4 0.2
LA + Dec. DA 1.9 0.9

Unfr. LA + Dec. DA 0.3 0
LA + Enc & Dec. DA 0.7 0.3

Medical
LA + Dec. DA 0.8 -2.4
LA + Dec. DA 3.2 0.2

Unfr. LA + Dec. DA 0.2 0.1
LA + Enc & Dec. DA 3.2 -1.1

Medical + BT
LA + Dec. DA 0.4 2.9
LA + Dec. DA 1.3 1.6

Unfr. LA + Dec. DA 0.5 3.1
LA + Enc & Dec. DA 0.5 1.5

Table 5: Difference in average BLEU score between
models trained on a diverse subset of languages and
models trained on mostly romance languages. Data
source is noted in bold. Refer to the main paper
for model definitions. Out→ {en,fr} corresponds to
translation from an out-of-domain source language into
{en,fr}. ‘Out→Out’ is the average score when both the
source and target language are unseen during domain
adaptation (choosing languages unseen by either sub-
set).
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ID Model IT Koran Medical TED Params (M)

(1) Base (En-centric) .456 .300 .488 .456 N/A

(2) Finetuned .623 .394 .625 .513 79
(3) Finetuned + domain tags .645 .433 .646 .517 79

(4) Single adapter per layer (d = 1024) .612 .382 .619 .512 12.6
(5) LA (d = 1365) .632 .408 .630 .517 202
(6) LA (d = 2048) .634 .411 .631 .517 303
(7) LA + dec. DA (d = 1024) .633 .412 .629 .518 177
(8) LA + enc. DA (d = 1024) .634 .426 .631 .522 177
(9) LA + enc & dec. DA (d = 1024) .636 .429 .632 .523 202

Table 6: chrF scores of various multilingual multi-domain adaptation strategies, i.e. training on all language
directions from the 12 languages and all domains.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) .635 .631 .638 .635 .635
(3) FT (all langs & domains) + domain tags .646 .641 .648 .646 .646

Baselines

(1) Base (En-centric) .488 .500 .497 .493 .475
(11) (1) + ParaCrawl LA .537 .532 .540 .538 .535

Straightforward Methods

(12) (1) + Domain adapters only .400 .635 .575 .295 .287
(13) Freeze LA + enc. & dec. DA .468 .631 .566 .401 .400
(16) FT (all domains) + dom. tags .277 .650 .236 .283 .193

Improving Off-target Translation

(17) (16) + ParaCrawl .570 .622 .601 .556 .544
(26) Unfreeze LA .551 .639 .574 .514 .535
(27) (34) + BT .571 .636 .556 .594 .548

(15) Freeze LA + dec. DA .492 .613 .605 .432 .421
(20) (15) + BT .586 .608 .590 .584 .577
(28) (15) + BT + DADrop .584 .604 .587 .583 .576
(14) Freeze LA + enc. DA .518 .623 .548 .506 .477
(19) (14) + BT .548 .620 .567 .574 .498
(29) (14) + BT + DADrop .561 .614 .570 .579 .527
(30) Freeze LA + enc. first 3 layers DA .440 .618 .525 .379 .373
(31) Freeze LA + enc. last 3 layers DA .512 .622 .576 .472 .465

(21) (13) + DADrop .490 .621 .567 .447 .429
(32) (13) + BT .559 .626 .581 .582 .511
(22) (13) + BT + DADrop .569 .619 .583 .587 .534
(33) (13) + BT + MAD-X style .540 .625 .575 .561 .477

(23) Unfreeze LA + dec. DA .221 .641 .573 .010 .007
(24) (23) + DADrop .528 .639 .577 .452 .514
(25) (23) + DADrop + BT .573 .636 .559 .595 .550

Table 7: chrF score of various models trained on the {en, fr, de, cs} subset of the Medical domain. Some models
are also included in the main paper.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) 95% 95% 95% 95% 95%
(3) FT (all langs & domains) + domain tags 95% 95% 96% 95% 95%

Baselines

(1) Base (En-centric) 91% 93% 92% 91% 89%
(11) (1) + ParaCrawl LA 95% 96% 96% 95% 95%

Straightforward Methods

(12) (1) + Domain adapters only 40% 95% 93% 7% 11%
(13) Freeze LA + enc. & dec. DA 81% 95% 93% 71% 76%
(16) FT (all domains) + dom. tags 25% 96% 55% 1% 2%

Improving Off-target Translation

(17) (16) + ParaCrawl 93% 95% 93% 93% 92%
(34) Unfreeze LA 94% 95% 95% 93% 95%
(35) (34) + BT 94% 96% 95% 95% 94%

(15) Freeze LA + dec. DA 84% 95% 95% 77% 77%
(20) (15) + BT 94% 95% 95% 94% 94%
(36) (15) + BT + DADrop 94% 95% 95% 94% 94%
(14) Freeze LA + enc. DA 90% 95% 93% 89% 88%
(19) (14) + BT 90% 96% 94% 94% 83%
(37) (14) + BT + DADrop 93% 95% 95% 94% 91%
(38) Freeze LA + enc. first 3 layers DA 59% 95% 93% 35% 43%
(39) Freeze LA + enc. last 3 layers DA 88% 95% 94% 83% 86%

(21) (13) + DADrop 86% 95% 93% 82% 82%
(18) (13) + BT 91% 95% 95% 94% 85%
(22) (13) + BT + DADrop 93% 95% 95% 94% 91%
(40) (13) + BT + MAD-X style 89% 95% 95% 92% 80%

(23) Unfreeze LA + dec. DA 36% 96% 95% 1% 2%
(24) (23) + DADrop 90% 95% 95% 82% 92%
(25) (23) + DADrop + BT 94% 95% 95% 94% 94%

Table 8: On-target translation percentages of various models trained on the {en, fr, de, cs} subset of the Medical
domain.
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ID Model All In→in Out→in In→out Out→out

Oracles

(10) Finetune (all langs) .461 .437 .427 .487 .477
(3) FT (all langs & domains) + domain tags .433 .423 .409 .455 .438

Baselines

(1) Base (En-centric) .300 .307 .299 .306 .294
(11) (1) + ParaCrawl LA .334 .330 .328 .340 .335

Straightforward Methods

(12) (1) + Domain adapters only .246 .451 .349 .163 .150
(13) Freeze LA + enc. & dec. DA .165 .449 .137 .144 .089

Improving Off-target Translation

(16) FT (all dom.) + dom. tags .166 .436 .162 .143 .081
(17) FT (all dom. + ParaCrawl) + dom. tags .359 .410 .375 .351 .332
(34) Unfreeze LA .352 .454 .351 .322 .335

(15) Freeze LA + dec. DA .304 .404 .385 .249 .244
(41) (15) + Mono data .355 .390 .373 .342 .336
(20) (15) + BT .381 .399 .371 .387 .375
(36) (15) + BT + DADrop .382 .402 .373 .388 .376
(14) Freeze LA + enc. DA .319 .438 .328 .315 .266
(42) (14) + Mono data .347 .410 .338 .353 .324
(19) (14) + BT .365 .432 .353 .385 .330
(37) (14) + BT + DADrop .368 .425 .354 .394 .336

(18) (13) + BT .374 .434 .366 .394 .341
(22) (13) + BT + DADrop .381 .436 .369 .406 .349

(23) Unfreeze LA + dec. DA .224 .457 .351 .088 .138
(24) (23) + DADrop .339 .458 .354 .288 .320

(43) Multi-domain dec. DA .326 .403 .360 .304 .285
(44) Multi-domain enc. DA .337 .412 .360 .327 .297
(45) Multi-domain enc. & dec. DA .327 .417 .369 .302 .279

Table 9: chrF score of various models trained on the {en, fr, de, cs} subset of the Koran domain. LA = language
adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an out-of-domain source
language into {en, fr, de, cs}. ‘In→out’ corresponds to when the out-of-domain language is the target language.
‘In→in’ refers to average score when source and target are in the set {en, fr, de, cs}. ‘Out→Out’ is the average
score when both the source and target language are unseen during domain adaptation. ‘Mono data’ refers to
adding copied monolingual data for out-of-domain languages, and additionally multiparallel ParaCrawl data in
small amounts.
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ID Model All In→in Out→in In→out Out→out

(13) Freeze LA + enc. & dec. DA .309 .491 .362 .267 .229
(21) (13) + DADrop .311 .490 .360 .270 .233
(34) Unfreeze LA .357 .515 .395 .303 .307
(35) (34) + BT .372 .529 .364 .370 .319

(15) Freeze LA + dec. DA .332 .463 .418 .268 .262
(20) (15) + BT .382 .460 .408 .362 .345
(14) Freeze LA + enc. DA .320 .491 .345 .296 .249
(19) (14) + BT .359 .492 .374 .354 .298

(23) Unfreeze LA + dec. DA .322 .519 .399 .216 .267
(24) (23) + DADrop .353 .515 .399 .291 .303
(25) (23) + DADrop + BT .377 .522 .372 .373 .327
(18) (13) + BT .368 .490 .388 .363 .308
(22) (18) + DADrop .373 .494 .389 .369 .314

Table 10: chrF score of various models trained on the mostly romance language {en, fr, it, es} subset of the Koran
domain. LA = language adapters, DA = domain adapters. ‘Out→in’ is the average score when translating from an
out-of-domain source language into {en, fr, it, es}. ‘In→out’ corresponds to when the out-of-domain language is
the target language. ‘In→in’ refers to average score when source and target are in the set {en, fr, it, es}. ‘Out→Out’
is the average score when both the source and target language are unseen during domain adaptation.

ID Model IT Koran Medical Subtitles Law

(46) No fine-tuning 35.3 14.8 38.1 26.8 42.4
(47) Fine-tuned 43.8 22.7 53 30.9 57.9

(48) Enc. + dec. adapters (d = 1024) 42.9 21.8 51.7 30.5 56
(49) (48) + MAD-X style 40.6 19.3 48.8 29.8 54.3
(50) Dec. adapters (d = 2048) 42.1 19.8 50.5 29.7 55.1
(51) Enc. adapters (d = 2048) 42.4 21.5 51.9 30.1 56.1
(52) Last 3 encoder layers only (d = 4096) 42.9 21.1 52.1 30.1 56
(53) First 3 encoder layers only (d = 4096) 42.2 20 50.1 28.5 54.9

Table 11: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .

ID Model IT Medical Koran Subtitles Law

(54) No fine-tuning 35.3 14.8 38.1 26.8 42.4
(55) Finetuned 43.8 22.7 53 30.9 57.9
(56) Enc. + dec. adapters (d=64) 40 18.7 47.3 29.4 51.5
(57) Dec. adapters (d=128) 39 17.5 46 28.8 50.6
(58) Enc. adapters (d=128) 40 18.9 47.3 29.2 51.5
(59) Last 3 encoder layers only (d=256) 40 19 47.3 29 51.1
(60) First 3 encoder layers only (d=256) 39.5 18 46 28.8 49.5

Table 12: BLEU scores of various domain adaptation strategies for a German→ English bilingual model. (d = N)
refers to adapters with a bottleneck dimension of size N .
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Abstract

Many works proposed methods to improve
the performance of Neural Machine Transla-
tion (NMT) models in a domain/multi-domain
adaptation scenario. However, an understand-
ing of how NMT baselines represent text
domain information internally is still lack-
ing. Here we analyze the sentence repre-
sentations learned by NMT Transformers and
show that these explicitly include the infor-
mation on text domains, even after only see-
ing the input sentences without domains la-
bels. Furthermore, we show that this inter-
nal information is enough to cluster sentences
by their underlying domains without supervi-
sion. We show that NMT models produce clus-
ters better aligned to the actual domains com-
pared to pre-trained language models (LMs).
Notably, when computed on document-level,
NMT cluster-to-domain correspondence nears
100%. We use these findings together with an
approach to NMT domain adaptation using au-
tomatically extracted domains. Whereas previ-
ous work relied on external LMs for text clus-
tering, we propose re-using the NMT model
as a source of unsupervised clusters. We per-
form an extensive experimental study compar-
ing two approaches across two data scenar-
ios, three language pairs, and both sentence-
level and document-level clustering, showing
equal or significantly superior performance
compared to LMs.

1 Introduction

Neural machine translation (NMT, Bahdanau et al.,
2015; Vaswani et al., 2017b) heavily depends on
training data and the text domains covered in it.
Full-scale NMT Transfomer models (Vaswani et al.,
2017b) are usually trained on a mix of corpora from
several domains (Barrault et al., 2020). However,
the field lacks an understanding of how these NMT
models represent the training data domains in their
inner vector spaces.

∗Equal contribution

This paper consists of two main parts. First,
we analyze domain representations learned by the
NMT Transformer. We consider sentence-level as
well as document-level representations via mean
pooling of token contextual embeddings. Our anal-
ysis shows that NMT models explicitly learn to
include the domain information in their representa-
tional spaces across layers. Furthermore, we show
that text representations preserve enough domain-
specific information to reveal the underlying do-
mains with Principal Component Analysis and k-
means clustering without supervision. In the case
of document-level clustering, the result of k-means
matches the original corpora almost perfectly. In
the case of sentence-level clustering, we observe
some deviation between automatic clusters and the
original corpora that the sentences belong to, show-
ing corpus heterogeneity on the sentence level.

Aharoni and Goldberg (2020) previously re-
vealed that a similar property exists in pre-trained
language models (LMs). We compare LMs with
NMT Transformers in how well we can extract un-
supervised domain clusters from them and show
the superiority of NMT models.

In the second part of the paper, we show how
to effectively utilize our analysis to improve an ex-
isting approach to NMT domain adaptation which
uses automatically extracted domains (Tars and
Fishel, 2018; Currey et al., 2020). This method tar-
gets the case when training domain labels are not
precise (e.g. Currey et al., 2020) or missing overall,
as in case of heterogeneous corpora (e.g. Paracrawl,
Esplà et al., 2019). This framework has so far been
used with external models for clustering, which
automatically makes us rely on clusters not neces-
sarily aligned with the objectives of translation or
target data domains.

We propose exploiting clusters extracted from
the NMT baseline (already trained as a part of the
framework) to improve translation quality without
relying on external language models. We test our

599



Figure 1: PCA plots of sentence representations extracted from all layers of the 60th checkpoint of the trained base-
line NMT model. Representations are computed with English sentences. The dots, denoting sentences, are colored
according to the domain the corresponding sentences come from. The model learns to distinguish between domains
in its hidden space, despite not being explicitly provided with any information about domains. L0 corresponds to
fixed encoder embeddings, L1–L6 are encoder layers’ representations, L7 shows fixed decoder embeddings and
L8–L13 – the decoder layers’ representations. The figure shows that representations from the same domain cluster
together.

proposal empirically, covering three language pairs
and two data settings: a mix of corpora with known
domain labels and a heterogeneous corpus without
such labels. We show that fine-tuning the NMT
models to the automatically discovered clusters on
average matches or surpasses tuning to the original
corpus labels (when available) and deep LM-based
clusters.

Our contributions are thus two-fold:1

• we analyze the NMT encoder’s representa-
tions, showing their ability to automatically
discover inherent text domains and cluster
unlabelled corpora, testing both sentence-
level and document-level representations (Sec-
tion 3);

• we utilize findings from our analysis to im-
prove an existing Automatic Domains for
NMT approach (Section 4) and perform an
extensive experimental study, showing the su-
periority of our method (Section 5);

2 Related Work

Aharoni and Goldberg (2020) found that BERT
(Devlin et al., 2019) produces meaningful unsu-
pervised domain clusters and used this finding
for NMT data selection. In this work we analyse
(sentence-level and document-level) hidden repre-
sentations produced by a baseline NMT model and
find that it learns superior unsupervised clusters by
itself.

In NMT, domain-specific information on the
word level was recently analyzed by Jiang et al.

1We release our code at https://github.com/
TartuNLP/inherent-domains-wmt21

(2020) in the context of domain mixing in a joint
modular multi-domain NMT system. They found
that representations contain domain-specific infor-
mation related to the multiple domains in different
proportions on the word level. We analyze rep-
resentation on the sentence and document level,
revealing that domain-specific information in rep-
resentations converges to the one specific domain
with a broader context.

Currey et al. (2020) used contextual embeddings
and mean-pooled representation clustering for do-
main adaptation. We compare our approach to
Currey et al. (2020), however in their case the
representations were extracted from multilingual
BERT (mBERT). We cluster based on the NMT
encoder’s representations directly and also experi-
ment with document-level representations in addi-
tion to sentence-level ones.

Before Currey et al. (2020), the automatic do-
mains framework has been used in NMT only with
external models for clustering as well. Tars and
Fishel (2018) used fixed embeddings from Fast-
Text (Bojanowski et al., 2017) for clustering mean-
pooled sentence representations and then either tun-
ing NMT systems to these clusters or supplying the
cluster identity to the NMT system as additional
input for multi-domain translation.

3 Analysis

In this section, we perform an analysis of inherent
domain representations in translation transformers.
We reveal how well the domain-specific informa-
tion in text representations is preserved in NMT
models. We focus on "out-of-the-box" NMT sys-
tems without any changes and explore the extent

600



to which we can use their internal representations
to match the original text domains using Principal
Component Analysis (PCA) and k-means cluster-
ing. We also measure the effect of using broader
document-level representations.

Additionally, we compare NMT representations
to the ones extracted from a pre-trained language
model, for which Aharoni and Goldberg (2020)
revealed a high degree of domain-specific informa-
tion.

3.1 Models and Data
In our analysis, we start by following Currey et al.
(2020) and similarly to them use a multilingual
LM (XLM-R, Conneau et al., 2020) to obtain clus-
ters. XLM-R is a multilingual masked language
modeling transformer covering 100 languages.

We then train Transformer-base (Vaswani et al.,
2017a) NMT models, which have ∼97M param-
eters each. We train the models on parallel
data covering four corpora/text domains: parlia-
ment speeches (Europarl, Koehn, 2005), medical
(EMEA, Tiedemann, 2012), subtitles (OpenSubti-
tles, Lison and Tiedemann, 2016) and legal (JRC-
Acquis, Steinberger et al., 2006). We sub-sampled
the larger corpora in order to balance the size of
training data across domains. The NMT models
were trained for 60 epochs. A detailed descrip-
tion of the setup, models, and data is provided in
Appendix B.

We focus on sentence-level and document-
level representations, and two language
pairs: English→Estonian (EN-ET) and
German→English (DE-EN).

3.2 Dimensionality Reduction
We start by unsupervised dimensionality reduction
using PCA to visualize domain placement. We
take the development set data, extract token embed-
dings from each model’s layer, and average them
to obtain sentence representations. Then we apply
cosine-based PCA and t-SNE dimensionality reduc-
tion to the representations to visualize the data in
a 2D space, and post factum color each data point
(sentence) according to its corresponding domain.
We show the resulting visualizations in Figure 1
(best viewed in color) for ET-EN (and in Figure 4
for t-SNE in the Appendix A, which mirrors the
PCA result).

Figure 1 shows that NMT partitions the domains
quite well at all encoder hidden layers and deep
decoder layers. Encoder layer 0 corresponds to the

fixed embeddings, and the latent space is not well
partitioned there yet; however, as we go deeper into
the network, the separation increases. Layer 7 is
the decoder’s embedding layer, and there the same
logic applies. While the encoder learns to partition
the hidden space based on domains from scratch,
the decoder has access to the encoder hidden states
via encoder-decoder attention, which might sim-
plify its task.

In summary, Figure 1 is our initial evidence that
the NMT encoder places the domains separably.

3.3 Clustering
Our primary method, however, is unsupervised k-
means clustering. We consider four data clustering
setups: sentence-level XLM-R clusters, sentence-
level NMT clusters, document-level XLM-R clus-
ters, and document-level NMT clusters. The first
one is the baseline clustering approach investigated
by Aharoni and Goldberg (2020) while the remain-
ing three are our original contributions.

3.3.1 Per-layer Clustering Purity
Metric In our analysis, we estimate how well the
NMT model preserves domain-specific informa-
tion in its internal text representations. To do that,
we measure the goodness-of-fit between unsuper-
vised clusters and oracle domains. Specifically, we
follow Aharoni and Goldberg (2020) and use the
clustering purity metric. To compute clustering
purity, we align domains and clusters by the high-
est overlap in numbers of sentences. The number
of overlapping data points for each cluster-domain
pair gives us the number of ’correctly predicted’
examples. Then, the sum of all ’correctly predicted’
examples divided by the total number of examples
will be the clustering purity score.

Embedding and Clustering We first take the
concatenation of a small subset of sentences (3k)
from each of the four domains and try to partition
them into four clusters based on the representations
from each layer of XLM-R and NMT Transformer.
We only use source sentences since we do not have
targets at runtime in NMT. Specifically, we follow
the steps below for each layer of each of the two
models:

1. For each sentence in the dataset, we extract
contextualized token embeddings from a layer
of the model.

2. We use the average of contextualized token
embeddings as sentence representations.
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Figure 2: Sentence-level clustering purity between
clusters obtained with k-means over 3k of EN-ET de-
velopment set sentences and actual data domains. Rep-
resentations extracted from XLM-R, NMT Baseline af-
ter epoch 1, and NMT Baseline after training has fin-
ished (epoch 60). While XLM-R is relatively poor in its
ability to rediscover original domains, representations
extracted from the trained NMT model largely outper-
form it at layers 1-6. Layers 1-6 are the encoder and
7-12 the decoder. The results are for the best clustering
(with least variance) over 10 k-means runs.

3. We apply k-means clustering to sentence rep-
resentations to assign a cluster label to each
sentence.

4. We compute clustering purity for predicted
labels and oracle domains.

We perform ten random restarts of k-means cluster-
ing, selecting the iteration with the smallest within-
cluster variance.

Results Figure 2 shows per-layer clustering pu-
rity computed for sentence representations for
XLM-R and two NMT Baseline checkpoints (after
the first epoch and after the 60th epoch of train-
ing). Figure 2 shows that NMT surpasses the lan-
guage model in its ability to rediscover domains.
About 3.5x higher performance at the encoder lay-
ers shows that the encoder is the part that learned to
be very aware of the input domains (in an unsuper-
vised way). Figure 2 also shows that the checkpoint
saved after the 1st training epoch rediscovers clus-
ters slightly better then 60th checkpoint. However,
this does not suggest that an NMT model should be
trained for one epoch since the translation quality
is suboptimal early on. Instead, we assume that
the model quickly learns domain-specific informa-
tion (perhaps due to the common lexical statistics)
and then slightly "moves away" towards a higher
level of abstraction as training progresses. This
abstraction is necessary to successfully learn a task
as complex as NMT.

EN-ET DE-EN

train dev test train dev test

sentence
XLM-R 53.47 52.9 50.07 44.04 49.2 48.6
NMT 67.21 72.56 70.7 66.32 70.02 72.28

document
XLM-R 85.77 72.89 70.14 97.64 91.74 95.23
NMT 99.61 100.0 99.1 99.21 97.58 99.78

Table 1: Clustering purity. We trained the NMT model
on about 2m EN-ET or DE-EN sentences from multi-
ple corpora and used pre-trained XLM-R Base model.
Based on the Figure 2, we used the 4th layer to extract
source representations from the NMT model and 8th
layer for XLM-R. The results are for the best clustering
(with least variance) over 10 k-means runs. Both NMT
and XLM-R rediscover inherent data domains when
document level representations are used, and seem to
produce more customized separations when clustered
based on sentence-level. NMT tends to be better at re-
discovery.

3.3.2 Large-scale Clustering
Next, we repeat the same steps for the entire train-
ing dataset and include a second language pair.
Specifically, we pick one of the best performing
layers (4th for NMT and 7th for XLM-R) based
on the experiment above and use it to cluster the
training part of the multi-domain machine transla-
tion training set (about 500k examples per domain,
2M in total). We then predict cluster labels for the
training examples and use the same model to clus-
ter unseen examples from the development and test
set.

We also extend our analysis to the document-
level scenario. Specifically, we average over sen-
tence representations to get document embeddings
and cluster-based on them. Then, we assign the
predicted label for each document to each sentence
in that document.2

Results We present large-scale clustering confu-
sion matrices in Figure 3 and clustering purity in
Table 1. These show that sentence-level NMT is
generally better than sentence-level XLM-R at re-
discovering domains. However, they both show
quite modest results for both language pairs. At the
same time, document-level clusters are much better
at rediscovering original domains.

2Sentence pairs coming from the same XML file were
considered to belong to the same document. The training,
development and test sets in all experiments were constructed
in such a way that a document is always included in one set in
its entirety.
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Figure 3: Corpus-cluster confusion tables for about 2M sentences for EN-ET for (a) the training and (b) test sets.
The numbers are percentages for each domain (column). NMT document clusters almost perfectly match original
data domains. On the sentence level, however, both NMT and XLMR learn a more customized notion of clusters,
with NMT being more aligned with original domains.

The reason for that might be that sentence-level
clustering largely relies on the more shallow infor-
mation in the text. For example, we observed that
both sentence-level NMT and XLM-R produced a
cluster responsible for extremely short sentences
(the average sentence length is about four tokens for
these clusters). On the other hand, document-level
representations factor out these shallow stylistic
features by averaging over sentence representations.
Therefore, the models are inclined to cluster by
topics. An alternative explanation is that domain-
specific lexical statistics, which not all sentences
might preserve, get more robust as we average sen-
tence embeddings to get a document embedding.

Even though sentence-level clustering maintains
a general idea about oracle domains, they split
sentences into clusters quite freely. For example,
JRC-Acquis consistently gets mixed with Europarl,
which both belong to legal domains. We can see it
from NMT SENT for both language pairs.

For documents, the rediscovery trend is common
and pronounced for both language pairs, and sepa-
ration is generally consistent between train and test.
However, for EN-ET XLM-R DOC we can observe

that EMEA and JRC-Acquis got split between two
clusters in the training set. Considering that we
perform ten random k-means restarts and choose
the best iteration, this suggests that XLM-R may
become inconsistent (as a source of sentence repre-
sentations on the document level) in some cases.

Figure 5 in Appendix A shows similar heatmaps
for DE-EN. DE-EN is consistent with what we ob-
serve for EN-ET apart from XLM-R DOC, where
the DE-EN diagonal is cleaner.

4 Practical Application

Our analysis in Section 3 revealed that NMT mod-
els represent domains in their embedding space
separately, similarly to what pre-trained language
models do (Aharoni and Goldberg, 2020). We
demonstrated that simple clustering on NMT repre-
sentations allows recovering original data domains
to a large degree.

This section proposes to utilize this finding to im-
prove an existing framework of automatic domain
generation for NMT. In this framework, related
work first clusters the training data using represen-
tations from an external encoder, and then the base-
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line NMT model is adapted (fine-tuned) on each
cluster separately. We propose to re-use the NMT
baseline itself as the encoder in this framework.

Representations extracted from translation Trans-
formers are specific to the task of translation. We
hypothesise that it might result in clusters most
suitable for downstream translation tasks like fine-
tuning to specific domains/clusters.

Moreover, an advantage of our scenario is that
we cluster the same data (with our NMT model)
that we use for NMT model training. It is a frequent
multi-domain NMT setup, where multiple target
domains are available in training. In the pre-trained
language model setup, the data will be more out-
of-domain, despite the model’s generality.

4.1 Existing Framework (Background)
In this subsection we describe an existing frame-
work which uses automatic domains (clusters) to
perform NMT domain adaptation (Tars and Fishel,
2018). Recent work (Currey et al., 2020) employs
large pretrained language models as part of the
framework. It consists of several steps.

In step 1.1, we begin with a single heteroge-
neous dataset ("Original Dataset") and train a
baseline NMT model on it. At the same time
(step 1.2), we pass this dataset through the exter-
nal pre-trained XLM-R model to extract hidden
sentence/document representations for the whole
dataset. In step 2, we use the extracted sen-
tence/document representations to train a k-means
clustering model. In step 3, we use this k-means
model to separate the original dataset into sub-
datasets corresponding to the clusters. Lastly, we
use the cluster-specific datasets to fine-tune the
baseline NMT model from step 1.1 on each dataset
separately, resulting in a set of specialized models.
We use the k-means model at runtime to determine
which NMT model to use to translate a new sen-
tence/document. If we only use sentence clusters,
the approach is equivalent to the one proposed by
Currey et al. (2020). Refer to Figure 6 from Ap-
pendix A for the illustration of the steps described
above.

4.2 Improved Framework (Ours)
In this subsection we describe our modification to
the existing automatic domains pipeline presented
in Section 4.1.

We propose reusing an NMT baseline to produce
sentence representations for the clustering step in-
stead of using an external encoder. Specifically, in

step 1, we train a baseline NMT model just like in
the existing framework. However, we found we can
omit using the XLM-R model (step 1.2). Instead, to
extract sentence/document representations for step
2, we reuse the trained NMT baseline. The rest of
the pipeline remains the same. Figure 7 (Appendix
A) illustrates the updated framework.

Moreover, to produce clusters in both frame-
works, we additionally study text representations
on the level of documents.

5 Experiments

In this section we perform an extensive experimen-
tal study comparing performance of the existing
automatic domains framework (Section 4.1) with
our proposed version (Section 4.2). We experiment
with both sentence-level and document-level rep-
resentations as a basis for k-means algorithm on
three language pairs and two data scenarios.

We first train baseline Transformer NMT models
on concatenated data from all domains (same base-
line as in Section 3) and then cluster the training,
development, and test data using either this same
baseline or XLM-R. Next, we fine-tune3 our base-
line models to the different obtained data partitions
(clusters) and compare the translation quality of
resulting fine-tuned (adapted) models.

5.1 Setup

We explore two data scenarios. First, we perform
experiments on a mixture of distinct corpora. For
these experiments, we reuse the data and concat
baseline NMT model (Transformer-base) described
in Section 3 (EN-ET and DE-EN). In this set-
ting, we can compare the performance of models
fine-tuned to automatically discovered domains to
that of oracle models (fine-tuned using known do-
mains/datasets). We also randomly partition the
data (into equal parts) and fine-tune the baseline
models to them to get our lower bound estimates.

Second, we explore a scenario with a single
corpus, which is highly heterogenous, and thus
may contain multiple domains which are unknown.
In this setting, we use the ParaCrawl (Esplà
et al., 2019) parallel corpus4, which consists of
diverse documents crawled from the web. We use
three language pairs: English→Estonian (EN-ET),
German→English (DE-EN), and English→Czech

3We use the terms "fine-tuning" and "NMT domain adap-
tation" interchangeably.

4https://paracrawl.eu/
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(EN-CS). We use ∼3M sentence pairs for all lan-
guages for training, and ∼3,000 sentence-pairs for
development and testing. The exact experimental
setup with data sizes, training and preprocessing
details can be found in in Appendix B.

For our concat baselines we follow the setup
from Section 3.1 (described in more detail in Ap-
pendix B). In the mixture of corpora experiments,
baseline fine-tuning is performed for 50 epochs,
and in the single heterogenous corpus experiments
for 25 epochs (fine-tuning hyperparameters can be
found in Appendix B). For comparison, we also
continue training the baseline models for longer
as suggested by Gururangan et al. (2020) (concat-
cont). We continue training for the same number of
epochs fine-tuning is done for in the corresponding
experiment.

For each of the models, we evaluate the check-
point which shows the highest BLEU score on the
particular model’s development set, and translate
the test sets with beam size set to 5. We use the
BLEU score (Papineni et al., 2002), specifically,
the sacreBLEU implementation (Post, 2018) to as-
sess the models’ translation performance. To test
for statistical significance, we use paired bootstrap
resampling (Koehn, 2004).

5.2 Labelled Domain Mix Experiments

In this section we consider a scenario which can
be practically interesting in cases where the data
consists of several distinct domains with the labels
unavailable or corrupted as in Currey et al. (2020).
Moreover, it serves as an oracle experiment show-
ing how well automatic domains perform compared
to the golden labels. This way we have a better idea
what to expect when applying them to unlabeled
data as in Section 5.3.

Table 2 shows the results for DE→EN. We see
that, for all corpora except Europarl, at least one
model of the two that are based on document-level
clustering always manages to surpass the oracle
performance obtained by fine-tuning to known do-
mains, and on Europarl the document-level mod-
els perform comparably to oracle. In most cases,
document-level models show significantly better
translation quality than XLM-R sentence-level
models, which have been used in previous work,
while NMT sentence-level models closely match
the performance of XLM-R sentence ones. When
scores are averaged over all four domains, docu-
ment clustering obtained from the NMT encoder is

EP OS JRC EMEA avg

concat 37.2 21.7 52.3 73.8 46.25
concat-cont 37.2 22.3 52.4 73.7 46.40
oracle 37.4 22.6 53.4 74.7 47.03

sentence
XLM-R 36.6 22.4 52.8 73.9 46.43
NMT 36.6 22.3 52.8 74.0 46.43

document
XLM-R 37.3** 22.9* 53.0 75.0** 47.05
NMT 37.3** 22.5 53.7** 75.4** 47.23

random 36.8 22.4 51.7 73.3 46.05

Table 2: BLEU scores of the DE-EN baseline mod-
els, models fine-tuned to known corpora (oracle), to
the proposed automatic domains, and to a random par-
titioning of the data. EP, JRC, EMEA and OS stand
for Europarl, JRC-Acquis, EMEA and OpenSubtitles
test sets, respectively. Statistically significant improve-
ments of our proposed methods over sentence-level
XLM-R clustering are marked with * (p ≤ 0.05) or
** (p ≤ 0.01). Document-level clustering matches and
slightly surpasses the performance of fine-tuning on or-
acle domains.

the overall winner.
Table 3 shows results for the EN→ET language

pair. While fine-tuning on oracle domains yields an
average improvement of 0.8 BLEU points over the
baseline, fine-tuning on unsupervised document
clusters obtained from the NMT encoder allows
us to match that performance. However, for the
EMEA test set XLM-R sentence clusters turn out
to be the most successful approach, showing sig-
nificantly higher BLEU scores than all other auto-
matic partitions and outperforming the oracle by
1.2 BLEU points, while document-level NMT clus-
tering also manages to surpass the oracle perfor-
mance, albeit slightly. For OpenSubtitles and JRC-
Acquis, oracle shows the highest overall scores,
with document-level NMT clustering a close sec-
ond, outperforming XLM-R sentence clustering by
a noticeable margin. For OpenSubtitles, however,
none of the automatic domain approaches manage
to improve the baseline performance (and neither
does continued training of the baseline), and even
the oracle partition does not manage to do so by
a statistically significant degree. For Europarl, all
automatic domain approaches yield comparable
BLEU scores, with none being significantly better
or worse than XLM-R sentence clusters.

Document-level XLM-R automatic domains
have a low average score due to underperforming
on the EMEA test set. We see from Figure 3 that
this is a case of train-test mismatch: the EMEA
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EP OS JRC EMEA avg

concat 28.7 19.1 47.3 47.8 35.725
concat-cont 28.8 18.5 48.4 48.5 36.050
oracle 28.7 19.2 50.0 48.2 36.525

sentence
XLM-R 29.0 18.6 48.9 49.4 36.475
NMT 29.1 18.7 49.0 48.1†† 36.225

document
XLM-R 29.2 18.6 47.9†† 39.2†† 33.725
NMT 29.1 19.0* 49.8** 48.4†† 36.575

random 28.5 18.5 47.1 47.0 35.275

Table 3: BLEU scores of the EN-ET baseline mod-
els, models fine-tuned to known corpora (oracle), to
the proposed automatic domains, and to a random par-
titioning of the data. EP, JRC, EMEA and OS stand
for Europarl, JRC-Acquis, EMEA and OpenSubtitles
test sets, respectively. Statistically significant improve-
ments of our proposed methods over sentence-level
XLM-R clustering are marked with * (p ≤ 0.05) or
** (p ≤ 0.01), daggers mark results which are signif-
icantly lower than for sentence-level clustering based
on XLM-R († and †† denote p ≤ 0.05 and p ≤ 0.01,
respectively). Document-level clustering as well as
XLM-R based sentence-level clustering match the per-
formance of the fine-tuning on oracle domains.

test set is mostly translated by the model fine-tuned
on cluster 1, whose training set predominantly con-
sists of Europarl data. Cluster 0, which sees the
most EMEA examples during fine-tuning, is not
used to translate the test set at all, as we see from
Figure 3.

5.3 Heterogeneous Corpus Experiments

In this subsection we present results for our method
applied to the Paracrawl dataset, which consti-
tutes a heterogeneous corpus of data crawled from
the web with no training-time domain information
known.

EN-ET We first experiment on the EN-ET lan-
guage pair. While in the multi-corpus setup we
chose the number of clusters to match the num-
ber of different corpora in our training set, in the
ParaCrawl experiments we do not have a prede-
fined number of domains. Therefore, we experi-
ment with separating the dataset into 3, 4, 5, and 8
clusters.

The resulting BLEU scores for EN-ET are shown
in Table 4. Fine-tuning based on NMT and XLM-R
clustering of the data outperforms a strong concat-
cont baseline by 0.2-1.6 BLEU points depending
on the choice of embedding model and clustering

N of clusters 3 4 5 8

concat 46.1 46.1 46.1 46.1
concat-cont 46.6 46.6 46.6 46.6

sentence
XLM-R 47.0 46.8 47.1 47.0
NMT 46.9 47.1 47.6** 47.4*

document
XLM-R 46.8 47.2* 47.3 47.6**
NMT 46.8 47.0 47.2 48.2**

random 46.1 45.9 45.5 45.3

Table 4: BLEU scores of models trained on EN-ET
ParaCrawl and fine-tuned to different numbers of au-
tomatic clusters and to a random partitioning of the
data. Statistically significant improvements of our pro-
posed methods over sentence-level XLM-R clustering
are marked with * (p ≤ 0.05) or ** (p ≤ 0.01).
For different numbers of clusters different approaches
score best, but the best result overall is obtained with
document-level NMT and 8 clusters.

level. The best result overall is achieved by our
document-level NMT clustering, which also out-
performs all other approaches with 8 clusters by at
least 0.6 BLEU. Both document-level approaches
improve their performance with a growing number
of clusters. With 3 clusters, all clustering methods
show comparable results, with none being signifi-
cantly better or worse than sentence-level XLM-R.
Document-level XLM-R and sentence-level NMT
significantly outperform sentence-level XLM-R
with 4 and 5 clusters, respectively.

EN-CS & DE-EN As separating the data into
8 clusters yields the highest BLEU score among
all fine-tuning scenarios for EN→ET, we choose
this number of clusters for experiments on other
language pairs. Table 5 shows the BLEU scores
for EN→ET, EN→CS, and DE→EN models fine-
tuned to automatic domains.

For EN-CS, only the NMT sentence-level cluster-
ing manages to outperform the baseline, noticeably
surpassing all other automatic domain extraction
methods as well.

For DE-EN, none of the approaches outper-
form the baseline model by a considerable margin.
Sentence-level clustering based on XLM-R per-
forms comparably to the baseline. Document-level
NMT clustering shows a slightly lower score, but
the difference is not statistically significant. At the
same time, document XLM-R and sentence NMT
perform worse than sentence XLM-R.
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EN-ET EN-CS DE-EN

concat 46.1 44.4 48.2
concat-cont 46.6 44.3 48.1

sentence
XLM-R 47.0 44.2 48.3
NMT 47.4* 44.9** 48.0†

document
XLM-R 47.6** 44.2 47.9††

NMT 48.2** 44.2 48.0

random 45.3 43.6 47.5

Table 5: BLEU scores of models trained on ParaCrawl
and fine-tuned to automatic clusters and to a random
partitioning of the data on three language pairs. For
each language pair we use ~3M training examples and
split the data into 8 clusters. Statistically significant
improvements of our proposed methods over sentence-
level XLM-R clustering are marked with * (p ≤ 0.05)
or ** (p ≤ 0.01), Daggers mark results which are
significantly lower than for sentence-level clustering
based on XLM-R († and †† denote p ≤ 0.05 and
p ≤ 0.01, respectively).

5.4 Additional Exploration

While automatic domains demonstrate reasonable
performance for EN-ET and EN-CS language pairs,
DE-EN does not seem to benefit from either XLM-
R or NMT-based clustering. In this section we
perform additional experiments with DE-EN data
to see whether there are conditions under which
automatic domains could be beneficial in this case.

Data Size and Number of Clusters First, we in-
crease the training data size and vary the number of
clusters. Specifically, we use 10M parallel sentence
pairs for training instead of 3M, and partition the
dataset into 4 and 12 clusters instead of 8.

The resulting BLEU scores for DE-EN are
shown in Table 6. We do not observe any signifi-
cant improvement over the concat-cont baseline for
any of the methods. With the data separated into
12 clusters, sentence-level NMT clustering signifi-
cantly outperforms sentence-level XLM-R, but still
does not beat continued training of the baseline.

Model Size It is also possible that NMT needs
different model capacity for handling different lan-
guage pairs, so we experiment with decreasing the
model size. We use the same number of layers,
but decrease the width of the model (4 attention
heads, embeddings of size 160, dimension of the
feed-forward layer 320) so that the total number
of parameters decreases five-fold. We compute
NMT clusters based on the new, smaller baseline

N of clusters 4 12

concat 50.6 50.6
concat-cont 50.9 50.9

sentence
XLM-R 50.9 50.6
NMT 51.0 50.9*

document
XLM-R 51.1 50.8
NMT 51.1 50.8

random 50.2 49.8

Table 6: BLEU scores of models trained on 10M sen-
tence pairs from DE-EN ParaCrawl and fine-tuned to
4 and 12 automatic clusters. The data size is increased
compared to the previous experiments, the NMT model
size remains the same. We see an improvement in base-
line performance, but no improvement in the perfor-
mance of fine-tuned models. Statistically significant
improvements of our proposed methods over sentence-
level XLM-R clustering are marked with * (p ≤ 0.05).

model. Our motivation for this is to understand
whether automatic domains are not useful for DE-
EN ParaCrawl at all, or could aid a weaker baseline.

The results are shown in Table 7. The smaller
baseline does benefit from adaptation to automatic
domains (clusters). While NMT clusters are gener-
ated by a model which is 5 times as small, XLM-R
and NMT show equivalent performance.

6 Discussion

Our analysis is implicit inductive evidence for the
high degrees of domain-specific information in sen-
tence and document NMT representations. How-
ever, it is still open to what kind of information is
preserved (topical/stylistic/lexical).

For example, our approach could result in clus-
ters by domain/dataset due to standard lexical statis-
tics and not sentence semantics. However, on the
practical side, we show that adapting NMT to these
types of clusters is just as good or better as to other
possible types of clusters since it benefits the base-
line performance. Moreover, previous work that
uses pre-trained language models to obtain the clus-
ters is likely to suffer from the same issue.

Moreover, while XLM-R is a general-purpose
encoder, NMT models are only that helpful for
domains we train them on. However, the data con-
stitutes all domains of interest by definition for a
multi-domain NMT (the task we tackle). Thus,
NMT models are a perfect fit that simplifies and
outperforms an existing approach.
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Model size Base Small

concat 48.2 44.2
concat-cont 48.1 44.8

sentence
XLM-R 48.3 45.2
NMT 48.0† 45.4

document
XLM-R 47.9†† 45.1
NMT 48.0 45.4

random 47.5 44.0

Table 7: BLEU scores of models trained on 3M sen-
tence pairs from DE-EN ParaCrawl and fine-tuned to 8
automatic clusters. The Base NMT model has the same
configuration as in previous experiments (Transformer-
base), while the Small model has 5 times fewer param-
eters. The smaller model benefits from fine-tuning to
automatic domains, but does so starting from a weaker
baseline performance. Daggers mark results which are
significantly lower compared to sentence-level cluster-
ing based on XLM-R († and †† denote p ≤ 0.05 and
p ≤ 0.01, respectively).

7 Conclusion

In this work, we made a two-fold contribution. The
first is to the field of NMT interpretation and anal-
ysis. We have shown that a baseline Transformer
NMT encoder preserves enough domain-specific in-
formation to distinguish between oracle domains in
a mixed corpus without supervision. We showed an
evolution of this property across the Transformer
layer using PCA and k-means clustering on the
level of sentences and documents. Comparison
to XLM-R based clusters demonstrated that both
sentence-level and document-level NMT clusters
show higher cluster purity (similarity to original
text domains).

Next, we utilized our analysis insights to im-
prove an existing practical cluster-based multi-
domain NMT approach (Tars and Fishel, 2018;
Currey et al., 2020). In a setting with preset do-
mains (i.e., available corpus/domain labels), tuning
to NMT clusters on average matches or surpasses
XLM-R clusters. Additionally, NMT cluster-based
tuning mostly matches the translation quality when
tuning to original corpus labels, with some excep-
tions that we also analyze and explain.

Finally, in the case of a heterogeneous corpus
(ParaCrawl), the performance of fine-tuned NMT
models depends on the number of clusters, lan-
guage pairs, and other parameters. We see signif-
icant improvement for EN-ET and EN-CS trans-
lation when comparing XLM-R and NMT-based

clusters (on both sentence and document levels).
For DE-EN, the domain tuning results depend on
the NMT model’s capacity for learning each lan-
guage pair’s translation.
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A Analysis

A.1 Additional Figures

Figures 4 and 5 support our analysis in Section 3
while Figures 6 and 7 illustrate frameworks from
Section 4.

Figure 6: Existing automatic domains framework (pre-
vious approach).

Figure 7: Updated automatic domains framework
(ours).

A.2 Language Model

XLM-R Base Our model of choice from the fam-
ily of BERT-like models is the Base version of the
XLM-R (Conneau et al., 2020). It is a single multi-
lingual model covering about 100 languages, which
is very useful when dealing with machine transla-
tion systems, where for different language pairs

we may not have a separate monolingual BERT
for each source language. We choose XLM-R as
opposed to the multilingual BERT (Devlin et al.,
2019) since it is a more recent and better perform-
ing (Hu et al., 2020) model. We choose the Base
version because it is most compatible to our NMT
baseline in terms of capacity.

B Experiments Setup

B.1 Data
For multi-domain fine-tuning (Section 5.2) we
experiment on German→English (DE-EN) and
English→Estonian (ET-EN), and for the heteroge-
nous corpus task (Section 5.3) we also evaluate on
English→Czech (EN-CS).

We use Europarl (proceedings of the European
Parliament) (Koehn, 2005), JRC-Acquis (legal
documents of the European Union) (Steinberger
et al., 2006), EMEA (documents of the European
Medicines Agency) (Tiedemann, 2012) and Open-
Subtitles (movie and TV subtitles) (Lison and
Tiedemann, 2016)6 in the multidomain fine-tuning
experiments. Data from the four corpora was ap-
proximately balanced. Around 500,000 training
sentence pairs were taken from each of the corpora
(except for EN-ET EMEA, where only 400,000 sen-
tence pairs were available after cleaning), making
the total size of the training set 1.9M sentence pairs
for EN-ET and 2M for DE-EN. Development and
test sets contain at least 3,000 sentences per corpus.
The exact sizes of training, development and test
sets can be found in Table 9. We test sentence-
level and document-level clustering of the texts.
For Europarl, JRC-Acquis, EMEA and OpenSub-
titles, sentence pairs coming from the same XML
file were considered to belong to the same docu-
ment. The training, development and test sets in
all experiments were constructed in such a way
that a document is always included in one set in
its entirety (hence the irregular sizes of the train,
development and test sets).

For the single heterogeneous corpus experi-
ments we use v.7.1 of publicly available7 Paracrawl
dataset for all three language pairs. The training set
sizes are 3M for all sentence pairs unless otherwise
noted. Development and test sets contain at least
3,000 sentences per corpus in all experiments. The
exact sizes of training, development and test sets in
each of the experiments can be found in Tables 8, 9,

6https://opus.nlpl.eu/
7https://paracrawl.eu/
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Figure 4: t-SNE plots of sentence representations extracted from all layers of the 60th checkpoint of the trained
baseline NMT model. The dots, denoting sentences, are colored according to the domain the corresponding sen-
tences come from. The model learns to distinguish between domains in its hidden space, despite not being explicitly
provided with any information about domains. The figure shows that representations from the same domain cluster
together.

and 10. In the ParaCrawl experiments, documents
were matched by the source sentence URLs. The
dataset is separated into webpage-based documents
which we use to compile document-based clusters
of representations produced by the baseline NMT
and XLM-R models. The training, development
and test sets in all experiments were constructed in
such a way that a document is always included in
one set in its entirety.

Several basic cleaning steps were applied to the
corpora. Sentence pairs were discarded if:

• either the source or the target side was an
empty string;

• either the source or the target side contained
more than 100 tokens;

• one of the sentences in the pair contained at
least 9 times as many tokens as the other;

• more than half of the characters in either
the source or the target sentence were non-
alphabetic characters (noisy source or target)

In some corpora there are many sentence pairs
that occur multiple times. Therefore, to avoid un-
fairly inflating the test scores, sentence pairs that
also occur in the training set were removed from
the development and test sets for BLEU score cal-
culation in the multi-corpus experiments.

The data was split into subwords using Senten-
cePiece (Kudo and Richardson, 2018) with vocab-
ulary size set to 32,000. No other pre-processing
steps were applied.

B.2 NMT Training
We train Transformer machine translation models
using the Fairseq toolkit (Ott et al., 2019). The mod-

els have a standard configuration, mostly follow-
ing the Transformer-base settings (Vaswani et al.,
2017a): 6 encoder and 6 decoder layers, embed-
ding dimension 512, feed-forward layer dimension
2048. The initial learning rate was set to 5 × 10−4,
with inverse square root learning rate scheduler
with 4,000 warm-up updates. The loss function is
label-smoothed cross entropy with label smooth-
ing α equal to 0.1. We use Adam optimizer, with
β1 = 0.9 and β2 = 0.98. Dropout probability is
set to 0.3. The source and target vocabularies are
shared. Model checkpoints are saved at the end of
each epoch.

When fine-tuning, we pre-train the model with-
out any explicit domain specific information, and
then initialize each model with the parameters of
the baseline’s checkpoint from the 60th epoch. In
the mixture of corpora experiments, fine-tuning
is performed for 50 epochs, and in the single het-
erogenous corpus experiments for 25 epochs (our
experiments show that for the overwhelming ma-
jority of models the checkpoint which has the best
BLEU score on the development set occurs be-
fore 25 epochs of fine-tuning). Fine-tuning was
performed with initial learning rate 1.25 × 10−4,
reducing by a factor of 0.5 every time the devel-
opment loss has not improved for 3 consecutive
epochs. For comparison, we also continue training
the baseline model for the same number of epochs
fine-tuning is done for. For each of the models, the
translation is done with the checkpoint which has
the highest BLEU score on the particular model’s
development set.

We use the BLEU score (Papineni et al., 2002),
specifically, the sacreBLEU implementation (Post,
2018) to assess the models’ translation perfor-
mance. To test for statistical significance, we use
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Figure 5: Corpus-cluster confusion tables for about 2M sentences for DE-EN for the training (a) and test (b) sets.
Document clusters rediscover original domains and NMT while sentence clusters tend to learn more customized
notion of clusters. In general, NMT is more aligned to the oracle domains then BERT.

Europarl JRC-Acquis OpenSubtitles EMEA total

train 500,697 (910) 500,207 (8,874) 501,510 (620) 500,070 (941) 2,002,484 (11,345)
dev 3,566 (2) 3,106 (78) 4,306 (6) 3,406 (10) 14,384 (96)
test 3,265 (12) 3,008 (65) 3,063 (3) 5,908 (18) 15,244 (98)

Table 8: Number of sentence pairs (and documents) from each corpus (Europarl, JRC-Acquis, OpenSubtitles,
EMEA) in the training, development and test sets of the DE-EN model trained on a mixture of known corpora

Europarl JRC-Acquis OpenSubtitles EMEA total

train 500,166 (1,979) 500,020 (8,877) 500,876 (563) 410,540 (732) 1,911,602 (12,151)
dev 3,716 (7) 3,005 (91) 3,044 (3) 3,348 (10) 13,113 (111)
test 3,107 (16) 3,190 (91) 3,085 (4) 3,315 (12) 12,697 (123)

Table 9: Number of sentence pairs (and documents) from each corpus (Europarl, JRC-Acquis, OpenSubtitles,
EMEA) in the training, development and test sets of the EN-ET model trained on a mixture of known corpora

EN-ET EN-CS DE-EN 3M DE-EN 10M

train 3,163,124 (366,120) 3,000,000 (777,448) 3,000,013 (546,015) 10,000,000 (1,819,571)
dev 3,064 (400) 3,019 (737) 3,018 (618) 3,018 (618)
test 3,130 (300) 3,011 (770) 3,007 (563) 3,007 (563)

Table 10: Number of sentence pairs (and documents) in the training, development and test sets of the EN-ET,
EN-CS, and DE-EN models trained on data from one heterogenous corpus (ParaCrawl)
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paired bootstrap resampling (Koehn, 2004).
The models were pre-trained and fine-tuned ei-

ther on one NVIDIA V100 GPU with 32GB of
RAM with maximum batch size 15,000 tokens per
node or on two NVIDIA V100 GPU’s with 16GB
of RAM with maximum batch size 7,500 tokens per
node. The only exception is the DE-EN ParaCrawl
model with 10M training sentence pairs, which has
the largest volume of training data, and was pre-
trained on 4 NVIDIA V100 GPU’s with 32GB of
RAM with maximum batch size 15,000 tokens per
node.
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Abstract

The performance of NMT systems has im-
proved drastically in the past few years but the
translation of multi-sense words still poses a
challenge. Since word senses are not repre-
sented uniformly in the parallel corpora used
for training, there is an excessive use of
the most frequent sense in MT output. In
this work, we propose CMBT (Contextually-
mined Back-Translation), an approach for im-
proving multi-sense word translation leverag-
ing pre-trained cross-lingual contextual word
representations (CCWRs). Because of their
contextual sensitivity and their large pre-
training data, CCWRs can easily capture word
senses that are missing or very rare in parallel
corpora used to train MT. Specifically, CMBT
applies bilingual lexicon induction on CCWRs
to mine sense-specific target sentences from a
monolingual dataset, and then back-translates
these sentences to generate a pseudo paral-
lel corpus as additional training data for an
MT system. We test the translation quality
of ambiguous words on the MuCoW test suite,
which was built to test the word sense disam-
biguation effectiveness of MT systems. We
show that our system improves on the trans-
lation of difficult unseen and low frequency
word senses.

1 Introduction

Recent NMT systems have remarkable perfor-
mance for many languages (Vaswani et al., 2017;
Xia et al., 2019) but there are still numerous areas
for improvement. One such important area con-
cerns the disambiguation and translation of multi-
sense words. It is particularly challenging to MT
systems as sense distribution is skewed with some
senses rarely seen or missing in the parallel corpora.
This results in the MT system producing transla-
tion errors for these rare/unseen senses, causing
incomprehensible output sentences.

In this work we aim at improving the transla-
tion of rare and unseen senses of ambiguous words.

Figure 1: The pipeline of CMBT. Note that each step
of the pipeline is run on the full corpus (source side of
MuCoW test set). Here we just show the procedure on
a single sentence as an illustration.

Previously Tang et al. (2018, 2020) showed that
encoder-decoder based NMT systems integrate in-
formation relevant for WSD into the encoder hid-
den states, but finding the correct sense is still
a challenging task and NMT systems are biased
toward the most frequent senses of words (Liu
et al., 2018). Disambiguation errors are often due
to over-reliance on training data artifacts, such as
frequent word co-occurrences (e.g. hot spring is
always translated as the thermal activity and not
as a season), instead of a deeper understanding of
the multi-sense words given the input sentences
(Emelin et al., 2020). Additionally, MT systems
tend to learn and use frequent words more often and
disregard less frequent ones (Vanmassenhove et al.,
2019). Previous work has improved the translation
of ambiguous words, e.g., by leveraging lexical
resources (Pu et al., 2018) or sense specific embed-
dings (Liu et al., 2018), but they are restricted to
the senses seen in the parallel training corpus and
not trained on missing senses.

In contrast, we propose a method to mine addi-
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tional data containing the contextual translations of
rare and unseen senses without relying on them be-
ing in parallel corpora. Our method, called CMBT
(Contextually-mined Back-Translation), relies on
contextualized cross-lingual word representations
(CCWRs) to translate source language multi-sense
words and find target language sentences contain-
ing the translations of the right senses. We then
build a synthetic parallel corpus by back-translating
these sentences, making sure that the original multi-
sense words are contained on the source side, in
order to extend the training corpus for better sense
coverage. We illustrate our method in Figure 1.
The advantage of our approach is that CCWRs,
such as mBERT (Devlin et al., 2017) or XLM-R
(Conneau et al., 2020), can be trained on cheap
and large monolingual corpora covering a wide
frequency range of word senses. By leveraging
CCWR-mined sentences containing the transla-
tions of these senses in the form of a synthetic
parallel corpus, our MT system is not restricted to
frequent senses seen in the parallel training corpus.

We test our approach on English→German us-
ing the MuCoW test suite (Raganato et al., 2019,
2020). Although it was built to test overall WSD
performance of MT systems, we create subsets of
the provided training corpus to test on unseen and
rare senses more directly. Our experiments show
that using mined sentences as additional data for
our NMT systems consistently improves the trans-
lation performance (F1) of rare and unseen senses.
Our proposed approach can be effectively applied
to other language pairs as well, since the required
resources are widely available.

2 Related Work

The problem of WSD is long-standing and exten-
sively studied. Multiple neural systems were pro-
posed, e.g., by relying on sequence-to-sequence
architectures (Raganato et al., 2017), using sense
embeddings (Kumar et al., 2019) or pre-trained lan-
guage models (Pasini et al., 2021). It was shown
that WSD positively impacts the performance of
downstream applications, such as information re-
trieval (Zhong and Ng, 2012), sentiment analy-
sis (Pilehvar et al., 2017) or topic classification
(Shimura et al., 2019).

WSD is an important problem for MT as well.
Previously it was shown that the translation per-
formance can be improved by integrating word
sense information into MT systems. In (Pu et al.,

2017) sense labels were assigned to each multi-
sense word using K-means clustering, which served
as additional information for a statistical MT sys-
tem. Similarly, explicit word sense information
using WordNet was integrated into NMT systems
in (Pu et al., 2018). Liu et al. (2018) leveraged
sense embeddings induced by specialized LSTM
modules, while lexical chains of semantically sim-
ilar words within a document were employed in
(Rios et al., 2017). Although these approaches do
improve WSD performance, they are restricted to
the senses seen frequently in the parallel training
corpus.

In contrast, we focus on the improvement of
senses that are missing or very rare by building a
synthetic parallel corpus containing these senses
using back-translation (Sennrich et al., 2016). Sim-
ilarly, Huck et al. (2019) back-translated a carefully
selected set of sentences to improve the translation
of out-of-vocabulary (OOV) words, i.e., words that
are contained in the text to be translated but not
in the training corpus. They used bilingual fast-
Text (Bojanowski et al., 2017) embeddings to find
all translations of OOVs independent of their con-
texts. In contrast, we consider the whole sentence
when translating multi-sense words in order to de-
termine the right translation of the right sense used
in the right context using CCWRs, which we show
to be crucial to improve missing and rare sense
translation. Arthaud et al. (2021) proposed a data
augmentation approach to adapt MT systems to
novel vocabulary in human-submitted translations
using CCWRs. They generate training samples for
the novel words by mining parallel sentence pairs
with similar contexts and adding the novel words
to them. In contrast, our approach does not rely
on parallel sentences, using only monolingual data
and back-translation.

Various datasets were proposed to test WSD,
such as those released by the series of Senseval
(Edmonds and Cotton, 2001; Mihalcea et al., 2004)
and SemEval (Agirre et al., 2010; Navigli et al.,
2013; Moro and Navigli, 2015) shared tasks. While
most datasets are monolingual, Pasini et al. (2021)
introduced XL-WSD supporting 18 languages al-
lowing to evaluate zero-shot cross-lingual WSD
approaches. To test how well MT systems can dis-
ambiguate multi-sense words in their outputs Rios
et al. (2017) created the parallel corpus called Con-
traWSD where for each source sentence containing
an ambiguous word two translations are given with
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the correct and incorrect senses respectively which
have to be scored by the MT systems. The MuCoW
dataset was introduced for a more direct evaluation
where instead of scoring given target language sen-
tences the translations of multi-sense words in the
MT systems’ outputs are evaluated (Raganato et al.,
2019, 2020). We use MuCoW to evaluate our ap-
proach.

3 Approach

The goal of CMBT is to incorporate context-
dependent word translation that is able to deal
with rare and unseen senses and leverage cheap
monolingual data as additional training data for
our NMT system for better multi-sense word trans-
lation. The main steps of our approach are the
following: i) we detect multi-sense words in the
source side of test corpus using BabelNet (Nav-
igli and Ponzetto, 2012), which ii) we translate
using CCWRs and mine target language sentences
containing these translations. iii) We back-translate
these sentences to the source language using a base-
line NMT system. We use a special marker placed
in the target language sentences, which are replaced
with the multi-sense words on the source side, in
order to ensure the presence of rare and unseen
senses in the new corpus. Finally, we fine-tune our
base NMT system using the gold and additional
synthetic parallel data. We summarize the pipeline
in our approach in Figure 1 and detail the three
main steps below:

3.1 Multi-Sense Word Detection

As the first step, we identify multi-sense words
in the test corpus relying on BabelNet, a publicly
available multilingual lexical resource covering
284 languages (Navigli and Ponzetto, 2012). Since
the MuCoW dataset focuses on nouns only, we first
take all English nouns from the test corpus.1 We
then filter out single sense nouns by keeping only
those which are contained in at least two synsets.
However BabelNet has a very fine grained set of
synsets which would result in a list containing
many single sense nouns as well due to their inclu-
sion in multiple synsets. Thus before filtering we
merge some of the synsets using English-German
interlingual links in BabelNet which specify pos-
sible German translations of the words in a given
English synset. More precisely, we merge English

1We used UDPipe (Straka and Straková, 2017) for POS
tagging.

synsets which have overlapping sets of translations.
The filtering procedure using the merged synsets
resulted in 3 732 multi-sense nouns containing 181
out of the 206 gold multi-sense words in the Mu-
CoW test corpus.2

We note that although BabelNet covers a large
set of languages, the language of the application
area might not be supported. However, CMBT only
requires a list of source language multi-sense words
as input which can be acquired using unsupervised
WSD systems as well, such as the word embed-
dings based SenseGram (Pelevina et al., 2016). We
argue that our approach is robust against false posi-
tive multi-sense words, since we would mine sen-
tences containing their single sense, thus the use of
a high recall list is preferable in such cases.

3.2 Sentence mining

Given the multi-sense words we mine target lan-
guage sentences containing the translations of their
different senses. However we do not mine all pos-
sible senses of the words but only those which
are contained in the input corpus to be translated,
i.e., the source side of the test corpus in our case.
For this we perform bilingual token-level sense re-
trieval (BTSR) (Liu et al., 2019) where the task
given a source word in a context (sentence) is to
retrieve its translation having the same sense along
with a matching target context. More formally,
given a (ws, cs) ∈ Vs × Ds pair the task is to
retrieve (wt, ct) ∈ Vt × Dt, such that wt is the
translation of ws and the sense of ws in context cs
matches the sense of wt in ct. Vs, Vt and Ds, Dt

are the vocabularies and the monolingual datasets
of the source and target languages respectively.

To mine relevant sentences, we take each multi-
sense word contained in each source sentence as the
input (ws, cs) pairs. Since a given word type is con-
tained in multiple sentences, we perform mining
using these sentences individually. As the transla-
tion target candidates, we take a target language
monolingual corpus (see Section 4.3 for more de-
tails) and consider each word in each sentence as a
candidate (wt, ct) pair. For each source input pair,
we take the top-53 most similar target pair scored

2Note that BabelNet was also used to build the list of multi-
sense words in MuCoW but its output was further refined with
parallel data and gold WSD annotations.

3Top-5 is common for bilingual lexicon induction.
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by:

sim((ws, cs), (wt, ct)) = cos(E(ws,cs), E(wt,ct))
(1)

where E(w,c) is the CCWR of word w in context
c and cos is the cosine similarity of two embed-
dings. As CCWR of a given word we averaged
the corresponding vectors of the upper XLM-R
layers (12-24), motivated by the findings of Etha-
yarajh (2019). We discuss further details of the
used CCWR models in Section 4.1. Finally, the
retrieved sentences are considered as the output of
the mining process and used in the next step.

3.3 NMT System Update

In the last step, we update our baseline
English→German NMT system with the gold par-
allel data and the sentences mined above. Using
a system similar to the baseline but built in the
reverse direction we back-translate the mined tar-
get language sentences by making sure that the
original multi-sense word is contained in the back-
translation. To achieve this we replace the related
word in the target sentence with a special marker
which is copied to the source side during transla-
tion. After translation we replace the special mark-
ers on both sides with the correct words. The fol-
lowing example depicts the process using a mined
sentence for the multi-sense word bank:

Input: Ich gehe am Ufer entlang.
Replace: Ich gehe am <MARK> entlang.

Translate: I walk along the <MARK>.
Restore: I walk along the bank.

To learn the copy mechanism of the special
marker we use parallel sentences containing the
marker to train the NMT system used for back-
translation. More precisely, 1% of the parallel sen-
tences have one randomly selected source word
and it’s corresponding translation (determined by
aligning the parallel data) replaced with the marker.
Note that there is a small chance that the MT sys-
tem does not generate the marker in the output
in which case no replacement is performed. Fi-
nally, we update our baseline English→German
MT system by running further training steps on the
concatenated gold and synthetic parallel corpora.
For further parameters we refer to Section 4.4.

4 Experimental Setup

4.1 Cross-Lingual Word Representations

As CCWRs we make use of XLM-R large4 (Con-
neau et al., 2020), as previous works have shown
good context-dependent cross-lingual correspon-
dence in such multilingual models (Ethayarajh,
2019; Liu et al., 2019; Cao et al., 2019). Although
they are multi-lingual, it was shown that their cross-
lingual performance can be improved by applying
an additional mapping step. Thus following Liu
et al. (2019), we train a linear orthogonal mapping
on XLM-R’s context-average word type represen-
tations of word pairs extracted from the automatic
word alignments in the parallel corpus which is
used for MT training as well. The context-average
representations are first length normalized and then
mean centered prior to alignment as it was shown to
improve the mapping quality (Artetxe et al., 2018).
On top of the orthogonal mapping, we also apply
the meeting-in-the-middle technique proposed by
Doval et al. (2020) that learns additional linear
mappings of both source and target languages to
further improve their alignment. For exact details
about the complete mapping process we refer to
(Liu et al., 2019).

4.2 Baselines

Other than comparing CMBT with XLM-R to the
baseline NMT system, we compare the approach
to Huck et al. (2019), since it is able to leverage
monolingual data to improve the translation of a
list of words. More precisely, we translate multi-
sense words with BWEs instead of XLM-R, to
show the importance of context based word transla-
tion for the translation of multi-sense words. Since
BWEs tend to rank the translations of words ac-
cording to their frequency, this approach is compa-
rable to the general back-translation approach, i.e.,
updating NMT systems on randomly sampled sen-
tences, but focusing more on the ambiguous words.
We build 300 dimensional fastText skipgram em-
beddings (Bojanowski et al., 2017) on Wikipedia
dumps and align them using the same approach as
for XLM-R (Liu et al., 2019). Similarly to CMBT,
words are translated using cosine similarity tak-
ing top-5 most similar candidates. However, since
BWE based bilingual lexicon induction (BLI) is

4Besides XLM-R, we experimented with mBERT (Devlin
et al., 2017) as well but chose the former due to its superior
word retrieval performance (See the experiment’s results in
Appendix A).
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context independent, we pick all sentences contain-
ing any of the translations, which are then down
sampled to match the number of sentences mined
by CMBT for comparability. The rest of the steps,
i.e., back-translation and system training, are the
same as for CMBT. Our experiments show that
although top-5 translations based on BWEs can
cover multiple senses of some words, it is impor-
tant to take the contexts into consideration as well
in order to perform i) a more sense specific word
translation and ii) mine sentences which do not
only contain the target words but have similar con-
texts compared to the source sentences in the test
corpus for an efficient MT tuning.

4.3 Monolingual Dataset

We use 2M randomly sampled German Wikipedia
sentences for the mining process and restrict the
vocabulary for translation candidates to the 500K5

most frequent words. We mine relevant sentences
for all senses of the detected multi-sense words,
including their frequent senses, since the frequency
of senses in the training corpus is not known. The
mined corpus contains 252 898 unique sentences.

4.4 MT Systems

We train base Transformer NMT models (Vaswani
et al., 2017) on the gold parallel data discussed
below with early-stopping based on validation per-
plexity. The model is trained on 4 Nvidia GTX
1080ti GPUs with a per-GPU batch size of 4096
tokens and by delaying stochastic gradient descent
updates with a factor of 2. The final model is an
average of the best 10 checkpoints, where check-
points are saved every 500 updates. We use dropout
and label smoothing with a value of 0.1.

Fine-tuning this initial system with the concate-
nation of the gold and synthetic data is done us-
ing the same hyper-parameters with early-stopping
based on validation perplexity. The average of the
best 10 checkpoints is chosen as the initial starting
point for fine-tuning.

As a development set we merge newstest 2017-
2019. We use a beam size of 4 for back-translation
and 5 for the translation of MuCoW. All models are
built using fairseq (Ott et al., 2019). The datasets
are tokenized using Moses6. We use BPE split-

5We increase the 200K limit used in most BLI works in
order to cover more rare words.

6https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

ting7 with 32K merge operations computed jointly
on the source and target data. Word alignment is
performed using fastalign (Dyer et al., 2013).

4.5 MuCoW Dataset

We run experiments on the English→German trans-
lation direction of the MuCoW dataset (Raganato
et al., 2020). It was created specifically to test trans-
lation quality of ambiguous words by specifying
the word and its gold sense for each test sentence.
The dataset provides small and big training parallel
corpora containing 1.2M and 3.0M sentence pairs
respectively. In order to test on rare and unseen
senses more directly, we create two subsets of the
latter. We remove sentence pairs containing the
rarest sense of any of the given multi-sense words
to test on unseen senses (2.9M pairs). Secondly,
we take a random 10% sample of the sentence pairs
containing a multi-sense word and all pairs con-
taining no multi-sense words in sample-10 (2.4M
pairs) to test on rare senses. By sampling data uni-
formly random in case of the latter, we make sure
that only the frequency of the multi-sense words
gets decreased, while keeping their original sense
distribution. Note that we only change the train-
ing set to have more word types with unseen and
rare senses during training but keep the test set
unchanged. Our baseline NMT system is trained
on these training sets without the additional mined
data.

We evaluate our MT systems on word level (F1)
using the official MuCoW evaluation script which
calculates precision and recall values as:

P =
|correct senses|

|correct senses|+ |incorrect senses|
(2)

R =
|correct senses|
|test cases| (3)

where a test case is an occurrence of a multi-sense
word in a test sentence. The dataset provides mul-
tiple correct translation options for a given sense,
thus an occurrence of a multi-sense word (sense) is
correctly translated if any of the translations of the
correct sense are contained in the output sentence.
A sense is incorrect if any of the translations of
the wrong senses of the given multi-sense word
are contained in the output sentence. A sense is

7https://github.com/rsennrich/
subword-nmt
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train bin # system acc@1 acc@5 F1
un

se
en

0-
0

10
.5

baseline - - 17.14
BWEs 6.69 13.51 25.39
CMBT 21.88 35.32 34.80↑17.66

sa
m

pl
e-

10 0-
20 5.
9

baseline - - 35.53
BWEs 1.93 4.18 37.70
CMBT 15.55 26.34 47.02↑11.49

20
-4

0

3.
2

baseline - - 60.98
BWEs 7.92 19.78 60.80
CMBT 22.29 37.34 64.49↑3.51

Table 1: Intrinsic and extrinsic evaluation in terms
of acc@n and MuCoW F1 scores. The rare senses
in sample-10 are shown broken down by relative fre-
quency bins, while we present results of missing senses
in unseen. The number of test cases in thousands per
bin is shown in the third column (#). We compare
the baseline and the improved MT systems with both
BWEs and CMBT. We indicate the improvements (↑)
compared to the baseline.

neither correct nor incorrect if none of the possible
translations of the multi-sense word is contained.
Furthermore sentences are lemmatized, thus all
morphological variants of a word are accepted.

We also calculate BLEU scores using sacrebleu
(Post, 2019) to show general MT performance. In
addition, we evaluate the word translation accu-
racy of XLM-R and BWEs on the gold MuCoW
multi-sense words contained in each test sentence.
Similarly to BLI (Vulić and Korhonen, 2016), we
calculate acc@n (n ∈ 1, 5) scores by testing if any
of the correct translations of the gold sense in a
given test example is among the n most similar
translation candidates.

5 Results and Discussion

Unseen and rare sense translation We present
both the intrinsic performance of BWEs (Huck
et al., 2019) or CMBT (XLM-R) based word trans-
lation (acc@n) and extrinsic MT system based
translation (F1) in Table 1. We show results on
senses in the test corpus which are missing from the
unseen training corpus and detailed results on word
senses that are rare (relative frequency compared
to the other senses of a given word is between 20%
and 40%) and very rare (with relative frequency
between 0% and 20%) on sample-10.

In terms of acc@n CMBT word translation per-
forms significantly better than BWEs. This is not
surprising, since the context independent BWEs
predict the same translations for a given multi-
sense word for each sentence it is contained in. In
contrast, XLM-R shows a better WSD performance

train system acc@1 acc@5 F1

unseen
baseline - - 70.70
BWEs 17.94 28.74 71.66
CMBT 28.30 43.90 73.51↑2.81

sample-10
baseline - - 74.58
BWEs 17.94 28.74 73.75
CMBT 28.30 43.90 75.86↑1.28

Table 2: Evaluation of all (including frequent) senses
when using unseen or sample-10 training sets. Number
of overall test cases are 25.3K in both sets. BLI results
are the same for both training sets as they only affect
the NMT system.

by relying on the context in the sentences. Our im-
proved NMT system using CMBT outperforms the
baseline system in all setups in terms of F1. It
is especially effective on the unseen and very rare
senses due to the additional synthetic sentence pairs
containing these senses and their translations. In
addition, it is also effective for the rare senses in the
higher relative frequency range bin. BWEs based
mining is also helpful for the unseen and very rare
senses but it is less effective compared to CMBT.
Although BWEs are context independent, by taking
top-5 translations some of the senses can still be
improved. On the other hand, BWEs have minor
negative effects for the higher frequency range.

All sense translation We show results on all
senses, i.e., senses with relative frequency higher
than 40% as well, using the two training sets in Ta-
ble 2. CMBT is also effective when evaluating on
the whole MuCoW test dataset, but its performance
is more prominent on the lower frequency ranges.
In contrast, BWEs achieved only a slight improve-
ment on unseen and some performance drop on
sample-10.

Lexicon-regularized translation As mentioned,
we built the list of English multi-sense words us-
ing BabelNet. Since it also contains translation
options for each word, we investigate whether we
can make use of this additional information. Fortu-
nately, CMBT can be naturally extended to lever-
age such lexical resources.8

During sentence mining with the lexicon-
regularized version of our approach (CMBT+), we
restrict the set of translation candidates when trans-
lating a given word with XLM-R to its possible

8In comparison, it is not straightforward how we can add
this information into a baseline NMT system where we cannot
easily track translation for specific source words.
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train bin system F1

un
se

en 0-
0 ALL+ 25.21↓9.59

CMBT+ 34.55↓0.25

al
l ALL+ 72.00↓1.51

CMBT+ 73.83↑0.32
sa

m
pl

e-
10

0-
20 ALL+ 43.37↓3.65

CMBT+ 46.75↓0.27
20

-4
0 ALL+ 65.04↑0.55

CMBT+ 66.82↑2.23

al
l ALL+ 75.95↑0.09

CMBT+ 76.50↑0.64

Table 3: Evaluation of the senses per frequency bins as
well as all senses using the lexicon-regularized systems
on the two datasets. Differences compared to the best
system (CMBT in tables 1 and 2) are indicated.

translations as given by BabelNet. Furthermore,
we mine sentences based on all possible transla-
tions (ALL+) instead of taking top-5 ranked by
XLM-R. Table 3 shows that the regularized sys-
tems achieved improvements compared to CMBT
only in the higher frequency ranges but not in the
missing or very rare sets. ALL+ achieved only
minor improvements overall (all) on sample-10,
while the performance decreased on unseen. This
indicates that without focused data mining, sen-
tences containing rare and unseen senses are sup-
pressed by the frequent senses. In contrast, CMBT+
achieved improvements on both setups by follow-
ing the sense distribution of the test set. However,
the improvements are marginal which shows that
the unregularized CMBT system is already able to
retrieve the relevant senses of words without the
additional information coming from BabelNet.

BLEU evaluation Finally, we show general MT
performance on our training setups including the
original MuCoW big setup as well for compari-
son in Table 4. It can be seen that our approach
achieved improvements in terms of BLEU as well,
further motivating its use. Similarly to F1 scores
the improvements are more prominent when evalu-
ating only on sentences containing missing or rare
senses. CMBT achieves best scores on the full
test sets (all) of the unseen and sample-10 setups,
and a minor decrease on big. However, BLEU
score differences are minor and they do not cor-
relate well with F1 improvements. As we show
next, the minor differences in BLEU scores here
are due to the fact that our approach mainly affects
the translation of multi-sense words while leaving

train bin baseline BWE CMBT

unseen
0-0 23.0 23.2 23.3
all 25.5 25.6 25.7

sample-10
0-20 22.3 22.3 22.6
20-40 24.5 24.6 24.7

all 25.0 25.0 25.1
big all 26.5 26.5 26.4

Table 4: Machine translation performance (BLEU) on
the complete MuCoW test set using the unmodified big
and our two custom training sets. We show results
on the missing (0-0) and rare senses (0-20 and 20-40)
as well as on the complete test set (all). BLEU score
achieved by Raganato et al. (2020) on big-all is 22.6.

the translation of other words intact. It is worth
pointing out that BLEU scores may not be the ideal
metric in this study as they are less sensitive to
word-level translation improvement as compared
with F1 scores. This is similar to the findings of
Arthaud et al. (2021), who showed that improving
the translation of a few selected words could lead
even to a slight drop in BLEU.

Analysis We manually looked at the translations
of a few multi-sense words to have a better under-
standing of our system. We present a few examples
of the typical improvements and errors we found
in Table 5. In example 1 both the BWEs based sys-
tem and CMBT correctly translated bank to Ufer
(river bank) which shows the positive effects of the
additional data. In contrast, in 2 and 3 which are
examples produced under the sample-10 and un-
seen conditions respectively, only CMBT managed
to pick the right senses due to the better exploita-
tion of the given context. All systems are incorrect
in 4, however the output of CMBT (brake pedal)
is related to vehicle/gas pedals (the correct sense),
while the base system’s output, Beschleuniger is
more related to physics and chemical reactions,
such as particle accelerator or a catalyst. We re-
viewed the top-5 translations given by BWEs and
XLM-R for accelerator when it has the gas pedal
sense in a test sentence, and found that the transla-
tions reflect the outputs of the MT systems. This
shows the effectiveness of the MT system’s update
process and that improving CCWR based transla-
tion could lead to further improvements.

In example 5 CMBT is misled by the mossy
bank, thus outputs the river bank instead of the
bench sense in contrast to the baseline which cor-
rectly used the frequent Bank word. Example 6 is
incorrectly translated by all systems with different
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1. SRC It is seen from afar sprawling along the banks like a cowherd taking a siesta by the water-side.
BASE Es scheint aus der Ferne zu sein, wie ein Kabeljau an der Wasserseite eine Siesta nimmt.
BWE Es scheint aus der Ferne an den Ufer zu ziehen wie ein Fisch, der an der Wasserseite eine Siesta nimmt.

CMBT Es scheint aus der Ferne an den Ufer zu rasen wie ein Hirsch, der an der Wasserseite eine Siesta nimmt.

REF
Schon von weitem sieht man den Ort am Ufer lang hingestreckt liegen, wie einen Kuhhirten, der sich
faulenzend am Bache hingeworfen hat.

GLOSS river bank;
2. SRC Working men, kneeling on the banks, washed their bare arms in the water.

BASE Arbeiter, die an den Banken knieten, wuschen ihre bloßen Waffen im Wasser.
BWE Arbeitende Männer knieten an den Banken nieder und wuschen ihre bloßen Arme im Wasser.

CMBT Arbeitende Männer knieten am Ufer nieder und wuschen ihre bloßen Arme im Wasser.
REF Arbeiter kauerten am Ufer und wuschen sich die Arme in der Flut.

GLOSS river bank; bench;
3. SRC The physician, to whom the soldiers of the watch had carried him at the first moment...

BASE Der Arzt, zu dem ihn die Soldaten der Uhr im ersten Augenblick getragen hatten...
BWE Der Arzt, zu dem ihn die Soldaten der Uhr im ersten Augenblick getragen hatten...

CMBT Der Arzt, zu dem ihn die Soldaten der Wache im ersten Augenblicke getragen hatten...
REF Der Heilkünstler, zu welchem die Soldaten der Wache ihn im ersten Augenblicke getragen...

GLOSS guard; timepiece;
4. SRC Try to avoid depressing the accelerator pedal beyond the pressure point (kickdown).

BASE Versuche zu vermeiden, den Beschleuniger-Pedal über den Druckpunkt hinaus zu deprimieren (Kickdown).
BWE Versuche, den Beschleunigerpedal über den Druckpunkt hinaus nicht zu deprimieren (Kickdown).

CMBT Versuche, das Bremspedal über den Druckpunkt hinaus nicht zu deprimieren (Kickdown).
REF Treten Sie das Fahrpedal möglichst nicht über den Druckpunkt durch (Kickdown).

GLOSS gas pedal; brake pedal; catalyst, (particle) accelerator;
5. SRC A lover finds his mistress asleep on a mossy bank;...

BASE Ein Liebhaber findet seine Geliebte schlafend auf einer feuchten Bank;...
BWE Ein Liebhaber findet seine Geliebte schlafend auf einem feuchten Bankett;...

CMBT Ein Geliebter findet seine Geliebte schlafend auf einem feuchten Ufer;...
REF Ein Liebender findet seine Geliebte auf einer moosigen Bank eingeschlafen;...

GLOSS bench; banquet; river bank;
6. SRC I should like to deal with one concrete point, the question of the electronic counter.

BASE Ich möchte auf einen konkreten Punkt eingehen, die Frage des elektronischen Gegensatzes.
BWE Ich möchte mich mit einem konkreten Punkt befassen, der Frage des elektronischen Automaten.

CMBT Ich möchte auf einen konkreten Punkt eingehen, die Frage des elektronischen Zählers.
REF Eingehen möchte ich auf einen konkreten Punkt, den Punkt der elektronischen Schalter.

GLOSS checkout counter; contrast, opposition, difference; vending machine; electricity/energy meter;

Table 5: Example sentences highlighting the multi-sense words and their translations. For each source sentence
(SRC) with given reference translation (REF) we compare the baseline (BASE) to the BWE and CMBT based
systems. Word senses (GLOSS) are color coded.

errors.
Additionally, by comparing the full outputs of

the systems it can be seen that our approach is
non-invasive, i.e., it mostly affects the translations
of multi-sense words and leaves the other parts of
the sentences unchanged compared to the baseline,
which is a big advantage of our approach and also
explains the small BLEU differences in Table 4.

Finally, we present mined sentences based on
two example source sentences containing the word
bank in Table 6. The sentences indicate that our
XLM-R based mining technique not only outputs
the translation of the right sense but the mined sen-
tences have similar contexts to the source sentences.
This allows the fine-tuned MT system to leverage
information learned from sentences that are closely
related to the input sentence during translation.

6 Conclusions

In this paper we proposed CMBT, a simple and
effective approach for improved rare and unseen
word sense translation. It serves as a general
framework that effectively exploits the context-
dependent cross-lingual correspondence from a
pre-trained CCWR for an MT system. We show
CMBT brings significant improvements for multi-
sense word translation on the English→German
MuCoW test set. The improvements are the most
pronounced when we directly targeted the evalua-
tion of the difficult rare and unseen senses. As the
only requirement of CMBT, on top of the parallel
data necessary for the training of the MT system,
is a monolingual corpus and an off-the-shelf pre-
trained multilingual model, CMBT can be applied
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1. SRC For example, a wife learns that her husband put money in the bank in his name rather than in a joint account.
top-1 Der Abfluss bei einer Überweisung erfolgt im Zeitpunkt der Abgabe des Überweisungsauftrags an die Bank...

top-1 BT The flow of a transfer is made when the contract is delivered to the bank...
top-2 Osama und Yeslam bin Laden hatten von 1990 bis 1997 ein gemeinsames Konto bei der Schweizer Bank UBS.

top-2 BT Osama and Yeslam bin Laden shared an account at the Swiss Bank UBS between 1990 and 1997.
2. SRC At this decisive moment in Dutch history my father was positioned on the bank of the river Waal near the city of Nijmegen.

top-1 Der Highway führt nördlich am Stadtzentrum vorbei und gelangt von dort an das Ufer des Ontariosees.
top-1 BT The Highway passes north of the center of the city and then reaches the bank of Lake Ontario.

top-2 Die Großstadt Pakokku liegt auf der nördlichen Uferseite[bank−side] des Irrawaddy 30 Kilometer nordöstlich von Bagan...
top-2 BT The big city of Pakokku is situated on the northern bank of Irrawaddy, 30 kilometres northeast of Bagan...

Table 6: Mining examples with XLM-R for two source sentences (SRC) containing the two senses (financial and
river) of the word bank. We show the 2 highest scoring candidates and their back-translations (BT).

easily to other languages and MT systems in the
future.
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A mBERT vs. XLM-R

We report the results of our initial word translation
accuracy experiments using off-the-shelf mBERT
and XLM-R (large) on all the multi-sense words
provided by the gold MuCoW test set in Table 7.
For efficiency, we randomly sampled 100K target
sentences from Wikipedia as the candidate pool
instead of the 2M described in Section 4.3. We
take the average of the top-half layers of mBERT
(top 6 layers) and XLM-R (top 12 layers) respec-
tively when calculating word representations. We
show that XLM-R performs significantly better
than mBERT.

Model acc@1 acc@5 acc@10

mBERT 21.40 32.16 37.29
XLM-R 27.13 38.76 43.81

Table 7: Comparing the translation accuracy of off-the-
shelf mBERT and XLM-R on the MuCoW test set.
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Abstract
Current Machine Translation (MT) systems
achieve very good results on a growing vari-
ety of language pairs and datasets. However,
they are known to produce fluent translation
outputs that can contain important meaning er-
rors, thus undermining their reliability in prac-
tice. Quality Estimation (QE) is the task of au-
tomatically assessing the performance of MT
systems at test time. Thus, in order to be use-
ful, QE systems should be able to detect such
errors. However, this ability is yet to be tested
in the current evaluation practices, where QE
systems are assessed only in terms of their
correlation with human judgements. In this
work, we bridge this gap by proposing a gen-
eral methodology for adversarial testing of QE
for MT. First, we show that despite a high cor-
relation with human judgements achieved by
the recent SOTA, certain types of meaning er-
rors are still problematic for QE to detect. Sec-
ond, we show that on average, the ability of a
given model to discriminate between meaning-
preserving and meaning-altering perturbations
is predictive of its overall performance, thus
potentially allowing for comparing QE sys-
tems without relying on manual quality anno-
tation.

1 Introduction

Quality Estimation (QE) is the task of predicting
the quality of Machine Translation (MT) output in
the absence of human reference translation. Recent
QE models based on multilingual pre-trained repre-
sentations (Ranasinghe et al., 2020) have shown im-
pressive results achieving up to 0.9 Pearson correla-
tion with human judgements of translation quality
at sentence level (Specia et al., 2020). Not unlike
other NLP systems, QE systems are typically tested
on held-out datasets. On the one hand, such evalua-
tion usually requires collecting additional human
judgements and thus cannot be easily extrapolated
to a different usage scenario, for example, a new
language pair. On the other hand, evaluation on a

given test set can hide performance issues related
to the phenomena that are underrepresented in the
data but are critical to the reliable performance of
the system. Finally, a single statistic capturing over-
all performance does not provide any insights on
the strengths and weaknesses of a given approach.
As a way to overcome these limitations, we explore
adversarial evaluation for QE. Specifically, we in-
troduce two types of changes to high-quality MT
outputs: meaning-preserving perturbations (MPPs)
and meaning-altering perturbations (MAPs). In-
tuitively, we expect a strong QE system to assign
lower scores to the sentences containing MAPs
compared to the sentences with MPPs. Based on
this intuition, we devise experiments to systemat-
ically test a set of five different QE systems by
comparing the scores they produce for sentences
containing MPPs and MAPs. We use the difference
in the predicted scores as a way of detecting spe-
cific problems as well as for assessing the overall
performance of the systems. Our main findings1

can be summarised as follows:

• Overall, SOTA QE models are robust to MPPs
and are sensitive to MAPs, thus supporting
the claims that such models are indeed strong
predictors of MT quality.

• SOTA QE models fail to properly detect cer-
tain types of MAPs, such as negation omis-
sion, which highlights the weaknesses of these
models that cannot be detected using standard
evaluation methods.

• The overall results of our probing experiments
on a set of QE models are consistent with their
correlation with human judgements. This sug-
gests that the proposed evaluation methodol-
ogy can be used to assess the performance of
QE models with no need for collecting gold
standard human annotation.

1Code available from https://github.com/
dipteshkanojia/qe-evaluation.
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In the remainder of this paper, we first discuss
related work on probing for NLP (Section 2). We
then describe the dataset (Section 3) and QE mod-
els used in our experiments (Section 4). We intro-
duce our probing setup and strategies in Section 5
and present and discuss the results in Section 6.

2 Related Work

Very few studies have analysed the performance of
QE models beyond correlation with human judge-
ments on held-out datasets. To the best of our
knowledge, the only work that analyses the be-
haviour of QE models is Sun et al. (2020). On vari-
ous datasets popularly used for training QE models,
they show that they contain certain biases, such as a
skew towards high-quality MT outputs and lexical
artefacts that are picked up by the SOTA architec-
tures, e.g., sentences with certain tokens tend to
have high or low scores. They also show that QE
models can perform very well on these datasets by
encoding only the source or target sentences. By
contrast, we study the behaviour of the models un-
der specific linguistic conditions. Our experiments
show that the models are not sensitive to certain
meaning errors, which is in line with (Sun et al.,
2020)’s assumption that SOTA QE models do not
capture adequacy.

For MT, various studies have shown that models
can achieve high performance on clean data, they
are very brittle to noisy inputs, where both synthetic
(e.g. character flips) or natural (social media data)
noise is used to probe models (Belinkov and Bisk,
2018; Khayrallah and Koehn, 2018; Li et al., 2019;
Passban et al., 2020). For other NLP tasks, black-
box methods for adversarial evaluation have been
proposed that apply meaning-preserving perturba-
tions in order to test whether the models are sensi-
tive to changes in the input (Ribeiro et al., 2018).
Different from this line of work, we probe the ro-
bustness of QE models to spurious changes but
also sensitivity to relevant changes, such as mean-
ing errors. Ribeiro et al. (2020) recently devised
a general methodology for behavioural testing of
NLP models. They generate a subset of simple
examples meant to test general linguistic capabili-
ties expected from an NLP system. However, the
linguistic capabilities tested within this framework
are not directly applicable to the QE task. They
could not, for example, capture the ability of a QE
system to detect omission errors or copy errors in
translation.

3 Dataset

The dataset used in this paper is a subset from
the WMT 2020 Quality Estimation Shared Task 1,
sentence-level prediction (Specia et al., 2020). This
data consists of seven language pairs which can be
classified as high-resource [English-German (En-
De), English-Chinese (En-Zh)], medium-resource
[Russian-English (Ru-En), Romanian-English (Ro-
En), Estonian-English (Et-En)], and low-resource
[Sinhala-English (Si-En), Nepalese-English (Ne-
En)] pairs. Except for Ru-En, sentences are
extracted solely from Wikipedia. The Ru-En
data also contains additional sentences from Red-
dit (Fomicheva et al., 2020). The data was collected
by machine translating sentences sampled from
source-language articles using SOTA NMT mod-
els built using the fairseq toolkit (Ott et al., 2019).
The data was annotated with a variant of Direct
Assessment (DA) scores (Graham et al., 2017) by
professional translators. Each translation was rated
with a score in 1-100, according to the perceived
translation quality by at least three translators (Spe-
cia et al., 2020). The goal of QE systems built on
this data is to predict a z-score normalised mean DA
for each test source-target pairs, which we further
standardise between 0 and 1.

In the original dataset, 9K sentences per lan-
guage pair were randomly split in training (7K),
validation (1K) and test (1K). In this study, we
focus on probing the models by modifying the tar-
get side (translations) with various perturbations.
To keep the experiments consistent across the lan-
guage pairs, we only consider the five pairs with
English as the target language.

We use the standard training partition of the data
to train our QE models. To evaluate our probes, the
assumption made is that sentences with perturba-
tions should lead to lower predicted QE scores than
original sentences. However, this assumption only
holds if we can ensure that the original sentences
have high enough quality since perturbing very
low-quality sentences with already very low scores
would not necessarily lead to further degradations.
Therefore, we create a subset of the validation +
test sets by applying the threshold of 0.7 on the
standardised human (DA) scores to reflect high
quality, based on the definition of the DA scores
used as guidelines for annotators in this dataset.
Table 1 shows the resulting number of validation +
test instances for each language. We hereafter refer
to this set as our test set.
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Language Pair Ru-En Ro-En Et-En Si-En Ne-En

#sentences 1245 1035 766 404 100
Low-resource No No No Yes Yes

Table 1: The number of selected sentences in our test
set for each language pair. These are sentences judged
to have high-enough quality by human translators.

4 QE Models

We choose three categories of heavy- to light-
weight models for sentence-level QE models: first,
the SOTA TransQuest with three variants Mono-
TransQuest, SiameseTransQuest and Multilingual-
TransQuest (Ranasinghe et al., 2020); second, the
LSTM-based Predictor-Estimator approach (Kim
et al., 2017) and third, the unsupervised method
SentSim (Song et al., 2021).

MonoTransQuest (MonoTQ) This regression
architecture encodes a concatenated source-target
sentence pair using a transformer encoder. The
architecture adds a softmax layer on top of the
CLS token of the transformer to predict the qual-
ity of the translation. MonTransQuest architecture
has separate pretrained QE models based on XLM-
Roberta-Large (Conneau et al., 2020) for all seven
language pairs from WMT 2020 QE Task 1.

SiameseTransQuest (SiameseTQ) This archi-
tecture uses a siamese network with two trans-
former models to encode the source and the target
sentences separately. The architecture adds a max-
pooling layer on top of the token embeddings of
each transformer and calculates the cosine similar-
ity between the outputs of the two pooling layers
to predict the quality of the translation. Similar to
MonoTQ, SiameseTQ has separate pretrained QE
models based on XLM-Roberta-Large for all seven
language pairs from WMT 2020 QE Task 1.

MultilingualTransQuest (MultiTQ) This ar-
chitecture is based on MonoTQ but is trained on
aggregated QE data for all seven language pairs
from the WMT 2020 QE Task 1, resulting in one
model for all the language pairs. This model is also
based on XLM-Roberta-Large.

Predictor-Estimator (OpenKiwi) This is a two-
stage architecture, where the Predictor model is
an encoder-decoder RNN trained on parallel data
(source-reference); in this case, the same data is
used to train the respective NMT model for each

language pair. Its output is then fed to the Estima-
tor, a unidirectional RNN trained on QE data, to
produce the quality estimates. Compared to Tran-
sQuest, the PredEst architecture does not rely on
heavily pre-trained representations, resulting in a
lighter model. For our experiments, we use the
implementation in OpenKiwi (Kepler et al., 2019),
which was provided as the baseline for the WMT
2020 QE Shared Task.

SentSim This is an unsupervised method to QE
that uses a combination of cross-lingual word and
cross-lingual sentence similarity scores to produce
a sentence-level quality score. The word-level sim-
ilarity is extracted using BERTScore (Zhang et al.,
2020) between source and MT sentences, while
sentence-level similarity is measured as the cosine
similarity between the source and MT sentences
representations. Both word and sentence-level rep-
resentations are extracted using a cross-lingual pre-
trained model, namely, XLM-Roberta-Base (Con-
neau et al., 2020).

5 Probing Strategies

In this section, we introduce the rationale for two
types of probes: meaning-preserving and meaning-
altering perturbations. We then describe each per-
turbation and discuss the experimental setup for the
probing.

We define a meaning-preserving perturbation
(MPP) as a small change in the target-side transla-
tion that might affect the translation but should not
affect the overall meaning of the sentence. For ex-
ample, removing punctuation marks from the trans-
lated sentence should not affect the meaning con-
veyed by the text. By contrast, meaning-altering
perturbations (MAP) should alter the meaning
conveyed by the translation, for example, replac-
ing a random word with its antonym or randomly
replacing a content word. By introducing MAPs,
we focus on probing models for whether they cap-
ture (lack of) adequacy in translations. Given that
SOTA QE models are based on pre-trained repre-
sentations obtained from strong language models,
it has been hypothesised that they could be biased
by the fluency of translations (Sun et al., 2020).

We, therefore, design two types of perturbations:
MPPs, which might affect fluency but not adequacy,
and MAPs, which affect adequacy. Perturbations
are only introduced in the translations to mimic
translation errors. We have chosen perturbations
that can be introduced using automated methods,
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Source În alegerile europarlamentare din 2014, UKIP, partid de extremā dreaptā, a obt, inut peste 20 de locuri in parlamentul european.
Reference In the 2014 European Parliamentary elections, UKIP, a right-wing party, obtained more than 20 seats in the European Parliament. S1

Translation In the 2014 European Parliamentary elections, UKIP, party of extreā dreaptā, obtained more than 20 seats in the European Parliament. 0.81
MPP1 In the 2014 European Parliamentary elections UKIP party of extreā dreaptā obtained more than 20 seats in the European Parliament 0.79
MPP2 In the 2014 European Parliamentary elections! UKIP( party of extreā dreaptā. obtained more than 20 seats in the European Parliament? 0.69
MPP3 In 2014 European Parliamentary elections, UKIP, party of extreā dreaptā, obtained more than 20 seats in European Parliament. 0.80
MPP4 In such 2014 European Parliamentary elections , UKIP , party of extreā dreaptā , obtained more than 20 seats in those European Parliament. 0.69

MPP5
IN the 2014 EUROPEAN Parliamentary ELECTIONS, UKIP, party of extreā DREAPTĀ,
OBTAINED more THAN 20 SEATS in THE EUROPEAN PARLIAMENT.

0.76

MPP6 in the 2014 European parliamentary elections, ukip, party of extreā dreaptā, obtained more than 20 seats in the European Parliament. 0.75

Table 2: An example of each MPP from our dataset for Ro-En. ‘Translation’ is the original machine translated
sentence for the given source sentence, which was assigned an average DA score of 0.70 by human annotators (in
0-1). S1 are scores from the MonoTransQuest architecture. The reference translation is only shown for readability,
as it was not used by humans nor QE models.

Source На слушании в декабре Блэквуд сказал, что не имел намерения оскорбить буддизм, когда размещал изображение, а
после того, как осознал, что оно вызвало массовое возмущение, удалил его и опубликовал извинение.

Reference At a hearing in December, Blackwood said he had not intended to offend Buddhism when he posted the image, and
after realizing it had caused widespread outrage, deleted it and issued an apology. S1

Translation At a hearing in December, Blackwood said he had not intended to offend Buddhism when he posted the image, and
after realizing it had caused widespread outrage, deleted it and issued an apology. 0.83

MAP1
At a hearing in December, Blackwood said he had intended to offend Buddhism when he posted the image, and
after realizing it had caused widespread outrage, deleted it and issued an apology.

0.82

MAP2
At a hearing in, Blackwood said he had not intended to offend Buddhism when he posted the image, and
after realizing it had caused widespread outrage, deleted it and issued an apology.

0.82

MAP3
At a hearing in December, Blackwood said he had not intended to offend Buddhism when he posted the image, and
after realizing realizing it had caused widespread outrage, deleted it and issued an apology.

0.81

MAP4
At a hearing in December, Blackwood said he had not intended to offend Buddhism party when he posted the image, and
after realizing it had caused widespread outrage, deleted it and issued an apology.

0.82

MAP5
At a hearing in December, Blackwood said he had not intended to offend Buddhism when he posted the image, and
after realizing it had caused widespread Ferris, deleted it and issued an apology.

0.80

MAP6
at a hearing in japan, bailey admitted graham did not intended to offend buddhism when buddhist posted the video, and
after realizing he has caused widespread outrage, deleted it and issued her apology.

0.77

MAP7
At a hearing in December, Blackwood said he lack not intended to keep Buddhism when he posted the image, and
after realizing it refuse caused widespread outrage, record it and recall an apology.

0.76

MAP8
(Russian)

На слушании в декабре Блэквуд сказал, что не имел намерения оскорбить буддизм, когда размещал изображение, а
после того, как осознал, что оно вызвало массовое возмущение, удалил его и опубликовал извинение. 0.83

Table 3: An example of each MAP from our dataset for Ru-En. ‘Translation’ is the original machine translated
sentence for the given source sentence, which was assigned an average DA score of 0.88 by human annotators (in
0-1). S1 are scores from MonoTransQuest architecture, and the reference translation is only shown for readability,
as it was not used by humans nor QE models.

and we carefully select perturbations relevant for
MT, e.g., rare errors such as the omission of nega-
tion, and known errors such as omission of words
from translation. Each type of perturbation is in-
troduced independently of others, one perturbation
per target sentence. We note that most of our per-
turbations are general enough such that they apply
to all sentences in our test set. An exception is the
removal of negation which can only be applied to
sentences which contain a negation marker.

We analyse the behaviour of QE models by com-
paring the difference in the scores predicted after
MPP/MAPs are applied to the test set compared
to the original, unperturbed test set. We expect a
strong QE model to predict lower scores to the ver-
sion of the test set containing sentences with MPP
and MAP, and – more importantly, a higher score
to sentences with MPP than to sentences with MAP.

Each of our probes is detailed below, categorised
either as an MPP or as an MAP.

5.1 Meaning-Preserving Perturbations
We designed the following MPPs. In order to en-
sure sufficient randomisation of the experiments,
we repeat MPP2, 4, 5 and 6, twenty times for each
sentence and average the QE scores obtained for
these twenty perturbations. Other MPPs, e.g., re-
moving all punctuations in the translation, can only
result in one new version of the translation, and
therefore, repetitions are not needed.

Removal of Punctuations (MPP1): We remove
any punctuation marks from the translation
using the standard string library in Python, for
this perturbation.

Replacing Punctuations (MPP2): In this pertur-
bation, each punctuation mark in the transla-
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tion is replaced with another randomly chosen
punctuation mark.

Removal of Determiners (MPP3): We use the
spaCy2 Part-of-speech (POS) tagger to iden-
tify determiners, and then remove them from
the translation.

Replacing Determiners (MPP4): Each word la-
belled as a determiner with the help of spaCy
POS tagger in the translation is replaced with
another randomly chosen determiner from a
list.

Change in Word-casing (MPP5/MPP6): We se-
lect random content words from the transla-
tion and convert them to UPPERCASE to gen-
erate a set of perturbed translations (MPP5).
Additionally, we select content words ran-
domly from the translation and convert them
to lowercase to generate another set of per-
turbed translations (MPP6).

For each of the perturbations described above,
we provide an example in Table 2, along with the
scores predicted from our SOTA (MonoTQ) QE
system.

5.2 Meaning-Altering Perturbations
We choose the following probes as MAP. We en-
sure sufficient randomisation of the experiments by
repeating MAP2, 3, 4, 5, 6, and 7, twenty times for
each sentence, and average the QE scores obtained
for these twenty perturbations. For MAPs 1, and 8,
we can produce only one version of the sentence.

Removal of Negation Markers (MAP1): For
this perturbation, all the negation markers
like “no”, “not”, “n’t” etc. are removed.

Removal of Random Content Words (MAP2):
We select a random content word from the
translation and remove it.

Duplication of Random Content Words (MAP3):
We choose a random content word from
the translation and add it at the immediate
next position index, thus duplicating its
occurrence.

Insertion of Random Words (MAP4): We pop-
ulate a vocabulary of words from the complete
set of translations in our test set. From this

2spaCy API

vocabulary, we choose a word and insert it at
a random position in the sentence, ensuring
that the previous word and the next word are
not the same to avoid duplication.

Replacing Random Content Words (MAP5):
We choose a random content word from the
translation and replace it with another word
from the vocabulary created as discussed in
MAP4.

BERT-based Sentence Replacement (MAP6):
We obtain sentence replacements based on the
BERT-base model (Devlin et al., 2019), with
the help of a data augmentation library3 (Ma,
2019). This library uses a word replacement
approach proposed by Kobayashi (2018) and
generates a sentence synonymous to the input
provided. We observe that BERT-generated
synonymous sentences replace content words
which alter the inherent meaning of the input
sentence and hence, treat this perturbation as
MAP.

Replacing Words with Antonyms (MAP7):
With the help of the data augmentation
library3, we generate perturbed translations
where we replace random words in the
sentence with their antonyms from the
English Wordnet (Miller et al., 1990).

Source Sentence as Target (MAP8): We replace
the translation with the source side sentence
to observe the effect on QE scores when the
source sentence is evaluated by the QE model,
instead of the target side translation. Such a
perturbation results in the model input to be-
come source-source instead of source-target.

For each of the perturbations described above,
we provide an example in Table 3, along with the
scores predicted via SOTA (MonoTQ) system.

6 Results and Discussion

In this section, we discuss the results obtained from
our probing experiments using various QE models.

6.1 Do perturbations affect SOTA QE
models?

We start by analysing the behaviour of MonoTQ,
as the best performing SOTA QE model on the
dataset used in this paper, under different types

3GitHub: makcedward/nlpaug
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Figure 1: Average difference between the predicted QE scores for original translations and each perturbation across
the test set for each language pairs (Y-axis->MT - x, where x is the perturbation as labelled on the X-axis), using
the SOTA MonoTQ architecture.
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Ru-En Ro-En Et-En Si-En Ne-En

MT MPP MAP MT MPP MAP MT MPP MAP MT MPP MAP MT MPP MAP
MonoTQ 0.81 0.78 0.66 0.82 0.80 0.74 0.81 0.79 0.73 0.71 0.65 0.64 0.75 0.74 0.68

SiameseTQ 0.86 0.85 0.86 0.58 0.57 0.52 0.92 0.91 0.91 0.58 0.57 0.52 0.68 0.68 0.65
MultiTQ 0.79 0.75 0.68 0.79 0.74 0.66 0.77 0.73 0.66 0.62 0.58 0.52 0.63 0.60 0.52

OpenKiwi 0.78 0.78 0.78 0.78 0.75 0.77 0.71 0.70 0.70 0.62 0.60 0.57 0.50 0.48 0.48
SentSim 0.54 0.57 0.57 0.78 0.76 0.72 0.50 0.53 0.52 0.41 0.43 0.41 0.47 0.52 0.50

Table 4: Average predicted scores by all QE models on the test set for the original (unperturbed) machine translation
(MT), versus its version with meaning-preserving perturbations (MPP) and meaning-altering perturbations (MAP).
Between MPP and MAP, we boldface the lowest average scores, if lower than MT.

of perturbations. Figure 1 shows the difference
between the average predicted score for our origi-
nal test set (Table 1) before perturbations and the
same subset of sentences perturbed using MPP and
MAP. In comparison to the average scores for the
initial set of translations, the expected behaviour
for a strong QE model is to assign the same or
slightly lower scores to and their MPP counter-
parts, but substantially lower scores to the MAP
variants. Based on this premise, we can make the
following observations from Figure 1. The other
graphs obtained from SiameseTQ model, MultiTQ
model, OpenKiwi system, and the Unsupervised
method are present in Appendix A.

Models are robust to MPPs and sensitive to
MAPs Overall, sentences with MPPs result in
a small drop in the scores with respect to the origi-
nal set of translations, especially when compared
to the sentences containing MAPs. Conversely,
perturbations that affect sentence meaning have a
larger impact on the scores. Thus, SOTA QE mod-
els are indeed capable of discriminating between
the two types of changes.

Models fail to detect important MAPs How-
ever, MonoTQ fails to discriminate between MPPs
and specific types of MAPs. In particular, pertur-
bations that affect sentence polarity, i.e., MAP1
(Removal of Negation Markers) and MAP7 (Re-
placing Words with Antonyms) result in a similar
drop in the predicted scores as MPPs. An exception
is a slight increase in the case of Nepali-English
where the number of instances with negation mark-
ers were limited to only 4, which makes it impos-
sible to draw any conclusions. Omitting negation
is a critical error in the practical applications of
MT. But it does not frequently occur in the data,
and therefore, cannot be detected by using the stan-
dard way of assessing the performance of QE sys-
tems, i.e., by computing the correlation with human

judgements on a test set.
MAPs that correspond to omission and addition

errors in translation (MAP2 and MAP4, respec-
tively) also result in a relatively small drop in the
predicted scores and thus hardly be distinguished
from MPPs. Omitting contents is a well-known
issue for the current neural MT models (Yang et al.,
2019). An omission is particularly dangerous as it
can go unnoticed by the end-user of the MT system.
The ability to detect such errors is thus a crucial
task for QE and, as highlighted by our analysis,
requires further work in this direction.

Finally, copying the source sentence in the
translation (MAP8) is not adequately captured by
MonoTQ. Note that this represents another criti-
cal translation error, as the source sentence is left
untranslated. We hypothesise that the inability to
detect copy errors is due to the fact that MonoTQ
relies on the multilingual pre-trained representa-
tions and, unless presented with such cases during
fine-tuning, would treat the two sentences in the
source language as equivalent.

Comparison across languages Interestingly,
we observe similar trends across language pairs.
For all the language pairs, sentences with MAP
produce a larger drop in performance than MPP,
and the same MAPs result in incorrect behaviour.

6.2 Do perturbations affect other QE
models?

Table 4 shows the actual average scores produced
by different QE systems for the initial subset of
high-quality MT sentences (column MT) and the
same subset of sentences perturbed using MPP (col-
umn MPP) and using (column MAP). For strong
QE models, we would expect both MPP and MAP
scores to be lower than the initial MT outputs, es-
pecially for MAP. For most of the models and
languages, the sentences perturbed with MAP re-
ceive lower average scores, thus confirming that,
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Figure 2: Ranking QE models using our method (MPP - MAP), where different QE models are shown on the X-
axis, sorted as per the ranks obtained via Pearson correlation (among QE scores and human DA judgements). The
size of the bars corresponds to the ability of the QE models to distinguish between MAP and MPP perturbations -
the higher the negative bar, the better the QE model is at this task.

in general, QE models are sensitive to the changes
that affect meaning. It is clear, however, that for
some models, the difference between the MT, MAP
and MPP is negligible. These cases are observed
with OpenKiwi and SentSim, which are weaker QE
models compared to the TransQuest variants (Spe-
cia et al., 2020) (see Table 5 for the overall re-
sults on the complete test+validation set of 2K sen-
tences). Thus, we hypothesise that the ability of a
QE model to discriminate between MAP and MPP
could be predictive of its overall performance. We
empirically test this hypothesis, and discuss below.

6.3 Can we use perturbations to rank QE
models?

We pose that the overall performance of a QE sys-
tem can be predicted based on how well it is able
to discriminate between meaning-preserving and
meaning-altering perturbations. To test this claim,
we contrast the ability of a set of QE systems to
discriminate between MAP and MPP with their
overall performance measured in terms of Pear-
son correlation with human judgements. Table 5
shows sentence-level Pearson correlation with hu-
man judgements on the WMT 2020 QE Shared
Task test set for all the QE models and language
pairs considered in our experiments. As shown in
Table 5, QE models vary a lot in terms of overall
performance, the weakest system being OpenKiwi
and SentSim, and the strongest corresponding to

the SOTA approaches based on XLM-Roberta. To
assess the discriminative power of the models, we
compute the average difference (MPP - MAP) be-
tween the relative scores obtained via our method
(such as shown in Figure 1). In Figure 2, we sort
all the probed QE models in the decreasing or-
der, according to the correlation with human judge-
ments on the x-axis, and plot the corresponding
MAP/MPP difference on the y-axis.

Et-En Ru-En Ro-En Si-En Ne-En

MonoTQ 0.72 0.77 0.88 0.88 0.75
MultiTQ 0.76 0.77 0.87 0.87 0.74

SiameseTQ 0.55 0.71 0.84 0.84 0.60
SentSim 0.53 0.46 0.77 0.77 0.56

OpenKiwi 0.47 0.59 0.68 0.36 0.39

Table 5: Pearson correlation with human judge-
ments for all QE models on the original, complete
test+validation (2K) set. This is the metric used to rank
participating QE systems in the WMT 2020 QE Shared
Task 1. As can be seen, MonoTQ and MultiTQ con-
sistently outperform all other models, with OpenKiwi
performing the poorest.

Interestingly, for most of the language pairs, we
observe that the system rankings are similar or iden-
tical to the Pearson correlation-based rankings; in-
dicating that the ability of the model to distinguish
between the proposed types of perturbations is in-
deed indicative of its overall performance. One
exception is the difference corresponding to the
OpenKiwi system for Sinhala-English and Nepali-
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English. We attribute this to the fact that, by dif-
ference from the SOTA QE models, OpenKiwi
is good at capturing the copy errors (MAP8) for
these languages. OpenKiwi uses different vocab-
ularies for the source and target languages, and
therefore, copying the source sentence results in
unknown tokens on the target side, leading to a low
predicted score. Another exception is Estonian-
English, where the systems appear to be ranked
differently based on correlation vs. MAP/MPP
difference. We note, however, that even in this
case, the two top-performing systems (MonoTQ
and MultiTQ) are clearly distinguished from the
low-performing ones (SentSim and OpenKiwi).

Although generating MAPs and MPPs requires
some initial set of high-quality translations, this
could be selected using reference sentences from
parallel data. Therefore, the proposed methodol-
ogy allows for assessing the performance of QE
models with no need for collecting explicit human
judgements (e.g., direct assessments).

7 Conclusions

In this work, we have proposed a methodology
for analysing the performance of QE systems be-
yond correlation with human judgements. We have
devised a set of perturbations to probe both the
robustness of QE models towards changes in the
input that do not affect sentence meaning and their
sensitivity to meaning errors in translation. First,
by applying the proposed methodology to a set of
QE systems of varying accuracy, we are able to
detect specific failures that cannot be detected by
computing correlations between predicted scores
and human judgements. Second, we have shown
that, on an average, the ability of a given model
to discriminate between the two types of perturba-
tions is predictive of its overall performance, thus
allowing us to compare QE systems without relying
on manual quality annotation.

Our choice of specific perturbations was moti-
vated by the errors that occur in neural MT and the
potential weaknesses of QE models. In the future,
we plan to extend this set by including perturba-
tions that capture other critical MT errors. Fur-
thermore, we plan to study whether the proposed
perturbations can be used at training time to im-
prove the ability of QE systems to detect critical
errors in translation.
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A Appendix

Figure 3: Difference between the predicted QE scores for original sentences and each perturbation for all language
pairs (Y-axis->MT - x, where x is the perturbation as labelled on the X-axis), using the OpenKiwi system.
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Figure 4: Difference between the predicted QE scores for original sentences and each perturbation for all language
pairs (Y-axis->MT - x, where x is the perturbation as labelled on the X-axis), using Unsupervised SentSim method.
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Figure 5: Difference between the predicted QE scores for original sentences and each perturbation for all language
pairs (Y-axis->MT - x, where x is the perturbation as labelled on the X-axis), using MultilingualTransQuest
architecture.
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Figure 6: Difference between the predicted QE scores for original sentences and each perturbation for all language
pairs (Y-axis->MT - x, where x is the perturbation on the X-axis), using the SiameseTransQuest architecture.
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Abstract

The machine translation efficiency task chal-
lenges participants to make their systems faster
and smaller with minimal impact on transla-
tion quality. How much quality to sacrifice
for efficiency depends upon the application, so
participants were encouraged to make multi-
ple submissions covering the space of trade-
offs. In total, there were 53 submissions by
4 teams. There were GPU, single-core CPU,
and multi-core CPU hardware tracks as well as
batched throughput or single-sentence latency
conditions. Submissions showed hundreds of
millions of words can be translated for a dollar,
average latency is 5–20 ms, and models fit in
7.5–150 MB.

1 Introduction

The efficiency task complements the collocated
news task by challenging participants to make their
machine translation systems computationally effi-
cient. This is the fourth edition of the task, expand-
ing upon previous editions (Heafield et al., 2020;
Hayashi et al., 2019; Birch et al., 2018).

Participants built English→German machine
translation systems following the constrained data
condition of the 2021 Workshop on Machine Trans-
lation news translation task. For translation qual-
ity measurement, we use the same news-focused
WMT21 test set and human evaluation protocol as
the news task. However, human assessment was
conducted separately from the evaluation of the
news task submissions.

Submissions are made as Docker containers so
we can consistently measure their performance in
terms of quality, speed, memory usage, and disk
space. We run the containers in three different
hardware environments: one GPU, one CPU core,
and multiple CPU cores. Systems were tested for
throughput by providing 1 million sentences up-
front to allow batching and parallelization. We also
tested for latency with a program that drip-feeds

Edinburgh HuaweiTSC NiuTrans TenTrans
GPU Batch ! ! !

GPU Latency !

1 Core Batch !

1 Core Latency ! !

36 Cores Batch ! !

Table 1: Participation in each of the hardware and batch-
ing conditions. Core refers to CPU hardware with 1
core or all 36 cores.

one input sentence, waits for the translation, and
then provides the next input sentence. There were
five conditions in total: GPU Batch (for through-
put), GPU Latency, 1 CPU Core Batch, 1 CPU
Core Latency, and 36 CPU cores Batch. We did
not measure latency in a multi-core CPU setting be-
cause the test hardware has 36 cores and overhead
for 36 threads is larger than the cost of arithmetic
for the small tensors in optimized models.

Participants were free to choose which condi-
tions to participate in. The condition was passed to
the Docker container as command line arguments.
Table 1 shows the four participants and the condi-
tions they submitted to.

Machine translation is used in a range of settings
where users might choose different trade-offs be-
tween quality and efficiency. For example, a high-
frequency trading system might prefer the lowest
latency at the expense of quality given that the out-
put will only be read by a machine. Conversely,
in a post-editing scenario the personnel costs out-
weigh many computational costs. Therefore there
is not a single best system, but a range of options
that trade between quality and efficiency. We em-
phasize the Pareto frontier: the fastest systems at
each level of quality, or the smallest systems at
each level of quality. To explore the Pareto fron-
tier, participants were encouraged to make multiple
submissions covering the range of trade-offs. In
total, 53 combinations of models, hardware, and
batching were benchmarked.
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2 Hardware

We chose modern hardware to encourage exploit-
ing new hardware features. The GPU is an NVidia
A100 from the Oracle Cloud BM.GPU4.8 in-
stance. The instance has eight GPUs and we limited
Docker to using only one GPU. The GPU machine
has an AMD EPYC 7542 CPU with all cores al-
lowed. In practice, most submissions used only one
core while NiuTrans’s submissions used the CPU
cores to parallelize preprocessing and postprocess-
ing.

The CPU-only condition used a dual-socket
Intel Xeon Gold 6354 from Oracle Cloud
BM.Optimized3.36 with a total of 36 cores.
For the single-core CPU track, we reserved
the entire machine then ran Docker with
-cpuset-cpus=0. In the 36-core CPU track,
participants were free to configure their own CPU
sets and affinities.

The Oracle Cloud machines are bare metal
servers, meaning there was no shared tenancy, no
virtualization, and the test machines were otherwise
quiescent.

3 Input Text

To amoritize loading time, avoid starving highly
parallel submissions, and reduce the ability to cheat,
we benchmark systems on 1 million sentences of
input. The test set is hidden inside these 1 mil-
lion sentences, shuffled with filler sentences. Many
filler sentences are drawn from parallel corpora to
check that systems are in fact translating all sen-
tences, though we do not consider scores on noisy
corpora reliable enough to report. The composition
of this set changes each year and is decided after
the submission deadline.

Filler data was gathered from parallel corpora
and gender bias challenge sets: WMT news test
sets from 2008 through 2021 (Barrault et al., 2020),
the additional test inputs in WMT 2021, Khres-
moi summary test v2 (Dušek et al., 2017), IWSLT
2019 (Jan et al., 2019), SimpleGen (Renduchintala
et al., 2021), WinoMT (Stanovsky et al., 2019),
TED 2020 (Reimers and Gurevych, 2020), and
Tilde RAPID 2019 (Rozis and Skadin, š, 2017). We
capped sentence lengths at 150 space-separated
tokens, except for the WMT 2021 test set to pre-
seve the ability to evaluate with it. Because WMT
2020 includes excessively long segments that are
actually concatenated sentences, we also added
sentence split versions of WMT 2020 and WMT

Corpus Sentences
WMT 08–19 32,477
WMT 20 under 150 tokens 1,416
WMT 20 sentence split 2,048
WMT 21 sentence split 1,096
WMT 21 including additional tests 14,938
Khresmoi Summary Test v2 1,000
IWSLT 2019 2,278
SimpleGen 2,664
WinoMT 3,888
TED 2020 v1 293,562
Tilde RAPID 2019 654,995
Total 1,010,362
Deduplicated 1,000,000

Table 2: Corpora used for input text.

2021, though the difference on WMT 2021 was
minor. Source sentences were concatenated, dedu-
plicated, and shuffled. The Tilde RAPID corpus
was clipped to make a total of 1 million dedupli-
cated lines. Counts are shown in Table 2.

Input text and tools to extract test
sets from system outputs are available at
http://data.statmt.org/heafield/
wmt21-testdata.tar.xz .

The input file has 1,000,000 lines, 19,951,184
space-separated words, and 124,257,215 bytes
(most of which are characters since the file is En-
glish in UTF-8). This is an average of 20 words per
sentence compared to 15 words per sentence the
previous year (Heafield et al., 2020) due to raising
the cap from 100 to 150 tokens per sentence and
the lengthy text in the RAPID corpus.

Teams were responsible for their own tokeniza-
tion and detokenization. We provided raw UTF-8
English input text with one sentence per line.

4 Metrics

4.1 Cost
Time was measured with wall (real) time reported
by time and CPU time reported by the kernel for
the process group. We do not measure loading
time because it is small compared to translating 1
million sentences, some tools load lazily, and it is
easily gamed by padding loading time.

Peak RAM consumption was measured using
memory.max_usage in bytes from the kernel
for the CPU and by polling nvidia-smi for the
GPU. Swap was disabled.

Participants were told to separate their Docker
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Edinburgh HuaweiTSC NiuTrans TenTrans
GPU Batch 3/10 4/4 4/4
GPU Latency 0/11
1 Core Batch 0/6
1 Core Latency 3/6 4/4
36 Cores Batch 0/6 0/2
Total 6/39 4/4 4/6 4/4

Table 3: Number of submissions by participant and con-
dition (cores refers to the CPU hardware). The number
after / is all submissions by the participant. The number
before / is how many participants selected for focused
human evaluation based on automatic metrics.

images into model and code files so that models
could be measured separately from the relatively
noisy size of code and libraries. A model was de-
fined as “everything derived from data: all model
parameters, vocabulary files, BPE configuration if
applicable, quantization parameters or lookup ta-
bles where applicable, and hyperparameters like
embedding sizes.” Code could include “simple
rule-based tokenizer scripts and hard-coded model
structure that could plausibly be used for another
language pair.” They were also permitted to use
standard compression tools such as xz to compress
models; decompression time was included in re-
sults but small relative to the cost of translation.
We report size of the model directory captured be-
fore the model ran. We also measured the total
size of the Docker image (after compressing with
xz), though participants were encouraged to priori-
tize shipping one container for multiple hardware
conditions over the size of the container.

4.2 Quality

Translation quality is measured on the
WMT 2021 news test set. The auto-
matic metrics are COMET (Rei et al.,
2020) wmt20-comet-da from version
1.0.0rc6, BLEU from sacrebleu (Post, 2018)
nrefs:3|case:mixed|eff:no|tok:13a
|smooth:exp|version:2.0.0, and chrF
also from sacrebleu. We use references A, C,
and D because the organizers found postedited
DeepL output in reference B. COMET does
not natively support multiple references so we
averaged as recommended by the authors.1 We
also averaged chrF across references. Results were
presented to participants2 who were encouraged
to whittle down systems for a focused human

1https://github.com/Unbabel/COMET/
issues/20

2Only reference A was available at the time.

evaluation. HuaweiTSC and TenTrans included
all of their submissions. NiuTrans included their
GPU submissions but not their CPU submissions
that have lower automatic scores than Edinburgh’s.
This left GPU Batch and 1 Core Latency as the
only conditions with multiple teams. Edinburgh
kept systems that have competitors and are near the
Pareto frontier. The number of submissions evalu-
ated is shown in Table 3. Out of 53 submissions,
we ran direct assessment on 18.

For human evaluation, as a source of the ab-
solute quality measure we used document-level
source-based direct assessments (DA) (Graham
et al., 2013; Cettolo et al., 2017) following the
procedure established at the WMT20 News Trans-
lation Task (Barrault et al., 2020). We also con-
ducted contrastive evaluation using segment-level
pairwise direct assessments (Novikova et al., 2018;
Sakaguchi and Van Durme, 2018), because it can be
a better discriminative tool for measuring relative
quality difference between pairs of systems. We
compared the 18 systems using source-based direct
assessment and 58 pairs of systems with contrastive
direct assessment. In total, we gathered 21,487 and
20,416 direct assessment scores in standard and
contrastive campaigns respectively. All annotations
were made by bilingual native German speakers
with a translation or linguistics background. Anno-
tations were collected using Appraise3 (Federmann,
2018).

5 Results

All submissions are shown in Table 4. Source-
based direct assessment scores appear for the sub-
missions in the focused human evaluation with the
number of wins against other systems (including
those in other conditions), raw direct accessment
score, and z-score after standardizing annotator
scores to mitigate differences in annotator scores.
Scores were averaged (“Ave.”) across sentences.
Rows are sorted by COMET because only some
submissions have human assessment.

The system ranking based on the standard DA
is presented in Table 5. Systems are ordered by
the number of respective wins against other sys-
tems and average DA z-score. Ordering solely by
z-scores would produce three clusters with all sys-
tems within a cluster considered tied according to
Wilcoxon rank-sum test with p < 0.05.

3https://github.com/AppraiseDev/
Appraise
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NVIDIA A100 GPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU GPU
Edinburgh base 17 90.3 0.352 0.527 55.25 61.54 140 152 150 455 1725 36140
Edinburgh tiny11 14 85.9 0.185 0.492 52.74 60.52 115 120 60 364 1622 36092
Edinburgh 2.12-2.tied.tiny.heads-0.3 0.473 52.36 60.32 126 130 59 363 1618 36090
Edinburgh 2.6-2.tied.tiny.heads-0.3 0.459 51.52 60.00 116 120 53 357 1611 36088
Edinburgh 2.12_1.tiny.heads-0.3 0.445 52.20 60.25 117 121 62 366 1620 36092
Edinburgh 2.12_1.micro.heads-0.3 0.440 51.73 60.02 117 121 60 364 1617 36092
Edinburgh 2.8-4.tied.tiny.4bit 0.432 50.20 59.47 140 144 8 355 1639 29054
NiuTrans 6_1_512 9 83.5 0.057 0.423 50.05 59.96 95 377 73 303 2447 4254
NiuTrans 12_1_512 4 88.8 0.016 0.422 50.50 59.83 124 411 109 335 2458 4356
Edinburgh 2.12_1.tiny.4bit 6 85.6 0.104 0.422 51.78 59.86 118 122 10 357 1659 29062
NiuTrans 6_1_0 4 80.4 -0.019 0.384 49.78 59.71 94 400 72 302 2467 3998
Edinburgh 3.12_1.micro 0.382 50.40 59.29 116 121 66 370 1627 36094
NiuTrans 3_1_512 3 85.6 -0.035 0.354 48.72 59.25 81 380 55 287 2475 4134
Edinburgh 2.12_1.micro.rowcol-0.5 0.352 48.73 58.59 107 110 42 346 1603 36082
TenTrans tea-20_6-h512-ffn4096 3 81.1 -0.046 0.335 46.26 57.19 456 638 643 1804 2380 25318
TenTrans stu-20_1-h512-ffn2048 2 81.8 -0.104 0.291 45.89 57.06 340 528 355 1272 2120 17126
TenTrans stu-10_1-h512-ffn2048 2 82.5 -0.138 0.263 44.88 56.89 280 458 234 1049 2006 17128
TenTrans stu-20_1-h256-ffn1024 2 84.3 -0.091 0.238 44.34 56.68 257 443 114 829 1864 17126

NVIDIA A100 GPU Latency
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU GPU
Edinburgh base 0.527 55.25 61.54 16851 16859 150 455 1573 36140
Edinburgh tiny11 0.491 52.80 60.55 15101 15102 60 364 1247 36092
Edinburgh 2.12_1.base.4bit 0.476 53.81 60.86 15239 15243 22 369 1653 38174
Edinburgh 2.12-2.tied.tiny.heads-0.3 0.473 52.39 60.32 18269 18271 59 363 1233 36090
Edinburgh 2.6-2.tied.tiny.heads-0.3 0.460 51.60 59.99 17204 17205 53 357 1216 36088
Edinburgh 2.12_1.tiny.heads-0.3 0.445 52.13 60.22 13839 13841 62 366 1241 36092
Edinburgh 2.12_1.micro.heads-0.3 0.436 51.66 59.99 13952 13952 60 364 1236 36092
Edinburgh 2.8-4.tied.tiny.4bit 0.431 50.26 59.49 26635 26637 8 355 1264 29054
Edinburgh 2.12_1.tiny.4bit 0.419 51.79 59.87 13876 13878 10 357 1299 29062
Edinburgh 3.12_1.micro 0.379 50.40 59.34 13944 13945 66 370 1251 36094
Edinburgh 2.12_1.micro.rowcol-0.5 0.352 48.73 58.61 13665 13665 42 346 1184 36082

1 Core Ice Lake CPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 0.520 54.72 61.36 11067 11066 45 63 1569
Edinburgh 3.12_1.large 0.485 53.71 60.89 30342 30338 129 386 2428
Edinburgh tiny11 0.464 52.24 60.17 5108 5107 21 468 621
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 0.328 48.34 58.33 3288 3287 52 302 1040
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 0.326 48.97 58.41 3497 3497 17 302 912
Edinburgh 4.12_1.micro.rowcol-0.5 0.318 47.66 58.01 4046 4045 53 338 781

1 Core Ice Lake CPU Latency
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 13 88.3 0.205 0.465 53.53 60.69 16815 16814 45 63 542
HuaweiTSC base 7 90.3 -0.019 0.450 53.00 60.82 14939 14937 37 53 377
Edinburgh 3.12_1.large 0.430 52.95 60.34 40518 40514 129 386 1175
Edinburgh tiny11 3 81.4 -0.008 0.413 51.18 59.63 9272 9272 21 468 241
HuaweiTSC sm9 4 86.1 -0.001 0.391 50.58 59.74 8866 8865 20 36 206
HuaweiTSC sm6 2 77.5 -0.025 0.338 48.75 58.85 7714 7713 17 33 173
Edinburgh 4.12_1.micro.rowcol-0.5 0 84.0 -0.444 0.257 47.56 57.88 6343 6343 53 338 342
HuaweiTSC tiny 0 81.9 -0.363 0.197 44.20 56.84 5138 5138 10 27 107
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 -0.073 37.43 56.33 8148 8147 52 302 335
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 -0.173 37.67 55.71 7564 7563 17 302 239

36 Core Ice Lake CPU Batch
Human Automatic Seconds Disk MB RAM MB

Team Variant Win Ave. Ave. z COMET BLEU chrF Wall CPU Model Docker CPU
Edinburgh base 0.519 54.69 61.35 500 17790 45 63 28630
Edinburgh 3.12_1.large 0.484 54.02 60.92 1509 53528 129 386 34903
Edinburgh tiny11 0.465 52.17 60.16 237 8434 21 468 15594
NiuTrans 6_1_512 0.430 50.08 60.02 520 36015 146 142 57636
NiuTrans 3_1_512 0.358 48.53 59.34 417 28727 109 126 56415
Edinburgh 4.12_1.tiny.rowcol-0.5.ft8 0.336 48.38 58.37 159 5682 52 302 18606
Edinburgh 4.12_1.micro.rowcol-0.5.ft8 0.329 48.95 58.42 167 5948 17 302 15825
Edinburgh 4.12_1.micro.rowcol-0.5 0.318 47.98 58.16 184 6540 53 338 16469
Table 4: All submissions. Human source-based DA is shown for selected submissions. Total time measured in
seconds is equivalent to microseconds/sentence because the input is 1 million sentences.642



Team Variant Win Ave. Ave. z Time (s) Condition

Edinburgh base 17 90.3 0.352 140 GPU Batch

Edinburgh tiny11 14 85.9 0.185 115 GPU Batch
Edinburgh base 13 88.3 0.205 16815 1 Core Latency
NiuTrans 6_1_512 9 83.5 0.057 95 GPU Batch
HuaweiTSC base 7 90.3 -0.019 14939 1 Core Latency
Edinburgh 2.12_1.tiny.4bit 6 85.6 0.104 118 GPU Batch
NiuTrans 12_1_512 4 88.8 0.016 124 GPU Batch
HuaweiTSC sm9 4 86.1 -0.001 8866 1 Core Latency
NiuTrans 6_1_0 4 80.4 -0.019 94 GPU Batch
Edinburgh tiny11 3 81.4 -0.008 9272 1 Core Latency
NiuTrans 3_1_512 3 85.6 -0.035 81 GPU Batch
TenTrans tea-20_6-h512-ffn4096 3 81.1 -0.046 456 GPU Batch
HuaweiTSC sm6 2 77.5 -0.025 7714 1 Core Latency
TenTrans stu-20_1-h256-ffn1024 2 84.3 -0.091 257 GPU Batch
TenTrans stu-20_1-h512-ffn2048 2 81.8 -0.104 340 GPU Batch
TenTrans stu-10_1-h512-ffn2048 2 82.5 -0.138 280 GPU Batch

HuaweiTSC tiny 0 81.9 -0.363 5138 1 Core Latency
Edinburgh 4.12_1.micro.rowcol-0.5 0 84.0 -0.444 6343 1 Core Latency

Table 5: System ranking based on the standard direct assessment (DA) human evaluation. The rows are ordered
by the number of respective wins against other systems, followed by the DA z-score. Systems within a cluster are
considered tied according to Wilcoxon rank-sum test p < 0.05 with standard DA.

Figure 1 shows the trade-off between quality and
speed of batched translation submissions. Since
source-based DA is available for select GPU sub-
missions, we include that comparison; the other
plots rely on COMET to approximate quality. Each
plot shows the Pareto frontier as a black staircase
to highlight the best combinations of quality and
speed. In Figure 2, we combine GPU and 36 Core
CPU speed by using Oracle Cloud pricing. The
GPU is cheaper for throughput-oriented tasks that
allow batching.

Latency is shown in Figures 3 and 4.
HuaweiTSC and Edinburgh were the two partic-
ipants and shared the Pareto frontier. While the
GPU is cheaper for throughput, both CPU and GPU
entries appear on the Pareto frontier for latency. In
fact, the lowest latencies are achieved by single-
core CPU submissions, likely due to the overhead
of launching small kernels on a GPU.

Model sizes at rest on disk appear in Figures 5
and 6. Participants were allowed to compress their
models using their own tools and standard tools
like xz. The entire Pareto frontier consists of
Edinburgh submissions, resting partly on 4-bit in-
teger compression. Docker image sizes, which
include model and software, appear in Figure 7.
HuaweiTSC optimized their image size well. Con-
versely, some others opted to optimize other met-
rics and included large Linux installations. We
compressed all docker images with xz before mea-
suring.

Memory (RAM) consumption appears in Fig-
ure 8. GPU memory consumption reflects batch
size and some participants set a large batch size
to maximize speed. Optimizing speed for multi-
socket CPU machines implies having a copy of
the model in RAM close to each socket, so mem-
ory consumption is larger beyond simply having
temporary space for more batches. Finally, partic-
ipants may have sorted the entire 118 MB input
file in RAM to form batches of equal length sen-
tences. NiuTrans is the clear winner on GPU RAM
consumption and curiously the clear loser on CPU
RAM consumption.

Many of the systems tied on standard DA and
contrastive DA helps us pull them apart by directly
comparing system outputs. Table 6 shows detailed
results of contrastive DA including average scores,
respective deltas between two systems and the out-
come of significance testing. For groups of systems
for which we evaluated each system from a group
against each other system from the same group, we
created separate rankings based solely on pairwise
comparisons within the group, presented in Table 7.

6 Conclusion and Future Tasks

Using the highest quality system in this evalua-
tion, translating 124,257,215 characters took 140
seconds on an A100 GPU that costs $3.05/hr in
a cloud. That is $0.001/million characters. By
comparison, Google Translate’s cost is $20/million
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Figure 8: RAM consumption of all submissions on a logarithmic scale. Some participants used large batches to
favor speed over memory consumption.
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Stronger System Weaker System Stronger Weaker
Team Variant Condition Team Variant Condition DA Score DA Score Delta p-val
Edinburgh base GPU Latency Edinburgh base GPU Batch 92.2 92.2 0.0
Edinburgh base GPU Batch Edinburgh tiny11 GPU Batch 74.9 74.7 0.2
Edinburgh tiny11 GPU Batch Edinburgh tiny11 GPU Latency 86.6 86.4 0.2
Edinburgh tiny11 GPU Batch Edinburgh 2.12_1.tiny.4bit GPU Batch 85.6 83.6 1.9
NiuTrans 12_1_512 GPU Batch NiuTrans 6_1_0 GPU Batch 78.1 75.2 2.8 **
NiuTrans 12_1_512 GPU Batch NiuTrans 3_1_512 GPU Batch 67.7 65.1 2.6 *
NiuTrans 12_1_512 GPU Batch NiuTrans 6_1_512 GPU Batch 65.9 65.1 0.8
NiuTrans 6_1_0 GPU Batch NiuTrans 3_1_512 GPU Batch 86.7 85.8 0.9
NiuTrans 6_1_512 GPU Batch NiuTrans 3_1_512 GPU Batch 79.7 78.2 1.4
NiuTrans 6_1_512 GPU Batch NiuTrans 6_1_0 GPU Batch 82.7 82.6 0.0
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 85.4 83.3 2.1
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 83.6 83.3 0.3
TenTrans stu-10_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h512-ffn2048 GPU Batch 82.0 79.8 2.2
TenTrans tea-20_6-h512-ffn4096 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 73.9 63.2 10.7 ***
TenTrans stu-20_1-h512-ffn2048 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 66.9 66.3 0.6
TenTrans tea-20_6-h512-ffn4096 GPU Batch TenTrans stu-20_1-h512-ffn2048 GPU Batch 88.4 88.0 0.4 *
Edinburgh base GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 84.4 78.9 5.5 **
Edinburgh base GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 88.7 82.1 6.6 ***
Edinburgh tiny11 GPU Batch TenTrans tea-20_6-h512-ffn4096 GPU Batch 88.0 81.1 6.9 **
Edinburgh tiny11 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 72.1 57.6 14.5 ***
Edinburgh base GPU Batch NiuTrans 6_1_512 GPU Batch 87.4 74.7 12.7 ***
Edinburgh base GPU Batch NiuTrans 3_1_512 GPU Batch 83.0 73.7 9.3 ***
Edinburgh tiny11 GPU Batch NiuTrans 6_1_512 GPU Batch 68.6 65.8 2.8
Edinburgh tiny11 GPU Batch NiuTrans 3_1_512 GPU Batch 91.8 87.4 4.4 ***
TenTrans tea-20_6-h512-ffn4096 GPU Batch NiuTrans 6_1_512 GPU Batch 67.2 65.9 1.3
TenTrans tea-20_6-h512-ffn4096 GPU Batch NiuTrans 3_1_512 GPU Batch 89.2 87.3 1.9 ***
NiuTrans 6_1_512 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 94.6 93.5 1.1 **
NiuTrans 3_1_512 GPU Batch TenTrans stu-20_1-h256-ffn1024 GPU Batch 84.4 82.3 2.1
Edinburgh base GPU Latency HuaweiTSC base 1 Core Latency 91.4 86.9 4.6 ***
Edinburgh base GPU Latency HuaweiTSC sm9 1 Core Latency 77.3 69.7 7.6 ***
Edinburgh base GPU Latency HuaweiTSC sm6 1 Core Latency 86.0 77.6 8.4 ***
Edinburgh base GPU Latency HuaweiTSC tiny 1 Core Latency 90.8 77.2 13.6 ***
Edinburgh tiny11 GPU Latency HuaweiTSC base 1 Core Latency 89.3 84.2 5.1 **
Edinburgh tiny11 GPU Latency HuaweiTSC sm9 1 Core Latency 88.5 83.2 5.4 ***
Edinburgh tiny11 GPU Latency HuaweiTSC sm6 1 Core Latency 92.9 89.2 3.7 ***
Edinburgh tiny11 GPU Latency HuaweiTSC tiny 1 Core Latency 82.4 73.7 8.7 ***
Edinburgh base 1 Core Latency Edinburgh tiny11 1 Core Latency 67.5 65.0 2.5 **
Edinburgh base 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 66.9 62.2 4.8 ***
Edinburgh tiny11 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 81.1 74.5 6.7 ***
HuaweiTSC base 1 Core Latency HuaweiTSC sm9 1 Core Latency 87.5 85.0 2.5 *
HuaweiTSC base 1 Core Latency HuaweiTSC sm6 1 Core Latency 89.2 86.0 3.2 **
HuaweiTSC base 1 Core Latency HuaweiTSC tiny 1 Core Latency 94.5 86.4 8.2 ***
HuaweiTSC sm9 1 Core Latency HuaweiTSC sm6 1 Core Latency 68.8 68.0 0.9
HuaweiTSC sm9 1 Core Latency HuaweiTSC tiny 1 Core Latency 90.2 85.8 4.3 ***
HuaweiTSC sm6 1 Core Latency HuaweiTSC tiny 1 Core Latency 79.3 73.2 6.1 ***
HuaweiTSC base 1 Core Latency Edinburgh base 1 Core Latency 84.7 84.6 0.1
Edinburgh base 1 Core Latency HuaweiTSC sm9 1 Core Latency 78.5 74.8 3.7 *
Edinburgh base 1 Core Latency HuaweiTSC sm6 1 Core Latency 89.0 85.7 3.3 **
Edinburgh base 1 Core Latency HuaweiTSC tiny 1 Core Latency 87.9 79.8 8.2 ***
HuaweiTSC base 1 Core Latency Edinburgh tiny11 1 Core Latency 90.7 90.4 0.2
Edinburgh tiny11 1 Core Latency HuaweiTSC sm9 1 Core Latency 81.5 78.9 2.5
Edinburgh tiny11 1 Core Latency HuaweiTSC sm6 1 Core Latency 90.9 90.1 0.7
Edinburgh tiny11 1 Core Latency HuaweiTSC tiny 1 Core Latency 85.9 77.9 8.0 ***
HuaweiTSC base 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 89.4 81.9 7.5 ***
HuaweiTSC sm9 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 93.4 90.8 2.6
HuaweiTSC sm6 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 84.8 82.0 2.8 *
HuaweiTSC tiny 1 Core Latency Edinburgh 4.12_1.micro.rowcol-0.5 1 Core Latency 84.6 82.1 2.4 *

Table 6: Results of the pairwise contrastive direct assessment human evaluation for each evaluated system pair.
The stronger system on the left is considered better than the weaker system on the right according to the Wilcoxon
rank-sum test with p < 0.05 for ∗, p < 0.01 for ∗∗, p < 0.001 for ∗ ∗ ∗.
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Team Variant Win Ave. Ave. z Time (s)

NiuTrans 12_1_512 1 70.0 0.060 124
NiuTrans 6_1_512 0 77.3 0.017 95
NiuTrans 6_1_0 0 81.6 -0.023 94
NiuTrans 3_1_512 0 78.1 -0.057 81

(a) NiuTrans GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

TenTrans stu-10_1-h512-ffn2048 1 85.9 0.104 280
TenTrans stu-20_1-h512-ffn2048 0 87.7 -0.011 340
TenTrans tea-20_6-h512-ffn4096 0 85.6 -0.069 456

(b) Tentrans GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

HuaweiTSC base 2 91.6 0.181 14939
HuaweiTSC sm9 1 79.5 0.139 8866
HuaweiTSC sm6 1 75.6 0.005 7714

HuaweiTSC tiny 0 81.3 -0.250 5138

(c) HuaweiTSC 1 Core Latency

Team Variant Win Ave. Ave. z Time (s)

Edinburgh base 3 83.8 0.214 140
Edinburgh tiny11 3 75.3 0.106 115
TenTrans tea-20_6-h512-ffn4096 1 76.3 -0.067 456
NiuTrans 3_1_512 0 83.8 -0.064 81
NiuTrans 6_1_512 0 74.7 -0.087 95
TenTrans stu-20_1-h256-ffn1024 0 75.8 -0.210 257

(d) GPU Throughput

Team Variant Win Ave. Ave. z Time (s)

Edinburgh base 4 82.1 0.122 16815
Edinburgh tiny11 2 88.7 0.078 9272
HuaweiTSC sm9 1 85.6 -0.003 8866
HuaweiTSC base 0 85.5 0.051 14939
HuaweiTSC sm6 0 86.8 -0.027 7714
Edinburgh 4.12_1.micro.rowcol-0.5 0 86.9 -0.065 6343
HuaweiTSC tiny 0 78.5 -0.131 5138

(e) Latency on 1 Core CPU. Total wall Time (s) is the same value as µs/sentence because there are 1 million sentences.

Team Variant Win Ave. Ave. z Time (s) Condition

Edinburgh tiny11 4 86.7 0.165 15101 GPU Latency
Edinburgh base 3 89.3 0.238 16851 GPU Latency
HuaweiTSC sm9 2 79.8 -0.146 8866 1 Core Latency
HuaweiTSC sm6 0 89.7 -0.155 7714 1 Core Latency
HuaweiTSC base 0 81.8 -0.161 14939 1 Core Latency
HuaweiTSC tiny 0 72.8 -0.342 5138 1 Core Latency

(f) Latency on GPU vs 1 Core CPU. Total wall Time (s) is the same value as µs/sentence because there are 1 million sentences.

Table 7: System rankings based on contrastive DA human-evaluation within selected groups of systems. Each
system within a group was evaluated against each other system. Systems are ordered by the number of respective
wins against other systems and DA z-score.

characters.4

The GPU latency track had been intended to
attract non-autoregressive machine translation sub-
missions in their ideal condition with a large
GPU and no batch to parallelize. However, non-
autoregressive papers (Libovický and Helcl, 2018;
Gu and Kong, 2021) often rely on unreasonably
poor autoregressive baselines in order to claim
impressive-sounding speedups, when they are in
fact slower than optimized autoregressive models
seen here. While previous editions of the task did
not measure latency, disabling batching is a simple
command line modification to systems that existed
at the time (Birch et al., 2018) but were omitted
as baselines in non-autoregressive literature. All
submissions this year are autoregressive.

4https://cloud.google.com/translate/
pricing

An efficient training task is a natural extension.
The challenge lies in defining proper development
and testing conditions. Otherwise, participants will
overfit by searching for the random seed that trains
the fastest on a particular parallel corpus. Perhaps
a parallel corpus could be halved to form develop-
ment and test sets, but that would reveal the test
set by omission and require trusting all participants.
One participant was already caught cheating in a
past edition of this shared task. Another option is
that the test corpus could be a different surprise
language pair, which would have the potentially
positive effect that it also measures generalizability
across languages. An interesting aspect of efficient
training is that systems relying on backtranslation
(Sennrich et al., 2016) incur substantial inference
costs during their training cycle.

The one-month gap between the news task dead-
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line and the efficient task deadline was too short
and some teams noted this reduced the conditions
they participated in. In addition, scaffolding would
reduce the barrier to participation. This could take
the form of providing a trained high-quality model,
providing distilled (Kim and Rush, 2016) train-
ing data, or even optimized models where only
the toolkit code is optimized. Providing this scaf-
folding would effectively require the organizers to
perform the full task before releasing it to partic-
ipants. If the training and test data are renewed
each year as a countermeasure to overfitting and a
participant that cheated, this would require more
time between the news task and release of the news
test set references.

German is a high resource language, which
raises the computational cost of participation. A
medium resource language would generally reduce
training costs and explore whether results apply in
this data condition.

The next task should aim to recruit more partici-
pants and perhaps separate the organization from
one of the participants.
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Abstract

Language domains that require very careful
use of terminology are abundant and reflect a
significant part of the translation industry. In
this work we introduce a benchmark for eval-
uating the quality and consistency of terminol-
ogy translation, focusing on the medical (and
COVID-19 specifically) domain for five lan-
guage pairs: English to French, Chinese, Rus-
sian, and Korean, as well as Czech to Ger-
man. We report the descriptions and results
of the participating systems, commenting on
the need for further research efforts towards
both more adequate handling of terminologies
as well as towards a proper formulation and
evaluation of the task.

1 Introduction

Language domains that require very careful use of
terminology are abundant. The need to adequately
translate within such domains is undeniable, as
shown by e.g. the different WMT shared tasks on
biomedical translation.

More interestingly, as the abundance of research
on domain adaptation shows, such language do-
mains are (a) not adequately covered by existing
data and models, while (b) new (or “surge") do-
mains arise and models need to be adapted, often
with significant downstream implications: consider
the new COVID-19 domain and the large efforts
for translation of critical information regarding pan-
demic handling and infection prevention strategies.

In the case of newly developed domains, while
parallel data are hard to come by, it is fairly straight-
forward to create word- or phrase-level terminolo-
gies, which can be used to guide professional trans-
lators and ensure both accuracy and consistency.

This shared task1 replicated such a scenario, and
invited participants to explore methods to incorpo-
rate terminologies into either the training or the

1http://statmt.org/wmt21/terminology-task.html

inference process, in order to improve both the ac-
curacy and consistency of MT systems on a new
domain.

2 Shared Task Details

The shared task focused on five language pairs,
with systems evaluated on:

• English to French
• English to Chinese
• English to Russian
• English to Korean
• Czech to German

The last three language pairs were “surprise" lan-
guage pairs. This shared task construction follows
a three-phase approach to ensure the generalizabil-
ity of the findings, inspired by other multilingual
shared tasks (Vylomova et al., 2020). In this set-
ting, only part of the evaluation language pairs (or
languages) are revealed from the beginning (the
Development Phase). In this elongate period (a
couple of months), the participants are provided
with data in some language pairs to develop their
methods. The second phase is the Generalization
phase, which is a short time period (two to three
weeks in this task’s case), in which additional (sur-
prise) language settings are revealed, only giving
the shared task participants enough time to deploy
a system, as opposed to allowing them enough
time to also perform extensive optimization on the
datasets. The final stage is the Evaluation phase,
in which the test data are released and the methods
are evaluated on these held-out data.

The goal of this 3-stage approach (with both de-
velopment and surprise language pairs) is to avoid
approaches that overfit on language selection, and
instead evaluate the more realistic scenario of need-
ing to tackle the new domain in a new language in
a limited amount of time. The surprise language
pairs were announced 3 weeks before the start of
the evaluation campaign.

The organizers provided training/development
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data and terminologies for the above language pairs.
Test sets were released at the beginning of the eval-
uation period. The participating teams were invited
to participate in any or all of the language pairs.

2.1 Data

Training The shared task primarily focused on a
constrained submission setting, in which the partic-
ipants could only use any parallel or monolingual
data listed in previous versions of WMT shared
tasks to train their systems. Some pre-trained
systems listed at the shared task announcement
(mBERT, XLM, XLM-R, mBART, mT5, M2M100)
were also allowed, but should be disclosed by the
participants. We note that the training data allowed
come from a “general" domain, as opposed to e.g.
highly specialized biomedical data, which in theory
should be more helpful for this setting.

Terminologies The shared task focused on adapt-
ing MT systems to the health domain in general,
with a particular interest in the surge COVID-19
domain.

The terminologies for the English to French,
Chinese, Russian, and Korean language pairs
were taken from the publicly available TICO-19
project (Anastasopoulos et al., 2020), a multi-
organizational project that created data to aid trans-
lators and evaluate MT systems on the COVID-19
domain. The terminologies were created by lin-
guists at Google and Facebook in consultation with
domain experts, providing translations for about
600 terms in each language. The terminologies are
publicly available.2

The Czech-German medical terminology was
generated automatically from Wikipedia. We con-
sidered all Wikipedia titles corresponding to the
category Health care or to one of its subcategories,
and all titles linked from the text. The list of
(sub)categories was manually filtered to only in-
clude relevant articles. We treated all page titles as
terms and relied on the Wikipedia language links
to provide their translations. Furthermore, we used
redirection links to obtain synonyms of both source
and target terms.

For all terminologies, we truecased the terms
using a pretrained truecaser and manually checked
the results. The Czech-German terminology was
eventually further reduced to only include terms
which occurred in the EMEA medical corpus.

2https://tico-19.github.io/

Development and Test The development and
test data for French, Chinese, and Russian were
taken from the publicly available TICO-19 eval-
uation data. The organizers additionally created
Korean translations of the English source-side sen-
tences, which will be made available as part of the
original TICO-19 datasets.3

The primary source of the Czech-German devel-
opment and test data is the EMEA4 parallel corpus
of the European Medicines Agency. We cleaned
it using the Moses tools, searched for terms and
their translations and tagged the occurrences. The
surface forms used for the search were collected
from a corpus of in-domain Wikipedia articles
which includes links to the lemmatized Wikipedia
titles/terms next to their inflected forms. Target
options were retrieved from the terminology and
enriched with surface forms. Out of all sentences
with terms, we selected around 3.5k sentences for
the dev set and 1.1k for the test set. The develop-
ment and test sets were tagged automatically but
the test set was manually corrected to get rid of the
artifacts caused by the automatic generation.

2.2 Ensuring Terminology Consistency on
the Evaluation Datasets

It is worth noting that, originally, none of the de-
velopment and test data were created under the
constraints imposed by the specific terminologies
we use. As such, we needed to ensure that the
data ‘complied’ with the terminologies in order to
guarantee a meaningful, accurate, and fair to the
participants evaluation of the shared task’s research
questions.

The TICO-19 project created the evaluation
dataset independently of the terminologies.5 In our
preliminary analysis, we first searched for all ter-
minology terms on the English side of the parallel
data, also searching over the lemmatized versions
of English sentences. The choice of starting from
the English side is due to two reasons: (a) it reflects
the actual translation direction the data was created
with and that we evaluate on, (b) it reduces the rate
of possible false negative/positive term matches
due to the lack of morphological complexity of
English.

3The data are freely available here: https://tico-19.
github.io/.

4https://opus.nlpl.eu/EMEA.php
5Although we note that the dataset went through an in-

dependent quality assurance process and several correction
iterations, if required.
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Example 1 (ID: Wikipedia_handpicked_4:1709)
Source: after blowing your nose , <term, src=’coughing’, tgt=’tousser’> coughing </term> or <term,

src=’sneezing’, tgt=’éternuer’> sneezing </term> .
Translation: après s ’ être mouché ou avoir toussé / éternué ;
Annotation 1: <term, src=’coughing’, tgt=’tousser’> Label: c) variation_correct
Annotation 2: <term, src=’sneezing’, tgt=’éternuer’> Label: c) variation_correct
Tagged translation: après s ’ être mouché ou avoir <term, src=’coughing’> toussé </term> / <term, src=’sneezing’>

éternué </term>;
Term-compl. transl.: N/A

Example 2 (ID: Wikipedia_handpicked_4:1703
Source: people can also become <term, src=’infected’, tgt=’infecté’> infected </term> with <term,

src=’respiratory disease’, tgt=’maladie respiratoire’> respiratory diseases </term> such as
<term, src=’influenza’, tgt=’grippe’> influenza </term> or the <term, src=’common cold’,
tgt=’rhume’> common cold </term> , for example , if they do not wash their hands before <term,
src=’touch’, tgt=’toucher’> touching </term> their eyes , nose , or mouth ( i . e . , mucous
membranes ) .

Translation: il est possible de contracter des maladies respiratoires telles que la grippe ou le rhume , par exemple
, en omettant de se laver les mains avant de se toucher les yeux , le nez ou la bouche ( c . - à - d . les
muqueuses ) .

Annotation 1: <term, src=’infected’, tgt=’infecté’> Label: e) not_used
Annotation 2: <term, src=’respiratory disease’, tgt=’maladie respiratoire’> Label: c) variation_correct
Annotation 3: <term, src=’influenza’, tgt=’grippe’> Label: b) exact_match_correct
Annotation 4: <term, src=’common cold’, tgt=’rhume’> Label: b) exact_match_correct
Annotation 5: <term, src=’touch’, tgt=’toucher’> Label: b) exact_match_correct
Tagged translation: il est possible de contracter des <term, src=’respiratory disease’> maladies respiratoires</term>

telles que la grippe ou le rhume , par exemple , en omettant de se laver les mains avant de se toucher les
yeux , le nez ou la bouche ( c . - à - d . les muqueuses ) .

Term-compl. transl.: il est possible d’etre <term, src= infected> infecté </term> avec des <term, src=’respiratory
disease’> maladies respiratoires</term> telles que grippe ou le rhume , par exemple , en omettant de
se laver les mains avant de se toucher les yeux , le nez ou la bouche ( c . - à - d . les muqueuses ) .

Example 3 (ID: CMU_1:77
Source: I have hay <term, src=’fever’, tgt=’fièvre’> fever </term> though too
Translation: mais j ’ ai le rhume des foins aussi
Annotation 1: <term, src=’fever’, tgt=’fièvre’> Label: a) does_not_apply
Tagged translation: N/A
Term-compl. transl.: N/A

Example 4 (ID: Wikipedia_handpicked_1:1311
Source: the strongest <term, src=’self quarantine’, tgt=’auto - quarantaine’> self - <term,

src=’quarantine’, tgt=’quarantaine’> quarantine </term> </term> instructions have been
issued to those in high risk groups .

Translation: les instructions de quarantaine individuelle les plus strictes ont été données aux personnes des groupes
les plus à risque .

Annotation 1: <term, src=’self quarantine’, tgt=’auto - quarantaine’> Label: e) not_used
Annotation 2: <term, src=’quarantine’, tgt=’quarantaine’> Label: b) exact_match_correct
Tagged translation: N/A
Term-compl. transl.: les instructions d’ <term, src=’self quarantine’> auto - quarantaine </term> les plus strictes ont

été données aux personnes des groupes les plus à risque

Table 1: Examples (from English-French TICO-19) of expected annotations that ensure that the evaluation datasets
are compliant with the terminologies. (‘Term-compl. transl.’ == ‘terminology-compliant translation’).

Having the source-side terms identified, we as-
sume all of them should be translated according
to the terminology. We then search the target side
(both original and lemmatized) for the translation
required by the terminology, and created a tag on
the source-side term if we found an exact match.
Last, we showed all sentences to professional trans-
lators, who were instructed to produce three types
of annotations, for each source-side term. The first
is a label describing whether (a) the automatically-
annotated source-side term should not be translated

by the terminology i.e. it is not really a term, (b)
the tagged exact match is correct, (c) the transla-
tion is compliant with the terminology even though
there is not an exact match, (d) the tagged exact
match is incorrect, or (e) the source term transla-
tion is applicable in the context, but not used. The
second annotation is a tagged translation for any
terms labeled as (a), (c), or (d), denoting exactly
which part of the target-side corresponds to the
source-side term. The third annotation is a tagged
terminology-compliant translation, where if any
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source-side terms are labeled with (d) or (e), we ask
the translators to rephrase the target side in order
to make it compliant with the terminology.

Table 1 shows example sentences from the
dataset, along with their expected annotations
from the translators. Below we provide the exact
instructions given to the annotators, which also
reference the same examples.

[begin annotation instructions]
About: This task is about determining if a trans-
lation is compliant with a terminology data base
and perform inline annotations on the translations
to mark the terms used.
Annotators receive: Source side input, together
with approximate terminology matches on the
source side.
Annotators return: For each term match, please
annotate a Label:

(a) does_not_apply: The terminology is not ap-
plicable in the context because of wrong mean-
ing on the source side (Example 3). Please use
a) if you think the translation should not com-
ply with the terminology matched, irrespective
of whether the translation uses it or not.

(b) exact_match_correct: The term translation
is found exactly as is in the target and its us-
age is correct (it fits the context and agrees
grammatically with the sentence). (Example
2)

(c) variation_correct: The translation is com-
pliant with the terminology, however the term
translation appears in a different form in the
target (Examples 1 and 2). If only part of the
term was preserved, use this label if this par-
tial term is sufficient and completely preserves
the meaning. Please use b) or c) if you think
the translation is compliant with the terminol-
ogy.

(d) incorrect: The term is found in the target, as
an exact match or as a variant, but it is used
incorrectly, either semantically or grammati-
cally: e.g. the term use does not convey the
required meaning, there is a wrong inflection
or other grammatical disagreement.

(e) not_used: The term translation is applicable
in the context, but not used (Example 2, 4).
Make this only for clear omissions: everything
else should be variation (correct or incorrect
variation) Please use d) or e) if you think the
translation is not compliant with the terminol-

ogy, but it should.
Tagged translation: For any terms that are labeled
as a), c) or d) please add inline markup to identify
the fragments of the translation that they match.
For each source sentence, please generate a
Tagged Terminology-compliant translation: if
any of d) to e) apply to any term in the sentence,
meaning the translation is not compliant with the
terminology for at least one term, please provide
an alternate translation that is compliant with the
terminology w.r.t all the terms in the sentence. If
there is no acceptable translation that would use
the expected target term then you should annotate
the target with a) does_not_apply. If all terms in
sentence match a) b) or c), leave this empty.
[/end annotation instructions]

Through this process, we ended up modifying
284 (9.25%), 251 (8.17%), 450 (14.65%), and 809
(26.34%) sentences in the French, Chinese, Rus-
sian, and Korean datasets respectively, in order
to make them terminology-compliant. Last, the
Czech-German terminologies were directly derived
from the parallel data hence they implicitly directly
reflect the underlying data, so there was no need
for the aforementioned process.

2.3 Evaluation

The evaluation of the shared task used several met-
rics, focusing on both translation accuracy and ter-
minological consistency.

• Translation accuracy was evaluated with stan-
dard reference-based MT metrics (BLEU,
chrF, BERTscore, COMET). In light of recent
work (Kocmi et al., 2021), we rank systems
according to the COMET metric.

• we also performed terminology-targeted eval-
uation (to evaluate for consistency). We use
the metrics outlined by Alam et al. (2021),
namely exact-match term accuracy, 1-TERm
score, and window overlap accuracy. We rank
systems according to term exact-match accu-
racy.

Briefly, the lemmatized exact-match term accu-
racy is an accuracy score that searches for exact
term translation matches (of the terminology re-
quired output) over either the lemmatized or the
original hypothesis. The window overlap accu-
racy identifies the translation of the term, and then
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scores its context, to measure how well a trans-
lated term is placed in the hypothesis. Last, the
1-TERm score is a modification of the TER met-
ric (Snover et al., 2006), biased to assign higher
edit cost weights for words belonging to a term
(and then simply reversed so that a higher score is
better). We refer the reader to Alam et al. (2021)
for further discussion of the metrics and supporting
arguments for their use.

Last, we evaluate whether differences between
systems are statistically significant using paired
bootstrap resampling (Koehn, 2004), over sentence-
level COMET and exact-match accuracy scores.
Based on this information we cluster statistically-
insignificantly-different (i.e. similarly performing)
systems when we produce their final rankings.

Winning submissions will be the ones that are
Pareto-optimal along the two evaluation metrics
that a good but also terminology-compliant system
should maximize: exact-match accuracy (which
captures terminology consistency) and COMET
(which captures general translation quality). As
such, there is the possibility that each language
pair will have multiple winning submissions.

3 Participants and System Descriptions

We received a total of 43 submissions from 9 teams.
Below we provide a short description of each sub-
mission.

CUNI (Jon et al., 2021b) Authors competed on
En-Fr language pair. The terminology constrains
are inserted as done in (Jon et al., 2021a). The
target translation of specific terms is appended to
the source sentence as a suffix and separated by
a special token (if multiple constraints occur for
a single sentence, an additional token separator is
added). In order to have more training data of this
form, synthetic constraints are added by sampling
random token subsequences from the target sen-
tence and appending them to the source sentence
as described earlier. Note that since no modifica-
tion is done on target side of the parallel data, no
post-processing of the MT output is needed. As
NMT systems trained from this pre-processed data
sometimes fail to generate inflection in the trans-
lation output, terminology tokens appended to the
source are lemmatized for both training and infer-
ence which brings improvements over the different
shared task metrics.

Huawei (HW-TSC) (Wang et al., 2021b) Au-
thors submitted output of an unconstrained system
to En-Zh language pair. They train a Transformer
big architecture on both out-of-domain and in-
domain (biomedical) data. Parallel data in biomed-
ical domain is augmented using more resources
from TAUS6 and back-translation of monolingual
in-domain data is also applied. For the terminology
shared-task, authors applied the system created for
the biomedical translation shared task (described
in (Wang et al., 2021b)) without any specific adap-
tation except appending the terminology dictionary
to the end of training data. No separate paper was
submitted for the terminology task.

Kakao Enterprises (KEP) (Bak et al., 2021)
Authors submitted to En-Fr, En-Zh, En-Kr, Cz-De.
A detailed data cleaning is performed, removing
between 6% and 14% of the data. In-domain data
is back-translated (only for En-Fr and En-Kr) and
is selected by a a combination of keywords spot-
ting and domain similarity, measured as perplexity
of an in-domain language model. A first model is
obtained by adding to that synthetic language pairs
obtained by verbalizing the terminology database.
The only language pair were this verbalization does
not yield improvement is Cz-De, whose terminol-
ogy was automatically constructed. Models ob-
tained in this manner were submitted for En-Zh,
En-Kr, Cz-De.

For En-Fr additional techniques are used: as
those obtained the highest COMET score we detail
them there. The final system for that language pair
is trained inspired by techniques from (Bergmanis
and Pinnis, 2021a; Dinu et al., 2019), but without
modifying the model architecture. The source data
is modified by adding immediately after a source
term the corresponding target lemma, separated
by special tokens. The model is pre-trained on
randomly selected verbs and nouns, and fine-tuned
using the terminology ontology. Interestingly, the
pre-trained model - while improving Exact Match
with respect to the baselines - degrades all other
metrics. That degradation is however recovered
and even improved when fine-tuning. For En-Ko
and Cs-De ensemble models were used.

Lingua Custodia (LC) (Ailem et al., 2021a)
The team participated in En-Fr, En-Ru and En-Zh

tasks. They build on top of (Ailem et al., 2021b)
by inserting the terminology as constraints in the

6https://md.taus.net/corona
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source sentence. Such constraints represent spe-
cial tags around the detected source term followed
by the target term from the terminology, the origi-
nal source term is masked. Presence of such con-
straints at training encourages the model to copy
the correct term translation. In case where multiple
translations are proposed by the terminology, the
one which is present in the target sentence is chosen
at training time. At inference time the translation
is selected at random. In order to enforce learning
signal, the team enriched parallel data with back-
translation of monolingual data that contains termi-
nology. Authors show that the proposed method
allows to improve significantly for standard MT
evaluation metrics, as well as terminology oriented
metrics (Alam et al., 2021) over the standard base-
line without terminological constraints.

PROMT (Molchanov et al., 2021) The team
submitted two systems (En-Fr and En-Ru), both
of which are transformer models implemented on
MarianMT (Junczys-Dowmunt et al., 2018). The
first approach uses a rule-based system (SmartMT)
to modify the neural system’s output, which ex-
tracts rules only for noun phrases. If the desired
output of a source term is not found in the NMT
output, the rule-based system identifies the term’s
current translation and its morphological analysis
(case and number) in order to substitute it with the
terminology-provided translation in the desired in-
flection. The second approach is an adaptation of
(Dinu et al., 2019) to MarianNMT toolkit. Each
source terminological term is followed by its trans-
lation using special tokens to signal these termi-
nological entries in the text (and impose a soft-
constraint to the translation system). Model is re-
trained from such pre-processed data. Data aug-
mentation is also performed to create more syn-
thetic data with terminology markup. Both ap-
proaches are rather close in performance.

SPECTRANS (Ballier et al., 2021) This team
sumbitted to En-Fr language pair. They experi-
mented with 2 open source NMT toolkits JoyeNMT
(Kreutzer et al., 2019) and OpenNMT (Klein et al.,
2017). After the first experiments with Europarl
they retained OpenNMT which gave better per-
formance. Their best runs were trained on Com-
monCrawl augmented with terminological data.
They provided qualitative analysis of terminology-
related translations and discuss the limitations of
the terminologies provided for the task.

SYSTRAN (Pham et al., 2021) This participant
submitted to En-Fr language pair and proposed two
methods to incorporate terminology. The first ap-
proach, based on (Michon et al., 2020), replaces
source and target terminological terms by place-
holders including a unique identifier plus mor-
phological information (masculine/feminine and
singular/plural). In a variant of this method, the
source terminology word form is also incorporated
in the source stream. At training time, NMT model
is learnt on such pre-processed data and a post-
processing step recovers the word tokens from the
placeholders after inference. The second approach
(which lead to better performance) consists in learn-
ing a copy behaviour for terminological tokens at
training time: terminology translations are inserted
in the source sentence either by appending the tar-
get term (its surface or lemma form) to its source
version, or by directly replacing the original term
with the target one. A NMT system is trained on
such pre-processed data and no post-process for re-
covering terminology tokens is needed at inference
as target side of parallel data remains untouched.
For both approaches however, a grammatical er-
ror correction is applied to the MT hypotheses
in order to limit morphology errors. The impact
of such post-processing on BLEU is positive, al-
though small.

TermMind (Wang et al., 2021a) The team sub-
mitted to En-Zh task. Similar to (Ailem et al.,
2021a) they build on top of (Ailem et al., 2021b)
by inserting terminological constraints in the train-
ing data. In the case where multiple translations
are available they augment source sentence with
all possible translations (which is different from
(Ailem et al., 2021a) who kept only one transla-
tion). In order to strengthen the learning signal
participants extend given terminologies with bi-
phrases extracted from parallel data and integrate
the constraints for those biphrases as well. Finally,
they used backtranslation, fine tuning on pseudo
in-domain data and ensembling to strengthen the
baseline model. Ensembling methods seem to lead
to the best results.

TILDE (Bergmanis and Pinnis, 2021c) The
team participated to En-Fr, En-Ru and Cz-De lan-
guage pairs. They focused primarily on terminol-
ogy filtering, outlining several notable shortcom-
ings of the Shared Task’s terminologies, most of
which are due to the use of terminologies intended
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for human translators (as opposed to terminolo-
gies created specifically for integration with MT
systems). They devise two strategies for selecting
among multiple target candidates for a source term,
finding that an alignment-based technique outper-
forms the option of always selecting the first ter-
minology entry. The MT systems are transformer-
based using MarianMT, also integrating the method
of Bergmanis and Pinnis (2021b) for incorporating
terminology constraints in a soft manner.

4 Results and Discussion

The results and rankings for English-French are
listed in Table 2 and for English-Chinese in Ta-
ble 3. The results for the surprise language pairs
are in Table 4 for English-Russian and Table 5 for
English-Korean and Czech-German.

In the English-French translation task, there are
two winning submissions. Two ProMT submis-
sions ranked first according to exact-match ac-
curacy (along with a CUNI submission), but the
ProMT.soft submission is statistically significantly
better than the other two with respect to COMET,
hence it is one of the winning submission. The sec-
ond winning submission is the one by KEP, which
ranks first according to COMET, but also accord-
ing to 1-TER, which indicates that it might strike a
good balance between general translation quality
and term consistency.

In the English-Chinese translation task there is a
single winning submission, the one by TermMind
(system 2), which ranks first according to both met-
rics. We note that another submission (HW-TSC)
is statistically significantly better than all submis-
sions in all metrics except for 1-TERm, but this
submission is an unconstrained one, and hence it is
excluded from the rankings.

In English-Russian the ProMT submission
ProMT.soft is the clear winner, ranking as the sin-
gle best system according to exact-match accuracy,
as well as one of the two best systems according to
COMET. Interestingly, the other system that ranks
first according to COMET (ProMT.smartnd.v2)
ranks first according to 1-TERm score, but also last
according to exact-match accuracy, denoting per-
haps an orthogonality between the goals of termino-
logical consistency and general translation quality,
where prioritizing one over the other leads to per-
formance drops along the other dimension.

Last, the submissions by KEP are the winning
ones for English-Korean and Czech-German. For

the former language pair it was the only submit-
ted system (see discussion on potential reasons),
while for Czech-German it ranked for best system
according to exact match accuracy with the other
submission (by TildeMT), but was significantly bet-
ter according to COMET. Although TildeMT used
a more sophisticated approach to the terminology
translation, the KEP team had a stronger baseline
and used ensembling which significantly increased
both general translation quality and the term accu-
racy.

4.1 General Quality
It was pointed out by Bergmanis and Pinnis (2021c)
that a majority of terms from the terminologies
were represented in the training corpora, which
could lead to an underestimation of the importance
of terminology in the metrics. The results show
that using terminology constrains leads to an im-
provement over the baselines trained without it, but
the effect would be more substantial if the train-
ing corpora were filtered to exclude sentences with
terms.

Perhaps a future iteration of the shared task could
include an explicitly novel domain, although how
well such a domain indeed exists or is even possi-
ble in the age of big data where our models can be
trained on a large part of the Internet is debatable.
An alternative is to carefully filter the training cor-
pora to remove sentences with the terms, to create
a truly challenging domain adaptation with termi-
nologies setting.

4.2 Terminology Consistency
The discussion of the Shared Task taught us that
narrow terminology with unambiguous translations
is more suitable for terminology-focused machine
translation than a broader and more universal termi-
nology with several target options. Unlike human
translators who naturally choose from translation
alternatives, it is difficult for a MT system to filter
out noisy or inappropriate word forms. While a
narrow terminology can ensure a proper and exact
translation of terms, e.g. when translating a lecture
with several special terms known in advance, we
believe that a broad terminology can serve for more
general domain adaptation using existing lexical
resources. We note that several participating teams
highlighted this issue, e.g. Ballier et al. (2021);
Bergmanis and Pinnis (2021c).

The TICO terminologies in a few cases included
additional comments aimed at translators who are
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English-French Rankings Terminology-focused Translation Quality
accoding to Exact-Match Window Overlap 1-TERm BLEU

System ex-m. acc. COMET Accuracy (2) (3) Score COMET (truecased)

ProMT.soft 1-3 3 0.974 0.359 0.352 0.625 0.752 47.69
ProMT.smartnd 1-3 4-5 0.966 0.357 0.348 0.626 0.746 47.89
CUNI-Primary_not_scored 1-3 6-10 0.967 0.342 0.334 0.601 0.732 46.92
KEP 4-6 1 0.950 0.343 0.337 0.632 0.781 49.60
CUNI-Primary_lemm 4-6 6-10 0.946 0.340 0.332 0.729 46.80
CUNI-Contr._not_scored 4-6 12-18 0.950 0.339 0.331 0.588 0.693 45.48
SYSTRAN-app+_corr 7-17 2 0.934 0.355 0.349 0.631 0.766 48.87
SYSTRAN-app_corr 7-17 6-10 0.938 0.283 0.297 0.614 0.729 45.81
SYSTRAN-mrk_corr 7-17 6-10 0.938 0.283 0.297 0.614 0.729 45.81
SYSTRAN-mrk+_corr 7-17 6-10 0.938 0.283 0.297 0.614 0.729 45.81
TildeMT 7-17 11 0.939 0.329 0.322 0.593 0.706 45.04
CUNI-Contr._sf_choices 7-17 12-18 0.923 0.313 0.310 0.557 0.682 42.72
LinguaCustodia-Sys1 7-17 12-18 0.920 0.343 0.336 0.595 0.677 44.49
LinguaCustodia-Sys2_new 7-17 12-18 0.919 0.344 0.335 0.598 0.681 44.90
LinguaCustodia-Sys2 7-17 12-18 0.919 0.345 0.334 0.591 0.676 44.21
CUNI-Contrastive_sf 7-17 12-18 0.918 0.321 0.317 0.684 44.08
CUNI-Contr._lemm_choices 7-17 12-18 0.913 0.323 0.317 0.567 0.678 43.78
ProMT.baseline 18 4-5 0.898 0.339 0.331 0.624 0.745 47.50
SPECTRANS3-CC-fr_en 19 19 0.871 0.296 0.296 0.507 0.596 40.02
SPECTRANS 20 20 0.795 0.275 0.267 0.495 0.296 34.93
SPECTRANS_2 21 21 0.640 0.248 0.241 0.480 0.212 33.59

Table 2: English-French results. The systems are ranked and clustered according to exact-match accuracy (secon-
darily according to COMET) based on statistical significance tests. We highlight the best score per metric.

English-Chinese Rankings Terminology-focused Translation Quality
accoding to Exact-Match Window Overlap Acc. 1-TERm BLEU

System ex-m. acc. COMET Accuracy (2) (3) Score COMET (truecased)

HW-TSC* 1* 1* 0.886 0.282 0.285 0.514 0.716 40.73
TermMind-sys2 2 2 0.856 0.271 0.274 0.534 0.709 40.47
LinguaCustodia - Sys1-v2 3-6 4 0.828 0.225 0.227 0.438 0.643 29.61
LinguaCustodia - Sys1 3-6 5-7 0.829 0.223 0.225 0.437 0.637 29.16
LinguaCustodia - Sys2 3-6 5-7 0.829 0.222 0.225 0.433 0.635 28.92
LinguaCustodia - Sys1-v3 3-6 5-7 0.828 0.241 0.244 0.472 0.641 33.73
TermMind 7-8 3 0.668 0.225 0.227 0.513 0.696 37.51
KEP 7-8 8 0.645 0.186 0.187 0.249 0.229 27.12

Table 3: English-Chinese results. The systems are ranked and clustered according to exact-match accuracy based
on statistical significance tests. We highlight the best score per metric. *: unrestricted system.

English-Russian Rankings Terminology-focused Translation Quality
accoding to Exact-Match Window Overlap Acc. 1-TERm BLEU

System ex-m. acc. COMET Accuracy (2) (3) Score COMET (truecased)

ProMT.soft 1 1-2 0.909 0.254 0.255 0.482 0.631 31.06
ProMT.smartnd.v1 2-5 3 0.857 0.251 0.250 0.482 0.624 31.52
LinguaCustodia - Sys1 2-5 5-8 0.854 0.248 0.249 0.472 0.598 28.84
LinguaCustodia - Sys1-v2 2-5 5-8 0.849 0.245 0.247 0.473 0.600 28.81
TildeMT-v2 2-5 9-10 0.863 0.226 0.226 0.457 0.550 28.14
LinguaCustodia - Sys2-v2 6-7 5-8 0.849 0.247 0.248 0.474 0.604 29.13
LinguaCustodia - Sys2 6-7 5-8 0.847 0.242 0.244 0.471 0.601 28.97
ProMT.baseline 8-9 4 0.823 0.243 0.241 0.481 0.620 31.49
TildeMT 8-9 9-10 0.817 0.219 0.219 0.456 0.548 28.16
ProMT.smartnd.v2 10 1-2 0.788 0.243 0.241 0.487 0.634 31.92

Table 4: English-Russian results. The systems are ranked and clustered according to exact-match accuracy (and
secondarily according to COMET) based on statistical significance tests. We highlight the best score per metric.

directly looking at them, as opposed to the format
that terminologies aimed at machines would use.
We will take this into account in future iterations

of the shared task – it is worth noting, though, that
if most available terminologies are designed for
human translators, it should probably be up to the
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Rankings Terminology-focused Translation Quality
Language Pair System accoding to Exact-Match Window Overlap Acc. 1-TERm BLEU

ex-m. acc. COMET Accuracy (2) (3) Score COMET (truecased)

English-Korean KEP 1 1 0.569 0.067 0.065 0.251 0.581 16.52

Czech-German KEP 1-2 1 0.866 0.428 0.424 0.474 0.694 34.10
TildeMT 1-2 2 0.871 0.390 0.385 0.434 0.641 30.01

Table 5: English-Korean and Czech-German results. The systems are ranked and clustered according to exact-
match accuracy based on statistical significance tests. We highlight the best score achieved per metric.

NLP/ML/MT practitioners to figure out how to best
use the existing data, rather than demanding new,
dedicated resources. Similarly, when compiling the
Czech-German terminology, we aimed at creating a
universal lexicon of medical terms with a wide cov-
erage. Many terms have multiple translations and
we used the Wikipedia redirection links as a proxy
for synonyms. Unfortunately, they became a source
of noise because not all redirects are synonyms and
not all synonyms are appropriate in every context.
We tackled the former by semi-automatic filtering
and left the latter up to the candidate translation
engine to select the version of the word appropriate
for the given context. Unfortunately, some prob-
lematic terms remained even in the final version of
the terminology, as pointed out by Bergmanis and
Pinnis (2021c).

4.3 Development vs Surprise Language Pairs

The participants had significantly more time to
develop systems for English-French and English-
Chinese, as opposed to the other three surprise
language pairs. This is reflected partly on the total
submitted systems in each language pair, where
English-Korean and Czech-German received only
1 and 2 submissions respectively. We hypothesize
that another explanation for this lies in the much
more low-resource setting of these two language
pairs, which generally tend to lead to lower qual-
ity systems, which might in turn discourage the
participants.

A second potential explanation could lie in the
general cohort of participants, which is largely com-
prised of teams from industry (the only exception is
the CUNI team that is an academic one). Perhaps
the two low-resource language pairs are simply
translation directions that the participating institu-
tions are less interested in – which we take as an
indication for the importance of including such less-
researched, low-resource, under-served language
pairs in future iterations of this shared task, to en-
courage research in languages and language pairs

beyond those with the most obvious commercial
value.

4.4 Czech-German Analysis
We believe that even with the automatically gen-
erated resources this task provided an important
insight into translation of terms between two lin-
guistically different and morphologically rich lan-
guages such as German and Czech.

When analyzing the results, we focused on the
phenomenon of nominal compounding in German.
A natural translation of terms into German often
results in a compound of a term and a general
word, e.g. Hormonproduktion (production of hor-
mones), or two terms, e.g. Plasmaprotein (plasma
protein). Compounding is an important aspect
of terminology-based translation to German that
the model should have the capacity to create com-
pounds from terminology entries.

The automatic metrics favor translations into two
separate words, even though a compound is often
more natural. We analyzed how candidate transla-
tions handled concrete cases; see Table 6 for an ex-
ample. Out of 262 sentences with this phenomenon
in the reference, the correct compound word was
generated in 112 and 133 cases by the TildeMT and
KEP systems, respectively. Both systems generate
compounds from terms, although the former was
trained with terminology constraints and the latter
only saw the terms during explicit training on the
terminology entries.

5 Related Work

Phrase-based statistical MT systems (Koehn et al.,
2003) allowed for fine-grained control over the
system’s output by design, e.g. by incorporating
domain-specific dictionaries into the phrase table,
or by forcing translation choices for certain words
or phrases. On the other hand, the currently state-
of-the-art approach of neural machine translation
(NMT) does not inherently allow for such con-
trol over the system’s output. Some approaches
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SRC Mozkové
:::::::
metastázy vykazovaly nekonsistentní nebo

žádnou fluorescenci.
. . .

::::::
krvácení do svalů nebo hematom.

TGT Hirn
::::::::
metastasen zeigten inkonsistente oder keine Fluo-

reszenz.
. . . Muskel

:::::
blutung oder Hämatom.

TildeMT Zerebrale
::::::::
Metastasen zeigten eine inkonsistente oder

keine Fluoreszenz.
. . .

::::::::
Blutungen in den Muskeln oder Hämatom

KEP Hirn
::::::::
metastasen zeigten eine inkonsistente oder keine

Fluoreszenz.
. . . Muskel

:::::
blutung oder Hämatom.

Table 6: Examples of term compounding in German where candidates handle term translation differently.

incorporate dictionaries through interpolation of
the decoder’s probability with a lexical probabil-
ity based on source-side attention matches (Arthur
et al., 2016). Perhaps the most common paradigm
is constrained decoding (Hokamp and Liu, 2017;
Anderson et al., 2017; Post and Vilar, 2018, inter
alia), where the terminology matches are presented
as hard constraints that the beam search must sat-
isfy.

Constrained decoding is not without disadvan-
tages: it can be computationally expensive and
it is often brittle when applied in realistic condi-
tions (Dinu et al., 2019). To this end, some works
(Dinu et al., 2019; Bergmanis and Pinnis, 2021b;
Exel et al., 2020; Niehues, 2021) introduced ap-
proaches where the terminological constraints are
provided as input to the NMT as additional anno-
tations inline with the source sentence. As such,
these can be considered as “soft" constraints, as
there is no guarantee that the NMT system will
indeed produce an output containing them.

In any case, the best practice for incorporating
terminological constraints in NMT is both under-
researched and still not settled yet, especially in the
case of morphologically rich languages, underlying
the need for this shared task.

6 Conclusion

We presented the results of the first edition of the
WMT21 shared task on MT using Terminologies.
For the purposes of the task we created new eval-
uation datasets, annotated by professional transla-
tors for their terminology consistency, based on
the TICO-19 data for English to French, Chinese,
Russian, and Korean, as well as a dataset for Czech-
German based on the EMEA corpus.

The Shared Task received 43 submissions from
9 teams, 8 from industry and 1 from academia,
underscoring the general applicability of our fo-
cus problem (‘how best can we use a terminology
in MT?’) on real-world settings. Most submis-
sions add soft or hard constraints on the source

side that the MT learns to handle, as proposed in
(Dinu et al., 2019), but other novel approaches in-
clude terminology filtering for selecting between
multiple options provided by the terminology, or
replacing terms with placeholders to be inserted
after the MT has produced the output. We devised
multiple terminology-targeted metrics and evalu-
ated systems along both these metrics as well as
general translation quality. In most cases we find
that, encouragingly, one does not necessarily have
to sacrifice general translation quality for terminol-
ogy compliance, as long as the terminology is of
adequate standards.

In future iterations of the Shared Task, we will
take into account the distinction between termi-
nologies created for humans (which are abundant)
and terminologies created specifically for MT sys-
tems which need to be created, and have different
requirements/specifications that the former. In ad-
dition, we will attempt to consider a new domain,
rather than focusing again on the biomedical do-
main and specifically COVID-19 (although this is
a great example of a “surge" domain that imme-
diately required that translation providers and MT
engines adapt in order to handle translations of
large volumes of text in this novel domain).
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Toms Bergmanis and Mārcis Pinnis. 2021a. Facilitat-
ing terminology translation with target lemma anno-
tations. In Proceedings of the 16th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Main Volume, pages 3105–3111,
Online. Association for Computational Linguistics.
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Abstract

In the sixth edition of the WMT Biomed-
ical Task, we addressed a total of eight
language pairs, namely English/German,
English/French, English/Spanish, En-
glish/Portuguese, English/Chinese, En-
glish/Russian, English/Italian, and En-
glish/Basque. Further, our tests were
composed of three types of textual test sets.
New to this year, we released a test set of
summaries of animal experiments, in addition
to the test sets of scientific abstracts and
terminologies. We received a total of 107
∗ The organization of the biomedical task is complex and

relies on varied essential contributions from many individuals.
Authors are listed randomly because we could not do justice
to the contributors using a single ranking. We would like
to acknowledge MN for dataset preparation and general task
organization, CG for creating baselines, AN for compiling
information on participants methods, AJY for conducting the
automatic evaluation, LY, DW, MN, FV, AS, AN, GMDN, RR,
PT, MVN, AJY for evaluating the alignment of the test sets,
and LY, DW, MN, FV, AS, MO, NM, AN, RB, GMDN, RR,
PT, MVN, AJY for conducting the manual evaluation. All
authors approved the final version of the manuscript. E-mail
for contact: mariana.lara-neves@bfr.bund.de

submissions from 15 teams from 6 countries.

1 Introduction

Machine translation (MT) is the automatic trans-
lation of textual resources from one language to
another. It is an important component in many ap-
plications and natural language processing (NLP)
pipelines in the clinical and biomedical domains.
On the one hand, some resources, such as specific
biomedical terminologies, are only available for a
limited number of languages. English is especially
well covered in the Unified Medical Language Sys-
tem (UMLS) (Lindberg et al., 1993) while other
languages are not (Wilde, 2021). On the other hand,
there are many publications written in languages
other than English and are therefore inaccessible to
researchers who cannot read those languages.

This context has been the overarching goal for
the organization of the WMT Biomedical task. The
first edition took place in 2016 and addressed sci-
entific abstracts for English/French (both direc-
tions), English/Spanish (both directions), and En-
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glish/Portuguese (both directions) (Bojar et al.,
2016). The subsequent shared task included six
new language pairs, namely, English into Czech,
English into German, English into Hungarian, En-
glish into Polish, English into Romanian, and En-
glish into Swedish, in addition to a new type of doc-
ument, viz., health information texts (Jimeno Yepes
et al., 2017). In 2018, we started using MED-
LINE® as the source for our scientific abstracts
and addressed a new language pair, namely En-
glish/Chinese (both directions), in addition to some
of the languages already considered in the previous
year (Neves et al., 2018). In the subsequent year,
we introduced the translation of biomedical termi-
nologies (from English into Spanish), in addition
to the MEDLINE abstracts for the five language
pairs from the 2018 task (Bawden et al., 2019). In
2020, we added three new language pairs, namely
English/Russian (both directions), English/Italian
(both directions), and English into Basque (en2eu)
(Bawden et al., 2020).

For this year’s shared task1, we address the same
eight language pairs as last year (Bawden et al.,
2020) on the same translations tasks (scientific ab-
stracts and terminologies). The main novel feature
this year is a new test set composed of summaries of
planned animal experiments to be translated from
German into English. The list below summarizes
the language pairs addressed this year:

• English to Basque (en2eu)

• English to Chinese (en2zh) and Chinese to
English (zh2en)

• English to French (en2fr) and French to En-
glish (fr2en)

• English to German (en2de) and German to
English (de2en)

• English to Italian (en2it) and Italian to English
(it2en)

• English to Portuguese (en2pt) and Portuguese
to English (pt2en)

• English to Russian (en2ru) and Russian to
English (ru2en)

• English to Spanish (en2es) and Spanish to
English (es2en)

1http://www.statmt.org/wmt21/
biomedical-translation-task.html

Finally, we highlight the new aspect that we in-
troduced in the 2021 edition of our shared task,
namely, a novel test set for the automatic trans-
lation of summaries of animal experiments from
German into English (see Section 2.4).

2 Training and test data

No additional training data was released for any
of the language pairs, with the exception of en2eu,
where we provide last year’s test set as new train-
ing data for abstracts and terminology. As for the
tests sets, we released test sets for scientific ab-
stracts, terminologies, and summaries of animal
experiments as follows:

• Scientific abstracts:

– English to Basque
– Chinese/English (both directions)
– French/English (both directions)
– German/English (both directions)
– Italian/English (both directions)
– Portuguese/English (both directions)
– Russian/English (both directions)
– Spanish/English (both directions)

• Terms from biomedical terminologies:

– English to Basque

• Summaries of animal experiments:

– German to English

Table 1 shows the number of documents, sen-
tences and terms (if applicable) for each test set. In
this section, we give details on the construction of
the test sets.

2.1 MEDLINE test sets
Similar to previous years, we retrieved recent MED-
LINE abstracts that were available in both English
and one of the seven other languages we evaluate
on (namely Chinese, French, German, Italian, Por-
tuguese, Russian, and Spanish). The abstracts in
both languages were processed as follows:

• language detection with the Python
langdetect library;2

• sentence splitting using the Python syntok
library;3

2https://pypi.org/project/langdetect/
3https://github.com/fnl/syntok
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Language pairs Abstracts Terminology Summaries
Documents Sentences Terms Documents Sentences

en2eu 76 450 2,736 - -

de2en 50 480/481 - 30 648
en2de 50 516/501 - - -

es2en 50 445/444 - - -en2es 50 486/501 -

fr2en 50 365/351 - - -en2fr 50 384/394 -

it2en 43 432/407 - - -en2it 44 460/448 -

pt2en 50 468/484 - - -en2pt 50 494/486 -

ru2en 50 428/436 - - -en2ru 50 354/373 -

zh2en 50 341/393 - - -en2zh 50 425/375 -

Table 1: Number of documents, sentences and terms in the test sets released for this shared task. Some abstracts
had to be removed from the it2en and en2it during the evaluation phase.

• sentence alignment using the GMA tool4 for all
language pairs except for English/Chinese, for
which the Champollion tool5 was used;

• random retrieval of 100 abstracts for each lan-
guage pair;

• and manual validation of the selected abstracts
using the “quality checking” task in the Ap-
praise tool (Federmann, 2010), of which the
results are shown in Table 2.

Table 2 shows that the highest quality was ob-
tained for the zh/en test sets, with up to 94.5%
perfectly aligned sentences. This is actually not a
surprise, since these were the only test sets where
an expert manually discarded abstracts that are
clearly non-parallel, e.g. when the entire English
abstract corresponds to only the first half of the
Chinese abstract. A high quality of over 80% was
also obtained for four language pairs, namely pt/en
(90.4%), es/en (88.4%), fr/en (86.0%), and it/en
(80.3%).

For en/fr, the automatic alignment was manu-
ally reviewed. In this process, the overall corpus
size increased from 630 sentences to 775 sentences,
mainly through the addition of article titles that
had not been collected in English, and did not have
any equivalent in French. In terms of alignment
quality, it is important to note that the problematic

4https://nlp.cs.nyu.edu/GMA/
5http://champollion.sourceforge.net/

categories Source>Target and Target>Source are
significantly reduced in the revised corpus. The
de/en test set obtained a slightly lower quality of
77.7%, while only 54.2% of ru/en sentences were
perfectly aligned. Similar to previous years, the au-
tomatic evaluation was carried out for all sentences
as well as only for the perfectly aligned (hereafter
referred to as “OK”) ones.

2.2 Basque abstracts
As we mentioned in (Bawden et al., 2020), the
presence of Basque in MEDLINE is almost non-
existent. In this edition we have again used the
abstracts from the journal Osagaiz6 as part of the
test set, but due to the low production of this journal
written in Basque, we have added abstracts from the
journal Gaceta Médica de Bilbao7, which contains
abstracts written in Spanish, English, and Basque.
From the 76 documents and 450 sentences men-
tioned in table 1, 18 documents and 119 sentences
are from the Osagaiz journal, and 50 documents
and 331 sentences from Gaceta Médica de Bilbao.
The sentences were manually aligned by human
annotators.

2.3 Terminologies
In the WMT20 edition, on behalf of Osakidetza
(Basque Public Health System), we released 27,900
terms of the Basque ICD-10-CM edition, 2,000 of

6http://www.osagaiz.eus
7http://www.gacetamedicabilbao.eus/index.php/gacetamedicabilbao
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Language OK Source>Target Target>Source Overlap No Align. Total

de/en 710 (77.7%) 38 (4.2%) 40 (4.4%) 34 (3.7%) 92 (10.0%) 914
es/en 792 (88.4%) 55 (6.1%) 15 (1.7%) 7 (0.8%) 27 (3.0%) 896
fr/en 540 (85.7%) 68 (10.8%) 10 (1.6%) 1 (0.2%) 11 (1.7%) 630

fr/en § 666 (86.0%) 9 (1.2%) 1 (0.1%) 8 (1.0%) 91 (11.7%) 775
it/en 666 (80.3%) 51 (6.2%) 26 (3.1%) 13 (1.6%) 73 (8.8%) 829
pt/en 838 (90.4%) 54 (5.8%) 18 (2.0%) 15 (1.6%) 2 (0.2%) 927
ru/en 371 (54.2%) 79 (11.5%) 63 (9.2%) 25 (3.6%) 147 (21.5%) 685
zh/en 658 (94.5%) 16 (2.3%) 9 (1.3%) 1 (0.2%) 12 (1.7%) 696

Table 2: Statistics (number of sentences and percentages) of the quality of the automatic alignment for the MED-
LINE test sets. For each language pair, the total number of sentences corresponds to the 100 documents that
constitute the two test sets (one for each language direction). § Results after manual correction of sentence seg-
mentation and/or alignment.

which were used for evaluation. This year, we
updated some of the Basque translations for cor-
rectness and cohesion. The full set from last year
was released for training and a new set of 2,736
terms was used as a test set.

2.4 Summaries of planned animal
experiments

We released a test set of 30 summaries of planned
animal experiments that were retrieved from the
AnimalTestInfo database8, which is maintained by
the German Federal Institute for Risk Assessment
(BfR). The summaries describe planned and ap-
proved animal experiments to be carried out in
Germany, which are anonymously stored in this
online database in a bid to improve transparency
(Bert et al., 2017). The aim of considering these
summaries in this shared task is to assess the qual-
ity of MT of these documents, which is relevant for
a couple of projects currently being carried out in
the BfR, such as mining for alternative methods to
animal experiments. A previous larger training set
and test set from this database has been previously
used in another shared task for the assessment of
the automatic assignment of ICD-10 codes (Neves
et al., 2019). The summaries contain following
information (see Figure 1 for an example):

• title;

• aim of the study (e.g., basic research);

• benefits of the experiments;

• species and number of animals to be used;

• comments regarding the compliance to the so-
called 3R principle (replacement, reduction,
refinement of animal experiments).

The summaries were selected from the database
in a way that addressed various animal species, and
they were then manually translated by an English
native speaker with a high knowledge of German.
Before releasing the data, we converted the sum-
maries into a format that is suitable for the WMT
shared task.

3 Baselines

This year we had more choices for the baselines.
As before, one option was to use our own mod-
els, trained with Marian NMT (Junczys-Dowmunt
et al., 2018) on biomedical texts. A new option
was to use pre-trained models, not specialized on
biomedical texts. We used our own models as base-
lines for the following language directions: en2de,
en2es, en2fr, en2pt, de2en, es2en, fr2en, pt2en. For
en2zh, en2ru, en2it, en2eu, zh2en, ru2en, it2en, we
used the pre-trained generic Marian NMT models
available in the HuggingFace “Transformers” li-
brary.9 An interesting question was whether the
specialized models were still better than the newest
out-of-the-box pretrained models. To this end,
for en2de and en2fr we also tested the recent T5-
large10 model (Raffel et al., 2019). For en2fr, it out-
performed our own model (trained on biomedical
data) by almost 3 BLEU points, whereas for en2de
the two systems were fairly comparable. The per-
formance of the systems submitted starts from close
to baseline for some language directions (e.g. for
en2fr, en2es, de2en), whereas for other languages
all systems were much better than the baseline
(e.g. es2en, pt2en and especially ru2en).

8https://animaltestinfo.de/
9https://huggingface.co/Helsinki-NLP

10https://huggingface.co/t5-large
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Figure 1: Example of a summary for a planned animal experiment. Source: https://animaltestinfo.de/
dsp_show_ntp.cfm?ntpID=19362

4 Teams and systems

This year, we received a total of 107 runs from
15 teams from the following countries: China (8),
Spain (2), France (1), Japan (1), Pakistan (1), and
USA (2). Table 3 presents the list of teams. We
can note four returning teams: Huawei_AGI (most
team members were part of the Huawei United
team in 2020), LISN (LIMSI in 2020), nrpu-fjwu
and TMT.

Table 4 presents an overview of the runs submit-
ted by each team for language directions translating
from English. Table 5 presents an overview of the
runs submitted by each team for language direc-
tions translating into English.

We did not receive any submission for en2pt,
even though we did receive submissions from one
team for the opposite direction of this language pair,
i.e., pt2en. Unfortunately, we did not receive any
submission for the new test set that we released this
year, i.e., for the summaries of planned animal ex-
periments. Nevertheless, the test set (including the
reference translation) is available for the research
community for further experiments.

Similarly to the WMT 2020 biomedical task edi-
tion, we asked participants to fill in a survey with
key information regarding the specific material and

methods used in their self-identified primary runs
that were used for manual evaluation. The survey
comprised 14 questions covering the translation
methods and corpora used.

On average, the time spent by participants to
supply information for one language pair was 6
minutes and 35 seconds (Median: 3 minutes and 27
seconds). This is consistent with the 2020 survey
statistics and suggests that the time commitment
for supplying this information is limited, even for
teams addressing more than one language pair.

All teams used transformer-based neural MT
(NMT) and largely relied on existing implemen-
tations: 7 teams submitted runs using available
libraries while 5 teams submitted runs using their
own NMT implementations. Teams often used the
same setup for a range of language pairs. Table 6
shows details of the teams’ methods.

For in-domain data, teams used the training data
distributed as part of the task as well as many of the
sources described in (Névéol et al., 2018). Addi-
tional corpus used for Chinese have been prepared
by the teams but are not always available or de-
scribed in details. We can also notice that the use
or pre-processing of resources supplied by the task
organizers can differ between teams as the size
reported for seemingly similar data can differ sig-
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Team ID Institution

ECNU_PAHT Pingan Health Tech / ECNU, China
FJDMATH (Martínez, 2021) Fujitsu DMATH, Japan

Haozhiweizi Shanghai Jiaotong University, China
Huawei_AGI (Wang et al., 2021a) Huawei Technologies, China
Huawei_TSC (Yang et al., 2021) Huawei Translation Service Center, China

JinDong unknown, China
LISN LISN, CNRS, France

MT Learner Microsoft Research, China
NVIDIA NeMo (Subramanian et al., 2021) NVIDIA, USA

nrpu-fjwu (Naz et al., 2021) Fatima Jinnah Women University, Pakistan
talp_upc (Rafieian and Costa-Jussà, 2021) Universitat Politècnica de Catalunya, Spain

TMT (Wang et al., 2021b) Tencent AI Lab, China
Transperfect Transperfect Translations, Spain

Volctrans ByteDance, China
ZengHuiMT FORYOR HEALTH, USA

Table 3: List of the participating teams.

Teams en2eu en2de en2es en2fr en2it en2pt en2ru en2zh Total

ECNU_PAHT - - - - - - - A3 3
FJDMATH T2A2 - - - - - - - 4

Haozhiweizi - - - - - - - A1 1
Huawei_AGI - A3 - A3 A3 - - A3 12
Huawei_TSC - A3 - - - - - A3 6

JingDong - - - - - - - A1 1
LISN - - - A3 - - - - 3

NVIDIA NeMo - - - - - - A2 - 2
talp_upc - - A2 - - - - - 2

TMT - A1 A1 A1 - - A1 - 4
Transperfect - - A3 - - - A2 A2 7

Volctrans - - - - - - - A3 3
ZengHuiMT - - - - - - - A1 1

Total 4 7 6 7 3 0 5 17 49

Table 4: Overview of the submissions from all teams and test sets translating from English. We identify submis-
sions to the abstracts testsets with an “A” and to the terminology test set with a “T”. The value next to the letter
indicates the number of runs for the corresponding test set, language pair, and team.

Teams de2en es2en fr2en it2en pt2en ru2en zh2en Total

ECNU_PAHT - - - - - - A3 3
Haozhiweizi - - - - - - A1 1
Huawei_AGI A3 - A3 A3 - - A3 12
Huawei_TSC A3 - - - - - A3 6

JingDong - - - - - - A1 1
LISN - - A3 - - - - 3

MT Learner - - - A2 A2 A2 - 6
NVIDIA NeMo - - - - - A1 - 1

nrpu-fjwu A3 A3 A3 - - - - 9
talp_upc - A2 - - - - - 2

TMT A1 A1 A1 - - A1 - 4
Transperfect - A3 - - - A2 A2 7

Volctrans - - - - - - A2 2
ZengHuiMT - - - - - - A1 1

Total 10 9 10 5 2 6 16 58

Table 5: Overview of the submissions from all teams and test sets translating into English. We identify submissions
to the abstracts test sets with an “A” and to the terminology test set with a “T”. The value next to the letter indicates
the number of runs for the corresponding test set, language pair, and team.
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Team ID Language
pair

NMT implementation Trained Fine-
Tuned

BT LM

Huawei_AGI All transformer (Own) No Yes Yes (except zh2en) No
Huawei_TSC All Marian,Fairseq No Yes Yes (except en2de) No

LISN All Fairseq Yes Yes Yes No
MT Learner All Marian-NMT No Yes Yes No

NVIDIA NeMo* All transformer (unspecified) Yes Yes Yes Yes
talp_upc All OpenNMT-transformer Yes No Yes No

nrpu-fjwu All Fairseq Yes Yes No No
TMT All Fairseq Yes No Yes (except en2fr) mBART

(en2de,es,fr,ru)

Table 6: Overview of methods used by participating teams. Information is self-reported through the dedicated
survey for each selected “best run” (information on the NVIDIA model is inferred from their system descrip-
tion (Subramanian et al., 2021)). BT indicates if backtranslation is used and LM if language models were used.

nificantly. Table 7 provide details of the in-domain
data used by the teams.

For relevant language pairs, parallel data from
other WMT tracks (e.g., News Task) was used. Out-
of-domain data was also used in the form of pre-
trained base models. Table 8 shows details of the
out-of-domain data used by the teams.

We note that a number of the corpora used are
referred to as "in house" corpus or data. This may
indicate survey fatigue as this type of description is
more frequently used for out of domain data, which
appeared towards the end of the survey.

5 Automatic evaluation

For all the abstracts test sets, we evaluated system
outputs using BLEU (Papineni et al., 2002) as pro-
vided by the Moses tool mteval-v14.pl11. We used
this metric for the en2eu abstracts, summaries of
animal experiments, and MEDLINE test sets. In
en2zh, a modified version of the tool was used that
removed white spaces and text is split in way that
each character is a word.

The results for the en2eu abstract test sets are
given in Table 9. There was a single team (Fujitsu
DMATH) that submitted two runs, based on BPE
dropout and sub-subword features with a Trans-
former (base) model. One of the runs (run2) in-
cluded multilingual data from an English–Spanish
terminology. The results are not as high as in
the MEDLINE abstracts task, but they are above
the baseline system, and they have improved from
the best results from the 2020 challenge (0.1453
vs. 0.1279).

For the en2eu terminology test sets, we evalu-
ated the translated concepts in terms of two metrics:

11https://github.com/moses-smt/
mosesdecoder

(i) accuracy, by relying on strict matches (case in-
sensitive) between the reference translation and
predictions; and (ii) BLEU score, as measured by
the Python NLTK module sentencebleu. The re-
sults are presented in Table 10. The same systems
from FUJITSU DMATH participated in this task,
and the BLEU score was higher than the score
for abstracts, but there was a drop in performance
from the results in 2020. This could have happened
because the systems were tuned for abstracts and
not terminologies. As is the case for abstracts, for
the terminology set, run1 outperforms run2 again,
showing that multilingual data seems to harm per-
formance in this setting.

For the summaries of animal experiments, we
only present the results obtained by our baseline
system (Table 11).

Finally, for the Medline test sets, we performed
evaluation based on all the sentences in the test set,
including the poorly aligned ones, as well as an
evaluation based on only the perfectly aligned ones
(see Table 2). The results from English into the
foreign languages are presented in Table 12, while
the ones into English are presented in Table 13.
The results calculated for all sentences, and not
only the perfectly aligned ones, are published on
the shared task’s web site.12

For translation from English (cf. Table 12), the
highest BLEU score of 0.5117 was obtained by
the Transperfect team for en2es. Moreover, for
all the language pairs for which the Huawei_TSC
participated, i.e., en2de and en2zh, this team ob-
tained the highest score, namely 0.3259 and 0.4650
respectively. For en2fr and en2it, the best perfor-
mance was obtained by the Huawei_AGI team,

12http://www.statmt.org/wmt21/results_
biomedical.pdf
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size (sen-
tences)

de/en Huawei_AGI MEDLINE corpus supplied by WMT biomedical task
organizers

2.4 M Yes 53 M (en)

Huawei_TSC MEDLINE corpus supplied by WMT biomedical task
organizers

3.03M Yes 21.43M
(en)

nrpu-fjwu sources provided by WMT biomedical task organizers
(UFAL, Medline Abstracts and EMEA)

3.71 M No -

TMT corpus provided by WMT biomedical task organizers
and UFAL.

2.5 M Yes 2.5 M

es/en Talp_upc UFAL, Pubmed, Medline, IBECS,UNcor-m and OPUS 6.86 M No -
TMT corpus provided by WMT biomedical task organizers

and UFAL.
1.6 M Yes 1.6 M

Transperfect corpus provided by WMT biomedical task organizers 618 K No -

fr/en Huawei_AGI MEDLINE corpus supplied by WMT biomedical task
organizers

3.6 M Yes (en) 53 M

LISN Bio-medical corpora provided by the task organiser
along with Taus and Cochrane

6 M Yes (fr) 0.81 M

nrpu-fjwu sources provided by WMT biomedical task organizers
e.g. UFAL, Scielo Health, EDP, Medline Titles, Medline
Abstracts and EMEA.

4.36 M No -

TMT corpus provided by WMT biomedical task organizers
and UFAL.

3.5 M Yes 3.5 M

it/en Huawei_AGI MEDLINE corpus supplied by WMT biomedical task
organizers, TAUS

374 K Yes (en) 55 M

MT Learner Corpus supplied by WMT biomedical task organizers,
and in-domain data filtered from an in-house corpus.

364 K Yes (en) 1.5 M

pt/en MT Learner Corpus supplied by WMT biomedical task organizers,
and in-domain data filtered from an in-house corpus.

1.6 M Yes (en) 6.2 M

en/ru MT Learner Corpus supplied by WMT biomedical task organizers,
augmented with in-house corpus.

2.2 M Yes (en) 2.1 M

NVIDIA Corpus supplied by organizers, augmented with automat-
ically filtered news-task corpus.

256k ? ?

TMT Corpus supplied by organizers, augmented with in-house
corpus.

1 M WMT biomed-
ical task and
UFAL

?

Transperfect "internal data" (unspecified) 6.1 M No -

en/zh ECNU_PAHT In-house corpus (unspecified) 6 M No -
Huawei_AGI In-house data collected from a portion of abstracts of

China Master’s and Doctoral Dissertations.
847 K No -

Huawei_TSC In-house corpus (unspecified) 1.35M Yes 36.11M
(zh),
21.43M
(en)

Transperfect "internal data" (unspecified) 6.8 M No -

Table 7: Overview of in-domain corpora used by participating teams. Information is self reported through our
survey for each selected "best run" (information on the NVIDIA model is inferred from their task paper).

with 0.4531 and 0.0.4425 respectively. Finally,
the NVIDIA NeMo team obtained the best score
(0.4139) for en2ru.

For translation into English (cf. Table 13), the
highest score over all teams and language pairs was
0.5685, which was obtained by the MT Learner
team for pt2en. TMT obtained the best results for
three of the language pairs, namely de2en, es2en,
and fr2en, with the scores 0.4501, 0.5382, and
0.4928 respectively. For it2en and zh2en, slightly
higher scores (0.4570 and 0.3943 respectively)
were obtained by the Huawei_AGI team, when
compared to the ones from the MT learner (0.4558)
and Huawei_TSC (0.3904) respectively. Finally,

the NVIDIA NeMo team obtained the top score
(0.4918) for the only language pair (ru2en) and run
that they submitted.

6 Manual evaluation

Similar to previous years, we manually validated a
sample of the abstracts to compare the teams’ pri-
mary submissions to each other and to the reference
translation.

For the MEDLINE abstracts, we aimed for ap-
proximately 100 perfectly aligned sentences and re-
trieved the corresponding abstracts. The sentences
were randomly retrieved, but we aimed to select ab-
stracts with a higher percentage of perfectly aligned
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Language
pair

team Parallel corpus size (sentence
pairs)

Monolingual
corpus

size
(sen-
tences)

en/de Huawei_AGI "in house data" 6 M No -
Huawei_TSC Corpus supplied by the WMT 2020 News task organizers 96.6 M Yes 150M
nrpu-fjwu No - No -
TMT Europarl-v10, Common Crawl corpus, ParaCrawl, News

Commentary-v15 and Wiki Titles-v2
37.8 M No -

en/es TALP TED Talks 1.97 M No -
TMT Europarl-v7, Common Crawl corpus, News Commen-

tary, ParaCrawl
30.3 M No -

Transperfect No - No -

en/fr Huawei_AGI "in house data" 3 M No -
LISN WMT14 general domain corpus 35 M No -
nrpu-fjwu No - No -
TMT Europarl-v7, Common Crawl corpus, News Commen-

tary , English-French Giga Corpus
28 M No -

en/it Huawei_AGI "in house data" 6 M No -
MT Learner "in house data" 67 M No -

en/pt MT Learner "in house data" 67 M No -

en/ru MT Learner "in house data" 53 M No -
NVIDIA No? - No? -
TMT Common Crawl corpus, News Commentary, ParaCrawl,

Yandex Corpus, Wiki Titles-v2, Back-translated news
92 M No -

Transperfect No - No -

en/zh ECNU_PAHT No - No -
Huawei_AGI "in house data" 3 M No -
Huawei_TSC Corpus supplied by the WMT 2020 News task organizers 16.5M Yes 150M
Transperfect No - No -

Table 8: Overview of out-of-domain (OOD) corpora used by participating teams. Information is self reported
through our survey for each selected "best run". (information on the NVIDIA model is inferred from their task
paper).

Teams Runs BLEU

FJDMATH run1 0.1453
run2* 0.1403

Baseline - 0.1091

Table 9: BLEU scores for the Abstract test set (en2eu).
*Indicates the primary run as indicated by the partici-
pants.

Teams Runs Accuracy BLEU

FJDMATH run1 0.16 0.2783
run2* 0.15 0.2674

Table 10: Scores for the Terminology test set (en2eu).
*Indicates the primary run as indicated by the partici-
pants.

Teams Runs BLEU

Baseline - 0.3800

Table 11: Performance scores for the test set of sum-
maries of animal experiments (de2en).

sentences. This is the same strategy described in
last year’s publication (Bawden et al., 2020).

We only considered those teams which either
submitted a publication to the workshop or filled
in our survey with information about theirs runs.
In some few cases, we could not considered some
teams for the manual validation, e.g., MT learner
for it2en, because the team filled in the survey when
the manual validation was already been carried out.

For all teams, we considered the primary run (as
indicated by the participants). The only exception
was made for the Volctrans team, for which we
considered the run with the highest BLEU score,
according to the automatic evaluation. The primary
runs that we considered in the manual validation
are listed below:

• en2de (3 teams): Huawei_AGI (run3),
Huawei_TSC (run3), TMT (run1)

• en2es (3 teams): talp_upc (run2), TMT (run1),
Transperfect (run2)

• en2fr (3 teams): Huawei_AGI (run3), LISN
(run1), TMT (run1)
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Teams Runs en2de en2es en2fr en2it en2pt en2ru en2zh

ECNU_PAHT run1 - - - - - - 0.4197
run2 - - - - - - 0.4364
run3 - - - - - - 0.4504*

Haozhiweizi run1 - - - - - - 0.4381*
Huawei_AGI run1 0.3172 - 0.4531 0.4301 - - 0.4342

run2 0.3198 - 0.4424 0.4334 - - 0.4440
run3 0.3172* - 0.4489* 0.4425* - - 0.4293*

Huawei_TSC run1 0.3259 - - - - - 0.4639
run2 0.3329 - - - - - 0.4640*
run3 0.3259* - - - - - 0.4650

JingDong run1 - - - - - - 0.3970*

LISN run1 - - 0.3912* - - - -
run2 - - 0.3913 - - - -
run3 - - 0.4293 - - - -

NVIDIA NeMo run1 - - - - - 0.4139 -
run2 - - - - - 0.4112* -

talp_upc run1 - 0.4084 - - - - -
run2 - 0.4142* - - - - -

TMT run1 0.2765 0.4354 0.4456 - - 0.3289 -

Transperfect run1 - 0.5117 - - - 0.3686 0.4029
run2 - 0.5012* - - - 0.3492* 0.4025*
run3 - 0.4917 - - - - -

Volctrans run1 - - - - - - 0.4406
run2 - - - - - - 0.4433
run3 - - - - - - 0.4361*

ZengHuiMT run1 - - - - - - 0.4126

Baseline - 0.2536 0.4027 0.3924 0.4147 0.4304 0.2451 0.3096

Table 12: BLEU scores for "OK" aligned test sentences, from English. For the Volctrans team, we renamed the
runs: run1=run1, run2=nnmt, run3=nnmtne. *Indicates the primary run as indicated by the participants.

• en2it (1 team): Huawei_AGI (run3)

• en2ru (3 teams): NVIDIA NeMo (run2), TMT
(run1), Transperfect (run2)

• en2zh (6 teams): ECNU_PAHT (run3),
Haozhiweizi (run1), Huawei_AGI (run3),
Huawei_TSC (run2), Transperfect (run2),
Volctrans (run2)

• de2en (4 teams): Huawei_AGI (run3),
Huawei_TSC (run3), nrpu-fjwu (run1), TMT
(run1)

• es2en (4 teams): nrpu-fjwu (run1), talp_upc
(run2), TMT (run1), Transperfect (run2)

• fr2en (4 teams): Huawei_AGI (run3), LISN
(run3), nrpu-fjwu (run1), TMT (run1)

• it2en (2 teams): Huawei_AGI (run3)

• pt2en (1 team): MT Learner (run1)

• ru2en (4 teams): NVIDIA NeMo (run1), TMT
(run1), Transperfect (run2)

• zh2en (6 teams): ECNU_PAHT (run3),
Haozhiweizi (run1), Huawei_AGI (run3),
Huawei_TSC (run3), Transperfect (run2),
Volctrans (run2)

For each language pair, we generated pairwise
combinations of either two teams’ primary runs
or one primary run and the reference translation.
The evaluator first compared pairs of sentences, fol-
lowed by whole abstracts; the exception was en2zh
and zh2en, where only whole abstracts were com-
pared due to the otherwise infeasible large amount
of evaluation required. These pairs of translations
were manually validated in the Appraise tool (Fed-
ermann, 2010) following the same procedure car-
ried out in previous years. For each pair of sentence
or abstracts, the aim of the evaluation was to decide
whether the translations were of equivalent qual-
ity or whether one was better than the other. The
results of the manual validation are presented in
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Teams Runs de2en es2en fr2en it2en pt2en ru2en zh2en

ECNU_PAHT run1 - - - - - - 0.3232
run2 - - - - - - 0.3232
run3 - - - - - - 0.3546*

Haozhiweizi run1 - - - - - - 0.3713*
Huawei_AGI run1 0.3956 - 0.4860 0.4570 - - 0.3943

run2 0.4132 - 0.4871 0.4569 - - 0.3785
run3 0.4048* - 0.4871* 0.4550* - - 0.3934*

Huawei_TSC run1 0.4230 - - - - - 0.3828
run2 0.4258 - - - - - 0.3921
run3 0.4310* - - - - - 0.3904*

JingDong run1 - - - - - - 0.3041*

LISN run1 - - 0.4322 - - - -
run2 - - 0.4112 - - - -
run3 - - 0.4325* - - - -

MT Learner run1 - - - 0.4558* 0.5584* 0.4871* -
run2 - - - 0.4548 0.5685 0.4751 -

NVIDIA NeMo run1 - - - - - 0.4918 -

nrpu-fjwu run1 0.3524* 0.4590* 0.3840* - - - -
run2 0.3495 0.4598 0.3921 - - - -
run3 0.3367 0.4600 0.3772 - - - -

talp_upc run1 - 0.4194 - - - - -
run2 - 0.4194* - - - - -

TMT run1 0.4501 0.5382 0.4928 - - 0.4061 -

Transperfect run1 - 0.5237 - - - 0.4794 0.3291
run2 - 0.4991* - - - 0.4769* 0.3212*
run3 - 0.4969 - - - - -

Volctrans run1 - - - - - - 0.2911
run2 - - - - - - 0.3796

ZengHuiMT run1 - - - - - - 0.2832

Baseline - 0.3392 0.3959 0.3796 0.4075 0.4506 0.3115 0.2237

Table 13: BLEU scores for “OK” aligned test sentences, into English. For the Volctrans team, we renamed the
runs: run1=base, run2=nnmt. *Indicates the primary run as indicated by the participants.

various tables as summarized below:

• pt2en: Table 14

• en2es and es2en: Table 15

• en2de and de2en: Table 16

• en2fr and fr2en: Table 17

• en2it and it2en: Table 18

• en2zh and zh2en: Table 19

• en2ru and ru2en: Table 20

We identified the item (a system or the refer-
ence translation) of each pairwise comparison that
performed better (see respective tables) and ran
a Wilcoxon Signed-Rank Test from the Python
scipy library. We consider all comparisons for
two particular items over all validated abstracts and

sentences, except for skipped ones. The test was
calculated for the abstracts and the sentences. We
mark in bold in the respective tables the ones that
were found to be significant (i.e., p-value< 0.05)
and otherwise the systems are considered to be
similar. We considered one item superior than the
other when either the validation of the abstract of
the sentences was statistically significant. For the
language pairs validated by two experts (i.e., es2en
and pt2en), we only considered one item to be su-
perior than the other when at least two of the four
comparisons (2x for the abstracts, 2x for the sen-
tences) were statistically significant.

We ranked the system by assigning points to
each item: 3 points if superior to the opponent, 1
point when they have similar quality, and no points
if inferior to the opponent. Based on the sum of
these points over all comparisons, we ranked the
systems and the reference translations as shown be-
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

pt2en reference-MT Learner 14 3 9 2 112 6 92 14

Table 14: Manual validation for the pt2en MEDLINE abstracts test set. The test set could only be validated with
regard to the content of the translation, but not regarding the quality of the English translations.

Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2es TMT-reference 8 0 0 8 103 9 17 77
TMT-talp_upc 8 0 0 8 103 6 23 74

TMT-Transperfect 8 0 0 8 103 3 21 79
reference-talp_upc 8 3 4 1 103 17 77 9

reference-Transperfect 8 1 7 0 103 8 90 5
talp_upc-Transperfect 8 1 3 4 103 8 75 20

es2en reference-nrpu-fjwu 13/4 7/2 3/1 3/1 107/31 23/14 53/13 31/4
reference-TMT 13/4 0/2 4/1 9/1 107/31 6/13 57/10 44/8

reference-Transperfect 13/4 1/3 4/0 8/1 107/31 10/15 60/11 37/5
reference-talp_upc 13/4 9/3 2/0 2/1 107/31 33/12 49/14 25/5
nrpu-fjwu-TMT 13/4 1/0 2/2 10/2 107/31 5/3 67/24 35/4

nrpu-fjwu-Transperfect 13/4 0/1 3/1 10/2 107/31 4/6 67/22 36/3
nrpu-fjwu-talp_upc 13/4 9/2 1/2 3/0 107/31 31/9 53/17 23/5
TMT-Transperfect 13/4 3/2 9/2 1/0 107/31 14/8 84/22 9/1

TMT-talp_upc 13/4 10/3 3/0 0/1 107/31 42/8 61/17 4/6
Transperfect-talp_upc 13/4 10/3 2/0 1/1 107/31 36/6 63/19 8/6

Table 15: Manual validation for the en2es and es2en MEDLINE abstracts test set. The better performing MT
system (or reference translation) in each pairwise comparison is shown in bold, as well as the respective value that
has been identified as superior. For the es2en test set, the values on the left are the validation with regard to the
content of the translations, while the ones on the right are regarding the quality of the English translations.

Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2de reference-TMT 9 5 2 1 114 40 38 35
reference-Huawei_AGI 9 6 2 0 114 51 40 21
reference-Huawei_TSC 9 4 4 0 114 13 57 43

TMT-Huawei_AGI 9 2 4 2 114 36 60 16
TMT-Huawei_TSC 9 0 4 4 114 3 59 51

Huawei_AGI-Huawei_TSC 9 0 1 7 114 5 33 74

de2en Huawei_TSC-reference 11 9 1 1 93 31 44 17
Huawei_TSC-Huawei_AGI 11 9 1 1 93 38 50 5

Huawei_TSC-nrpu-fjwu 11 11 0 0 93 58 33 2
Huawei_TSC-TMT 11 6 2 3 93 14 69 10

reference-Huawei_AGI 11 7 1 3 93 40 30 23
reference-nrpu-fjwu 11 9 1 1 93 47 28 18

reference-TMT 11 5 1 5 93 22 47 24
Huawei_AGI-nrpu-fjwu 11 10 1 0 93 44 35 14

Huawei_AGI-TMT 11 1 6 4 93 9 56 28
nrpu-fjwu-TMT 11 0 2 9 93 5 43 45

Table 16: Manual validation for the en2de and de2en MEDLINE abstracts test set. The better performing system
(or reference translation) in each pairwise comparison is shown in bold, as well as the respective value that has
been identified as superior.

low (the points obtained are shown in parentheses):

• en2de: Huawei_AGI (0) < TMT (4) = refer-
ence (5) < Huawei_TSC (7)

• en2es: TMT (0) < reference (4) = talp_upc (4)

< Transperfect (7)

• en2fr: Huawei_AGI (2) = TMT (2) < LISN
(5) < reference (6)

• en2it: Huawei_AGI (1) = reference (1)
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2fr reference-LISN 16 10 1 3 100 58 13 18
reference-Huawei_AGI 16 14 0 2 100 65 18 17

reference-TMT 16 14 1 1 100 65 18 17
LISN-Huawei_AGI 16 6 1 7 100 37 29 23

LISN-TMT 16 4 4 6 100 30 30 29
Huawei_AGI-TMT 16 7 7 2 100 29 43 28

fr2en nrpu-fjwu-Huawei_AGI 12 2 0 10 79 15 19 42
nrpu-fjwu-LISN 12 4 1 7 79 19 26 33

nrpu-fjwu-reference 12 3 1 8 79 28 13 37
nrpu-fjwu-TMT 12 1 0 11 79 9 24 45

Huawei_AGI-LISN 12 7 0 5 79 27 30 21
Huawei_AGI-reference 12 7 1 4 79 37 20 21

Huawei_AGI-TMT 12 3 3 6 79 17 36 25
LISN-reference 12 6 2 4 79 31 26 21

LISN-TMT 12 3 0 9 79 16 36 26
reference-TMT 12 3 2 7 79 19 18 41

Table 17: Manual validation for the en2fr and fr2en MEDLINE abstracts test set. The better performing system (or
reference translation) in each pairwise comparison is shown in bold, as well as the respective value that has been
identified as superior.

Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2it Huawei_AGI-reference 10 6 0 4 100 38 35 27

it2en Huawei_AGI-reference 11 4 0 7 102 32 40 30

Table 18: Manual validation for the en2it and it2en MEDLINE abstracts test sets. For the it2en test set, only the
translation from Italian into English was assessed, but not the quality of the English text.

• en2ru: NVIDIA Nemo (3) = reference (3) =
TMT (3) = Transperfect (3)

• en2zh: ECNU_PAHT (3) < Huawei_AGI
(4) = Haozhiweizi (4) = Transperfect (4)
< Huawei_TSC (9) < Volctrans (12) < refer-
ence (16)

• de2en: nrpu-fjwu (0) < Huawei_AGI (3) < ref-
erence (7) < TMT (8) < Huawei_TSC (10)

• es2en: nrpu-fjwu (2) = reference (2) =
talp_upc (2) < TMT (10) = Transperfect (10)

• fr2en: nrpu-fjwu (2) = reference (2) < LISN
(4) < Huawei_AGI (8) = TMT (8)

• it2en: reference (1) = Huawei_AGI (1)

• pt2en: reference (1) = MT Learner (1)

• ru2en: TMT (0) < Transperfect (4) < reference
(5) < NVIDIA NeMo (7)

• zh2en: Huawei_AGI (5) < Haozhiweizi
(6) = Volctrans (6) = Huawei_TSC (6) =

ECNU_PAHT (6) = reference (6) < Transper-
fect (8)

Abstracts for en2eu (Osagaiz + Gaceta) were
manually validated following the same approach,
but only at the sentence level. As there was one
submission for this language pair, we only gener-
ated a pairwise combination of the participant’s run
and the reference. The run with the highest BLEU
score was selected for validation:

• en2eu (1 team): FJDMATH (run1)

The translations were evaluated by three annota-
tors using the Appraise tool, and the averaged re-
sults are presented in Table 21. The ranking based
on the points is as follows:

• en2eu: FJDMATH (0) < reference (3)

7 Discussion

7.1 Quality of the MT evaluation process.
Marie et al. (2021) introduced guidelines for the
evaluation of MT quality, based on four criteria:
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Language Pair Abstracts
Total A>B A=B A<B

en2zh ECNU_PAHT-Huawei_AGI 13 3 1 9
ECNU_PAHT-Transperfect 13 5 0 8
ECNU_PAHT-Volctrans 13 1 0 12

ECNU_PAHT-Haozhiweizi 13 4 3 6
ECNU_PAHT-Huawei_TSC 13 1 2 10

ECNU_PAHT-reference 13 0 1 12
Huawei_AGI-Transperfect 13 8 1 4

Huawei_AGI-Volctrans 13 2 3 8
Huawei_AGI-Haozhiweizi 13 7 1 5

Huawei_AGI-Huawei_TSC 13 2 1 10
Huawei_AGI-reference 13 2 2 9
Transperfect-Volctrans 13 2 1 10

Transperfect-Haozhiweizi 13 7 1 5
Transperfect-Huawei_TSC 13 3 0 10

Transperfect-reference 13 2 1 10
Volctrans-Haozhiweizi 13 10 1 2
Volctrans-Huawei_TSC 13 3 6 4

Volctrans-reference 13 3 2 8
Haozhiweizi-Huawei_TSC 13 4 1 8

Haozhiweizi-reference 13 2 0 11
Huawei_TSC-reference 13 2 1 10

zh2en Haozhiweizi-Volctrans 19 11 1 7
Haozhiweizi-Huawei_TSC 19 10 3 6

Haozhiweizi-reference 19 9 4 5
Haozhiweizi-ECNU_PAHT 19 10 2 7
Haozhiweizi-Huawei_AGI 19 10 5 4
Haozhiweizi-Transperfect 19 4 6 9
Volctrans-Huawei_TSC 19 3 8 8

Volctrans-reference 19 7 3 8
Volctrans-ECNU_PAHT 19 8 4 7
Volctrans-Huawei_AGI 19 9 3 7
Volctrans-Transperfect 19 5 3 11
Huawei_TSC-reference 19 6 5 7

Huawei_TSC-ECNU_PAHT 19 9 2 8
Huawei_TSC-Huawei_AGI 19 10 1 8
Huawei_TSC-Transperfect 19 7 4 8
reference-ECNU_PAHT 19 12 0 6
reference-Huawei_AGI 19 9 2 7
reference-Transperfect 19 7 4 7

ECNU_PAHT-Huawei_AGI 19 8 4 7
ECNU_PAHT-Transperfect 19 3 6 10
Huawei_AGI-Transperfect 19 3 3 13

Table 19: Manual validation for the en2zh and zh2en MEDLINE abstracts test set. Only the abstracts were vali-
dated. The better performing system (or reference translation) in each pairwise comparison is shown in bold, as
well as the respective value that has been identified as superior.

(1) use of an evaluation method in addition to/in
lieu of BLEU, (2) use of statistical significance
testing to compare systems, (3) direct computation
of scores instead of copying from previous exper-
iments and (4) comparison of systems only if the
same training, validation and test sets have been
used, as well as the same pre-processing steps.

The evaluation carried out in this task is compli-
ant with criteria (1-3). However, participants are
free to use their choice of training corpus, valida-
tion corpus and pre-processing methods. This ap-
proach was selected to foster participant creativity

and set a lower entry cost to the task. It is a limita-
tion in the comparability of the systems submitted
for this task. As a mitigation strategy, we encour-
age participants to also submit detailed descriptions
of system particulars to provide transparency on
the material and methods used.

A future edition of the task could introduce
a “constrained” track where pre-processed train-
ing/validation sets would be supplied to be used
exclusively (as in the WMT news translation task
(Barrault et al., 2020)).
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Language Pair Abstracts Sentences
Total A>B A=B A<B Total A>B A=B A<B

en2ru TMT-Transperfect 16 6 1 9 95 15 61 19
TMT-NVIDIA NeMo 16 4 1 11 95 20 47 25

TMT-reference 16 6 0 10 95 27 42 25
Transperfect-NVIDIA NeMo 16 6 5 5 95 26 52 15

Transperfect-reference 16 4 6 6 95 22 52 21
NVIDIA NeMo-reference 16 2 9 5 95 13 64 15

ru2en Transperfect-TMT 16 10 6 0 109 42 56 9
Transperfect-reference 16 2 9 5 109 25 65 19

Transperfect-NVIDIA NeMo 16 0 10 6 109 7 87 15
TMT-reference 16 0 3 13 109 10 56 41

TMT-NVIDA NeMo 16 0 1 15 109 4 61 42
reference-NVIDIA NeMo 16 2 9 5 109 16 71 22

Table 20: Manual validation for the en2ru and ru2en MEDLINE abstracts test sets. The better performing system
(or reference translation) in each pairwise comparison is shown in bold, as well as the respective value that has
been identified as superior.

Language Pair Sentences
Total A>B A=B A<B

en2eu reference-FJDMATH 100 61 16 23

Table 21: Manual validation for the en2eu (Osagaiz and Gaceta) abstracts test set. The better performing system
(or reference translation) in each pairwise comparison is shown in bold, as well as the respective value that has
been identified as superior. The values show the validation performed by the Basque native speakers (averaged
over three annotators).

7.2 Quality of the system translations

We report below some of the major observations
collected throughout the manual validation of the
selected runs and the reference translations.

7.2.1 MEDLINE test sets

de (from en) The perceived quality of transla-
tions was high, with a high proportion of perfect
or near perfect translations. The translation quality
between participating systems differ only by small
nuances. For example, translations differ only by
word order or use different synonyms for a spe-
cific medical term. All participating systems had
problems translating abbreviations. For instance,
“image quality (IQ)” becomes “Bildqualität (IQ)”
instead of BQ. One participant could not generate
umlauts (e.g., ä,ö,ß, ...) and another participant pro-
duced only lowercased text. Both problems lead to
slightly reduced quality of translations.

en (from de) Overall, the translation quality was
high. Most translated sentences were understand-
able, except in cases where the original German
sentences were too long to translate correctly. In
some cases, the translations captured the intended
meaning, but took information from different sen-

tences, or even used synonyms, which were not
direct literal translations of words, such as “neu-
rosensory retina” for “macular region”. There were
also some translations from the first person point
of view, rather than the impersonal, for a more
personal touch. If such examples represent MT
outputs rather than the reference translations, the
quality of translation is approaching native speaker
level.

Some texts contained small errors, which should
be easy to avoid, such as capitalization of the first
word after “e.g.”, the use of lower case letters for
well-known abbreviations like “AR” for augmented
reality, proper nouns (“Marburg heart score”), and
gene names (PD-1). Also a repetition of words
in common expressions like the German wie z. B.
should not have been translated as “e.g. For ex-
ample”. Using the same word twice in a sentence
could have been avoided: “Relapse is defined as
the recurrence” instead of “Recurrence is defined
as the recurrence”. Interestingly, a translation actu-
ally corrected a capitalization error in the original
German text, from l. reuteri to L. reuteri, for the
genus Lactobacillus in the scientific name of the
bacteria.

The correct translation of medical terms also
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proved to be difficult in cases such as “centrum”
instead of “ventrum”, “neurology” instead of “urol-
ogy”, or “endourolgy” instead of “endourology”.
Medical terms pertaining to a specific field, were
also difficult to translate properly, such as the Ger-
man Pluszeichen to the English “plus disease” in
the context of retinal disease and “fusion biopsy”
to describe the method of using both magnetic res-
onance imaging and ultrasound to take prostate
biopsies.

es (from en) Quality of translations is improv-
ing every year and in many cases it is difficult to
identify which translations are machine made.

There have been cases in which abbreviations
were not translated correctly (e.g. HGS vs FPM
for fuerza de prensión manual) and some times
specific terms were not translated, e.g. receiver
operating characteristic curve. Only in a few cases
word gender was different to the article one.

There are examples of words that are not trans-
lated properly for instance adnexal has been trans-
lated as adnexiales instead of anexas by one of the
teams.

In addition to individual sentences, the manual
evaluation included abstracts as well. Since trans-
lations were sentence based, there were cases in
which there were misaligned information between
the content of the sentences in the abstract, even if
the translated sentences were perfectly fine in their
own.

We identified that a team might have been miss-
ing accents on vowels and special letters such as ñ,
which seemed to indicate that the translation was
machine made.

fr (from en) The overall quality of translation
was high. We noted that many of the sentences com-
pared were identical or nearly identical. In many
cases, the translations selected as superior were
chosen based on small nuances, such as capital-
ization, typography, ordering of words or sentence
structure that appeared more adequate to a native
speaker, while causing no difference in the under-
standing of the text. A few terms or acronyms were
sometimes untranslated but the resulting text could
be understood (for example, incidentaloma was
used instead of incidentalome). Erroneous disam-
biguation was observed in some translations for one
abstract discussing pressure at the fingertips, where
numérique was used instead of digital. At the ab-
stract level, some vocabulary consistency issues

could be evidenced. For example, one translation
used the synonyms sclérodermie systémique and
sclérose systémique alternatively as translation for
“systemic sclerosis”. While individual sentences
were correctly translated, it created confusion at the
abstract level, compared to the “reference” trans-
lation, which used the term sclérodermie through-
out. Consistently with the 2020 edition, arbitration
between sentences exhibiting a fluency or gram-
matical flaw vs. a semantic or clinical flaw was
conducted as favoring the semantic or clinical cor-
rectness. However, the nature of the “reference”
translation (which is often not produced by profes-
sional translators and does not necessarily provide
straight forward sentence-by-sentence translations
(Névéol et al., 2020)) introduces bias and difficulty
in the evaluation: highly fluent text with some se-
mantic distance with the “original” sentence to be
translated can sometimes be easily identified as the
reference text. It is difficult to arbitrate between
this high quality text and the machine translation
that will attempt to be semantically closer while
exhibiting language flaws.

en (from fr) Translation quality was generally
very high, with some variation in the quality de-
pending on the topic of the abstract being translated
(most systems struggled with the more literary text
from a sociology abstract). This meant that many
of the decisions were, as with the other language
pairs, based on preferences and formatting rather
than differences in meaning (punctuation, capitali-
sation, minor grammar mistakes).

The most serious errors observed were with
the translation of specific terms, such as illnesses
and drugs. They were particularly prevalent for
acronyms, which were sometimes not translated
and sometimes poorly translated (another more
common acronym being used instead, e.g. ADHD
instead of ADPKD). A few tricky sentences re-
vealed the risk of major semantic errors resulting
from seemingly small and localised errors. We give
two such examples here. Firstly, concerning tempo-
rality, several systems translated French puis ‘then’
as English and in un anticoagulant puis l’aspirine
‘an anti-coagulant then aspirine’, a sentence for
which the order in which drugs are given may be
fundamental. Secondly, many systems stumbled on
the translation of French cela ne s’accompagne pas
d’une attention égale au rôle de l’écoute ‘this is
not accompanied by equal attention to the role of
listening’, inverting the order of the two underlined
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words, resulted in the opposite meaning (i.e. listen-
ing receiving more rather than less attention).

As noted above for en2fr, despite very high MT
quality, reference translations are often still easily
identifiable due to them being less literal. This
means that they are often characterized by better
word choice and more natural syntax, but it can
also mean that they are less adequate because of
missing information or even additional details not
present in the French text.

it (from en) The quality of the translation was
on average high, probably higher than 2020. Some
of the sentences compared were almost identical.

From a terminological viewpoint, it is possible to
identify some inaccuracies in the choice of translat-
ing terms in the target language. For example, the
term ‘malignancies’ was translated by one system
with tumori (corresponding to the English ‘tumors’)
having a broader meaning than neoplasie maligne
(‘malignant neoplasms’). Furthermore, cases of
erroneous choices of the translating terms can be
identified. The adjective ‘unpreventable’ was trans-
lated as non prevedibile (‘unpredictable’) instead
of non evitabile, thus causing the transmission of
an incorrect information in the target text.

Another error can be identified in the choice
of the generic verb ‘consider’. In the case of the
sentence ‘total laryngectomy should be considered
[...]’, the construction was wrongly translated as
la laringectomia dovrebbe essere considerata il
trattamento di scelta, that is the ‘Laryngectomy
should be considered the treatment of choice’. It
is also possible to identify cases of non-translation
in the Italian text (for example the name of the city
‘Zurich’ remained untranslated) and the presence
of anglicisms as imaging diagnostico chosen as
the translation of ‘diagnostic imaging’, although
the Italian equivalent diagnostica per immagini is
commonly used in the target language.

Moreover, the term ‘livestock’ was translated
with mandria ‘herd’, bestiame ‘livestock’ or alle-
vamento ‘farm’. One interesting case was the term
‘blacks’, which was translated with non bianchi
(non-whites) instead of the more frequently used
neri.

Finally, from a syntactic point of view, there
were a couple of examples where the syntactic tree
was built erroneously: for example, the phrase ‘in-
cidental thyroid cancer rates’ was translated as i
tassi di carcinoma tiroideo incidentale (‘rates of in-
cidental thyroid cancer’); another example is ‘4 cm

lobule contoured mass’ translated as massa sago-
mata di 4 cm del lobulo (‘4 cm contoured mass of
the lobule’).

zh (from en) The quality of translation was high
overall. The primary reason for awkward transla-
tions was word order, since English and Chinese
employ different word orders not only at the word
level, but also at the phrase level. Consider this
example, where the source text was surveillance
and early warning of infectious diseases in China.
A good translation first needed to adjust word or-
der within infectious diseases in China to yield
中国传染病 (the order is China then infectious
diseases). Then phrase order also needed to be
adjusted to yield 中国传染病监测预警能力 (the
order is China infectious diseases then surveillance
and early warning). Some translations failed to
make these necessary adjustments, such that the
Chinese translation in the original English word
order rendered the translation awkward or even
unintelligible.

Another source of deficiency was translations
that were too literal. For instance, under-reporting
was most often translated as 报告不足 (insuf-
ficient reporting), though a more native, conven-
tional wording would actually be 漏报 (omitted
reporting). Consider another example, appraised
persons in the context of a study of familial rela-
tionships. While the reference translation 被鉴定
人 was the most fitting, some teams’ translation 被
评估者 (a person to be evaluated) was also a good
fit. However, another translation such as 评估人
员 (evaluation personnel) was outright incorrect,
as the meaning went from “a passive person being
evaluated” to “an active person evaluating someone
else”.

en (from zh) The quality of translation was also
high and noticeably better than last year. Where
some translations last year were unintelligible, such
cases have disappeared this year. In addition, there
was a range of translation qualities last year, but
this year every team’s translation quality was high.

This year, the aspects that distinguish a bet-
ter translation from a worse one are more subtle.
Firstly, Chinese sentences as delimited by the Chi-
nese full stop “。” are often equivalent to short
paragraphs in English. A good translation should
therefore split a Chinese sentence where necessary
into multiple English sentences. Secondly, a tech-
nical term may have synonyms (e.g. acetabulum
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labrum and acetabular lip), and a better transla-
tion should use one synonym consistently within
the same abstract instead of mixing different ones.
Thirdly, a good translation should use the most
fitting wording, a task that requires good under-
standing of sentence context as well as domain
knowledge. Consider this example, where 夫妻婚
姻关系 (marital relationship of married couples)
and 双向关联性 (bi-directional correlation) occur
within the same sentence. A good translation can
tease out relationship and correlation, but a worse
translation simply uses relationship for both occur-
rences. This year, the better translations achieved
the above three aspects, though rarely all three at
once in the same translation.

en (from pt) While there was no significant dif-
ference between the automatic translations from
the MT Learner team and the reference translation,
we highlight some situations in which one was con-
sidered better than the other. On one hand, some
mistakes were very subtle, such as a typo in a word
(e.g., “verage" instead of “average"), or an inap-
propriate capitalization of a word. On the other
hand, there were some semantic mistakes related
to the translation of the sentences. For instance,
the passage “insuficiência do glúteo médio esteve
presente em todos os sujeitos" was translated as
“the gluteus medius was insufficient in all patients".

Overall Based on these comments, many lan-
guage pairs would benefit from a visual feature
highlighting differences in the translations in the
interface to focus the analysts’ attention on often
small differences. It could also be relevant to focus
manual evaluation on a number of targeted linguis-
tic features that seem to remain difficult (based on
2020 and 2021 observations), such as (a) transla-
tion of acronyms (b) vocabulary/grammatical con-
sistency throughout a document (c) translation of
numerical data. This might help make the man-
ual evaluation more comparable between language
pairs. However, it raises the question of the method
to use for the selection of sentences/passages ex-
hibiting the desired phenomena.

7.2.2 Osagaiz/Gaceta abstract test sets
(en2eu)

In general, despite the fact that in the manual eval-
uation FJDMATH ranked below the references, the
translations generated by the system were good,
containing sentences with high-level of fluency and
high adequacy with respect to the source. Similar

to what has been observed in other language pairs,
the system sometimes struggled with the translation
of acronyms. For example, “non-motor symptoms
(NMS)” should be translated to “sintoma ez motor
(SEM)” but the participant’s system translated it
as “sintoma ez-motor (NMS)”; or “amiotrophic lat-
eral sclerosis (ALS)” should be “alboko esklerosi
amiotrofikoa (AEA)”.

On the other hand, sometimes the reference trans-
lation in Basque contained extra information that
was not present in the source English sentence. In
these cases the additional information is contained
in the context (i.e. surrounding sentences in the
abstract). This can penalize the BLEU score of a
correct sentence-level translation. For example, the
source sentence “Important hormonal changes hap-
pen during pregnancy and lactation” was correctly
translated by the system to “Hormona aldaketa
garrantzitsuak gertatzen dira haurdunaldian eta
laktazioan.”. However, the reference translation
also mentions “physiological changes in the body”
(i.e. “Haurdunaldi eta edoskitzaroan zehar, gor-
putzeko maila askotan aldaketa fisiologikoak er-
agingo dituzten gorabehera hormonal nabariak
gertatuko dira”). Document or abstract level trans-
lation systems could potentially alleviate this prob-
lem by leveraging contextual information from sur-
rounding sentences.

7.2.3 Terminology test sets (en2eu)

The participating team (FJDMATH) had more dif-
ficulty in the translation of ICD-10 code descrip-
tions (16% accuracy), particularly if we compare
them with the results obtained by many teams last
year (∼70% accuracy). Note that ICD-10 codes
included in the test sets every year are different,
but the performance difference is big consider-
ing there was more in-domain training data avail-
able this year. Some of the common mistakes ob-
served in the system are word repetition (e.g. hortz-
posizioko anomaliak, hortz edo hortz guztiz eruptat-
uen posizioa - “tooth position anomalies, tooth and
tooth”), not translating an English word (e.g. tidal-
wave instead of olatu erraldoi) or low adequacy
(i.e. huts egin du jaioberrian irabaztean / (en)
missed when winning the newborn where it should
be jaioberriaren garapeneko atzerapen / (en) Fail-
ure to thrive in newborn). It is possible that the
system was not sufficiently fine-tuned for the tech-
nical and specific language employed in ICD-10
code descriptions.
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8 Conclusions

Our sixth edition of the WMT Biomedical Transla-
tion addressed a total of eight language pairs and
three types of documents. One more time, we could
assess the performance of current MT technology
for the translation of biomedical textual resources.
Further, we could attract the attention of many
teams and received submissions for most of our
test sets.

Similar as in the more recent editions of the
shared task, participating system could perform
better than the reference translation for many of the
language pairs. However, this is still a challenge
for en2zh. In future editions of this challenge, we
aim at releasing more resources, especially addi-
tional training data, adding new language pairs, and
considering a variety of test sets.
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Abstract

We report the results of the WMT 2021 shared
task on Quality Estimation, where the chal-
lenge is to predict the quality of the output of
neural machine translation systems at the word
and sentence levels. This edition focused on
two main novel additions: (i) prediction for
unseen languages, i.e. zero-shot settings, and
(ii) prediction of sentences with catastrophic
errors. In addition, new data was released for
a number of languages, especially post-edited
data. Participating teams from 19 institutions
submitted altogether 1263 systems to different
task variants and language pairs.

1 Introduction

The 10th edition of the shared task on Quality Esti-
mation (QE) builds on its previous editions to fur-
ther benchmark methods for estimating the quality
of neural machine translation (MT) output at run-
time, without the use of reference translations. It
includes the (sub)tasks of word-level and sentence-
level estimation. The document-level task was re-
moved from this edition, since it has not attracted
many participants in previous editions. Important
elements introduced this year are: a new sentence-
level task where sentences are annotated with a
binary label reflecting whether or not they contain
a critical error that could lead to catastrophic con-
sequences; new test data for languages that are not
covered by any training set for zero-shot prediction
(both direct assessment and post-editing based la-
bels, at sentence and word levels. scores instead
of labels based on post-editing; a new multilingual
sentence-level dataset mainly from Wikipedia arti-
cles, where the source articles can be retrieved for
document-wide context; the availability of NMT
models to explore system-internal information for
the task.

In addition to advancing the state-of-the-art at
all prediction levels, our main goals are:

• To extend the MLQE-PE public benchmark
datasets;

• To investigate new language independent ap-
proaches especially for zero-shot prediction;

• To study the feasibility of unsupervised ap-
proaches especially for zero-shot prediction;
and

• To create a new task focusing on critical error
detection.

We have three subtasks: Task 1 aims at predict-
ing a variant of DA scores at sentence level (Section
2.1); Task 2 aims at predicting post-editing effort
scores at both sentence and word levels, i.e. words
that need editing, as well as missing words and
incorrect source words (Section 2.2); Task 3 aims
at predicting a binary label at sentence level to in-
dicate whether the sentence contains one or more
critical errors (Section 2.3).

Tasks make use of large datasets annotated by
professional translators with either 0-100 DA scor-
ing, post-edition, or critical error flagging. The
text domains and languages vary for each subtask.
Neural MT systems were built on freely available
data using an open-source toolkits to produce trans-
lations. We provide new training and test datasets
for Tasks 2 and 3, new test sets for Task 1, as well
as new zero-shot test sets for Tasks 1 and 2. The
datasets and models released are publicly available.
Participants are also allowed to explore any addi-
tional data and resources deemed relevant.

Baseline systems were entered in the platform
by the task organisers (Section 3). The shared task
uses CodaLab as submission platform, where par-
ticipants (Section 4) could submit up to 30 systems
for each task and language pair, except for the mul-
tilingual track of Tasks 1 and 2 (up to 10 systems).
Results for all tasks evaluated according to stan-
dard metrics are given in Section 5, which this year
also included model size. A discussion on the main
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goals and findings from this year’s task is presented
in Section 6.

2 Subtasks

In what follows, we give a brief description for
each subtask, including the datasets provided for
them.

2.1 Task 1: Predicting sentence-level DA

This task consists in scoring translation sentences
according to their perceived quality score – which
we refer to as direct assessment (DA). For that,
we use the same training sets as last year’s Task 1
(Specia et al., 2020), and provided new test sets for
all low, medium and high-resource languages:

• English→German (En-De),
• English→Chinese (En-Zh),
• Russian→English (Ru-En),
• Romanian→English (Ro-En),
• Estonian→English (Et-En),
• Sinhala→English (Si-En), and
• Nepali→English (Ne-En).

This data was produced in the same way as
the data for last year, with sentences sample from
Wikipedia (or Wikipedia and Reddit for Ru-En)
and translated by a fairseq Transformer (Ott et al.,
2019) bilingual model.

In addition, we provide new test sets for four
other languages, for which training data was not
provided. The goal was to test the performance of
QE models under zero-shot settings. The new test
sets contain source Wikipedia sentences sampled in
the same way as the previous data, but translated by
the ML50 fairseq multilingual Transformer model
(Tang et al., 2020),1 which had been found to per-
form well especially for low-resource languages.
The following languages were used:

• English→Czech (En-Cs),
• English→Japanese (En-Ja),
• Pashto→English (Ps-En), and
• Khmer→English (Km-En),

All translations were manually annotated for per-
ceived quality, with a quality label ranging from 0
to 100, following the FLORES guidelines (Guzmán
et al., 2019). According to the guidelines given to
annotators, the 0-10 range represents an incorrect

1https://github.com/pytorch/fairseq/
tree/master/examples/multilingual

translation; 11-29, a translation with few correct
keywords, but the overall meaning is different from
the source; 30-50, a translation with major mis-
takes; 51-69, a translation which is understand-
able and conveys the overall meaning of the source
but contains typos or grammatical errors; 70-90, a
translation that closely preserves the semantics of
the source sentence; and 91-100, a perfect transla-
tion. DA scores were standardised using the z-score
by rater. Participating systems are required to score
sentences according to z-standardised DA scores.
Statistics on the dataset are shown in Table 1. This
dataset part of the MLQE-PE dataset and more
details are given in Fomicheva et al. (2020). The
complete data can be downloaded from the public
repository.2

Participation was encouraged for each language
pair and also for the multilingual variant of the
task, where submissions had to include predictions
for all six Wikipedia-based language pairs (all ex-
cept Ru-En). The latter aimed at fostering work on
language-independent models, as well as models
that can leverage data from multiple languages.

2.2 Task 2: Predicting post-editing effort

This task concerns scoring translations according
to the proportion of the words that need to be edited
to obtain a correct translation. The scores are gener-
ated using Human-mediated Translation Edit Rate
(HTER) (Snover et al., 2006), i.e. calculating the
minimum edit distance between the machine trans-
lation and its manually post-edited version, as well
as detecting where errors are in the translation of
source sentences. It comprises two sub-tasks, a
sentence level one where the targets are the HTER
scores per segment and a word level task where the
targets are word level OK/BAD tags to signify the
correctness of words and gaps in the source and
translation sentences. Both sub-tasks use the same
languages pairs and splits described for Task 1 in
Table 1. Details on the data, such as label distribu-
tions, can be found in Fomicheva et al. (2020).

Sentence-level post-editing effort The label for
this task is the percentage of edits that need to be
fixed (HTER). The data used for this task is the PE
annotations and corresponding HTER scores from
the MLQE-PE dataset (Fomicheva et al., 2020).
HTER labels are computed using TERCOM,3 with

2https://github.com/sheffieldnlp/
mlqe-pe

3https://github.com/jhclark/tercom

685



Language Sentences Tokens DA PE CE
Pairs Train / Dev / Test21 Train / Dev / Test21

En-De 7,000 / 1,000 / 1,000 114,980 / 16,519 / 16,545 X X
En-Zh 7,000 / 1,000 / 1,000 115,585 / 16,307 / 16,637 X X
Ru-En 7,000 / 1,000 / 1,000 82,229 / 11,992 / 11,650 X X
Ro-En 7,000 / 1,000 / 1,000 120,198 / 17,268 / 17,359 X X
Et-En 7,000 / 1,000 / 1,000 98,080 / 14,423 / 14,044 X X
Ne-En 7,000 / 1,000 / 1,000 104,934 / 15,144 / 15,017 X X
Si-En 7,000 / 1,000 / 1,000 109,515 / 15,708 / 15,709 X X
Ps-En – / – / 1,000 – / – / 27,045 X X
Km-En – / – / 1,000 – / – / 21,981 X X
En-Ja – / – / 1,000 – / – / 20,626 X X
En-Cs – / – / 1,000 – / – / 20,394 X X
En-Cs 7,476 / 1,000 / 1,000 122,275 / 16,270 / 16,106 X
En-De 7,878 / 1,000 / 1,000 127,778 / 16,114 / 16,371 X
En-Ja 7,658 / 1,000 / 1,000 126,307 / 16,400 / 16,412 X
En-Zh 6,859 / 1,000 / 1,000 110,717 / 16,283 / 15,989 X

Table 1: Statistics of the data used for Task 1 (DA), Task 2 (PE) and Task 3 (CE) (last four rows). The number of
tokens is computed based on the source sentences.

default settings (tokenised, case insensitive, exact
matching only) with scores capped to 1.

Word-level errors This sub-task focuses on de-
tecting word-level errors in the MT output. The
goal in this case is to annotate each token with bi-
nary correctness (OK/BAD) tags. The token-level
annotations include the annotation of gaps, which
allows us to account for omission errors. All anno-
tations are produced with respect to a post-edited
sentence, which is treated as the ground truth ref-
erence. Similarly to the sentence-level tasks, the
MLQE-PE data is used for all language pairs (see
Table 1). The following types of labels are used:

• Source side: Each word in the source side is
labelled as OK (correctly translated) or BAD
(caused a translation error).

• Target side: Each word in the target side is
labelled as OK (a correct translation) or BAD
(should be replaced or deleted). Additionally,
we consider gap ‘tokens’ at the beginning of
the sentence, at the end and between each
two words. They are labelled OK if no word
should be inserted in that position (according
to the post-edited version), and BAD other-
wise.

2.3 Task 3: Predicting Catastrophic Errors

This is a new task introduced this year. It aims
to predict a sentence-level binary score indicating
whether a translation contains (at least one) criti-
cal error (CE). Translations with such errors are
defined as translations that deviate in meaning as
compared to the source sentence in such a way that
they are misleading and may carry health, safety,
legal, reputation, religious or financial implications.
Meaning deviations from the source sentence can
happen in three ways:

• Mistranslation: critical content is translated
incorrectly into a different meaning, or not
translated (i.e. it remains in the source lan-
guage) or translated into gibberish.

• Hallucination: critical content that is not in
the source is introduced in the translation, for
example, profanity words are introduced that
were not in the source.

• Deletion: critical content that is in the source
sentence is not present in the translation. For
example, the source sentence may contain a
negation or hateful word that is removed in
the translation.

We focus on the following set of critical error
categories:
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• TOX. Deviation in toxicity (hate, violence or
profanity) be against an individual or a group
(a religion, race, gender, etc.). This error can
happen because toxicity is introduced in the
translation when it is not in the source, deleted
in the translation when it was in the source,
or mistranslated into different (toxic or not)
words, or not translated at all (i.e. the toxi-
city remains in the source language or it is
transliterated).

• SAF. Deviation in health or safety risks, i.e.
the translation contains errors that may bring
a risk to the reader. This issue can happen
because content is introduced in the trans-
lation when it is not in the source, deleted
in the translation when it was in the source,
or mistranslated into different words, or not
translated at all (i.e. it remains in the source
language).

• NAM. Deviation in named entities. A named
entity (people, organisation, location, etc.) is
deleted, mistranslated by either another incor-
rect named entity or a common word or gib-
berish, or left untranslated when it should be
translated, or transliterated where the translit-
eration makes no sense in the target language
(i.e. the reader cannot recover the actual
named entity from it), or introduced when
it was not in the source text. If the named
entity is translated partially correctly but one
can still understand that it refers to the same
entity, it should not be an error.

• SEN. Deviation in sentiment polarity or nega-
tion. The MT either introduces or removes
a negation (with or without an explicit nega-
tion word), or reverses the sentiment of the
sentence (e.g. a negative sentence becomes
positive or vice-versa). We note that SEN
errors do not always involve a full negation,
for example, replacing “possibly” with “with
certainty” constitutes a SEN error.

• NUM. Deviation in units/time/date/numbers.
The MT translated a number/date/time or unit
incorrectly (or translated it as gibberish), or
removed it, which could lead someone to miss
an appointment, get lost, etc.

Data for this task was annotated at the word/span
level by professional translators not only for the

Figure 1: Example of fine-grained sentence annotation.
Spans in the same colour belong to the same catas-
trophic error type. In the first case, the translation con-
tains no critical error; in the second case, the translation
contains only one SEN error; in the last case, the trans-
lation contains two errors: one TOX and one NAM (the
space is annotated to indicate a missing named entity).

presence of an error, but also with the error cate-
gory. Each instance was annotated by three pro-
fessional translators using a modified version of
MT-EQuAl.4 We instructed the translators to ig-
nore other translation errors, be them critical (there
may be other types of critical errors outside these
five categories) or non-critical, e.g. minor gram-
matical or typographical errors. We also instructed
them to indicate source sentences that were unin-
telligible, or translation sentences that contained
too many errors to be annotated. Figure 1 shows
three examples of different error annotations for
the translations.

For this the first edition of this task, we aggre-
gated these labels in two ways: First, for each of the
three annotated versions of a sentence, we extrap-
olated the word-level labels into a sentence-level
label: if the sentence contained at least one critical
error, it was annotated as critical. Second: we took
the majority sentence-level label from the three
annotators to create a single sentence-level label
for each sentence, resulting in the following binary
labels:5

• ERR: the translated sentence contains at least
one (any) token or whitespace (for deletion
errors) annotated with a critical error in any
categories, according to at least 2 out of 3
annotators, or otherwise

• NOT: the sentence does not contain any token
with a critical error.

4https://mt4cat.fbk.eu/software/
mt-equal

5We removed from the dataset sentences that had been
annotated by the majority as having an unintelligible source
or a translation with too many errors.
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Thus, the task does not expect the errors to be
categorised or to have their spans identified in the
sentence, but rather to have a binary prediction on
a sentence basis. For example, the first sample
in Figure 1 would have resulted in the sentence
labelled as NOT by that annotator, while the last
two samples would have resulted in the sentence
labelled as ERR.

An initial set of 10K English samples for train-
ing, development and test data was created from
Wikipedia comments, extracted from two sources:
the Jigsaw Toxic Comment Classification Chal-
lenge6 and the Wikipedia Comments Corpus.7 Ma-
chine translations were generated by the ML50
fairseq multilingual translation model for the fol-
lowing languages:

• English-Czech,
• English-Japanese,
• English-Chinese, and
• English-German.

After filtering for unintelligible source sentences
and translations with too many errors, the statistics
for the resulting splits are presented in Table 1. As
expected, critical errors are rare. Give the nature
of this dataset (user generated content with high
chances of toxicity, named entities, etc.), we ob-
served a fairly large proportion of sentences with
such errors. Nevertheless, the distribution of labels
is skewed towards the NOT class. The proportion
of instances with NOT labels in the training set
(similar for dev and test sets) is as follows: 83%
for En-Cs, 72% for En-De, 91% or En-Ja, and 84%
for En-Zh.

3 Baseline systems

Sentence-level baseline systems: For Tasks 1
and 2, both word and sentence-level, we used a
multilingual transformer-based Predictor-Estimator
approach (Kim et al., 2017), which is described in
detail in (Fomicheva et al., 2020). Both baselines
are implemented in OpenKiwi (Kepler et al., 2019)
and trained using the concatenated train portions
of the data for training (combining all 7 language
pairs) and the concatenated development portions
of the data for validation/early-stopping. In all

6https://www.kaggle.com/c/
jigsaw-toxic-comment-classification-challenge/
data

7https://meta.wikimedia.org/wiki/
Research:Detox/Data_Release#Wikipedia_
Comments_Corpus

cases, the XLM-RoBERTa transformer was used
for the encoding (predictor) part of the architecture,
using xlm-roberta-base for all experiments.
The XLM-RoBERTa encoder is initially trained on
the concatenated train and development segments
using ULM fine-tuning (Howard and Ruder, 2018)
and then this fine-tuned encoder is used in the full
predictor-estimator model which is fine-tuned sep-
arately for each task scores (DA or HTER).

Word-level baseline systems: For Task 2, we
used the same architecture and encoder as above,
but it was trained to predict jointly word-level
OK/BAD tags and sentence-level HTER scores.

Catastrophic error baseline system: The base-
line model for Task 3 follows the MonoTransQuest
architecture proposed by Ranasinghe et al. (2020)
for sentence-level classification. As input, the
model takes a sequence of tokens including the
[CLS] token, and the source and translated sen-
tence tokens, separated by a [SEP] token. This
string is fed into a transformer encoder and the out-
put of the encoder is given to a classification head
where cross-entropy is adopted as the loss func-
tion. We use the pre-trained XLM-RoBERTa-base
released by HuggingFace’s model repository (?)
for the implementation.

4 Participants

Table 2 lists all participating teams submitting sys-
tems to any of the tasks, and Table 3 report the
number of successful submissions to each of the
sub-tasks and language pairs. Each team was al-
lowed up to two submissions for each task vari-
ant and language pair. In the descriptions below,
participation in specific tasks is denoted by a task
identifier (T1 = Task 1, T2 = Task 2, T3 = Task 3).

Bergamot (T1): Bergamot explores the use of a
teacher-student knowledge distillation frame-
work to transfer knowledge from a strong
QE teacher model to a much smaller stu-
dent model with a different, shallower archi-
tecture. Namely, the system distill a large
and powerful QE model TransQuest [1] based
on XLM-Roberta into a small BiRNN-based
DeepQuest model [2]. The predictions from a
teacher QE model trained on MLQE data [3]
is used to train the lightweight student. Addi-
tionally, the system employs data augmenta-
tion through teacher predictions on monolin-
gual data sampled from Wikipedia following
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ID Participating team

Bergamot University of Sheffield & Imperial College London & University of
Wolverhampton, UK

(Gajbhiye et al., 2021)

Bergamot-UTartu University of Tartu, Estonia (Yankovskaya and Fishel, 2021)
ENSBRT University of Illinois at Chicago & IQVIA, USA (Chowdhury et al., 2021)
HW-TSC Huawei Translation Services Center & Nanjing University, China (Chen et al., 2021)

IST-Unbabel Instituto de Telecomunicações Lisbon & Instituto Superior Técnico
Lisbon & Unbabel, Portugal

(Zerva et al., 2021)

JHU-Microsoft Johns Hopkins University & Microsoft (Ding et al., 2021)
LAMA-ICL LAMA - Imperial College London, UK (Jiang et al., 2021)
NICT Kyoto National Institute of ICT, Japan (Rubino et al., 2021)

Papago Naver, Republic of Korea (Lim et al., 2021)
POSTECH Pohang University of Science and Technology, Republic of Korea (Heo et al., 2021)

QEMind Alibaba, China (Wang et al., 2021)
RTM Boğaziçi University, Turkey (Biçici, 2021)

SMOB-ECEIIT Technion - Israel Institute of Technology, Israel –
TUDa Technische Universität Darmstadt, Germany (Geigle et al., 2021)

Table 2: Participants to the WMT21 Quality Estimation shared task.

Task/LP # submission

Task 1 – Sent-level Direct Assessment 725
Multilingual 32
English-German 99
English-Chinese 78
Romanian-English 58
Estonian-English 56
Nepalese-English 52
Sinhala-English 65
Russian-English 54
English-Czech 54
English-Japanese 62
Pashto-English 50
Khmer-English 65

Task 2 – Sent-/Word-level PE Effort 163/178
Multilingual 7/–
English-German 37/33
English-Chinese 22/32
Romanian-English 13/14
Estonian-English 13/19
Nepalese-English 6/11
Sinhala-English 7/10
Russian-English 11/11
English-Czech 10/14
English-Japanese 13/14
Pashto-English 6/8
Khmer-English 18/12

Task 3 – Sent-Level Critical Error
Det.

197

English-German 56
English-Chinese 30
English-Czech 36
English-Japanese 75

Total 1263

Table 3: Number of submissions to each sub-task
and language-pair at the WMT21 Quality Estimation
shared task.

the procedure described in [3]. Further de-
tails about the distillation framework used for
submission can be found in [4].

Bergamot-UTartu (T1, T2): Bergamot-UTartu
proposes CNN-models based on attention
weights extracted from NMT systems. For
Task 1, they explored three QE models: i)
CNN-DA trained on human-labelled data; ii)
CNN-BLEURT a "zero-shot" system that re-
quires only synthetic data, for which they used
BLEURT scores (Sellam et al., 2020) as train-
ing data; iii) CNN-BLEURT+ a fine-tuned
version of CNN-BLEURT. For Task 2, CNN-
HTER is a model similar to CNN-DA, but
trained on the post-editing scores.

ENSBRT (T2): ENSBRT propose a system that is
an ensemble of multilingual BERT (mBERT)-
based regression models, which are gener-
ated by fine-tuning on different input settings.
They adapted their system for the zero-shot
setting by exploiting target language-relevant
language pairs and pseudo-reference transla-
tions.

HW-TSC (T1, T2, T3): HW-TSC’s submissions
in the three sub tasks follow the framework of
Predictor-Estimator (Kim et al., 2017), with
a pre-trained XLM-Roberta as Predictor and
task-specific classifier or regressor as Estima-
tor. They further explore to incorporate addi-
tional high-quality translation sentences in the
way of multitask learning or encoding it with
the Predictor directly. For Task1, they enable
the model to jointly learn to score translations
with a regression task and to distinguish be-
tween translations and additional better trans-
lations (i.e. post-edits from Task2 dataset)
with a classification task. They also exploit
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a data augmentation strategy based on MC
dropout to improve zero-shot performance.
They ensemble multi results with MC dropout
to keep a relatively small number of param-
eters and model size. For Task 2, they lever-
age additional translation sentence generated
by a NMT system trained for WMT21 News
shared task in the way of directly concate-
nating it with source and original translation.
A unified model is trained under multi-task
learning framework where losses of source
word, translation token and gap, additional
translation token and gap, HTER scores are
all added up to train the model. For Task 3,
they translate source sentences with Google
and Baidu translation API. Each new transla-
tion is then concatenated to the corresponding
source and translation pair, to get a sentence
feature. They ensemble the results of three dif-
ferent models and take their majority voting
as final result.

IST-Unbabel (T1, T2): For Task 1, IST-Unbabel’s
system is an ensemble of an XLM-R with
stacked adapter layers and an mBART that
incorporates different types of uncertainty (an-
notation uncertainty and MT uncertainty). For
Task 2, the submitted system is an ensemble
of two XLM-R with adapters (the difference
being the XLM-R checkpoint, while one uses
the xlm-roberta-large normal checkpoint the
other uses an XLM-R checkpoint pertained on
data from the metrics shared task). The ensem-
bled checkpoints learn to predict both word
level tags and sentence level HTER scores in
a multi-task setting.

JHU-Microsoft (T2): The JHU-Microsoft sub-
mission focuses on the word-level subtask
of Task 2, for which they adopt Levenshtein
Transformer (Gu et al. 2019) as their model
architecture. The training procedure starts
with training a non-autoregressive translation
model using a Levenshtein Transformer, with
its encoder and decoder initialized with those
from the M2M multilingual translation model
(Fan et al. 2020). They then fine-tune the
model to perform the word-level QE task on
the human-annotated training set, or option-
ally also on automatically generated pseudo-
post-editing translation triplets. The final sub-
mission is an ensemble of 4-8 best models

on the 2020 test set for each language pair,
and the ensemble is performed by linear in-
terpolation of scores from each model, with
the interpolation weights tuned by the Nelder-
Meade method (Nelder and Meade, 1965).

LAMA-ICL (T3): LAMA-ICL’s approach builds
on cross-lingual pre-trained representations
in a sequence classification model. We fur-
ther improve the base classifier by (i) adding
a weighted sampler to deal with unbalanced
data and (ii) introducing feature engineer-
ing, where features related to toxicity, named-
entities and sentiment, which are potentially
indicative of critical errors, are extracted us-
ing existing tools and integrated to the model
in different ways. We train models with one
type of feature at a time and ensemble those
models that improve over the base classifier
on the development (dev) set.

NICT Kyoto (T3): NICT Kyoto submission for
the Critical Error Detection task consists in
large scale QE pretraining with synthetic data
in a multilingual and multimetric setting. A
total of six sentence- and word-level quality
indicators were involved in continued train-
ing of an XLM-R checkpoint using QE ori-
ented training objectives in a multi-task fash-
ion, based on a corpus of 70 million sentence
pairs including twelve languages. Fine-tuning
on the official dataset was then performed and
resulting models from different initializations
were ensembled to constitute the final submis-
sion.

Papago (T1): Papago’s submission is a multi-
lingual Quality Estimation system that ex-
plores the combination of pre-trained lan-
guage models and multi-task Learning ar-
chitectures. They propose an iterative train-
ing pipeline based on pretraining with large
amounts of in-domain synthetic data and fine-
tuning with gold (labeled) data. They then
compress our system via knowledge distilla-
tion in order to reduce parameters yet maintain
strong performance.

POSTECH (T2): POSTECH’s model uses two
pre-trained monolingual encoders to first pro-
duce monolingual representations of the two
input data separately and then exchanges the
information of these representations through
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two additional cross attention networks. The
two pre-trained monolingual encoders are an
English ELECTRA and a German ELECTRA,
respectively. They fine-tuned their system in
two stages: the QE pre-training stage and the
QE fine-tuning stage. In the former, they used
a large quantity of artificial training data, and
the loss value equals to the sum of the losses
for the estimated HTER (sentence-level QE),
OK-BAD for the source tokens, OK-BAD for
the MT tokens, and OK-BAD for the gap to-
kens in between two MT tokens. In the latter,
they only used human labelled training data,
and the loss value is one of the four above
mentioned loss values, depending on the tar-
geted subtask.

QEMind (T1, T3): QEMind propose novel glass-
box QE features to estimate the uncertainty
of machine translations and incorporate them
into the transfer learning from the large-scale
pre-trained model, XLM-Roberta. In addi-
tion, three important strategies are particularly
utilized for improving the QE system’s per-
formance such as multilingual training, data
augmentation and model ensemble.

RTM (T1, T2): Referential Translation Machines
(RTMs) Superlearner results combine individ-
ual machine learning model results via cross-
validation on the training set. The combined
models guarantee lower error on the valida-
tion set than the model that minimises the
overall error. A superlearner model improves
the results over non-mixture results.

SMOB-ECEIIT (T1): SMOB-ECEIIT’s partici-
pation is fully unsupervised, as created with-
out using any annotated data or even paral-
lel bilingual data. The system is composed
of two novel different methods. The first
method is based on soft alignment of mul-
tilingual contextual embeddings, generated by
pre-trained mBert or XLM-R (depending on
the specific language). The soft alignment
is calculated by the Sinkhorn distance (Cu-
turi, 2013), which is an optimal transportation
distance with an entropic regularization term.
The second method is based on the assump-
tion that word embedding spaces are approxi-
mately isometric (Vulić et al., 2020), and on
an isometric-invariant method known as Per-
sistent Homology (Edelsbrunner, 2013). Each

sentence is represented by the distances be-
tween its own word embeddings (either static
or contextual). The created distance matrices
are compared using the Wasserstein distance
between their persistence barcodes (the output
of persistent homology computation). Finally,
the two methods are linearly combined.

TUDa (T1): TUDa’s submissions are produced
with pre-trained multilingual language models
which they extended to new languages and un-
seen scripts using recent adapter-based meth-
ods.

5 Results

5.1 Task 1
Submissions for Task 1 are evaluated against the
true z-normalised direct assessment label using
Pearson’s r correlation score as primary metric.
This is what was used for ranking system sub-
missions. Mean Absolute Error (MAE), and Root
Mean Squared Error (RMSE) were also computed
as secondary metrics. Statistical significance on
Pearson r was computed using William’s test.8

Table 4 summarises the results for all language
pairs, as well as the multilingual variant, in terms
of Pearson’s r correlation with direct assessments,
ranking systems by their average performance for
all language pairs (using 0 as Pearson score for
other languages). In the Appendix, Tables 9, 10,
11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 provide
the detailed results for all language pairs and the
multilingual variant, ranking participants by their
performance for each of these cases.

Best performers The best system varies slightly
across language pairs, with QEMind winning the
multilingual task, i.e. the average performance for
all language pairs (including zero-shot). Overall,
the three top performing systems, QEMind, HW-
TSC and IST-Unbabel, perform very closely on
average, and also for each given language. The
three make use of the XML-R large pre-trained rep-
resentations in a predictor-estimator fashion, and
model ensembling. Another recurring theme is to
explore data augmentation (QEMind and HW-TSC)
and model uncertainty (QEMind and IST-Unbabel).
While the baseline system also uses XLM-R as
predictor, it uses its ‘base’ version, and only the
provided ‘train’ part of the data to train the estima-
tor. In addition, it does not resort to ensembling.

8https://github.com/ygraham/mt-qe-eval
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Model Multi En-
De

En-
Zh

Ro-
En

Et-
En

Ne-
En

Si-
En

Ru-
En

En-
Cs

En-
Ja

Ps-
En

Km-
En

QEMind 0.675 0.567 0.603 0.908 0.812 0.867 0.596 0.806 0.582 0.359 0.647 0.679
HW-TSC 0.665 0.584 0.583 0.901 0.808 0.858 0.581 0.878 0.573 0.364 0.622 0.659
IST-Unbabel 0.665 0.579 0.586 0.899 0.796 0.856 0.605 0.792 0.577 0.355 0.628 0.650
papago (IKT) 0.658 0.568 0.567 0.901 0.759 0.853 0.595 0.793 0.572 0.332 0.637 0.662
TUDa 0.631 0.473 0.558 0.886 0.792 0.834 0.571 0.764 0.545 0.330 0.609 0.639
Inmon‡ 0.623 – – – – – – – 0.547 0.297 0.592 0.630
papago (KD) 0.613 0.551 0.553 0.879 0.794 0.823 0.582 0.744 0.497 0.276 0.582 0.625
BASELINE 0.541 0.403 0.525 0.818 0.660 0.738 0.513 0.677 0.352 0.230 0.476 0.562
SMOB-ECEIIT 0.348 0.226 0.131 0.650 0.329 0.544 0.347 0.420 0.195 0.153 0.424 0.409
Bergamot – – 0.687 0.544 0.626 0.425 – – – – – –
Bergamot-UTartu – 0.369 – – 0.547 – – – 0.300 – – –
RTM – 0.143 0.248 0.287 0.099 0.127 0.061 0.356 0.104 0.082 – –

Table 4: Pearson correlation with direct assessments for the submissions to WMT21 Quality Estimation Task 1.
For each language pair, results marked in bold correspond to the winning submissions, as they are not significantly
outperformed by any other system according to the Williams Significance Test (Williams, 1959). Baseline systems
are highlighted in grey; ‡ indicates Codalab username of participants from whom we have not received further
information.

To gain a better understanding in the performance
of different QE approaches for different language
pairs, Figure 2 shows the scatter plots for the base-
line and the best performing system for each lan-
guage pair.

The performance of all except four systems is
substantially better than that of the baseline system
for all languages. The systems below the baseline
correspond to unsupervised systems (Bergamot,
Bergamot-UTartu - using NMT glass-box features;
and SMOB-ECEIIT, using alignment over XLM-R
representations), as well as RTM, which does not
rely on pre-trained representations altogether.

Zero-shot languages On the zero-shot lan-
guages, the performance was comparable to those
of the average non-zero-shot language pairs, ex-
cept for the En-Ja language pair, where it was
substantially lower. Most systems achieved such
good performance by relying on multilingual pre-
diction models trained on cross-lingual representa-
tions from XLM-R. With En-Ja, we believe there
may have been an issue with the segmentation of
the Japanese data after translation, which led to an-
notation issues and/or issues of mapping of charac-
ters against the vocabulary of pre-trained language
models. We will investigate this further.

High vs low-resource performance Similar to
last year, MT quality for the high-resource lan-
guage pairs, in particular En-De but also En-Zh,
proved to be more challenging to predict. This
could be an indication of less variability in the
MT outputs for these language pairs, given that the
NMT models are likely to perform overall well for

these languages. This would lead to little variabil-
ity in perceived MT quality by humans, and thus
a harder data to learn from. Interestingly, this also
seemed to be the case in the zero-shot QE setting
for En-Cs, which is relatively higher resource than
Ps-En and Km-En. We observe that these differ-
ences in correlation also happen with the HTER
predictions for these language pairs (see the anal-
ysis of the sentence level task in §5.2 and Table
5).

All medium and low and medium-resource lan-
guage pairs achieve high correlations, in particular
in the supervised settings with Ro-En and Ne-En.
This again is an indication of the potential of multi-
lingual or cross-lingual pre-trained representations.
It could also indicate that the models (and human
annotators to some extent) rely heavily on the tar-
get language (English), which is well represented
in the pre-trained representations.

High correlations Just like in WMT2020, the
very high correlation for some language pairs, par-
ticularly for Ro-En (r = 0.91) but also for Ne-En
(r = 0.87) could be explained by the fact that there
is a number of very low-quality sentences that the
QE systems are able to successfully detect. Esp.
for Ro-En, we find that they correspond to ‘halluci-
nated‘ outputs that do not have anything to do with
the original sentences. Detecting such cases should
be trivial for QE systems, which explains the par-
ticularly high correlation values for this language
pair.
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Figure 2: Scatter plots for the predictions against true direct assessment scores for the baseline and top-performing
system for each language pair. The histograms show the corresponding marginal distributions of predicted and true
scores.
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5.2 Task 2
Sentence-level post-editing effort For this task
variant, evaluation was performed against the true
HTER label using the same metrics as in Task
1, with Pearson’s r correlation score as the pri-
mary metric. Table 5 summarises the results for
all language pairs, including the multilingual per-
formance. Systems are ranked by their averaged
performance over all language pairs based on the
Pearson r coefficient. Statistical significance on
Pearson r was computed using the William’s test.
In the Appendix, Tables 21, 22, 23, 24, 25, 26, 27,
28, 29, 30, 31 and 32 provide the detailed results
for all language pairs and the multilingual variant,
ranking participants by their performance for each
of these cases. Note that for the multilingual track
(Table 21 and 1st column of table 5) we present
only the performance of systems that submitted
multilingual models (HW-TSC and IST-Unbabel)
for that specific track.

Best performers Both multilingual system sub-
missions outperform the monolingual approaches
in the individual language pairs, with HW-TSC
ranking first for the majority of the ‘supervised’
language pairs (En-De, En-Zh, Ne-En, Si-En and
Ru-En) as well as the multilingual track and IST-
Unbabel leading the majority of the zero-shot lan-
guage pairs (En-Cs, En-Ja, Ps-En). Apart from
the multilingual aspect, the two top systems have
more in common: they both use the Predictor-
Estimator framework with XLM-Roberta encoders
for the predictor and task-specific classifiers for
the estimator. Additionally, they both address the
sentence- and word-level task using a multi-task
approach. HW-TSC enhances their approach using
additional pseudo-references as input (generated by
another NMT system), while IST-Unbabel system
uses additional external data from the WMT Met-
rics shared task and incorporate adapters in their
architecture.

Overall, submitted systems used a variety of
approaches to improve performance and address
the zero-shot tasks, which revolved around aug-
menting the training data either by including syn-
thetic data (Bergamot-UTartu, POSTECH) and/or
external data (IST-Unbabel) or by using pseudo-
references generated by other MT systems (ENS-
BRT, HW-TSC, JHU-Microsoft). Additionally, en-
sembling approaches were used to boost perfor-
mance (HW-TSC, ENSBRT, IST-Unbabel).

Figure 3 shows the scatter plots for the baseline

and the best performing system for each language
pair. We can see that in most language pairs (per-
haps with the exception of En-Zh) the scatter plots
for the ‘Top’ system are much narrower and closer
to the identity line, compared to these for the cor-
responding baseline. More importantly, language
pairs with a high proportion of HTER score values
close to 0 (many segments without post edits) prove
to be more challenging for the submitted models.
For example, comparing En-Zh, Ru-En against En-
De to Si-En, Ne-En and Et-En, we can see that
the latter have narrower, better correlated scatter
plots in Figure 3, which is reflected in higher per-
formance in Table 5. This observation seemingly
extends to the zero-shot languages, where we ob-
serve that performance for the Km-En language
pair is consistently higher for all systems compared
to the other zero-shot pairs.

Word-level errors For this task, the primary
evaluation metric is Matthews correlation coef-
ficient (MCC, Matthews, 1975). We also report the
F1-scores for the OK and BAD classes. Similarly
to the previous editions, we evaluate separately the
source and target side, and this year we also pro-
vide a separate evaluation for the target gap tag
predictions. We also calculate the performance
for combined gaps and words in MT, although it
was not considered in the overall ranking process.
Systems are primarily ranked by their MCC perfor-
mance for the word tags on the target side (denoted
as ‘Words in MT’ in the tables). The word-level
results for Task 2 are summarised in Tables 6, or-
dered by the MCC metric, while in the Appendix,
Tables 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 and
44 provide the detailed results for all language pairs
and the multilingual variant, ranking participants
by their performance for each of these cases. Statis-
tical significance was calculated based on the MCC
metric for each language pair using randomization
tests with Bonferroni correction (Yeh, 2000a).

Best performers For the multilingual track the
picture is similar to the sentence level sub-task,
with the HW-TSC system ranking first across all
performance indicators, and also leading most of
the individual language pairs. Apart from the two
multilingual approaches, most of the systems par-
ticipating in the sentence level sub-task did not sub-
mit predictions for the word-level task with the ex-
ception of POSTECH which submitted predictions
for En-De. However, the JHU-Microsoft which
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Figure 3: Scatter plots for the predictions against true HTER scores for the baseline and top-performing system for
each language pair. The histograms show the corresponding marginal distributions of predicted and true scores.
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Model Multi En-
De

En-
Zh

Ro-
En

Et-
En

Ne-
En

Si-
En

Ru-
En

En-
Cs

En-
Ja

Ps-
En

Km-
En

HW-TSC 0.631 0.653 0.368 0.862 0.809 0.798 0.869 0.562 0.475 0.262 0.534 0.753
IST-Unbabel 0.597 0.617 0.290 0.879 0.811 0.718 0.710 0.539 0.529 0.275 0.555 0.655
BASELINE 0.502 0.529 0.282 0.831 0.714 0.626 0.607 0.448 0.306 0.098 0.503 0.576
ENSBRT – 0.520 – 0.795 0.666 0.572 0.522 0.376 – – – 0.530
Abulice‡ – 0.577 0.312 – – – – – – – – –
POSTECH – 0.546 – – – – – – – – – –
Bergamot-UTartu – 0.531 – – 0.562 – – – – – – –
RTM – – 0.087 – – – – – – – – –

Table 5: Pearson correlation with post-editing effort for the submissions to WMT21 Quality Estimation Task 2
(sentence-level). For each language pair, results marked in bold correspond to the winning submissions, as they
are not significantly outperformed by any other system according to the Williams Significance Test (Williams,
1959). Baseline systems are highlighted in grey; ‡ indicates Codalab username of participants from whom we have
not received further information.

Model Multi En-
De

En-
Zh

Ro-
En

Et-
En

Ne-
En

Si-
En

Ru-
En

En-
Cs

En-
Ja

Ps-
En

Km-
En

Words in MT
HW-TSC 0.530 0.510 0.354 0.666 0.606 0.674 0.847 0.451 0.380 0.258 0.450 0.636
IST-Unbabel 0.430 0.466 0.310 0.649 0.570 0.508 0.528 0.332 0.376 0.169 0.370 0.448
BASELINE 0.346 0.370 0.247 0.536 0.461 0.440 0.425 0.256 0.273 0.131 0.313 0.351
JHU-Microsoft – 0.523 0.149 0.634 0.572 0.329 – 0.303 – – 0.191 –
Abulice‡ – 0.437 0.033 – – – – – – – – –
POSTECH – 0.413 – – – – – – – – – –

GAPs in MT
HW-TSC 0.337 0.300 0.172 0.446 0.312 0.403 0.639 0.388 0.213 0.152 0.260 0.419
IST-Unbabel 0.196 0.183 0.068 0.357 0.254 0.268 0.258 0.165 0.125 0.025 0.177 0.259
BASELINE 0.126 0.116 0.065 0.205 0.136 0.215 0.208 0.073 0.039 0.036 0.134 0.175
JHU-Microsoft – 0.256 0.035 0.208 0.218 0.207 – 0.167 – – 0.118 –
Abulice‡ – – – – – – – – – – – –
POSTECH – 0.110 – – – – – – – – – –

Words in SRC
HW-TSC 0.432 0.450 0.310 0.614 0.549 0.545 0.616 0.426 0.313 0.217 0.304 0.410
IST-Unbabel 0.378 0.404 0.286 0.603 0.522 0.445 0.406 0.351 0.294 0.210 0.294 0.345
BASELINE 0.307 0.322 0.241 0.511 0.405 0.390 0.335 0.215 0.224 0.175 0.249 0.279
JHU-Microsoft – – – – – – – – – – – –
Abulice‡ – 0.392 0.011 – – – – – – – – –
POSTECH – 0.320 – – – – – – – – – –

Combined Words and Gaps in MT
HW-TSC n/a 0.496 0.359 0.656 0.584 0.749 0.868 0.456 0.336 0.180 0.533 0.677
IST-Unbabel n/a 0.468 0.369 0.640 0.582 0.705 0.690 0.339 0.400 0.217 0.538 0.631
BASELINE n/a 0.378 0.320 0.543 0.482 0.672 0.642 0.319 0.339 0.250 0.517 0.587
JHU-Microsoft n/a 0.500 0.240 0.642 0.572 0.657 – 0.329 – – 0.523 –
Abulice‡ n/a 0.442 0.118 – – – – – – – – –
POSTECH n/a 0.403 – – – – – – – – – –

Table 6: Matthews correlation coefficient with the OK and BAD classes labels for the submissions to WMT21
Quality Estimation Task 2 (word-level). For each language pair, results marked in bold correspond to the winning
submissions, as they are not significantly outperformed by any other system based on randomisation tests with
Bonferroni correction (Yeh, 2000a). Baseline systems are highlighted in grey; ‡ indicates Codalab username of
participants from whom we have not received further information.
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Model En-De En-Zh En-Cs En-Ja
NICT Kyoto 0.546 0.311 0.511 0.252
HW-TSC 0.490 0.353 0.448 0.318
LAMA-ICL 0.498 0.305 0.473 0.314
QEMind 0.480 0.278 0.454 0.260
BASELINE 0.397 0.187 0.388 0.214
silence1024‡ 0.449 0.343 – 0.277
Jason_pogba‡ – – – 0.278
serkan‡ – 0.141 – –

Table 7: Matthews correlation coefficient with the bi-
nary critical error labels for the submissions to WMT21
Quality Estimation Task 3. For each language pair, re-
sults marked in bold correspond to the winning submis-
sions, as they are not significantly outperformed by any
other system based on William’s test. Baseline systems
are highlighted in grey; ‡ indicates Codalab username
of participants from whom we have not received further
information.

was trained only for the target predictions of the
word-level task, obtained the best performance in
En-De. JHU-Microsoft also seemed to obtain com-
petitive performance for the Et-En and Ro-En tasks,
indicating a strength in languages closer to English.

Overall, the performance of the top two systems
is closer for the high – and some of the medium
– resource languages, both in the supervised and
zero-shot tracks (En-De, En-Zh, En-Cs). Much like
the WMT20 shared task, the performance for the
target word tags is considerably higher compared
to the source tags. This phenomenon is observed
across language pairs with the exception of Ru-En
where predictions for source and target words are
close for all systems. This year we can also observe
the performance on target gaps separately, which
is consistently lower, even when compared to the
source tags, across all language pairs and submitted
systems.

It is important to note that when focusing on the
combined target performance, i.e., the combination
of word and gap quality predictions for the MT, the
order and performance differences between the top
scoring teams can vary compared to the MT word
prediction ones. Overall, there are fewer language
pairs where we have a clear winner (Ne-En, Si-
En and Km-En for HW-TSC and Cs-En for IST-
Unbabel) while for the rest there is no statistically
significant difference between the top pairs. Still,
HW-TSC is consistently among the top systems,
with the exception of Cs-En.

5.3 Task 3

Table 7 summarises the results for all language
pairs, ranked by their performance in terms of

Matthews correlation coefficient (MCC, Matthews,
1975). In the Appendix, Tables 45, 46, 47 and 48
provide the detailed results for all language pairs,
ranking participants by their performance for each
of these cases. Statistical significance is calculated
using the William’s test.

This task attracted fewer participants than the
others, most likely because it is new. All described
systems perform better than the baseline for all
language pairs. Across languages, the order of
MCC scores roughly corresponds to the skewness
of data distribution obtained for languages: For
En-De, which achieved the highest MCC score,
the NOT (no error class) accounted for 72% of the
training instances, while for En-Ja, with the lowest
MCC score, the NOT class accounted for 91% of
the training instances.

Best performers NICT Kyoto ranked among the
top systems for all language pairs. However, only
for En-De it did significantly outperform all other
systems. For the rest of the language pairs there
could not be a clear winner based on statistical sig-
nificance testing; HW-TSC was in the top-ranked
systems for En-Zh and En-Cs, while for En-Ja no
system managed to significantly outperform the
others, but they all performed significantly better
than the baseline.

In terms of the approaches applied by the best
performing systems, they all use the baseline ar-
chitecture as starting point, but HW-TSC also uses
machine translations for the source sentences by
top online systems. These are concatenated to the
provided source and translation pair. NICT Ky-
oto also added synthetic data for multiple language
pairs with multitask learning and model ensem-
bling. LAMA-ICL used additional features to de-
tect the presence/deviation of toxicity, sentiment
and named entities, also followed by ensenbling of
models with different individual features.

6 Discussion

In what follows, we discuss the main findings of
this year’s shared task based on the goals we had
previously identified for it.

General progress. Participating systems
achieved very promising results for most lan-
guages, with the best performing submissions
showing moderate to strong correlation for
sentence-level DA and HTER prediction tasks.
One reason for high correlation levels is likely
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to be that top performing systems are based on
pre-trained representations. Even for zero-shot
languages (see below), relatively high (above
0.5) correlation was achieved for most languages
for sentence-level tasks. The same applies for
the word-level tasks, where the performance was
behind that of supervised prediction, but still high
for Km-En and Ps-En.

A comparison to previous years submissions
is possible for Task 1 on the non-zero shot lan-
guages. The training data is the same and the test
sets (test20 and test21) were created at the same
time, with data sampled and annotated in the same
way. Comparing Pearson correlation scores from
the 2020 official results to this year’s official results,
as we can see from Table 8, for the languages which
had already achieved very strong correlations, it
remained the same (Ro-En, Et-En, Ru-En) or im-
proved (Ne-En), whereas for the languages with
average correlation, it mostly improved substan-
tially (En-De, En-Zh). The exception was Si-En,
where the correlation was lower in 2021, which
needs further investigation. Overall, we believe the
numbers show steady progress over previous mod-
els, even though the core of most of the winning
systems is the same for the 2020 and 2021 editions.

Model size. When interpreting the results for all
tasks, it should be noted that most of the partici-
pants use extremely resource-heavy systems, en-
sembles of multiple models with more than 500M
parameters, which could make them difficult to use
in practice. In this year’s edition of the Shared
Task on QE we asked the participants to provide
information on the size of their models. Figures 4
and 5 illustrate the performance-efficiency trade-
off for the submitted systems. On the x-axis we
plot the Pearson correlation with sentence-level
DA judgements (Task 1), while the y-axis shows
the number of model parameters, as reported by
the participants. Pareto-optimal submissions are
marked in blue. These plots give us a different
view of the performance of the submitted systems.
Thus, for the higher quality models, the best results
are achieved by QEMind and HW-TSC, whereas
Bergamot, Bergamot-UTartu and BASELINE are
optimal in terms of model size.

Extending publicly available benchmarks.
This year counted with substantial new data. One
the one hand, we extended the MLQE-PE dataset
with more DA test sets (for all seven previous

language pairs and four new zero-shot language
pairs), as well as post-editing training and test
sets for five additional language pairs (which
only had DA scores before), as well as the four
zero-shot language pairs. On the other hand, we
created sizeable data for the new Task 3, a unique
set focusing on critical errors, based on three
annotations by professional translators. We hope
that others will also contribute by adding new
languages to this dataset in the future.

Zero-shot prediction. For the first time, we in-
troduced language pairs for which no training
data was available. This challenge was addressed
mainly in two ways: synthetic data creation with
using parallel data for the relevant languages, and
use of indicators coming from the NMT system
for unsupervised prediction. Overall, the perfor-
mance for these languages was surprisingly good
(except for En-Ja, potentially for data segmentation
issues), comparable to non-zero-shot languages in
the dataset. We attribute this high performance
mostly to the use of fine-tuning on synthetic data
for the relevant languages. In future editions, we
may consider blinder zero-shot settings where par-
ticipants will not be informed of the actual lan-
guages the models will require to predict the quality
for, to encourage the development of truly multilin-
gual or language-agnostic models.

Critical error detection. We posit that the detec-
tion of critical errors is a very important problem
for two main reasons: (i) high-quality NMT mod-
els may produce fluent translations that may appear
very good, but contain localised errors which are
not always obvious and may go unnoticed, even by
human translators post-editing the translation; and
(ii) certain types of content are particularly chal-
lenging for MT models, such as social media data
posts containing named entities, and could lead to
critical errors especially if translations are to be
used without human editing. While in the past we
have provided word-level QE tasks where errors
were annotated not only with error categories, but
also error severity (e.g. MQM data in last year’s
WMT QE Task 3), this was the first attempt to
predict specifically (and only) critical errors. This
seems a much harder problem, as we expect the
QE model to be able not only to find errors, but
to distinguish minor (and even major) errors from
critical errors. That was the reasoning for our “sim-
plification” of the task this year, i.e. for making
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Shared task En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En
WMT 2021 0.58 0.60 0.91 0.81 0.87 0.61 0.81
WMT 2020 0.55 0.54 0.91 0.82 0.82 0.68 0.81

Table 8: Pearson correlation with direct assessments - comparison between top submission in 2020 and 2021.
While the test set is different, it was taken from the same distribution. The training set is the same.

(a) Si-En (b) Ne-En

(c) Et-En (d) Ro-En

(e) En-De (f) En-Zh

Figure 4: Performance of the submitted systems on Task 1 for Si-En, Ne-En, Et-En, Ro-En, En-De and En-Zh.
The x-axis shows Pearson correlation with human judgements and the y-axis corresponds to the number of model
parameters multiplied by -1. Pareto optimal submissions are marked in blue, while the rest are shown in red.
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(a) Ru-En (b) Km-En

(c) Ps-En (d) En-Cs

(e) En-Ja

Figure 5: Performance of the submitted systems on Task 1 for Ru-En, Km-En, Ps-En, En-Cs and En-Ja. The x-axis
shows Pearson correlation with human judgements and the y-axis corresponds to the number of model parameters
multiplied by -1. Pareto optimal submissions are marked in blue, while the rest are shown in red.
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it a sentence-level binary classification problem.
This might be enough for filtering purposes, i.e.
to avoid offering/using automatic translations that
may contain critical errors. If the goal is to support
human translators in the task of post-editing, more
fine-grained prediction may be needed.

The overall results for this task in terms of MCC
are promising, especially for En-Cs and En-De.
Considering the detailed results for this task in
Tables 45, 46, 47 and 48, we see that despite the
skewed distribution between the two classes, the
models achieve a high F1 score at detecting errors,
around 0.9 or higher for all language pairs.

7 Conclusions

This year’s edition of the QE Shared Task intro-
duced a number of new elements: new data cov-
ering five more language pairs with post-edits for
sentence and word-level prediction, new test sets
for all tasks, including four new zero-shot language
pairs, and a new task focusing on critical error
detection. Our analysis also paid close attention
to model size, an important aspect for deploying
QE systems in realistic applications, such as real-
time inference and devices with limited resources.
The tasks attracted a steady number of participat-
ing teams and systems and we believe the overall
results are a great reflection of the SotA in QE.
Continuing from the effort we set forward last year,
this edition the tasks in this edition, with its zero-
shot variant, cover a broad range of challenges in
QE, such as improving performance for languages
with skewed distributions, addressing low (or zero)
resource languages, predicting source words that
lead to errors, multilingual models, etc.

We are making the gold labels and all submis-
sions to all tasks available for those interested in fur-
ther analysing the results, investigating approaches
for prediction ensembling, among others.
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A Official Results of the WMT21 Quality Estimation Task 1

Tables 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19 and 20 show the results for all language pairs and the
multilingual variant, ranking participating systems best to worst using Pearson’s r correlation as primary
key for each of these cases.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
QEMind 3 0.675 0.627 0.486 2,244,030,744 560,981,507
HW-TSC 2.4 0.665 0.627 0.482 2,243,941,083 560,941,057
IST-Unbabel 5 0.665 0.642 0.495 4,872,322,439 1,214,683,792
papago (IKT) 5.2 0.658 0.645 0.496 2,503,797,760 611,278,859
TUDa 6.2 0.631 0.688 0.526 2,382,759,964 595,689,991
Inmon‡ 5.2 0.623 0.687 0.526 2,243,941,083 560,941,057
papago (KD) 4.2 0.613 0.687 0.524 1,249,902,592 297,974,795
BASELINE 5.2 0.541 0.729 0.562 1,142,413,043 281,291,535
SMOB-ECEIIT 6.6 0.348 1.057 0.821 1,886,937,088 471,716,864

Table 9: Official results of the WMT21 Quality Estimation Task 1 for the Multilingual variant. Baseline systems
are highlighted in grey. “Rank” indicates the averaged ranking of participants with regards to all metrics (including
memory print and number of parameters). ‡ indicates Codalab usernames of participants from whom we have not
received further information.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 2.6 0.584 0.544 0.390 2,243,941,083 560,941,057
• IST-Unbabel 4.4 0.579 0.567 0.393 2,409,244,995 598,943,476
• papago (IKT) 5.8 0.568 0.580 0.430 2,445,115,000 611,278,859
QEMind 4.8 0.567 0.579 0.432 2,244,030,744 560,981,507
papago (KD) 4.2 0.551 0.587 0.426 1,249,902,592 297,974,795
TUDa 6.6 0.473 0.626 0.440 2,264,844,300 566,211,075
BASELINE 5.2 0.403 0.629 0.433 1,142,413,043 281,291,535
Bergamot-UTartu 5.2 0.369 0.854 0.605 6,985,478 421,537
SMOB-ECEIIT 6.2 0.226 1.070 0.834 626,401,280 156,589,824
RTM n/a 0.143 1.150 0.538 61,203,283,968 380

Table 10: Official results of the WMT21 Quality Estimation Task 1 for the English-German dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 3 0.603 0.580 0.450 2,244,030,744 560,981,507
IST-Unbabel 5.6 0.586 0.631 0.499 4,872,322,439 1,214,683,792
HW-TSC 3.6 0.583 0.627 0.487 2,243,941,083 560,941,057
papago (IKT) 5 0.567 0.623 0.490 2,503,797,760 611,278,859
TUDa 6.6 0.558 0.687 0.541 2,382,759,964 595,689,991
papago (KD) 4.8 0.553 0.643 0.500 1,249,902,592 297,974,795
BASELINE 5 0.525 0.683 0.534 1,142,413,043 281,291,535
Bergamot 5.4 0.262 1.088 0.914 28,949,742 6,941,751
RTM n/a 0.248 1.924 1.772 61,203,283,968 380
SMOB-ECEIIT 6 0.131 1.149 0.838 626,401,280 156,589,824

Table 11: Official results of the WMT21 Quality Estimation Task 1 for the English-Chinese dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 4 0.908 0.393 0.316 2,244,030,744 560,981,507
papago (IKT) 4.6 0.901 0.393 0.288 2,503,797,760 611,278,859
HW-TSC 3 0.901 0.384 0.286 2,243,941,083 560,941,057
IST-Unbabel 5.8 0.899 0.393 0.289 4,872,322,439 1,214,683,792
TUDa 6.2 0.886 0.453 0.335 2,382,759,964 595,689,991
papago (KD) 4.6 0.879 0.427 0.316 1,249,902,592 297,974,795
BASELINE 5.4 0.818 0.556 0.408 1,142,413,043 281,291,535
Bergamot 5.6 0.687 1.024 0.748 70,044,344 16,772,151
SMOB-ECEIIT 5.8 0.650 0.794 0.628 626,401,280 156,589,824
RTM n/a 0.287 3.749 3.607 61,203,283,968 380

Table 12: Official results of the WMT21 Quality Estimation Task 1 for the Romanian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 3.4 0.812 0.488 0.393 2,244,030,744 560,981,507
• HW-TSC 4.4 0.808 0.520 0.409 2,243,941,083 560,941,057
IST-Unbabel 5.8 0.796 0.519 0.404 4,872,322,439 1,214,683,792
papago (KD) 5.2 0.794 0.510 0.397 2,503,797,760 611,278,859
TUDa 6.4 0.792 0.563 0.424 2,382,759,964 595,689,991
papago (IKT) 5 0.759 0.550 0.434 1,249,902,592 297,974,795
BASELINE 5.4 0.660 0.700 0.543 1,142,413,043 281,291,535
Bergamot-UTartu 6 0.547 1.840 1.701 1,705,478 421,537
Bergamot 5.8 0.544 0.966 0.761 284,339,184 70,969,501
SMOB-ECEIIT 7.6 0.329 1.072 0.862 1,886,937,088 471,716,864
RTM n/a 0.099 2.520 2.346 61,203,283,968 380

Table 13: Official results of the WMT21 Quality Estimation Task 1 for the Estonian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 4.8 0.867 0.570 0.426 2,244,030,744 560,981,507
HW-TSC 2.8 0.858 0.504 0.384 2,243,941,083 560,941,057
IST-Unbabel 5.2 0.856 0.515 0.401 4,872,322,439 1,214,683,792
papago (IKT) 5 0.853 0.522 0.399 2,503,797,760 611,278,859
TUDa 5.4 0.834 0.540 0.426 2,382,759,964 595,689,991
papago (KD) 5 0.823 0.562 0.441 1,249,902,592 297,974,795
BASELINE 5.4 0.738 0.657 0.524 1,142,413,043 281,291,535
Bergamot 5.6 0.626 0.977 0.818 83,907,600 19,220,401
SMOB-ECEIIT 5.8 0.544 0.931 0.717 626,401,280 156,589,824
RTM n/a 0.127 2.286 2.017 61,203,283,968 380

Table 14: Official results of the WMT21 Quality Estimation Task 1 for the Nepalese-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 4.2 0.605 0.742 0.583 4,872,322,439 1,214,683,792
• QEMind 5 0.596 0.783 0.609 2,244,030,744 560,981,507
• papago (IKT) 4.6 0.595 0.745 0.585 2,503,797,760 611,278,859
papago (KD) 3.2 0.582 0.768 0.597 1,249,902,592 297,974,795
HW-TSC 4.8 0.581 0.776 0.602 2,243,941,083 560,941,057
TUDa 6 0.571 0.774 0.609 2,382,759,964 595,689,991
BASELINE 5 0.513 0.797 0.626 1,142,413,043 281,291,535
Bergamot 5.2 0.425 0.920 0.773 74,490,910 17,079,701
SMOB-ECEIIT 7 0.347 1.115 0.864 1,886,937,088 471,716,864
RTM n/a 0.061 2.822 2.485 61,203,283,968 380

Table 15: Official results of the WMT21 Quality Estimation Task 1 for the Sinhala-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to the
Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” column indicates
the averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 2.6 0.806 0.534 0.388 2,244,030,744 560,981,507
papago (IKT) 4.2 0.793 0.572 0.392 2,503,797,760 611,278,859
IST-Unbabel 5.4 0.792 0.583 0.412 4,872,322,439 1,214,683,792
HW-TSC 3.4 0.787 0.554 0.397 2,243,941,083 560,941,057
TUDa 5.8 0.764 0.629 0.437 2,382,759,964 595,689,991
papago (KD) 4.4 0.744 0.615 0.421 1,249,902,592 297,974,795
BASELINE 5 0.677 0.702 0.492 1,142,413,043 281,291,535
SMOB-ECEIIT 5.2 0.420 1.026 0.795 626,401,280 156,589,824
RTM n/a 0.356 1.126 0.841 61,203,283,968 380

Table 16: Official results of the WMT21 Quality Estimation Task 1 for the Russian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 3.4 0.582 0.746 0.599 2,244,030,744 560,981,507
• IST-Unbabel 5 0.577 0.751 0.583 4,872,322,439 1,214,683,792
• HW-TSC 3.8 0.573 0.747 0.602 2,243,941,083 560,941,057
• papago (IKT) 5 0.572 0.748 0.585 2,503,797,760 611,278,859
Inmon ‡ 5.8 0.547 0.809 0.624 2,243,941,083 560,941,057
TUDa 6.2 0.545 0.808 0.619 2,382,759,964 595,689,991
papago (KD) 5.2 0.497 0.765 0.621 1,249,902,592 297,974,795
BASELINE 6 0.352 0.845 0.686 1,142,413,043 281,291,535
Bergamot-UTartu 6.2 0.300 1.420 1.166 111,300,550 27,815,809
SMOB-ECEIIT 6.4 0.195 1.199 0.967 626,401,280 156,589,824
RTM n/a -0.104 2.159 1.902 61,203,283,968 380

Table 17: Official results of the WMT21 Quality Estimation Task 1 for the English-Czech dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates
Codalab usernames of participants from whom we have not received further information.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 2.2 0.364 0.755 0.556 2,243,941,083 560,941,057
• QEMind 3.2 0.359 0.757 0.560 2,244,030,744 560,981,507
• IST-Unbabel 4.6 0.355 0.764 0.566 2,277,509,716 569,330,715
papago (IKT) 6 0.332 0.853 0.648 2,503,797,760 611,278,859
TUDa 6.6 0.330 0.917 0.705 2,264,844,300 566,211,075
Inmon ‡ 5.6 0.297 0.882 0.665 2,243,941,083 560,941,057
papago (KD) 5 0.276 0.865 0.649 1,249,902,592 297,974,795
BASELINE 4 0.230 0.816 0.617 1,142,413,043 281,291,535
SMOB-ECEIIT 5.8 0.153 1.174 0.870 626,401,280 156,589,824
RTM n/a -0.082 2.694 2.576 61,203,283,968 380

Table 18: Official results of the WMT21 Quality Estimation Task 1 for the English-Japanese dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters). ‡
indicates Codalab usernames of participants from whom we have not received further information.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 2.8 0.647 0.736 0.605 2,244,030,744 560,981,507
• papago (IKT) 4 0.637 0.738 0.605 2,503,797,760 611,278,859
IST-Unbabel 5.8 0.628 0.780 0.658 4,872,322,439 1,214,683,792
HW-TSC 3.4 0.622 0.737 0.616 2,243,941,083 560,941,057
TUDa 6.2 0.609 0.824 0.674 2,382,759,964 595,689,991
Inmon ‡ 5.2 0.592 0.795 0.665 2,243,941,083 560,941,057
papago (KD) 3.8 0.582 0.771 0.632 1,249,902,592 297,974,795
BASELINE 5.2 0.476 0.852 0.711 1,142,413,043 281,291,535
SMOB-ECEIIT 6.6 0.424 1.044 0.832 1,886,937,088 471,716,864

Table 19: Official results of the WMT21 Quality Estimation Task 1 for the Pashto-English dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• QEMind 2.8 0.679 0.729 0.564 2,244,030,744 560,981,507
papago (IKT) 6 0.662 0.815 0.641 2,503,797,760 611,278,859
HW-TSC 3.6 0.659 0.744 0.578 2,243,941,083 560,941,057
IST-Unbabel 4.6 0.650 0.721 0.568 4,872,322,439 1,214,683,792
TUDa 4.8 0.639 0.740 0.585 2,382,759,964 595,689,991
Inmon ‡ 4.8 0.630 0.765 0.599 2,243,941,083 560,941,057
papago (KD) 5.4 0.625 0.879 0.693 1,249,902,592 297,974,795
BASELINE 4.4 0.562 0.788 0.614 1,142,413,043 281,291,535
SMOB-ECEIIT 6.6 0.409 1.057 0.830 1,886,937,088 471,716,864

Table 20: Official results of the WMT21 Quality Estimation Task 1 for the Khmer-English dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates
Codalab usernames of participants from whom we have not received further information.
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B Official Results of the WMT21 Quality Estimation Task 2 (Sentence-level)

Tables 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31 and 32 show the results for all language pairs and the
multilingual variant, ranking participating systems best to worst using Pearson’s r correlation as primary
key for each of these cases.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
HW-TSC 1.4 0.631 0.202 0.153 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.597 0.219 0.171 2,294,887,576 569,368,609
BASELINE 2.2 0.502 0.235 0.188 1,142,441,796 281,297,685

Table 21: Official results of the WMT21 Quality Estimation Task 2 for the Multilingual variant. Baseline systems
are highlighted in grey. “Rank” indicates the averaged ranking of participants with regards to all metrics (including
memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 3 0.653 0.151 0.108 2,243,954,093 560,944,640
IST-Unbabel 4.6 0.617 0.172 0.116 2,294,887,576 569,368,609
Abulice ‡ 4.2 0.577 0.174 0.115 2,243,439,613 560,814,661
POSTECH 4.6 0.546 0.172 0.139 1,561,188,430 390,210,052
Bergamot-UTartu 3.2 0.531 0.171 0.135 55,632,317 48
BASELINE 4.4 0.529 0.183 0.129 1,142,441,796 281,297,685
ENSBRT 4 0.520 0.171 0.129 1,363,652,116 502,000,000

Table 22: Official results of the WMT21 Quality Estimation Task 2 for the English-German dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters). ‡
indicates Codalab usernames of participants from whom we have not received further information.

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 2.6 0.368 0.297 0.248 2,243,954,093 560,944,640
Abulice ‡ 2.4 0.312 0.340 0.280 100,000 9,501,148
IST-Unbabel 2.6 0.290 0.266 0.220 2,294,887,576 569,368,609
BASELINE 2.4 0.282 0.287 0.246 1,142,441,796 281,297,685
RTM n/a 0.087 0.668 0.621 61,203,283,968 380

Table 23: Official results of the WMT21 Quality Estimation Task 2 for the English-Chinese dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters). ‡
indicates Codalab usernames of participants from whom we have not received further information.
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 2.2 0.879 0.122 0.098 2,294,887,576 569,368,609
HW-TSC 2.6 0.862 0.144 0.111 2,243,954,093 560,944,640
BASELINE 2 0.831 0.142 0.115 1,142,441,796 281,297,685
ENSBRT 3.2 0.795 0.171 0.141 1,363,652,116 502,000,000

Table 24: Official results of the WMT21 Quality Estimation Task 2 for the Romanian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 2.8 0.811 0.153 0.112 2,294,887,576 569,368,609
• HW-TSC 2.6 0.809 0.154 0.110 2,243,954,093 560,944,640
BASELINE 3.4 0.714 0.195 0.149 1,142,441,796 281,297,685
ENSBRT 3.2 0.666 0.171 0.132 1,363,652,116 502,000,000
Bergamot-UTartu 3 0.562 0.191 0.149 65,310,657 48

Table 25: Official results of the WMT21 Quality Estimation Task 2 for the Estonian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 1.8 0.798 0.136 0.099 2,243,954,093 560,944,640
IST-Unbabel 2.8 0.718 0.161 0.126 2,294,887,576 569,368,609
BASELINE 2.6 0.626 0.205 0.160 1,142,441,796 281,297,685
ENSBRT 2.8 0.572 0.176 0.139 1,363,652,116 502,000,000

Table 26: Official results of the WMT21 Quality Estimation Task 2 for the Nepalese-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 1.8 0.869 0.126 0.075 2,243,954,093 560,944,640
IST-Unbabel 2.8 0.710 0.178 0.136 2,294,887,576 569,368,609
BASELINE 2.2 0.607 0.204 0.159 1,142,441,796 281,297,685
ENSBRT 3.2 0.522 0.206 0.162 1,363,652,116 502,000,000

Table 27: Official results of the WMT21 Quality Estimation Task 2 for the Sinhala-English dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 2 0.562 0.225 0.160 2,243,954,093 560,944,640
• IST-Unbabel 2.6 0.539 0.224 0.165 2,294,845,131 569,360,411
BASELINE 2.4 0.448 0.255 0.188 1,142,441,796 281,297,685
ENSBRT 3 0.376 0.251 0.189 1,363,652,116 502,000,000

Table 28: Official results of the WMT21 Quality Estimation Task 2 for the Russian-English dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).
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Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 2.4 0.529 0.271 0.200 2,294,887,576 569,368,609
HW-TSC 1.6 0.475 0.249 0.196 2,243,954,093 560,944,640
BASELINE 2 0.306 0.262 0.206 1,142,441,796 281,297,685

Table 29: Official results of the WMT21 Quality Estimation Task 2 for the English-Czech dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 2 0.275 0.279 0.224 2,294,887,576 569,368,609
• HW-TSC 1.8 0.262 0.278 0.228 2,243,954,093 560,944,640
BASELINE 2.2 0.098 0.279 0.232 1,142,441,796 281,297,685

Table 30: Official results of the WMT21 Quality Estimation Task 2 for the English-Japanese dataset. Teams
marked with "•" are the winners, as they are not significantly outperformed by any other system according to
the Williams Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the
averaged ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• IST-Unbabel 2.2 0.555 0.328 0.284 2,294,887,576 569,368,609
• HW-TSC 1.6 0.534 0.298 0.232 2,243,954,093 560,944,640
BASELINE 2.2 0.503 0.333 0.290 1,142,441,796 281,297,685

Table 31: Official results of the WMT21 Quality Estimation Task 2 for the Pashto-English dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters).

Model Rank Pearson r MAE RMSE Disk footprint (B) # Model params
• HW-TSC 1.8 0.753 0.165 0.111 2,243,954,093 560,944,640
IST-Unbabel 3.4 0.655 0.243 0.199 2,294,887,576 569,368,609
BASELINE 2 0.576 0.241 0.196 1,142,441,796 281,297,685
ENSBRT 2.8 0.530 0.262 0.197 1,363,652,116 167,357,185

Table 32: Official results of the WMT21 Quality Estimation Task 2 for the Khmer-English dataset. Teams marked
with "•" are the winners, as they are not significantly outperformed by any other system according to the Williams
Significance Test (Williams, 1959). Baseline systems are highlighted in grey. “Rank” indicates the averaged
ranking of participants with regards to all metrics (including memory print and number of parameters).
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C Official Results of the WMT21 Quality Estimation Task 2 (Word-level)

Tables 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43 and 44 show the results for all language pairs and the
multilingual variant, ranking participating systems best to worst using Matthews correlation coefficient
(MCC) as primary key for each of these cases.

Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
HW-TSC n/a 0.530 0.679 0.828 0.565 n/a n/a
IST-Unbabel n/a 0.430 0.628 0.787 0.486 n/a n/a
BASELINE n/a 0.346 0.579 0.717 0.402 n/a n/a

GAPs in MT
HW-TSC n/a 0.337 0.343 0.939 0.326 n/a n/a
IST-Unbabel n/a 0.196 0.209 0.975 0.203 n/a n/a
BASELINE n/a 0.126 0.137 0.973 0.133 n/a n/a

Words in SRC
HW-TSC n/a 0.432 0.592 0.799 0.473 n/a n/a
IST-Unbabel n/a 0.378 0.561 0.795 0.437 n/a n/a
BASELINE n/a 0.307 0.511 0.751 0.370 n/a n/a

Table 33: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Multilingual task. Baseline
systems are highlighted in grey. “Rank” indicates the averaged ranking of participants with regards to all metrics
(including memory print and number of parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• JHU-Microsoft 3 0.523 0.599 0.907 0.543 6,863,178,235 484,431,872
• HW-TSC 3.6 0.510 0.587 0.900 0.528 2,243,954,093 560,944,640
IST-Unbabel 3.8 0.466 0.551 0.914 0.504 2,294,887,576 569,368,609
Abulice‡ 4.2 0.437 0.530 0.884 0.468 2,243,439,613 560,814,661
POSTECH 3 0.413 0.497 0.915 0.454 1,561,188,430 390,210,052
BASELINE 3.4 0.370 0.455 0.911 0.415 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 3.2 0.300 0.294 0.969 0.285 2,243,954,093 560,944,640
• JHU-Microsoft 3.4 0.256 0.266 0.985 0.262 6,863,178,235 484,431,872
IST-Unbabel 3.8 0.183 0.178 0.986 0.176 2,294,887,576 569,368,609
BASELINE 2.8 0.116 0.098 0.986 0.097 1,142,441,796 281,297,685
POSTECH 3.8 0.110 0.124 0.982 0.122 1,561,188,430 390,210,052
Abulice‡ – – – – – – –

Words in SRC
• HW-TSC 3.2 0.450 0.516 0.894 0.461 2,243,954,093 560,944,640
IST-Unbabel 3.8 0.404 0.483 0.921 0.445 2,294,887,576 569,368,609
Abulice‡ 3.8 0.392 0.468 0.875 0.409 2,243,439,613 560,814,661
BASELINE 2.8 0.322 0.393 0.924 0.363 1,142,441,796 281,297,685
POSTECH 3.4 0.320 0.395 0.922 0.364 1,561,188,430 390,210,052
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• JHU-Microsoft n/a 0.500 0.546 0.947 0.517 6,863,178,235 484,431,872
• HW-TSC n/a 0.496 0.533 0.939 0.5 2,243,954,093 560,944,640
• IST-Unbabel n/a 0.468 0.514 0.954 0.49 2,294,887,576 569,368,609
Abulice‡ n/a 0.442 0.488 0.934 0.456 2,243,439,613 560,814,661
BASELINE n/a 0.378 0.42 0.952 0.4 1,142,441,796 281,297,685
POSTECH n/a 0.403 0.45 0.952 0.428 1,561,188,430 390,210,052

Table 34: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the English-German dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters). ‡ indicates Codalab usernames of participants from whom we have not received further information.
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 2 0.354 0.497 0.806 0.401 2,243,954,093 560,944,640
IST-Unbabel 3 0.310 0.467 0.792 0.370 2,294,887,576 569,368,609
BASELINE 3 0.247 0.426 0.723 0.308 1,142,441,796 281,297,685
JHU-Microsoft 4 0.149 0.357 0.751 0.268 6,863,178,235 484,431,872
Abulice‡ 3 0.033 0.254 0.770 0.196 100,000 9,501,148

GAPs in MT
• HW-TSC 2.6 0.172 0.160 0.934 0.149 2,243,954,093 560,944,640
IST-Unbabel 3 0.068 0.083 0.982 0.082 2,294,887,576 569,368,609
BASELINE 2.4 0.065 0.092 0.969 0.089 1,142,441,796 281,297,685
JHU-Microsoft 3.6 0.035 0.051 0.981 0.050 6,863,178,235 484,431,872
Abulice‡ – – – – – – –

Words in SRC
• HW-TSC 2.2 0.310 0.443 0.813 0.360 2,243,954,093 560,944,640
IST-Unbabel 3.2 0.286 0.427 0.803 0.343 2,294,887,576 569,368,609
BASELINE 3.2 0.241 0.394 0.751 0.295 1,142,441,796 281,297,685
Abulice‡ 3 0.011 0.222 0.769 0.171 100,000 9,501,148
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• IST-Unbabel n/a 0.369 0.441 0.904 0.398 2,294,887,576 569,368,609
• HW-TSC n/a 0.359 0.424 0.88 0.373 2,243,954,093 560,944,640
BASELINE n/a 0.32 0.393 0.871 0.342 1,142,441,796 281,297,685
JHU-Microsoft n/a 0.24 0.337 0.884 0.298 6,863,178,235 484,431,872
Abulice‡ n/a 0.118 0.228 0.884 0.201 100,000 9,501,148

Table 35: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the English-Chinese dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters). ‡ indicates Codalab usernames of participants from whom we have not received further information.
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 2 0.666 0.740 0.910 0.673 2,243,954,093 560,944,640
• IST-Unbabel 2.6 0.649 0.729 0.915 0.667 2,294,881,977 569,368,609
• JHU-Microsoft 2.6 0.634 0.713 0.922 0.657 6,863,178,235 484,431,872
BASELINE 2.8 0.536 0.642 0.862 0.553 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 2.2 0.446 0.449 0.974 0.437 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.357 0.377 0.980 0.370 2,294,881,977 569,368,609
JHU-Microsoft 2.8 0.208 0.162 0.983 0.159 6,863,178,235 484,431,872
BASELINE 2.4 0.205 0.229 0.976 0.223 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 2 0.614 0.694 0.898 0.623 2,243,954,093 560,944,640
• IST-Unbabel 2.6 0.603 0.689 0.910 0.627 2,294,881,977 569,368,609
BASELINE 2.6 0.511 0.618 0.871 0.539 1,142,441,796 281,297,685
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• HW-TSC n/a 0.656 0.694 0.947 0.657 2,243,954,093 560,944,640
• IST-Unbabel n/a 0.64 0.686 0.952 0.653 2,294,881,977 569,368,609
JHU-Microsoft n/a 0.612 0.656 0.954 0.626 6,863,178,235 484,431,872
BASELINE n/a 0.543 0.598 0.929 0.556 1,142,441,796 281,297,685

Table 36: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Romanian-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.6 0.606 0.703 0.902 0.634 2,243,954,093 560,944,640
JHU-Microsoft 2.4 0.572 0.688 0.882 0.607 6,863,178,235 484,431,872
IST-Unbabel 3.2 0.570 0.687 0.880 0.605 2,294,887,576 569,368,609
BASELINE 2.8 0.461 0.589 0.869 0.512 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 2.2 0.312 0.334 0.969 0.324 2,243,954,093 560,944,640
IST-Unbabel 2.8 0.254 0.271 0.977 0.265 2,294,887,576 569,368,609
JHU-Microsoft 2.6 0.218 0.213 0.980 0.209 6,863,178,235 484,431,872
BASELINE 2.4 0.136 0.135 0.979 0.132 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 1.8 0.549 0.650 0.899 0.584 2,243,954,093 560,944,640
IST-Unbabel 2.8 0.522 0.633 0.885 0.561 2,294,887,576 569,368,609
BASELINE 2.6 0.405 0.522 0.879 0.459 1,142,441,796 281,297,685
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• HW-TSC n/a 0.584 0.644 0.94 0.605 2,243,954,093 560,944,640
• IST-Unbabel n/a 0.582 0.644 0.937 0.604 2,294,881,977 569,368,609
• JHU-Microsoft n/a 0.572 0.636 0.936 0.595 6,863,178,235 484,431,872
BASELINE n/a 0.482 0.545 0.932 0.508 1,142,441,796 281,297,685

Table 37: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Estonian-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.6 0.674 0.876 0.795 0.696 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.508 0.842 0.652 0.549 2,294,881,977 569,368,609
BASELINE 2.2 0.440 0.828 0.583 0.483 1,142,441,796 281,297,685
JHU-Microsoft 3.6 0.329 0.813 0.299 0.243 6,863,178,235 484,431,872

GAPs in MT
• HW-TSC 2 0.403 0.435 0.961 0.418 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.268 0.284 0.969 0.276 2,294,881,977 569,368,609
BASELINE 2.2 0.215 0.249 0.963 0.240 1,142,441,796 281,297,685
JHU-Microsoft 3.4 0.207 0.253 0.953 0.241 6,863,178,235 484,431,872

Words in SRC
• HW-TSC 1.8 0.545 0.787 0.754 0.594 2,243,954,093 560,944,640
• IST-Unbabel 2.8 0.445 0.782 0.631 0.493 2,294,881,977 569,368,609
BASELINE 2.6 0.390 0.768 0.570 0.438 1,142,441,796 281,297,685
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• HW-TSC n/a 0.749 0.833 0.915 0.763 2,243,954,093 560,944,640
IST-Unbabel n/a 0.705 0.809 0.894 0.723 2,294,881,977 569,368,609
BASELINE n/a 0.672 0.79 0.877 0.693 1,142,441,796 281,297,685
JHU-Microsoft n/a 0.637 0.77 0.83 0.639 6,863,178,235 484,431,872

Table 38: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Nepalese-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).

717



Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.4 0.847 0.937 0.910 0.853 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.528 0.822 0.683 0.561 2,294,887,576 569,368,609
BASELINE 2.2 0.425 0.793 0.574 0.456 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 1.4 0.639 0.651 0.979 0.638 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.258 0.271 0.972 0.263 2,294,887,576 569,368,609
BASELINE 2.2 0.208 0.239 0.966 0.231 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 1.4 0.616 0.804 0.810 0.651 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.406 0.722 0.627 0.452 2,294,887,576 569,368,609
BASELINE 2.2 0.335 0.698 0.544 0.379 1,142,441,796 281,297,685

Combined MT Words & Gaps
• HW-TSC n/a 0.868 0.909 0.958 0.872 2,243,954,093 560,944,640
IST-Unbabel n/a 0.69 0.79 0.896 0.708 2,294,881,977 569,368,609
BASELINE n/a 0.642 0.758 0.87 0.660 1,142,441,796 281,297,685

Table 39: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Sinhala-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.8 0.451 0.553 0.892 0.493 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.332 0.430 0.896 0.386 2,294,887,576 569,368,609
JHU-Microsoft 3 0.303 0.439 0.847 0.372 6,863,178,235 484,431,872
BASELINE 2.6 0.256 0.360 0.889 0.319 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 2.2 0.388 0.393 0.962 0.378 2,243,954,093 560,944,640
JHU-Microsoft 2.6 0.167 0.159 0.978 0.156 6,863,178,235 484,431,872
IST-Unbabel 3 0.165 0.160 0.978 0.156 2,294,887,576 569,368,609
BASELINE 2.2 0.073 0.051 0.979 0.050 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 2.2 0.426 0.540 0.876 0.473 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.351 0.438 0.899 0.394 2,294,887,576 569,368,609
BASELINE 2.4 0.251 0.326 0.893 0.292 1,142,441,796 281,297,685
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• HW-TSC n/a 0.456 0.514 0.931 0.479 2,243,954,093 560,944,640
IST-Unbabel n/a 0.339 0.39 0.941 0.367 2,294,881,977 569,368,609
JHU-Microsoft n/a 0.329 0.406 0.919 0.373 6,863,178,235 484,431,872
BASELINE n/a 0.319 0.939 0.299 0.139 1,142,441,796 281,297,685

Table 40: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Russian-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.6 0.380 0.502 0.864 0.433 2,243,954,093 560,944,640
• IST-Unbabel 2.2 0.376 0.493 0.865 0.426 2,294,887,576 569,368,609
BASELINE 2.2 0.273 0.454 0.819 0.372 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 1.8 0.213 0.188 0.945 0.178 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.125 0.143 0.981 0.141 2,294,887,576 569,368,609
BASELINE 1.8 0.039 0.054 0.983 0.053 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 1.4 0.313 0.426 0.886 0.377 2,243,954,093 560,944,640
• IST-Unbabel 2.4 0.294 0.410 0.883 0.362 2,294,887,576 569,368,609
BASELINE 2.2 0.224 0.362 0.862 0.312 1,142,441,796 281,297,685

Combined MT Words & Gaps
• IST-Unbabel n/a 0.4 0.459 0.931 0.427 2,294,881,977 569,368,609
BASELINE n/a 0.339 0.425 0.914 0.389 1,142,441,796 281,297,685
HW-TSC n/a 0.336 0.427 0.909 0.388 2,243,954,093 560,944,640

Table 41: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the English-Czech dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.6 0.258 0.495 0.625 0.309 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.169 0.416 0.742 0.309 2,294,887,576 569,368,609
BASELINE 2 0.131 0.437 0.497 0.217 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 1.8 0.152 0.180 0.763 0.137 2,243,954,093 560,944,640
BASELINE 1.6 0.036 0.060 0.962 0.057 1,142,441,796 281,297,685
IST-Unbabel 2.6 0.025 0.016 0.969 0.015 2,294,887,576 569,368,609

Words in SRC
• HW-TSC 1.8 0.217 0.416 0.602 0.250 2,243,954,093 560,944,640
• IST-Unbabel 2.2 0.210 0.394 0.808 0.318 2,294,887,576 569,368,609
BASELINE 2 0.175 0.393 0.693 0.272 1,142,441,796 281,297,685

Combined MT Words & Gaps
BASELINE n/a 0.25 0.403 0.79 0.319 1,142,441,796 281,297,685
IST-Unbabel n/a 0.217 0.352 0.865 0.304 2,294,881,977 569,368,609
HW-TSC n/a 0.186 0.361 0.677 0.244 2,243,954,093 560,944,640

Table 42: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the English-Japanese dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.6 0.450 0.723 0.727 0.525 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.370 0.685 0.684 0.469 2,294,887,576 569,368,609
BASELINE 2.4 0.313 0.674 0.631 0.425 1,142,441,796 281,297,685
JHU-Microsoft 3.4 0.191 0.677 0.170 0.115 6,863,178,235 484,431,872

GAPs in MT
• HW-TSC 2.2 0.260 0.262 0.942 0.246 2,243,954,093 560,944,640
IST-Unbabel 2.6 0.177 0.193 0.976 0.188 2,294,887,576 569,368,609
BASELINE 2 0.134 0.145 0.977 0.142 1,142,441,796 281,297,685
JHU-Microsoft 3.2 0.118 0.153 0.951 0.146 6,863,178,235 484,431,872

Words in SRC
• HW-TSC 2 0.304 0.538 0.723 0.389 2,243,954,093 560,944,640
• IST-Unbabel 2.6 0.294 0.522 0.758 0.396 2,294,887,576 569,368,609
BASELINE 2.6 0.249 0.501 0.720 0.361 1,142,441,796 281,297,685
JHU-Microsoft – – – – – – –

Combined MT Words & Gaps
• IST-Unbabel n/a 0.538 0.658 0.88 0.579 2,294,881,977 569,368,609
• HW-TSC n/a 0.533 0.661 0.868 0.574 2,243,954,093 560,944,640
• JHU-Microsoft n/a 0.523 0.648 0.782 0.507 6,863,178,235 484,431,872
BASELINE n/a 0.517 0.648 0.867 0.562 1,142,441,796 281,297,685

Table 43: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Pashto-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).
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Model Rank MCC F1-BAD F1-OK F1-Multi Disk footprint (B) # Model params

Words in MT
• HW-TSC 1.4 0.636 0.853 0.779 0.664 2,243,954,093 560,944,640
IST-Unbabel 2.4 0.448 0.790 0.638 0.503 2,294,887,576 569,368,609
BASELINE .2 0.351 0.766 0.534 0.409 1,142,441,796 281,297,685

GAPs in MT
• HW-TSC 1.8 0.419 0.426 0.928 0.395 2,243,954,093 560,944,640
IST-Unbabel 2.2 0.259 0.274 0.964 0.264 2,294,887,576 569,368,609
BASELINE 2 0.175 0.204 0.959 0.195 1,142,441,796 281,297,685

Words in SRC
• HW-TSC 1.4 0.410 0.698 0.634 0.443 2,243,954,093 560,944,640
• IST-Unbabel 2.4 0.345 0.668 0.618 0.413 2,294,887,576 569,368,609
BASELINE 2.2 0.279 0.644 0.552 0.355 1,142,441,796 281,297,685

Combined MT Words & Gaps
• HW-TSC n/a 0.677 0.783 0.883 0.692 2,243,954,093 560,944,640
IST-Unbabel n/a 0.631 0.751 0.877 0.659 2,294,881,977 569,368,609
BASELINE n/a 0.587 0.725 0.853 0.618 1,142,441,796 281,297,685

Table 44: Official results of the WMT21 Quality Estimation Task 2 (word-level) for the Khmer-English dataset.
Teams marked with "•" are the winners, as they are not significantly outperformed by any other system based on
randomisation tests with Bonferroni correction (Yeh, 2000b). Baseline systems are highlighted in grey. “Rank”
indicates the averaged ranking of participants with regards to all metrics (including memory print and number of
parameters).

723



D Official Results of the WMT21 Quality Estimation Task 3 (Sentence-level)

Tables 45, 46, 47 and 48 show the results for all language pairs, ranking participating systems best to
worst using Matthews correlation coefficient (MCC) as primary key for each of these cases.

Model Rank MCC F1-ERR F1-NOT F1-Multi Disk footprint (B) # Model params
• NICT Kyoto 1.5 0.546 0.877 0.667 0.585 2,239,774,281 559,892,482
LAMA-ICL 2.67 0.498 0.868 0.623 0.541 2,239,830,893 559,908,866
HW-TSC 4.17 0.490 0.867 0.613 0.532 2,241,232,523 561,947,562
QEMind 4 0.480 0.854 0.625 0.534 2,244,034,844 560,982,532
silence1024‡ 4.33 0.449 0.850 0.597 0.507 2,239,747,529 560,365,209
BASELINE 4.33 0.397 0.848 0.532 0.451 1,114,634,523 278,635,778

Table 45: Official results of the WMT21 Quality Estimation Task 3 for the English-German dataset. Teams
marked with "•" correspond to the winning submissions, as they are not significantly outperformed by any other
system based on William’s test. Baseline systems are highlighted in grey. “Rank” indicates the averaged ranking
of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Rank MCC F1-ERR F1-NOT F1-Multi Disk footprint (B) # Model params
• HW-TSC 2.83 0.353 0.889 0.462 0.411 2,241,232,523 531,947,562
• silence1024‡ 3.5 0.343 0.888 0.453 0.402 2,239,747,529 560,365,209
• NICT Kyoto 4 0.311 0.883 0.426 0.376 2,239,774,281 559,892,482
LAMA-ICL 4.33 0.305 0.892 0.413 0.368 2,239,830,893 559,908,866
QEMind 5.33 0.278 0.893 0.384 0.343 2,244,034,844 560,982,532
BASELINE 4 0.187 0.898 0.269 0.242 1,114,634,523 278,635,778
serkan‡ 4 0.141 0.913 0.131 0.120 1,112,236,548 1,024

Table 46: Official results of the WMT21 Quality Estimation Task 3 for the English-Chinese dataset. Teams
marked with "•" correspond to the winning submissions, as they are not significantly outperformed by any other
system based on William’s test. Baseline systems are highlighted in grey. “Rank” indicates the averaged ranking
of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates Codalab
usernames of participants from whom we have not received further information.

Model Rank MCC F1-ERR F1-NOT F1-Multi Disk footprint (B) # Model params
• NICT Kyoto 1.83 0.511 0.913 0.595 0.543 2,239,774,281 559,892,482
• LAMA-ICL 2.17 0.473 0.911 0.555 0.506 2,239,765,357 559,892,482
QEMind 3.8 0.454 0.909 0.534 0.485 2,244,034,844 560,982,532
HW-TSC 3.33 0.448 0.906 0.537 0.486 2,234,153,425 560,365,209
BASELINE 3.67 0.388 0.899 0.477 0.429 1,114,634,523 278,635,778

Table 47: Official results of the WMT21 Quality Estimation Task 3 for the English-Czech dataset. Teams marked
with "•" correspond to the winning submissions, as they are not significantly outperformed by any other system
based on William’s test. Baseline systems are highlighted in grey. “Rank” indicates the averaged ranking of
participants with regards to all metrics (including memory print and number of parameters).
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Model Rank MCC F1-ERR F1-NOT F1-Multi Disk footprint (B) # Model params
HW-TSC 2.5 0.318 0.937 0.378 0.354 2,239,747,529 560,365,209
LAMA-ICL 2.83 0.314 0.956 0.336 0.321 2,239,769,453 559,893,506
Jason_pogba‡ 3.83 0.278 0.936 0.341 0.319 2,213,468,431 564,554,219
silence1024‡ 4 0.277 0.940 0.337 0.317 2,239,747,529 560,365,209
QEMind 5.33 0.260 0.953 0.288 0.274 2,244,034,844 560,982,532
NICT Kyoto 5.17 0.252 0.929 0.319 0.297 2,239,774,281 559,892,482
BASELINE 4.33 0.214 0.951 0.244 0.232 1,114,634,523 278,635,778

Table 48: Official results of the WMT21 Quality Estimation Task 3 for the English-Japanese dataset. Teams
marked with "•" correspond to the winning submissions, as they are not significantly outperformed by any other
system based on William’s test. Baseline systems are highlighted in grey. “Rank” indicates the averaged ranking
of participants with regards to all metrics (including memory print and number of parameters). ‡ indicates Codalab
usernames of participants from whom we have not received further information.
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Abstract

We present the findings of the WMT2021
Shared Tasks in Unsupervised MT and Very
Low Resource Supervised MT. Within the
task, the community studied very low resource
translation between German and Upper Sor-
bian, unsupervised translation between Ger-
man and Lower Sorbian and low resource
translation between Russian and Chuvash, all
minority languages with active language com-
munities working on preserving the languages,
who are partners in the evaluation. Thanks to
this, we were able to obtain most digital data
available for these languages and offer them to
the task participants. In total, six teams partic-
ipated in the shared task. The paper discusses
the background, presents the tasks and results,
and discusses best practices for the future.

1 Introduction

For some languages, machine translation (MT)
reached such a high quality that allows a discussion
of whether and under what circumstance human
parity might have been reached (Popel et al., 2020;
Läubli et al., 2020). This is the case, however, for
only a small minority of the world’s language. For
most of the 7k languages spoken in the world only
very limited resources exist. The goal of the WMT
Shared Task on Unsupervised and Very Low Re-
source MT is to promote research on methods for
MT that alleviate such data sparsity in a real-world
setup.

A task on unsupervised MT was already held at
WMT in 2018 (Bojar et al., 2018) and 2019 (Bar-
rault et al., 2019), where the lack of parallel data
was simulated on high-resource language pairs:
English–German in 2018 and German–Czech in
2019.

Starting from last year, we cooperate with lo-
cal communities working on preserving their lan-
guages. In cooperation with the Sorbian Insti-

tute1 and the Witaj Sprachzentrum2, we offered
a shared task in translation between German and
Upper Sorbian in low-resource and unsupervised
tracks (Fraser, 2020). For this year, we kept the
low-resource track for Upper Sorbian and added un-
supervised translation between German and Lower
Sorbian. Upper and Lower Sorbian are minority
languages spoken in the east part of Germany in
the federal states of Saxony and Brandenburg. Hav-
ing only 30k and 7k native speakers, processing of
the languages is an inherently low-resource prob-
lem, without any chance that the size of available
resources would ever get close to the size of re-
sources available for languages with millions of
speakers. On the other hand, being western Slavic
languages, the Sorbian languages can take advan-
tage of existing resources for Czech and Polish.

Additionally, in cooperation with the Chuvash
Language Laboratory3, we added another low-
resource task, translation between Russian and
Chuvash. Chuvash is a minority Turkic language
spoken by approximately one million people in the
Volga region in the southwest of Russia. There
is a larger amount of training data available for
Chuvash, but the language is rather isolated in the
Turkic language family, so unlike Sorbian, it can-
not benefit that much from the existence of closely
related languages.

Five teams participated in the German-Upper
Sorbian task, six teams in the German-Lower Sor-
bian task, and two teams in the Russian-Chuvash
task.

2 Tasks and Evaluation

This year, there were three tasks for very low re-
source and unsupervised translation were:

1https://www.serbski-institut.de
2https://www.witaj-sprachzentrum.de/
3https://en.corpus.chv.su/content/

about.html
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• Very Low Resource Supervised Machine
Translation: German↔ Upper Sorbian.

• Unsupervised Machine Translation:
German↔ Lower Sorbian.

• Low Resource Supervised Machine Transla-
tion: Russian↔ Chuvash.

To make the submissions better comparable with
each other, we only allowed using resources re-
leased for the task (see Section 3) and resources for
related languages commonly used in other WMT
tasks. The use of large models pre-trained on large
datasets was not allowed. By this decision, we
wanted to motivate the participants to find better
use of limited language resources.

German↔Upper Sorbian. There is only a very
limited amount of parallel data between Upper Sor-
bian and German. However, because Upper Sor-
bian is closely related to Czech and Polish, we
encouraged the use of all German, Czech and Pol-
ish data released for WMT. Other parallel data
released from the WMT News Task were also al-
lowed, but the participants were recommended not
to use them. Unlike last year, there was no unsu-
pervised task for Upper Sorbian.

German↔Lower Sorbian. For this task, no par-
allel training data were available, as the only avail-
able Lower Sorbian data were monolingual. Lower
Sorbian is closely related to other Western Slavic
languages, so the same related language data as for
the Upper Sorbian task was allowed.

Russian↔Chuvash. The Chuvash language is
not that critically low-resource as the Sorbian lan-
guages, but it is still affected by being a minority
language. The participants were provided with par-
allel and monolingual data that we released for the
task. Additional data that might be used: Chuvash-
Russian part of the JW300 corpus (Agić and Vulić,
2019). In addition, the participants were encour-
aged to use the Kazakh–Russian corpus and mono-
lingual Kazakh data from WMT19 (Barrault et al.,
2019) and monolingual Russian data made avail-
able for the WMT News tasks.

Evaluation. Following the recent literature on
MT evaluation (Mathur et al., 2020; Marie et al.,
2021; Kocmi et al., 2021), we evaluate the systems

4https://sotra.app/

Dataset # lines # chars.

German↔Upper Sorbian

WMT20 parallel data 60k 11M
Parallel data provided by the Witaj Sprachzentrum, col-
lected for the development of its own tranlator SoTra4.

Additional parallel data 87k 17M
Additional parallel Witaj Sprachzentrum collected since
the last year.

Sorbian Institute mono 340k 39M
Upper Sorbian monolingual data provided by the Sorbian
Institute. This contains a high quality corpus and some
medium quality data which were mixed together.

Witaj mono 222k 19M
Upper Sorbian monolingual data provided by the Witaj
Sprachzentrum (high quality).

Web monolingual 134k 12M
Upper Sorbian monolingual data scraped from the web by
CIS, LMU. This should be used with caution, it is probably
noisy, it might erroneously contain some data from related
languages.

German↔Lower Sorbian

Sorbian Institute mono 145k 14M
The sentences come from the Lower Sorbian reference
corpus and were provided by the Sorbian Institute.

Russian↔Chuvash

Parallel corpus 714k 181M
A parallel corpus being collected by the Chuvash Lan-
guage Laboratory since 2016 with the goal of promoting
automatic processing of Chuvash.

Bilingual dictionary 74k 182k
Monolingual Chuvash 5.6M 749M
The dataset contains monolingual sentences from various
publicly available sources including Wikipedia, web crawl
and fiction.

Table 1: Overview of the data made available for the
shared task.

using multiple evaluation measures, both string-
based and model-based, and perform statistical
testing to decide the ranking of the systems. In
particular, we use the BLEU Score (Papineni et al.,
2002), chrF score (Popović, 2015) as implemented
in SacreBLEU (Post, 2018).5 Further, we evaluate
the models using BERTScore (Zhang et al., 2020)6

with XLM-RoBERTa Large (Conneau et al., 2020)
as an underlying model for German and Russian

5BLEU score signature nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.0.0
chrF score signature nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.0.0

6https://github.com/Tiiiger/bert_score
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Team Archi-
tec-
ture

Pre-
training

Pre-
training
data

German /
Russian
mono.

BT
iter.

BT filtering Data tricks Seg-
men-
tation

En-
sem-
bling

Tookit

German↔ Upper Sorbian
NoahNMT Big de-cs 15M 100M 5 None BPE Yes Inhouse

NRC-CNRC Base de-cs 16.5M 5M 2 Moore and
Lewis (2010)

Tagged BT,
BPE Dropout,
Lang. tags

BPE Yes Sockeye

IICT-Yverdon Base de-cs 3M 1M 1 Length SP Yes OpenNMT

CFILT Base mono
de, hsb

2×.7M .7M 60 None BPE Dropout BPE No MASS

LMU Munich Big de-cs 25M 15M 4 Length Tagged BT BPE Yes Fairseq

German↔ Lower Sorbian
NRC-CNRC Base de-cs,

de-hsb
16.5M 147k to

5.2M
2 Moore and

Lewis (2010)
BPE Dropout BPE Yes Sockeye

IICT-Yverdon Base de-hsb 150k 1M 1 Length SP Yes OpenNMT

CFILT Base de-hsb 3×.7M .7M 60 None BPE Dropout BPE No MASS

CL_RUG XLM de-cs,
de-hsb

8.5M
+.8M

10.6M 2 None BPE No MASS

LMU Munich Big de-cs,
de-hsb

45M 15M 8 Length BPE Yes Fairseq

Russian↔ Chuvash
NoahNMT Big en-ru 17M 110M 3 None Domain adap. BPE Yes Inhouse

LMU Munich Big ru-kk 11M 18M 2 Length Tagged BT BPE Yes Fairseq

Table 2: Overview of the method used by the task participants. SP stands for SentencePiece, BT for backtranslation.

and mBERT (Devlin et al., 2019) for Chuvash. We
conduct the significance test using bootstrap resam-
pling (Koehn, 2004) at a significance level of 0.95.

The final ranking is determined by the number
of points each system gets. The systems get one
point for each system that is significantly worse in
each of the metrics. This means that if a system
is significantly better than 1 system in the BLEU
score, 2 systems in the chrF score, and 3 systems
in the BERTScore, it gets 6 points in total.

3 Data

Upper Sorbian. The data for this task was pro-
vided by the Sorbian Institute (monolingual data)
and The Witaj Sprachzentrum (Witaj Language
Center) (both parallel and monolingual data).

The development and test data for Upper Sorbian
are the same as the last year. There was a different
blind test set than the last year.

Lower Sorbian. As far as we know, there is no
parallel data for Lower Sorbian except for the de-
velopment and test data provided for this task.

Chuvash. The validation data are sampled from
the training set. The development test data and
blind test data were also sampled from the parallel
corpus and manually filtered by a native speaker.

In addition to the described data, the use of other
parallel and monolingual data available for WMT
News Tasks was allowed (see Section 2).

4 Submitted systems

Six teams participated in the shared task, five teams
in Upper Sorbian-German, slightly different five in
Lower Sorbian-German, and two in the Russian-
Chuvash direction. An overview of the systems
is in Table 2, a brief description of the systems
follows. For detailed information, we refer the
reader to the respective system description papers.

NoahNMT (Zhang et al., 2021b). NoahNMT
submitted their systems into the supervised tasks.
The NoahNMT submission is a standard Trans-
former model equipped with our recent technique
of dual transfer (Zhang et al., 2021a). Compared
to other systems, these submissions used a signifi-
cantly larger amount of monolingual data.

NRC-CNRC (Knowles and Larkin, 2021).
The Upper Sorbian-German system is an ensemble
of eight systems with 25k BPE vocabulary, incor-
porating transfer learning (from cs–de) with con-
tinued training, monolingual data filtering, back-
translation (Sennrich et al., 2016), BPE-dropout
(Provilkov et al., 2020), and multilingual models.
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Upper Sorbian→ German
Team BLEU chrF BERTScore Points

NRC-CNRC 67.3 3 83.6 3 .981 4 10
NoahNMT 67.7 3 83.4 3 .981 3 9
LMU 64.3 2 81.9 2 .979 2 6
IICT-Yverdon 61.4 0 80.2 0 .976 1 1
CFILT 60.1 0 79.2 0 .975 0 0

German→ Upper Sorbian
Team BLEU chrF BERTScore Points

NRC-CNRC 66.3 3 83.7 3 — 6
NoahNMT 65.9 3 83.3 3 — 6
LMU 63.3 1 81.9 2 — 3
CFILT 60.2 0 79.6 0 — 0
IICT-Yverdon 61.6 0 80.6 0 — 0

Lower Sorbian→ German
Team BLEU chrF BERTScore Points

NRC-CNRC 33.5 1 63.8 1 .953 2 4
CL_RUG 32.4 1 62.2 1 .953 2 4
LMU 33.3 1 62.0 1 .952 1 3
CFILT 5.9 0 31.6 0 .884 0 0

German→ Lower Sorbian
Team BLEU chrF BERTScore Points

NRC-CNRC 29.9 3 59.9 3 — 6
LMU 27.5 3 57.9 3 — 6
CL_RUG 24.1 2 54.2 2 — 4
IICT-Yverdon 8.0 0 32.1 1 — 1
CFILT 6.4 0 29.0 0 — 0

Chuvash→ Russian
Team BLEU chrF BERTScore Points

NoahNMT 23.4 0 47.6 0 .944 1 1
LMU 22.0 0 46.3 0 .942 0 0

Russian→ Chuvash
Team BLEU chrF BERTScore Points

NoahNMT 22.1 0 51.3 0 .857 1 1
LMU 20.9 0 50.1 0 .856 0 0

Table 3: The main results of the task. Points awarded in the particular metrics are in gray.

In the opposite direction, the submission is an en-
semble of 7 systems. The Lower Sorbian-German
and German-Lower Sorbian systems are ensembles
of 2 and 4 systems, respectively, with 20k BPE
vocabulary, incorporating transfer learning from
hsb–de and de-hsb systems along with iterative
backtranslation.

IICT-Yverdon (Atrio et al., 2021). The sys-
tem used the Transformer architecture with back-
translation of large German corpora and parent-
language initialization using Czech-German data.
The final submission is an ensemble of different
models with some changes in their training setups
to maximize the diversity among the models.

CFILT. The submitted systems cover four
language pairs: German↔Upper Sorbian
German↔Lower Sorbian. For de↔hsb, the
system pre-trained using the MASS objective
(Song et al., 2019) and finetuned using iterative
back-translation. Final finetuning is performed
using the provided parallel data for translation
objective. For de↔dsb, no parallel data is provided
in the task. The final de↔hsb model is used
for initialization of the de↔dsb model, which is
further trained using iterative back-translation,
using the same vocabulary as used in the de↔hsb
model.

CL_RUG (Edman et al., 2021). CL_RUG’s
submission uses the MASS model, focusing pre-
training on 2 languages at a time, from least to most
related to Lower Sorbian. The largest improve-
ment comes from a novel method for initializing
the Lower Sorbian word embeddings from Upper
Sorbian, using a bilingual dictionary created in an
unsupervised fashion.

LMU Munich (Libovický and Fraser, 2021).
The LMU submissions for all tasks are Transformer
models first pre-trained on related languages and
then finetuned on the low-resource languages. For
the Sorbian languages, the systems are pre-trained
on German–Czech translation. The system is fine-
tuned using the authentic German–Upper Sorbian
data, which is the starting point for four itera-
tions of tagged back-translation. The unsupervised
German–Lower Sorbian translation is trained by it-
erative backtranslation using the monolingual data
only. The Upper Sorbian–German system is used
to generate the first translation of Lower Sorbian.
The Russian–Chuvash systems were pretrained on
Russian–Kazakh translation and finetuned using
the provided parallel data.

5 Results

The results are presented in Table 3. The most
successful teams were NRC-CNRC, which was the
best or on par with the best systems in all Sorbian
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tasks, and NoahNMT which were the best in the
Chuvash tasks, on par with the best systems in
German-Upper Sorbian translation and the second
in the Upper Sorbian-German direction.

In German-Upper Sorbian translation, the best
two system, NRC-CNRC and NoahNMT reach
very similar results although they use significantly
different sizes of monolingual data for backtransla-
tion. NRC-CNRC manage to compensate for the
smaller data size by accumulating minor tricks in-
cluding monolingual data selection (Moore and
Lewis, 2010), tagged backtranslation (Caswell
et al., 2019), BPE dropout (Provilkov et al., 2020),
and language tags in multilingual training. LMU,
which used data of a similar size to NRC-CNRC
but did not use most of the further tricks, ranked
below these two.

In Upper Sorbian-German translation, all teams
used German-Czech parallel data for pre-training,
except for CFILT who only used monolingual data
for pre-training and scored 0 points in both direc-
tions.

In the unsupervised German-Lower Sorbian task,
CL_RUG ranked on par with NRC-CNRC in trans-
lation into German (despite not using ensembling),
but at third place in the opposite direction. This sug-
gests that CL_RUG’s innovative vocabulary trans-
fer method works better on the encoder side than
on the decoder side.

In the Russian-Chuvash translation, Noah-
NMT outperformed LMU Munich by using larger
datasets and a more advanced transfer learning tech-
nique.

6 Conclusions

In WMT 2021 shard task on Unsupervised and
Very Low Resource MT, we created realistic bench-
marks for low-resource minority language which
reflect the needs of the language communities try-
ing to preserve their languages. In the task, we
provided the participants with comprehensive re-
source for translation between German and Upper
and Lower Sorbian and for translation between Rus-
sian and Chuvash. We hope that this will increase
the interest of the community in these languages.

The six teams that participated in the task used
state-of-the-art MT techniques to develop high
quality systems. The main technical takeaway from
the results are that pre-training on parallel data in
related language is important and that carefully
applying known tricks can to a large extent com-

pensate for using smaller datasets.
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Abstract

This paper presents the results of the WMT21
Metrics Shared Task. Participants were asked
to score the outputs of the translation sys-
tems competing in the WMT21 News Transla-
tion Task with automatic metrics on two dif-
ferent domains: news and TED talks. All
metrics were evaluated on how well they cor-
relate at the system- and segment-level with
human ratings. Contrary to previous years’
editions, this year we acquired our own hu-
man ratings based on expert-based human eval-
uation via Multidimensional Quality Metrics
(MQM). This setup had several advantages:
(i) expert-based evaluation has been shown
to be more reliable, (ii) we were able to
evaluate all metrics on two different domains
using translations of the same MT systems,
(iii) we added 5 additional translations com-
ing from the same system during system de-
velopment. In addition, we designed three
challenge sets that evaluate the robustness of
all automatic metrics. We present an exten-
sive analysis on how well metrics perform
on three language pairs: English→German,
English→Russian and Chinese→English. We
further show the impact of different reference
translations on reference-based metrics and
compare our expert-based MQM annotation
with the DA scores acquired by WMT.

1 Introduction

The metrics shared task1 has been a key component
of WMT since 2008, serving as a way to validate
the use of automatic MT evaluation metrics and
driving the development of new metrics. We eval-
uate reference-based automatic metrics that score
MT output by comparing the MT with a reference
translation generated by human translators, who
are instructed to translate “from scratch” without
post-editing from MT. In addition, we also invited

1http://www.statmt.org/wmt21/
metrics-task.html

submissions of reference-free metrics (quality es-
timation metrics or QE metrics) that compare MT
outputs directly with the source segments. All met-
rics are evaluated based on their agreement with
human rating when scoring MT systems and hu-
man translations at the system or sentence level.
This year, we implemented several changes to the
methodology that was followed in previous years
editions of the task:

• Expert-based human evaluation This year, we
collected our own human ratings for selected lan-
guage pairs (en→de, en→ru, zh→en) from pro-
fessional translators via MQM (Lommel et al.,
2014). As shown before (Freitag et al., 2021),
this produces more reliable2 scores when com-
pared to the DA-based human ratings acquired
by the WMT News-Translation task. This step
was necessary as Freitag et al. (2021) suggested
that some automatic metrics already outperform
(taking MQM as the golden standard) the DA-
based human ratings that were usually used in the
past for the metrics task and thus the DA-based
ground-truth may be of lower quality than some
of our submissions.

• Additional Training Data We encouraged the
participants to further fine tune or test their met-
rics on the already existing MQM annotations for
newstest2020 (Freitag et al., 2021)3.

• Additional domain Since we collected our own
human ratings, we were also able to expand the
domain of the test sets beyond news and evaluate
the performance of the metrics on translations of
the same MT systems on TED talks, in order to
test the generalization power of metrics.

2DA is unreliable for high-quality MT output; ranks human
translations lower than MT; correlates poorly with metrics.
Expert-based MQM ranks human translations higher than MT
and correlates generally much better with automatic metrics.

3https://github.com/google/
wmt-mqm-human-evaluation
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• Additional MT systems One use case for auto-
matic metrics is choosing the better among differ-
ent model versions of the same MT system during
system development. To address this scenario,
in addition to the WMT submissions and online
systems, we added extra development systems to
the set of MT systems on which we evaluated the
metrics.

• Additional challenge sets We generated three
challenge sets containing specific translation er-
rors that are believed to be challenging for auto-
matic MT evaluation metrics to identify. These
challenge sets test metrics robustness on several
different phenomena such as sentiment polarity,
antonym replacement, named entities, among oth-
ers.

• Designated primary metrics Participants had
to designate a single metric as their primary sub-
mission for each track (reference-free and uncon-
strained). Other submissions were permitted, but
only the primary metric is included in the official
main results.

• Accuracy for ranking system pairs We calcu-
late a joint score across all language pairs and
adopt the pairwise accuracy score for ranking
system pairs to generate the final metric rank-
ing (Kocmi et al., 2021).

Our main findings are:

• WMT direct assessment (DA) scores gen-
erally correlate poorly with MQM scores,
and exhibit weaker preference for human
translations compared to machine output.
In particular for English→German and
Chinese→English, the two human evaluations
methodologies produce very different rank-
ings (Tables 16 and 18). In both language
pairs, DA ranks the human translations below
many MT systems, demonstrating again that
expert-based evaluation is needed to generate
a reliable ground truth for metric development
for high quality language pairs.

• The majority of automatic metrics correlate
better with MQM than the DA scores from
WMT. This confirms the findings of Freitag
et al. (2021) that automatic metrics are already
more reliable than non-expert human evalua-
tions. A metrics task with ground truth ratings

acquired by non-experts would consequently
not be very helpful.

• The performance of many metrics largely
varies depending on the underlying domain
(being either news or TED talks), resulting in
distinct clusters of winning metrics for these
two domains. All metrics of the winning clus-
ter on the news domain show lower correla-
tion with human ratings when switching to the
TED talks domain (Table 8). Lower ranked
metrics are more robust and can sometimes
even improve the correlation to humans on the
TED domain.

• Trainable embedding-based metrics are typ-
ically better at rating and correctly ranking
(with respect to MQM golden truth) human-
generated translations. (Table 8).

• Reference-free metrics, in particular COMET-
QE and OpenKiwi perform very well when
human translations are included in the setup.
Nevertheless, once we focus on MT output
only, reference-free metrics perform worse
compared to reference-based metrics (Ta-
ble 8).

• Reference-based metrics performance is sig-
nificantly worse when reference translations
contain major errors (Table 13).

• Some metrics are more robust than others
when presented with alternate reference trans-
lations (Table 14). It is unclear so far what
characterizes a good reference translation in
addition to the clear requirement of fidelity of
the translation to the source.

• When counting top performances across
different language pairs, granularities, and
test conditions (Table 12), three embedding-
based metrics—C-SPECPN, BLEURT-204,
and COMET-MQM_2021— emerge as dis-
tinctly better than the others, especially at
the segment level and when rating human
translations. Reference-free metrics are also
relatively good at rating human translations,
but under-perform at segment-level. Metric
performance is distributed more evenly on

4BLEURT-20 denotes the new retrained version of
BLEURT which is different from last years BLEURT sub-
mission (Sellam et al., 2020)
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system-level tasks, especially when the test
set is out-of-domain.

• Most metrics struggle to accurately penalize
translations with errors in reversing negation
or sentiment polarity (Table 9).

• Of the 14 linguistically motivated categories
represented in the challenge sets, high-
performing metrics have lower correlations
for Subordination and Named Entities and Ter-
minology (Tables 10 and 11).

• MQM annotations on TED data, both between
annotation setups (Google and Unbabel) and
between annotators themselves, show rela-
tively low levels of agreement. However, we
note that many of the system rankings remain
relatively consistent; critically we note that
the human reference comes out on top in both
setups and that resulting metrics ranking is
not significantly affected. This indicates that
whilst MQM is an attractive framework for
evaluation, the annotation task itself is still
subject to human disagreement, especially on
challenging content. TED talks in particular
are highly specialized and ambiguous, pre-
senting a unique challenge for annotators and
evaluation.

2 Data

Similar to the previous years’ editions, the source,
reference texts, and MT system outputs for the
metrics task are mainly derived from the WMT21
News Translation Task. This year, we expand the
domain and evaluate the same MT systems on an
additional out-of-domain data – TED talks, for our
three primary language pairs: English→German,
English→Russian and Chinese→English. In ad-
dition to the MT system outputs from the WMT
evaluation campaign, we added translations from
five additional MT systems that represent different
versions of the same system during system devel-
opment.

2.1 WMT Test Sets

The Newstest2021 set contains between 1000 and
2000 segments for each translation direction. All
test sets are from the news domain. The reference
translations provided for Newstest2021 were cre-
ated in the same translation direction as the MT
systems. We have two reference translations for

English→Russian and Chinese→English and four
reference translations for English→German. For
more details regarding the news test sets, we re-
fer the reader to the WMT21 news translation task
findings paper.

2.2 TED Talks Test Suite

A long standing question about automated MT eval-
uation metrics has been whether metrics generalize
and perform well across domains. In the past, met-
rics were mostly tested on news translation evalu-
ation. The WMT2016 metrics shared task (Bojar
et al., 2016) experimented on the IT and medical do-
mains but the number of MT systems involved were
small (2-10 in each translation direction). Thus,
there was insufficient statistical evidence collected
for a detailed analysis on how well metrics perform
in different domains.

In an attempt to conduct a detailed analysis on
the robustness of metrics when evaluating transla-
tions in a domain other than news, we generated
and provided an additional test suite for transla-
tion by the MT systems participating in the news
translation task, consisting of transcriptions of TED
talks. The TED domain is quite different from the
news domain, particularly in its more informal and
disfluent language style, yet it covers a wide variety
of topics and vocabularies.

The TED talk transcripts translation test set was
extracted from OPUS5 based on the corpus re-
leased by Reimers and Gurevych (2020). The
English TED talk transcripts were translated by
volunteers into multiple languages. To minimize
the problem of translationese as the source for the
Chinese→English part of the test suite, we had
a first-language Chinese speaker select talks with
Chinese translations that were judged to be natural-
sounding in Chinese. (Unfortunately, there are still
some problems in the translation quality for the
Chinese→English part of the test suite which we
will further discuss in Section 8.1.1.) Then, the
same talks were extracted from the corpus to cre-
ate the English→German and English→Russian
parts of the test suite, where the translation was
already available in the corpus and the quality of
the translation was approved by professional trans-
lators. Table 1 shows the basic statistics of the TED
talks test suite.

5https://opus.nlpl.eu/TED2020.php
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language #talks #source sent.

en→de 6 606
en→ru 8 684
zh→en 9 843

Table 1: Statistics of the TED talks test suite.

2.3 Additional MT Output

One major use case for automatic metrics is choos-
ing among different versions of the same system
during system development. We translated all
test sets for all language pairs with five differ-
ent versions of the same system which we call
metricsystem{1,..,5}. The underlying NMT mod-
els are trained on unconstrained training data and
the model variations include baseline models, fine-
tuned models and models considering document
context. As we will see, the quality performance
of these systems and their relative rankings can be
quite different depending on the language pair, as
these were not trained to yield the highest perfor-
mance on the news or TED domain.

3 MQM Human Evaluation

Automatic metrics are usually evaluated by measur-
ing correlations with human ratings. The quality
of the underlying human ratings is critical and re-
cent findings (Freitag et al., 2021) have shown that
crowd-sourced human ratings are not reliable for
high quality MT output. Furthermore, an evalua-
tion schema based on MQM (Lommel et al., 2014)
which requires explicit error annotation is prefer-
able to an evaluation schema that only asks raters
for a single scalar value per translation. Contrarily
to the previous versions of the WMT metrics task,
for our primary evaluation this year, we decided not
to use the crowd-sourced DA human ratings from
the WMT News Translation task, and conducted
our own MQM-based human evaluation on a subset
of submissions and a subset of language pairs that
are most interesting for evaluating current metrics.
This not only had the advantage of more reliable
ratings for a subset of language pairs, but also gave
us the opportunity to run the same human evalua-
tion on a different domain (TED talks) on output
generated by the same MT systems, in order to test
the generalization capabilities of the metrics.

MQM is a general framework that provides a
hierarchy of translation errors which can be tai-
lored to specific applications. Google and Unba-
bel sponsored the human evaluation for this year’s

metrics task for a subset of language pairs using
either professional translators (English→German,
Chinese→English) or trusted and trained raters
(English→Russian). The error annotation typology
and guidelines used by Google’s and Unbabel’s
annotators differs slightly and is described in the
following two sections.

3.1 English→German and Chinese→English

Annotations for English→German and
Chinese→English were sponsored and exe-
cuted by Google, using 23 professional translators
(14 for English→German, 9 for Chinese→English)
with access to the full document context. Instead of
assign a scalar value to each translation, annotators
were instructed to “just“ label error spans within
each segment in a document, paying particular
attention to document context. Each error was
highlighted in the text, and labeled with an error
category and a severity. To temper the effect of
long segments, we imposed a maximum of five
errors per segment, instructing raters to choose the
five most severe errors for segments containing
more errors. Segments that are too badly garbled
to permit reliable identification of individual errors
are assigned a special Non-translation error. Error
severities are assigned independent of category,
and consist of Major, Minor, and Neutral levels,
corresponding respectively to actual translation
or grammatical errors, smaller imperfections, and
purely subjective opinions about the translation.
Since we are ultimately interested in scoring
segments, we adopt the weighting scheme shown
in Table 2, in which segment-level scores can
range from 0 (perfect) to 25 (worst). The final
segment-level score is an average over scores from
all annotators. For more details, exact annotator
instructions and a list of error categories, we refer
the reader to Freitag et al. (2021) as the exact
same setup was used for the WMT21 metrics task.

Severity Category Weight

Major Non-translation 25
all others 5

Minor Fluency/Punctuation 0.1
all others 1

Neutral all 0

Table 2: Google’s MQM error weighting.
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3.2 English→Russian
Annotation for English→Russian was performed
by Unbabel who used a single professional native
language annotator with several years of translation
error experience based on variations of the MQM
framework (Lommel et al., 2014). For this task,
Unbabel provided a proprietary variant of MQM,
specifically tailored for Russian language annota-
tion. In a manner similar to the Google annotation,
the annotator was given full document context and
instructed to highlight spans of errors according to
the categories specified in the typology. As with
the Google annotation, the annotator was also in-
structed to indicate error severity. The Unbabel
severity options differ slightly from that of Google
in that we also specify a ‘critical’ error severity and
do not specify a ‘neutral’ category. Additionally,
in the Unbabel typology, all error categories are
weighted equally within each severity level.

MQM scores at a segment level are calculated
by summing the number of errors in the segment
in each severity and applying a severity weight as
described in Table 3. In contrast to the Google
scheme, Unbabel does not impose a limit on the
number of errors in a segment. We do, however, ap-
ply a normalization of the score by segment length.
The full score calculation is shown in Equation 1
below:

MQM = 100 · (1− 10 · #critical + 5 · #major + #minor
#tokens

)

(1)

The same type of MQM annotations were pre-
viously used in the WMT QE shared tasks for the
document-level subtask (Fonseca et al., 2019; Spe-
cia et al., 2020a) also sponsored by Unbabel.

Severity Category Weight

Critical all 10

Major all 5

Minor all 1

Table 3: Unbabel’s MQM error weighting.

3.3 Human Evaluation Results
As discussed in Section 1, we decided to run our
own human evaluation in order to generate our
golden-truth ratings and come to stronger conclu-
sions about the quality of each automatic metric
across two domains. Unfortunately, this also meant
that we were only able to evaluate a subset of doc-
uments of newstest2021 and TED talks. In Table 4,

you can see the number of segments for each lan-
guage pair and test set that we used for human
evaluation.

language news TED

en→de 527/1002 529/606
en→ru 527/1003 512/684
zh→en 650/1948 529/843

Table 4: Numbers of MQM-annotated segments for
each test set.

The results of the MQM human evaluation can
be seen in Table 5. Most of the reference transla-
tions are ranked first, surpassing all MT systems,
except for ref-B for zh→en TED talks and ref-A for
en→de newstest2021. This confirms the findings
in Freitag et al. (2021) that when human evalua-
tion is conducted by professional translators and
MQM, high-quality human translations typically
still outperform MT. We will discuss the impact of
the identified low-quality reference translations in
Section 8.1.1 in more detail. We wish to highlight
one more important observation: the ranking of the
MT systems is sharply different when switching
from the commonly used Newstest2021 test sets to
TED talks. This is particularly interesting for the
metrics task, as metrics need to assess MT quality
purely on the basis of the translations themselves
and cannot rely on features that are specific to any
particular MT system. We will analyse the dif-
ferences between Google’s and Unbabel’s MQM
approach in Section 8.2 and compare our MQM
human evaluation with the DA assessment from
WMT in more detail in Section 8.3.

4 Metric Submissions and Baselines

4.1 Baselines

SacreBLEU baselines We use the following
metrics from the SacreBLEU v1.5.0 (Post, 2018)
as baselines, with the default parameters:

• BLEU (Papineni et al., 2002) is the precision
of n-grams of the MT output compared to the
reference, weighted by a brevity penalty to Us-
ing SacreBLEU we obtained sentence-BLEU
values using the sentence_bleu python
function and for corpus-level BLEU we used
corpus_bleu. Both functions were used
with the default arguments.6

6BLEU+case.mixed+lang.LANGPAIR-+numrefs.1
+smooth.exp+tok.13a-+version.1.5.0
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English→German ↓
System news TED

ref.C 0.48 (1) n/a
ref.D 0.52 (2) n/a
ref.B 0.80 (3) n/a
VolcTrans-GLAT 1.04 (4) 1.49 (6)
Facebook-AI 1.05 (5) 1.06 (2)
ref.A 1.22 (6) 0.91 (1)
Nemo 1.34 (7) 2.14 (14)
HuaweiTSC 1.38 (8) 1.50 (7)
Online-W 1.46 (9) 1.12 (3)
UEdin 1.51 (10) 1.77 (11)
eTranslation 1.69 (11) 1.96 (13)
VolcTrans-AT 1.74 (12) 1.24 (4)
metricsystem4 2.05 (13) 1.78 (12)
metricsystem1 2.07 (14) 1.63 (8)
metricsystem3 2.27 (15) 1.44 (5)
metricsystem2 2.58 (16) 1.69 (9)
metricsystem5 2.61 (17) 1.72 (10)

Chinese→English ↓
System news TED

ref.B 4.271 (1) 0.42 (1)
ref.A 4.35 (2) 5.52 (15)
metricsystem1 4.42 (3) 1.90 (4)
metricsystem4 4.62 (4) 2.05 (7)
NiuTrans 4.63 (5) 2.49 (11)
SMU 4.84 (6) 2.202 (9)
MiSS 4.93 (7) 1.97 (5)
Borderline 4.94 (8) 2.40 (10)
metricsystem2 5.04 (9) 1.76 (3)
DIDI-NLP 5.09 (10) 1.65 (2)
IIE-MT 5.14 (11) 1.98 (6)
Facebook-AI 5.21 (12) 2.64 (12)
metricsystem3 5.39 (13) 2.99 (14)
Online-W 5.57 (14) 2.93 (13)
metricsystem5 6.39 (15) 2.15 (8)

English→Russian ↑
System news TED

ref-A 99.65 (1) 97.51 (1)
ref-B 98.40 (2) n/a
Facebook-AI 92.75 (3) 87.40 (3)
Online-W 91.80 (4) 90.84 (2)
metricsystem4 91.25 (5) 70.63 (11)
metricsystem5 90.88 (6) 74.15 (7)
metricsystem1 90.79 (7) 72.08 (9)
metricsystem2 89.86 (8) 75.19 (6)
Online-A 87.87 (9) 71.93 (10)
Nemo 87.50 (10) 73.77 (8)
Online-G 87.23 (11) 77.62 (5)
Manifold 86.86 (12) 68.27 (13)
Online-B 85.66 (13) 78.05 (4)
metricsystem3 85.65 (14) 60.17 (15)
NiuTrans 83.47 (15) 69.94 (12)
Online-Y 79.27 (16) 61.91 (14)

Table 5: MQM human evaluations for Newstest2021 and TED. Lower average error counts represent higher MT
quality for En→De and Zh→En (using Google’s formulation of MQM), while higher scores represent higher
quality for En→Ru (using Unbabel’s MQM definition).

• TER (Snover et al., 2006) measures the num-
ber of edits (insertions, deletions, shifts and
substitutions) required to transform the MT
output to the reference. As in BLEU, for
TER we used SacreBLEU sentence_ter
and corpus_ter functions (with default ar-
guments7) to obtain segment-level and system-
level scores.

• CHRF (Popović, 2015) uses character n-grams
instead of word n-grams to compare the MT
output with the reference. For CHRF we used
the SacreBLEU sentence_chrf function
(with default arguments8) for segment-level
scores and we average those scores to obtain
a corpus-level score.

BERTscore BERTSCORE (Zhang et al., 2020)
leverages contextual embeddings from pre-trained
transformers to create soft-alignments between
words in candidate and reference sentences using
a cosine similarity. Based on the alignment ma-
trix, BERTSCORE returns a precision, recall and
F1 score. We used F1 without TF-IDF weighting.

Prism PRISM (Thompson and Post, 2020) is an
automatic MT metric which uses a sequence-to-
sequence paraphraser to score MT system outputs
conditioned on their respective human references.

7TER+lang.LANGPAIR+tok.tercom-nonorm-punct
noasian-uncased+version.1.5.0

8chrF2+lang.LANGPAIR- +numchars.6+space.false- +ver-
sion.1.5.0.

We used the default parameters with version 0.1
and model m39v1.

4.2 Submissions

The rest of this section summarizes participating
metrics.

COMET All COMET* metrics (Rei et al.,
2021) were built using the Estimator architecture
presented in Rei et al. (2020a,b). The difference be-
tween all the submitted metrics stem from: the data
used for training, the size of the encoder model and
whether or not they take advantage of the reference
translation.

• COMET-DA_2020 is the same model sub-
mitted for last year’s shared task (Rei et al.,
2020b; Mathur et al., 2020b) while COMET-
DA_2021 is a retrained version of the pre-
vious model that includes the DA udgements
collected in 2020.

• COMET-MQM_2021 is an MQM adapta-
tion of the COMET-DA_2021 model that
further trains for 1 additional epoch on MQM
z-scores extracted from the MQM ratings for
newstest2020 provided for the task this year.

• COMETINHO-MQM and COMETINHO-
DA are lightweight versions of COMET-
MQM_2021 and COMET-DA_2021 re-
spectively, which use a distilled version of
XLM-RoBERTa as the encoder.
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• Finally, COMET-QE-MQM_2021 and
COMET-QE-DA_2021 are the reference-
free versions of COMET-MQM_2021 and
COMET-DA_2021 respectively.

From all the submitted models, the authors iden-
tified COMET-MQM_2021 and COMET-QE-
MQM_2021 as their primary submissions to this
years shared task edition.

OPENKIWI-MQM OPENKIWI-MQM (Kepler
et al., 2019; Rei et al., 2021) is a multitask model
that estimates a sentence-level MQM score along
with word-level OK/BAD tags. The model is
trained on top of XLM-RoBERTa using proprietary
MQM data from several customer support domains.
While word-level QE typically tags each word with
an OK/BAD tag depending on post-edition informa-
tion (Specia et al., 2020a), the OK/BAD tags used
in OPENKIWI-MQM are derived directly from
MQM annotation spans ignoring error types and/or
severities.

YISI YISI (Lo, 2019) is a unified semantic MT
quality evaluation and estimation metric for lan-
guages with different levels of available resources.

• YISI-1 is a reference-based MT evaluation
metric. It measures the semantic similarity
between a machine translation and human ref-
erences by aggregating the idf-weighted lex-
ical semantic similarities based on the con-
textual embeddings extracted from pretrained
language models (e.g. BERT, CamemBERT,
RoBERTa, XLM, XLM-RoBERTa, etc.).

• YISI-2 is the bilingual, reference-less version
for MT quality estimation. It uses bilingual
mappings of the contextual embeddings ex-
tracted from multilingual pretrained language
models (e.g. XLM-RoBERTa) to evaluate
the crosslingual lexical semantic similarity be-
tween the input and MT output.

YISI is an untrained metric and the submissions
this year are the same as those in WMT20. The
metric settings are described in Lo (2020) and Lo
and Larkin (2020).

MTEQA MTEQA (Krubiński et al., 2021a,b) is
an MT evaluation metric that leverages automati-
cally generated questions and answers to assess the
quality of MT systems. It builds upon the assump-
tion that a good translation should preserve all of

the key information that one can extract from the
reference. Based on syntactic structure and NER
system, they extract potential answers from the ref-
erence, and for each of them generate a human read-
able question. They then use a question-answering
system to provide a new (test) answer given the
question and the MT output as the context. The test
answer is then compared to the reference answer to
obtain the numerical score.

REGEMT REGEMT (Stefanik et al., 2021) is a
family of ensemble metrics trained on MQM labels.

• {SRC, TGT}-REGEMT: This ensemble com-
bine selected metrics of surface-, syntactic-
and semantic-level similarity as input fea-
tures to a regression model that estimates a
quality assessment. Some of these features
are newly introduced and some are based
on related work. The reference-free ensem-
ble uses as input features: Source length,
Target length, Contextual SCM, Contextual
WMD, BERTScore, Prism and Composi-
tionality the reference-base ensemble uses:
COMET, BLEURT, BLEU, METEOR, Non-
contextual SCM and WMD.

• REGEMT-BASELINE: This ensemble uses
only Source length and Target length of the
given texts, in characters

The authors identified {SRC, TGT}-REGEMT
as their primary submissions.

ROBLEURT ROBLEURT (Wan et al., 2021),
short for Robustly Optimizing the training of
BLEURT, is a model-based metric based on pow-
erful language model XLM-RoBERTa. The ROB-
LEURT metric is constructed by the following
steps: 1) jointly leveraging the advantages of
source-included and reference-only metric mod-
els, 2) continuously pre-training the model with
massive synthetic data produced by the real-world
machine translation engines, and 3) fine-tuning the
model with a data denoising strategy.

BLEURT BLEURT-20 and BLEURT-21-
BETA are obtained by fine-tuning Rebalanced
mBERT (Chung et al., 2021) (a multilingual
variant of BERT) on a combination of two
datasets: previous ratings from the WMT shared,
task and generated data. The generated data
consists of “perfect" sentence pairs, obtained
by copying the reference into the hypothesis, as
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well as “catastrophic" sentence pairs, obtained by
randomly sampling tokens for each language pair.
The fine-tuning methodology is similar to (Sellam
et al., 2020). BLEURT-20 was trained on human
ratings from WMT metrics 2015 to 2019 (z-scores)
using WMT20 for test, and BLEURT-21-BETA

was trained on WMT 2015 to 2020. The suffixes
“-20” and “-21” denote the year of the WMT
Metrics ratings that were used to build the test
sets. The authors identified BLEURT-20 as their
primary submission.

hLEPOR and cushLEPOR

• HLEPOR (Han et al., 2013) is an augmented
metric with factors including enhanced sen-
tence length penalty, precision, recall, and
positional difference penalty which captures
word order.

• CUSHLEPOR(LM) (Han et al., 2021) is a
customized hLEPOR metric that uses LABSE
pre-trained language model to automatically
optimise hLEPOR parameters towards better
correlation to human judgement and lower
cost.

• CUSHLEPOR(PSQM) (Han et al., 2021) is
trained and validated on the MQM and pSQM
annotations from human professionals (Fre-
itag et al., 2021). The tuned cushLEPOR
achieves very high agreement to LABSE pre-
trained language model in performance but
uses much less computational cost as a dis-
tilled model.

The authors identified CUSHLEPOR(LM) as
their primary submission.

C-SPEC C-SPEC (Takahashi et al., 2021) is
designed for both segment-level and system-level
translation evaluation. The authors’ objective was
to design a better metric by detecting significant
translation errors that would not be ignored in
real instances of human evaluation. Thus, pseudo-
negative examples are generated in which selected
words in the translation are replaced with alterna-
tives based on a Word Attribute Transfer, and a
metric model is built to handle such serious trans-
lation errors (denoted as C-SPECPN). A multi-
lingual large pretrained model is fine-tuned on the
provided corpus of past years’ metrics task and
fine-tuned again further on the synthetic negative
samples that is derived from the same fine-tuned

corpus. The authors identified C-SPECPN as their
primary submission.

MEE

• MEE (Mukherjee et al., 2020) is an automatic
evaluation metric that leverages the similar-
ity between embeddings of words in candi-
date and reference sentences to assess trans-
lation quality focusing mainly on adequacy.
Unigrams are matched based on their sur-
face forms, root forms and meanings which
aids to capture lexical, morphological and se-
mantic equivalence. Semantic evaluation is
achieved by using pretrained fasttext embed-
dings provided by Facebook to calculate the
word similarity score between the candidate
and the reference words. MEE computes eval-
uation scores using three modules namely ex-
act match, root match and synonym match.
In each module, fmean-score is calculated us-
ing harmonic mean of precision and recall by
assigning more weight to recall. A final trans-
lation score is obtained by taking the average
of fmean-scores from the individual modules.

• MEE2 is an improved version of MEE, fo-
cusing on computing contextual and syntac-
tic equivalences along with lexical, morpho-
logical and semantic similarity. The intent
of MEE2 is to capture fluency and context
of the MT outputs along with their adequacy.
Fluency is captured using syntactic similarity
and context is captured using sentence simi-
larity leveraging sentence embeddings. The
final sentence translation score is the weighted
combination of three similarity scores: a) Syn-
tactic Similarity achieved by modified BLEU
score; b) Lexical, Morphological and Seman-
tic Similarity: measured by explicit unigram
matching similar to MEE score; c) Contextual
Similarity: Sentence similarity scores are cal-
culated by leveraging sentence embeddings of
Language-Agnostic BERT models.

The authors identified MEE2 as their primary
submission.

5 Main Results

Currently, the main use case of automatic metrics is
to rank systems either during system development
or by comparing your own output with the one

741



from other research institutes or competitors. Con-
sequently, we present system-level correlations as
our main metric in this year’s WMT21 metrics task.
To be in line with the main use case, we present
pairwise accuracy numbers for each metric that
calculate the accuracy scores on binary comparison
of system outputs for each language pair. We refer
the reader to Section 7 for language pair specific
results on both the segment and system level with
more traditional correlation metrics.

5.1 System-Level
The system-level metric scores submitted by the
participants pertained to the complete WMT test
set, but we collected human MQM scores for only
a subset of documents, as shown in Table 4. To cor-
rect for this discrepancy, we re-computed system-
level scores as averages over the segments for
which MQM scores were available, after first ver-
ifying with all participants that their system-level
scores were computed in the same fashion.

To generate a single score combining the data
from all 3 language pairs, we calculate pairwise
accuracy (Kocmi et al., 2021) as our primary scor-
ing metric. Pairwise accuracy is defined as follows:
For each language pair and system pair, we calcu-
late the difference of the metric scores (metric∆)
and the difference in average human judgements
(human∆) for each system pair. We calculate ac-
curacy for a given metric as the number of rank
agreements between the metric and human deltas,
divided by the total number of comparisons:

Pairwise accuracy =
|sign(metric∆) = sign(human∆)|

|all system pairs|
(2)

We present results for three different settings:
Looking at the news domain with and without hu-
man translations (HT) as additional systems: (a)
Newstest2021 w/o HT, (b) Newstest2021 w/ HT,
and (c) looking at TED talks w/o HT. In this sec-
tion, we consider only the primary submissions of
each metric team and the baseline metrics. We have
multiple reference translations for some settings.
Instead of reporting results with respect to all refer-
ence translations, we use here for reference-based
metrics only the single reference that was judged
best by the MQM raters for each language pair.
The remaining reference translations are used in
the role of participating MT systems in the “w/ HT”
evaluations. Table 7 summarizes the use of refer-
ence translations for different language pairs and
domains. We will analyse the impact of using dif-

ferent reference translations in Section 8.1 in more
detail.

language news TED
best ref scored refs best ref

en→de C A, D A
en→ru A B A
zh→en B A B

Table 7: Use of reference translations.

Metric rankings based on pairwise accuracy can
be found in Table 8. The top significance cluster
(bolded in the table) consists of primary or baseline
metrics that are not significantly outperformed by
any other primary or baseline metrics nor outper-
formed by a primary or baseline metric not in the
top cluster.9

newstest21 newstest21 TED
Metric w/o HT w/ HT w/o HT

tgt-regEMT 0.773 (1) 0.694 (5) 0.636 (15)
Prism 0.769 (2) 0.641 (7) 0.733 (5)
cushLEPOR(LM) 0.763 (3) 0.622 (9) 0.647 (14)
C-SPECpn 0.757 (4) 0.784 (1) 0.704 (10)
bleurt-20 0.753 (5) 0.718 (3) 0.749 (3)
MEE2 0.753 (6) 0.628 (8) 0.713 (7)
BERTScore 0.745 (7) 0.621 (10) 0.721 (6)
chrF 0.745 (8) 0.621 (11) 0.713 (8)
BLEU 0.741 (9) 0.618 (12) 0.741 (4)
YiSi-1 0.737 (10) 0.615 (13) 0.757 (2)
COMET-QE-MQM_21 0.733 (11) 0.774 (2) 0.652 (13)
COMET-MQM_21 0.713 (12) 0.688 (6) 0.773 (1)
MTEQA∗ 0.705 (13) 0.577 (15) 0.705 (9)
TER 0.696 (14) 0.585 (14) 0.636 (16)
OpenKiwi-MQM 0.692 (15) 0.698 (4) 0.680 (12)
RoBLEURT∗ 0.641 (16) 0.549 (16) 0.692 (11)
YiSi-2 0.510 (17) 0.429 (17) 0.494 (17)
src-regEMT 0.494 (18) 0.415 (18) 0.405 (18)

Table 8: Pairwise accuracy for Chinese→English,
English→German, and English→Russian using the
MQM annotations. Correlations for metrics in the top
significance cluster are bolded. All submissions la-
belled with ∗ participated only in 1 or 2 language pairs
and are not considered during significance testing. Met-
rics not using reference translation (QE-metrics) are in-
dicated by italics.

• Newstest2021 w/o HT This setting is most sim-
ilar to previous years’ settings. Metrics are re-
quired to score all MT outputs without consid-
ering human translations (HT). This setup inves-
tigates how metrics evaluate current SOTA MT

9Note that this definition is different from the metric clus-
tering used in previous metrics tasks, in which every metric in
a cluster must be significantly better than all metrics in lower
clusters.
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models. Looking at the ranking in Table 8, we
can see that in total 8 metrics fall into the first sig-
nificance cluster. The cluster includes a variety
of embedding-based metrics and surface metrics.
None of the QE metrics (i.e. reference-less met-
rics) are part of the first cluster.

• Newstest2021 w/ HT When considering the ad-
ditional reference translations as system outputs
(ref-A for zh→en, ref-B for en→ru, ref-A and
ref-D for en→de), the ranking of the metrics is
sharply revised. The QE metric COMET-QE-
MQM_2021 and the reference-based metric C-
SPECpn are the winners in this setup. Overall,
the embedding-based metrics that also rely on
fine-tuning are much better in rating human trans-
lation higher than MT output and thus dominate
this setting.

• TED talks w/o HT This year, we also measured
the domain robustness of each metric on the TED
talks domain. In Table 8, we can see that COMET-
MQM_2021 and YiSi-1 show the highest correla-
tion with human ratings on the TED domain. In-
terestingly, both metrics did not fall into the first
significance cluster in the previous two settings
of the news domain, leading to very different
conclusion about the quality of metrics.

5.2 Significance Testing
We run PERM-BOTH hypothesis test (Deutsch
et al., 2021) on the pairwise system-level accuracy
of Table 8 to measure significance between metrics’
performance.10 Results can be seen in Figure 1. By
looking at the heat map of Newstest2021 without
human translations (Newstest2021 w/o HT), we
observe that the top performing metrics are not
significantly different. This observation changes
when we add human translations to the setup (New-
stest2021 w/ HT). The top 2 performing metrics,
although different ones, are significantly better than
all other metrics. This setup gives us the clearest
result of all our 3 different setups and highlights
that embedding-based metrics that are fine-tuned
on previous years’ human ratings rate human trans-
lations much better than all the other metrics and
are good at distinguishing human-produced text.
Another different situation can be seen when look-
ing at the TED talk setting (TED talks w/o HT).

10Previous editions of the metrics task used the Williams
test (Williams, 1959), but we adopted PERM-BOTH because it
is more general, and because Deutsch et al (2021) demonstrate
that it has higher power.

Even though we see more significant differences
compared to Newstest2021 w/o HT, most pairs of
metrics are not significantly different.

6 Challenge Sets

While the correlation analysis is testing the evalu-
ation metrics on their ability to rank MT systems
according to translation quality, we are also inter-
ested in understanding metrics’ performance on
identifying certain types of translation errors. We
created three challenge sets containing translation
errors that are believed to be challenging for auto-
matic MT evaluation metrics to identify. A good
metric should not only rank candidate translations
by their quality but also be sufficiently sensitive to
these types of errors.

Each challenge set consists of two MT outputs
(and the corresponding source and reference) where
one of them contains the type of translation error
of interest and the other does not. Metrics are
expected to give a lower score to the MT output
containing the error.

We use Kendall’s tau-like correlation, typically
used for DARR (Bojar et al., 2017; Ma et al., 2018,
2019; Mathur et al., 2020b), for evaluating the pri-
mary submissions on the challenge sets. Kendall’s
tau-like correlation is defined as follows:

τ =
Concordant− Discordant
Concordant + Discordant

(3)

where Concordant is the number of times a metric
assigns a higher score to the MT output without
the error and Discordant is the number of times
a metric assigns a higher score to the MT output
containing the error of interest.

6.1 Negation and Sentiment Polarity
Challenge Set

The goal of this challenge set is to test metrics’ abil-
ity to penalize translations when there is a catas-
trophic error in reversing of a negation or of sen-
timent polarity. It is a common phenomenon that
MT systems may either introduce or remove a nega-
tion (with or without an explicit negation word), or
may reverse the sentiment polarity of the sentence
(e.g. a negative sentence becomes positive or vice-
versa). These types of errors could result in serious
consequences of misleading users of MT.

The WMT2020 MT Robustness shared task
(Specia et al., 2020b) collected Wikipedia Edit com-
ments with toxic content that could lead to possible
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Figure 1: The results of running PERM-BOTH hypoth-
esis test to find a significant difference between metrics’
pairwise system-level accuracy. Dark squares mean the
row metric correlates significantly better than the col-
umn metric at α = 0.05.

catastrophic errors in the MT output. After se-
lecting segments of interest they created reference
translations for the entire test set using professional
translators. Finally, they collected annotations of
catastrophic errors on the translations performed
by participating systems11.

To test metrics on sentiment polarity we looked
for source sentences from the English→German
data portion where we can find an MT output an-
notated with a sentiment polarity error and another
MT output without the polarity error. The resulting
challenge set contains 177 source sentences (not
necessarily distinct), each equipped with two MT
outputs, one with a catastrophic error and one with-
out it. We note that most of the sentences in this
challenge set contain toxic language.

Table 9 shows the results for this challenge set.
We also show the actual number of concordant
pairs here because this challenge set is rather small.
Despite the high severity of the translation error
in reversing the sentiment polarity or negation, we
see that both the baselines and the submissions
struggle to accurately discriminate between trans-
lations with and without such errors. TER and
BERTSCORE are the only two metrics that are
able to achieve a medium correlation (i.e. greater
than 0.4) with human annotators on ranking the
translation with the catastrophic error as lower
in translation quality. Perhaps more importantly,
embedding-based and semantic-oriented metrics,
such as BERTSCORE, YISI-1, etc., do not signifi-
cantly outperform surface-form matching metrics,
such as TER, CHRF and SENT-BLEU. This may
indicate that the pretrained language models used
by the embedding-based metrics are weak at learn-
ing language representations that explicitly reflect
differences in negation and sentiment polarity.

6.2 Corrupted Reference Challenge Set
The goal of this challenge set is to sanity check
the behaviour of the submitted metrics and pos-
sibly identify some weaknesses in detecting spe-
cific anomalies in a corrupted reference transla-
tion. In order to do this we used this years’
Chinese→English Newstest corpus, which con-
tains two human systems (referenceA and refer-
enceB) and we perturb one of these human systems
while using the other as reference. Given that, our
final corpus is composed of 14, 080 tuples with

11Professional translators with access to the original source
sentence, the reference and the system output were used during
this evaluation.
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Metric Concordant τ

TER 132 0.492
BERTSCORE 124 0.401
CHRF 123 0.390
YISI-1 122 0.379
MEE2 120 0.356
BLEURT-20 119 0.345
SENT-BLEU 118 0.333
C-SPECPN 118 0.333
COMET-MQM_2021 117 0.322
TGT-REGEMT 115 0.299
SRC-REGEMT 112 0.266
CUSHLEPOR(LM) 108 0.220
OPENKIWI-MQM 108 0.220
PRISM 107 0.209
MTEQA 106 0.198
COMET-QE-MQM_2021 106 0.198
YISI-2 104 0.175

Table 9: Results for the Negation and Sentiment Polar-
ity Challenge Set. (Out of 177 hypothesis pairs)

(source, referenceBpert, referenceB, referenceA)
where referenceBpert denotes the perturbed refer-
ence.

The perturbations used are: antonym replace-
ment, word omission, tokenization, sentence omis-
sion,12 punctuation removal, number swapping,
lowercasing, word addition and addition of spelling
errors. Table 22 in Appendix A shows examples
for each perturbation.

From Table 10 we can observe that for most
embedding based metrics (YISI, BERTSCORE,
BLEURT-21-BETA, ROBLEURT, PRISM) corre-
lations are close to 1.0 for all perturbation types.
The only exceptions are COMET-MQM_2021
and C-SPECPN that seem to struggle with sentence
omission and punctuation removal. This behaviour
is even more unexpected if we take into considera-
tion that they seem to be sensitive to word omission.
Regarding punctuation removal, since both metrics
are fine-tuned on Google MQM annotations (see
Section 3.1) we hypothesize that they learn to be
less sensitive to punctuation errors. Regarding the
lexical metrics, we can observe that SENT-BLEU,
CHRF and CUSHLEPOR(LM) are not sensitive to
tokenized text. This is an expected behaviour for

12Note that after experimenting with paragraph-level trans-
lation in WMT20, WMT21 moved back to segments again
corresponding to individual sentences. In Chinese→English
corpus, paragraph boundaries are not apparent (all documents
consist of one paragraph). For the purposes of this experiment,
we used nltk.sentence_tokenizer and looked for all the refer-
ences B with more than 1 sentence and randomly delete 1 of
those sentences to create referenceBpert. Note that since we
do not have entire paragraph, the size of this challenge is 88
samples only.

lexical metrics since they typically ignore whites-
paces. Also, CUSHLEPOR(LM) scores −1.0 in
lowercased text. This seems to indicate that this
metric does not encode casing information.

6.3 German→English Challenge Set

The challenge set is based on the test suite by Mack-
etanz et al. (2018a). It is a test suite for German-
English that consists of around 5,500 German test
sentences covering 107 linguistically motivated
phenomena (listed in Avramidis et al. (2020)), or-
ganized in 14 categories. These phenomena do
not follow a linguistic theory but rather cover var-
ious grammatical aspects which are relevant for
MT. Each phenomenon is represented by at least
20 test sentences to guarantee a balanced test set.
The test suite is used to evaluate MT systems with
regard to their performance on the test sentences.
The evaluation operates semi-automatically and is
based on a set of handwritten rules which contain
regular expressions and fixed strings.

The test suite has been used to evaluate the out-
puts of 40 German-English systems submitted at
the translation task of the Conference of Machine
Translation (WMT) for three consecutive years
(Macketanz et al., 2018b; Avramidis et al., 2019,
2020) and also this year (Macketanz et al., 2021).
Across the past three years, this amounts to 40 sys-
tem outputs. We use these outputs to construct the
challenge items for the metrics task, since the test
suite contains only source sentences and handwrit-
ten rules for the outputs but no reference transla-
tions. For every source sentence of the test suite we
separate MT outputs into “correct” and “incorrect”
ones using the handwritten rules of the test suite
and create a tuple including; (1) a set of “correct”
MT outputs, to be given to the metrics as suppos-
edly correct reference translations and, (2) a pair
of one “incorrect” and one “correct” translation
randomly sampled from the respective set. Note
that the “correct” candidate does appear among the
references (1). The goal of the metric is to score
the “incorrect” translation worse than the “correct”
one.

The same source sentence may be appear more
than once, if there is more than one WMT trans-
lation marked as wrong by the rules for this item.
The above process resulted in a metrics challenge
set with 1,819 items with source, wrong hypothesis,
correct hypothesis, and a pseudo-reference (another
MT that was deemed correct for that phenomenon).
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Metric Antonym W. Omission Tokenized Sent. Omission Punct. Numbers Lower. W. Add. Spell.

SENT-BLEU 0.792 0.787 -0.617 0.409 0.640 0.715 0.633 0.986 0.954
TER 0.994 0.597 0.966 0.568 0.739 0.996 1.000 1.000 0.997
CHRF 0.887 0.983 -0.516 0.523 0.761 0.899 0.708 0.903 0.981
BERTSCORE 0.986 0.984 0.994 0.909 0.950 0.993 0.799 0.996 0.998
PRISM 0.998 0.995 0.972 0.864 0.990 1.000 0.969 1.000 0.999
MTEQA 0.329 0.721 -0.522 0.273 -0.340 0.712 -0.415 0.649 0.624
YISI-1 0.991 0.996 0.993 0.977 0.951 0.996 0.960 0.999 1.000
BLEURT-20 0.992 0.989 0.983 0.909 0.931 0.993 0.976 0.998 0.997
COMET-MQM_2021 0.996 0.994 0.994 -0.068 0.235 0.993 0.965 0.993 1.000
C-SPECPN 0.991 0.988 0.576 0.409 0.622 0.876 0.922 0.991 0.996
CUSHLEPOR(LM) 0.826 0.779 -0.431 0.500 0.877 0.730 -1.000 0.982 0.957
MEE2 0.975 0.968 0.681 0.955 0.853 0.981 0.855 0.987 0.989
ROBLEURT 0.998 0.991 0.995 0.818 0.919 1.000 0.986 0.996 1.000
TGT-REGEMT 0.930 0.772 0.675 0.364 0.599 0.798 0.510 0.923 0.978
YISI-2 0.979 0.953 0.542 0.977 0.947 0.835 0.806 0.991 0.990
COMET-QE-MQM_2021 0.991 0.983 0.983 -0.318 -0.199 0.989 0.931 0.982 0.998
OPENKIWI-MQM 0.962 0.952 0.070 0.091 0.797 0.243 0.719 0.979 0.991
SRC-REGEMT 0.637 0.512 0.357 0.341 0.209 0.333 0.365 0.342 0.300

Table 10: Kendall’s tau-like correlation results for the Corrupted References Challenge set (Section 6.2). The
horizontal lines delimit baseline metrics (top), participating reference-based metrics (middle) and participating
reference-free metrics (bottom).

The covered phenomena are: Function
Words (FW), Non-verbal Agreement (NVA), Verb
Tense/Aspect/Mood (VT), Composition (Comp.),
Multi-Word Expressions Negation (MWE N.), Punc-
tuation (Punct.), Verb Valency (VV), Subordination
(Sub.), Coordination and Ellipsis (CE), Named En-
tities and Terminology and Long Distance Depen-
dencies and Interrogative (LDD).

Overall, from Table 11 we observe that
embedding-based metrics such as BLEURT-20
and COMET-MQM_2021 seem to be less sensi-
tive to Subordination, Named Entities and Termi-
nology, and to Punctuation. We can also observe a
clear performance difference between reference-
free and reference-based metrics. Nonetheless
most metrics have positive correlations in all cov-
ered phenomena. Note that this corpus is composed
of “pseudo-references” which can have a negative
impact on metrics’ performance (see Section 8.1).

7 Results per Language Pair

We computed individual correlation results for
each focus language pair (English→German,
English→Russian, Chinese→English) at both the
system and segment level. The system-level metric
scores submitted by the participants pertained to
the complete WMT test set, but we collected human
MQM scores for only a subset of documents, as
shown in Table 4. To correct for this discrepancy,
we re-computed system-level scores as averages
over the segments for which MQM scores were

available, after first verifying with all participants
that their system-level scores were computed in
the same fashion.13 Exceptions to this pattern are
the baseline metrics BLEU and TER: the system-
level versions of these metrics are not averages over
segment-level scores, and we computed them only
over the MQM segments.

Since we have multiple reference translations for
the focus language pairs, we required participants
to submit versions of their (reference-based) met-
rics for each reference. We used only the scores
corresponding to the reference that was judged best
by the MQM raters for each language pair. For
the news domain, we evaluated metric performance
both when using only MT outputs and using MT
outputs augmented by human references, adding all
remaining references in the latter condition except
for English→German, where we excluded refer-
ence B since it was very similar to the best refer-
ence C. Table 7 summarizes the use of reference
translations for different language pairs and do-
mains.

We measure correlation using the Pearson-r
statistic at the system level and the Kendall-tau
statistic at the segment level. Pearson correlation
is complementary to the pairwise accuracy used
for our global results as discussed in Section 5: it
tests linear fit with MQM scores, a stringent but

13In contrast to the standard practice with WMT DA scores,
where scored segments for each system are sampled indepen-
dently, the segments for which we have MQM scores comprise
a fixed set, independent of the MT system being scored.
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Metric FW NVA FF VT Comp. Amb. MWE N. Neg. Punct. VV Sub. CE NE & Term. LDD

SENT-BLEU 0.50 0.66 0.32 0.37 0.09 0.42 0.38 0.77 0.64 0.42 0.48 0.43 0.30 0.52
TER 0.64 0.80 0.74 0.67 0.43 0.60 0.58 0.76 0.71 0.59 0.59 0.6 0.53 0.65
CHRF 0.42 0.56 0.63 0.57 0.37 0.70 0.46 0.71 0.43 0.51 0.38 0.45 0.44 0.54
BERTSCORE 0.61 0.59 0.89 0.76 0.76 0.74 0.60 0.71 0.68 0.77 0.47 0.63 0.48 0.68
PRISM 0.72 0.56 0.74 0.82 0.74 0.82 0.70 0.65 0.58 0.80 0.45 0.71 0.53 0.71
MTEQA -0.64 -0.38 0.26 -0.77 0.03 0.54 -0.05 -0.59 -0.87 -0.57 -0.58 -0.30 0.34 -0.34
YISI-1 0.63 0.58 0.95 0.80 0.76 0.77 0.64 0.76 0.62 0.82 0.40 0.61 0.60 0.68
BLEURT-20 0.70 0.58 0.79 0.72 0.68 0.83 0.65 0.65 0.30 0.72 0.49 0.68 0.38 0.73
COMET-MQM 0.58 0.55 0.89 0.76 0.52 0.74 0.66 0.71 0.33 0.74 0.41 0.67 0.44 0.67
C-SPECPN 0.45 0.45 0.47 0.56 0.35 0.83 0.54 0.41 0.24 0.57 0.33 0.65 0.38 0.58
ROBLEURT 0.60 0.65 0.68 0.77 0.64 0.77 0.68 0.71 0.30 0.81 0.39 0.58 0.38 0.70
TGT-REGEMT 0.54 0.53 0.47 0.38 0.07 0.36 0.21 0.29 0.31 0.32 0.18 0.23 0.38 0.35
YISI-2 0.10 -0.03 0.11 0.36 0.37 0.29 0.03 0.18 0.45 0.35 0.11 0.25 0.13 0.42
COMET-QE-MQM 0.47 0.41 0.63 0.27 0.33 0.52 0.37 0.53 0.09 0.53 0.31 0.49 0.17 0.61
OPENKIWI-MQM 0.42 0.25 0.37 0.45 0.23 0.47 0.44 0.53 0.41 0.56 0.27 0.62 0.27 0.47
SRC-REGEMT 0.45 0.08 -0.05 0.29 0.41 0.26 0.00 -0.06 0.37 0.44 0.05 0.05 0.12 0.18
Average 0.45 0.43 0.56 0.49 0.42 0.60 0.43 0.48 0.35 0.52 0.30 0.46 0.37 0.51

Table 11: Kendall’s tau-like correlation results for the German→English challenge set based on (Macketanz et al.,
2018a) test suite. Note that not all metrics submitted to this challenge set hence some metrics are missing. The
horizontal lines delimit baseline metrics (top), participating reference-based metrics (middle) and participating
reference-free metrics (bottom).

Metric Total Language Pair Granularity Data condition
“wins” en→de en→ru zh→en sys seg news w/o HT news w/ HT TED

C-SPECpn 11 4 3 4 6 5 3 5 3
bleurt-20 10 4 5 1 4 6 4 3 3
COMET-MQM_2021 10 3 3 4 3 7 3 2 5
tgt-regEMT 4 1 1 2 3 1 2 1 1
COMET-QE-MQM_2021 3 1 1 1 3 3
OpenKiwi-MQM 3 2 1 3 1 2
RoBLEURT∗ 3 3 1 2 1 2
cushLEPOR(LM) 2 1 1 2 1 1
BERTScore 2 1 1 2 1 1
Prism 2 2 2 1 1
YiSi-1 2 2 2 1 1
MEE2 2 2 2 1 1
BLEU 1 1 1 1
hLEPOR 1 1 1 1
MTEQA∗ 1 1 1 1
TER 1 1 1 1
chrF 1 1 1 1

Table 12: Summary of language-specific results. Numbers give the count of times each primary metric occurred in
the top cluster for the specified condition. Metrics not being among the winners in any competition are not listed.
Reference-free metrics are indicated by italics. All submissions labelled with ∗ participated only in 1 or 2 language
pairs.

reasonable criterion since we expect these scores
to conform to a linear scale (for example, a transla-
tion with two minor errors is twice as bad as one
with only a single error). Pearson has well-known
drawbacks (Mathur et al., 2020a), notably sensi-
tivity to outliers, which we avoided by choosing
only relatively high-performing systems. In prelim-
inary tests, Pearson also yielded a larger number
of pairwise significant differences among metrics
than Kendall, an important property since our fairly
small number of systems makes it difficult to reli-

ably distinguish metrics at the system level.

Segment-level scores—metric or human—are
naturally arranged as a system × segment matrix
(rows × columns). There are several ways to ex-
tract vectors for input to correlation statistics. Com-
paring metric and human row vectors corresponds
to a use case of judging the relative quality of differ-
ent segments output by a given MT system (“where
is my system making mistakes on this test set?”);
comparing column vectors corresponds to judging
the relative quality of outputs for a given source
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segment across different MT systems ("which sys-
tems performed better or worse than mine on this
segment?”). To avoid emphasizing either of these
scenarios at the expense of the other, we flattened
the metric and human score matrices into single
vectors (row1, row2, ...) before comparing them.
This measures the metrics’ ability to assign inde-
pendent scores to MT segments, abstracting away
from system or source segment, and provides a
large number of comparisons to boost statistical
significance. We used Kendall rather than Pearson
correlation for robustness to segment-level noise.14

The results for each language pair and granular-
ity are shown in Tables 23 to 28, with correspond-
ing pairwise significance plots derived using the
PERM-BOTH test in Figures 2 to 7. The tables con-
tain results for all metrics; the significance plots
include only primary and baseline metrics. In the
tables, primary submissions are in bold, baseline
metrics are underlined, and metrics that used only
the source have “-src” appended to their name. For
each condition (news without human translations,
news with human translations, or TED), the scores
of primary and baseline metrics in the top cluster
are in bold. The top cluster consists of primary
or baseline metrics that are not significantly out-
performed by other primary or baseline metrics
nor outperformed by a primary or baseline metric
not in the top cluster.15 In the significance plots,
this corresponds to the leftmost block of columns
containing no dark squares.

Table 12 summarizes all results in this section
by counting the number of times each metric oc-
curs in the top cluster (it got a “win”), summed
across different ways of partitioning the results.
This synthesis is fairly crude, since it treats all con-
ditions as equally important. Also, membership in
the top cluster is likely to be subject to high sta-
tistical variance, and metrics that fall outside this
cluster are not accounted for; in particular, those
that sometimes perform very poorly are not penal-
ized. Nevertheless, the counts permit some general

14Our use of Kendall differs in two major aspects from
the “Kendall-like” statistic used for segment-level correlations
in previous editions of the WMT metrics task: we do not
threshold MQM score differences, as we consider them to be
more reliable than DA scores; and we compare all pairs of
scores over complete flattened matrices rather than comparing
pairs of scores in each column, and micro-averaging results
across columns.

15Note that this definition is different from the metric clus-
tering used in previous metrics tasks, in which every metric in
a cluster must be significantly better than all metrics in lower
clusters.

observations.
In terms of total “wins”, three metrics stand

out clearly: C-SPECPN, BLEURT-20, and
COMET-MQM_2021. These have fairly evenly-
distributed performance across languages, granu-
larities, and data conditions, with the exception
of BLEURT-20, which does relatively poorly on
Chinese→English. Their advantage over other met-
rics is most pronounced at the segment level and
when human translations are included among the
systems to be judged (w/ HT)—both of which are
more challenging tasks. In contrast, the distribution
of metrics that achieve top-level performance is
much broader for system-level granularity, the out-
of-domain TED setting, and to a lesser extent the
news w/o HT setting. Two metrics that do not use a
reference translation—COMET-QE-MQM_2021-
src and OpenKiwi-MQM-src—do surprisingly well
overall, particularly in the w/ HT condition, but per-
form poorly at the segment level. This could be
explained by these metrics benefiting from their
ability to distinguish human vs. machine produced
text. Finally, the surface-level baselines—BLEU,
TER, and chrF—join the winners exclusively at the
system level and almost exclusively in the out-of-
domain TED condition.

8 Additional Results

8.1 Impact of Reference Translation

The quality of the reference translation can have
a higher impact on the correlation to human rat-
ings than the actual choice of metric (Freitag et al.,
2020). For all our different test sets and language
pairs, we consequently included all reference trans-
lations in our human evaluation to (a) assure that we
have reference translation with high quality and (b)
to choose the best reference translation for our main
results. In this section, we present two interesting
observations by looking into the Chinese→English
TED talks and the English→German news setups.

8.1.1 zh→en TED
We started by having only one reference transla-
tion for all TED talks. Unfortunately, the MQM
evaluation revealed that the reference translation
ref-A for Chinese→English was ranked last – lower
than all the MT systems – and that it contained
on average more than one major error (= 5 MQM
points) per segment. We spot checked the errors
and agreed that the reference translation indeed
contained many errors. We then decided to acquire
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ref-A ref-B
MQM 5.52 0.42
MTEQA 0.47 (3) 0.74 (1)
TER 0.40 (9) 0.71 (2)
BERTScore 0.42 (6) 0.69 (3)
bleurt-20 0.45 (5) 0.68 (4)
cushLEPOR (LM) 0.39 (11) 0.68 (5)
Prism 0.46 (4) 0.68 (6)
COMET-MQM_2021 0.40 (8) 0.67 (7)
BLEU 0.30 (13) 0.65 (8)
YiSi-1 0.42 (7) 0.65 (9)
chrF 0.40 (10) 0.62 (10)
MEE2 0.36 (12) 0.60 (11)
C-SPECpn 0.49 (2) 0.54 (12)
tgt-regEMT 0.5 (1) 0.37 (13)
average 0.42 0.64

Table 13: Pairwise accuracy for ranking system pairs
for TED Chinese→English using either ref-A (original
ref) or ref-B (extra generated ref).

a new reference translation (ref-B) which turned
out to be better than all MT systems after running a
human evaluation. The impact of using an excellent
versus an inaccurate human reference translation
can be seen in Table 13. All metrics achieve an
accuracy score lower than 0.5 when using ref-A to
calculate their scores. This means that the metrics
would perform worse than by chance. By switching
to ref-B, all but one metric (tgt-regEMT) greatly
improve their correlation score. This demonstrates
once again that metrics become unreliable when
they are provided with inaccurate reference transla-
tions.

8.1.2 en→de Newstest2021
For English→German Newstest2021, we started
with two reference translations (ref-A and ref-B).
Both reference translations had issues: ref-A was
ranked lower than two MT systems (see Table 5)
and we agreed with that assessment after spot
checking the errors. ref-B had high-levels of over-
lap with the Online-W MT system and is most
likely a post-edited translation of Online-W. There-
fore, Microsoft and Google sponsored two new ref-
erence translations (ref-C and ref-D) which turned
out to be the best translations based on MQM. In
Table 14, you can see the pairwise accuracy scores
from all reference-based primary and baseline met-
rics. Despite the good (low) MQM scores of both
ref-C and ref-D, the ranking of the metrics when
using these two references is quite different. Some
metrics are more robust when switching the refer-
ence translation (e.g. Prism, YiSi-1, or C-SPECpn,
but others yield very different correlation scores

(e.g. BERTScore, tgt-refEMT, or BLEU). Some-
thing else in addition to quality makes ref-C more
appealing for metrics than ref-D. We do not have an
explanation why the quality of some metrics is so
different when switching the reference translation
and leave this as an open challenge for the commu-
nity to better understand why this is happening.

ref-A ref-C ref-D
MQM 1.22 0.48 0.52
BERTScore 0.91 (1) 0.94 (1) 0.77 (10)
cushLEPOR (LM) 0.81 (10) 0.92 (2) 0.81 (6)
BLEU 0.87 (5) 0.90 (3) 0.69 (12)
MEE2 0.87 (4) 0.90 (4) 0.80 (8)
TER 0.89 (2) 0.90 (5) 0.80 (7)
chrF 0.82 (8) 0.87 (6) 0.77 (11)
bleurt-20 0.86 (6) 0.85 (7) 0.81 (4)
Prism 0.83 (7) 0.83 (8) 0.81 (5)
YiSi-1 0.87 (3) 0.82 (9) 0.82 (2)
C-SPECpn 0.80 (11) 0.82 (10) 0.82 (3)
COMET-MQM_2021 0.81 (9) 0.80 (11) 0.77 (9)
MTEQA 0.78 (13) 0.80 (12) 0.67 (13)
tgt-regEMT 0.78 (12) 0.80 (13) 0.82 (1)
average 0.84 0.86 0.78

Table 14: Pairwise accuracy for ranking system pairs
for newstest2021 w/o HT English→German using ei-
ther ref-C (main ref) or ref-A/ref-D (alternative refs),
where ref-A is of substantially lower quality. ref-B was
excluded because it is likely a post-edit of one of the
participating systems.

8.2 Google vs. Unbabel MQM

Given that annotations were undertaken for
English→Russian using a different setup and
MQM scheme than those for English→German
and English→Chinese we sought to provide some
insight into the compatibility of the two schemes
by repeating the annotation for English→German
using Unbabel’s scheme and annotator pool: For a
subset of 5056 segments of the TED talk data for
English→German from 10 MT systems, Unbabel
had another expert annotator trained on MQM pro-
vide annotations using their proprietary typology.
MQM was calculated for each set of annotations
(using their respective scoring) and the latter were
then converted to a sequence of OK/BAD tags as a
means of evaluating the level of agreement between
the two annotations at a token level.

The Pearson’s r correlation score between the
two sets of MQM annotations was found to be
0.212, significant to p<0.05. Given the levels of
correlation of metrics with Google’s MQM scores
on the full set of English→German, this is sur-
prisingly low. Similarly, Cohen’s Kappa on the
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annotated tags was found to be 0.165. Not only
do scores correlate poorly but agreement at the tag
level is also fairly weak. Equally, Cohen’s Kappa
on the subset of annotations on which both sets of
annotators found some error was found to be im-
proved but still low (0.2). This indicates that even
when limited to erroneous sentences, the annotators
struggled to agree on where the errors were.

We note that the Google annotators left 59.5% of
the sample untouched (i.e. error free), whereas the
Unbabel annotator left only 46.9% untouched. It
appears that the Unbabel annotator was on average
more aggressive in their annotation which might
partially explain low levels of agreement.

A number of the MT systems often produced the
same translation of the same source text. With this
in mind, and given that Google used a pool of an-
notators, we were able to also compare annotations
within the Google set. For every source/target pair
with more than two annotations we calculated and
averaged the pairwise Cohen’s Kappa. The mean
Kappa across all of these segments was 0.21, which
suggests equally low levels of agreement between
Google annotators.

Despite low segment level agreement we note
that the ranking of systems remains fairly consis-
tent between annotation schemes with a few out-
lying exceptions. Table 15 details the rankings
for our sample across annotation schemes. In par-
ticular it is encouraging to note that the human
reference (albeit one of the worse ones, see Sec-
tion 8.1.2) is ranked first in both cases; at a high
level both schemes are making meaningful quality
judgements. For the sake of completeness, we sim-
ilarly examined the rankings of metrics at segment
level (measuring Pearson’s r correlation score and
ranking the result) against both sets of MQM scores
for our sample. Rankings in both cases were found
to be sufficiently similar to official results reported
in this paper and no metric moved more than three
positions.

To rationalize these low segment-level agree-
ment numbers, we asked an independent native
language German speaker to look at a subset of
annotations where we noticed the worst levels of
segment-level agreement. The independent rater
provided some rudimentary annotation of the most
obvious errors and some qualitative analysis of the
segments themselves. From this independent anal-
ysis, we were able to conclude at a high-level that
the nature of TED talk text broken into segments

is highly complex, context dependent and ambigu-
ous even in the original language which resulted in
equally ambiguous translation errors. This serves
as a harsh reminder of the complexity of the annota-
tion task and that inevitably even human annotation
using highly granular schemes like MQM is only
as reliable as the simplicity of the underlying text.
The same reminder extends to human-generated
references where highly specialized content will
inevitably require specialized translators to ensure
the most accurate translation.

System Unbabel MQM Google MQM

metricsystem1 88.71 (4) -1.61 (6)
metricsystem2 87.71 (10) -1.68 (7)
metricsystem3 86.88 (11) -1.41 (4)
metricsystem4 87.88 (7) -1.77 (9)
metricsystem5 87.85 (9) -1.74 (8)
ref-A 95.49 (1) -0.89 (1)
Facebook-AI 91.54 (3) -1.05 (2)
Online-W 93.27 (2) -1.12 (3)
Nemo 88.21 (6) -2.15 (11)
VolcTrans-GLAT 88.27 (5) -1.49 (5)
eTranslation 87.87 (8) -1.96 (10)

Table 15: System-level MQM scores for Unbabel and
Google annotation schemes

We note that whilst we do not have human direct
assessment (DA) scores on TED data in order to
provide a direct comparison of the two annotation
schemes in this setting, we observe in the following
section that MQM appears to provide a more stable
basis for evaluation in general.

8.3 Comparison to WMT Scoring
The WMT evaluation campaign (Akhbardeh et al.,
2021) ran a human direct assessment (DA) evalu-
ation for the primary submissions in the news do-
main for all language pairs. Segment-level ratings
with document context (SR+DC) on a 0-100 scale
were collected either using source-based evaluation
with a mix of researchers/translators (for transla-
tions out of English) or reference-based evaluation
with crowd-workers (for translations into English).
In general, for each MT system, only a subset of
documents receive ratings, with the rated subset dif-
fering across systems. System-level DA scores are
averages over the available segment-level scores.
Both raw scores and per-rater z-normalized ver-
sions of the scores are provided.

Appendix C contains correlations to WMT New-
stest DA scores for all metrics, at both segment
and system level, for all 16 language pairs. There
is significant variation in metric performance and
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ranking across languages, although a general pat-
tern is that correlations are substantially higher for
out-of-English pairs than into-English. Although
the WMT correlations are not strictly comparable
to the MQM results in previous sections, MQM
scores tend to correlate somewhat better with met-
ric scores for two of our three focus languages
(English→German and Chinese→English), and
somewhat worse for English→Russian.

System MQM WMT-raw WMT-z

ref-C -0.511 (1) 85.964 (5) 0.320 (3)
VolcTrans-GLAT -1.039 (2) 87.265 (2) 0.301 (6)
Facebook-AI -1.052 (3) 87.887 (1) 0.378 (2)
ref-A -1.221 (4) 84.939 (9) 0.280 (8)
Nemo -1.340 (5) 86.090 (4) 0.250 (10)
HuaweiTSC -1.381 (6) 85.787 (6) 0.312 (4)
Online-W -1.460 (7) 86.262 (3) 0.391 (1)
UEdin -1.507 (8) 85.573 (8) 0.305 (5)
eTranslation -1.695 (9) 85.706 (7) 0.281 (7)
VolcTrans-AT -1.743 (10) 83.402 (10) 0.280 (9)

Table 16: MQM versus DA for English→German.

System MQM WMT-raw WMT-z

ref-A 99.652 (1) 84.428 (1) 0.409 (1)
ref-B 98.397 (2) 83.492 (2) 0.386 (3)
Facebook-AI 92.749 (3) 81.541 (4) 0.338 (4)
Online-W 91.797 (4) 82.286 (3) 0.395 (2)
Online-A 87.866 (5) 76.177 (9) 0.227 (7)
Nemo 87.496 (6) 78.012 (7) 0.214 (8)
Online-G 87.225 (7) 78.466 (6) 0.242 (6)
Manifold 86.858 (8) 75.572 (10) 0.197 (9)
Online-B 85.663 (9) 79.962 (5) 0.294 (5)
NiuTrans 83.474 (10) 76.436 (8) 0.148 (10)
Online-Y 79.274 (11) 71.989 (11) -0.015 (11)

Table 17: MQM versus DA for English→Russian.

System MQM WMT-raw WMT-z

ref-A -4.350 (1) 74.107 (3) 0.019 (3)
NiuTrans -4.633 (2) 74.969 (2) 0.042 (1)
SMU -4.844 (3) 70.559 (6) -0.034 (7)
MiSS -4.932 (4) 70.095 (9) -0.029 (5)
Borderline -4.945 (5) 70.486 (7) -0.023 (4)
DIDI-NLP -5.095 (6) 75.641 (1) 0.031 (2)
IIE-MT -5.145 (7) 73.077 (4) -0.031 (6)
Facebook-AI -5.215 (8) 70.125 (8) -0.037 (8)
Online-W -5.567 (9) 72.851 (5) -0.087 (9)

Table 18: MQM versus DA for Chinese→English.

Tables 16 to 18 compare MQM and DA scores
for our focus language pairs, on all systems where
both sets of scores were available. Notably, MQM
scores rank human translations at or near the top
more consistently than do DA scores. The only
reference ranked worse than MT by MQM is

ref-A for English→German, which as discussed
above is a low-quality translation. In contrast,
DA z-normalized scores rank all references be-
low at least one MT system except for ref-A
in English→Russian, which is ranked first, in
agreement with MQM. For English→German and
English→Russian, MQM correlates better with raw
DA scores than with z-normalized scores; Pear-
son correlations are 0.508 versus 0.243 for the
former and 0.911 versus 0.898 for the latter. For
Chinese→English the pattern reverses, with corre-
lations of 0.216 versus 0.729.

8.4 WMT DA as a Metric

Metric news news
w/o HT w/ HT

BERTScore 0.902 0.097 (11)
cushLEPOR(LM) 0.898 0.023 (15)
TER 0.851 0.065 (14)
BLEU 0.850 0.090 (12)
MEE2 0.836 0.107 (9)
COMET-QE-MQM_2021-src 0.831 0.807 (1)
sentBLEU 0.824 0.114 (8)
bleurt-20 0.801 0.718 (3)
COMET-MQM_2021 0.790 0.697 (4)
Prism 0.778 -0.008 (17)
C-SPECpn 0.773 0.788 (2)
chrF 0.758 0.086 (13)
YiSi-1 0.735 0.102 (10)
regEMT 0.700 0.301 (6)
OpenKiwi-MQM-src 0.656 0.468 (5)
MTEQA 0.496 0.015 (16)
wmt-z 0.357 0.282 (7)
regEMT-src -0.415 -0.311 (18)
YiSi-2-src -0.609 -0.316 (19)

Table 19: System-level Pearson correlations, includ-
ing WMT DA z-normalized scores as a metric, for
English→German.

The correlations between MQM and WMT DA
scores in the previous section motivated us to inves-
tigate how DA scores would fare in comparison to
automatic metric scores when using MQM as gold
scores. We computed system-level Pearson correla-
tions using z-normalized DA scores for MT outputs
only and MT outputs augmented with human refer-
ences for which DA, MQM, and metric scores were
all available.16 Tables 19 to 21 compare these to the
performance of primary and baseline metrics using
the references from Table 7.17 The performance of
DA varies across languages: for English→German
and English→Russian it ranks roughly among the

16ref-A for en→de, ref-B for en→ru, and ref-A for zh→en.
17These numbers do not match others in the paper due to

the use of a reduced set of MT systems, and, for the w/ HT
condition, a reduced set of human outputs.
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Metric news news
w/o HT w/ HT

OpenKiwi-MQM-src 0.973 0.815 (5)
C-SPECpn 0.967 0.934 (2)
Prism 0.966 -0.220 (14)
COMET-MQM_2021 0.964 0.866 (4)
BLEU 0.957 -0.025 (11)
COMET-QE-MQM_2021-src 0.953 0.946 (1)
sentBLEU 0.950 -0.011 (10)
bleurt-20 0.948 0.722 (6)
MEE2 0.937 -0.151 (12)
chrF 0.934 0.034 (9)
YiSi-1 0.932 0.079 (8)
BERTScore 0.926 -0.177 (13)
wmt-z 0.918 0.891 (3)
TER 0.841 -0.254 (15)
regEMT 0.803 0.370 (7)
regEMT-src 0.314 -0.612 (16)
YiSi-2-src 0.257 -0.652 (17)

Table 20: System-level Pearson correlations, includ-
ing WMT DA z-normalized scores as a metric, for
English→Russian.

Metric news news
w/o HT w/ HT

C-SPECpn 0.797 0.882 (1)
regEMT 0.764 0.477 (5)
wmt-z 0.724 0.729 (3)
RoBLEURT 0.722 -0.237 (9)
COMET-MQM_2021 0.683 -0.034 (6)
BERTScore 0.673 -0.224 (8)
bleurt-20 0.656 -0.090 (7)
YiSi-1 0.649 -0.244 (10)
OpenKiwi-MQM-src 0.623 0.604 (4)
Prism 0.596 -0.371 (11)
COMET-QE-MQM_2021-src 0.586 0.748 (2)
chrF 0.573 -0.438 (14)
YiSi-2-src 0.519 -0.431 (13)
MEE2 0.515 -0.438 (15)
BLEU 0.507 -0.472 (16)
MTEQA 0.469 -0.424 (12)
cushLEPOR(LM) 0.460 -0.490 (18)
sentBLEU 0.441 -0.477 (17)
TER 0.316 -0.495 (19)
regEMT-src 0.004 -0.607 (20)

Table 21: System-level Pearson correlations, includ-
ing WMT DA z-normalized scores as a metric, for
Chinese→English.

bottom half of the automatic metrics; while for
Chinese→English it ranks third. DA scores tend
to perform better when judging human output,
ranking 7th, 3rd, and 3rd for English→German,
English→Russian, and Chinese→English, respec-
tively.

9 Conclusion

This paper summarized the results of the WMT21
shared task on automated machine translation eval-

uation, the Metrics Shared Task. This year, we
collected our own human ratings for selected lan-
guage pairs (En→De, En→Ru, and Zh→En) from
professional translators via MQM to generate a
reliable ground truth across two domains. WMT
direct assessment (DA) scores generally correlate
poorly with MQM scores, and exhibit weaker pref-
erence for human translations compared to machine
output. For En→De and Zh→En, DA ranks the hu-
man translations below many MT systems, demon-
strating that expert-based evaluation is needed to
generate a reliable ground truth for the Metrics
Shared Task. The majority of metrics correlate bet-
ter with MQM than with WMT DA, confirming
previous findings that the best automatic metrics
are already more reliable than crowd worker human
evaluations. The performance of each metric varies
depending on the underlying domain (being either
TED talks or news) demonstrating that most met-
rics are not domain robust. Further, the challenge
sets revealed that most metrics struggle to penal-
ize translations with errors in reversing negation or
sentiment polarity, and show lower correlations for
Subordination, Named Entities and Terminology.

Overall, metrics perform very differently based
on domain, language pair or setting (with or
without human translations among candidate
systems) making it hard to declare a clear
winner. When counting top performances
across all test conditions, three embedding-
based metrics—C-SPECPN, BLEURT-20, and
COMET-MQM_2021— emerge as distinctly bet-
ter than the others, especially at the segment level
and when rating human translations. Nevertheless,
it is unclear which test scenario and correlation
metric is best to yield reliable results. We would
encourage the community to investigate different
ways of how to evaluate automatic metrics. We
are very open to apply new suggestions in the next
round of the Metrics Shared Task.

Another challenge is to define the overall ground
truth (i.e. the human ratings). Even though, we are
convinced that expert-based ratings via MQM are
more reliable, we also found that the two MQM
methodologies of Unbabel and Google disagree
for some systems. We would encourage the com-
munity to further work on establishing a reliable
human evaluation setup. The field would bene-
fit from a reliable human evaluation standard that
could be used by everyone.
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10 Ethical considerations

MQM annotations and additional reference transla-
tions in this paper are done by professional transla-
tors. They are all paid at professional rates.

Our TED talks test suite is created based
on TED transcripts and translations under
CC BY–NC–ND 4.0 International. Additional
translations done for this shared task follow the
TED Talks Usage Policy.

Organizers from the National Research Council
Canada and Unbabel have submitted to this task
the frozen stable versions of their metrics (YiSi and
COMET) dated before they joined the organizing
committee. Newer versions of COMET were de-
veloped without using any of the test set, test suite
or challenge sets.
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A Challenge Set Perturbation Examples

Perturbation Description Example

Antonym
Randomly replaces as
word with it’s antonym.

Orig.: Fire in French chemical plant extin-
guished
New: Fire in French chemical plant ignite

Word omission
Randomly drops a word
from a sentence

Orig.: Fire in French chemical plant extin-
guished
New: Fire in French plant extinguished

Tokenized
Applies tokenization to
the sentence.

Orig.: Spain: It is safe here.
New: Spain : It is safe here .

Sentence Omission
Removes a sentence from
a paragraph.

Orig.: The No.3 flood of the Yangtze River
in 2020 was formed. The Ministry of Water
Resources has refined and implemented coun-
termeasures - www.chinanews.com
New: The No.3 flood of the Yangtze River in
2020 was formed.

Punctuation
Removes punctuation
from the input.

Orig.: Spain: It is safe here.
New: Spain It is safe here .

Numbers
Replaces a number by an-
other randomly generated
number.

Orig.: Around 65 people work at the plant.
New: Around 400 people work at the plant.

Lowercasing
Applies lowercasing to the
entire input.

Orig.: Fire in French chemical plant extin-
guished
New: fire in french chemical plant extin-
guished

Word Addition

Adds a word in the
middle of a sentence using
distilbert-base
-uncased. This pertur-
bation is applied on top of
lowercase perturbation.

Orig.: fire in french chemical plant extin-
guished
New: fire in french underground chemical
plant extinguished

Spelling
Adds spelling errors to the
input.

Orig.: Fire in French chemical plant extin-
guished
New: Fire in French chemical pants extin-
guished

Table 22: List of all perturbations used to construct the Challenge Set described in Section 6.2. The right col-
umn provides for each perturbation an example with the original sentence and the corresponding new corrupted
sentence.
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B Language-Specific Results Tables

Language-specific results are given on the following pages. Each page contains results for a single
language pair and granularity (system or segment). Correlation results in tables are followed by pairwise
significance plots for each condition (news without human outputs, news with human outputs, TED talks)
considering only primary and baseline metrics.

Metric news w/o HT news w/ HT TED

cushLEPOR(LM) 0.938 (1) 0.085 (17) 0.239 (23)
BLEU 0.937 (2) 0.132 (13) 0.620 (13)
BERTScore 0.930 (3) 0.074 (19) 0.506 (17)
cushLEPOR(pSQM) 0.921 (4) 0.085 (18) 0.067 (25)
MEE 0.916 (5) 0.109 (14) 0.449 (19)
MEE2 0.900 (6) 0.098 (15) 0.392 (22)
TER 0.898 (7) 0.003 (22) 0.609 (14)
hLEPOR 0.896 (8) 0.094 (16) 0.127 (24)
COMET-QE-DA_2021-src 0.847 (9) 0.807 (3) 0.527 (16)
chrF 0.846 (10) 0.017 (21) 0.471 (18)
Prism 0.841 (11) -0.123 (26) 0.659 (11)
COMET-DA_2020 0.814 (12) 0.658 (8) 0.788 (4)
COMET-DA_2021 0.812 (13) 0.607 (9) 0.780 (5)
C-SPECpn 0.804 (14) 0.823 (1) 0.802 (2)
bleurt-20 0.802 (15) 0.774 (5) 0.739 (6)
YiSi-1 0.789 (16) -0.009 (23) 0.414 (21)
C-SPEC 0.777 (17) 0.822 (2) 0.788 (3)
COMET-MQM_2021 0.771 (18) 0.720 (7) 0.818 (1)
bleurt-21-beta 0.771 (19) 0.758 (6) 0.695 (7)
COMETinho-DA 0.768 (20) 0.054 (20) 0.548 (15)
tgt-regEMT 0.742 (21) 0.411 (11) 0.641 (12)
COMET-QE-MQM_2021-src 0.711 (22) 0.792 (4) 0.694 (8)
MTEQA 0.658 (23) -0.116 (25) 0.418 (20)
tgt-regEMT-baseline 0.653 (24) 0.148 (12) -0.078 (26)
COMETinho-MQM 0.557 (25) -0.034 (24) 0.663 (10)
OpenKiwi-MQM-src 0.494 (26) 0.439 (10) 0.669 (9)
YiSi-2-src 0.283 (27) -0.416 (28) -0.419 (28)
src-regEMT-baseline -0.173 (28) -0.224 (27) -0.133 (27)
src-regEMT -0.606 (29) -0.558 (29) -0.699 (29)

Table 23: System-level Pearson correlations for English→German. Primary submissions are bolded, and baselines
are underlined. Correlations for metrics in the top cluster (considering only primary and baseline metrics) are
bolded.
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Figure 2: System-level Pearson pairwise significance for English→German primary submissions and baselines.
Dark squares mean the row metric correlates significantly better than the column metric at α = 0.05.

Metric news w/o HT news w/ HT TED

C-SPECpn 0.267 (1) 0.254 (2) 0.270 (5)
C-SPEC 0.266 (2) 0.256 (1) 0.285 (2)
bleurt-20 0.264 (3) 0.247 (3) 0.283 (3)
COMET-MQM_2021 0.263 (4) 0.241 (4) 0.282 (4)
COMET-DA_2021 0.253 (5) 0.226 (8) 0.267 (6)
bleurt-21-beta 0.252 (6) 0.238 (5) 0.252 (10)
COMET-QE-MQM_2021-src 0.248 (7) 0.235 (6) 0.253 (9)
COMET-QE-DA_2021-src 0.244 (8) 0.227 (7) 0.221 (14)
COMET-DA_2020 0.239 (9) 0.212 (11) 0.259 (7)
tgt-regEMT 0.234 (10) 0.214 (10) 0.290 (1)
OpenKiwi-MQM-src 0.232 (11) 0.219 (9) 0.255 (8)
COMETinho-MQM 0.202 (12) 0.186 (12) 0.245 (11)
COMETinho-DA 0.198 (13) 0.172 (13) 0.236 (13)
Prism 0.192 (14) 0.164 (14) 0.238 (12)
YiSi-1 0.172 (15) 0.145 (15) 0.212 (15)
BERTScore 0.169 (16) 0.143 (16) 0.189 (16)
MEE2 0.142 (17) 0.117 (17) 0.173 (17)
src-regEMT 0.128 (18) 0.106 (18) 0.149 (19)
MEE 0.126 (19) 0.105 (19) 0.142 (22)
chrF 0.114 (20) 0.090 (20) 0.146 (20)
TER 0.098 (21) 0.078 (22) 0.131 (23)
YiSi-2-src 0.098 (22) 0.071 (23) 0.119 (25)
cushLEPOR(LM) 0.090 (23) 0.068 (24) 0.144 (21)
tgt-regEMT-baseline 0.084 (24) 0.080 (21) 0.161 (18)
sentBLEU 0.083 (25) 0.064 (26) 0.113 (27)
cushLEPOR(pSQM) 0.078 (26) 0.057 (28) 0.127 (24)
MTEQA 0.071 (27) 0.060 (27) 0.082 (29)
hLEPOR 0.071 (28) 0.050 (29) 0.117 (26)
src-regEMT-baseline 0.067 (29) 0.067 (25) 0.112 (28)

Table 24: Segment-level Kendall correlations for English→German. Primary submissions are bolded, and base-
lines are underlined. Correlations for metrics in the top cluster (considering only primary and baseline metrics) are
bolded.
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Figure 3: Segment-level Kendall significance for English→German primary submissions and baselines. Dark
squares mean the row metric correlates significantly better than the column metric at α = 0.05.

Metric news w/o HT news w/ HT TED

Prism 0.799 (1) -0.136 (21) 0.867 (8)
chrF 0.783 (2) 0.123 (14) 0.825 (16)
C-SPECpn 0.782 (3) 0.824 (1) 0.855 (12)
bleurt-20 0.768 (4) 0.653 (8) 0.868 (7)
C-SPEC 0.763 (5) 0.817 (2) 0.858 (10)
YiSi-1 0.761 (6) 0.138 (13) 0.905 (1)
MEE 0.759 (7) 0.051 (15) 0.881 (5)
OpenKiwi-MQM-src 0.755 (8) 0.729 (4) 0.691 (21)
MEE2 0.750 (9) -0.069 (18) 0.882 (4)
bleurt-21-beta 0.743 (10) 0.692 (5) 0.856 (11)
tgt-regEMT 0.740 (11) 0.390 (11) 0.758 (19)
COMET-QE-MQM_2021-src 0.688 (12) 0.784 (3) 0.817 (17)
COMET-DA_2020 0.676 (13) 0.556 (10) 0.859 (9)
COMET-MQM_2021 0.659 (14) 0.685 (6) 0.841 (13)
COMET-DA_2021 0.655 (15) 0.645 (9) 0.871 (6)
hLEPOR 0.648 (16) -0.038 (16) 0.894 (2)
COMET-QE-DA_2021-src 0.632 (17) 0.681 (7) 0.884 (3)
BERTScore 0.629 (18) -0.123 (20) 0.831 (14)
COMETinho-DA 0.578 (19) 0.239 (12) 0.758 (18)
BLEU 0.507 (20) -0.043 (17) 0.828 (15)
src-regEMT 0.301 (21) -0.436 (24) 0.115 (24)
tgt-regEMT-baseline 0.186 (22) -0.413 (23) 0.121 (23)
COMETinho-MQM 0.089 (23) -0.083 (19) 0.432 (22)
YiSi-2-src 0.046 (24) -0.585 (26) 0.085 (25)
TER -0.041 (25) -0.289 (22) 0.697 (20)
src-regEMT-baseline -0.585 (26) -0.583 (25) -0.228 (26)

Table 25: System-level Pearson correlations for English→Russian. Primary submissions are bolded, and baselines
are underlined. Correlations for metrics in the top cluster are bolded.
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Figure 4: System-level Pearson pairwise significance for English→Russian primary submissions and baselines.
Dark squares mean the row metric correlates significantly better than the column metric at α = 0.05.

Metric news w/o HT news w/ HT TED

COMET-DA_2021 0.307 (1) 0.296 (1) 0.274 (1)
bleurt-20 0.286 (2) 0.276 (3) 0.255 (5)
COMET-QE-DA_2021-src 0.284 (3) 0.278 (2) 0.245 (6)
bleurt-21-beta 0.278 (4) 0.271 (4) 0.269 (2)
COMET-DA_2020 0.278 (5) 0.265 (6) 0.242 (7)
COMET-MQM_2021 0.276 (6) 0.268 (5) 0.258 (4)
C-SPEC 0.259 (7) 0.259 (7) 0.263 (3)
C-SPECpn 0.248 (8) 0.248 (8) 0.233 (8)
COMETinho-DA 0.248 (9) 0.233 (10) 0.218 (10)
COMET-QE-MQM_2021-src 0.242 (10) 0.239 (9) 0.204 (12)
YiSi-1 0.233 (11) 0.216 (12) 0.204 (11)
OpenKiwi-MQM-src 0.225 (12) 0.222 (11) 0.187 (15)
Prism 0.224 (13) 0.205 (13) 0.219 (9)
COMETinho-MQM 0.197 (14) 0.188 (14) 0.182 (17)
chrF 0.193 (15) 0.178 (15) 0.189 (14)
BERTScore 0.185 (16) 0.168 (16) 0.185 (16)
MEE2 0.169 (17) 0.153 (17) 0.193 (13)
YiSi-2-src 0.163 (18) 0.140 (18) 0.084 (23)
MEE 0.150 (19) 0.135 (20) 0.176 (19)
hLEPOR 0.150 (20) 0.135 (19) 0.178 (18)
sentBLEU 0.120 (21) 0.106 (21) 0.112 (22)
TER 0.117 (22) 0.104 (23) 0.142 (20)
tgt-regEMT 0.110 (23) 0.105 (22) 0.129 (21)
src-regEMT 0.085 (24) 0.070 (24) 0.070 (24)
tgt-regEMT-baseline 0.053 (25) 0.050 (25) 0.053 (25)
src-regEMT-baseline -0.045 (26) -0.043 (26) 0.018 (26)

Table 26: Segment-level Kendall correlations for English→Russian. Primary submissions are bolded, and base-
lines are underlined. Correlations for metrics in the top cluster (considering only primary and baseline metrics) are
bolded.
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Figure 5: Segment-level Kendall significance for English→Russian primary submissions and baselines. Dark
squares mean the row metric correlates significantly better than the column metric at α = 0.05.

Metric news w/o HT news w/ HT TED

tgt-regEMT 0.834 (1) 0.727 (1) -0.404 (30)
COMET-MQM_2021 0.628 (2) 0.336 (7) 0.266 (18)
bleurt-20 0.563 (3) 0.294 (9) 0.239 (20)
Prism 0.558 (4) 0.031 (17) 0.272 (15)
BERTScore 0.542 (5) 0.095 (14) 0.306 (12)
bleurt-21-beta 0.537 (6) 0.265 (10) 0.235 (21)
COMETinho-MQM 0.530 (7) 0.129 (13) 0.395 (5)
COMET-QE-MQM_2021-src 0.529 (8) 0.619 (2) -0.209 (29)
C-SPEC 0.526 (9) 0.619 (3) -0.064 (26)
COMET-DA_2021 0.516 (10) 0.186 (12) 0.306 (11)
YiSi-1 0.515 (11) 0.077 (15) 0.310 (10)
COMET-DA_2020 0.511 (12) 0.221 (11) 0.251 (19)
hLEPOR 0.498 (13) -0.061 (24) 0.372 (6)
C-SPECpn 0.492 (14) 0.594 (4) -0.053 (25)
MEE2 0.453 (15) -0.011 (19) 0.289 (14)
COMET-QE-DA_2021-src 0.453 (16) 0.535 (5) 0.057 (24)
RoBLEURT 0.451 (17) 0.065 (16) 0.400 (3)
OpenKiwi-MQM-src 0.445 (18) 0.489 (6) -0.077 (27)
MTEQA 0.423 (19) -0.050 (21) 0.403 (2)
src-regEMT 0.419 (20) -0.149 (29) 0.077 (23)
TER 0.416 (21) -0.085 (26) 0.421 (1)
cushLEPOR(LM) 0.412 (22) -0.052 (22) 0.327 (8)
YiSi-2-src 0.411 (23) 0.013 (18) 0.270 (16)
COMETinho-DA 0.340 (24) -0.019 (20) 0.397 (4)
MEE 0.324 (25) -0.125 (27) 0.301 (13)
src-regEMT-baseline 0.310 (26) 0.300 (8) -0.105 (28)
BLEU 0.310 (27) -0.152 (30) 0.324 (9)
chrF 0.302 (28) -0.143 (28) 0.363 (7)
cushLEPOR(pSQM) 0.237 (29) -0.058 (23) 0.267 (17)
tgt-regEMT-baseline 0.089 (30) -0.075 (25) 0.201 (22)

Table 27: System-level Pearson correlations for Chinese→English. Primary submissions are bolded, and baselines
are underlined. Correlations for metrics in the top cluster are bolded.
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Figure 6: System-level Pearson pairwise significance for Chinese→English primary submissions and baselines.
Dark squares mean the row metric correlates significantly better than the column metric at α = 0.05.

Metric news w/o HT news w/ HT TED

C-SPECpn 0.402 (1) 0.390 (1) 0.233 (7)
C-SPEC 0.401 (2) 0.388 (2) 0.241 (2)
COMET-MQM_2021 0.395 (3) 0.384 (3) 0.233 (5)
RoBLEURT 0.394 (4) 0.380 (4) 0.238 (4)
COMET-DA_2021 0.371 (5) 0.357 (7) 0.219 (11)
COMETinho-MQM 0.370 (6) 0.362 (5) 0.239 (3)
COMET-QE-MQM_2021-src 0.367 (7) 0.358 (6) 0.178 (17)
COMET-DA_2020 0.360 (8) 0.347 (8) 0.220 (10)
bleurt-21-beta 0.357 (9) 0.344 (9) 0.233 (6)
bleurt-20 0.354 (10) 0.341 (10) 0.224 (9)
COMETinho-DA 0.339 (11) 0.327 (11) 0.199 (14)
tgt-regEMT 0.328 (12) 0.318 (12) 0.173 (18)
COMET-QE-DA_2021-src 0.305 (13) 0.294 (13) 0.122 (28)
YiSi-1 0.302 (14) 0.289 (14) 0.195 (15)
BERTScore 0.296 (15) 0.281 (15) 0.199 (13)
Prism 0.285 (16) 0.270 (19) 0.194 (16)
OpenKiwi-MQM-src 0.283 (17) 0.277 (16) 0.213 (12)
src-regEMT 0.280 (18) 0.274 (17) 0.135 (23)
tgt-regEMT-baseline 0.278 (19) 0.272 (18) 0.248 (1)
YiSi-2-src 0.270 (20) 0.263 (20) 0.125 (26)
src-regEMT-baseline 0.255 (21) 0.251 (21) 0.231 (8)
MEE2 0.247 (22) 0.233 (22) 0.173 (19)
TER 0.210 (23) 0.198 (23) 0.136 (22)
hLEPOR 0.205 (24) 0.193 (24) 0.129 (25)
chrF 0.201 (25) 0.188 (25) 0.124 (27)
MEE 0.196 (26) 0.186 (27) 0.131 (24)
MTEQA 0.194 (27) 0.187 (26) 0.028 (30)
cushLEPOR(LM) 0.193 (28) 0.182 (28) 0.138 (21)
sentBLEU 0.176 (29) 0.165 (29) 0.092 (29)
cushLEPOR(pSQM) 0.167 (30) 0.158 (30) 0.143 (20)

Table 28: Segment-level Kendall correlations for Chinese→English. Primary submissions are bolded, and base-
lines are underlined. Correlations for metrics in the top cluster are bolded.
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Figure 7: Segment-level Kendall significance for Chinese→English primary submissions and baselines. Dark
squares mean the row metric correlates significantly better than the column metric at α = 0.05.
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C WMT Direct Assessment Results

Correlations with WMT Direct Assessment scores for the news and FLORES test sets are given in
the following tables, with results for news to-English language pairs followed by to-non-English pairs,
followed by FLORES. Since most language pairs contained only a single reference, we used reference
A for all pairs, and report results only for scoring MT output (omitting additional scored references for
language pairs where these were available). System-level correlations use Pearson over z-normalized
rater scores. Segment-level correlations use the traditional Kendall-like formula over raw rater scores,
discarding segment pairs whose scores differ by less than 25.18

metric correlation

regEMT-src 0.778
COMETinho-MQM 0.652
Prism 0.651
RoBLEURT 0.648
OpenKiwi-MQM-src 0.641
COMET-MQM_2021 0.638
COMET-DA_2020 0.632
BERTScore 0.629
bleurt-21-beta 0.628
COMET-DA_2021 0.626
COMET-QE-MQM_2021-src 0.625
C-SPEC 0.623
bleurt-20 0.620
regEMT 0.609
YiSi-1 0.607
COMET-QE-DA_2021-src 0.606
C-SPECpn 0.590
COMETinho-DA 0.588
MTEQA 0.586
chrF 0.562
sentBLEU 0.550
TER 0.509
hLEPOR 0.496
YiSi-2-src 0.248
regEMT-baseline -0.195
regEMT-baseline-src -0.335

metric correlation

RoBLEURT 0.044
COMET-MQM_2021 0.037
COMETinho-MQM 0.034
COMET-QE-MQM_2021-src 0.033
COMET-DA_2021 0.032
COMET-DA_2020 0.032
regEMT 0.027
COMET-QE-DA_2021-src 0.026
OpenKiwi-MQM-src 0.018
YiSi-2-src 0.017
COMETinho-DA 0.015
C-SPECpn 0.008
regEMT-src 0.003
Prism -0.002
C-SPEC -0.012
bleurt-20 -0.017
BERTScore -0.019
bleurt-21-beta -0.026
YiSi-1 -0.039
chrF -0.053
sentBLEU -0.088
hLEPOR -0.098
regEMT-baseline -0.118
regEMT-baseline-src -0.135
TER -0.226
MTEQA -0.237

Table 29: Correlations for Czech→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

18Note that we used average sentence-level BLEU rather than corpus BLEU for system-level results, in contrast to our main
results.
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metric correlation

regEMT-baseline 0.520
hLEPOR 0.493
YiSi-1 0.395
MTEQA 0.394
regEMT 0.362
COMET-DA_2020 0.361
chrF 0.357
YiSi-2-src 0.354
COMET-DA_2021 0.354
RoBLEURT 0.353
Prism 0.349
COMET-MQM_2021 0.346
bleurt-20 0.340
BERTScore 0.336
COMETinho-DA 0.333
bleurt-21-beta 0.325
COMET-QE-DA_2021-src 0.320
COMET-QE-MQM_2021-src 0.293
sentBLEU 0.231
OpenKiwi-MQM-src 0.215
COMETinho-MQM 0.163
C-SPECpn 0.122
C-SPEC 0.090
TER 0.070
regEMT-src 0.064
regEMT-baseline-src -0.499

metric correlation

RoBLEURT 0.011
COMET-QE-MQM_2021-src 0.004
COMETinho-DA 0.001
COMET-DA_2020 -0.002
YiSi-2-src -0.003
COMET-QE-DA_2021-src -0.003
COMET-MQM_2021 -0.003
COMETinho-MQM -0.005
COMET-DA_2021 -0.006
OpenKiwi-MQM-src -0.020
regEMT -0.025
regEMT-src -0.034
Prism -0.037
C-SPECpn -0.091
C-SPEC -0.093
BERTScore -0.098
bleurt-20 -0.146
YiSi-1 -0.151
bleurt-21-beta -0.153
chrF -0.162
hLEPOR -0.209
sentBLEU -0.215
regEMT-baseline -0.231
regEMT-baseline-src -0.234
TER -0.340
MTEQA -0.413

Table 30: Correlations for German→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

bleurt-20 0.955
COMET-DA_2020 0.949
Prism 0.948
bleurt-21-beta 0.947
BERTScore 0.947
YiSi-1 0.944
RoBLEURT 0.944
regEMT 0.940
COMET-DA_2021 0.939
sentBLEU 0.936
chrF 0.924
COMETinho-DA 0.923
MTEQA 0.909
COMET-MQM_2021 0.902
COMET-QE-DA_2021-src 0.898
COMETinho-MQM 0.880
TER 0.823
C-SPEC 0.810
OpenKiwi-MQM-src 0.806
YiSi-2-src 0.795
COMET-QE-MQM_2021-src 0.782
C-SPECpn 0.720
regEMT-baseline 0.525
regEMT-src 0.363
regEMT-baseline-src 0.014

metric correlation

COMET-MQM_2021 0.076
RoBLEURT 0.075
COMET-DA_2021 0.072
C-SPEC 0.070
Prism 0.070
C-SPECpn 0.066
COMET-QE-DA_2021-src 0.064
COMET-DA_2020 0.062
BERTScore 0.062
COMETinho-DA 0.056
OpenKiwi-MQM-src 0.051
YiSi-1 0.049
COMET-QE-MQM_2021-src 0.047
bleurt-20 0.046
YiSi-2-src 0.046
regEMT 0.043
bleurt-21-beta 0.039
COMETinho-MQM 0.036
chrF 0.021
regEMT-src 0.009
sentBLEU -0.010
regEMT-baseline -0.067
regEMT-baseline-src -0.067
MTEQA -0.067
TER -0.125

Table 31: Correlations for Hausa→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

RoBLEURT 0.891
bleurt-21-beta 0.889
bleurt-20 0.888
COMET-QE-MQM_2021-src 0.887
OpenKiwi-MQM-src 0.879
COMET-MQM_2021 0.872
TER 0.869
YiSi-1 0.868
BERTScore 0.867
COMET-DA_2021 0.866
sentBLEU 0.858
COMET-QE-DA_2021-src 0.857
regEMT 0.856
chrF 0.854
COMET-DA_2020 0.849
Prism 0.846
MTEQA 0.831
COMETinho-DA 0.818
COMETinho-MQM 0.800
regEMT-src 0.665
regEMT-baseline-src 0.632
YiSi-2-src 0.628
C-SPECpn 0.622
regEMT-baseline 0.445
C-SPEC -0.104

metric correlation

COMET-MQM_2021 0.069
Prism 0.063
RoBLEURT 0.063
COMET-DA_2021 0.061
COMET-QE-MQM_2021-src 0.061
COMET-DA_2020 0.057
C-SPEC 0.057
COMETinho-DA 0.055
COMET-QE-DA_2021-src 0.051
COMETinho-MQM 0.048
regEMT 0.041
C-SPECpn 0.041
BERTScore 0.038
YiSi-2-src 0.035
OpenKiwi-MQM-src 0.031
bleurt-20 0.030
bleurt-21-beta 0.028
regEMT-src 0.027
YiSi-1 0.023
chrF 0.018
sentBLEU -0.018
regEMT-baseline -0.063
regEMT-baseline-src -0.083
TER -0.126
MTEQA -0.157

Table 32: Correlations for Icelandic→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

COMET-DA_2020 0.846
COMETinho-DA 0.839
COMET-DA_2021 0.832
chrF 0.831
Prism 0.827
COMETinho-MQM 0.824
YiSi-1 0.821
RoBLEURT 0.820
BERTScore 0.819
bleurt-20 0.806
bleurt-21-beta 0.803
sentBLEU 0.787
MTEQA 0.784
COMET-MQM_2021 0.766
COMET-QE-DA_2021-src 0.759
regEMT 0.739
regEMT-baseline 0.716
YiSi-2-src 0.696
TER 0.693
OpenKiwi-MQM-src 0.584
COMET-QE-MQM_2021-src 0.567
C-SPEC 0.365
regEMT-src 0.071
C-SPECpn -0.074
regEMT-baseline-src -0.710

metric correlation

RoBLEURT 0.045
Prism 0.035
COMET-DA_2020 0.033
COMET-MQM_2021 0.032
COMET-DA_2021 0.031
C-SPEC 0.030
BERTScore 0.028
COMETinho-DA 0.025
COMET-QE-DA_2021-src 0.025
C-SPECpn 0.024
YiSi-1 0.022
OpenKiwi-MQM-src 0.021
COMET-QE-MQM_2021-src 0.012
regEMT 0.009
YiSi-2-src 0.009
bleurt-20 0.007
chrF 0.005
COMETinho-MQM 0.002
bleurt-21-beta 0.002
regEMT-src -0.004
sentBLEU -0.023
regEMT-baseline -0.054
regEMT-baseline-src -0.070
MTEQA -0.082
TER -0.129

Table 33: Correlations for Japanese→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

COMET-QE-DA_2021-src 0.764
OpenKiwi-MQM-src 0.759
regEMT 0.748
COMET-QE-MQM_2021-src 0.742
bleurt-21-beta 0.732
COMET-MQM_2021 0.728
bleurt-20 0.728
COMET-DA_2020 0.726
COMET-DA_2021 0.711
MTEQA 0.705
RoBLEURT 0.687
regEMT-baseline 0.676
BERTScore 0.668
COMETinho-MQM 0.658
Prism 0.657
YiSi-1 0.652
COMETinho-DA 0.627
chrF 0.593
hLEPOR 0.527
sentBLEU 0.512
TER 0.481
C-SPEC 0.456
C-SPECpn 0.394
YiSi-2-src 0.335
regEMT-src 0.092
regEMT-baseline-src -0.535

metric correlation

OpenKiwi-MQM-src 0.024
COMET-QE-MQM_2021-src 0.018
regEMT 0.017
COMET-QE-DA_2021-src 0.007
COMET-MQM_2021 0.005
COMET-DA_2021 -0.006
RoBLEURT -0.006
C-SPECpn -0.017
YiSi-2-src -0.017
regEMT-src -0.017
COMETinho-DA -0.021
COMET-DA_2020 -0.022
COMETinho-MQM -0.023
C-SPEC -0.029
Prism -0.033
BERTScore -0.081
bleurt-20 -0.105
bleurt-21-beta -0.109
chrF -0.126
YiSi-1 -0.127
regEMT-baseline-src -0.139
sentBLEU -0.144
hLEPOR -0.144
regEMT-baseline -0.167
TER -0.263
MTEQA -0.314

Table 34: Correlations for Russian→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

COMET-MQM_2021 0.762
COMET-DA_2021 0.756
bleurt-21-beta 0.754
bleurt-20 0.749
COMET-DA_2020 0.748
COMET-QE-DA_2021-src 0.746
YiSi-1 0.735
COMET-QE-MQM_2021-src 0.731
BERTScore 0.727
MEE 0.726
Prism 0.726
chrF 0.723
RoBLEURT 0.720
regEMT 0.712
sentBLEU 0.709
MEE2 0.707
OpenKiwi-MQM-src 0.706
regEMT-baseline 0.699
COMETinho-DA 0.693
cushLEPOR(pSQM) 0.679
cushLEPOR(LM) 0.678
MTEQA 0.661
BLEU 0.653
COMETinho-MQM 0.568
hLEPOR 0.550
YiSi-2-src 0.542
TER 0.527
regEMT-src 0.378
C-SPEC 0.218
C-SPECpn 0.214
regEMT-baseline-src -0.669

metric correlation

OpenKiwi-MQM-src 0.021
COMET-MQM_2021 0.020
COMET-QE-MQM_2021-src 0.020
RoBLEURT 0.019
COMET-DA_2021 0.018
COMETinho-DA 0.018
COMET-QE-DA_2021-src 0.017
COMET-DA_2020 0.016
YiSi-2-src 0.008
COMETinho-MQM 0.008
Prism 0.007
regEMT-src -0.005
C-SPECpn -0.005
regEMT -0.006
C-SPEC -0.007
BERTScore -0.013
bleurt-21-beta -0.022
YiSi-1 -0.026
bleurt-20 -0.028
MEE2 -0.035
chrF -0.035
hLEPOR -0.050
cushLEPOR(LM) -0.050
cushLEPOR(pSQM) -0.056
sentBLEU -0.057
MEE -0.063
regEMT-baseline -0.089
regEMT-baseline-src -0.090
MTEQA -0.118
TER -0.165

Table 35: Correlations for Chinese→English: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

YiSi-1 0.781
COMET-DA_2021 0.774
COMET-DA_2020 0.743
bleurt-20 0.734
bleurt-21-beta 0.721
COMET-MQM_2021 0.693
COMET-QE-DA_2021-src 0.658
COMETinho-DA 0.620
Prism 0.584
regEMT 0.534
regEMT-baseline 0.526
COMET-QE-MQM_2021-src 0.516
OpenKiwi-MQM-src 0.460
YiSi-2-src 0.414
chrF 0.413
BERTScore 0.378
TER 0.363
sentBLEU 0.363
C-SPECpn 0.329
C-SPEC 0.320
COMETinho-MQM 0.298
regEMT-src 0.101
regEMT-baseline-src -0.433

metric correlation

COMET-MQM_2021 0.223
COMET-DA_2021 0.220
Prism 0.208
COMET-QE-DA_2021-src 0.203
bleurt-20 0.202
COMET-DA_2020 0.202
bleurt-21-beta 0.193
C-SPEC 0.189
YiSi-1 0.173
COMET-QE-MQM_2021-src 0.161
COMETinho-DA 0.156
C-SPECpn 0.143
OpenKiwi-MQM-src 0.123
COMETinho-MQM 0.118
BERTScore 0.116
chrF 0.110
regEMT 0.104
YiSi-2-src 0.104
sentBLEU 0.055
regEMT-src 0.041
regEMT-baseline 0.031
TER -0.063
regEMT-baseline-src -0.201

Table 36: Correlations for German→French: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

bleurt-21-beta 0.991
bleurt-20 0.989
YiSi-1 0.985
COMET-MQM_2021 0.979
COMET-DA_2021 0.979
sentBLEU 0.976
chrF 0.975
COMET-QE-MQM_2021-src 0.974
Prism 0.971
COMET-DA_2020 0.971
regEMT 0.969
TER 0.967
COMET-QE-DA_2021-src 0.966
BERTScore 0.965
hLEPOR 0.956
COMETinho-DA 0.941
MTEQA 0.905
COMETinho-MQM 0.895
OpenKiwi-MQM-src 0.873
regEMT-baseline 0.866
regEMT-src 0.595
C-SPEC 0.123
C-SPECpn 0.072
YiSi-2-src -0.007
regEMT-baseline-src -0.920

metric correlation

COMET-DA_2021 0.774
bleurt-20 0.764
COMET-MQM_2021 0.757
C-SPEC 0.753
bleurt-21-beta 0.752
COMET-DA_2020 0.737
COMET-QE-DA_2021-src 0.724
C-SPECpn 0.723
COMET-QE-MQM_2021-src 0.714
Prism 0.712
YiSi-1 0.686
OpenKiwi-MQM-src 0.652
regEMT 0.641
COMETinho-DA 0.573
BERTScore 0.571
chrF 0.531
COMETinho-MQM 0.492
hLEPOR 0.441
sentBLEU 0.383
YiSi-2-src 0.240
MTEQA 0.212
TER 0.208
regEMT-src 0.160
regEMT-baseline 0.126
regEMT-baseline-src -0.349

Table 37: Correlations for English→Czech: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

bleurt-20 0.885
bleurt-21-beta 0.882
COMET-MQM_2021 0.880
COMET-QE-MQM_2021-src 0.877
COMET-DA_2021 0.875
OpenKiwi-MQM-src 0.870
COMET-QE-DA_2021-src 0.866
COMET-DA_2020 0.864
regEMT 0.855
COMETinho-DA 0.854
Prism 0.853
YiSi-1 0.847
COMETinho-MQM 0.835
chrF 0.820
MTEQA 0.797
TER 0.794
BERTScore 0.794
MEE2 0.793
sentBLEU 0.769
MEE 0.761
BLEU 0.738
cushLEPOR(pSQM) 0.699
cushLEPOR(LM) 0.691
hLEPOR 0.671
regEMT-src 0.481
C-SPECpn 0.408
C-SPEC 0.258
YiSi-2-src 0.025
regEMT-baseline -0.272
regEMT-baseline-src -0.727

metric correlation

COMET-DA_2021 0.255
COMET-DA_2020 0.255
COMET-MQM_2021 0.247
COMET-QE-DA_2021-src 0.237
COMET-QE-MQM_2021-src 0.230
regEMT 0.220
Prism 0.208
OpenKiwi-MQM-src 0.205
bleurt-21-beta 0.202
C-SPEC 0.200
bleurt-20 0.200
C-SPECpn 0.199
YiSi-1 0.162
COMETinho-DA 0.162
COMETinho-MQM 0.157
BERTScore 0.146
MEE2 0.102
chrF 0.098
YiSi-2-src 0.075
regEMT-src 0.067
cushLEPOR(LM) 0.033
hLEPOR 0.026
cushLEPOR(pSQM) 0.025
MEE 0.019
sentBLEU 0.014
MTEQA -0.122
TER -0.123
regEMT-baseline -0.136
regEMT-baseline-src -0.180

Table 38: Correlations for English→German: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

bleurt-20 0.915
bleurt-21-beta 0.907
regEMT 0.901
YiSi-1 0.892
COMET-DA_2020 0.871
COMET-DA_2021 0.863
BERTScore 0.838
COMET-MQM_2021 0.811
OpenKiwi-MQM-src 0.791
sentBLEU 0.789
COMET-QE-DA_2021-src 0.786
chrF 0.768
COMET-QE-MQM_2021-src 0.746
COMETinho-DA 0.708
COMETinho-MQM 0.463
regEMT-baseline 0.376
YiSi-2-src 0.362
TER 0.288
C-SPEC 0.174
C-SPECpn 0.077
regEMT-src -0.266
regEMT-baseline-src -0.357

metric correlation

COMET-DA_2021 0.237
COMET-DA_2020 0.234
COMET-MQM_2021 0.214
C-SPEC 0.210
COMET-QE-DA_2021-src 0.198
bleurt-20 0.186
C-SPECpn 0.186
chrF 0.186
bleurt-21-beta 0.183
YiSi-1 0.180
COMET-QE-MQM_2021-src 0.176
BERTScore 0.167
OpenKiwi-MQM-src 0.157
COMETinho-DA 0.131
regEMT 0.130
sentBLEU 0.124
YiSi-2-src 0.102
COMETinho-MQM 0.088
regEMT-baseline 0.049
regEMT-src 0.016
TER -0.025
regEMT-baseline-src -0.112

Table 39: Correlations for English→Hausa: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

769



metric correlation

regEMT 0.989
bleurt-20 0.975
sentBLEU 0.962
bleurt-21-beta 0.962
chrF 0.961
COMET-MQM_2021 0.960
COMET-DA_2021 0.959
COMET-QE-MQM_2021-src 0.959
YiSi-1 0.957
COMET-DA_2020 0.952
BERTScore 0.950
COMET-QE-DA_2021-src 0.945
COMETinho-DA 0.931
TER 0.928
COMETinho-MQM 0.908
OpenKiwi-MQM-src 0.873
C-SPECpn 0.750
C-SPEC 0.736
regEMT-baseline 0.478
YiSi-2-src 0.348
regEMT-src 0.125
regEMT-baseline-src -0.922

metric correlation

COMET-MQM_2021 0.489
COMET-DA_2021 0.487
COMET-DA_2020 0.474
C-SPEC 0.472
bleurt-20 0.469
C-SPECpn 0.460
COMET-QE-DA_2021-src 0.454
COMET-QE-MQM_2021-src 0.453
bleurt-21-beta 0.444
YiSi-1 0.410
OpenKiwi-MQM-src 0.404
COMETinho-DA 0.384
chrF 0.373
BERTScore 0.355
COMETinho-MQM 0.330
regEMT 0.312
sentBLEU 0.279
TER 0.121
YiSi-2-src 0.105
regEMT-src 0.012
regEMT-baseline 0.002
regEMT-baseline-src -0.199

Table 40: Correlations for English→Icelandic: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

bleurt-21-beta 0.991
COMET-DA_2020 0.988
bleurt-20 0.985
COMET-DA_2021 0.984
COMET-QE-DA_2021-src 0.978
YiSi-1 0.974
COMETinho-DA 0.972
regEMT 0.972
Prism 0.971
COMET-MQM_2021 0.970
chrF 0.966
COMETinho-MQM 0.955
COMET-QE-MQM_2021-src 0.947
BERTScore 0.939
OpenKiwi-MQM-src 0.929
C-SPECpn 0.678
regEMT-src 0.502
YiSi-2-src 0.470
regEMT-baseline 0.423
C-SPEC 0.325
TER -0.025
regEMT-baseline-src -0.216
sentBLEU -0.629

metric correlation

COMET-DA_2021 0.531
COMET-DA_2020 0.519
COMET-MQM_2021 0.490
C-SPEC 0.484
COMET-QE-DA_2021-src 0.484
bleurt-21-beta 0.483
bleurt-20 0.483
COMETinho-DA 0.457
C-SPECpn 0.454
Prism 0.440
YiSi-1 0.425
BERTScore 0.417
COMET-QE-MQM_2021-src 0.379
chrF 0.371
regEMT 0.369
COMETinho-MQM 0.348
OpenKiwi-MQM-src 0.333
YiSi-2-src 0.229
regEMT-baseline 0.079
regEMT-src 0.065
regEMT-baseline-src -0.161
TER -0.791
sentBLEU -0.881

Table 41: Correlations for English→Japanese: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

770



metric correlation

bleurt-21-beta 0.978
COMET-DA_2020 0.973
COMET-DA_2021 0.973
bleurt-20 0.972
COMET-MQM_2021 0.972
COMET-QE-DA_2021-src 0.970
COMET-QE-MQM_2021-src 0.969
sentBLEU 0.967
BERTScore 0.964
hLEPOR 0.959
MEE 0.956
MEE2 0.951
YiSi-1 0.948
OpenKiwi-MQM-src 0.948
chrF 0.946
BLEU 0.946
COMETinho-DA 0.944
Prism 0.924
TER 0.903
COMETinho-MQM 0.835
regEMT 0.810
regEMT-baseline 0.377
YiSi-2-src 0.029
regEMT-src 0.005
C-SPECpn -0.160
regEMT-baseline-src -0.410
C-SPEC -0.417

metric correlation

COMET-DA_2021 0.401
COMET-MQM_2021 0.397
COMET-DA_2020 0.368
COMET-QE-DA_2021-src 0.365
C-SPEC 0.360
C-SPECpn 0.348
bleurt-21-beta 0.340
Prism 0.330
COMET-QE-MQM_2021-src 0.326
bleurt-20 0.323
YiSi-1 0.294
BERTScore 0.255
COMETinho-DA 0.246
OpenKiwi-MQM-src 0.234
MEE2 0.233
chrF 0.201
COMETinho-MQM 0.167
MEE 0.161
hLEPOR 0.157
regEMT 0.122
sentBLEU 0.105
YiSi-2-src 0.051
regEMT-src 0.024
regEMT-baseline -0.002
TER -0.078
regEMT-baseline-src -0.183

Table 42: Correlations for English→Russian: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

COMET-DA_2021 0.946
COMET-DA_2020 0.939
COMET-QE-DA_2021-src 0.927
bleurt-21-beta 0.910
COMET-MQM_2021 0.903
COMETinho-DA 0.900
OpenKiwi-MQM-src 0.892
YiSi-1 0.888
BERTScore 0.851
regEMT 0.823
COMET-QE-MQM_2021-src 0.815
bleurt-20 0.813
Prism 0.750
chrF 0.570
COMETinho-MQM 0.467
YiSi-2-src 0.313
regEMT-src 0.302
C-SPECpn 0.286
C-SPEC 0.235
TER 0.169
regEMT-baseline 0.014
regEMT-baseline-src -0.039
sentBLEU -0.156

metric correlation

COMET-DA_2021 0.270
COMET-QE-DA_2021-src 0.261
COMET-DA_2020 0.247
COMET-MQM_2021 0.246
bleurt-20 0.240
bleurt-21-beta 0.239
C-SPECpn 0.224
C-SPEC 0.224
COMET-QE-MQM_2021-src 0.216
Prism 0.207
COMETinho-DA 0.202
YiSi-1 0.192
BERTScore 0.189
OpenKiwi-MQM-src 0.180
COMETinho-MQM 0.121
regEMT 0.119
YiSi-2-src 0.095
chrF 0.092
regEMT-src 0.016
regEMT-baseline -0.047
regEMT-baseline-src -0.187
TER -0.701
sentBLEU -0.715

Table 43: Correlations for English→Chinese: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

bleurt-21-beta 0.789
COMET-DA_2020 0.770
bleurt-20 0.768
COMET-MQM_2021 0.763
COMET-DA_2021 0.759
Prism 0.729
COMET-QE-MQM_2021-src 0.712
YiSi-1 0.709
COMET-QE-DA_2021-src 0.708
regEMT 0.702
COMETinho-DA 0.695
BERTScore 0.674
sentBLEU 0.660
chrF 0.647
COMETinho-MQM 0.640
OpenKiwi-MQM-src 0.626
TER 0.615
MTEQA 0.609
C-SPEC 0.191
regEMT-baseline 0.081
regEMT-src -0.002
regEMT-baseline-src -0.082
C-SPECpn -0.267
YiSi-2-src -0.290

metric correlation

COMET-DA_2021 0.108
COMET-DA_2020 0.101
regEMT 0.097
COMET-QE-DA_2021-src 0.091
COMET-MQM_2021 0.090
Prism 0.090
bleurt-21-beta 0.081
C-SPEC 0.079
bleurt-20 0.079
YiSi-2-src 0.072
C-SPECpn 0.069
BERTScore 0.068
COMETinho-DA 0.068
OpenKiwi-MQM-src 0.056
chrF 0.054
YiSi-1 0.053
COMET-QE-MQM_2021-src 0.052
COMETinho-MQM 0.052
regEMT-src 0.039
sentBLEU 0.005
regEMT-baseline -0.081
MTEQA -0.089
TER -0.093
regEMT-baseline-src -0.109

Table 44: Correlations for French→German: system-level Pearson (left panel), segment-level Kendall-Like (right
panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

regEMT 0.964
bleurt-21-beta 0.964
COMET-QE-MQM_2021-src 0.963
bleurt-20 0.963
COMET-QE-DA_2021-src 0.957
COMET-DA_2020 0.955
OpenKiwi-MQM-src 0.953
COMET-MQM_2021 0.949
YiSi-1 0.948
COMET-DA_2021 0.946
chrF 0.941
BERTScore 0.935
COMETinho-DA 0.928
COMETinho-MQM 0.923
TER 0.912
sentBLEU 0.901
regEMT-baseline 0.889
C-SPEC 0.743
YiSi-2-src 0.668
C-SPECpn 0.503
regEMT-baseline-src 0.033
regEMT-src -0.245

metric correlation

bleurt-20 0.179
bleurt-21-beta 0.170
C-SPEC 0.157
COMET-DA_2020 0.156
COMET-MQM_2021 0.153
C-SPECpn 0.150
COMET-QE-DA_2021-src 0.146
COMET-DA_2021 0.146
OpenKiwi-MQM-src 0.137
YiSi-1 0.134
COMETinho-DA 0.125
regEMT 0.111
YiSi-2-src 0.110
COMET-QE-MQM_2021-src 0.109
COMETinho-MQM 0.101
BERTScore 0.093
chrF 0.071
sentBLEU 0.070
regEMT-src -0.027
TER -0.030
regEMT-baseline -0.040
regEMT-baseline-src -0.054

Table 45: Correlations for FLORES Bengali→Hindi: system-level Pearson (left panel), segment-level Kendall-
Like (right panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

Prism 0.990
regEMT 0.987
COMET-QE-DA_2021-src 0.987
COMET-QE-MQM_2021-src 0.986
OpenKiwi-MQM-src 0.982
bleurt-21-beta 0.975
COMETinho-MQM 0.975
COMET-DA_2020 0.974
bleurt-20 0.973
COMET-MQM_2021 0.970
COMET-DA_2021 0.965
COMETinho-DA 0.964
YiSi-1 0.947
BERTScore 0.918
YiSi-2-src 0.898
chrF 0.872
TER 0.871
regEMT-baseline 0.856
sentBLEU 0.784
C-SPECpn -0.116
C-SPEC -0.539
regEMT-baseline-src -0.886
regEMT-src -0.955

metric correlation

Prism 0.566
COMET-QE-MQM_2021-src 0.524
COMET-QE-DA_2021-src 0.524
COMET-DA_2020 0.518
COMET-MQM_2021 0.517
COMET-DA_2021 0.510
bleurt-20 0.499
bleurt-21-beta 0.488
C-SPECpn 0.477
YiSi-2-src 0.468
COMETinho-MQM 0.462
COMETinho-DA 0.453
YiSi-1 0.442
C-SPEC 0.418
OpenKiwi-MQM-src 0.412
BERTScore 0.366
chrF 0.327
sentBLEU 0.246
regEMT 0.205
TER 0.108
regEMT-baseline 0.050
regEMT-src -0.067
regEMT-baseline-src -0.188

Table 46: Correlations for FLORES Hindi→Bengali: system-level Pearson (left panel), segment-level Kendall-
Like (right panel). Primary submissions are bolded, and baselines are underlined.

metric correlation

COMET-DA_2021 0.999
bleurt-21-beta 0.998
YiSi-1 0.998
chrF 0.998
COMET-MQM_2021 0.997
bleurt-20 0.997
COMET-QE-MQM_2021-src 0.997
COMETinho-DA 0.997
BERTScore 0.995
COMET-DA_2020 0.993
regEMT 0.990
TER 0.981
sentBLEU 0.979
C-SPECpn 0.974
COMETinho-MQM 0.971
OpenKiwi-MQM-src 0.952
C-SPEC 0.942
COMET-QE-DA_2021-src 0.936
regEMT-baseline 0.781
regEMT-src 0.536
YiSi-2-src 0.381
regEMT-baseline-src 0.363

metric correlation

C-SPEC 0.368
bleurt-20 0.363
bleurt-21-beta 0.359
C-SPECpn 0.340
chrF 0.301
COMET-DA_2021 0.297
COMET-MQM_2021 0.293
YiSi-1 0.293
OpenKiwi-MQM-src 0.286
COMET-QE-DA_2021-src 0.285
COMET-DA_2020 0.281
COMET-QE-MQM_2021-src 0.276
BERTScore 0.270
COMETinho-MQM 0.219
COMETinho-DA 0.209
sentBLEU 0.188
YiSi-2-src 0.153
regEMT-src 0.150
regEMT 0.126
TER 0.074
regEMT-baseline -0.014
regEMT-baseline-src -0.053

Table 47: Correlations for FLORES Xhosa→Zulu: system-level Pearson (left panel) , segment-level Kendall-Like
(right panel). Primary submissions are bolded, and baselines are underlined.
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metric correlation

bleurt-21-beta 1.000
chrF 0.999
YiSi-1 0.998
bleurt-20 0.998
BERTScore 0.997
COMET-MQM_2021 0.997
COMETinho-DA 0.996
COMET-DA_2021 0.996
COMETinho-MQM 0.991
COMET-QE-MQM_2021-src 0.990
COMET-DA_2020 0.990
regEMT 0.983
TER 0.978
OpenKiwi-MQM-src 0.973
COMET-QE-DA_2021-src 0.953
sentBLEU 0.903
YiSi-2-src 0.758
C-SPECpn 0.713
regEMT-baseline 0.681
C-SPEC 0.604
regEMT-baseline-src 0.432
regEMT-src -0.044

metric correlation

COMET-DA_2021 0.571
bleurt-20 0.564
bleurt-21-beta 0.559
C-SPEC 0.552
C-SPECpn 0.552
COMET-MQM_2021 0.550
COMET-DA_2020 0.545
YiSi-1 0.544
COMET-QE-MQM_2021-src 0.538
chrF 0.530
COMET-QE-DA_2021-src 0.530
OpenKiwi-MQM-src 0.523
BERTScore 0.491
YiSi-2-src 0.472
COMETinho-DA 0.436
COMETinho-MQM 0.423
sentBLEU 0.381
TER 0.296
regEMT 0.202
regEMT-baseline 0.022
regEMT-src -0.010
regEMT-baseline-src -0.037

Table 48: Correlations for FLORES Zulu→Xhosa: system-level Pearson (left panel), segment-level Kendall-Like
(right panel). Primary submissions are bolded, and baselines are underlined.
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Abstract

We participated in all tracks of the WMT 2021
efficient machine translation task: single-core
CPU, multi-core CPU, and GPU hardware
with throughput and latency conditions. Our
submissions combine several efficiency strate-
gies: knowledge distillation, a simpler simple
recurrent unit (SSRU) decoder with one or two
layers, lexical shortlists, smaller numerical for-
mats, and pruning. For the CPU track, we used
quantized 8-bit models. For the GPU track,
we experimented with FP16 and 8-bit integers
in tensorcores. Some of our submissions op-
timize for size via 4-bit log quantization and
omitting a lexical shortlist. We have extended
pruning to more parts of the network, em-
phasizing component- and block-level pruning
that actually improves speed unlike coefficient-
wise pruning.

1 Introduction

This paper describes the University of Edinburgh’s
submission to Sixth Conference on Machine Trans-
lation (WMT2021) Efficiency Task1, which mea-
sures performance on latency and throughput on
both CPU and GPU, in addition to translation qual-
ity. Our submission focused on the trade-off be-
tween these metrics and quality.

Our submission builds upon the work of last
year’s submission (Bogoychev et al., 2020). We
trained our models in a teacher-student setting
(Kim and Rush, 2016), using Edinburgh’s En-De
system submitted to the WMT2021 news transla-
tion task as the teacher model. For the students,
we used a Simpler Simple Recurrent Unit (SSRU)
(Kim et al., 2019) decoder, used a target vocabu-
lary shortlist, and experimented with pruning the
student models by removing component- and block-
level parameters to improve speed. We further ex-
perimented with quantizing into smaller numerical

1http://statmt.org/wmt21/
efficiency-task.html

formats, including fixed point 8-bit quantization on
the CPU, and both 8-bit and log based 4-bit quan-
tization on the GPU, as well as post-quantization
fine-tuning of 4-bit quantized models.

For running our experiments, we improved upon
the Marian (Junczys-Dowmunt et al., 2018) ma-
chine translation framework by incorporating speed
ups for 8-bit matrix multiplication operations, opti-
mizations for pruning neural network parameters
on Intel CPUs, and exploring tensorcores on the
GPU.

1.1 Efficiency Shared Task

The WMT21 efficiency shared task consists of two
sub-tasks: throughput and latency. Systems should
translate English to German under the constrained
conditions of the WMT21 news task. For each task,
systems are provided 1 million lines of raw English
input with at most 150 space-separated words. The
throughput task receives this input directly. The
latency task, introduced this year, is fed input one
sentence at a time, waiting for the translation output
before providing the next sentence.

Throughput is measured on multi-core CPU or
GPU system, and latency is measured on single-
core CPU or GPU systems. The CPU-based eval-
uations use an Intel Ice Lake system via Oracle
Cloud BM.Optimized3.36, while the GPU-based
use a single A100 via Oracle Cloud BM.GPU4.8.

Entries to both tasks are measured on quality, ap-
proximated via BLEU score (Papineni et al., 2002),
speed, model size, Docker image size, and memory
consumption. We did not optimise specifically for
the latency task beyond configuring the relevant
batch sizes to one. We used Ubuntu 20.04 based
images for our systems, with standard Ubuntu
for CPU-only systems and NVIDIA’s Ubuntu-
based CUDA-11.4 docker for GPU-capable sys-
tems. Docker images were created using multi-
stage builds, with model disk size reduced by com-
pression with xzip.
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2 Training teacher models

We used Edinburgh’s En↔De systems submitted
to the WMT 2021 news translation task as teacher
models (Chen et al., 2021). We trained transformer-
big models (Vaswani et al., 2017), using a shared
32K SentencePiece (Kudo and Richardson, 2018)
vocabulary, built in three stages: corpus filter-
ing, back-translation and fine-tuning. The models
achieved 29.90 and 51.78 BLEU on En→De and
De→En WMT 2021 test respectively (scored by
the task organizers, with multiple references).

We used sequence-level knowledge distillation
(Kim and Rush, 2016) to synthesize forward, back-
ward, and backward-forward translations using the
teachers. We filtered the synthesized parallel data
using handcrafted rules2, followed by removing
bottom 5% according to cross-entropy per word on
the generated side using KenLM (Heafield et al.,
2013).

3 Knowledge distillation

We ran experiments using different combinations
of teacher-synthesized corpora. One variant in-
cluded all of the synthesized data: parallel, mono-
lingual backward and forward as well as backward-
forward (Aji and Heafield, 2020b). Another vari-
ant excludes only the fully-synthetic monolingual
backward-forward data, while the final variant used
parallel data only. All student models were trained
using a validation set consisting of the subset of
sentences in the English-German WMT test sets
from 2015–2019 that were originally in English.
Training concluded after reaching 20 consecutive
validations without an improvement in BLEU score.
The student models used the same shared vocabu-
lary as the teacher ensemble. During decoding, we
used a lexical shortlist (Schwenk et al., 2007; Le
et al., 2012; Devlin et al., 2014) of the top 50 most
probable alignments, combined through a union
with the top 50 most frequent vocabulary items.
Other than this, we used the default training hyper-
parameters from Marian for the transformer-base
model.

Each of the student models used transformer
encoders (Vaswani et al., 2017) and RNN-based de-
coders with Simpler Simple Recurrent Unit (SSRU)
(Kim et al., 2019). Several different architectures
were explored; these differ in the number of en-
coder and decoder blocks as well as in the sizes

2https://github.com/browsermt/
students/tree/master/train-student/clean

of the embedding and FFN layers. Further to this,
some of our transformer architectures use a modi-
fied attention matrix of shape (demb, nhead×dhead)
rather than the typical (demb, demb). In all cases
we use 8 transformer heads per layer, and set
dhead = 32 across all modified attention models.

The student architectures are summarized in Ta-
ble 1. A baseline comparison of student models
trained on all synthesized data can be seen in Ta-
ble 1.

3.1 Pruning

Attention is a crucial part of the transformer ar-
chitecture, but it is also computationally expensive.
Research has shown that many heads can be pruned
after training; with further work suggesting that
pruning during training can be less damaging to
quality. Feedforward layers are also expensive and
could be reduced.

Among many experiments, we applied group
lasso regularisation to sparsify and prune 12–1.tiny
and 12–1.micro architectures. We follow the di-
rections set by Behnke and Heafield (2021). We
tried two pruning settings: rowcol-lasso and head-
lasso. Both prune feedforward and attention layers
in the encoder. rowcol-lasso regularised individ-
ual connections (rows and columns) and removed
an entire attention head if at least half of its con-
nections are dead. head-lasso applied lasso to a
whole head submatrix. Due to the scale of the task,
we had no opportunity to grid-search for the best
pruning hyperparameters, thus the experiments are
as close to ’out-of-the-box’ usage as they can be.
We control pruning with λ = 0.5 for both methods.
The models were pretrained for 50k updates and
regularised for 150k, after which the models were
sliced and trained until convergence. The results
are presented in Tab. 2.

head-lasso left attention layers almost com-
pletely unpruned, focusing on removing connec-
tions from feedforward layers instead. rowcol-
lasso was much more aggressive in both layers at
the cost of quality. Behnke and Heafield (2021)
have shown that group lasso pruning results in
a better quality model than training the same ex-
act architecture from scratch. To further optimise
the models, they were quantised to work within
8bit representation. However, we observe that the
smaller a model is, the larger the quality drop after
its quantisation. Additional finetuning allows us
to recover at least partially from the quantisation
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Depth Dimensions BLEU COMET
Model Enc Dec Emb. FFN Att. Heads Params. Size WMT20 WMT21 WMT20 WMT21 Speed (s)

teacher x 3 6 6/6/8 1024 4096 1024 16 619.0M 1.59GB 38.3 28.8 56.8 50.8 -
12-1.large 12 1 1024 3072 256 8 130.5M 498MB 37.6 28.7 54.0 47.7 92.2
12-1.base 12 1 512 2048 256 8 51.1M 195MB 36.7 28.2 50.7 44.1 38.9
12-1.tiny 12 1 256 1536 256 8 22.0M 85MB 36.1 27.6 48.2 41.9 19.2
12-1.micro 12 1 256 1024 256 8 18.6M 72MB 35.4 27.6 46.2 40.2 17.1

8-4.tied.tiny 8 4 256 1536 256 8 17.8M 69MB 35.7 27.8 50.3 43.9 30.4
6-2.tied.tiny 6 2 256 1536 256 8 15.7M 61MB 34.9 27.4 47.4 42.1 18.6

6-2.base 6 2 512 2048 512 8 42.7M 163MB 37.7 28.7 54.3 48.5 56.2
6-2.tiny 6 2 256 1536 256 8 16.9M 65MB 35.8 27.4 50.2 44.5 19.2

Table 1: Architectures for the different student models. The number of encoder/decoder layers are reported with the
size of the embedding, attention and FFN layers, the total number of parameters, the model size on disk, quality in
both BLEU and COMET as well as speed on WMT21 testset. The first and second groups use a modified attention
matrix shape, with second group consisting of tied models. The third group uses the typical shape attention
matrices.

damage. Evaluating on the latest testset WMT21,
our pruned models are 1.2–1.7× faster at the cost
of 0.6–1.3 BLEU. With quantisation, those models
are 1.9–2.7× faster losing 0.9–1.7 BLEU in com-
parison to the unpruned and unquantised baselines.

3.2 Fixed Point 8-bit Quantization

Quantizing fp32 models into 8-bit integers is a
known strategy to reduce decoding time, specifi-
cally on CPU, with a minimal impact on quality
(Kim et al., 2019; Bhandare et al., 2019; Rodriguez
et al., 2018). This year’s submission closely fol-
lows the quantization scheme of last year’s work
(Bogoychev et al., 2020).

Quantization entails computing a scaling fac-
tor to collapse the range of values to [−127, 127].
For parameters, this scaling factor is computed of-
fline using the maximum absolute value but acti-
vation tensors change at runtime. This year, we
changed from computing a dynamic scaling fac-
tor on the fly for activations to computing a static
scaling factor offline. We decoded the WMT16-20
datasets and recorded the scaling factor α(Ai) =
127/max(|Ai|) for each instance Ai of an acti-
vation tensor A. Then, for production, we fixed
the scaling factor for activation tensor A to the
mean scaling factor plus 1.1 standard deviation:
α(A) = µ({α(Ai)}) + 1.1 ∗ σ({α(Ai)}). These
scaling factors were baked into the model file so
that statistics were not computed at runtime.

Quantization does not extend to the attention
layer, which is still computed in fp32. The reason
being is that in the attention layer, both theA andB
matrices of the GEMM operation would need to be
quantized at runtime, which makes the quantization

too expensive. We note that we only perform the
GEMM operations in 8-bit integers.

3.3 Log 4-bit Quantization

We further quantize the models with log based 4-
bit quantization (Aji and Heafield, 2020a). In this
case, model weights are represented in a 16 unique
quantization centers in a form of S ∗2k. S is a scal-
ing factor that is optimized to minimize the MSE
of the quantized weight to the actual weight. Fol-
lowing Aji and Heafield (2020a), we only perform
4-bit quantization on non-bias layers.

Unfortunately, the hardware used is not designed
to perform native 4-bit operations. Therefore, our
4-bit quantization experiment is used solely for
model compression purposes, in which we can re-
duce the model size to be 8x smaller. To perform
inference, we de-quantize the 4-bit model back to
fp32 representation, therefore does not achieve any
speed up over the vanilla fp32 models.

3.4 Quantization fine-tuning

Quantizing models degrades the quality, especially
on smaller architectures. Therefore, after apply-
ing quantization, we fine-tune the model under
the quantized weight. We find that lowering the
learning rate to 0.0001 yields better model qual-
ity. Moreover, for 4-bit models, we also find that
doubling the warm-up duration helps.

Our 8-bit quantization models mainly aim for
speed improvement. Therefore, we apply 8-bit
quantization to pruned models to further boost
the speed. As shown in Table 2, 8-bit inference
achieves significant speedup. However, fine-tuning
is necessary to restore the quality degradation.
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BLEU COMET Sparsity
WMT20 WMT21 WMT20 WMT21 Att. FFN Speed (s)

12-1.tiny 36.1 27.6 48.2 41.9 0% 0% 19.2
+ head-lasso pruning 34.7 27.0 42.9 38.8 3% 75% 14.5

+ 8bit quantisation 33.9 26.2 38.8 33.6 3% 75% 9.3
+ finetuning 34.1 26.7 39.8 33.0 3% 75% 9.3

+ rowcol-lasso pruning 33.8 26.3 39.3 34.2 68% 73% 11.6
+ 8bit quantisation 32.9 25.6 33.7 28.7 68% 73% 6.9

+ finetuning 32.9 26.0 35.7 31.3 68% 73% 7.1

12-1.micro 35.4 27.6 46.2 40.2 0% 0% 17.1
+ head-lasso pruning 34.6 26.7 43.0 35.4 3% 72% 14.1

+ 8bit quantisation 33.4 26.0 36.7 31.2 3% 72% 9.2
+ finetuning 33.7 26.5 38.3 33.3 3% 72% 9.2

+ rowcol-lasso pruning 34.3 26.4 40.7 35.1 60% 59% 12.0
+ 8bit quantisation 32.7 25.5 34.2 29.1 60% 59% 7.5

+ finetuning 33.3 25.9 35.2 30.5 60% 59% 7.5

Table 2: 8-bit model performance. BLEU score is calculated from WMT20. Speed is measured on a single core
CPU with a mini-batch of 32. We experimented with two types of pruning. Head pruning removes entire heads.
Row and column pruning removes entire rows or columns of matrices, resulting in a smaller matrix.

BLEU COMET
WMT20 WMT21 WMT20 WMT21 Size

12-1.base 37.1 28.3 51.5 45.1 195MB
+ 4bit 36.3 27.7 50.0 43.2 25MB

12-1.tiny 36.0 28.0 47.5 42.5 85MB
+ 4bit 35.0 27.6 42.4 38.3 11MB

8-4.tied.tiny 35.7 27.5 49.4 43.6 69MB
+ 4bit 34.2 26.4 44.4 38.2 9MB

Table 3: 4-bit model performance. BLEU score is cal-
culated from WMT20. All the quantized models in-
clude fine-tuning. The inference is done in 32fp, there-
fore their speed are comparable.

We apply 4-bit quantization solely for size effi-
ciency. Therefore, we quantize non-pruned models
since they give better size to quality trade-off, com-
pared to pruned models. The performance of 4-bit
models can be seen in Table 3.

4 Software improvements

4.1 CPU

We built our work using the Marian machine trans-
lation framework, making some improvements on
top of the submission from last year: We used
predominantly intgemm3 for our 8-bit GEMM op-
erations, including for the shortlisted output layer.
All parameter matrices are quantized to 8-bit of-
fline and the activations get quantized dynamically
before a GEMM operation. We only perform the
GEMM operation and the following activation in

3https://github.com/kpu/intgemm

8-bit integer mode. Right after a GEMM operation,
the output is de-quantized back to fp32. More for-
mally we perform dequantize(σ(A ∗B + bias)),
where the addition of the bias, the activation func-
tion4 σ, and the de-quantization are applied in a
streaming fashion to prevent a round trip to mem-
ory.

Furthermore we make use of Intel’s DNNL5 for
our pruned models, as it performs better than int-
gemm for irregular sized matrices. Unfortunately,
DNNL doesn’t support streaming de-quantization,
bias addition or activation function application.

For the CPU_ALL throughput track, we swept
configurations of multiple processes and threads on
the platform, settling on 4 processes with 9 threads
each. The input text is simply split into 4 pieces
and parallelized (Tange, 2011) over processes. The
mini-batch sizes did not impact performance sub-
stantially and 32 was chosen as the mini-batch size.
The Hyperthreads available on the platform were
not put into use as the compute on each was sat-
urated by the efficient threads. Each process is
bound to 9 cores assigned sequentially and to the
memory domain corresponding to the socket with
those cores using numactl. Output from the data
parallel run is then stitched together to produce the
final translation.

4We only support ReLU activation for now
5https://github.com/oneapi-src/oneDNN
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mini-batch master fp32 master fp16 ours fp32 ours fp16 ours 8-bit

32 1160s 1151s 740s 731s 732s
64 696s 636s 426s 400s 416s

128 475s 430s 261s 246s 261s
256 320s 296s 181s 160s 169s
512 282s 241s 147s 127s 133s
768 285s 225s 139s 120s 123s

1024 277s 218s 136s 117s 120s
1132 277s 216s 135s 116s 119s

BLEU 33.47 33.43 33.48 33.42 33.26

Table 4: Comparison between the master branch of marian-dev, our branch and our best 8-bit integer tensorcore
work for GPU decoding. For grid search we used last year’s submission model and tested on 1 million sentences
from last year’s WNGT competition (Heafield et al., 2020).

4.2 GPU

For our GPU submission we built up on top of last
year’s submission, applying experimental GPU op-
timisations on top of the marian-dev master tree6

and exploring tensorcore7 applicability using CUT-
LASS.8

Tensorcores can in theory drastically increase
the performance of our computations and were en-
abled for all of our fp16 experiments. Tensorcores
can also improve speed when doing 8-bit integer
operations, so we implemented 8-bit integer GPU
decoding similar to our CPU scheme. We found
that shortlisting doesn’t improve the performance,
so we didn’t use it.

We found that while fp16 decoding works fairly
well and delivers good performance improvements
for decoding, especially when using a really large
mini-batch size. We performed a large parameter
sweep on a RTX 3090, as shown on Table 4. Unfor-
tunately, we found no setting in which tensorcore
8-bit integer decoding outperforms the fp16 base-
line, likely due to the overhead of quantisating the
activations beforehand.

5 Conclusion

We participated in all tracks of the WMT 2021 effi-
ciency tracks and we submitted multiple systems
that have different trade-offs between speed and
translation quality. We performed ample hyper-
parameter tuning and exploration in order to take
advantage of GPU tensorcores for decoding, but
unfortunately we couldn’t beat our optimised fp16
baseline. For the CPU submission we used 8bit

6https://github.com/marian-nmt/
marian-dev/pull/743

7https://developer.nvidia.com/blog/
programming-tensor-cores-cuda-9/

8https://github.com/NVIDIA/cutlass

integer decoding and a combination of pruned and
non-pruned system, together with a lexical shortlist
in order to reduce the computational cost of the
largest GEMM in decoding – the output layer.
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Abstract

This paper presents the submission of Huawei
Translation Services Center (HW-TSC) to
WMT 2021 Efficiency Shared Task. We ex-
plore the sentence-level teacher-student distil-
lation technique and train several small-size
models that find a balance between efficiency
and quality. Our models feature deep en-
coder, shallow decoder and light-weight RNN
with SSRU layer. We use Huawei Noah’s
Bolt1, an efficient and light-weight library for
on-device inference. Leveraging INT8 quan-
tization, self-defined General Matrix Multi-
plication (GEMM) operator, shortlist, greedy
search and caching, we submit four small-
size and efficient translation models with high
translation quality for the one CPU core la-
tency track.

1 Introduction

Transformer and its variants (Vaswani et al., 2017;
Shaw et al., 2018; So et al., 2019; Dehghani et al.,
2019) have become benchmark models in the do-
main of machine translation. A lot of innovations
and engineering optimizations (Tay et al., 2020)
in this area are based on Transformer. In general,
to train a high-quality translation model, a large
amount of data is required. Expensive training and
deployment costs pose great challenges to scenar-
ios where hardware are limited or the deployment
environment is complex. This task aims to explore
a solution that balances efficient decoding and high-
quality translation. We focus on the one CPU la-
tency track, which can better demonstrate the capa-
bility of our model and inference framework. We
explore a balance between speed and quality, and
ensure efficient memory usage and light-weight in-
ference framework capability at the same time. We
finally submit four models of different sizes.

We use knowledge distillation (Hinton et al.,
2015) to train small models. The teacher mod-

1https://github.com/huawei-noah/bolt

els come from our WMT 2021 News Shared Task.
For the sake of efficient decoding, our models have
only 1-layer decoder. However, the number of en-
coding layers vary. Such settings lead to a great
increase of inference efficiency while ensuring the
translation quality (Wang et al., 2019).

All of our experiments are conducted based on
fariseq (Ott et al., 2019), including the training of
teacher and student models, as well as the genera-
tion of distillation data.

We use Huawei Noah’s Bolt as the inference
library. Bolt is a universal deep learning library
featuring light weight and high speed. For the CPU
task, we realize INT8 quantization inference and
efficient GEMM operator, which is faster than Intel
oneDNN2. With other engineering optimization
strategies, we achieve a significant improvement in
terms of inference efficiency.

Section 2 describes the teacher-student knowl-
edge distillation process. Section 3 introduces how
we optimize inference for this task. Section 4
presents the final result of our submissions.

2 Teacher to Student Knowledge
Distillation

Sentence-level distillation (Kim and Rush, 2016;
Freitag et al., 2017) have been demonstrated effec-
tive for machine translation tasks. First of all, we
train a large teacher model that emphasizes transla-
tion quality. Then, we translate the source side of
the training data and generate a synthetic parallel
corpus, as synthetic data is easier for model fitting
than real parallel data. Finally, we train student
models using the synthetic data, hoping to mini-
mize model sizes while ensuring equal translation
quality as the teacher model. We use KD refer to
knowledge distillation.

2https://github.com/oneapi-src/oneDNN

781



2.1 Teacher Model

As suggested in the task description, we select four
iteration models for the third round and also the
models before the final round of fine-tuning. All
the models adopt back translation (Edunov et al.,
2018) and forward translation (Wu et al., 2019)
techniques. Our final ensembled model gained 39.7
BLEU on the WMT 2020 test set. The settings of
the four models vary. We make sure that the model
sizes are similar by adjusting hyperparameters such
size of embedding, encoder layers, decoder layers,
ffn size, etc. For more details about our teacher
model, please refer to our system report for WMT
2021 News Shared Task.

2.2 Traning data

We comply with the constrained condition and use
only data from the WMT 2021 En-De News Task.
The size of parallel data after filtering is around
80M. In terms of monolingual data, we only use the
news-crawl corpus with 230M sentences. So the
size of English data we obtained is around 310M.
In our teacher-student distillation experiment, we
translate all English sentences from the parallel
corpus and only 80M sentences sampled from the
English monolingual data. Thus, the ratio of real
parallel data to synthetic parallel data is 1:2.

When translating English sentences from the par-
allel corpus, we generate four candidates using the
teacher model. Then we calculate the TER scores
between those candidates and the corresponding
German reference from the parallel corpus and se-
lect the candidate with the lowest TER score as the
translation result. When translating monolingual
data, the beam size is set to 4. For all translation
results, we conduct data filtering with language
identification using FastText (Joulin et al., 2017).
We also delete sentences of which the source side
has less than 5 tokens and those with repeated trans-
lated segments. The final sizes of our training data
are as follow: 79M real parallel data, 73M synthetic
data generated from the source side of parallel data,
and 76M synthetic data generated from monolin-
gual sentences. Table 1 summarizes the details of
data we use.

2.3 Vocabulary

We build a joint subword segmentation model from
the synthesized parallel data using SentencePiece
(Kudo and Richardson, 2018). The vocabulary size
is set to 25,000 tokens. We employ SentencePiece

Type Corpora Size
Europarl v10 1.8M
News Commentary v16 0.4M
Tilde Rapid corpus 1.6M

Parallel Wiki Titles v3 1.4M
Common Crawl 2.4M
ParaCrawl v7.1 82.6M
WikiMatrix 6.2M
Totle 96.5M
Filtered 79.4M

Mono news-crawl 230M
For KD Translate 80M
Parallel 79.4M

KD Parallel En Translated 73.8M
Mono En Translated 76.8M
Total 230M

Table 1: Our training data details. The training data
consists of three parts: filtered Parallel corpus, Parallel
En translated then filtered and part of news-crawl En
translated then filtered.

regularization (Kudo, 2018) during data process-
ing. We integrate SentencePiece into the training
code and perform subword segmentation on the
source side via sampling. Such strategy can im-
prove model quality and robustness.

2.4 Student Model

The standard Transformer with self-attention in
decoder has a drawback: decoding complexity in-
crease as the decoding length increases. To address
this issue, we refer to some light-weight RNNs,
such as SRU (Lei et al., 2018) and SSRU (Kim
et al., 2019). Based on our previous experiments
and experience, we find that under the teacher-
student distillation setting, SSRU models cam basi-
cally satisfies the translation quality requirements.
As a result, all our student models replace the self-
attention layer with SSRU layer on the decoder
side. The encoder is still the standard Transformer
architecture (Vaswani et al., 2017). We train three
sizes of model during our experiment: base, small,
and tiny, with different hidden sizes and filter sizes.
They all have deep encoders/shallow decoders an
architecture capable of increasing speed and main-
tain quality (Kasai et al., 2021; Wang et al., 2019).
All models share the source and target word em-
beddings and softmax weights.
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2.5 Traning

Our distillation experiments are based on fairseq.
We also integrate SentencePiece into training. The
sampling size is set to 64 and smoothing parameter
to 0.1 for subword regularization. All our models
are trained using 8 Nvidia Tesla V100 for two days
with a batch size of 4096. Because the student mod-
els have relatively small capacities, regularization
techniques such as dropout and label smoothing
are not used. The other parameters use the default
fairseq parameters. We save models every 1000
steps and average the last 10 checkpoints to pro-
duce the final models.

2.6 Evaluation

We use WMT 2019 and 2020 News Task test sets to
measure our models with SacreBLEU (Post, 2018).
We use the 12-1 base configuration model as our
baseline model, which achieves 38.02 BLEU on
2020 test set, 1.7 BLEU lower than our teacher
model. In general, more parameters means better
translation quality. The BLEU score of the small.12
model is about 2-2.5 lower than that of the base.12
model, and the BLEU score of the tiny.2 model
is also about 2-2.5 lower than that of the small.6
model. For details about parameter settings and
BLEU results, see Table 2.

3 Inference Optimizations

For CPU optimization, we use Bolt v1.3.0. Bolt is a
standalone open-source deep learning acceleration
library. v1.3.0 will be available in September 2021.

3.1 Bolt technical overview

As a universal deployment tool for neural networks,
Bolt aims to be faster and lighter. Key features of
Bolt include extremely high performance, low-bit
inference, widely compatible model converter and
low memory usage. Bolt has a standalone C++
runtime, therefore Bolt can perform fast inference
without any third-party dependencies. Bolt sup-
ports most of the NLP and CV models inference on
x86 and ARM CPU as well as MALI GPU. We ap-
ply assembly-level optimizations to ensure comput-
ing performance and memory accessing efficiency.
The operators of Bolt are capable of achieving high
throughput near the peak of hardware.

3.2 8-bit Quantization

To accelerate translation tasks on Intel CPU and
reduce the model size, Bolt uses linear symmetric
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Figure 1: single thread u8s8s32 gemm performance
of Bolt v1.3.0 and oneDNN-v2.3 tested on Intel Xeon
Gold 6266C CPU, the reported sizes are frequently
used in translation task.

quantization (Bhandare et al., 2019) to quantize the
weights and part of the activations to 8-bit signed
integers. Then Bolt converts the activations to 8-
bit unsigned integers by adding 128 because of the
limitation of Intel SIMD instructions. To ensure the
correctness of matrix multiplication, Bolt applies
extra integer offsets which can be obtained offline
to the results.

The most time-consuming operation of trans-
lation tasks is GEMM, Bolt has implemented
u8s8s32 gemm kernel, which is faster than Intel
oneDNN (MKL-DNN). The u8s8s32 gemm perfor-
mance of Bolt and oneDNN are shown in Figure 1.
We present two key-points of the implementation:

Weights Offline Packing. Assuming the lay-
out of GEMM weights is [N, K], Bolt chunks the
weights in the K direction first, and then rearranges
the data as NKNxK4 layout, where x is the chunk-
size of N direction, x is in {8, 16, 32, 48}. The one
that can divide N will be selected.

Highly Efficient Computation. Bolt quantizes
bias to 32-bit signed integers, and then adds the
offset value obtained offline to bias as the new bias,
which is used to initialize the accumulation regis-
ter of computation for saving addition operations.
Bolt uses AVX512 VNNI instructions to perform
u8s8s32 matrix multiplication. We have highly
optimized the assembly to well utilize the regis-
ter sources and ensure the instruction efficiency,
and we also use memory optimization techniques
such as cache-blocking, prefetching and memory
alignment. All elements of the product of matrices
are 32-bit signed integers. These intermediate data
could be efficiently quantized to 8-bit unsigned in-
tegers or de-quantized to floating point numbers in
registers for the next layer.
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Model Emb. FFN Head Depth Params(M) Size(MB) wmt19 wmt20
Teacher*4 1024 4096 16 25/6 514 2000 46.71 39.70
Base.12 512 2048 8 12/1 53 210 44.65 38.02
Small.12 384 1536 6 12/1 33 132 42.56 35.77
Small.9 384 1536 6 9/1 28 112 42.17 35.73
Small.6 384 1536 6 6/1 22 88 41.15 34.49
Tiny.2 256 1024 4 6/2 13 52 38.92 31.93
Tiny 256 1024 4 6/1 12 48 37.22 30.54

Table 2: Results of Distillation Training. The translation quality deteriorates as the model size decreases: the
BLEU score of small model is 2-2.5 lower than that of the base model, and the BLEU score of the tiny model is
also about 2-2.5 lower than that of the small model.

3.3 Greedy decoding and Caching

To maximize speed and reduce memory usage, we
use greedy search instead of beam search. During
decoding, we also skip the final softmax layer and
simply get the maximum from the output logits.

Due to the autoregressive model, we also cache
the linear transformations for keys and values be-
fore the self-attention and cross attention layers.

3.4 Shortlist and Online Quantification

When decoding, we also use the mapping rela-
tionship between source and target tokens, a.k.a
shortlist, which finds the best matched target to-
ken via the source input. Such strategy decreases
the dimensions of softmax_weight, which can sig-
nificantly improve the decoding efficiency while
ensuring that the quality is only slightly influenced.

We use fastalign3 (Dyer et al., 2013) to construct
the mapping relationship. During inference, a small
target token set is obtained via querying the map-
ping dynamically, which conflicts with our offline
quantization matrix technique. As a result, we try
two schemes: a) abandon shortlist and use offline
quantification instead; b) keep shortlist and quan-
tify the reduced matrix online. In our experiments,
we find that the efficiency of the two versions de-
pends on the size of the target tokens. Because
the larger the matrix, the greater the cost of on-
line quantization, and the multiplicative benefits of
dimension reduction are offset. For example, on
a model we tested, when the input is fixed to 47
tokens, the time cost of a) is 46 ms; the time cost
of b) is 68 ms when the size is set to 25000; and
the time cost is 48 ms when the size is set to 2000.

Since we focus on the one CPU core latency
track, the model processes only one input at a time,

3http://github.com/clab/fast align

and the maximum size of target tokens is less than
2000, so we choose b).

3.5 Submitted Docker images

We choose the base image of ubuntu:18.04. Fol-
lowing the task requirements, our startup script is
/run.sh. We use C++ to encapsulate our calls to Bolt
and models, SentencePiece, as well as our simple
pre- and post-processing. Our model is stored in
the /model directory, which contains the converted
Bolt model, vocabulary, and shortlist files. The
compressed file is provided. Due to the simple run-
time environment of Bolt, the final SO package is
about 2 MB without any third-party dependency.
After quantization, the maximum size of our model
is less than 60 MB and the minimum size is about
13 MB. Therefore, the final submitted image is
about 100 MB.

4 Optimization results

The latency track we participated in is defined as
providing one sentence on standard input and flush-
ing then waiting for your system to provide a trans-
lation on its standard output (and flush) before pro-
viding the next sentence. So we don’t use tech-
niques such as batch. We believe such strategy can
better demonstrate the capability our model and
inference framework.

After the preceding optimizations, the inference
speed is significantly improved. Table 3 lists the re-
sults. In general, INT8 inference greatly improves
performance. Especially, when the model is rela-
tively large, INT8 improves performance by about
three times when comparing with FP32. As the
model size becomes smaller, the speed improve-
ment becomes less obvious. But our smallest model
also has at least a 2x or above speed improvement.
Comparing with that of FP32, the average transla-
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Model Precious Size WPS BLEU
Base.12 FP32 212 237 38.26

INT8 53 815 38.02
Small.12 FP32 133 411 36.15

INT8 33 1158 35.77
Small.9 FP32 112 473 35.90

INT8 28 1295 35.73
Small.6 FP32 88 550 34.53

INT8 22 1467 34.49
Tiny.2 FP32 52 759 32.06

INT8 13 1515 31.93
Tiny FP32 48 1000 31.01

INT8 12 2096 30.54

Table 3: Optimization results. The test set is WMT
2020 News Task. The unit of size is MB. WPS refers
to the source side. The test environment is Intel(R)
Xeon(R) Gold 6278C CPU @ 2.60GH. We submit four
models: Base.12, Small.9, Small.6 and Tiny.

tion quality of INT8 models decreases less than 0.1
BLEU.

In our small model setting, the translation quality
of the 12-1 model is not significantly improved
compared with the 9-1 model, but the inference
speed decreases by about 25%. Perhaps under the
small model setting, the addition of three encoding
layers does not bring significant changes to the
model quality. Compared with the Tiny.2 model,
the size of our Small.6 model doubles, resulting in
an increase of 2.5 BLEU. However, the inference
speed are almost the same. In addition, the speed
of our Tiny model is 30% faster than our Tiny.2
model by dropping a decoder layer. Our result
demonstrates that the number of decoding layers
has greater impacts on decoding efficiency. As a
result, we submit four models: Base.12, Small.9,
Small.6 and Tiny.

The above tests on inference speed are per-
formed with Intel(R) Xeon(R) Gold 6278C CPU
@ 2.60GHz.

5 Conclusion

In order to produce a translation system with high
inference efficiency, we explore sentence-level dis-
tillation techniques and train student models with
a trade-off between speed and quality by lever-
aging Deep-Encoder and Shallow-Decoder mod-
els. In terms of inference, we use Huawei Noah’s
Bolt library. Using a series of optimization tech-
niques, such as INT8 inference and custom efficient

GEMM operators, we accelerate inference speed
by 2 to 3 times. By using shortlist, greedy search
and caching, we submit four models with different
settings to the efficiency one CPU core latency task,
realizing efficiency improvement under different
circumstances.
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Abstract

This paper describes the NiuTrans system for
the WMT21 translation efficiency task1. Fol-
lowing last year’s work, we explore various
techniques to improve the efficiency while
maintaining translation quality. We investigate
the combinations of lightweight Transformer
architectures and knowledge distillation strate-
gies. Also, we improve the translation ef-
ficiency with graph optimization, low preci-
sion, dynamic batching, and parallel pre/post-
processing. Putting these together, our system
can translate 247,000 words per second on an
NVIDIA A100, being 3× faster than our last
year’s system. Our system is the fastest and
has the lowest memory consumption on the
GPU-throughput track. The code, model, and
pipeline will be available at NiuTrans.NMT2.

1 Introduction

Large and deep Transformer models have dom-
inated machine translation (MT) tasks in recent
years (Vaswani et al., 2017; Edunov et al., 2018;
Wang et al., 2019; Raffel et al., 2020). Despite their
high accuracy, these models are inefficient and dif-
ficult to deploy (Wang et al., 2020a; Hu et al., 2021;
Lin et al., 2021b). Many efforts have been made
to improve the translation efficiency, including effi-
cient architectures (Li et al., 2021a,b), quantization
(Bhandare et al., 2019; Lin et al., 2020), and knowl-
edge distillation (Li et al., 2020; Lin et al., 2021a).

This work investigates efficient Transformers
architectures and optimizations specialized for dif-
ferent hardware platforms. In particular, we study
deep encoder and shallow decoder Transformer
models and optimize them for both GPUs and
CPUs. Starting from an ensemble of three deep
Transformer teacher models, we train various stu-
dent models via sequence-level knowledge distil-

1http://statmt.org/wmt21/
efficiency-task.html

2https://github.com/NiuTrans/NiuTrans.
NMT

lation (SKD) (Hinton et al., 2015; Li et al., 2021a;
Kim and Rush, 2016) and data augmentation (Shen
et al., 2020). We find that using a deep encoder
(6 layers) and a shallow decoder (1 layer) gives
reasonable improvements in speed while maintain-
ing high translation quality. We improve the stu-
dent model’s efficiency by removing unimportant
components, including the FFN sub-layers and
multi-head mechanism. We also explore other
model-agnostic optimizations, including graph op-
timization, dynamic batching, parallel pre/post-
processing, 8-bit matrix multiplication on CPUs,
and 16-bit computation on GPUs.

Section 2 describes the training procedures of
the deep teacher models. Then, Section 3 presents
various optimizations for reducing the model size,
improving model performance and efficiency. Fi-
nally, Section 4 details the accuracy and efficiency
results of our submissions for the shared efficiency
task.

2 Model Overview

Following Hu et al. (2020), Li et al. (2021a) and
Lin et al. (2021a), we use the SKD method to train
our models. Our experiments also show that the
SKD method can obtain better performance than the
word-level knowledge distillation (WKD) method,
similar to Kim and Rush (2016). Therefore, all of
student models are optimized by using the inter-
polated SKD method (Kim and Rush, 2016), and
trained on data generated from the teacher models.

2.1 Deep Transformer Teacher Models

Recently, researchers have explored deeper mod-
els to improve the translation quality (Wang et al.,
2019; Li et al., 2020; Dehghani et al., 2019; Wang
et al., 2020b). Inspired by them, we employ deep
Transformers as the teacher models. More specifi-
cally, we train three teachers with different configu-
rations, including Deep-30, Deep-12-768, and Skip-
ping Sublayer-40. We also utilize Li et al. (2019)’s
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Student Model Param. BLEU
Student-6-6-8 96M 33.2
Student-6-1-8 42M 33.0
Student-6-1-1 42M 32.9

Table 1: Reference BLEU scores for the student mod-
els on newstest20. 6-6-8 means that the model con-
tains 6 encoder layers and 6 decoder layers with 8 at-
tention heads. Other hyper-parameters are the same as
the vanilla Transformer.

ensemble strategy to boost the teachers.

Deep-30 Transformer Model: We set the num-
ber of encoder layers to 30 in the Transformer
model. Other hyper-parameters are identical to
the vanilla Transformer.

Deep-12-768 Transformer Model: This model
modifies the number of encoder layers, hidden sizes
and embedding sizes to 12, 3072 and 768. Such a
setting makes the Transformer model deeper and
wider. Other hyper-parameters are the same as
vanilla Transformer.

Skipping Sublayer-40 Transformer Model:
This model uses a simple training procedure that
samples one streaming configuration in each
iteration (Li et al., 2021a). The number of encoder
layers is 40 and model’s other setups are same as
Li et al. (2021a).

We adopt the relative position representation
(RPR) (Shaw et al., 2018) to further improve the
teacher models and set the key’s relative length to
8.

2.2 Lightweight Transformer Student Models

Although the ensemble teacher model delivers ex-
cellent performance, our goal is to learn lightweight
models. The natural idea is to compress knowledge
from an ensemble into the lightweight model using
knowledge distillation (Hinton et al., 2015). We
employ sequence-level knowledge distillation on
the ensemble teacher model described in Section
2.1.

Seqence-level Knowledge Distillation The
SKD will make a student model mimic the
teacher’s behaviors at the sequence level. More-
over, the method considers the sequence-level
distribution specified by the model over all possible
sequences t ∈ T . Following Kim and Rush (2016),
the loss function of SKD method for training

students is

LSKD ≈ −
∑

t∈T
1{t = ŷ} log p(t | s) (1)

= − log p(t = ŷ | s) (2)

where 1{·}is the indicator function, ŷ is the output
of teacher model using beam search, s symbolizes
the source sentence and p(·|·) denotes the condi-
tional probability. We use the ensemble teacher
model to generate multiple translations of the raw
English sentences. In particular, we collect the 5-
best list for each sentence against the original target
to create the synthetic training data. However, we
select only 12 million synthetic data to train our stu-
dent models to reduce training costs. We find that
student models will not have better performance
when increasing the number of training data.

Fast Student Models As suggested in Hu et al.
(2020), the bottleneck of translation efficiency is
the decoder part. Hence, we accelerate the de-
coding by reducing the number of decoder layers
and removing multi-head mechanism3. Inspired by
Hu et al. (2021), we design the lightweight Trans-
former student model with one decoder layer. We
further remove the multi-head mechanism in the
decoder’s attention modules. Table 1 shows that
the Transformer student model with one decoder
layer and one decoder attention head can achieve
similar translation quality to the baseline. There-
fore, we train four different student models based
on the Transformer architecture with one decoder
layer and one decoder attention head. Those stu-
dent models are described in detail in the Table 2.
Besides, experiments show that adding more en-
coder layers cannot improve the performance when
the student model has 12 encoder layers. Therefore,
our submissions have 12 encoder layers at most.

2.3 Data and Training Details
Our data is constrained by the condition of the
WMT 2021 English-German news translation task4,
and we use the same data filtering method as Zhang
et al. (2020). We select 20 million pairs to train
our teacher models after filtering all official re-
leased parallel datasets (without official synthetic
datasets). The data is tokenized with Moses tok-
enizer (Koehn et al., 2007), and jointly Byte-Pair

3Although the multi-head mechanism does not increase the
parameter of the model, it brings non-negligible computational
costs.

4https://www.statmt.org/wmt21/
translation-task.html
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Student Model N-Enc Dim-FFN Param. Speedup newstest18 newstest19 newstest20
Student-12-1-512 12 512 56M 2.0× 45.3 41.7 33.2
Student-6-1-512 6 512 38M 2.3× 44.5 41.0 32.7
Student-6-1-0 6 0 37M 2.4× 43.9 40.6 32.4
Student-3-1-512 3 512 28M 2.6× 42.8 40.0 31.5

Table 2: N-Enc is the number of encoder layers and Dim-FFN denotes the feed-forward network (FFN) size. The
Speedup and BLEU results are measured on a TITAN V GPU. The Speedup is calculated comparing with our
ensemble teacher model. The student model has not FFN component in the decoder when the Dim-FFN is 0.
Evaluation is performed without inference optimizations and with a beam size of 1.

Teacher Model Param. BLEU
Deep-30 138M 32.8
Deep-12-768 170M 33.3
Skipping Sublayer-40 171M 33.1
Ensemble 479M 33.4

Table 3: Results on newstest20-Teacher Models. We
train our teacher models with the RPR and back-
translation.

Encoded (BPE) (Sennrich et al., 2016) with 32K
merge operations using a shared vocabulary. After
decoding, we remove the BPE separators and de-
tokenize all tokens with Moses detokenizer (Koehn
et al., 2007).

Teacher Models Training We train three
teacher models using newstest19 as the develop-
ment set with Fairseq (Ott et al., 2019). We
share the source-side and target-side embeddings
with the decoder output weights. We use the Adam
optimizer (Kingma and Ba, 2015) with β1 = 0.9,
β2 = 0.997 and ε = 10−8 as well as gradient accu-
mulation due to the high GPU memory footprints.
Each model is trained on 8 TITAN V GPUs for up
to 11 epochs. The learning rate is decayed based on
the inverse square root of the update number after
1,6000 warm-up steps, and the maximum learning
rate is 0.002. After training, we average the last
five checkpoints in the training process for all mod-
els. Similar to Zhang et al. (2020), we train our
teacher models with a round of back-translation
with 12 million monolingual data selected from the
News crawl and News Commentary. We train three
De→En models with the same method and model
setup to generate pseudo-data. Table 3 shows the
results of all teacher models and their ensemble,
where we report SacreBLEU (Post, 2018) and the
model size. Our final ensemble teacher model can
achieve a BLEU score of 33.4 on newstest20.

Student Models Training The training settings
for student models are the same for the teacher mod-
els, except its learning rate is 0.0007 and warmup-
updates is 8000. In addition, we also use the cutoff
method (Shen et al., 2020) to boost our student
models5 and we train our student model with 21
epochs. Table 2 shows the results of all student
models. Our student model yields a significant
speedup (2×-2.6×) with modest sacrifice in terms
of BLEU (0.2-0.9 on newstest20).

2.4 Interpretation of Results
After training the final student models, we eval-
uate their BLEU scores on the English-German
newstest20, newstest19, and newstest18 before any
inference optimization. Results show that the stu-
dent models can achieve very similar performance
to the teachers. For instance, the Student-12-1-512
model delivers a loss of 0.2 BLEU score compared
to the ensemble of teacher models.

3 Optimizations for Decoding

Our optimizations for decoding are implemented
with NiuTensor 6. The optimizations can be divided
into three parts, including optimizations for CPUs,
GPUs, and device-independent techniques.

3.1 Optimizations for GPUs
For the GPU-based decoding, we mainly explore
dynamic batching and FP16 inference.

Dynamic Batching Unlike the CPU version, the
easiest way to reduce the translation time on GPUs
is to increase the batch size within a specific range.
We implement a dynamic batching scheme that
maximizes the number of sentences in the batch
while limiting the number of tokens. This strategy

5https://github.com/stevezheng23/
fairseq_extension/tree/master/examples/
translation/augmentation

6https://github.com/NiuTrans/NiuTensor
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Figure 1: Results on Student-6-1-512 model. The time
cost is measured on an Intel Xeon Gold 6240 CPU with
100,000 lines of raw English sentences with an aver-
aged length of 18 words.

significantly accelerates the inference compared
to a fixed batch size when the sequence length is
short.

FP16 Inference Since the Tesla A100 GPU sup-
ports calculations under FP16, our systems execute
almost all operations in 16-bit floating-point. To es-
cape overflow, we convert the data type before and
after the softmax operation in the attention modules.
We also reorder some operations for numerical sta-
bility. For instance, we apply the scaling operation
(dived by

√
dk) to the query instead of the atten-

tion weights. To accelerate our systems further,
we replace the vanilla layer normalization with the
L1-norm (Lin et al., 2020). Also, we find that re-
moving the multi-head mechanism (by setting the
head to 1) in the student models significantly im-
proves the throughput without performance loss.

3.2 Optimizations for CPUs
We employ the Student-6-1-512 and Student-3-1-
512 models as our CPU submissions. Two methods
are discussed to speed up the decoding for our CPU
systems.

The Use of MKL We use the Intel Math Kernel
Library (Wang et al., 2014) to optimize our NiuTen-
sor framework, which helps our systems to make
the full use of the Intel architecture and to extract
the maximum performance.

8-bit Matrix Multiplication with Packing We
implement 8-bit matrix multiplication using the
open-source library FBGEMM (Khudia et al.,
2021). Following Kim et al. (2019), we quantize
each column of the weight matrix separately with

different scales and offsets. Scale and offsets for
weight matrix are calculated by:

bscale[j] =
14σj
255

(3)

bzeropoint[j] =
127− (x̄j + 7σj)

bscale[j]
(4)

where σj and x̄j refers to average and standard
deviation for the j-th column. The quantization
parameters for the input matrix is calculated by:

ascale =
xmax − xmin

255
(5)

azeropoint =
255− xmax

ascale
(6)

where xmax and xmin are the maximum and min-
imum values of the matrix respectively. With
FBGEMM API, we also execute the packing op-
eration to change the layout of the matrices into a
form that uses the CPU more efficiently. We pre-
quantize and pre-pack all the weight matrices to
avoid repeated operation during inference.

where xmax and xmin are the maximum and
minimum values of the matrix, respectively. We
also execute the packing operation to change the
layout of the matrices into a form that uses the CPU
more efficiently. We pre-quantize and pre-pack all
the weight matrices to avoid repeated operation
during inference.

3.3 Other Optimizations
Furthermore, we explore other device-independent
methods to optimize our systems. Those methods
help our systems to achieve obvious speed-up with-
out translation precision loss.

Graph Optimization A neural net can be repre-
sented by a directed acyclic graph (DAG), where
the nodes represent tensors and the connections
represent operations. We optimize our system by
simplifying the computational graph of the mod-
els. The optimizations for the graph are detailed as
follows:

• Computation optimization. We prune all re-
dundant operations and reorder some opera-
tions in the computational graph. For instance,
we remove the log-softmax operation in the
output layer when using greedy search. We
also extract the transpose operations from ma-
trix multiplications to the begin of decoding.
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Figure 2: BLEU on newstest20 versus words per second (Words/s) with different optimizations on a TITAN V
GPU and Intel Xeon Gold 5118 CPUs. Result of decoding speed is measured with 0.1 M sentences (average
length is 18). When the GPU system is running, it will use all free CPUs on the device.

• Memory optimization. We reuse all possi-
ble nodes to minimize the memory consump-
tion. We also reduce the memory allocation
or movement with an efficient memory pool.
Moreover, we sort the source sentences in de-
scending order of length and detect the peak
memory footprint before decoding.

Parallel Execution We use the GNU Parallel
(Tange, 2011) for our systems to perform tasks
in parallel. More specifically, we split the stan-
dard input into several lines and deliver them via
the pipeline. The method is used to accelerate
pre-processing, post-processing, and decoding on
CPUs. We also find that the system decoding
speed/memory is strongly correlated with the num-
ber of lines per task. To find the best number of
lines for each run, we measure the time cost in dif-
ferent setups against the number of lines. Figure
1 shows that 2000 is a relatively good choice, and
the Student-6-1-512 model can translate 100,000
sentences in 102.6s on CPUs under this setup.

Better Decoding Configurations As aforemen-
tioned, our GPU versions use a large batch size,
but the batch size on the CPU is much smaller. To
be more clear, there is sentence batch (sbatch) and
word batch (wbatch) in our systems, and they re-
strict the number of sentences and number of words
in a mini-batch to not be greater than sbatch and
wbatch, respectively. In our GPU systems, we set
the sbatch/wbatch to 3072/64000. For our CPU
systems, the number of processes is managed by
the Parallel tool, which is more efficient and accu-
rate. Moreover, We use one MKL thread for each

process and set the sbatch/wbatch to 128/2048.

Greedy Search In the practice of knowledge dis-
tillation, we find that our systems are insensitive to
the beam size. It means that the translation qual-
ity is good enough even using greedy search in all
submissions.

Fast Data Preparation We use the fastBPE7,
a faster C++ version of subword-nmt8, to speed
the BPE process. Moreover, we also use the fast-
mosestokenizer9 for tokenization.

3.4 Results after Optimizations
Figure 2 plots the Student-6-1-512 model’s per-
formance with different decoding optimizations.
All results show that our optimizations can signifi-
cantly speed up our system without losing BLEU.
What is interesting about the BLEU is that we can
achieve additional improvements of 0.4/0.1 BLEU
points on the GPU/CPU through decoding opti-
mizations in all our experiments. We also measure
other models after decoding optimizations and find
their performance is similar to the Student-6-1-512
model.

4 Submissions and Results

4.1 Submissions
For the GPU track submissions, our GPU systems
are compiled with CUDA 11.2. We set the num-

7https://github.com/glample/fastBPE
8https://github.com/rsennrich/

subword-nmt
9https://github.com/mingruimingrui/

fast-mosestokenizer
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ber of decoder layers and the number of our de-
coder attention head to 1 as described in Section
2.2 for all our GPU systems. We see a speedup
of more than 6× on the GPU system created by
Student-12-1-512 model and a slight decrease of
only 0.2 BLEU on the newstest20 compared to the
deep ensemble model. The system is named as
Base-GPU-System in following part. We continue
to reduce the number of encoder layers for more
accelerations, and the GPU system with Student-6-
1-512 model reduces the translation time by one-
four with only six encoder layers compared to the
Base-GPU-System. Our fastest GPU system con-
sists of three encoder layers and one decoder layer,
which achieves 31.5 BLEU on the newstest20 with
GPU and 1.6× speedup compared to the Base-
GPU-System. We also employ the Student-6-1-0
model to create a GPU system that can achieve the
1.3× speedup compared to Base-GPU-System. Our
systems are compiled in the 11.2.1-devel-centos7
docker image, an NVIDIA open-source image10.
We copy the executables, dependence tools, and
model files to the 11.2.1-base-centos7 docker im-
age (final submission). In this way, we ensure all
of our system docker images can be executed by
the organizers successfully and reduce the docker
images size.

For the CPU track submissions, we use the test
machine, which has 18 virtual cores. Our CPU
version is compiled with MKL static library, and
the executable file is 23MiB. Also, we use the 8-
bit matrix multiplication with packing to speed the
matrix multiplication in the network. We use the
Student-3-1-512 and Student-6-1-512 models in
our CPU systems, and they respectively achieve
31.5 and 32.8 BLEU on newstest20. For our CPU
docker images, we use the base-centos7 docker
image11 to deploy our CPU MT systems.

Furthermore, all submissions are tested with dif-
ferent cases, including dirty data, empty input, and
very long sentences. The test results show that
our systems can run successfully with exceptional
inputs.

4.2 Results

Our systems for the GPU-throughput track are
the fastest overall submissions. Specifically, the
Student-3-1-512 system can translate about 250
thousand words per second and achieve 25.5 BLEU

10https://hub.docker.com/r/nvidia/cuda
11https://hub.docker.com/_/centos

on newstest21. We attribute this to the compari-
son of the performance of our teacher model on
WMT21. In the CPU track, our system also has
competitive performance. Our fastest CPU sys-
tem created by Student-3-1-512 model can trans-
late about 48 thousand words per real second via
36 CPU cores and can achieve 25.5 BLEU. We
find that reducing the number of encoder layers for
student model achieves lower BLEU scores at a
similar speed for our CPU systems. Moreover, we
compare the cost-effective of GPU and CPU decod-
ing in terms of millions of words translated per dol-
lar according to the official evaluation results. We
find that highly-effective GPU decoding is about
to out-compete CPU-bound decoding in terms of
cost-effective. Noteworthy, our GPU system with
Student-3-1-512 model can translate 300M words
per dollar with acceptable quality. Also, all of our
GPU systems have the lowest RAM consumption
(about 4 GB) to official test compared with the
submissions of other participants.

5 Conclusion

We have described our systems for the WMT21
shared efficiency task. We have explored various
efficient Transformer architectures and optimiza-
tions specialized for both CPUs and GPUs. We
have shown that a lightweight decoder and proper
optimizations for different hardware can signifi-
cantly accelerate the translation process with slight
or no loss of translation quality. Our fastest GPU
system with three encoder layers and one decoder
layer is 11× faster than the deep ensemble model
and lose 1.9 BLEU points.
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Abstract

The paper describes the TenTrans’s submis-
sions to the WMT 2021 Efficiency Shared
Task. We explore training a variety of smaller
compact transformer models using the teacher-
student setup. Our model is trained by our
self-developed open-source multilingual train-
ing platform TenTrans-Py1. We also release
an open-source high-performance inference
toolkit2 for transformer models and the code
is written in C++ completely. All additional
optimizations are built on top of the inference
engine including attention caching, kernel fu-
sion, early-stop, and several other optimiza-
tions. In our submissions, the fastest system
can translate more than 22,000 tokens per sec-
ond with a single Tesla P4 while maintaining
38.36 BLEU on En-De newstest2019. Our
trained models and more details are available
in TenTrans-Decoding competition examples3.

1 Introduction

We participate in the GPU throughput track of the
Workshop on Machine Translation (WMT) 2021
Efficiency Shared Task. The efficiency task aims at
exploring the different techniques for training and
optimizing GPU models for high throughput while
preserving the highest possible accuracy. While we
do not pay more attention to training techniques,
we apply a variety of optimizations to improve the
computation efficiency of our GPU models in the
inference phase.

In terms of the training phase, we trained a va-
riety of smaller compact student models using the
common teacher-student training approach (Hinton
et al., 2015; Kim and Rush, 2016) on our open-
source multilingual training platform TenTrans-

∗ Corresponding author.
1https://github.com/TenTrans/TenTrans
2https://github.com/TenTrans/

TenTrans-Decoding
3https://github.com/TenTrans/

TenTrans-Decoding/blob/master/examples/
WMT21-Efficiency.md

Py. All of them are based on the deep trans-
former which has proven more effective and has
lower training costs than the wide transformer mod-
els (Wang et al., 2019). For the inference phase,
our strategy for the shared task includes attention
caching, kernel fusion, early-stop, and several other
optimizations. All of these optimizations are em-
ployed in a high-optimized and C++-based infer-
ence engine TenTrans-Decoding.

The paper is structured as follows: Section 2
describes the data preparation and the training de-
tails, then Section 3 presents the variety of ours
optimizations to improve decoding efficiency. The
detailed accuracy and efficiency results are shown
in Section 4. Finally, we conclude our work in
Section 5.

2 Teacher-student Training

To train smaller compact student models, the
teacher-student training approach (Hinton et al.,
2015; Kim and Rush, 2016) is adopted. First, a
large model (the teacher) is trained on all avail-
able bilingual data, included synthetic data gener-
ated by the back-translation (Sennrich et al., 2015a)
method. Multiple model ensembles are also typi-
cally used to build stronger teacher systems. Then,
all our small optimized models (the student) are
created using sequence-level knowledge distilla-
tion (Kim and Rush, 2016) and trained on data
generated from the teacher model. The sequence-
level knowledge distillation is a common technique
that has proven successful for reducing the size of
neural models, especially in NMT tasks.

2.1 Deep Transformer

Transformer networks (Vaswani et al., 2017) are
the current state-of-the-art in many machine trans-
lation tasks, and the deep transformer (Wang et al.,
2019) which simply stacks more encoder layers
has been proved to further enhance the accuracy
of the model. To stabilize the training of the deep
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Transformer Nenc Ndec h dmodel dff param. BLEU
Teacher-base-20_6 (2xFFN) 20 6 8 512 4096 160M 39.97
Student-base-20_1 20 1 8 512 2048 88M 39.93
Student-base-10_1 10 1 8 512 2048 58M 39.30
Teacher-tiny-20_1 20 1 8 256 1024 28M 38.36

Table 1: Transformer model configurations and SacreBLEU (Post, 2018) scores on newstest2019.

model, we use the Pre-Norm strategy (Wang et al.,
2019). The layer normalization (Ba et al., 2016)
is applied to the input of every sub-layer which
the computation sequence could be expressed as:
layer normalization−→multi-head attention / feed-
forward −→ residual-add. All of our models are
based on deep transformer architecture.

2.2 Teacher & Student Models

The different model configurations for both teacher
and student models are presented in Table 1. We
train a teacher model and three student model vari-
ant with a different number of encoder layers Nenc,
decoder layers Ndec, hidden size dmodel, and feed-
forward network size dff . We adopt a deep encoder
and a shallow decoder architecture of all student
models, and the number of decoder layers is set to 1
by default. All of our models tie source embedding,
target embedding, and softmax weights.

2.3 Data and Training Details

Dataset Following the shared task setup, we
limit our training data to the WMT 2021 English-
German translation task. The bilingual data used
in the English-German task includes all the avail-
able corpora provided by WMT 2021: Europarl
v10, ParaCrawl v7.1, News Commentary, Wiki Ti-
tles v3, Tilde Rapid corpus and WikiMatrix. For
monolingual data, we only use NewsCrawl2020,
Europarl v10, and News Commentary for back-
translation.
Data preprocessing Then, we normalize punc-
tuation and tokenize all data with the Moses tok-
enizer (Koehn et al., 2007). For the bitext datasets,
we remain sentences no longer than 200 words as
well as sentence pairs with a source / target length
ratio between 0.3 and 2.0. The fast-align tools
(Dyer et al., 2013) are applied to further obtain a
cleaned and high-quality parallel corpus. For the
monolingual dataset, the sentences with words be-
tween 4 and 200 are remained. See Table 2 for
details on the bitext and monolingual dataset sizes.
After that, we use joint byte pair encodings (BPE)

En-De De (mono.)
No filter 49.2M 57.0M
+ length filter 46.9M 55.2M

+ fast-align 41.2M -

Table 2: Number of sentences in bitext and monolin-
gual datasets for different filtering schemes.

with 32K split operations for subword segmenta-
tion (Sennrich et al., 2015b).
Student training First, we train the teacher
model on all available bilingual data, including
synthetic data through the back-translation method,
and we use English-German newstest2019 as the
development set. We ensemble four best models
for building a stronger teacher. Then, the English
part of the bilingual data is translated by the teacher
model and the resulting synthesized parallel data
is used to train the student models. Table 1 shows
their evaluation scores on newstest2019 of different
models. The results correlate well with the expec-
tation that more model parameters lead to better
performance. Our distillation student models show
strong competitiveness even when the number of
parameters is greatly reduced.

3 GPU Inference Optimizations

3.1 Implementation: TenTrans-Decoding

TenTrans-Decoding is an open-source high-
optimized inference engine for transformer mod-
els and the code is written in C++. TenTrans-
Decoding’s goal is to offer a lightweight and rapid
deployment of high-performance service solutions
for executing models. All additional optimizations
are built on top of the inference engine.

3.2 Attention Caching

We apply the common technique of caching linear
projections in Transformer decoder layers. More
specifically, we cache the linear transformations
for keys and values before cross-attention layers
and each step of decoder self-attention layers.
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3.3 Kernel Fusion
To reduce kernel launching overhead and enhance
the GPU computation efficiency, we implement
many kernel fusion techniques for our Transformer
models.

• Add_bias_residual_layerNormalization For
the layer normalization between two General
Matrix Multiplications (GEMMs), we reor-
ganize the AddBias kernel, residual network,
and LayerNormalization kernel into a single
one.

• Add_bias_ReLU In the Feed-Forward network
layers of the Transformer model, the AddBias
kernel and ReLU kernel are fused into one.

• Add_bias_residual For the output of every en-
coder or decoder layer, we fuse the AddBias
kernel and residual network.

• Fused_multihead_attention In addition to the
fusion techniques above, we also fuse the at-
tention layer by packing GEMMs and bias to
further improve the computation efficiency.

Figure 1 details the kernel fusion techniques of a
transformer decoder layer. The computation graph
of a transformer can be reorganized into a more
compact graph by fusing all the kernels between
two GEMMs into a single one.

layer normalization (input)

masked multi-head attention

add bias + residual +  
layer  normalization

cross multi-head attention

add bias + residual +  
layer  normalization

GEMM8

add bias + ReLU

GEMM9

add bias + residual

GEMM3

x weightQ/K/V  ->  Q / K / V 
(GEMM 0, 1, 2)

 add bias to Q / K / V 
softmax(QK / sqrt(size_per_head)) x V

x weightQ  ->  Q 
encoder_output x weightK/V  ->  K / V 

(GEMM 4, 5, 6)

 add bias to Q / K / V 
softmax(QK / sqrt(size_per_head)) x V

GEMM7

Figure 1: Kernel fusion of a transformer decoder layer.
The part in darker color represent using the kernel fu-
sion technique.

Speed Ratio BLEU
TenTrans-Py 696.5 1.00x 38.91
TenTrans-Decoding 1822.4 2.62x 38.91

+ kernel fusion 2565.4 3.68x 38.82
+ early-stop 2682.5 3.85x 38.82

+ sorted batch 5034.8 7.23x 38.98

Table 3: The decoding speed (source tokens per
second) and SacreBLEU scores on newstest2019 for
student-tiny-20_1. The speed is measured by a single
Tesla P4 GPU and the beam size is 4.

3.4 Early-stop

In batch decoding, the number of decoding ending
steps between sentences is different. The early-stop
strategy which optimizes kernel function is adopted
to avoid redundant computation. For sentences that
have been decoded in batch, there is no additional
computation for these sentences until the whole
batch has been decoded.

3.5 Sorted Batch & Greedy Search

In addition to the methods above, we sort all input
sentences from shortest to longest, and the batch
size is 128 in our settings. The sorting makes the
batches contain sentences of similar sizes which
reduces the amount of padding and increases the
computation efficiency. During decoding, we use
greedy search instead of beam search since we find
the distillation model are insensitive to the beam
size. We skip the final softmax layer and simply
get the maximum from the output logits.

4 Optimization Results

Table 3 shows the impact of different inference op-
timizations when decoding the Student-tiny-20_1
student transformer model. TenTrans-Decoding
leads to a 2.62x speedup than the TenTrans-Py base-
line without any inference optimizations. Combine
all the inference optimizations mentioned above, it
can achieve a 7.23x speedup with no accuracy loss
over the baseline.

Table 4 presents all of our submissions and we
only participate in the GPU-throughput track. As
details in Table 4, we report our model configu-
ration, model size, and metric for translation, in-
cluding SacreBLEU scores on newstest2019 and
the real translation time cost. All of our systems
are tested on a single Tesla P4 GPU. All student
models follow a deep encoder and a shallow de-
coder architecture, the number of decoder lay-
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transformer Model size Speed (tokens/s) Ratio Time Cost (s) BLEU
Teacher-base-20_6 (2xFFN) 642MB 6274.0 1.00x 9.80 39.97
Student-base-20_1 354MB 12128.1 1.93x 5.07 39.93
Student-base-10_1 234MB 15900.3 2.53x 3.87 39.30
Student-tiny-20_1 113MB 22481.8 3.58x 2.74 38.36

Table 4: Results of all submissions. Time Cost in seconds to translate newstest2019 and BLEU scores are reported
using SacreBLEU. The newstest2019 contains 1997 sentences. All systems were executed on a single Tesla P4
GPU with greedy search.

ers is 1 by default. All student models training
with sequence-level distillation show a competitive
performance. The Student-base-20_1 transformer
achieves a 1.93x speedup over the teacher base-
line with almost no accuracy loss, and the amount
of parameters is greatly reduced. Compared with
the teacher baseline, the Student-base-10_1 trans-
former has a speedup of 2.53x times and a slight
decrease of only 0.67 BLEU. The Student-tiny-
20_1 transformer, our fastest system, which has
one-sixth parameters of the teacher model, achieves
38.36 BLEU on newstest2019 and speeds up the
teacher baseline by 3.58x.

In this version, we do not pay more attention to
the model size, memory footprint, and low preci-
sion inference (e.g., FP16). All operations on the
model are based on FP32 floating-point numbers.
In the future version, we plan to optimize these
points mentioned above.

5 Conclusion

This work presents the TenTrans’s submissions
to the 2021 Efficiency Shared Task of WMT. We
show the deep encoder and shallow decoder student
models that training with sequence-level distilla-
tion can achieve a competitive performance both in
speed and accuracy compared with the teacher base-
line. To further improve computation efficiency,
we combine several optimizations including atten-
tion caching, kernel fusion, early-stop and sorted
batch. Finally, our fastest student model achieves a
speedup of 3.58x times, while only has one-sixth
parameters of the teacher baseline.

In the future, we will apply low-precision in-
ference (e.g., FP16) and more kernel fusion tech-
niques to improve the computation efficiency of
our GPU systems. Furthermore, we will continue
to explore a more efficient teacher-student training
approach to obtain compact student models with
competitive performance both in quality and speed.
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Abstract
This paper describes Lingua Custodia’s sub-
mission to the WMT21 shared task on ma-
chine translation using terminologies. We
consider three directions, namely English to
French, Russian, and Chinese. We rely on
a Transformer-based architecture as a build-
ing block, and we explore a method which
introduces two main changes to the standard
procedure to handle terminologies. The first
one consists in augmenting the training data
in such a way as to encourage the model to
learn a copy behavior when it encounters ter-
minology constraint terms. The second change
is constraint token masking, whose purpose
is to ease copy behavior learning and to im-
prove model generalization. Empirical results
show that our method satisfies most terminol-
ogy constraints while maintaining high transla-
tion quality.

1 Introduction

Neural-based architectures have become standard
for Machine Translation (MT), they are efficient
and offer state-of-the-art performance in many sce-
narios (Vaswani et al., 2017). However, these
models often trained on very large corpora turn
out to be less adequate in domains that require
very careful use of terminology. For instance,
consider the following English sentence from a
biomedical corpus "now for the fever you can
take a tachipirina sweet" . The term "tachipirina
sweet" refers to "paracétamol" in French. Un-
fortunately, a generic English-French Neural MT
(NMT) model would translate the above sentence
as: "maintenant pour la fièvre tu peux prendre
un tachipirina bonbon", where the term "tachipi-
rina sweet" is translated "tachipirina bonbon".

The goal of the WMT21 shared task on machine
translation using terminology constraints is to ex-
plore methods that can take into account terminol-
ogy constraints, in order to improve MT models’ ac-
curacy and consistency on specific domains. In the

literature there are two main families of methods
to take into account specific terminologies. One
family incorporates terminology constraints at in-
ference (Post and Vilar, 2018; Susanto et al., 2020).
Members of this category can guarantee strict en-
forcement of constraints, however this often comes
at the cost of higher decoding time and decreased
accuracy (Hokamp and Liu, 2017; Post and Vilar,
2018). The other family of method integrates termi-
nologies at training time (Dinu et al., 2019; Ailem
et al., 2021), and they have the benefit of not chang-
ing the NMT model as well as of not incurring
additional computational overheads at inference
time (Crego et al., 2016; Song et al., 2019; Dinu
et al., 2019).

We participate in the following three directions:
English to French, Russian, and Chinese, and the
system we submit falls into the second family
of method incorporating terminologies at training
time. More precisely, we explore a variant of the
models proposed in (Ailem et al., 2021), which we
train for each language pair. Following this work,
we first annotate our training data with the con-
straints using tags to distinguish constraints terms
from other tokens in the sentences. Second, we
further perform constraint-token masking, which
improves model robustness/generalization as sup-
ported by our experiments.

The rest of the paper is organized as follows:
section 2 reviews the details of our system, section
3 describes the training data selection, the devel-
opment and test sets, as well as the terminologies
used for each language pair, and section 4 presents
the different experimental settings and results.

2 Method

Our objective is to encourage neural machine trans-
lation to satisfy lexical constraints. To this end,
we rely on the approch proposed in (Ailem et al.,
2021), which introduces two changes to the stan-
dard procedure, namely training data augmentation
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Source since COVID-19 shows similarities to SARS-CoV and MERS-CoV , it is likely that their effect on pregnancy
are similar .

Constraints SARS-CoV → SARS-CoV

TADA since COVID-19 shows similarities to <S> SARS-CoV <C> SARS-CoV </C> and MERS-CoV , it is likely
that their effect on pregnancy are similar .

+MASK since COVID-19 shows similarities to <S> MASK <C> SARS-CoV </C> and MERS-CoV , it is likely that
their effect on pregnancy are similar .

Figure 1: Illustration of TrAining Data Augmentation (TADA) and MASK.

and token masking. In the following we describe
these two operations, which are also depicted in
Figures 1 and 2.

TrAining Data Augmentation (TADA). The
purpose of this step is to encourage the NMT model
to exhibit a copy behavior when it encounters con-
straint terms whose translation should be consistent
with some terminology. This step, illustrated in Fig-
ures 1 and 2, consists in using tags to annotate our
training data with the terminology constraints, i.e.,
indicate the constraints (if any) in a given source
sentence. Note that in the literature, there are other
variants that use additional information such as
source factors (Dinu et al., 2019). We do not use
such information, and we specify terminologies
using tags only.

Token MASKing (MASK). We further consider
masking the source part of the constraint – tokens
in blue – as illustrated in Figure 1 last row. As
suggested in (Ailem et al., 2021), this masking
strategy provides a more general pattern for the
model to learn to perform the copy operation every
time it encounters the tag < S > followed by the
MASK token. Moreover, this can make the model
more apt to support conflicting constraints, i.e.,
constraints sharing the same source part but which
have different target parts. This may be useful in
situation in which some tokens must be translated
into different targets for some specific documents
and contexts at test time.

3 Data

This section provides information and some statis-
tics regarding the datasets for the three language
pairs we consider.

Training Data Selection. We consider three lan-
guage pairs, namely English to French, Russian,
and Chinese. Since our method acts at training time,
we first perform a training data selection in order to
obtain a reasonable number of sentences containing

at least one term from the provided terminologies.
To do so, we consider both bilingual and mono-
lingual data, provided as part of the shared task.
In fact, we observe that bilingual data do not con-
tain many sentences with terminology terms. Thus,
we rely on back-translation of monolingual data,
which contains more recent news on COVID-19,
to obtain more sentence pairs with terminologies.
We rely on OpusMT1 to back translate the Russian
monolingual to English. For Chinese and French
we use in-house translation engines. Note that we
further convert the Chinese data into simplified Chi-
nese using OpenCC. Following previous work on
terminology control (Dinu et al., 2019; Ailem et al.,
2021), only 10% of the training sentences are anno-
tated in order to maintain the model’s performance
in terminology free cases. The details about train-
ing data selection for the different language pairs
are summarized in tables 1, 2 and 3.

Development and Test Sets. For all language
pairs, a development and test sets are provided.
Note that for the test sets we have access to the
source part only. For the dev sets, the terminol-
ogy constraints associated with each sentence are
available, for the test sets this information is not
available, and we leverage the terminology files
to find constraint terms in these sets. Just like the
training data, both test and dev sets are augmented
with the terminology constraints as presented in
figures 1 and 2. The dev/test sets of the different
language pairs share the same English source file
containing 971/2100 sentences respectively.

Terminologies. For each language pair, we use
the provided terminologies to annotate our train,
dev and test sets. The terminologies consist of
respectively 670, 925 and 710 unique source-target
terms for English→ French, Russian and Chinese.
We also observe that one source term might be
associated with one or more target terms. In that

1https://github.com/Helsinki-NLP/Opus-MT
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Source the Canadian government announced CA $ 275 million in funding for 96 research projects on medical counter-
measures against COVID-19 , including numerous vaccine candidates at Canadian universities , with plans to
establish a " vaccine bank " of new vaccines for implementation if another Coronavirus outbreak occurs .

Constraints vaccine → vaccin, vaccines → vaccins, Coronavirus outbreak → épidémie de coronavirus

TADA the Canadian government announced CA $ 275 million in funding for 96 research projects on medical counter-
measures against COVID-19 , including numerous <S> vaccine <C> vaccin </C> candidates at Canadian
universities , with plans to establish a " <S> vaccine <C> vaccin </C> bank " of new <S> vaccines <C>
vaccins </C> for implementation if another <S> Coronavirus outbreak <C> épidémie de coronavirus
</C> occurs .

+MASK the Canadian government announced CA $ 275 million in funding for 96 research projects on medical counter-
measures against COVID-19 , including numerous <S> MASK <C> vaccin </C> candidates at Canadian
universities , with plans to establish a " <S> MASK <C> vaccin </C> bank " of new <S> MASK <C>
vaccins </C> for implementation if another <S> MASK MASK <C> épidémie de coronavirus </C>
occurs .

Figure 2: Illustration of TrAining Data Augmentation (TADA) and MASK (multiple constraints in one sentence).

Data type #sentences #term-grounded sentences Corpora

Monolingual fr 342,941 342,941 News Crawl 2020
Parallel en-fr 3,110,291 110,291 NCv16, UN, Common Crawl, Europarl v10

Parallel en-fr (biomedical) 1,733,757 67,887 EMEA, Medline Titles, Medline abstracts

#Total 5,186,989 521,119

Table 1: English→ French data we use for training.

Data type #sentences #term-grounded sentences Corpora

Monolingual ru 997,889 697,889 News Commentary, News
Parallel en-ru 6,121,064 3,169 News Commentary, Wikititles, ParaCrawl,

UN, Wikimatrix, Common Crawl, Yandex
Parallel en-ru (biomedical) 46,782 0 Medline

#Total 7,165,738 701,058

Table 2: English→ Russian data we use for training.

Data type #sentences #term-grounded sentences Corpora

Monolingual zh 899,163 899,163 News Crawl 2020
Parallel en-zh (up-sampled) 12,900 12,900 Wikititles

Parallel en-zh 6,322,275 0 NCv16, ParaCrawl, Wikimatrix, UN, CCMT

#Total 7,234,338 912,063

Table 3: English→ Chinese data we use for training.

case, when annotating the train and dev sets we
choose the target term used in the ground truth
translation. For the test set, we select one of the
possible terms at random.

4 Experimental results

4.1 Settings

For English to French and Russian pairs, we first
tokenize the terminology files and the train/test/dev

sets before annotating them with the terminology
constrains. We use the Moses tokenizer (Koehn
et al., 2007) for this step. We then rely on BPE en-
coding (Sennrich et al., 2015) with 40k merge oper-
ations to segment words into subword-units, which
results in a joint vocabulary size of 42588 words for
English->French, and vocabulary sizes of (44644,
47532) for the (English, Russian) pair. For English-
>Chinese we rely on sentence piece (Kudo and
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Model BLEU Exact-Match Accuracy Window Overlap (2) Window Overlap (3) 1-TERm COMET

Transformer 32.12 0.325 0.112 0.114 0.369 0.023

Constrained decoder 40.12 0.856 0.306 0.298 0.535 0.416

TAG+MASK 44.90 0.919 0.344 0.335 0.598 0.681

Table 4: Comparison of different models on the English→ French test set.

Language Pair BLEU Exact-Match Accuracy Window Overlap (2) Window Overlap (3) 1-TERm COMET
English→ French 44.90 0.919 0.344 0.335 0.598 0.681
English→ Russian 29.13 0.849 0.247 0.248 0.474 0.604
English→ Chinese 29.16 0.829 0.223 0.225 0.437 0.637

Table 5: Results of the investigated system (TAG+MASK) across all the language pairs we consider. Results are
obtained using the test set.

Richardson, 2018) for tokenization, which also per-
forms BPE encoding simultaneously and results in
a vocabulary size of 52172 for Chinese and 39996
for english. We then annotate the train/test/dev sets
with the terminology constraints.

As a building block for our system, we use the
transformer architecture (Vaswani et al., 2017) with
6 stacked encoders/decoders and 8 attention heads.
For English-French, the source and target embed-
dings are tied with the softmax layer. We use 512-
dimensional embeddings, 2048-dimensional inner
layers for the fully connected feed-forward network
and a dropout rate of 0.3. The models are trained
for a minimum of 50 epochs and a maximum of
100 epochs with a batch size of 2000 tokens per
iteration and an initial learning rate of 5 × 10−4.
For each language pair, the validation set is used
to compute the stopping criterion. We use a beam
size of 5 during inference for all models.

4.2 Results

For all language pairs, the models are evaluated
using the standard MT evaluation metrics (BLEU
and COMET scores) as well as other terminology-
targeted metrics (Anastasopoulos et al., 2021). The
latter include the "Exact-Match Accuracy" mea-
sure, which simply compute the percentage of con-
straint terms present in the predicted translations.
Although this measure provides an indication of
terminology satisfaction, it can only assess whether
a term is present in the hypotheses without evaluat-
ing whether this target term is correctly placed. To
overcome this issue, the authors in (Anastasopou-
los et al., 2021) proposed an additional measure,

namely "Window Overlap", which computes the
percentage of similar tokens surrounding the con-
straint terms – within a defined window – in the
ground truth and the generated hypotheses. Fi-
nally, the models are also evaluated in terms of
"Terminology-biased TER" score, which is an edit
distance based metric (Snover et al., 2006; Anasta-
sopoulos et al., 2021).

We compare the our model TAG+MASK with
the traditional transformer baseline (Vaswani et al.,
2017) and the constrained decoder approach (Post
and Vilar, 2018), which integrates the constraints
during inference time. Results on English →
French data are presented in table 4. We observe
that the TAG+MASK approach significantly im-
proves over baselines in terms of all measures.

Table 5 depicts the results that the submitted sys-
tem reaches across all the language pairs in terms
of different metrics.

5 Conclusion

In this paper, we describe our submission to the
WMT21 shared task on machine translation us-
ing terminologies. We participate in three lan-
guage pairs, namely English → French, Russian
and Chinese. Our system integrates terminology
constraints during training by augmenting the data
with terminological terms. Due to the lack of paral-
lel training data containing the terminology terms,
we rely on monolingual data for all language pairs
to augment the number of sentences containing ter-
minology terms. Empirical results comparing our
approach with terminology grounded as well as
terminology free baselines show the effectiveness
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of the investigated method.
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Abstract

This paper describes Kakao Enterprise’s sub-
mission to the WMT21 shared Machine Trans-
lation using Terminologies task. We integrate
terminology constraints by pre-training with
target lemma annotations and fine-tuning with
exact target annotations utilizing the given
terminology dataset. This approach yields a
model that achieves outstanding results in
terms of both translation quality and term con-
sistency, ranking first based on COMET in
the En→Fr language direction. Furthermore,
we explore various methods such as back-
translation, explicitly training terminologies as
additional parallel data, and in-domain data se-
lection.

1 Introduction

We participate in the WMT21 Machine Trans-
lation using Terminologies Task in four lan-
guage directions, English→French (En→Fr),
English→Chinese (En→Zh), English→Korean
(En→Ko) and Czech→German (Cs→De).

1.1 Task description

The recent COVID-19 pandemic has raised the ur-
gency to translate and distribute the latest medical
information worldwide. However, despite recent ad-
vances in neural machine translation (NMT), trans-
lation in such emerging domains remains a chal-
lenge, as it is unaffordable to collect fair amounts
of quality in-domain parallel data in a short time.
As an alternative, word- or phrase-level dictionaries
of key terms are relatively easier to obtain. These
dictionaries are prevalent in commercial settings,
where customers specify domain-specific jargon
that human translators can attend to. However, in-
corporating pre-specified dictionaries effectively
into NMT models is a non-trivial problem, as NMT

*Work done during the author’s internship at Kakao En-
terprise.

is inherently trained without explicit constraints
compared to statistical approaches.

In this context, the shared task of Machine Trans-
lation using Terminologies is held in five language
directions at WMT21. The task assumes a realis-
tic scenario where parallel and monolingual data
are abundant in generic domains (e.g., news, web
crawl), but only hundreds of word- or phrase-level
term dictionaries are available in the domain of in-
terest — COVID-19. Technically, this poses a chal-
lenge as we must impose terminology constraints
without hurting general translation quality, while
only 1.5% of parallel data contain the provided ter-
minologies. Additional issues such as the 1 : N
mapping of term translations further complicate the
problem.

Evaluating MT systems in specialized domains
diverge from general MT evaluation in that overall
translation quality may not ensure the translation
accuracy of domain-specific terms. This potential
gap calls the need for evaluation metrics that di-
rectly assess the consistent use of terms. Concretely,
three metrics proposed in Alam et al. (2021) are
employed in this task – Exact-Match Accuracy,
Window Overlap, and Terminology-biased Trans-
lation Edit Rate (TERm). The suggested metrics
complement general translation accuracy measured
by standard MT metrics (BLEU, chrF, BERTscore,
COMET) by validating whether terms are trans-
lated faithfully according to the dictionary.

Specifically, human-labeled COVID-19 related
term dictionaries are released in four language
directions (En→Fr, En→Zh, En→Ko, En→Ru),
with around 600 terms for each direction. Excep-
tionally, the dictionary for Cs→De is constructed
automatically and consists of 5,601 parallel terms.

1.2 Related work

Word- or phrase-level constraints have often been
introduced to NMT via constrained decoding to
reinforce specific tokens in the output sequence.
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Combined with terminology dictionaries, con-
strained decoding integrates the target side terms as
decoding-time constraints (Hokamp and Liu, 2017;
Anderson et al., 2017; Post and Vilar, 2018).

Subsequent work has shown that adding inline
annotations to the source sentence as soft con-
straints can improve performance and time com-
plexity when employed with additional source fac-
tor streams (Dinu et al., 2019; Bergmanis and Pin-
nis, 2021). Similarly, a merging approach by adding
markers without modifying the model has also
proven to be effective (Wang et al., 2019).

2 Data

2.1 Cleaning

Both monolingual and parallel corpora of all lan-
guages are preprocessed according to the follow-
ing pipeline. First, we remove non-utf8 or non-
printable characters. Second, we unescape HTML
characters such as &gt;. Finally, we normalize
variations in spaces and punctuation marks. All
cleaning steps are done with Moses scripts (Koehn
et al., 2007). We also use the Moses tokenizer, but
only for European languages (En, Fr, Cs, De) since
Asian languages (Zh, Ko) require language-specific
tokenizers that consider the characteristics of each
language.

2.2 Filtering

Web-crawled data are notorious for being noisy.
To prevent defective data from undermining per-
formance, we filter both parallel and monolingual
data with diverse methods.

Bi-text We filter the provided parallel data with
several heuristics. We first eliminate pairs that con-
tain empty lines or identical content in both source
and the target side. We filter pairs that contain
overly long sentences (250 words) or excessively
long words (50 characters). The pairs that have
a word count ratio larger than four are also omit-
ted. We refer to previous literature to set statisti-
cal thresholds of each rule. Lastly, we only use
pairs of which both sides are identified as the cor-
rect language with a language identification tool.
Specifically, we use fastText (Joulin et al., 2016,
2017).

In addition, for En→Ko, we filter out mislabeled
bi-text which we found manually, that seemed
as byproducts of web-crawl in the source or tar-
get side. For instance, the pattern “YYYY년 MM

En-Fr En-Zh En-Ko Cs-De

Parallel 158M 62M 13M 15M
+ Filter 149M - 12M 13M

Table 1: Dataset sizes of parallel corpora before and
after filtering in each language pair. For En-Zh, we did
not apply rule-based filtering.

월 DD일에확인함 ”, which means “Confirmed in
YYYY/MM/DD”, was found instead of the correct
labels in 20,909 samples. The final dataset sizes are
shown in Table 1.

Mono-text We used monolingual text for two
language pairs (En→Ko, En→Fr) to augment exist-
ing parallel corpora via back-translation (Sennrich
et al., 2016a). The back-translation procedure is
described in Section 3.2.

For En→Ko, we do not apply any filtering
schemes as the size of the Korean monolingual
corpus is small (14M sentences).

On the contrary, for En→Fr, using the en-
tire French monolingual corpora (8.5B) for back-
translation is unwieldy, considering the time and
computation required to infer all samples. Hence,
we filter the corpus and select in-domain, COVID-
19 related data to maintain a reasonable size for
inference and training.

We filter French monolingual data in three steps.
First, we roughly filter the data with rule-based
methods that are similar to those of bi-text filtering.
Second, we choose sentences that contain terms in
the terminology dictionary (8.5B→ 725M). Lastly,
we use the Moore and Lewis (Moore and Lewis,
2010) method to find samples that are more sim-
ilar to the term-related samples. Specifically, we
train an in-domain language model with sentences
that contain terminologies from the En-Fr paral-
lel corpus. A general-domain language model is
also trained with samples chosen randomly from
the En-Fr parallel corpus. For both models, we use
KenLM (Heafield, 2011) to train 5-gram language
models with modified Kneser-Ney smoothing. Fi-
nally, top-k sentences with the highest scores are
chosen (725M→ 160M).

3 Approaches

3.1 Baseline

We explore two baseline approaches that differ by
their training data. First, models are trained with
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solely the parallel data described in 2.2. This base-
line does not utilize the terminology dictionary.

Second, we take a naïve approach to leverage the
term dictionary – including the provided terms as
additional parallel data to train the model. For 1 :
N mappings of term translations, we flatten them
into N distinct pairs. We refer to this approach as
the “explicit” model in the following sections as
we “explicitly” augment the training dataset with
terminology dictionaries.

3.2 Back-translation

We incorporate back-translated monolingual data
for two language directions: En→Fr and En→Ko.1

We train reverse translation models (Fr→En,
Ko→En) with the same parallel corpora and train-
ing configuration used to train our baseline models
covered in Section 4.2. Back-translated samples
are inferred with beam search of beam size 4, and
a length penalty of 0.6.

For En→Fr, we use back-translated corpora for
Exact Target Annotation fine-tune. We revisit the
details of this procedure in Section 3.4.

For En→Ko, we train the back-translation
model from scratch using both parallel and back-
translated text. During training, we upsample the
parallel corpus twice as frequently as the back-
translated text.

3.3 Target Lemma Annotation

To integrate terminology constraints, we employ
Target Lemma Annotation (TLA) of Bergmanis
and Pinnis (2021), which helps the model learn
how to copy-and-inflect inline annotations. At train-
ing time, we randomly select target lemmas and
inject them into the source sentence behind the
corresponding source word(s).

Specifically, we adopt a simple approach where
we modify the input data but not the model. This
differs from the method described in Bergmanis
and Pinnis (2021), which uses additional input
streams to denote the annotated tokens. In detail,
we introduce three special tokens <b>, <t>, and
</t> which respectively indicate the start of anno-
tated source tokens, the start of target lemma tokens
and the end of target lemma tokens. An example is
shown in Table 2.

Following the training data annotation procedure
of Bergmanis and Pinnis (2021), we first lemma-

1We do not incorporate back-translated corpora of Cs-De
and En-Zh due to time constraints.

Original Source EN and are you having any of
the following symptoms with
your chest pain?

Annotated Source EN and are you having any of
the following <b> symptoms
<t> symptômes </t> with
your chest pain?

Target FR et avez-vous l’un de
symptômes suivants en
plus de vos douleurs tho-
raciques ?

Table 2: An example of using special tokens for inline an-
notations. Inline annotations are marked in bold. <b>, <t>,
</t> denote the start of the annotated source tokens, the start
of the target lemma tokens, and the end of the target lemma
tokens.

Figure 1: The steps in our TLA pre-train→ ETA fine-
tune approach and the objective of each phase.

tize and mark part-of-speech tags of the target sen-
tences, using spaCy (Honnibal et al., 2020) instead
of the pre-trained Stanza model (Qi et al., 2020)
due to the time complexity. We then obtain word
alignments using fast_align (Dyer et al., 2013) and
randomly annotate verbs or nouns with their cor-
responding target lemma. To set annotation thresh-
olds, we refer to Bergmanis and Pinnis (2021) –
[0.6, 1.0) for sentence-level and [0.0, 1.0) for word-
level. The annotated and original data are fed into
the model with a proportion of 1:1.

At test time, we provide soft terminology con-
straints by annotating source terms with their cor-
responding target terms retrieved from the termi-
nology dataset. Terminology entries are identified
with the longest word-sequence match in the source
sentence. If there exist several target terms for one
source term, we randomly select one candidate.

3.4 Exact Target Annotation (Fine-tune)
We adopt Exact Target Annotation (ETA) designed
by Dinu et al. (2019) to fine-tune the TLA model
pre-trained as in Section 3.3. ETA injects the exact
target-side translation of a terminology entry into
the source sentence using inline annotations. Note
that we utilized the whole terminology dataset dur-
ing training, unlike Dinu et al. (2019), since the
task allows the use of the terminology dataset at
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training time.
While TLA learns to copy-and-inflect general

words, our terminology dataset is domain-specific.
We aim to fill the domain gap by constructing
fine-tuning data in which terminology entries are
present on both the source and target sides. As a re-
sult, 750K samples from the parallel data and 10M
samples from the back-translated data are selected.
We upsample the parallel corpus by eight times.

Another discrepancy between training and test
time annotation in TLA is that TLA engages a
single target word to the corresponding source
word(s), whereas many of the actual terms are
multi-word expressions in both source and target
sides. We expect ETA fine-tune to alleviate the
problem since ETA annotates target terms in verba-
tim. The pretrain-finetune phases are outlined with
their motivation in Figure 1.

Specifically, we follow the annotation strategy
of Dinu et al. (2019), where we annotate only when
both the source side term ts and the target side
term tt are present. When a sentence contains mul-
tiple matches overlapping each other, we keep the
longest match.

The difference between Dinu et al. (2019) and
our method is that we annotate with three special
tokens as described in Section 3.3. Instead of ran-
domly deciding whether to annotate or not, we an-
notate all matches. We then combine the annotated
data with its original data and use it for training
with a proportion of 1:1. The annotation procedure
at test time is also equivalent to Section 3.3.

4 Experiments

4.1 Evaluation setting

Evaluation of the models is done using the eval-
uation script 2 and the development dataset, both
provided by the task organizers. We select the best
models by considering all metrics provided by the
evaluation script.

For evaluation, we tokenize our outputs so that
they resemble the tokenization setup of the devel-
opment dataset. For En→Fr and Cs→De, we use
the Moses toolkit (Koehn et al., 2007). For En→Zh,
we apply the Jieba tokenizer.3

Before submitting the test set translations, we
handle rare target-side tokens decoded as <unk>
by simple substitutions, which we found to work

2https://github.com/mahfuzibnalam/
terminology_evaluation

3https://github.com/fxsjy/jieba

well during evaluation even without incorporating
external methods such as word alignments. When
the number of <unk> tokens are equal on both
sides, we copy the original source-side tokens to the
target slots in the same order. After replacing rare
tokens, outputs are detokenized using the Moses
toolkit (Koehn et al., 2007).

4.2 Experimental details

For En→Fr and Cs→De, we pre-tokenize the data
using the Moses toolkit (Koehn et al., 2007). We
use sentencepiece (Kudo and Richardson, 2018) to
learn a joint byte pair encoding (BPE) with vocab-
ulary size 40K (En→Fr) and 32K (Cs→De). For
En→Ko, We pre-tokenize Korean sentences with
Mecab (Kudo, 2005) without space tokens as sug-
gested in Park et al. (2021) and use sentencepiece
to learn a BPE model with vocabulary size 32K for
each language side. For En→Zh, we first convert
characters possibly in traditional Chinese to simpli-
fied Chinese text using hanziconv 4 and. Then, we
pre-tokenize the data using the Jieba tokenizer 3.
We then use subword-nmt (Sennrich et al., 2016b)
to train BPE on combined Chinese and English
corpus and build separated vocabularies. The final
vocabulary size is 44K for Chinese and 32K for
English.

For all language directions, we employ the Trans-
former architecture (Vaswani et al., 2017) imple-
mented in fairseq (Ott et al., 2019). The specific
training and generation configurations can be found
in Appendix A.

Since TLA relies on the word-aligner’s perfor-
mance, we did not apply TLA pre-training and
ETA fine-tuning for En→Ko and En→Zh. Given
that both are linguistically distant language pairs,
we assumed that the word-aligner’s performance
would not be sufficient enough to guarantee im-
provements from TLA.

We start ETA fine-tuning from the TLA check-
point saved at 750,000 steps for En→Fr and
200,000 steps for Cs→De, chosen based on BLEU
scores and Exact Match Accuracy. To evaluate the
TLA and ETA fine-tuned models, we run annota-
tion using the terminology tags provided with the
development dataset, which is different from the
test annotations described in 3.3.

For En→Ko and Cs→De, we use an ensemble of
models that utilize back-translation, explicit train-
ing, and data augmentation. The exact ensemble

4https://github.com/berniey/hanziconv
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System BLEU Exact Match
Window Overlap

(Window 2/3)
1-TERm

En-Fr
Baseline 47.83 0.882 0.31/0.301 0.628
TLA 47.07 0.915 0.282/0.275 0.611
TLA w/o annotation 47.84 0.881 0.305/0.297 0.617
TLA + ETA fine-tune (bi-text only) 47.47 0.932 0.298/0.289 0.615
TLA + ETA fine-tune 48.16 0.929 0.307/0.30 0.631

En-Zh
Baseline 29.08 0.803 0.192/0.194 0.418
Explicit 29.81 0.805 0.192/0.197 0.431

En-Ko
Baseline 12.04 0.412 0.038/0.037 0.129
Baseline + BT 14.14 0.417 0.039/0.037 0.172
Explicit 12.27 0.42 0.034/0.032 0.151
Explicit + BT 14.24 0.464 0.04/0.04 0.184
Ensemble 14.56 0.454 0.043/0.042 0.178

Cs-De
Baseline 30.95 0.832 0.41/0.398 0.434
Explicit 30.77 0.833 0.408/0.396 0.433
Ensemble 32.47 0.848 0.429/0.416 0.445
TLA 28.46 0.924 0.281/0.272 0.395
TLA + ETA fine-tune (bi-text only) 30.14 0.889 0.353/0.342 0.417

Table 3: Evaluation results for each task language pair. Highest scores are boldfaced. Rows in gray indicate our
submitted systems for test evaluation.

configurations are detailed in Appendix B.

5 Results

Table 3 reports the evaluation results of the four
language pairs that we participated in.

5.1 English→French

The TLA model improves Exact Match Accuracy
but shows deteriorated performance on all other
metrics compared to the baseline. Notably, the
degradation stems from the test-annotation method
– test scores are comparable to the baseline when
tested with raw text (without test-annotation) on
the same TLA model.

On the other hand, under the same test-
annotation condition, the ETA fine-tuned model
recovers the performance loss and even boosts the
BLEU score, Exact Match Accuracy, and the 1-
TERm score compared to both the baseline and
the TLA model. TLA + ETA fine-tune outperforms
the baseline by 0.33 points, 4.65%, and 0.24% on
BLEU, Exact Match, and 1-TERm, respectively.

In addition, we run a simple ablation experiment
by using only bi-text data during ETA fine-tuning:
TLA + ETA fine-tune (bi-text only). The results
are indistinguishable from the original TLA + ETA
fine-tune, which is fine-tuned with data from both
bi-text and mono-text. This result supports that the
performance gain stems not only from the use of
monolingual data, which was unseen during TLA
pre-training.

5.2 English→Chinese

We compare two approaches – baseline and ex-
plicit, and observe that adding the term pairs explic-
itly to training improves both general translation
performance (+0.73 BLEU) and term consistency
(+2.29% 1-TERm) compared to the baseline.

5.3 English→Korean

Back-translation yields performance gains across
all metrics with considerable improvements, partic-
ularly in BLEU and 1-TERm. The explicit model
also brings modest improvements to Exact Match
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Language
COMET Exact Match Accuracy Number of

Ours Best Rank Ours Best Rank Submissions

En-Fr 0.781 - 1 0.95 0.974 4-6 22

En-Zh 0.229 0.716 8 0.645 0.886 7-8 8

En-Ko 0.581 - 1 0.569 - 1 1

Cs-De 0.694 - 1 0.866 0.871 1-2 2

Table 4: Official task results of our submitted systems. Scores, where our system ranked 1st, are bold-faced. In
other cases, the best scores from other submissions are shown for comparison.

Accuracy and 1-TERm. Finally, our ensemble
model that combines these approaches demon-
strates the best performance across all metrics, rais-
ing the BLEU score by 2.52 points, Exact Match
Accuracy by 4.2%, Window Overlap by 0.43% and
0.54% for windows 2 and 3 respectively, and 1-
TERm by 4.88 points.

5.4 Czech→German
We discover that the explicit model does not bring
significant gains compared to the baseline model.
This trend contradicts other language directions,
where we observed at least modest improvements
over their respective baselines. We suspect the dif-
ferences lie in how the terminologies are generated;
Cs→De terminologies are constructed automati-
cally, whereas, for other language directions, the
terminologies were annotated manually.

Our ensemble model improves upon the baseline
model by 1.5 BLEU points, 1.6% Exact Match
Accuracy, 1.84% and 1.74% Window Overlap for
window sizes 2 and 3, and 1.1 points in 1-TERm.

We also attempted to apply TLA pre-training
+ ETA fine-tuning to Cs→De as done in En→Fr.
In our preliminary experiments, while some met-
rics improved, we observed Exact Match Accuracy
deteriorate after 1,000 steps of TLA training, un-
like En→Fr, possibly due to the automatic creation
pipeline of Cs→De terminologies. Therefore, we
did not further explore this direction during our task
participation. However, subsequent experiments af-
ter the deadline revealed that TLA, when followed
by ETA fine-tuning, has its advantages in finding a
balance between BLEU and Exact Match Accuracy,
supporting our findings in En→Fr.

5.5 Official task results
We present our official submission results in Ta-
ble 4. Despite the trade-off between general trans-
lation quality (COMET) and term consistency (Ex-

act Match Accuracy), our approach strikes at the
right balance between the two criteria for En→Fr.
Out of 22 submissions in this direction, our system
ranks 1st in COMET. According to Exact Match
Accuracy, our system performs roughly compara-
ble to the best system, ranking 4-6th. For En→Zh,
our system ranks 8th in both metrics out of 8 sub-
missions. For En→Ko, our submission is the only
submission. For Cs→De, our submission ranks 1st
in terms of COMET and 1st-2nd for Exact Match
Accuracy out of 2 submissions.

6 Conclusion

We participate in four language directions for the
shared task WMT21 Machine Translation Termi-
nologies. To this end, we explore various tech-
niques, including back-translation, explicitly train-
ing with term pairs along with other parallel data,
and in-domain data selection to improve translation
performance in the COVID-19 domain.

In particular, for En→Fr and Cs→De, we find
that TLA outperforms the baseline in terms of Ex-
act Match Accuracy by leveraging terminology con-
straints. However, all other metric scores (BLEU, 1-
TERm) plummeted, implying that the overall trans-
lation quality was compromised. We recover this
performance loss by introducing a new technique –
fine-tuning with ETA, and achieve significant im-
provements in both general translation quality and
terminology consistency. We leave it to future work
to validate our approach in other languages and
reveal the factors behind the benefits of ETA fine-
tuning precisely, hopefully, to discover a more suit-
able design to impose terminology constraints.
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A Training configuration
fairseq-train

task : translation
arch : transformer_wmt_en_de_big
lr : 0.0005
lr-scheduler : inverse_sqrt
warmup-updates : 4000
warmup-init-lr : 1e-07
optimizer : adam
adam-betas : (0.9, 0.98)
update-freq : 8
dropout : 0.1
weight-decay : 0
criterion : label_smoothed_cross_entropy
label-smoothing : 0.1
fp16 : True

fairseq-train (ETA fine-tune)
lr : 1e-06
lr-scheduler : fixed
warmup-updates : 0

fairseq-generate
beam : 4
lenpen : 0.6

B Ensemble Configuration

For En→Ko, we use an ensemble of four models
trained with different configurations:

• Baseline + Back-translation

• Baseline + Back-translation + Rule-based fil-
tering

• Baseline + Back-translation + Explicit

• Baseline + Back-translation + Explicit (Paral-
lel corpus upsampling with ratio 2)

For Cs→De, we use an ensemble of four mod-
els trained with different configurations. The third
model concatenates the previous and next sentence
for additional context with probability of 0.1:

• Baseline

• Baseline + Rule-based filtering

• Baseline + Two sentences concatenation (0.1)

• Baseline + Explicit
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Abstract
This paper discusses the WMT 2021 terminol-
ogy shared task from a "meta" perspective. We
present the results of our experiments using the
terminology dataset and the OpenNMT (Klein
et al., 2017) and JoeyNMT (Kreutzer et al.,
2019) toolkits for the language direction En-
glish to French. Our experiment 1 compares
the predictions of the two toolkits. Experiment
2 uses OpenNMT to fine-tune the model. We
report our results for the task with the evalu-
ation script but mostly discuss the linguistic
properties of the terminology dataset provided
for the task. We provide evidence of the im-
portance of text genres across scores, having
replicated the evaluation scripts.

1 Introduction

In our (traditional) sense, terminological databases
are the collection of specialised lexical resources
that are generally compiled from corpora, in collab-
oration with experts from the field, then analysed
and structured according to the type of information
recorded in term records: terms, equivalents, defini-
tions, synonyms, contexts of use, and related terms
(hyperonyms, hyponyms, meronyms, holonyms,
etc.). The data thus created are empirical and
provide knowledge-based representations of the
domain (especially in the case of an ontological
approach), underlining conceptual links between
terms that can be observed (like meronomy: "X is
a part of Y") and potentially represented in concep-
tual graphs.
For instance, the ARTES database (Pecman and
Kübler, 2011), used at Université de Paris in Mas-
ters studies for teaching terminology management
to translation students (Kübler et al., 2018), adopts
such a comprehensive approach to terminology,
with specific attention to emerging terminology and
complex noun phrases (CNPs) (Kübler et al., 2021).
In recent works combining studies on terminology,
specialised translation and corpus linguistics, atten-
tion has been drawn to CNPs in English which have

been demonstrated to cause major difficulties dur-
ing translation, both human and machine (Kübler
et al., 2021; Maniez, 2017). Moreover, studies have
demonstrated an increase of complex compound-
ing in specialised texts in English over the last
few decades, with, for instance, an overwhelming
use of patterns with adjectival and participial com-
pound pre-modifiers (e.g. receptor-binding activity,
electron-dense aggregates) (Mestivier-Volanschi,
2015).

For this WMT21 Terminology workshop, we
focused on the linguistic properties of the termi-
nological dataset provided. We selected what we
believe to be the two best models we produced for
the EN-FR track with two different neural toolkits
but we mostly took the opportunity to discuss the
addition of terminology to neural machine transla-
tion. The rest of the paper is organised as follows:
section 2 summarises our approaches to the task,
section 3 presents the tools we used and how we
used the constrained data. Section 4 presents our
experiments and the best models we used for the
translation challenge. Section 5 discusses our re-
sults.

2 Our Approaches to the Task

This section presents our various strategies for the
terminology task.

2.1 Toolkit Comparison

We compared the predictions of two toolkits. We
trained two systems, JoeyNMT (Kreutzer et al.,
2019) and OpennMT (Klein et al., 2017) with com-
parable parameters, using Europarl as baseline,
later supplemented with the terminology resource
provided for the task.

2.2 Model selection and fine-tuning

With OpenNMT only, we selected the training data,
comparing the performance with and without the
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terminological data for CommonCrawl and Eu-
roparl and applied fine-tuning to the model based
on Europarl enriched with the terminological data.

2.3 Comparing with pre-trained models

We were curious to see how pre-trained models
fared on this tasK. We produced two translations,
one based on mBART-50 (Tang et al., 2020) and
the other one on the Hugging Face (Wolf et al.,
2019) baseline. We finalised them after the evalua-
tion deadline, so that we report our findings on the
sacreBLEU score we calculated with the Systran
translation used as reference. Debatable as it may
sound to use an MT-generated reference translation,
this enabled us to run comparisons.

2.4 A linguistic analysis of the terminology
resource and evaluation script

We focused our analysis on the linguistic proper-
ties of the terminology provided and tested. We
also tried to test other models we produced after
the competition deadline, which is why we detail
the evaluation script we tried to replicate and the
terminology in the next section.

3 Data and Tools Used

This section presents the datasets used to build our
system as well as our replication of the evaluation
script to analyse the models we did not have the
time to submit.

3.1 Training Data

The first challenge lies in the data selection for
the training corpora among the possibilities of the
challenge. We did not resort to specific texts such
as the TICO-19 data (Anastasopoulos et al., 2020)
but used the Europarl corpus as baseline.

3.2 Terminological Data

This subsection provides a linguistic qualitative
approach to the provided terminology dataset.

A potential problem with the terminology dataset
is variation. While some variants are probably inter-
changeable in most texts (e.g. 220 hand sanitizer:
gel hydroalcoolique | désinfectant pour les mains),
others present different degrees of specialization
(e.g. 345 multi-organ failure: défaillance multi-
viscérale | défaillance de plusieurs organes). For
yet other variants, both forms are possible, but not
within the same text for coherence (e.g. 286 SARS-
CoV-2: SRAS-CoV-2 | SARS-CoV-2, where the first

variant is the translated acronym and stands for
syndrome respiratoire aigu sévère).

The French-English terminological resource in-
cluded 595 "terms" out of which only 181 were
tested in the script so that the achievement rate
as testd by the evaluation scripts only relies on
30.42% of the resource provided. Many entries
in the dataset are not actually terms, but rather
out-of-context strings or keyword combinations
that are impossible to translate since, in transla-
tion, context truly is everything. Strings such as
(154) covid-19 WHO and (158) covid19 CDC are
not actual NPs and are rarely found as such, on
their own, in real texts. In context, these n-grams
are always followed by additional information that
needs to be taken into account in their translation
(e.g. Covid-19 WHO Situation Report or Covid-19
CDC Info). 1 Therefore, the proposed transla-
tions (respectively, OMS et covid-19 and CDC et
covid19), where the different elements are simply
linked with the conjuntion et cannot work in con-
text since the components of the actual NP would
need to be reorganized in translation when unpack-
ing the informational content in these CNPs. Other
examples of out-of-context keyword combinations
in the dataset are entries 112 covid-19 dangerous,
113 covid-19 deadly, 116 covid19 domestic travel,
and 128 covid19 international travel. The role of
Complex Noun Phrases seems to be underestimated
in the terminology resource, as well as collocations.
Nouns are more frequent than adjectives and verbs
in the provided resource. 143 adjective + noun
collocations are proposed (such as deadly virus)
for 13 adjectives. Only 19 verbal collocations are
proposed for eight verbs.

Beyond the immediate textual context, lack of
real-world context is also a potential source for in-
correct translation. For entries 245 n95, 246 n95
mask, and 247 n95 respirator, the proposed trans-
lations all use the N95 classification, which is the
US NIOSH standard. For real texts, functionally
adequate translation might require, for instance, us-
ing the equivalent European classification (FFP2).
Dataset entry 246 presents an additional real-word
related issue: N95 respirators should not be re-
ferred to as "masks", as their airborne-particle fil-
tration capacity is far superior to those of surgical

1With hindsight, setting values at n=2 or n=3 for Window
Overlap Accuracy was consistent with "truncated" sequences
such as covid-19 WHO but Covid-19 WHO Situation Report
and similar embedding structures would only be captured by
the Window Overlap Accuracy metric when n=4 or more.
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masks which serve a different purpose (reducing
outward particle emission).

3.3 Data for Fine-Tuning
We re-trained our generic model by selecting the
presumed best candidates for training sets. To spe-
cialize the model and make it more efficient, after
having trained it on Europarl, we chose a method to
select texts that are closer to the terminological data.
Several similarity measurement methods are possi-
ble. In this case we worked with cosine similarity,
which is more sensitive to the number of occur-
rences of terms in each corpus. After having car-
ried out the similarity measurement of all the texts
with the test data, we retained 1/4 of the files, corre-
sponding to 22,741,561 sentences. These selected
texts served as a corpus of re-training of our model
for its specialization. Compared to the constrained
corpora proposed for training, our optimised selec-
tion of texts based on the cosine similarity with
the testing set corresponded to the following sub-
sampling of the proposed corpora: 1 % of News
Commentary v16 and 99 % of 109 French-English
Corpus. From a purely machine learning perspec-
tive, using testing sets to figure out training sets
may sound unusual, but it should be borne in mind
that we do not aim here at generalisability but at
performing a specific task (translating biomedical
texts).

3.4 Replicating the evaluation script
We did not have the time to submit our translations
based on fine-tuning and pre-trained systems, so
that we tried to replicate the evaluation script2. Our
script3 is a modification of the procedure described
in (ibn Alam et al., 2021) that includes 1-TER but
not COMET. It allows the calculation of the follow-
ing scores: Exact-Match accuracy, Window Over-
lap (2), Window Overlap (3), sacreBLEU, TER
and TERm. The calculation, unlike the evaluation
made by the competition, is done here segment by
segment and the average of the set of results makes
it possible to detail scores per segments. The pre-
processing is the same as on the reference script
(tokenization and lemmatization) and the removal
of parentheses on the corpus is necessary to run
it. It is limited to 1,371 segments, for which the
term to be translated was identified with certainty.
As a result, one section of the testing data was not

2https://github.com/mahfuzibnalam/terminologyevaluation
3To be found on https://github.com/

nballier/SPECTRANS/tree/main/WMT21

considered (the email sent to the wikipedia col-
laborators, referred to as "email" in our text genre
analysis).

4 Experiments and Results

4.1 Training with JoeyNMT

For comparison purposes, we used the baseline
of JoeyNMT which is based on TRANSFORMER

(Vaswani et al., 2017) and requires lighter im-
plementations. It took the Europarl 7 paral-
lel corpus as data set, split as follows: training
(341,554 sentences), dev (50,000 sentences) and
test (100,000). The data set has been prepro-
cessed with a two-level tokenization: standard to-
kenization (Spacy) segments data into words and
BPE tokenization (SentencePiece (Kudo, 2018))
into sub-words. Our model was trained with the
following parameters: vocabulary size: 32, 000,
maximum sentence length: 50, maximum output
length: 100, training optimizer: ADAM, normaliza-
tion: tokens, training model initializer: XAVIER,
encoder embedding dimension: 512, decoder em-
bedding dimension: 512, hidden size: 512. The
best BLEU score from English to French (Figure
1) was achieved at 32.04 at step 41 000 with a
training rate of 18 seconds per 100 steps, whereas
the best French to English BLEU score was 31.35.
By comparing JoeyNMT translation with Open-
NMT translation, we notice that JoeyNMT had
poor results in translating dates, numbers, proper
nouns, acronyms and symbols. Sentences which
have several of those may have been translated into
a string of characters of repeated sub-words. The
translation submitted could not be scored but for
BLEU (5.29). The result came as a surprise to us
since JoeyNMT has the same model architecture
as OpenNMT (Transformer). Because of these is-
sues, we only conducted the other experiments with
OpenNMT.

4.2 Training and Fine-tuning with
OpenNMT

We used the baseline of OpenNMT-tf 2.20.1 based
on TRANSFORMER (Vaswani et al., 2017). The par-
allel data Europarl v10 (Koehn et al., 2005) contain-
ing 1,911,202 aligned sentences pairs was used as a
dataset, which was divided into two subsets: train-
ing set (1,906,202 sentences) and evaluation set
(5,000 sentences). The dataset was preprocessed
with a BPE tokenization using SentencePiece into
subword units (32,000 subword units as training vo-
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Figure 1: JoeyNMT : BLEU score and PPL score (en-
fr)

cabulary). The model was trained with the follow-
ing parameters: vocabulary size: 31,000, learning
optimizer: LazyAdam. The best BLEU score from
English to French was 43.90 after 70,000 steps with
a training rate of 1.18 steps per second.

We then produced a model with Europarl adding
the terminology to the training data with the same
evaluation data. As a comparison, we also tried
to produce a model with Common Crawl corpus 4

using the same parameters of SentencePiece and
training. The dataset consists of 3,244,152 aligned
sentences pairs split into training set (3,239,152
sentences) and evaluation set (5,000 sentences).
This model produced the best scores in among our
submissions (0.871 for Exact-Match Accuracy).

For fine-tuning, we used the Europarl model
enriched with the terminological data. We were
not able to use the onmt-update-vocab command,
so that instead we directly replaced the dictionary
file in the configuration with the dictionary based
on the files described in section 3.3. Contrary to
our expectations, the fine-tuning did less well for
scores, according to our estimations (see Table 1
). Not being able to update the dictionary in fine-
tuning might be responsible for worsening the qual-
ity of our results.

4.3 Pre-trained Systems

For a point of comparison, we considered two
Transformer-based models available in the Hug-

4https://commoncrawl.org/

ging Face library (Wolf et al., 2019). The first
one is the standard pipeline5 for English to French
translation. The second one is based on the mul-
tilingual language model mBART-50 (Tang et al.,
2020), fine-tuned for multilingual machine transla-
tion as described in (Tang et al., 2020). The two
models were applied on the raw sentences extracted
from the SGM files of the test data. The sole pre-
processing that was applied consisted in replacing
XML entities by their corresponding characters and
applying the tokenizer considered by the model.
While the translation for the PUBMED section is
satisfactory, the translation of the CMU section re-
vealed issues in the use of subjunctive (ie segment
20). It should be noted that, according to our home-
made evaluations, these models did much better
for sacreBLEU scores (+3.7) and Hugging Face is
slightly higher than the Corpus Crawl data trained
with the terminology resources (the two models are
superimposed on Figure 3.

4.4 Replicating the scoring system with the
different translations

Because we could not submit all our translations
in time, we resorted to a proxy for evaluation by
adapting the available scripts to produce our own
evaluation scripts. Our sacreBLEU (Post, 2018)
score was based on the SYSTRAN translation used
as a reference text. We used the SYSTRAN generic
Pure Neural Server (Crego et al., 2016). We show
how our scoring system (dots) compares to the of-
ficial evaluation system (crosses) in Figure 2. We
tend to be less generous for Exact-Match Accuracy
and more optimistic for Window Overlap Accu-
racy (with n=3). It should be noted that our ref-
erence translation, although mostly accurate, also
presents some problems. These occur mainly in
the incomplete out-of-context segments related to
patient symptom descriptions, many of which are
also ungrammatical (ie segment 4). Table 1 recaps
the scores we obtained for all the models we pro-
duced. For the models we submitted in time, as
could be expected, the model trained with Common
Crawl and the terminological resources (+ Term in
our table) got better scores than Europarl supple-
mented with the terminological resources. For our
in-house evaluation, we tested the translations pro-
duced by these models as well, so that we could

5Pipelines are Hugging Face abstractions for NLP tasks
that automatically select the ‘correct’ model architecture and
all the related components (such as the tokenizer) required to
make a prediction
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submitted model BLEU (truecased) Exact-Match Accuracy Window Overlap Accuracy (n=2) Window Overlap Accuracy (n=3) 1-TERm Score COMET
Common Crawl + Term 40.02 0.871 0.296 0.296 0.507 0.596
Europarl + Term 34.93 0.795 0.275 0.267 0.495 0.296
Europarl (baseline) 33.59 0.640 0.248 0.241 0.480 0.212
in-house scores sacreBLEU Exact-Match Accuracy Window Overlap Accuracy (n=2) Window Overlap Accuracy (n=3) 1-TERm Score 1-TER score
Hugging Face 32.21 0.73 0.32 0.324 0.36 0.37
mBART 30.46 0.707 0.296 0.294 0.35 0.36
Common Crawl + Term 28.50 0.77 0.299 0.306 0.30 0.308
Europarl + Term 23.74 0.68 0.258 0.256 0.293 0.303
Europarl (baseline) 17.98 0.53 0.18 0.17 0.24 0.25
Europarl (fine-tuning) 26.19 0.68 0.279 0.278 0.278 0.287
joeyNMT (Europarl) 4.67 0.16 0.039 0.034 0.045 0.064

Table 1: Summary of our official and home-made scores for our models

Figure 2: Comparison of the scores for the three SPEC-
TRANS models submitted)

Figure 3: Comparison of the best models acccording to
our scores)

compare them to the translations produced by the
pre-trained models (Hugging Face and mBART.
The latter did better for sacreBLEU and Window
Overlap Accuracy (n=3) but probably having seen
the terminological resources in the training data
gave an edge for Exact-Match Accuracy to our
model trained with Common Crawl and the termi-
nological resources.

5 Discussion

5.1 Variability Across Text Genres

The benefit of our recreation of the evaluation script
is that it allowed us to compute the terminology
scores for 1,430 segments. We grouped the dif-
ferent sections of the test data according to text
genres, in fashion similar to (Anastasopoulos et al.,
2020). We distinguished 5 groups of texts and the
variability of the BLEU scores across these text
genres can be seen on Figure 4. This variability
across text genres can also be seen for some other
metrics, such as Window Overlap accuracy (with

n=3) (see Figure 5).

Figure 4: BLEU scores and text genres (Common
Crawl training)

Figure 5: Variability of Window Overlap accuracy
(n=3) across text genres

Overall, it is likely that our results could have
been better if we had used alternative testing sets
rather than using part of the reference corpora as
testing sets.

5.2 Alternative qualitative terminological
analysis

This subsection discusses the error analysis in ter-
minology from a qualitative point of view.

For CNPs not included in the terminology
dataset such as chest pain, the system deploys vari-
ous avoidance strategies ranging from anatomic
approximations (segment 20: mal de coeur) to
omission (segment 8: Et cette douleur est-elle bien
réelle?) to unlucky guesses (segment 2: maux de
mer) to idiomatic expressions (segment 18: C’est
bien là que le bât blesse). For less formal de-
scriptions of similar symptoms where the actual
term does not appear in the source text, the output
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type segments acronyms terms acronym/segment terms/segment
CMU 104 0 71 0.000 0.683
PUBMED 676 465 622 0.688 0.920
wikinews 67 11 25 0.164 0.373
email 98 7 7 0.071 0.071
wikipedia 1,155 315 929 0.273 0.804

Table 2: Distribution of acronyms in the text data

ranges from gibberish and hallucinations (segment
25: c’est comme si la grenna est écrasée to soaring
lyricism (segment 97: C’est la peine que j’ai sur
le cœur). When confronted with an unorganized
list of terms such as the one in segment 30 (anyone
in the family have a heart problem heart disease
heart attack high cholesterol high blood pressure),
most of which are not included in the dataset, the
system valiantly tries to make sense of it by turning
it into a complete sentence: Quiconque au sein de
la famille est confronté à un problème cardiaque,
s’attaque à la pression sanguine élevée en raison
de la forte pression sanguine.

For key terminology around Covid-19, the pre-
ferred option in the output is the masculine form
(le/du/au Covid: 127 occurrences) that is also mas-
sively present in the terminology dataset, whereas
the feminine la Covid only appears 9 times in the
output. Interestingly, in only one of these occur-
rences (segment 2124) does the feminine form ap-
pear within the CNP recorded in the dataset (virus
de la COVID-19). In the other segments, it appears
as a translation for the simple term COVID-19,
which is in the dataset invariably associated with
the masculine form when the gender is specified.

For the compound key term (56) coronavirus
disease, different solutions appear in the output
alongside the proposed translation from the dataset
(maladie du coronavirus). One erroneous solution
in our output is maladie des coronavirus. The plu-
ral form is problematic, as several coronaviruses
exist indeed and most of them are linked with the
common cold, with presents a very different picture
from the illness provoked by the new coronavirus
having emerged in 2019. An interesting solution
appears in our output for segment 186:

[EN] The outbreak of Coronavirus disease 2019
(COVID-19), caused by severe acute respiratory
syndrome (SARS) coronavirus 2 (SARS-CoV-2)

[FR] L’apparition de la maladie liée au coron-
avirus 2019 (COVID-19), causée par les syndromes
respiratoires aigus sévères (SARS) Le coronavirus

2 (SARS-CoV-2)
The proposed translation, i.e. la maladie liée

au coronavirus 2019 (COVID-19), is actually a
better choice than the one included in the dataset.
The system seems to have achieved this translation
by linking disease and illness, as the translation
for coronavirus disease appears to draw from that
given for covid19 illness in the terminology dataset.
For the second CNP in this segment, severe acute
respiratory syndrome (SARS) coronavirus 2 (SARS-
CoV-2), however, the proposed translation is less
accurate, specifically in terms of syntax. This ex-
ample also contains one of the few occurrences of
the short form SARS-CoV-2 in our output (16 in
total, most with no article). The preferred option in
our output is the translated acronym SRAS-CoV-2,
with 153 occurrences, of which 143 also have a
definite article (le/du/au).

5.3 Presence of acronyms in the
terminological data

Medical terms in each segment involve two
forms: acronyms and fully spelled form. The
semantic fields covered by these terms include
medical products (“face masks,” “vaccine”), bio-
chemical elements (“virus”), diseases (“COVID”,
“SARS”), as well as public health practices (“quar-
antine”), organizations (“WHO”) and phenomena
(“outbreak”). For any segment that contains at least
one medical term of either form, the term count
of the corresponding form is set to 1 for the seg-
ment. Counts and ratios per segment for each of the
five types of documents are calculated. It can be ob-
served from the above table that type PUBMED has
the highest ratio per segment for either form of med-
ical terms (0.688 for acronym and 0.920 for normal
form), while type EMAIL has very low ratios espe-
cially for normally spelled form (0.071). In terms
of medical term density, differences among these
types of documents are therefore distinct. Table 2
sums up our findings in terms of the presence of
acronyms
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5.4 Terminology better at inference time?

We entered the challenge following the track for
using the terminological resources at training time.
We nevertheless did a background check on the pos-
sibilities of using the provided dataset at inference
time. We plan to experiment the SYSTRAN Model
studio functionalities to test the performance of
using the terminology resource at inference time.

5.5 A Case for Onto-terminology?

The terminology provided for this task was unstruc-
tured, contrary to existing ontologies for medical
English. Taking advantage of ontology-oriented
programming in Python as implemented in Owl-
ready (Lamy, 2017), it is tempting to consider
potential implementations of onto-terminology in
python-based neural translation toolkits. Biomedi-
cal ontologies have a record of established termi-
nologies. One of the added benefits of this line
of investigation is that we could not only test the
gains of a structured ontology at training time but
we could try to implement sanity checks at infer-
ence time to ensure the quality of the terminology
by making sure the position of the terms in the out-
put is consistent with the hierarchy in the ontology.

6 Conclusion

This paper presents the SPECTRANS system de-
scription for the WMT21 Terminology Shared Task.
We participated in the English-to-French task, us-
ing the terminology resources at training time.
Though English–French is a language-pair with
many linguistic resources, we only used the data
provided by the organisers. Given the novel eval-
uation of terminology provided for this task, we
not only aimed to build a translation system for the
competition, but also to provide a critical angle on
the task and on its evaluation. For the MT system,
we applied a variety of strategies, toolkit compar-
ison, data augmentation and fine-tuning. Though
we did not experience catastrophic forgetting, our
fine-tuning did less well in the terminology met-
rics, probably because we were not able to update
the dictionary. We obtained the best scores for the
models we submitted with a model trained with
Common Crawl supplemented with the terminol-
ogy resource. The translations produced with pre-
trained models competed in terms of terminology
scores, did better for sacreBLEU, especially for the
translation of PUBMED, but proved less robust for
the translation of the patient-doctor interactions of

the CMU section of the testing data.
For the analysis of the terminology, we discussed

the role of complex noun phrases and initialisms.
Our contribution mostly lies in the critical analysis
of the terminological input and of the evaluation
script. This allowed us to raise the issue of the role
of acronyms in the terminology, the importance of
complex NPs (and the correlative interest of the
Window Overlap Accuracy with n=3, more likely
to capture complex NPs than Window Overlap Ac-
curacy when n= 2) as well as the importance of text
genres.
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Abstract

The majority of language domains require pru-
dent use of terminology to ensure clarity and
adequacy of information conveyed. While the
correct use of terminology for some languages
and domains can be achieved by adapting
general-purpose MT systems on large volumes
of in-domain parallel data, such quantities of
domain-specific data are seldom available for
less-resourced languages and niche domains.
Furthermore, as exemplified by COVID-19 re-
cently, no domain-specific parallel data is read-
ily available for emerging domains. However,
the gravity of this recent calamity created a
high demand for reliable translation of critical
information regarding pandemic and infection
prevention. This work is part of WMT2021
Shared Task: Machine Translation using Ter-
minologies, where we describe Tilde MT sys-
tems that are capable of dynamic terminology
integration at the time of translation. Our sys-
tems achieve up to 94% COVID-19 term use
accuracy on the test set of the EN-FR lan-
guage pair without having access to any form
of in-domain information during system train-
ing. We conclude our work with a broader dis-
cussion considering the Shared Task itself and
terminology translation in MT.

1 Introduction

This work is part of WMT2021 Shared Task: Ma-
chine Translation using Terminologies, which is
concerned with improving machine translation
(MT) accuracy and consistency on newly devel-
oped domains by utilising word and phrase-level
terms. We describe Tilde MT systems that are ca-
pable of dynamic terminology integration at infer-
ence time. Our submissions consist of translations
by terminology-enabled general-purpose MT sys-
tems for EN-RU, EN-FR, and CS-DE translation

*Both authors have contributed equally.

directions. Our systems are deliberately trained
without consideration for the test domain to follow
the spirit of the Shared Task—MT for emerging
domains. Despite term collections being noisy,
our MT systems with dynamic terminology inte-
gration improve term translation accuracy proving
their usefulness in dynamic adaptation for novel
domains, where training-time domain adaptation
methods are not feasible.

The remainder of this work describes the meth-
ods used for dynamic terminology integration (Sec-
tion 2) by describing the tasks of terminology fil-
tering, term recognition, and dynamic terminology
integration in the translation process. The bulk of
Section 2 describes problems due to the low-quality
term collections and terminology mismanagement
and our solutions to them. We hope that the ex-
amples provided will not only illustrate the self-
imposed problems by the Shared Task but also will
motive reconsidering the purpose and the desired
qualities of a term collection in the context of MT.
We then briefly describe the experimental setting
and results in Section 3 and Section 4 respectively.
We conclude our work with a broader discussion
considering the Shared Task and terminology trans-
lation in MT in Section 5.

2 Methods

This section describes the three tasks necessary for
successful MT with terminology: terminology fil-
tering, term recognition, and finally, integration of
terminology constraints in the translation process.

2.1 Terminology Filtering

To guarantee terminology translation correctness
and consistency, which are two quality aspects of
terminology translation, term collections must pro-
vide unambiguous information about the preferred
translation equivalent for each source term’s type
(full form, short form, or acronym) when listing
multiple possible translation equivalents in a tar-
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# Source Term Target Side of a Term Entry

EN-RU
1 hand-washing мытье рук | мытья рук | мытья
2 sneeze чихании | чихания | чихнуть
3 flu epidemic эпидемия гриппа | эпидемия свиного гриппа

EN-FR

4 World Health Organization Organisation mondiale de la Santé | Organisation Mondiale de la Santé |
Organisation mondiale de la santé

5 Coronavirus outbreak épidémie de coronavirus
6 coronavirus outbreak épidémies de coronavirus

CS-DE

7 zimní paralympijské hry Paralympische Spiele | Sommer-Paralympics | Paralympische Winterspiele
| Paralympische Sommerspiele | Paralympics

8 letní paralympijské hry Paralympische Spiele | Sommer-Paralympics | Paralympische
Winterspiele | Paralympische Sommerspiele | Paralympics

9 narcista Narzissmus | Narzißmus | narzisstisch

Table 1: Examples of noisy term entries in the provided term collections. Inflected forms are blue, wrong transla-
tions of the source term are red, alternative spelling variants are italic, other possible translations are bold, other
terms within one term entry are underlined.

get language. Typically preparing such term col-
lections that are useful for MT (or the translation
process in general) is the task of a professional
translator or a terminologist. In this Shared Task,
however, term collections sometimes contain en-
tries that do not feature reciprocal translations of
terms (e.g., see examples 1, 3, 7, and 8 in Table 1),
have multiple translations per term (example 8 in
Table 1), have multiple different terms merged into
a single term entry (examples 2 and 9 in Table 1),
have different spelling forms listed on the target
side (examples 4 and 9 in Table 1), and have differ-
ent inflections or spelling variants of source terms
separated in different term entries (examples 5 and
6 in Table 1). Besides, unlike the common custom
of providing terms and their translations in their
dictionary forms (e.g., see examples of terms in Eu-
roTermBank1, the InterActive Terminology for Eu-
rope2, the United Nations Terminology Database3,
and other authoritative term banks), the terminolo-
gies provided for the Shared Task often contain en-
tries where the source or the target language form is
already inflected (examples 1, 2, and 6 in Table 1).

To reduce the noise present in the provided term
collections, we performed filtering by discarding:

1. Term pairs that feature terms consisting of
symbols other than digits, letters, apostrophes,
white-spaces, and hyphen symbols. This fil-
ter allows to identify and discard expressions
that do not represent terminology (e.g., full
sentences, complete clauses, formulas, expres-
sions consisting of terms and their acronyms

1https://eurotermbank.com/
2https://iate.europa.eu/
3https://unterm.un.org/

within one term entry, etc.; see examples 1-6
and 8 in Table 2).

2. Term pairs where the source term is longer
than the target term and the source term con-
tains the target term as a sub-string (or vice
versa). This filter is intended to discard term
entries representing named entities that are
written identically in both source and target
languages, but for which one of the sides is
incomplete (see examples 7 and 9 in Table 2).

3. Term pairs that represent general language
(i.e., are too common). General language
phrases are typically ambiguous and may re-
quire different translations based on surround-
ing context as well as external knowledge,
which may not be available when translating.
Therefore, it may be safer to allow the NMT
model to handle the translation of general lan-
guage phrases. We also do not want to bur-
den the MT model too much with excessively
annotated input data since longer segments
are typically handled worse by NMT mod-
els than shorter segments (Neishi and Yoshi-
naga, 2019). To identify term entries that are
too general, we apply an inverse document
frequency (IDF) (Jones, 1972) filter (Pinnis,
2015a). As an example, this filter discarded
from the term collections all term entries of
the English term “spread” as it is a highly am-
biguous word and according to the Collins
EN-FR dictionary4 it may have at least 20 dis-
tinct translations . Since the term collection

4https://www.collinsdictionary.com/
dictionary/EN-FR/spread
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features just one possible translation without
any added meta-data, it is safer to not use such
terms (considering also the limitations of term
recognition when working with emerging do-
mains with scarce or no parallel data).

Besides filtering out the noisy term entries, the type
and the quality of the term collections provided in
the Shared Task also require selecting one among
potentially many term translation equivalents. As
noted before, this is typically done by a human,
possibly, a domain expert. Nevertheless, we opt for
two different strategies. If more than one transla-
tion equivalent is provided, it is fair to assume that
they are all equally applicable. Thus we propose
to select the first translation equivalent in the list.
We refer to it as 1st Trg Term term selection strat-
egy. After analyzing the term collections, however,
we conclude that it is not the case that all transla-
tion equivalents provided in the Shared Task are
of equal quality. Therefore, we employ a statis-
tical word alignment-based strategy to select the
translation equivalent with the highest alignment
score. To compute word alignments we use eflo-
mal5 (Östling and Tiedemann, 2016). We refer to
it as Alignment-based term selection strategy.

Table 3 gives examples of terms selected by ei-
ther of the term selection strategy. Examples illus-
trate that some translation equivalents are of equal
quality (examples 1, 3, 6, and 7). However, select-
ing the first translation equivalent can sometimes
give long (examples 6 and 8) or inadequate (ex-
ample 4) translation equivalents. The Alignment-
based term selection strategy also tends to select
translation equivalents that are dictionary forms
(example 2) instead of inflections.

2.2 Term Recognition
Having a term collection, the next task in the MT
workflow is term recognition in a running text.
Term recognition depending on the morphologi-
cal typology of the source language and the na-
ture of the domain can prove to be a complex task.
Recognition involves term identification in its sur-
face form, which for morphologically complex lan-
guages may be hindered by many surface forms a
single word can take or by the level of form ambi-
guity in the case of morphologically impoverished
languages (Bergmanis and Goldwater, 2018). To
overcome issues posed by the morphology of the

5https://github.com/robertostling/
eflomal

natural language, one can use one of the many
off-the-shelf morphological taggers to obtain con-
textually correct part-of-speech and lemma pairs
for each token and perform term recognition on
lemmatized collections and texts. We, however,
opt for an alternative, a more rudimentary method
utilizing language-specific stemmers to normalise
the surface forms and do the term recognition on
stemmed running text and term collections (Pinnis,
2015a,b). We opt for the stemmer-based approach
because, in the production setting, stemming is
faster than morphological tagging and has broader
coverage for low-resource languages. Besides, to
take full advantage of the morpho-syntactic infor-
mation provided by morphological taggers, similar
information must be provided by the term collec-
tion. However, as term collections of this Shared
Task exemplify, expecting any meta-data is naive.

Last but not least, recognised forms must be
word-sense disambiguated if more than one trans-
lation sense (i.e., term entry per source-side lexi-
cal form) is available. Word-sense disambiguation
tools typically are lexicalized classifiers that are
trained using large amounts of parallel data. How-
ever, the spirit of this Shared Task is MT using
terminology for emerging domains where "parallel
data are hard to come by"6. Thus we skip word-
sense disambiguation and use just one word-sense
per word form.

2.3 Integration of Terminology Constraints

In the day-to-day work of professional translators,
terminologies are glossaries containing source lan-
guage terms and their corresponding target lan-
guage translations in their dictionary forms. Some
of the previous work on terminology translation as-
sumes that term entries are given in forms already
inflected as required by the target morpho-syntactic
context. Thus, such work focuses either on morpho-
logically impoverished languages or is concerned
with terminology translation in unrealistic scenar-
ios. Either way, such methods are not relevant for
the languages of the Shared Task because all of the
target languages, with the exception of Chinese,
are to some degree inflective languages.

There is, however, another body of work that
addresses translation with terminology while ac-
counting for morphological complexity of the tar-
get language (Exel et al., 2020; Niehues, 2021;

6http://www.statmt.org/wmt21/
terminology-task.html
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# Source Term Target Term

EN-FR
1 shortness of breath essoufflé (e)
2 Do the Five "5 gestes" "barrière" ""
3 Coronavirus (COVID-19) coronavirus (COVID-19)

EN-RU

4 CDC центры по контролю и профилактике
заболеваний США (CDC)

5 active cases активные случаи [заболевания]
6 contagious заразный: передающийся при контакте

CS-DE
7 Lions Clubs International Lions Clubs
8 VIII. hlavový nerv Nervus vestibulocochlearis
9 Eli Lilly Eli Lilly and Company

Table 2: Examples of terms removed by basic filtering.

Bergmanis and Pinnis, 2021). We base our submis-
sion on Bergmanis and Pinnis (2021) and employ
target lemma annotations (TLA) to augment MT
training data. An example of a sentence fragment
annotated with TLA is "infections|s инфекция|t
result|w in|w mild|w symptoms|w", where |s, |t, |w
are factors indicating whether token is a source lan-
guage term, a lemma (the dictionary form) of a tar-
get language term, or an ordinary source language
word respectively. Systems trained on such data
are equipped with a mechanism for passing soft
terminology constraints at inference time. An es-
sential property of MT systems trained using TLA
is that they learn not just to copy but also to inflect
the provided terminology constraints according to
the target morphosyntactic context. Therefore, the
translation of the sentence above, for example, "ин-
фекций приводят к легким симптомам", con-
tains the plural noun "инфекций" and not just the
annotated singular form "инфекция".

3 Experiments

Data. We use all parallel data provided for the
Shared Task for training, except for development
data which we use to choose the best model for
final submission. Although back-translated mono-
lingual data could, in theory, improve the overall
translation quality, we do not use it to train our sys-
tems because typically, the monolingual target data
is selected based on its similarity with the target
domain data. However, the scenario proposed for
the Shared Task assumes that the domain is novel;
thus, we aim to explore the merits of terminology
translation and do not look for extra synthetic target
domain data.

MT Model and Training. For system training,
we use the Marian toolkit (Junczys-Dowmunt et al.,
2018) because of its factored model functionality

developed within the scope of the User-Focused
Marian project 78. In this Shared Task, we train
standard MT systems that mostly follow the Trans-
former (Vaswani et al., 2017) base model con-
figuration. The only deviations from the stan-
dard configuration are 1) the use of source-side
factors (we use factor embeddings of dimension-
ality 8 and concatenate them with word embed-
dings), 2) increased –optimizer-dealy (from 16
to 24), and 3) an increased maximum sequence
length (from 128 to 196 tokens). These changes
are necessary purely for TLA support during train-
ing and inference: increased sequence length ac-
counts for longer input sequences due to TLA and
terminology constraints, while increased optimizer
delay compensates for fewer sentences fitting in
workspace memory-based batch due to their in-
creased maximum length.

4 Results

We trained one NMT system per translation direc-
tion and evaluated translation quality on the de-
velopment sets using the terminology translation
evaluation tool provided by the Shared Task9 (ibn
Alam et al., 2021). We compare the baseline trans-
lation scenario where no terms are annotated in the
source text with improved scenarios where terms
are annotated using term collections acquired using
the different filtering and term translation equiva-
lent selection strategies.

When analysing the lemmatized exact match ac-
curacy, we must bear in mind that the evaluation
data similarly to the term collections feature term

7https://marian-project.eu/
8https://github.com/marian-cef/

marian-examples/blob/forced-translation/
forced-translation/docs/Experiments.md

9https://github.com/mahfuzibnalam/
terminology_evaluation
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# Source Term 1st Trg Term Alignment-based

EN-FR
1 disease outbreak apparition de maladie épidémie
2 epidemiologist épidémiologistes épidémiologiste
3 wash your hands lavez-vous les mains laver les mains

EN-RU

4 Center for Disease Control центры по контролю
и профилактике
заболеваний США

Центр контроля
и профилактики
заболеваний

5 COVID-19 crisis кризиса, связанного с COVID-19 кризис из-за COVID-19
6 health crisis кризисной ситуации,

которая сложилась сегодня
в сфере общественного
здравоохранения

кризис здравоохранения

CS-DE

6 benzoylperoxid Dibenzoylperoxid Benzoylperoxid
7 alternativní medicína Alternativmedizin Alternative Medizin
8 AV ČR Akademie der Wissenschaften

der Tschechischen Republik
AV ČR

Table 3: Examples of terms selected by either 1st Trg Term or Alignment-based term selection strategy for term
entries with multiple translation equivalents.

EN-FR BLEU Accuracy Window 2 Window 3 1 - TERm

Baseline 44.5 0.885 0.286 0.278 0.575
1st Trg Term 44.2 0.922 0.284 0.278 0.572
1st Trg Term, IDF≥5 44.3 0.905 0.281 0.275 0.574
1st Trg Term, IDF≥7 44.4 0.890 0.285 0.280 0.574
Alignment-based 44.6 0.936 0.291 0.285 0.576
Alignment-based, IDF≥5 44.6 0.918 0.287 0.281 0.576
Alignment-based, IDF≥7 44.4 0.896 0.284 0.278 0.574

EN-RU BLEU Accuracy Window 2 Window 3 1 - TERm

Baseline 24.9 0.760 0.163 0.164 0.398
1st Trg Term 24.6 0.751 0.163 0.164 0.394
1st Trg Term, IDF≥5 25.0 0.815 0.176 0.176 0.401
1st Trg Term, IDF≥7 25.1 0.800 0.174 0.175 0.401
Alignment-based 25.0 0.833 0.174 0.175 0.403
Alignment-based, IDF≥5 25.1 0.821 0.176 0.177 0.402
Alignment-based, IDF≥7 25.2 0.792 0.171 0.172 0.401

CS-DE BLEU Accuracy Window 2 Window 3 1 - TERm

Baseline 29.9 0.824 0.376 0.368 0.390
1st Trg Term 26.3 0.851 0.338 0.328 0.340
1st Trg Term, IDF≥5 29.5 0.852 0.371 0.361 0.378
1st Trg Term, IDF≥7 29.6 0.837 0.373 0.364 0.381
Alignment-based 26.8 0.849 0.346 0.337 0.348
Alignment-based, IDF≥5 29.6 0.853 0.373 0.364 0.386
Alignment-based, IDF≥7 29.7 0.837 0.375 0.366 0.389

Table 4: Development set results for baseline MT systems and systems using terminology integration. MT sys-
tems using terminology integration are named after the method used for terminology filtering. The numerically
highest scores according the Lemmatized Exact-Match Accuracy (Accuracy) in data setting are bold. For detailed
description of other metrics consult (ibn Alam et al., 2021).
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entries 1) with more than one allowed synonymous
translation equivalent (not counting different in-
flected forms), and 2) where different terms are
merged into one entry (see examples in Section 2.1).
This consequently means that the evaluation pro-
cedure 1) allows terminological ambiguity on the
target side, 2) does not allow analysing terminol-
ogy translation consistency, and 3) may depict a
rough estimate of terminology translation accuracy.
Therefore, we believe that the lemmatized exact
match accuracy results should be analysed with a
grain of salt.

That being said, the results in Table 4 show that
the metric improves when using a term collection
in all but one experiment. The fact that in overall
the Alignment-based term collections show better
overall translation results (in terms of BLEU) and
also allow reaching the highest terminology trans-
lation accuracy results shows that relying on the
first translation equivalent in a term entry is not a
good idea.

We also see that the overall terminology transla-
tion quality is already relatively high for the base-
line systems ranging from 76% for EN-RU till
88.5% for EN-FR. This makes us wonder whether
the evaluated domain can be considered emerging
as it features few novel terms and the majority are
well handled by the baseline systems. To inves-
tigate further, we analysed whether the bilingual
terminology that can be found in the development
sets is also present in the training data of the NMT
systems. We found that for CS-DE, 97.9% and
92.5% of such (unique) bilingual terms are fea-
tured at least once or 10 times in the training data
respectively. The numbers are even higher if we
analyse running terms (tokens) – 99.8% and 98.7%
respectively. Since the terminology for EN-RU
was human-created and not extracted from par-
allel data, it shows slightly lower results when
analysing unique terms – 93.5% and 88.3% respec-
tively. However, the situation is similar to CS-DE
when analysing running terms – 99.1% and 97.8%
of bilingual terms found in the EN-RU develop-
ment data are also found in the training data at
least once and 10 times respectively. Based on
these findings, we believe that the validation data
does not depict an emerging domain and does not
help analysing terminology translation quality for
emerging domains.

When analysing the overall translation quality
(in terms of BLEU), we see that term filtering using

the IDF-based filter is crucial when relying on very
noisy and automatically acquired term collections
(as was the case with the CS-DE term collection).
The results show that translation quality drops by 3
BLEU points when using the unfiltered term collec-
tions. This shows that too general (and ambiguous)
terminology can be harmful and lower translation
quality. The overall translation quality change is
marginal for the translation directions that featured
human-created term collections (EN-FR and EN-
RU), however we do see an increase in terminology
translation accuracy.

Our final submission consists of machine trans-
lations of Shared Task test sets provided by general-
purpose MT systems that use dynamic terminol-
ogy integration using TLA (Bergmanis and Pinnis,
2021). To translate our final submissions, term col-
lections are filtered by basic filters (see Section 2.1)
for EN-FR and EN-RU language pairs, while for
CS-DE language pair, we also use IDF>5 filtering.
We use the statistical word alignment term selection
strategy for term entries with multiple translation
equivalents for all language pairs. The develop-
ment set results for the corresponding systems are
marked bold in Table 4.

5 Discussion

Shared Task. Results of automatic metrics show
that our baseline systems are already well equipped
to translate the development and test sets regard-
less of their seemingly novel domain. Indeed –
we found no statistically significant differences in
scores measuring general translation quality be-
tween the baseline systems and systems with termi-
nology integration. Preliminary test results suggest
a similar pattern in other submissions (c.f. results
of submissions by Prompt). The only seemingly
meaningful differences are in metrics specifically
targeting terminology integration. These results are
in stark contrast with previous work (Exel et al.,
2020; Niehues, 2021; Bergmanis and Pinnis, 2021)
which report significant improvements not only on
terminology use targeted metrics but also on met-
rics measuring general translation quality. This dis-
parity suggests that test data is not from an emerg-
ing or novel domain (at least as far MT systems
trained on the training data provided are concerned).
Considering this shortcoming, together with the vis-
ibility of WMT Shared Tasks, these results pose
a risk of misrepresenting the problem the Shared
Task was set out to research. The outcome might be
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unintended downplaying of the role of terminology
translation for technical domains, which could lead
to diminishing interest in terminology translation
from the MT research community.
Term Collections in MT. Tables 1, 2, and 3 of
Section 2 provide numerous examples of problems
present in the provided term collections. We be-
lieve that these examples illustrate the understand-
ing of the purpose and desired qualities of a term
collection not just of those individuals involved in
preparing term collections for the Shared Task but
also to a broader community of translation profes-
sionals. Many of the problematic examples sug-
gest that the shift from human-readable to machine-
readable term collections is not there yet, or that
it has happened rather formally by merely refor-
matting the for-human-made term collections into
neater TSV-formatted files. While having TSV-
formatted files helps for the file to be machine-
readable, it does not make the content machine-
usable. The standards for-machine-made term col-
lections have to be higher than those made for hu-
mans. At least as long as there is no sophisticated
intelligence in the MT workflow that is on par with
humans to recover from the irregularities and noise
present in the term collections typically made for
humans. Likewise, the encyclopedia-style entries
explaining a concisely coined concept of the source
language using a whole sentence to define it in the
target language are still present in for-human-made
term collections, but they are of no use for current
MT systems.

If translation with terminology is supposed to
improve MT for novel domains, the term collec-
tions, being the supposed source of the expected
improvement, have to be of a higher quality than
the MT systems they are intended to improve.
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Abstract
This paper describes Charles University sub-
mission for Terminology translation Shared
Task at WMT21. The objective of this task
is to design a system which translates cer-
tain terms based on a provided terminology
database, while preserving high overall trans-
lation quality. We competed in English-French
language pair. Our approach is based on pro-
viding the desired translations alongside the
input sentence and training the model to use
these provided terms. We lemmatize the terms
both during the training and inference, to al-
low the model to learn how to produce correct
surface forms of the words, when they differ
from the forms provided in the terminology
database. Our submission ranked second in
Exact Match metric which evaluates the abil-
ity of the model to produce desired terms in
the translation.

1 Introduction

Terminology integration, or, more generally, con-
strained translation in NMT was extensively stud-
ied in recent years. Lexically constrained transla-
tion means that aside from the source sentence, we
have available some additional knowledge of what
tokens or expressions should appear in the trans-
lation and we want to force the system to include
them in the generated output. Three main ways of
enforcing these constraints have been studied.

First, replacing the source part of the constraint
that is found in the source sentence with a place-
holder which is then copied by the model into the
output. There it gets replaced by the target part
of the constraint (Luong et al. (2015); Crego et al.
(2016)).

Second way is to modify the decoding search
algorithm in a way that only allows hypotheses
containing the constraints to be marked as finished
(Anderson et al. (2017); Hasler et al. (2018); Chat-
terjee et al. (2017); Hokamp and Liu (2017); Post
and Vilar (2018); Hu et al. (2019))

Finally, some works focus on providing the con-
straints directly to the model as part of the input
sequence. The model is trained to incorporate these
constraints into the output, for example Dinu et al.
(2019); Chen et al. (2020); Song et al. (2019) or
Bergmanis and Pinnis (2021).

As apparent from previous paragraphs, the prob-
lem of integrating lexical constraints into NMT is
well studied, but one issue was largely ignored. In
inflected languages, the surface form of the con-
straint in the output cannot be known beforehand,
as there are usually many possible ways to trans-
late a sentence and many of them need different
surface forms of the constraint to be fluent and
grammatically correct. For example, let’s say we
have a terminology database containing term pair
influenza -> grippe and this source sentence:

During the 2018-2019 influenza season.

Possible correct translation is:

Pendant la saison grippale 2018-2019.

Where the term base noun form grippe is inflected
into adjective grippale. Traditional constraint in-
tegration methods will try to enforce the term DB
form grippe instead.

We have studied this problem in our recent work
(Jon et al., 2021) concurrently with Bergmanis and
Pinnis (2021), who used a very similar approach.
Both works use different languages and evaluation
pipelines and both show that the proposed approach
is feasible.

2 Method

NMT models are known to produce fluent, consis-
tent and grammatically correct outputs (Popel et al.,
2020). Thus, it makes sense to utilize this ability
of the model to inflect the constraint into correct
form, instead of trying to disambiguate the form
externally. Our approach is based on annotating
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source sentences with the desired target constraints
and training the model to incorporate these con-
straints into the output. We publish our preprocess-
ing scripts at https://github.com/ufal/
bergamot/wmt21-terminology

2.1 Term annotation

There are multiple possibilities in how to exactly
annotate the source sentence. For example, let’s
say the terminology database contains entries:

runny nose -> nez qui coule
fever -> fièvre

and we have a sentence:

And are you having a runny nose or
fever?

One way is to replace the part of the source sen-
tence containing the source constraint with the tar-
get part of the constraint:

And are you having a nez qui coule or
fièvre?

Another option is to insert the translation tokens
after the source part of the constraint and use fac-
tors to mark which tokens of a sentence belong to
source constraint, which tokens are part of the tar-
get constraint and which are neither. For example,
if factor with value 2 denotes that the token is part
of the translation, value 1 means that the token is
part of a source constraint and 0 means that it is
just ordinary token, we get:

And0 are0 you0 having0 a0 runny1 nose1
nez2 qui2 coule2 or0 fever1 fièvre2 ?0

We use simpler method to integrate the con-
straints in our systems: we append them to the
source sentence as a suffix, separated by a special
token (<sep>) and in case of multiple constraints
for a single sentence, we separate them by a differ-
ent token (<c>):

And are you having a runny nose or
fever? <sep> nez qui coule <c> fièvre

For more details about the possible modifications
of our method, comparisons with other approaches
and detailed evaluation and analysis, we refer the
reader to our previous work (Jon et al., 2021).

2.2 Training data generation

We prepare synthetic constraints for parallel train-
ing data by sampling random token subsequences
from the target sentence. These subsequences are
used as a suffix for the source sentence as described
earlier. There is a number of parameters guiding
this process. Every token in a sentence can become
a start of a constraint with probability s. Unless
stated otherwise, we set s = 0.1. Any subsequent
token in an open constraint can end the constraint
with probability e = 0.75. We permit multiple non-
overlapping constraints for a sentence. We skip
the sentence for constraint generation (i.e. leave it
without any constraints) with probability n = 0.1.
In pseudocode:

s =0 .1
e =0 .75
n =0 .1
f o r s e n t in t e x t :

r =random ( )
c o n s t r a i n t s = [ ]
i f r > n :

open= F a l s e
c o n s t r a i n t =" "
f o r t in t o k e n s ( s e n t ) :

r =random ( )
i f open :

i f r < e :
c o n s t r a i n t s . append ( c o n s t r a i n t )
open= F a l s e

e l s e :
c o n s t r a i n t += t

e l s e :
i f r < s :

c o n s t r a i n t += t
open=True

p r i n t ( s e n t , c o n s t r a i n t s )

Since the task allows for multiple target variants
for a single source term, we have to account for
such possibility in our training data generation. We
assume that each generated constraint can have a
variant with probability v = 0.1. This variant is
sampled randomly (with no relation to the source
sentence) from n-grams extracted from the target
training corpus (so it is not a part of a current target
sentence, but it is still a plausible subsequence in
the target language). The variant has the same num-
ber of tokens as the original constraint with proba-
bility l = 0.9, otherwise the length of the variant is
taken from triangular distribution between 1 and 9
with mode 2. The variants of a single constraint are
delimeted with another special token <v>. None
of the probabilities were tuned for improving re-
sults, we chose them based on manual inspection
of the generated data. We use values that produced
similar counts and lengths of the constraints as in
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the validation set.

2.3 Lemmatization
The training data generation method described
above works, but suffers from the issues described
in the introduction – the system learns to generate
only the exact tokens supplied as constraints in the
suffix, but doesn’t account for different possible in-
flections of the constraints in different contexts. To
overcome this issue, we lemmatize the constraints
both during the training and during test time. This
way, the model learns to not only generate the cor-
rect words in the output, but also to correctly inflect
them.

2.4 Source-side terminology matching
To find term pairs from terminology database in
the input text, we lemmatize both the database
source side and input sentences and search for the
terms that appear either on lemma or surface form
level. Since our lemmatizer works with context, we
lemmatize both the text and the database word by
word to ensure consistent lemmas. For the models
trained with lemmatized constraints, we lemmatize
also the target side of the terminology database and
anntote the source sentence with lemmas of the
target terms, instead of the surface forms.

3 Experiments

3.1 Data
We used all English-French corpora allowed by the
organizers, aside from Paracrawl (with the excep-
tion of one model, which is marked). Namely this
means Europarl v10, Common Crawl, UN Paral-
lel Corpus v1.0, News Commentary v16 and Gi-
gaword. We used WMT15 news test set as our
validation set. After deduplication and filtering,
the resulting training set consists of 24.6M sen-
tences without Paracrawl and 125.9M including
Paracrawl.

3.2 Tools
We use MarianNMT (Junczys-Dowmunt et al.,
2018) to train Transformer-big models with stan-
dard parameters (Vaswani et al., 2017). The cor-
pora are filtered using Moses cleaning script1 and
fasttext langid (Joulin et al., 2016). We split
the text into subwords using FactoredSegmenter2

1https://github.com/marian-nmt/
moses-scripts

2https://github.com/microsoft/
factored-segmenter

based on SentencePiece (Kudo and Richardson,
2018) and lemmatize using UDPipe (Straka and
Straková, 2017). BLEU scores are computed using
SacreBLEU (Post, 2018), other metric are obtained
by an evaluation script provided by the organiz-
ers3(ibn Alam et al., 2021).

3.3 Evaluation

The script provided by the task organizers com-
putes multiple metrics: BLEU, (Lemmatized) Ex-
act Match, Window overlap and 1-TERm.

Exact match is a fraction of constraints which
were produced in the outputs (the output sentences
are lemmatized and the search is performed on both
lemma and surface form level). This metric can be
cheated in two ways – first, the system can place
the target constraint at arbitrary place in the output,
e.g. we can just translate with a non-constrained
MT model, append the constraints at the end and
obtain a perfect score. Second way is related to
lemmatization – the system can produce any valid
surface form of the constraint and even though this
form is not grammatically correct in context of the
output sentence, it still gets counted as matching.
On the other hand, without lemmatization, only
the word forms listed in the terminology database
would get accepted, which would not cover all the
possible correct forms.

Window overlap aims to overcome the first short-
coming of EM by evaluating placement of the con-
straint in the output. For each constraint in the
translation and in the reference, windows of n to-
kens are extracted and compared with each other
to see if the system places the constraint in similar
context as in the reference. 2 and 3 token windows
are used.

TERm metric is weighted TER which uses
higher weights for tokens which are part of a term
from terminology database to increase sensitivity
to differences in the terminology. In the experi-
ments, we observed that 1-TERm score is influ-
enced mainly by the overall translation quality and
less so by the term integration. We believe that this
metric alone is also not sufficient for comparing
ability to integrate constraints in different models,
as the results seem to rely mainly on the "base-
line" model performance, i.e. big general NMT
model, trained on more data, which provides better
overall translation quality, but does not explicitly

3https://github.com/mahfuzibnalam/
terminology_evaluation
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Constraints Corpus Variants BLEU EM window 2 window 3 1-TERm
None Base - 43.976 0.862 0.289 0.283 0.584
None Base+paracrawl - 45.084 0.851 0.283 0.279 0.587
None Base+bt - 42.319 0.834 0.282 0.275 0.575
SF Base no 43.771 0.953 0.297 0.290 0.581
SF Base yes 41.656 0.982 0.253 0.255 0.555
Lemm Base yes 42.317 0.919 0.278 0.274 0.552
Lemm Base no 44.959 0.961 0.302 0.296 0.591
Lemm* Base no 44.623 0.909 0.292 0.288 0.588
Final combined - - 45.590 0.989 0.309 0.304 0.600

Table 1: Results of our models on official validation set. The first column specifies whether the constraint were
lemmatized (Lemm) or not SF (SF), second one shows which part of copora we used. Base means all parallel
data allowed by the organizers with exception of Paracrawl. Third column says whether we provided all possible
variants of the target term from terminology database to the model, on we only the first one. Asterisk in Constraints
column means that the model was trained with these form of constraints, but no constraints were provided during
the test time.

integrate constraints, may obtain higher scores than
a smaller constrained model with perfect constraint
integration ability.

3.4 Results

We trained our models by techniques described ear-
lier and we present metrics computed by the official
evaluation script in Table 1. Due to time and com-
puting constraints, most of the models were trained
without Paracrawl corpus and we only trained one
baseline on dataset including Paracrawl for com-
parison. We compared integrating constraints in
the surface form (so the model needs to produce
exactly the same token as provided in the input)
and constraints in lemmatized form (the model can
produce different inflection of the provided con-
straint). We also compared providing all possible
variants of the target constraint from terminology
database (delimeted by <v>, as described earlier),
or just the first possible translation.

We see that in most metrics, the model which is
trained with lemmatized constraints and uses only
one variant performs the best. Systems trained
with multiple variants of the target term show large
degradation in BLEU scores. We suppose one of
the problems in our method is that during training,
only the true constraint variant from the target is
plausible translation of the source, others are n-
grams sampled randomly from the whole corpus.
Thus, the negative samples are very easy to distin-
guish during the training, but during the test time,
the variants are provided by the term base and they
are all plausible in the context. We will analyse
these results further in the future.

Our final primary submission is a combination
of all the models. They are ranked by their respec-
tive BLEU scores on validation set and we check if
the produced translation contains the desired term
either at lemma level. We use the best ranking sys-
tems’ translation that does, or, in case none of the
systems produced the term, we use the translation
of baseline system.

The task organizers provide test set results.4 Two
metrics were considered for the ranking. First,
COMET (Rei et al., 2020), which evaluates general
translation quality without special regard for spe-
cific terminology. Secondly, exact match, which
measures how many of the desired constraints were
actually produced in the output, but suffers from the
issues described earlier. Our primary submission
was ranked on joint 6th-10th place out of 21 sys-
tems according to COMET and 1st-3rd according
to exact match.

3.5 Error analysis

Our submitted system did not cover 10 out of 872
term occurrences in the validation set. We analyse
these ten errors manually. Six of these errors are
related to casing, notably by translating SARS-CoV
as Sars-CoV, instead of keeping the original casing
(five occurrences). This is caused by our lemma-
tization pipeline, which produces Sars as lemma
of SARS. We confirmed that after manually fixing
the input and restoring the original casing, the sys-
tem produces correct output. Other five examples
classified as errors are presented in Table 2.

4
https://docs.google.com/spreadsheets/d/

13-lkwDq9yerehSF4No6ZTLqPXjSaL7HOsksnZDjjO-Y/
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i Source Target
terms

MT output

1 Many human Coronavirus have their origin in
bats.

coronavirus Beaucoup de Coronavirus humains ont leur origine
dans les chauves-souris .

2 Data from these practices are reported online in a
weekly return, which includes monitoring weekly
rates of influenza-like illness (ILI) and other com-
municable and respiratory diseases in England.

maladies
respiratoires
/ maladies
communes
des voies
respiratoires
/ maladie
respiratoire

Les données relatives à ces pratiques sont commu-
niquées en ligne dans une déclaration hebdomadaire,
qui comprend le suivi des taux hebdomadaires de
maladies grippales(SG) et d’autres maladies trans-
missibles et respiratoires en Angleterre.

3-4 We will share the protocol with UK colleagues and
the I-MOVE consortium who have recently ob-
tained EU Horizon 2020 funding from the stream
“Advancing knowledge for the clinical and pub-
lic health response to the novel coronavirus epi-
demic”

coronavirus
nouveau;
epidémie /
épidémies /
épidémique

Nous partagerons le protocole avec nos collègues
du Royaume-Uni et le consortium I-MOVE , qui ont
récemment obtenu un financement de l’OMS horizon
2020 dans le cadre du projet «Advancing knowledge
for the clinical and public health response to the
novel coronavirus epidemic»

5 The statistical methodology is in support of a
policy approach to widespread disease outbreak,
where so-called nonpharmaceutical interventions
(NPIs) are used to respond to an emerging pan-
demic to produce disease suppression.

épidémie /
épidémies /
épidémique

La méthodologie statistique est à l’appui d’une ap-
proche politique face à l’apparition de maladies à
grande échelle, où les interventions dites non phar-
maceutiques (ISP) sont utilisées pour répondre à une
pandémie émergente afin d’éliminer les maladies.

Table 2: Rest of the examples with uncovered terms. Target terms column shows possible translations of the source
terms (bold) as provided in the terminology database.

Another casing error occurs in translation of the
sentence (1) in the table. The model keeps the
original source casing, but the evaluation script
only checks for lower-case coronavirus. This sen-
tence is also actually part of unsplit and wrongly
tokenized source line The large number of host
bat and avian species, and their global range, has
enabled extensive evolution and dissemination of
coronaviruses.Many human coronavirus have their
origin in bats. This may be a source of further
confusion for the model.

In example (2), the related terminology DB pair
is respiratory diseases -> maladies respiratoires.
In the model output, the adjective transmissibles is
interjected between the terms, which is probably
not an error from human point of view, but is hard
to evaluate automatically.

In example (3-4), the model does not translate
the name of the project in quotes, thus it does not
produce the desired translations of both epidemic
-> épidemie and novel coronavirus -> coronavirus
nouveau .

Finally, (5) is a true failure of the model to
use the provided term. The sentence produced
by the model is a plausible and semantically cor-
rect translation, but it is not using the desired
term. For further analysis, we manually replaced
the produced translation of the term (maladies à
grande échelle) with the term from the terminology

database (épidémie). We computed cross-entropy
scores for the modified sentence both with and
without providing the constraint to the model. We
saw that when provided with the constraint, the
modified translation is more probable than without
the constraint (but still slightly less probable than
the translation that was actually produced.) This
shows that the method still partially works in this
case, but the bias towards producing the term in the
output needs to be stronger – we plan to explore
this further using contrastive learning.

4 Conclusion

We describe our submission to Terminology transla-
tion Shared Task at WMT21. We show our method
can effectively incorporate the terminology with-
out negative effects on overall translation quality.
We analysed all ten examples in the validation set
where our model did not cover the desired term
constraint and we show that most of them can be
explained by preprocessing issues.
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Abstract 

This paper describes the PROMT 

submissions for the WMT21 Terminology 

Translation Task. We participate in two 

directions: English to French and English 

to Russian. Our final submissions are 

MarianNMT-based neural systems. We 

present two technologies for terminology 

translation: a modification of the Dinu et 

al. (2019) soft-constrained approach and 

our own approach called PROMT Smart 

Neural Dictionary (SmartND). We achieve 

good results in both directions. 

1 Introduction 

The currently state-of-the-art approach of neural 

machine translation (NMT) does not inherently 

allow for explicit control over the system’s output. 

That is why terminology translation has always 

been a problem for NMT systems. There are 

several approaches to solving this problem. One 

common paradigm is constrained decoding 

(Hokamp and Liu, 2017; Anderson et al., 2017; 

Post and Vilar, 2018), where the terminology 

matches are presented as hard constraints that the 

beam search must satisfy. Constrained decoding 

has its disadvantages: it is computationally 

expensive and can deteriorate the translation 

quality (Dinu et al., 2019). Another common 

approach is the one introduced by (Dinu et al., 

2019): the terminological constraints are provided 

as input to the NMT as additional annotations 

inline with the source sentence. These can be 

considered ‘soft’ constraints, as there is no 

guarantee that the NMT system will indeed 

produce an output containing them. 

In this paper we describe two approaches to 

terminology translation. First, we propose a 

modification of the (Dinu et al., 2019) approach. 

Second, we introduce our own technology 

PROMT Smart Neural Dictionary (SmartND) 

aimed at handling terminology translation. 

The paper is organized as follows: in Section 2 

we describe the systems built for the Task and the 

data we used. In Section 3 we describe our 

technologies for terminology translation. In 

Section 4 we present and discuss the results. We 

conclude the paper with discussion for possible 

future work in Section 5. 

2 Systems overview 

We submitted two single baseline transformer-

based (Vaswani et al., 2017) systems trained with 

the MarianNMT (Junczys-Dowmunt et al., 2018) 

toolkit: English-Russian and English-French. We 

use all parallel data allowed by the organizers. 

The final systems have the same architecture: we 

use a shared vocabulary of sizes 16k and 32k for 

the English-French and English-Russian systems 

respectively. We use the OpenNMT toolkit (Klein 

et al., 2017) version of byte pair encoding (BPE) 

(Sennrich et al., 2016b) for subword 

segmentation. We use the devsets provided by the 

organizers as our development sets.  

We build intermediate models to obtain back-

translations (Sennrich et al., 2016a) for our final 

systems. We use iterative back-translation for the 

English-Russian system. The intermediate models 

are trained using SentencePiece (Kudo and 

Richardson, 2018) for subword segmentation as 

we noticed that SentencePiece-based models are 

more robust in low and middle-resource 

PROMT Systems for WMT21 Terminology Translation Task 
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conditions. We also tag all our synthetic data with 

special tokens at the beginning of the source 

sentences as described in (Caswell et al., 2019). 

Our final models use three types of synthetic data 

for training: back-translations, data with 

terminology and special data with placeholders for 

processing named entities during translation (see 

Molchanov, 2019 for details). The models are 

trained with guided alignment which is used at 

translation time by our SmartND technology. We 

obtain alignments using the fast-align (Dyer 

et al., 2013) tool. Both final models were trained 

for approximately 1.2M steps on two RTX 2080 

GPUs. 

We also perform fine-tuning for our final 

systems. There are two reasons for that. First, due 

to time constraints the initial final systems were 

trained with only one term in each sentence with 

terminology markup. After testing these systems 

we realized that they couldn’t handle sentences 

containing multiple terms. The second reason is 

that we only processed parallel data and not back-

translations for the initial final systems, whereas 

the 2020 news contain a lot of information about 

COVID etc. For fine-tuning we processed both 

the back-translated news and parallel data only 

using the glossary provided by organizers. This 

data was mixed with general parallel data. 

2.1 Data preparation 

There are several stages in our data preparation 

pipeline. These are mostly common filtering 

techniques. The statistics for the training data are 

shown in Table 1. The main stages of the pipeline 

are: 

 Basic filtering 

This includes some simple length-based 

and source-target length ratio-based 

heuristics, removing tags, lines with low 

amount of alphabetic symbols etc. We 

also remove lines which appear to be 

emails or web-addresses and duplicates. 

 Language identification 

The algorithm is a fairly simple 

ensemble of three tools: pycld2 1 , 

langid (Lui and Baldwin, 2012), 

                                                           
1
 https://pypi.org/project/pycld2/ 

langdetect2. We only use pycld2 for 

large monolingual corpora. 

 Bicleaner filtering 

We use the bicleaner (Ramírez-Sánchez 

et al., 2020) tool to filter parallel data. 

We discard all sentence pairs with the 

score threshold <= 0.3. 

 Scoring with NMT models 

We finally score all parallel data and 

back-translations with our intermediate 

models to discard non-parallel sentence 

pairs and bad synthetic translations. 

2.2 English-French 

Due to time constraints and relatively large 

amounts of training data for the English-French 

pair we only build one intermediate model. We 

use all parallel data that we suppose to be of good 

quality (i.e. all data except the paracrawl, 

commoncrawl and giga corpora; we also 

randomly select only 2.5M sentence pairs from 

the United Nations corpus) and build a joint 

system trained to translate both from English into 

French and back. Basic filtering is applied to this 

data. We use a shared vocabulary of size 8k 

obtained with SentencePiece. We also tag the 

source side of the training data with language 

tokens. The model is trained for approximately 

1M steps on two RTX 2080 GPUs. We then use 

this system to 1) score all parallel data in both 

directions; 2) translate the monolingual French 

news corpora into English. We translate the 2020, 

2019 and 2018 news corpora. The final model is 

built using all allowed filtered parallel data, back-

translated news and additional synthetic data for 

terminology markup (see Section 3 for details). 

2.3 English-Russian 

The English-Russian was a surprise pair 

announced roughly three weeks before the 

submission deadline. That is why despite the 

relatively small amounts of parallel data we only 

make two iterations of training intermediate 

systems. We first build an English-Russian system 

using all parallel data (except commoncrawl 

which we believe to be of bad quality; basic 

filtering is applied) including the Edinborough 

corpus of Russian news translated into English 

and separate SentencePiece-based vocabularies of 

                                                           
2
 https://pypi.org/project/langdetect/ 
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size 16k each. As there are approximately 25M 

parallel sentences pairs, we randomly select 

25.5M from the back-translated Russian news 

corpus. We then use this model to translate the 

English monolingual 2020 news corpus into 

Russian. Then we build a Russian-English system 

with the same vocabularies using all completely 

filtered parallel data and the obtained English-

Russian translations. After that we translate the 

Russian monolingual news (2020, 2019 and 2018) 

into English. The final English-Russian model is 

trained on all filtered parallel data (also scored 

with the two intermediate systems) and the back-

translations of the Russian monolingual news. 

Despite the fact that it is better to use separate 

vocabularies for models with different alphabets 

we use a shared vocabulary because this is 

necessary for our terminology handling approach. 

3 Terminology translation 

In this section we describe our two approaches to 

terminology handling in detail. 

3.1 SmartND 

Our SmartND systems work on the backbone of 

the PROMT RBMT technology. The technology 

doesn’t need any specific pretraining or fine-

tuning. The entire process can be divided into 

three steps: dictionary creation, terminology 

search and output modification. 

First off we create a PROMT dictionary in 

specific format based on the provided glossary. 

The dictionary is highly optimized for speed and 

English-Russian 

 

#sent #sent clean #tok EN #tok EN clean #tok RU #tok RU clean 

News-commentary 331,508 263,674 8,940,220 6,833,693 8,483,220 6,490,441 

Paracrawl 5,377,911 3,384,721 122,008,867 72,171,449 100,966,255 63,635,823 

UN 23,239,280 12,875,296 61,3108,270 401,818,416 578,849,401 375,889,876 

WikiMatrix 1,661,908 896,209 39,460,867 22,136,958 36,102,154 19,909,749 

Yandex corpus 1,000,000 770,424 24,685,829 18,849,831 22,613,143 17,341,207 

Commoncrawl 878,386 309,378 22,000,613 7,375,812 21,152,629 6,712,507 

WikiTitles 1,189,058 195,653 3,403,009 839,231 3,515,590 836,091 

Total 33,678,051 18,695,355 833,607,675 530,025,390 771,682,392 490,815,694 

English-French 

 

#sent #sent clean #tok EN #tok EN clean #tok FR #tok FR clean 

Europarl 1,915,930 1,387,120 53,588,034 38,751,350 59,215,266 43,076,733 

News-commentary 365,510 318,811 94,442,52 8,328,207 11,312,937 10,044,909 

UN 25,805,088 15,076,117 681,718,544 457,225,777 790,583,218 535,347,782 

Commoncrawl 3,244,152 1,832,936 82,530,944 43,761,355 92,685,758 50,241,069 

Giga 22,520,376 11,559,142 685,336,581 304,757,715 826,389,803 362,087,754 

Paracrawl 104,351,522 45,673,561 2,274,818,705 961,613,380 2,604,498,787 1,078,787,397 

Total 158,202,578 75,847,687 3,787,437,060 1,814,437,784 4,384,685,769 2,079,585,644 

 Table 1: Statistics for the initial and filtered parallel data in sentences (#sent) and tokens (#tok); ‘clean’ stands 

for the final filtered versions of the corpora. 
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contains POS information for each lexeme along 

with the complete inflectional paradigm. If a term 

is present in any of our existing dictionaries, we 

copy the information from there. In other cases, 

we try to guess the POS and possible paradigm 

based  on how the term ends. Currently, this 

system only works with nouns, so we omitted any 

verbs and adjectives present in the provided 

terminology glossary, as well as any ambiguous 

terms that could belong to different parts of 

speech (like ‘quarantine’). If a term has multiple 

translations we either choose one (if the 

translations are interchangeable, like ‘World 

Health Organization’ – 'Organisation mondiale de 

la Santé' or 'Organisation Mondiale de la Santé') 

or omit the term entirely. We also drop any 

common terms that would likely be translated 

correctly by our NMT models (like ‘coronavirus’) 

or, in case of the English-Russian language pair, 

terms with translations that are incorrect 

(‘Coronavirus crisis’ – 'коронавирус кризис'). 

This ensures that SmartND will not interfere with 

a perfectly valid NMT output. We remove 30 

entries from the original glossary. 

The translation process is organized as follows. 

If a term is present in the input text, we search the 

NMT output for the expected term translation. If 

that translation is not present in the NMT output, 

our RBMT systems analyze it and determine the 

grammatical information (case and number) of the 

word which our NMT model used to translate the 

term. We use the word-level alignment provided 

by the NMT model to find the term-translation 

pair. Then we can substitute that word for the 

correct translation taken from the RBMT 

dictionary using the same case and number. The 

entire process depends of the NMT model 

providing good quality word-level alignment. We 

do not substitute the term translation if the 

alignment is incomplete in that part of the 

segment. 

3.2 Soft-constrained Terminology 

Translation 

Our second approach is based on (Dinu et al., 

2019) with slight modifications. The general idea 

is quite simple: terminology is identified and 

tagged on the source side, and each term is 

appended by its translation (also tagged). The 

work of (Dinu et al., 2019) and (Bergmanis and 

Pinnis, 2021) is based on the Sockeye (Hieber et 

al., 2017) toolkit. Each part of the term and its 

translation is marked with a special source feature. 

Whereas MarianNMT doesn’t support source 

features (and our systems are MarianNMT-based), 

we propose a ‘trick’ similar to the one described in 

(Tamchyna et al., 2017). We add special tokens 

after the term and its translation in the input string. 

In the first version of our systems we added 

special tokens after each part of the term and each 

part of its translation to ‘mimic’ a source feature 

behavior. But we noticed that the resulting strings 

are often too long, especially if the source line 

contains several multi-word terms. So we decided 

to simplify the algorithm and mark each term with 

three special tokens which indicate the beginning 

and end of the term itself and the end of its 

translation: <term_start>, <term_end> and 

<term_trans>. 

We use the glossary provided for the Task to 

tag our parallel data. We also use the parallel 

WikiTitles corpora to create more synthetic data 

with terminology markup. For the English-

Russian pair we use the provided WikiTitles 

corpus. For the English-French pair we use the 

wikipedia-parallel-titles3  tool to extract 

the English-French Wikipedia titles. Note that we 

only use this corpus to indentify and tag terms in 

the provided constrained data. We apply the basic 

filtering to the titles corpora and then randomly 

select 10k parallel entries for data markup. The 

English-French glossary remains as is, whereas 

we generate all possible forms for the translations 

of the English-Russian glossary using our parser 

to be able to find them in the parallel data and 

process more sentences for training. 

The data preprocessing is simple: we go 

through the parallel data line by line and identify 

the terms (either from the provided glossary or 

from the WikiTitles) on the source side. If a term 

is found, we look for any of its translations on the 

target side. If a translation is found, we tag the 

term and append the found translation as 

described above. We obtain about 2.1M sentence 

pairs for the initial system training and around 

0.8M pairs for fine-tuning (using only the 

provided glossary) for the English-Russian pair, 

For the English-French pair we have around 0.8 

sentence pairs for the initial system and 0.2M 

pairs for tuning. 

                                                           
3 https://github.com/clab/wikipedia-parallel-titles 
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At translation time both glossaries remain as is 

because we don’t use the lemmatized approach, so 

each term is appended by the initial form of the 

translation. The motivation for this is that we 

think that having seen different forms of words 

and expressions at training time the model can 

‘guess’ that it should transform the initial form to 

the one necessary in this context (i.e. copy and 

inflect). 

4 Results and discussion 

In this Section we present the results on the dev 

and test sets both in terms of automatic and 

human evaluation and discuss advantages and 

drawbacks of our approaches. The results of 

automatic evaluation on the dev sets according to 

the tool (Mahfuz ibn Alam et al., 2021) provided 

by the organizers are presented in Table 2. We can 

see that both our approaches clearly outperform 

the baseline according to the terminology-related 

metrics. As for the BLEU (Papineni et al., 2002) 

scores, they slightly rise for both approaches 

which indicates positive results of the application 

of our approaches. We also present the final 

results for our submitted systems on the test sets 

in Table 3. They are generally consistent with the 

results we obtained on the dev sets. 

4.1 Tuned models with SmartND 

We observe minor decrease in the exact match 

scores for the tuned models with the SmartND 

technology. Surprisingly, our final English-

Russian tuned system was ranked last on the test 

set according to the Exact Match and Window 

Overlap metrics. We performed human evaluation 

for these translations. The results show that the 

exact match scores decrease because of the 

translation of the term COVID-19 which is 

translated as Covid-19 by the tuned model. This is 

a perfectly fine translation, but the evaluation 

metric handles all term translations in case-

sensitive mode. The tuned model outperforms the 

baseline model in all other aspects. This is 

probably a reason to 1) slightly modify our 

SmartND algorithm; 2) make the scoring metrics 

more robust regarding the case aspects. 

English-French 

 

BLEU 

Exact 

match 

Window overlap 

(2) 

Window overlap 

(3) 1-TERm 

Intermediate 38.45 0.82 0.255 0.253 0.53 

Final 45.44 0.87 0.3 0.29 0.61 

Final+Soft 45.86 0.966 0.314 0.309 0.613 

Final+SmartND 45.51 0.922 0.307 0.303 0.613 

Final tuned 45.29 0.867 0.297 0.289 0.61 

Final tuned+Soft 46.04 0.973 0.309 0.306 0.614 

Final 

tuned+SmartND 45.31 0.87 0.299 0.29 0.611 

English-Russian 

 

BLEU 

Exact 

match 

Window overlap 

(2) 

Window overlap 

(3) 1-TERm 

Intermediate 23.92 0.707 0.165 0.163 0.395 

Final 27.05 0.84 0.205 0.203 0.439 

Final+Soft 26.94 0.86 0.2 0.198 0.44 

Final+SmartND 27.22 0.867 0.208 0.207 0.44 

Final tuned 26.75 0.742 0.193 0.19 0.433 

Final tuned+Soft 26.9 0.914 0.215 0.214 0.438 

Final 

tuned+SmartND 26.91 0.765 0.195 0.191 0.434 

Table 2: Results of the Terminolgy Translation Task on the dev sets. 
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4.2 SmartND and Soft-constrained 

translation 

We compared the two approaches to handling 

terminology during our experiments. They both 

have advantages and drawbacks originating from 

their architecture. 

The SmartND technology is more reliable as it 

almost always produces the right translation given 

the input from the glossary. However, a noisy 

glossary is a great problem for SmartND as in this 

case it needs to be carefully handled and filtered 

by linguists. The second problem with SmartND 

is that it sometimes (rarely) produces incorrect 

translations putting words in the wrong form in 

the output. This concerns morphologically rich 

languages, and the reason for it is that it is 

sometimes hard to parse the output and define the 

correct form for the term translation. 

The soft-constrained approach is more robust to 

noise in terminology glossaries. The NMT output 

is more fluent as the system tends to put the terms 

in the right forms or generate its own translation. 

However, as we noticed, this technology cannot 

handle very noisy glossaries or entries either. The 

soft-constrained systems also require specific 

training and fine-tuning and data for it, which can 

be costly. 

4.3 General translation quality 

We also observe the fact that better baseline 

models receive better scores according to all 

metrics. We paid more attention to the English-

Russian direction in this task and contributed 

more work to it. As a result, we obtain generally 

higher scores on the English-Russian direction 

compared to the English-French direction 

according to all metrics. 

5 Conclusions and future work 

In this paper we presented our submissions for the 

WMT21 Shared Terminology Translation Task. 

We show good results in both directions we 

participate (English-French and English-Russian). 

We are planning to make more thorough analysis 

of the results of our work on both the dev and test 

sets. We are also planning to try the lemmatized 

approach as described in (Bergmanis and Pinnis, 

2021). 
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Abstract
This paper describes SYSTRAN submissions
to the WMT 2021 terminology shared task.
We participate in the English-to-French trans-
lation direction with a standard Transformer
neural machine translation network that we en-
hance with the ability to dynamically include
terminology constraints, a very common in-
dustrial practice. Two state-of-the-art termi-
nology insertion methods are evaluated based
(i) on the use of placeholders complemented
with morphosyntactic annotation and (ii) on
the use of target constraints injected in the
source stream. Results show the suitability of
the presented approaches in the evaluated sce-
nario where terminology is used in a system
trained on generic data only.

1 Introduction

The high quality obtained by out-of-the-box neural
machine translation (NMT) systems (Bojar et al.,
2016) has boosted the adoption of automatic trans-
lation by the industry and invigorated the research
and development on domain adaption and integra-
tion of technology in human translation workflows.
For instance, combination with translation mem-
ories (Bulte and Tezcan, 2019; Xu et al., 2020;
Pham et al., 2020), terminology handling (Hasler
et al., 2018; Dinu et al., 2019; Michon et al., 2020;
Bergmanis and Pinnis, 2021), interactive transla-
tion (Peris and Casacuberta, 2019), post-editing
modelling (Chatterjee et al., 2020) or dynamic
adaptation (Farajian et al., 2017) are all different
techniques to make machine translation part of real-
life localization workflow.

Terminology resources with all their sophisti-
cation have been the core building bricks and a
continuous challenge to acquire in volume (Senel-
lart et al., 2003) for rule-based engines. At the
other extreme, they have been reduced to corpus or
aligned “phrase pairs” (Schwenk et al., 2008) for
Statistical Machine Translation approaches, miss-
ing most of their intrinsic linguistic properties. In

contrast, neural machine translation operates on
word and sentence representations in a continuous
space so, on the one hand, it has access to deep
actual linguistic knowledge (Conneau et al., 2018)
and demonstrates a huge ability to generalize. But
on the other hand, results are more difficult to inter-
pret (Koehn and Knowles, 2017), and subsequently
the translation process is far more complicated to
control. Therefore, as for several other linguistic
annotations, the challenge is how terminological
information can be “passed” to the model. From a
human perspective, even though presentation and
usage of dictionaries have evolved from ontology
(as found in paper dictionary) to corpus-based pre-
sentation, looking up terms in a dictionary is the
ultimate point of reference for validating the cor-
rect term for a specific domain and context.

Inline with the conditions of the WMT 2021
terminology shared task, we present English-to-
French NMT engines built from abundant generic
(out-of-domain) training data. We evaluate several
methods to enhance translation engines with the
ability to integrate terminology as a quick way to
dynamically specialize a translation to a particu-
lar domain, which in this case considers the new
COVID-19 domain and the large efforts for trans-
lation of critical information regarding pandemic
handling and infection prevention strategies. In-
domain resources are limited to word- and phrase-
level terminology entries created to guide profes-
sional translators to ensure both accuracy and con-
sistency in translations. Our generic systems make
only use of terminologies at inference time.

The remainder of the paper is organized as fol-
lows: Section 2 gives details of several terminology
injection approaches considered in this work. In
addition, we outline a grammatical error correction
network that is applied over French translation hy-
potheses. The experimental framework is presented
in Section 3. Results are discussed in Section 4.
Finally, we draw conclusions in Section 5.
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2 Terminology Injection

Terminology is typically defined as the technical
or special terms used in a business, art, science, or
special subject. A high quality asset maintained by
language specialists as part of a translation project.
It allows to guarantee language consistency, cer-
tify translation accuracy and define constraints to
human translation.

In recent years there has been significant work
proposing methods to integrate such external spe-
cialized terminologies into NMT models, each
showing different levels of performance when fac-
ing terminology injection issues, mainly inference
overhead and generalization power.

In this section we describe the two main methods
employed for this shared task and illustrate the par-
ticularities of each on a common scenario using two
English-French terminology entries: Coronavirus
↝ Coronavirus and pneumonia↝ pneumonie, in
the following translation:

Coronavirus can cause pneumonia
Les coronavirus peuvent causer des pneumonies

Table 1 illustrates training examples of each ter-
minology injection methods evaluated in this work.
First row shows the base configuration where no
terminology is employed.

2.1 Placeholders
Our first method incorporates non-terminal tokens
into NMT systems, which require modifying the
pre-and post-processing of the data, and training
the system with data that contains the same place-
holders which occur in the test sets (Crego et al.,
2016; Michon et al., 2020). Following our exam-
ple, source and translation terms appearing in the
sentence pair are replaced by placeholders adapted
to cover a wider variety of cases, and to control
morphology to allow generalization power.

The method presented in Michon et al. (2020)
allows handling very challenging cases concerning
homographs. This is, words (or phrases) that shar-
ing the same form (i.e. spread) can occur with mul-
tiple meanings or different grammatical functions
(verb or noun). The method predicts the part-of-
speech of the target placeholder. Thus, solving the
source homograph.

Given that the vast majority of the terminology
released for this shared task consists of nouns (sin-
gle words or phrases) we decided to use a simpli-
fied version of the method that only considers using
noun placeholders.

Row mrk in Table 1 illustrates the use of place-
holders for our previous training example. Each
word form detected as terminology is replaced by
two placeholders: The first indicates the part-of-
speech of the terminology (in this work always
a noun ’N’) followed by a unique identifier; the
second indicates the set of features conveying the
morphology of the noun (masc/fem and sing/plur).

To predict the target morphology of the each
term, the NMT model may find it useful to have
access to the source word form. Thus, in a second
version of the method we incorporate the terminol-
ogy word form (Coronaviruses and pneumonia) in
the source stream. We denote this version mrk+.
It is worth to notice that this second version only
improves on the previous when the incorporated
source term has sufficiently occurred in training.

Note also that Michon et al. (2020) do not require
linguistic information in inference since ambigu-
ities are not resolved in the source placeholders.
In contrast, our implementation uses SpaCy1 to
obtain part-of-speeches and morphology features
of input streams.

Target-side streams of methods mrk and mrk+,
require post-processing to replace target-side place-
holders by the final word forms. In practice, for
each source-target term pair we encode all possible
inflections of the source and target word labelled
with the corresponding inflection type (placehold-
ers). Not only does this analysis enable to lexically
match any inflected form of the source term, but
it can also produce any inflected form of the trans-
lation term, ensuring full flexibility in the inflec-
tion choice made by the neural network. Table 2
illustrates target word forms for the terminology
pneumonia↝ pneumonie.

2.2 Learning to apply constraints

This approach tackles the same problem by learn-
ing a copy behaviour of terminology at training
time (Song et al., 2019; Dinu et al., 2019; Bergma-
nis and Pinnis, 2021). The NMT model is trained
to incorporate terminology translations when they
are provided as additional input in the source sen-
tence. Terminology translations are inserted as
inline annotations, expecting the model to learn
that such additional words must be copied in the
target hypothesis. The authors insert terminology
translations in the source sentence either by ap-
pending the target term to its source version, or by

1https://spacy.io/
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Placeholders (tgt) Word form
<N> <fem_sing> pneumonie
<N> <fem_plur> pneumonies

Table 2: Target word forms and associated placeholders
for the term entry pneumonia↝ pneumonie.

directly replacing the original term with the target
one. Example in row app of Table 1 illustrates the
append alternative presented in Dinu et al. (2019).

The approach uses a generic NMT architecture
which learns to use an external terminology pro-
vided at run-time, thus, showing no inference over-
head. However, similarly to the preceding ap-
proach, it lacks generalization power as it simply
"copies" the term found in the terminology base
injected in the source sentence, irrespective of the
target hypothesis context. Dinu et al. (2019) argue
that in some cases the approach exhibits the ability
to inflect translation terms.

Finally, a second version of the method is also
illustrated in Table 1, denoted as app+. The target
term is injected using its lemma form. Thus, forc-
ing the NMT model to produce the right inflection
of the term observed in the source stream. In the
example, pneumonie must be inflected in its plural
form, pneumonies. Tokens <b>, <i> and <e> are
used to inform the model of the source and target
terminology boundaries. Note that, in contrast to
placeholder methods, no additional post-processing
is required.

2.3 Grammatical Error Correction

As previously stated, placeholder methods allow
larger generalization power thanks to the flexibility
of the inflection mechanism employed in the trans-
lation workflow. However, morphology choices

made by the network do not take into account the
actual word forms, which was observed to result
in a higher number of inflection errors (Michon
et al., 2020). To alleviate this problem we add a
correction module that performs over the resulting
translation hypotheses.

We use a correction module based on Gec-
tor (Omelianchuk et al., 2020) with a pretrained
multilingual BERT to correct grammatically incor-
rect French words. The model predicts grammati-
cal features for each word in the translated sentence,
allowing only for 3 types of edits:

• Transformation of gender/number

le [Fem]→ la
le [Plur]→ les

• transformation of tense/person of verbs

avez [3_Plur]→ avons
avez [Ind_Imp]→ aviez

• Elision

le [ELISION]→ l’

Table 9 in Appendix B illustrates the vocabulary
of tags considered by the model. Once the model
predicts whether a word needs to be corrected (and
which correction), the final word form is found
using a dictionary and the predicted tag. Table 3
illustrates examples of translation hypotheses pro-
duced by the NMT model (Hyp) predicted tags for
each word (Pred) and corrected hypotheses (Corr).
Tag ✓ is used to indicate that no transformation is
required.

ba
se Coronaviruses can cause pneumonia

Les coronavirus peuvent causer des pneumonies

m
rk <N#1> <masc_plur> can cause <N#2> <fem_sing>

Les <N#1> <masc_plur> peuvent causer des <N#2> <fem_plur>

m
rk

+ <N#1> Coronaviruses <masc_plur> can cause <N#2> pneumonia <fem_sing>
Les <N#1> <masc_plur> peuvent causer des <N#2> <fem_plur>

ap
p <b> Coronaviruses <i> coronavirus <e> can cause <b> pneumonia <i> pneumonies <e>

Les coronavirus peuvent causer des pneumonies

ap
p+ <b> Coronaviruses <i> coronavirus <e> can cause <b> pneumonia <i> pneumonie <e>

Les coronavirus peuvent causer des pneumonies

Table 1: Examples of training streams for the same sentence pair using terms Coronaviruses ↝ Coronavirus and
pneumonia↝ pneumonie according to each injection method evaluated in this work.
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Hyp ... le épidémie rapidement propagée aux villes ...
Pred ... ELISION ✓ ✓ ✓ ✓ ✓ ...
Corr ... l’ épidémie rapidement propagée aux villes ...
Hyp ... avec le fièvre à peu près ...
Pred ... ✓ Fem_Sing ✓ ✓ ✓ ✓ ...
Corr ... avec la fièvre à peu près ...
Hyp ... atteintes à la mise en quarantaines ...
Pred ... ✓ ✓ ✓ ✓ ✓ Fem_Sing ...
Corr ... atteintes à la mise en quarantaine ...
Hyp ... cas de COVID-19 confirmées en laboratoire ...
Pred ... ✓ ✓ ✓ Masc_Plur_Past_Part ✓ ✓ ...
Corr ... cas de COVID-19 confirmés en laboratoire ...

Table 3: Examples of word edits performed by the correction model.

3 Experimental Framework

3.1 Corpora

Table 7 in Appendix A provides some statistics
on the parallel corpora employed for training our
models. It is important to note that all corpora
used are out-of-domain. We first filtered out longer
sentences and sentences with a significant differ-
ence in the number of words between the source
and the corresponding translation. All data is pre-
processed using the OpenNMT tokenizer2.

In order to train our correction (GeC) model
with additional data, we also use the monolingual
(French) corpora made available for the shared task.
See Table 8 in Appendix A for detailed statistics of
monolingual data.

3.2 Terminology

Table 4 illustrates some examples of the terminol-
ogy entries released by the organisers of the shared
task.

English French
contagious contagieux
active cases cas actifs

confirmed cases cas confirmés

Table 4: English-French terminology examples.

We note that most terminology entries are com-
posed of several words. Indeed 54.8% of terms are
groups of two words, 22.3% contains more than
three words and only 22.9% are single words as
measured in the source side.

2https://github.com/OpenNMT/Tokenizer

3.3 NMT Engines
All our NMT engines follow the Transformer archi-
tecture (Vaswani et al., 2017) implemented by the
OpenNMT-tf3 toolkit (Klein et al., 2017). More
precisely, we use: Word embedding size: 1024;
Number of layers: 6; Number of heads in multi-
head self-attention layer: 16; Inner dimension of
feedforward layer: 4096; Dropout rate: 0.1; In ad-
dition, we use shared embeddings for both the input
and output layers. The encoder and decoder use
the same BPE units (Sennrich et al., 2016) learned
from source and target corpora. We train our MT
models using Noam schedule (Vaswani et al., 2017)
with 4000 warm-up iterations. To balance between
the domains of the training corpora, we use the
following sampling distribution over the training
corpora:

λα(d) = q
α
d

nd

∑
d=1

q
α
d

, (1)

where qd is the size of dth corpora, the scalar α ∈[0,+∞] changes the sampling distribution as low
α upsamples small corpora and downsamples large
corpora while high α favors large corpora over
small corpora. In the training of our MT systems,
we use α = 0.5. Learning is performed over 8
GPUs during 300K steps with a batch size of 32K
tokens per step. During training, we filtered out
sentences larger than 250 tokens. We applied label
smoothing to the cross-entropy loss with a rate of
0.1. Resulting models are built after averaging the
last ten checkpoints of the training process. In
inference, we apply a length penalty rate of 0.6.

3https://github.com/OpenNMT/OpenNMT-tf
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3.4 Training NMT
Terminology injection approaches implemented for
this evaluation rely on NMT models with the ability
to translate input streams with target terms (app
and app+) and using placeholders (mrk and mrk+).
Thus, a key step for our models is the availability
of training data with such annotations.

To identify terminology pairs in our training
database we :

• Analyse English and French using SpaCy
to produce part-of-speeches, morphology fea-
tures, noun phrases and lemmas. Only NPs
(single words or phrases) are considered.

• Word align English and French parallel cor-
pora using the fast_align4 toolkit (Dyer
et al., 2013).

Terminology pairs are only considered when En-
glish and French sides consist of noun phrases and
when words in a term are only aligned to words in
its counterpart.

Words of the terminology entries identified are
replaced by the corresponding tokens (depending
on the approach). See Table 1 for examples of
sentence pairs with terminology entries. We make
sure that a given sentence pair does not exceed 5
terminology entries.

3.5 Training GeC
We used all available French corpora to train our
GeC network. To include errors in the French
streams we replace some words by any inflection
of its base form (lemma). The resulting corpora is
then tokenized using wordpiece and passed to the
BERT language model for embedding. Error detec-
tion and tagging are then performed by the network
from subword embeddings. Grammatical features,
part-of-speeches and lemmas are performed by the
SpaCy toolkit. Table 3 illustrates examples of
word error correction by our model.

3.6 Terms with Multiple Translations
Note that terms released by the shared task organ-
isers may have multiple translation options (i.e.
quarantine ↝ quarantaine/mise en quarantaine).
Thus, the right translation must be predicted and
injected in the translation hypothesis.

The translation workflow implemented for this
evaluation considers the injection of each transla-
tion option into the input sentence. This is, when

4https://github.com/clab/fast_align

a matched term is built with n different transla-
tion options, the original input sentence is copied
n times and each translation is injected into one
copy. Once all copies have been translated, the
one showing the lowest perplexity is selected as
measured by the pretrained BERT French language
model detailed in section 2.3.

4 Results

Table 5 indicates BLEU5 (Post, 2018) accuracy re-
sults of our NMT systems implementing different
terminology injection methods before (second col-
umn) and after (third column) grammatical error
correction.

System NMT +corr

base 44.9 44.8
mrk 42.3 42.7
mrk+ 44.9 45.1
app 45.9 46.0
app+ 45.9 45.9

Table 5: BLEU score of our NMT systems before
(NMT) and after the correction model (+corr) mea-
sured over the development set.

As it can be seen, the methods that learn to apply
constraints (app and app+) obtain the best perfor-
mance. Overall, the GeC model succeeds in fixing
grammatically incorrect French words. However, a
benefit barely reflected by BLEU.

We now evaluate the performance of matching
terminology entries over the development input
sentences. Note that the same matching method
is always applied, detailed in Section 2.1, where
input sentences are matched against all possible
inflections of source terms. Table 6 illustrates the
accuracy of recognized terms. 73 percent of the
unrecognized terms are verbs which we choose to
not process. We recognized also 234 terms that are
not highlighted in the development set (FP), most
of them do not interfere with translations.

Accuracy FN FP
0.97 0.03 0.21

Table 6: Matching rates of terminology entries mea-
sured over the development set. FN and FP scores stand
respectively for false negatives (terms not identified)
and false positives (wrong terminology identifications).

5https://github.com/mjpost/sacrebleu
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5 Conclusions

We presented SYSTRAN English-to-French sub-
missions to WMT 2021 terminology shared task.
All our systems follow the Transformer network ar-
chitecture enhanced with the ability to dynamically
include terminology constraints. Several terminol-
ogy injection methods were evaluated, showing
their ability to effectively injecting terms while pro-
ducing highly accurate translations.

Acknowledgements

The work presented in this paper was partially sup-
ported by the European Commission under contract
H2020-787061 ANITA.

This work was granted access to the HPC re-
sources of [TGCC/CINES/IDRIS] under the al-
location 2020- [AD011011270] made by GENCI
(Grand Equipement National de Calcul Intensif).

References
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A Corpora Statistics

We experiment with English-French corpora made
available via the shared task organisers6 (Tiede-
mann, 2012), corresponding to texts from: News
commentaries (news), European Parliament pro-
ceedings (epps), United Nations official records
and documents (unpc), web crawling (ccrawl,
pcrawl and giga), In addition we also used the
next monolingual French data sets: News Com-
mentary 2019 (news.19) and News Commentary
2020 (news.20).

Table 7 shows statistics of the parallel corpora
used for learning NMT models. Statistics com-
puted after a lightly tokenization (to split-off punc-
tuation). Data sets were previously filtered to dis-
card very long sentences (> 80 words) and with
very different number of tokens on either side (fer-
tility > 6 words).

Corpus Sents (M)
Words (M) Vocab (K)

En Fr En Fr
news 0.2 4.4 5.5 70 75
epps 1.5 41.3 47.7 111 127
ccrawl 1.4 28.6 33.2 486 496
giga 9.4 212.2 259.9 1467 1376
unpc 11.8 256.7 330.3 739 622
pcrawl 92.2 1898.6 2237.2 8110 7757

Table 7: Statistics of parallel corpora used for training
NMT. Number of sentences and words are given in mil-
lions, and vocabularies in thousands.

6Freely available from http://opus.nlpl.eu
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Table 8 shows statistics of the monolingual
(French) corpora used for learning our GeC model.
Statistics computed after a lightly tokenization (to
split-off punctuation).

Corpus Sents (M) Words (M) Vocab (K)
news.19 10.2 247.9 955
news.20 9.3 232.5 912

Table 8: Statistics of monolingual corpora used for
training GeC. Number of sentences and words are
given in millions, and vocabularies in thousands.

B Vocabulary of GeC

Table 9 illustrates the vocabulary of tags considered
by our GeC model.
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Vocabulary Example
✓ Ø
<Gender=Masc_Number=Sing> chiennes→ chien
<Gender=Fem_Number=Sing> chiens→ chienne
ELISION le→ l’
<VerbForm=Inf> avons→ avoir
<Mood=Ind_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ a
<Gender=Masc_Number=Plur> chienne→ chiens
<Gender=Masc_Number=Sing_Tense=Past_VerbForm=Part> avoir→ eu
<Number=Plur> homme→ hommes
<Gender=Fem_Number=Plur> chien→ chiennes
<Number=Sing> hommes→ homme
<Mood=Ind_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ ont
<Gender=Masc_Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Tense=Pres_VerbForm=Part> avoir→ ayant
<Mood=Ind_Number=Sing_Person=3_Tense=Imp_VerbForm=Fin> avoir→ avait
<Gender=Masc> chienne→ chien
<Gender=Fem_Number=Sing_Tense=Past_VerbForm=Part> avoir→ eue
<Mood=Ind_Number=Sing_Person=3_Tense=Fut_VerbForm=Fin> avoir→ aura
<Gender=Fem_Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eue
<Gender=Masc_Number=Plur_Tense=Past_VerbForm=Part> avoir→ eus
<Mood=Ind_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ ai
<Gender=Masc_Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eus
<Gender=Masc_Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Ind_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ avons
<Gender=Fem_Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eues
<Mood=Cnd_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Gender=Fem_Number=Plur_Tense=Past_VerbForm=Part> avoir→ eues
<Mood=Ind_Number=Plur_Person=3_Tense=Fut_VerbForm=Fin> avoir→ auront
<Mood=Ind_Number=Plur_Person=3_Tense=Imp_VerbForm=Fin> avoir→ avaient
<Gender=Masc_NumType=Ord_Number=Sing> cents→ cent
<Mood=Ind_Number=Sing_Person=3_Tense=Past_VerbForm=Fin> avoir→ eut
<Gender=Fem_NumType=Ord_Number=Sing> cents→ cent
<Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Ind_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ avez
<Mood=Sub_Number=Sing_Person=3_Tense=Pres_VerbForm=Fin> avoir→ ait
<NumType=Ord_Number=Sing> cents→ cent
<Gender=Masc_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Gender=Fem> chien→ chienne
<Mood=Cnd_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ auraient
<Gender=Masc_NumType=Card_Number=Plur> quatrième→ quatrièmes
<Gender=Masc_NumType=Ord_Number=Plur> cent→ cents
<Mood=Imp_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ ayez
<Mood=Ind_Number=Sing_Person=1_Tense=Imp_VerbForm=Fin> avoir→ avais
<Gender=Fem_NumType=Ord_Number=Plur> cent→ cents
<Mood=Sub_Number=Plur_Person=3_Tense=Pres_VerbForm=Fin> avoir→ aient
<Mood=Ind_Number=Plur_Person=1_Tense=Fut_VerbForm=Fin> avoir→ aurons
<Mood=Ind_Number=Plur_Person=1_Tense=Imp_VerbForm=Fin> avoir→ avions
<Gender=Masc_NumType=Card_Number=Sing> premières→ premier
<Mood=Cnd_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Mood=Ind_Number=Plur_Person=3_Tense=Past_VerbForm=Fin> avoir→ eurent
<Mood=Cnd_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aurais
<Mood=Ind_Number=Plur_Person=2_Tense=Fut_VerbForm=Fin> avoir→ aurez
<Mood=Ind_Number=Sing_Person=1_Tense=Fut_VerbForm=Fin> avoir→ aurai
<Number=Plur_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eus
<Number=Sing_Tense=Past_VerbForm=Part> avoir→ eu
<Mood=Sub_Number=Sing_Person=1_Tense=Pres_VerbForm=Fin> avoir→ aie
<Mood=Ind_Person=3_Tense=Pres_VerbForm=Fin> neiger→ neige
<Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Mood=Sub_Number=Sing_Person=3_Tense=Past_VerbForm=Fin> avoir→ eu
<Mood=Cnd_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ auriez
<Number=Sing_Tense=Past_VerbForm=Part_Voice=Pass> avoir→ eu
<Mood=Imp_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ ayons
<Number=Plur_Tense=Past_VerbForm=Part> avoir→ eus
<Mood=Ind_Number=Plur_Person=2_Tense=Imp_VerbForm=Fin> avoir→ aviez
<Mood=Imp_Tense=Pres_VerbForm=Fin> avoir→ aie
<Mood=Sub_Number=Plur_Person=1_Tense=Pres_VerbForm=Fin> avoir→ avons
<Mood=Ind_Number=Sing_Person=2_Tense=Imp_VerbForm=Fin> avoir→ avais
<Mood=Sub_Number=Plur_Person=2_Tense=Pres_VerbForm=Fin> avoir→ avez

Table 9: Vocabulary of tags of our GeC model.
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Abstract
This paper describes our work in the WMT
2021 Machine Translation using Terminolo-
gies Shared Task. We participate in the shared
translation terminologies task in English to
Chinese language pair. To satisfy terminol-
ogy constraints on translation, we use a ter-
minology data augmentation strategy based on
Transformer model. We used tags to mark
and add the term translations into the matched
sentences. We created synthetic terms using
phrase tables extracted from bilingual corpus
to increase the proportion of term translations
in training data. Detailed pre-processing and
filtering on data, in-domain finetuning and en-
semble method are used in our system. Our
submission obtains competitive results in the
terminology-targeted evaluation.

1 Introduction

Terminology is important for domain-specific ma-
chine translation. Each domain has its own termi-
nology, which represents the important and core
concepts in the domain. In the workflow of human
translation, terminology is an effective method to
integrate the knowledge of human translator into
machine translations (Wuebker et al., 2016; Cheng
et al., 2016; Álvaro Peris et al., 2017).

One line of approach is “hard constraint”.
The terminology is ensured to appear in the trans-
lation by adding constraints in beam search de-
coding (Hokamp and Liu, 2017; Post and Vilar,
2018). However, the enforcement of terminology
constraints tends to reduce the fluency of transla-
tion (Hasler et al., 2018), especially when there
are multiple constraints or the constraint is noisy
(Susanto et al., 2020). Another line of approach
is“soft constraint”. Training data is augmented
with placeholders or additional terminology trans-
lations (Arthur et al., 2016; Song et al., 2019; Dinu
et al., 2019; Chen et al., 2020; Ailem et al., 2021a).

The above methods assume that the terminology
translations are good ones. However, in industry

or real world the terminology translations may be
noisy (Li et al., 2020). And in the human trans-
lation workflows the terminology constraints usu-
ally need to be applied hierarchically according to
priority. In these scenarios one source term will
have more than one translation. Therefore, we are
happy to participate in this task and develop the
method to deal with 1-to-many term translations
in neural machine translation systems.

The structure of the paper is as follows. Sec-
tion 2 describes the dataset, data pre-processing
and selection. We introduce details of our system
in Section 3. The experiment settings, terminolo-
gies used in training and main results are intro-
duced in Section 4. Finally, we conclude our work
in Section 5.

2 Data

2.1 Data Source
For this task, we utilize parallel data from En-
glish to Chinese language provided in WMT2021:
ParaCrawl v7.1, News Commentary v16, Wiki Ti-
tles v3, UN Parallel Corpus V1.0, CCMT Corpus
and WikiMatrix. In addition, we also require Chi-
nese monolingual data from News crawl and News
Commentary corpora for back translation.

2.2 Data Pre-processing
For all datasets, we tokenize English text with
Moses1 and the Chinese text with Jieba2 tokenizer.
We create a joint source and target BPE vocab
(Sennrich et al., 2016) with 40k merge operations
using filtered bilingual dataset as described in Sec-
tion 2.3, resulting in a vocabulary with size of 63K
words.

2.3 Data Selection
According to the previous works (Li et al., 2019;
Sun et al., 2019), we selected data for training with

1https://github.com/moses-smt/mosesdecoder
2https://github.com/fxsjy/jieba
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Source
Those most at risk of COVID-19 infection and serious complications are the elderly
and those with weakened immune systems or underlying health conditions like card-
iovascular disease, diabetes, hypertension, chronic respiratory disease, and cancer.

Constraint
diabetes 糖尿病
infection 传染病 |感染
chronic respiratory disease 慢性呼吸道疾病 |慢性呼吸系统疾病

Match

Those most at risk of COVID-19 <term tgt="传染病 |感染"> infection </term> and
serious complications are the elderly and those with weakened immune systems or
underlying health conditions like cardiovascular disease , <term tgt="糖尿病">
diabetes </term> , hypertension , <term tgt="慢性呼吸道疾病 |慢性呼吸系统
疾病"> chronic respiratory disease </term>, and cancer .

Tag & Mask

Those most at risk of COVID-19 <S> [MASK] <C>传染病 [SEP]感染 </C> and
serious complications are the elderly and those with weakened immune systems or
underlying health conditions like cardiovascular disease , <S> [MASK] <C>糖尿病
</C> , hypertension , <S> [MASK] [MASK] [MASK] <C>慢性呼吸道疾病 [SEP]
慢性呼吸系统疾病 </C> , and cancer .

Target
COVID - 19感染和严重并发症风险最高的是老年人、免疫力低下者或患有心
血管疾病、糖尿病、高血压、慢性呼吸道疾病和癌症等基础性疾病的人群。

Table 1: Illustration of the terminology data augmentation.

the following schemes:

• Remove the texts of over 120 tokens.

• Remove bitexts with length ratios greater
than 3.

• Remove texts with special HTML tags.

• Remove duplicate bitexts.

• Remove texts with fastText-langid (Joulin
et al., 2016b,a), which is an open-source tool
for text-based language identification.

• Remove Chinese sentences when the propor-
tion of Chinese tokens is less than 0.8.

3 System Overview

In this section, we will describe the details about
the model and techniques of our work. First, we
will introduce the terminology data augmentation
strategy to improve terminology translation accu-
racy. Then, different transformer model architec-
tures we adopted in the paper will be depicted. Fi-
nally, we will introduce several strategies to train
our models for performance improvement.

3.1 Terminology Learning
We use a terminology data augmentation strategy
to encourage neural machine translation (NMT) to
satisfy terminology constraints. The key point of
term translation idea is that when multiple possi-
ble terms are encountered, the NMT model is pre-

ferred copying the correct terms, and the terms are
correctly placed in the output sentence. Encour-
aged by the work (Chen et al., 2020; Ailem et al.,
2021b), we use tags to specify the term constraints
in the source sentence. We have given an exam-
ple in the Table 1. A Source sentence could have
more than one terms. Each term could have mul-
tiple Constraint. The source term is indicated as
tag <S>, and the pair <C> </C> is used to label
target term. Tag [SEP] is used to separate multi-
ple possible target terminologies, when there are
1-m term constraints. Following the work (Ailem
et al., 2021b) we mask the source tokens of a term
to strengthen the learning of target term tokens. In
table 1, term source tokens are marked in red, and
the term target tokens are in blue. Tag & Mask
shows an example. <S> indicates term constraint
"infection", but the token "infection" is masked
with [MASK]. "infection" ’s translations " 传染
病" and " 感染" are enclosed by <C> and </C>,
separated by [SEP].

The official term table is small. We extract a
phrase table from the bilingual training data and
filter it as synthetic terms. More details are de-
scribed in Section 4.2.

3.2 Model Architecture

In our systems, we adopt three different model
architectures with Transformer (Vaswani et al.,
2017):
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• BIG Transformer is the Transformer-Base
model (Vaswani et al., 2017) with 4096 feed-
forward network (FFN) width and 16 atten-
tion heads.

• DEEP Transformer (Sun et al., 2019) is
Transformer-Base model with 20 encoder lay-
ers.

• LARGE Transformer (Ng et al., 2019) is
Transformer-Base model with 8192 FNN in-
ner width.

We use 6 decoder layers for all models. Our
models are implemented with open-source toolkit
Fairseq (Ott et al., 2019).

3.3 Optimization Strategies

To further improve the translation performance,
several common strategies are used to train our
models such as Back Translation, Finetuning and
Ensemble. The strategies are performed basi-
cally sequentially. We use the terminology data
augmentation on back translation and fine-tuning
datasets to train models.

3.3.1 Back Translation
Back translation is a data augmentation technique
to incorporate monolingual data into NMT model.
Similar to previous work (Edunov et al., 2018),
we use back translation to improve the model per-
formance. We first train a Chinese-to-English
Transformer-Deep NMT model based on bilingual
training dataset. The NMT model is applied to
translate Chinese monolingual corpus to English.
The pseudo parallel corpus is used to train models
together with the bilingual training dataset.

3.3.2 Finetuning
Previous study (Sun et al., 2019) demonstrate that
fine-tuning a model on in-domain data effectively
improve the model performance. For the term
translation task, two fine-tuning datasets are used
in our works. We use two kinds of finetuning
datasets to train the model sequentially.

Base FT We use all the previous English →
Chinese development and test dataset as fine tun-
ing corpus, including WMT2017 development
data, WMT2017 test data, WMT2018 test data,
WMT2019 test data and WMT2020 test data.

In-domain FT To use in-domain dataset to fine
tune the model, we perform data selection on
out-of-domain corpus based on in-domain n-gram
match. The key idea is to select sentence pairs
from the large out-of-domain corpus that are sim-
ilar to the in-domain data. We use the bilin-
gual training data as the out-of-domain corpus and
WMT2021 term development dataset as the in-
domain corpus. We extract 1-3grams from the in-
domain and out-of-domain dataset. After exclude
the ngrams from the out-of-domain data, the left
in-domain ngrams are applied to match relevant
sentence from the bilingual training.

In our work, we use source and target to select
in-domain dataset respectively and finally the two
sets are combined to train the model.

3.3.3 Ensemble
Model ensemble is an effective strategy widely
used in real-world tasks. At each step of transla-
tion prediction, it combines the predicted proba-
bilities of different models. We use the log-avg
strategy to ensemble the different NMT models.
The model diversity is an important factor for en-
semble. We have trained three Transformer mod-
els with different architectures including the vari-
ants of Transformer-BIG, Transformer-DEEP and
Transformer-LARGE.

4 Experiments

4.1 Setups
Our models are implemented in Fairseq Library3.
All the single models are trained based on 4
NVIDIA P100-PCIe GPUs, each with 16 GB
memory. The models are optimized with Adam
algorithm (Kingma and Ba, 2015) with β1 = 0.9
and β2 = 0.98. We set max learning rate to
0.001 when training a single model from scratch
and 0.0007 when fine-tuning the model. The batch
size is set to 2048 tokens per GPU. The ‘update-
freq’ parameter in Fairseq is set to 16 when train-
ing a single model from scratch and 4 when fine-
tuning the model. The dropout (Gal and Ghahra-
mani, 2016) probabilities are set to 0.1 in all ex-
periments. We select the checkpoint with the
best BLEU score on development set as the fi-
nal checkpoint in each training. Evaluation of re-
sults focus on translation accuracy and term trans-
lation consistency. We evaluate translation accu-
racy with SacreBLEU (Post, 2018), which is a

3https://github.com/pytorch/fairseq
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System Model BLEU Exact-Match
Accuracy

Window Overlap
Accuracy (2/3) 1-TERm Score

Baseline NMT LARGE 37.8 65.89 16.52/16.30 36.48

Data Selection

BIG 36.09 71.28 15.82/16.57 30.08
DEEP 35.85 74.76 17.01/17.62 29.74
LARGE 36.17 69.23 14.94/15.33 30.91
+Ensemble 38.22 74.52 17.47/17.56 33.00

+Back Translation

BIG 37.72 73.92 17.28/17.71 33.33
DEEP 37.74 73.92 17.55/18.05 33.85
LARGE 37.50 72.36 15.97/16.53 32.68
+Ensemble 39.39 75.60 17.87/18.62 33.90

+Base FT

BIG 38.12 71.86 17.57/18.14 34.68
DEEP 38.17 72.72 17.32/18.18 33.74
LARGE 40.97 72.95 17.26/18.40 38.03
+Ensemble 41.43 75.72 18.91/19.89 38.17

+In-domain FT

BIG 39.12 71.63 17.09/17.71 36.25
DEEP 38.33 73.08 17.48/18.25 34.60
LARGE 41.11 72.72 17.04/18.24 38.48
+Ensemble 41.71 76.68 18.88/19.88 39.05

Table 2: Evaluation results on the WMT2021 English → Chinese development set.

case-sensitive detokenized BLEU. Terminology-
targeted metrics (Anastasopoulos et al., 2021)
is used to term translation consistency, includ-
ing exact-match accuracy, window overlap met-
ric and terminology-biased Translation Edit Rate
(TERm)4. The exact-match accuracy is defined as
the ratio between the number of matched source
terms and the total number of source terms. The
window overlap metric is to evaluate the position
accuracy of each target term in translation. The
TERm, a metric based on TER (Snover et al.,
2006), focuses on penalizing errors related to ter-
minology tokens.

4.2 Terminologies
In order to increase the proportion of term trans-
lations in training data, we extract phrase tables
from bilingual training corpus to create synthetic
term translations. First, we use FastAlign (Dyer
et al., 2013) to generate word alignments. Sec-
ond, based on the word alignments we extract a
phrase table by using moses (Koehn et al., 2007)
with default settings. We use count-based prun-
ing (Zens et al., 2012) and fastText-langid (Joulin
et al., 2016b,a) to filter the phrase table. The count

4https://github.com/mahfuzibnalam/terminology
_evaluation

threshold is set to 200. Finally, the term table for
the terminology data augmentation is obtained by
combining the English → Chinese term table from
WMT2021 and the filtered phrase table. The tar-
get terms corresponding to the same source term
are separated by ‘|’. The term table contains 1-to-
1 and 1-to-many term pairs. The term information
with tags will be added into source sentences when
they match, as shown in Table 1. 15.4% of the
training sentences with the term information. We
have used only the official terms from WMT 2021
for the test and dev datasets.

4.3 Results

Table 2 shows the English → Chinese transla-
tion results on WMT2021 terminologies develop-
ment dataset, including BLEU, exact-match accu-
racy, window overlap accuracy (2/3) and 1-TERm
Score. We train multiple single models in each set-
tings and report the best BLEU scores in Table 2.
The baseline is the LARGE transformer model us-
ing the bilingual training data. Our models using
terminology data augmentation are called Term
model. Ensemble models of each step consist of
3 single models: BIG, DEEP and LARGE mod-
els. As shown in Table 2, the LARGE Term model
using the bilingual dataset boosts the exact-match
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accuracy from 65.89 to 69.23. Under each setting,
the performance of the ensemble Term models is
higher than that of the best single Term model by
a BLEU score of 0.46 to 2.05. After adding back
translation, we improved the BLEU score to 39.39
and the exact-match accuracy to 75.6 on ensemble
models. The base FT can achieve 2 BLEU and 4.3
1-TERm score improvements on ensemble mod-
els. After applying In-domain FT, We achieve 0.96
exact-match accuracy and 0.88 1-TERm score im-
provements on ensemble models.

Considering the effectiveness of fine-tuning, we
use WMT2021 development data to fine tune the
model after completing 100 steps. In our final
submission, we selected sentences with the higher
probability from the translations of the ensemble
Term model and the ensemble NMT model.

5 Conclusion

This paper presents the submissions by Alibaba
for WMT 2021 English to Chinese translation ter-
minologies task. We have applied a terminology
data augmentation method to integrate term trans-
lations into NMT systems. We also used a series of
data filtering strategies, fine-tuning and ensemble
methods to improve the system performance. Ex-
perimental results show the method can improve
terminologies translation performance.
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Abstract
In this paper we present the FJWU’s system
submitted to the biomedical shared task at
WMT21. We prepared state-of-the-art mul-
tilingual neural machine translation systems
for three languages (i.e. German, Spanish
and French) with English as target language.
Our NMT systems based on Transformer ar-
chitecture, were trained on combination of in-
domain and out-domain parallel corpora devel-
oped using Information Retrieval (IR) and do-
main adaptation techniques.

1 Introduction

Due to vast availability of multilingual informa-
tion, Neural Machine Translation (NMT) systems
have achieved remarkable growth over Statistical
Machine Translation (SMT) systems. Although
the amount of training resources has significantly
increased in the past few years but availability of
large in-domain parallel data is still a challenging
task. Performance of NMT system may quickly
degrade as soon as the application domain devi-
ates from training domain. Domain adaptation
(Koehn and Schroeder, 2007) is a promising active
research topic to enhance the translation quality
when faced with data scarcity issues. In domain
adaptation, initially large amount of parallel out-of-
domain corpora is utilized for training NMT mod-
els and then fine-tuning is performed on small in-
domain data for adapting to novel domains (Freitag
and Al-Onaizan, 2016; Luong and Manning, 2015).
Fine-tuning does not require building system from
scratch, instead it is fast and efficient method of in-
tegrating in-domain data. An NMT model already
trained on general domain data is further fine-tuned
on in-domain data with less time and effort (Chu
et al., 2017; Hira et al., 2019). Training MT sys-
tems on back-translated data is a proven domain
adaptation method (Abdul Rauf et al., 2020; Sen-
nrich et al., 2015), where synthetic parallel data is

combined with original data to generate large in-
domain training corpus. In addition, information re-
trieval (IR) technique to extract relevant sentences
from out-of-domain corpus has shown promising
results to overcome data scarcity (Naz et al., 2020).

NMT system incorporating multiple languages
into single model is known as multilingual NMT
(MNMT) (Dabre et al., 2020). Multilingual NMT
systems are gaining popularity due to effective use
of available resources and boosting translation qual-
ity with Translation Knowledge Transfer (Pan and
Yang, 2009).

In this paper, we present study on adapting
MNMT systems (Multiway many-to-one) for trans-
lating English (EN) language from French (FR),
German (DE) and Spanish (ES) using fairseq (Ott
et al., 2019) implementation of Transformer model.
Our main focus is to investigate the effect on EN
translation in Biomedical domain using multilin-
gual NMT systems. We have also explored the do-
main adaptation for fine-tuning of bilingual NMT
models into multilingual NMT models using out-
domain and in-domain corpora. Furthermore, we
show the effectiveness of utilizing in-domain data
generated through IR techniques (Naz et al., 2020)
by training a NMT system on combined parallel
in-domain data. We also compare in-domain multi-
lingual and bilingual models.

The remainder of this paper is organized as fol-
lows. Section 2 introduces the literature review
followed by corpus processing in Section 3. Sec-
tion 4 presents experiments and results. In Section
5, we conclude the findings of our work.

2 Literature Review

MNMT models tend to acquire knowledge from
more than one language which helps in general-
ization and in building systems for low resource
languages. MNMT models may help in miti-
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Corpus DE/EN ES/EN FR/EN

In-domain training data

UFAL 2.6 M 631 K 2.6 M
Scielo Health - 124 K 9 K
Scielo Biological - 581 K -
EDP - - 3 K
Medline Titles - 285 K 612 K
Medline Abstracts 18 K 66 K 46 K
EMEA 1.10 M 1.09 M 1.09 M

In-domain IR training data

News Commentary-IR2 - - 65 K
WikiPedia-IR2 - - 84 K

Out-domain training data

UFAL 30.9 M 74.8 M 73.3 M
UFAL Dictionary 733 K 544 K 744 K
Scielo - 433 K -
UN - 21.9 M 25.8 K

Development data

Medline18 321 239 311
Medline19 439 437 400

Test data

Medline20 409 466 479

Table 1: Sentence Pairs Used for Training, Develop-
ment and Testing of MNMT models (K stands for
”Thousand” and M stands for ”Million”)

gating the problem for resource poor languages
(Dabre et al., 2020), where limited training data
is available. Tubay and Costa-jussÃ (2018) sub-
mitted their NMT systems for English translation
with multi-source similar languages including Por-
tuguese, French and Spanish showing improvement
of 6 BLEU points over single source NMT system.
Soares and Krallinger (2019) also built NMT sys-
tems using two of the Romance languages, Spanish
and Portuguese for translating into English lan-
guage. For domain adaptation in NMT, fine-tuning
models on in-domain parallel text is a common and
effective approach (Peng et al., 2020). We assume
that, the same can be used for training multilin-
gual (many-to-one) NMT models. Chu and Dabre
(2019) focused on fine-tuning MNMT models for
domain adaptation, they initially trained different
MNMT models using single domain and then fur-
ther fine-tune on multi-domain corpora with mixed
(combination of out-domain and in-domain) cor-
pora.

3 Corpus Pre-processing

This section describes parallel corpora used in train-
ing and evaluation of our models. Statistics of train,

development and test data are presented in Table 1.
Main sources of data were provided by WMT21
Biomedical Translation Task. Data sources in-
clude:

• Medline abstracts and titles in-domain cor-
pora consists of scientific publications (Baw-
den et al., 2019). We used datasets avail-
able for DE/EN, ES/EN and FR/EN provided
by WMT. These datasets are aligned through
Bilingual Sentence Aligner1 (Moore, 2002).

• EDP are the in-domain texts of scientific pub-
lications available for FR/EN language pair
only (Neves et al., 2018).

• EMEA provides in-domain biomedical paral-
lel corpus of documents related to medicinal
products (Tiedemann, 2012). We used cor-
pora provided for DE/EN, ES/EN and FR/EN
language pairs.

• Scielo in-domain corpus provided by WMT
comprises of abstracts and titles in biologi-
cal and health sciences domain (Neves et al.,
2016). We used datasets provided for FR/EN
and ES/EN language pairs.

We also used Scielo full text corpus of scien-
tific articles as general domain data set pro-
vided for ES/EN language pair (Soares et al.,
2018).

• UFAL Medical Corpus provides various in-
domain medical texts and out-domain corpus
sources including dictionaries (Jimeno Yepes
et al., 2017). We included corpora provided
for DE/EN, ES/EN and FR/EN language
pairs.

• United Nations (UN) parallel corpus com-
prises of official records in general domain
(Ziemski et al., 2016) . We used sources pro-
vided for ES/EN and FR/EN language pairs.

News Commentary2 and WikiPedia3 in-domain
IR corpora are used. These corpora are extracted
using data selection based on IR approach (Abdul-
Rauf et al., 2016) by using Medline titles as queries

1https://www.microsoft.com/en-us/
download/details.aspx?id=52608

2http://opus.nlpl.eu/
News-Commentary-v14.php

3http://opus.nlpl.eu/Wikipedia-v1.0.
php
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ID Train Set DE→ EN ES→ EN FR→ EN

M1 In-domain 26.963 39.123 30.23

Multilingual System I M2 M1⇒Medline 27.222 39.401 33.791

M3 M2⇒Indomain+IR-2 27.381 39.362 32.072

M4 Out-domain 20.97 29.75 24.86

Multilingual System II M5 M4⇒In-domain 26.40 38.87 30.943

M6 M5⇒Medline 26.40 38.74 34.73

Bilingual System III M7 In-domain 27.40 41.60 30.20

Table 2: Bilingual and Multilingual DE/ES/FR→ EN Transformer models and their BLEU scores for Medline20
test-sets for three language directions (DE→EN, ES→EN and FR→EN. (M here stands for ’Model’). Superscripts
denote the runs submitted.

for retrieving related biomedical domain sentences.
From experiments conducted by (Naz et al., 2020),
corpora with top-2 best sentences gave good results
in training NMT models for biomedical domain.

Medline18 and 19 testsets are used as develop-
ment set. We used Medline20 testset provided by
WMT20 (Bawden et al., 2020) as initial test sets to
determine quality of our translation models. Prepro-
cessing of data include tokenization and learning
joint Byte Pair Encoding (BPE) (Sennrich et al.,
2016) using sentencepiece4 with a vocabulary size
of 32K over in-domain corpus and encoding all
available corpora with learned BPE.

4 Experiments and Results

In this section we present details of experimenta-
tion along with training configurations.

4.1 Training and Parameters

We employed Fairseq toolkit to train MNMT sys-
tems for (German, Spanish, French) → English
translation. We used Transformer architecture and
followed similar configuration parameters for out
systems as reported in original paper (Vaswani
et al., 2017). Batch size of 4K words and Adam op-
timizer was used in all experiments. Training was
done till convergence and stopped if no improve-
ment was noted in BLEU scores on development
sets for 2-3 consecutive checkpoints. Fine-tuned
models were trained for 150K steps unless early
stopping is employed based on bleu score conver-
gence.

4https://github.com/google/
sentencepiece

4.2 NMT Models
We have categorized our experiments into 3 classes
based on the corpora and training technique
used. I) Multilingual models trained using all
in-domain corpus and fine-tuned on Medline
and IR. II) Multilingual models trained on all
out-domain corpus and fine-tuned on all in-domain
and Medline corpus. III) Bilingual models
trained on all in-domain corpus. Results of all
experiments are depicted in Table 2. BLEU score
for all models is calculated using Sacrebleu (Post,
2018) on Medline20 test-set for German-English,
Spanish-English and French-English.

For System I:

• M1: this is trained on all in-domain parallel
corpus with a total size of 3.71M (DE-EN),
2.77M (ES-EN), 1.78M (FR-EN) sentences.
Best BLEU score of 39.12 on Medline20 test-
set was achieved for ES→EN as it has high
rate of Medline sentences (66K) as compared
to FR→EN (46K) and DE→EN (18K).

• M2: this model derived from M1 by further
tuning it on Medline corpus for domain adap-
tation which resulted in significant increase
in BLEU score of +3.56 for FR→EN as com-
pared to previous model (M1). An increase of
+0.26 BLEU for DE→EN and +0.28 BLEU
for ES→EN is achieved.

• M3: M2 was further fine-tuned on IR cor-
pus for FR→EN language pair but we ob-
serve no significant improvements in term of
BLEU score on out test-set for all combina-
tions of languages. IR corpus was extracted
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from News commentary and Wikipedia paral-
lel corpora. Apparently these corpora are far
in language jargon from the traditional Med-
line tests, so we see no apparent gain. It is
pertinent to note that IR data was only avail-
able for FR-EN thus the in-domain training
corpus was used for other language pairs.

For System II:

• M4: this model is trained on all out-domain
parallel corpus with a total size of 3.82M
(DE-EN), 10.6M (ES-EN) 8.33M (FR-EN)
sentences. Highest BLEU score of 29.75 is
achieved with ES→EN test set. As the model
is mainly trained on out-domain corpora, the
huge difference in score is visible as com-
pared to previous models. When compared
with models trained on in-domain we see sig-
nificant loss in BLEU scores for our current
model.

• M5: previous model is fine tuned on in-
domain corpus that shows substantial improve-
ments over baseline model. A gain of +5.43
points for DE→EN, +9.12 points for ES→EN
and +6.08 points for FR→EN was achieved.
This clearly indicates that fine-tuning is an ef-
fective method for improving quality of multi-
lingual NMT.

• M6: M5 is further fine tuned on Medline cor-
pus yielding an improvement of +3.79 points
for FR→EN giving best score of 34.73 among
all models . No significant improvement in
DE→EN and ES→EN is observed.

For System III:

• M7: Represents the bilingual models trained
on all in-domain corpus. Comparing with the
multilingual models; ES→EN achieved the
best score of 41.60BLEU points in bilingual
mode. Bilingual DE→EN results are compa-
rable to the multilingual systems whereas for
FR→EN multilingual systems majorly outper-
formed the bilingual systems. Interestingly,
ES→EN had more medline corpus as com-
pared to other two. The three language pairs
that we work on are not similar and thus do
not have too much to gain from each other.
Introducing other romance languages in the
systems might lead to better performance for
French and Spanish. The factor of training

corpus imbalance is also playing it’s part, we
intend to employ better sampling strategies
for multilingual systems in future.

5 Conclusion

In this paper we have described our system sub-
missions at WMT21 biomedical shared translation
task under FJWU’s submission. For our submission
we trained multilingual NMT systems for German,
Spanish and French languages with English as tar-
get language. We focused on utilizing in-domain
and out-domain parallel corpora and domain adap-
tation techniques for training multilingual NMT
systems. We showed that, domain adaptation using
fine-tuning of multilingual NMT model can be a
reasonable alternative to achieve good translation
quality for novel domains.
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Abstract

This paper reports the optimization of us-001
ing the out-of-domain data in the Biomedi-002
cal translation task. We firstly optimized our003
parallel training dataset using the BabelNet004
in-domain terminology words. Afterward, to005
increase the training set, we studied the ef-006
fects of the out-of-domain data on biomedi-007
cal translation tasks, and we created a mixture008
of in-domain and out-of-domain training sets009
and added more in-domain data using forward010
translation in the English-Spanish task. Fi-011
nally, with a simple bpe optimization method,012
we increased the number of in-domain sub-013
words in our mixed training set and trained the014
Transformer model on the generated data. Re-015
sults show improvements using our proposed016
method.017

1 Introduction018

Domain adaptation is one of the known challenges019

in Machine Translation since NMT(neural machine020

translation) models are susceptible to the training021

data (Koehn and Knowles, 2017). To say, NMT022

models perform poorly for domain-specific transla-023

tion when trained on large out-resource data (Chu024

and Wang, 2018). As a result, due to the limita-025

tions of specific domain data, domain adaptation026

strategies help NMT models by increasing the par-027

allel corpora. There have been several tasks to028

address domain adaptation which recently, in (Sato029

et al., 2020) they proposed a vocabulary adapta-030

tion to fine-tune the embedding layers of the NMT031

model by projecting general word embeddings in-032

duced from monolingual data in a target domain033

onto a source-domain embedding space to improve034

translation score. On the other hand, augmenting035

bilingual training data with forwarding and back-036

ward translation improves the in-domain translation037

quality (Nayak et al., 2020). Inspired by mentioned038

ideas, in this work, we implemented our strategy by039

two essential steps: 1) collecting and augmenting040

data by forwarding translation and then tuning it 041

using Babelnet to include biomedical sentences 2) 042

Implementing subwords bpe optimization on the 043

train set to study the adaptation of out-of-domain 044

data in the biomedical task. After that, We selected 045

the transformer model (Vaswani et al., 2017) to 046

train our system in different experimental settings. 047

The remainder of the paper is organized as follows. 048

In Sec. 2 we describe data collection and prepara- 049

tion. Sec. 3 explains our bpe optimization strategy 050

to adapt out-of-domain data in the biomedical task. 051

Sec. 4 shows our experimental setups and evalua- 052

tion results, and finally, we conclude and discuss 053

future works in the Sec. 5. 054

2 Data production 055

One of the critical topics in machine transla- 056

tion (MT) is selecting and fitting well-organized 057

domain-relevant data (Wang et al., 2018). This 058

section describes our data preparation approach to 059

tune, clean, and optimize data for our translator 060

model. The details of the dataset are described in 061

the section 4. 062

2.1 In-domain dataset tuning 063

The gathered in-domain data is not well-tuned for 064

the biomedical domain, so that we extracted a list of 065

biomedical terms(word level) using the BabelNet 066

API (Navigli and Ponzetto, 2012) by referring to 067

the ”biomedical” tags in the BabelNet: bio-science, 068

technology, medical practice, medical specialty, 069

neurology, and orthopedics. To address it, we gath- 070

ered a total of 5,800 biomedical terms for both En- 071

glish and Spanish languages. Secondly, we selected 072

the sentences which specifically contain biomedi- 073

cal words. The outcome holds in-domain parallel 074

data which each sentence at least carries a related 075

biomedical term. Algorithm 1 shows our approach 076

to select in-domain sentences. 077

1
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Result: indomain parallel dataset
dataset-tuning;
initialization;
input(EN bio words,ES bio words);
input(standard en es parallel)
init(opt en es parallel);

for
sentence 1 and sentence 2 in standard en es parallel :
do

if(any token sentence 1 in (EN bio words))
and (any token sentence 2 in (ES bio words)) :
OptimizedEnEsParallel.append
(sentence 1 and sentence 2)

end
return(OptimizedEnEsParallel)

Algorithm 1: Optimizing the parallel corpus
using BabelNet; selecting sentences that con-
tain at least one token in-domain word

2.2 In-domain forward translation078

Considering a translation task of L1 → L2, where079

L1 has more significant monolingual data than L2,080

a forward translation translates the L1 to L2 and081

uses the translated L2 to recreate a synthetic paral-082

lel corpus. It has been widely reported that forward083

and back translation brings significant results. (Bo-084

goychev and Sennrich, 2019). We benefited from085

this fact and produced bilingual data from the En-086

glish source, which did not have any target or good087

target parallel translation. However, to ensure the088

availability of in-domain data, we first passed the089

previous step on the available monolingual side.090

Then we translated the source side using our MT091

model and added bilingual data for retraining. Fi-092

nally, we merged the in-domain and out-of-domain093

parallel corpus to achieve a bigger train set.094

3 Subword BPE optimization095

Byte Pair Encoding, or BPE, is a subword segmen-096

tation algorithm that encodes rare and unknown097

words as sequences of subword units by merging098

the most frequent consecutive byte pair into a new099

subword (Sennrich et al., 2015). Since we enriched100

the train set with out-of-domain data, We propose101

"bpe-terms in-domain optimization" to handle open102

vocabulary problems and enhancing the morphol-103

ogy when out-of-domain data is available. Con-104

sequently, increasing the frequency of in-domain105

words in the subword bpe training raises the chance106

of having in-domain words in the vocabulary. As a107

result, out-of-domain data will not affect the quality108

of the model on translating the in-domain words,109

while they let the model learn on an enormous cor-110

pus. We performed this strategy by first learning111

the subwords on 10x duplicated in-domain paral- 112

lel sentences with a size of eight million mixed 113

with smaller out-of-domain corpora (no duplica- 114

tion) and then applying the trained subword model 115

on the standard-sized corpus. After that, we expect 116

to have the biomedical in-domain words directly 117

translated to the target language without breaking 118

them into subwords. 119

4 Experiments 120

Experiments illustrated in this section study 121

the effects of the out-of-domain data on in- 122

domain(biomedical) translation task as well as the 123

possibility of adapting it by performing a tuned 124

subword-bpe segmentation algorithm 3 to improve 125

the translation quality. We split this section into 126

four parts which start with data collection and pre- 127

possessing. Then, we describe the training system 128

and, finally, the evaluation scores of the competi- 129

tion. 130

4.1 Data collection 131

We rely on the WMT21 official webpage to col- 132

lect the (en/es) parallel in-domain data. Out of the 133

provided resources, in particular, for the in-domain 134

train set, we selected UFAL, Pubmed, Medline, 135

IBECS (Villegas et al., 2018) and UNcorpus (Ziem- 136

ski et al., 2016) along with the OPUS collection 137

(Tiedemann, 2012). Next, we cleaned the data by 138

removing empty lines, duplicates, and very short 139

and long sentences. Also, to perform our exper- 140

iments on out-of-domain data, we collected the 141

parallel sentences provided from the same WMT21 142

official website. 143

4.2 Data preprocessing 144

To prepare our data for training, we followed the 145

standard pipelines by performing normalization, 146

tokenization, and removing words that contain non- 147

alphabetic characters using Moses (Koehn et al., 148

2007). Then, we removed concise and long sen- 149

tences by keeping the thresh-hold between 2 and 150

30 words for each sentence and implemented the 151

strategy described in section 2 to select in-domain 152

sentences. As a report, we collected 6,855,049 153

in-domain and added 1,965,824 out-of-domain par- 154

allel data (English/Spanish). We also translated 155

1,558,834 in-domain UFAL monolingual English 156

data to Spanish and added it to our bilingual corpus 157

for retraining the en/es model. 158
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4.3 Training on optimized segmented data159

Our method focuses on data preparation and in-160

vestigates how the out-of-domain data affects the161

BLEU score. We imply that tuning the vocabulary162

of subwords would improve the accuracy of the in-163

domain translation(biomedical) even though some164

of the data is out of the domain.165

The two crucial factors applied in our exper-166

iments are preprocessing the parallel corpus167

with BabelNet, and tuning the learning step of168

subwords to adapt out-of-domain data. following169

the strategy, four experiments have been done with170

two different trainsets, in-domain and mixture of171

in-domain and out-of-domain data:172

173

1. In the first experiment, we used word-level174

data in both the source and target sides to evaluate175

the impact of out-of-domain usage in an in-domain176

task.177

178

2. In the second experiment, we applied179

subword-bpe level on both source and target side180

with shared embeddings; however, the data were181

preprocessed by using Babelnet (described in182

section 2) to adjust the in-domain sentences in the183

train set for all the experiments.184

185

3. We used the same strategy as the second186

experiment but with applying BPE-dropout187

(Provilkov et al., 2019) on both the source and188

target side of the data.189

190

4. The last experiment was carried out by using191

tuned in-domain subword level data on both source192

and target sides as explained in the section 3.193

In all experiments, we trained baselines on word-194

level and subword-bpe level to measure the pro-195

posed methods.196

We selected a vocabulary size of 50k tokens and197

trained the data by the Transformer model with its198

default parameters using Open-nmt (Klein et al.,199

2017) neural machine translation framework.200

4.4 Evaluation and results201

The evaluation has been done on WMT18 and202

WMT19 test sets based on the BLEU score. We203

compared the trained models with word-level, stan-204

dard subword bpe level, bpe drop out and tuned205

subword bpe level of the parallel corpus in the206

trainset to follow our experiments. We also studied207

the results with three types of trainsets:208

• in-domain 209

• fair mixture of in-domain and out-of-domain 210

sentences 211

• an unfair mixture of in-domain and out-of- 212

domain with more in-domain sentences 213

We started and continued each training until it 214

accomplished the best BLEU score on the valida- 215

tion set. We realized that using bpe dropout in 216

the trainset gives worse results than the standard 217

bpe level in terms of the BLEU score. Also, as 218

expected, the worst results belong to word level 219

and hybrid wordlevel+subword level trainset. On 220

the other hand, using out-of-domain data in an in- 221

domain task caused a dramatic drop in the BELU 222

score. In this regard, there was a slight improve- 223

ment in BLEU score by increasing the frequency of 224

biomedical words in the mixture of in-domain and 225

out-of-domain trainset in both fair and unfair distri- 226

bution of each domain sentence. For WMT21 com- 227

petition, we selected the models which achieved 228

the highest scores in the wmt18 and wmt19 en2es 229

and es2en test sets. 230

Table 1 describes our (en2es) results on a mix- 231

ture of 2.7 million in-domain + 1.7 million out-of- 232

domain parallel sentences (described the data in the 233

section 2). As well, Table 2 shows the results on 234

2.7 million in-domain parallel sentences and also a 235

mixture of 8 million in-domain + 1.7 million out- 236

of-domain parallel data (all of that data). Similarly, 237

we show the (es2en) results in the tables 3 and 4 238

5 Conclusion and future works 239

This work presented a method to adapt out-of- 240

domain data in an in-domain(biomedical) task to 241

improve the BLEU score. We tuned the parallel 242

data by BabelNet, then found and increased the fre- 243

quency of biomedical words in subword-learning 244

to raise the weight of in-domain words in the vo- 245

cabulary. Our results obtained in a different mix- 246

ture of datasets show that our method improves the 247

BLEU score compared with the standard subword- 248

bpe approach. In the future, we plan to extend 249

our approach to more low-resource languages and 250

domains. Moreover, we plan to increase out-of- 251

domain data and configure the frequency of in- 252

domain words based on the domain type. 253
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Dataset: 2.7m indomain+ 1.7m out-of-domain
EXP type wmt18 wmt19
Word level indomain+out-of-domain 35.0 36.6
Word level Indomain+ subword level out-of-domain 34.5 36.1
Subword level indomain+ subword level out-of-domain (baseline) 35.6 42.4
10x freq subword indomain+subword out-of-domain (our approach) 39.8 42.7
bpe dropout indomain + bpe dropout out-of-domain 38.5 41.9

Table 1: en2es BLEU score results on hybrid dataset using different word segmentation approaches, word level,
hybrid, standard bpe, bpe dropout and tuned subword bpe

Dataset: 2.7m indomain Dataset: 8m in + 1.7m out
EXP type wmt18 wmt19 wmt18 wmt19
subword bpe
in domain (baseline)

39.8 42.1 40.1 42.8

10x freq subwords
indomain (our approach)

39.9 42.2 39.2 43.0

bpe dropout 39.7 39.2 37.1 41.7

Table 2: en2es BLEU score results on solid indomain and eight million hybrid datasets using different word
segmentation approaches, word level, hybrid, standard bpe, bpe dropout and tuned subword bpe

Dataset: 2.7m indomain+ 1.7m out-of-domain
EXP type wmt18 wmt19
Word level indomain+out-of-domain NA NA
Word level Indomain+ subword level out-of-domain NA NA
Subword level indomain+ subword level out-of-domain (baseline) 38.1 43.23
10x freq subword indomain+subword out-of-domain (our approach) 39.6 43.3

Table 3: es2en BLEU score results on hybrid dataset using different word segmentation approaches, word level,
hybrid, standard bpe, bpe dropout and tuned subword bpe

Dataset: 2.7m indomain Dataset: 8m in + 1.7m out
EXP type wmt18 wmt19 wmt18 wmt19

subword bpe
in domain (baseline)

42.1 44.0 43.0 44.1

10x freq subwords
indomain (our approach)

41.9 43.6 42.3 44.1

Table 4: es2en BLEU score results on hybrid indomain+out-of-domain dataset and unfair distribution.

4
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Abstract
This paper describes Huawei Artificial Intel-
ligence Application Research Center’s neural
machine translation systems and submissions to
the WMT21 biomedical translation shared task.
Four of the submissions achieve state-of-the-art
BLEU scores based on the official-released au-
tomatic evaluation results (EN→FR, EN↔IT
and ZH→EN). We perform experiments to un-
veil the practical insights of the involved do-
main adaptation techniques, including finetun-
ing order, terminology dictionaries, and ensem-
ble decoding. Issues associated with overfitting
and under-translation are also discussed.

1 Introduction

General-purpose machine translation systems have
limited capability in addressing domain-specific
tasks (Koehn and Knowles, 2017), for example, the
WMT biomedical translation shared task, due to
the low availability for high-quality in-domain data.
In our WMT20 submission, various domain adap-
tion technologies (Bawden et al., 2019, 2020) have
been applied including practical approaches fine-
tuning on general-purpose models, back-translation
(Sennrich et al., 2016) and leveraging in-domain
dictionaries (Peng et al., 2020b). Despite achieving
state-of-the-art (SOTA) BLEU scores for most of
the submissions, few efforts were put in place to
disclose the practical insights associated with these
techniques.

This year, the Artificial Intelligence Applica-
tion Research Center (AARC) participate in the
WMT21 biomedical translation task for eight lan-
guage directions between English and other four
languages (French, German, Italian, and Chinese).
The baseline model is an in-house general-purpose
NMT model built upon the transformer-big archi-
tecture (Vaswani et al., 2017). Apart from present-
ing an overview of the proposed biomedical Neural

*Co-first authors.

Machine Translation (NMT) system, we investi-
gate the practical insights of the involved domain
adaptation techniques, including finetuning order,
terminology dictionaries, and ensemble decoding.
Issues associated with overfitting to in-domain data
and under-translation are also discussed.

2 The Data

In this section we detail the bilingual and monolin-
gual data used in this shared task (Table 1).

2.1 Bilingual Data

In-domain bilingual data In all directions, we use
the in-domain data (IND) provided by the shared
task organizers to finetune the base model. 1 The
IND data consists of WMT-released bitexts from
Pubmed, UFAL 2 and Medline. 3

We notice that the official release of IND data
suffers from issues of misalignment between source
and target sentences, and missing target sentences.
The translation of a source sentence may be mis-
placed in a different line or even appeared in multi-
ple lines on the target side. Moreover, a source sen-
tence may have not been translated into in a target
sentence. A data processing pipeline is developed
to address the issues mentioned above (depicted
in 3.4). The test data is the official release of the
WMT19 shared task.

Augmented Bilingual Data We collect in-
domain data from TAUS 4 for the English-French,
English-Italian and English-Chinese language pairs
(depicted in Table 1 as IND-Aug.) to address the
in-domain data scarcity issue. For English-Chinese
data, after collecting a portion of abstracts of China

1http://www.statmt.org/wmt21/biomedical-translation-
task.html

2https://ufal.mff.cuni.cz/ufal medical corpus
3https://github.com/biomedical-translation-

corpora/corpora
4https://md.taus.net/corona
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Directions Train Dev. Test Vocab.
OOD IND IND-Dict. IND-Aug. IND-BT.

EN→FR 3M 2.8M 62.5K - - 1.6K 1147 40K
FR→EN 3M 2.8M 62.5K 889K 53M 1.6K 952 40K
EN→DE 6M 2.4M 62.5K - 5.5M 1.1K 963 42K
DE→EN 6M 2.4M 62.5K - 53M 1.1K 794 42K
EN→IT 6M 139K 60.6k 235K 695k 0.8K 708 40K
IT→EN 6M 139K 60.6k 235K 55M 0.8K 760 40K
EN→ZH 3M - 60.1K 847K - 5K 774 50K
ZH→EN 3M - 60.1K 847K - 5K 418 50K

Table 1: Data used for training and evaluating the system. Note that “OOD” is short for the general domain data.
“IND” is the in-domain data provided by the WMT organizers. “IND-Dict.” refers to the in-domain dictionary.
“IND-Aug.” is the augmented IND data collected manually (not from MEDLINE, as depicted in 2.1). “IND-BT.”
is the IND monolingual data used for the back-translation. M is the acronym for “million,” and K stands for
“thousand”.

Master’s and Doctoral Dissertations, we align the
data on the sentence level by using a model pro-
posed by Açarçiçek et al. (2020). This is done
by finetuning a RoBERTa (Liu et al., 2019) fil-
ter model on the TAUS dataset and selecting the
source-target sentence pairs above a normalized
log-probability threshold of 90%.

General-domain bilingual data We observe
that finetuning the base model with IND data alone
may incur sub-optimal BLEU scores. A conjecture
is that the test data has a different distribution to
that of the IND data. We present a case to show that
finetuning the base model on a mixture of general
domain data (OOD) and IND data can produce
minor improvements (shown in 4.2).

2.2 Monolingual Data
A batch of monolingual Medline data in English
(IND-BT.) dated before July 2018 has been col-
lected and back-translated for data augmentation.
The official released IND data from WMT is
also back-translated. The models used for back-
translation are from our last year’s competition
(Peng et al., 2020b).

3 The Approaches

The proposed systems are finetuned using the fol-
lowing methods. All models are trained on one
Tesla V100 GPU, taking approximately 8-20 hours
depending on the volumes of data involved.

3.1 Leveraging In-domain Dictionary
Leveraging domain-specific dictionaries is a viable
solution for domain adaptation in NMT (Peng et al.,

2020a,b) to enhance IND data coverage. We collect
lexicons from SNOMED-CT 5, DOPPS6, WFOT
7 and generate a terminology dictionary which is
subsequently attached to the end of training data.
Terminology is further entended to cover COVID-
19 related terms obtained from Neulab.8

3.2 Ensemble

Ensembling methods is a machine learning tech-
nique that aggregates several base models to gen-
erate one optimal predictive model (Garmash and
Monz, 2016). We choose the top two models to
ensemble in an attempt to produce a more general
NMT model.

3.3 Architecture

To train the in-domain NMT model, we choose the
in-house NMT system trained on general domain
data as a baseline built upon the transformer-big
architecture. LazyAdam optimizer is used during
the training phase with a learning rate of 1e−5 and
a warm-up period of 16,000 steps. The dropout
ratio is set to 0.1, and the batch size for training
and validation is 6,144 and 32 tokens, respectively.
The width of the beam search is 4. Early stopping
is applied to the training.

5https://www.nlm.nih.gov/healthit/snomedct/index.html
6https://static.lexicool.com/dictionary/XJ9XO98314.pdf
7https://static.lexicool.com/dictionary/HY1TK12777.pdf
8https://github.com/neulab/covid19-

datashare/tree/master/parallel/terminologies
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System I EN→FR FR→EN EN→DE DE→EN EN→IT IT→EN EN→ZH ZH→EN

baseline 42.94 42.10 31.05 38.24 40.54 49.19 34.41 33.41
+ IND 45.03 44.81 31.90 33.81 36.35 42.28 - -
+ IND, IND-Dict. 45.93 45.05 32.68 38.98 36.69 45.13 - -
+ IND, IND-Dict., OOD 45.65 - 32.45 39.26 41.77 48.88 - -
+ IND, IND-Dict., OOD, IND-BT - 44.56 33.79 40.25 42.69 50.80 - -
+ IND, IND-Dict., OOD, IND-Aug. - - - - 40.83 - 36.08 35.35
+ IND, IND-Dict., OOD, IND-Aug., IND-BT - 45.15 - - 41.39 50.91 - -

WMT21 Submission (Huawei AGI) 45.31 48.71 31.98 41.32 44.25 45.70 44.40 39.43

WMT21 Best Official 45.31 49.28 32.59 45.01 44.25 45.70 46.50 39.43

Table 2: BLEU scores on all related submissions. The baseline models are finetuned in various configurations,
including mixed finetuning on general-domain data (aka “OOD”), IND bitexts (“IND”), “IND-Dict.” and the
augmented IND data (“IND-Aug.”).

3.4 Data Processing
Several pre-processing techniques are introduced
to ensure the quality of the data.

• First, we perform punctuation normalization
to standardize their formats using Moses li-
brary (Koehn et al., 2007).

• Then we carry out a primary data cleaning pro-
cess to remove nonstandard sentences, includ-
ing those with special characters, weblinks,
extra spaces, and other bad cases.

• According to the length of the sentence after
segmentation and the proportion of rare words,
we remove bitexts with more rare words in the
sentences. We further clean the data by skip-
ping those sentence pairs with more than 100
subwords or less than one subword. The bi-
texts with a source and target sentence length
ratio of more than 2.5 are excluded. A lan-
guage detection tool 9 is used to filter out bi-
texts with abnormal language patterns, i.e.,
sentences with undesirable langid.

• An alignment model trained by fast-align
(Dyer et al., 2013) 10 is used to score the cor-
pus to remove misaligned parallel sentences.

After decoding, post-processing is performed
to detokenize subwords and remove undesirable
spaces between special characters and numbers,
i.e., converting “rs = 0.9148” into “rs=0.9148”.

4 Experimental Results and Analysis

The base systems are trained with OOD data and
finetuned using IND data enhanced with monolin-
gual data to produce the submitted results. We

9https://github.com/aboSamoor/polyglot
10https://github.com/clab/fast align

extract the OK-aligned data from the last two years
(WMT19 and WMT20) and produce the test data
to evaluate the NMT models. The BLEU scores are
calculated using the MTEVAL script from Moses
(Koehn et al., 2007). Results are shown in Table 2.
The final two rows demonstrate the results of our
submissions this year and the best official records
released by the organizers.

4.1 Finetuning Order Does Matter
We identify the order of training is crucial in the
experiment. We perform the experiment under the
following three training strategies:

1. Strategy 1 (S1): the baseline is finetuned on
the back-translation (BT) pseudo parallel cor-
pus, followed by another finetuning using IND
data.

2. Strategy 2 (S2): the baseline is finetuned using
the IND data, followed by another finetuning
using the BT data.

3. Strategy 3 (S3): the baseline is finetuned using
a mixture of BT and IND data.

Table 5 presents the results of this comparative
study for French→English translation direction. It
can be observed that finetuning order generates
significantly different BLEU scores, with Strategy
1 achieving a BLEU score +8.89 higher than that
from Strategy 2. We follow the training strategy 1
in WMT21 shared task to this end.

4.2 OOD Data Mixed Finetuning
We observe that finetuning the base model with
IND data alone (particularly with a limited amount
of IND data) may result in sub-optimal BLEU
scores. This may indicate overfitting to the train-
ing data, which has a different distribution to the
test data. We perform a series of experiments to
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Data EN→FR FR→EN EN→DE DE→EN EN→IT IT→EN
baseline 42.94 42.1 31.05 38.24 40.54 49.19
+IND 45.03 44.81 31.9 38.81 36.35 42.28
+IND + IND-Dict. 45.93 (+0.90) 45.05 (+1.24) 32.68 (+0.78) 38.98 (+0.17) 36.69 (+0.34) 45.13 (+2.85)

Table 3: Effects of applying terminology dictionaries to train English⇔French, English⇔German, English⇔Italian
models on WMT20.

models EN→FR FR→EN EN→DE DE→EN EN→IT IT→EN EN→ZH ZH→EN

baseline 42.94 42.10 31.05 38.24 40.54 49.19 34.41 33.41
model-1 45.93 45.23 33.37 40.15 42.52 50.91 36.05 35.31
model-2 45.57 45.15 33.10 39.97 42.39 50.80 34.94 35.13
ensemble 46.15 46.21 33.27 40.12 42.59 51.28 35.78 35.11

Table 4: Results on the ensemble of three models on WMT20

Data FR→EN
WMT19 WMT20

baseline 37.98 42.1
BT 30.06 34.19
IND 38.26 44.81
BT-IND (S1) 39.26 45.10
IND-BT (S2) 33.10 36.21
BT+IND (S3) 39.09 42.17

Table 5: The comparative study of finetuning order in
French→English translation direction.

Data EN→IT IT→EN
baseline 40.54 49.19
IND 36.35 42.28
OOD-1M + IND + IND-Dict. 41.77 48.88
OOD-3M + IND + IND-Dict. 41.63 49.10
OOD-6M + IND + IND-Dict. 38.32 -

Table 6: Mixed finetuning OOD data creates improve-
ments to address overfitting to IND when training
English⇔Italian translation models on WMT20.

disclose this issue. As shown in Tables 6 and 7,
finetuning with a mixture of OOD and IND data
generates minor improvements. Interestingly, the
experiment results are sensitive to the amount of
OOD data involved. Future work is planned to look
into this issue in detail.

4.3 The Effect of Terminology Dictionaries

In this section, we perform an ablation study to
show the effectiveness of terminology dictionaries.
The IND dictionaries are appended to bitexts as a
part of the corpus to train NMT models. Table 3
presents consistent improvements for all six models
in the experiment.

Data EN→FR
WMT19 WMT20

baseline 39.06 42.94
IND 43.56 45.03
OOD-3M + IND + IND-Dict. 43.65 45.65
OOD-9M + IND + IND-Dict. 39.70 43.50

Table 7: The effects of mixed finetuning OOD data in
improving the potential overfitting issue with IND data
when training English→French translation models.

4.4 Ensemble Decoding

Ensemble decoding is applied to improve the gen-
erality of the NMT model by averaging the log-
arithmic probabilities of a decoded token. It can
be observed from Table 4 that ensemble decoding
is marginally effective compared to well-learned
NMT models. This finding is consistent with that
obtained from Wang et al. (2020).

4.5 Under-translation with Overfitting

Under-translation occurs when the NMT model
fails to decode a portion of the input sentence. One
of Chinese→English models under-translates a par-
ticular sentence of the WMT21 test data. For exam-
ple, as shown in Table 8, “无危险器官受累患者
的预后显著优于有危险器官受累的患者” of the
input has been left untranslated. After increasing
the width of the beam search, under-translation can
be avoided. In our opinion, under-translation may
be caused by noisy IND data, in which the learned
self-attentions are not differentiable during decod-
ing. By ensembling the affected model with the
baseline, we successfully rectify the problem.
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sentence example

input The disease duration ranged from 2 weeks to 60 months (median, 4 months), and the affected
segment was C All the patients were followed up 3 to 42 months (median, 12 months).

prediction 病程2周
input The median age of the 30 patients was 56.5 (28-80) years old, among them, 25 patients were

primary plasma cell leukemia, and 5 patients were secondary plasma cell leukemia.
prediction 30例患者的中位年龄为56.5（28

input 无危险器官受累患者的预后显著优于有危险器官受累的患者，患者10年OS率分别
为100%和60.6%（P=0.0007）。

prediction The 10-year os rate was 100% and 60.6% respectively (p=0.0007).

Table 8: Under-translated examples of English⇔Chinese. The portion of the sentence marked in red is under-
translated.

5 Conclusion

This paper depicts Huawei’s neural machine trans-
lation systems and submissions to the WMT21
biomedical shared task. We have achieved state-
of-the-art BLEU scores for four of eight language
pairs (EN→FR, EN↔IT and ZH→EN) based on
the official-released results. We also explore practi-
cal issues for the involved domain adaptation tech-
niques, including the effects of finetuning order,
terminology dictionaries, and ensemble decoding
on enhancing the performances of cross-domain
NMT. We have discussed issues associated with
overfitting and under-translation.
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Viñaspre, Massimo Piccardi, Roland Roller, Amy
Siu, Philippe Thomas, Federica Vezzani, Maika Vi-
cente Navarro, Dina Wiemann, and Lana Yeganova.
2020. Findings of the WMT 2020 biomedical trans-
lation shared task: Basque, italian and russian as new
additional languages. In Proceedings of the Fifth
Conference on Machine Translation, WMT@EMNLP
2020, Online, November 19-20, 2020, pages 660–687.
Association for Computational Linguistics.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648, Atlanta,
Georgia. Association for Computational Linguistics.

Ekaterina Garmash and Christof Monz. 2016. Ensemble
learning for multi-source neural machine translation.
In COLING 2016, 26th International Conference on
Computational Linguistics, Proceedings of the Con-
ference: Technical Papers, December 11-16, 2016,
Osaka, Japan, pages 1409–1418. ACL.

Philipp Koehn, Hieu Hoang, Alexandra Birch, Chris
Callison-Burch, Marcello Federico, Nicola Bertoldi,
Brooke Cowan, Wade Shen, Christine Moran,
Richard Zens, Chris Dyer, Ondrej Bojar, Alexandra
Constantin, and Evan Herbst. 2007. Moses: Open
source toolkit for statistical machine translation. In
Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics Companion
Volume Proceedings of the Demo and Poster Sessions,
pages 177–180, Prague, Czech Republic. Association
for Computational Linguistics.

872



Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Proceedings
of the First Workshop on Neural Machine Transla-
tion, NMT@ACL 2017, Vancouver, Canada, August
4, 2017, pages 28–39. Association for Computational
Linguistics.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining
approach. CoRR, abs/1907.11692.

Wei Peng, Chongxuan Huang, Tianhao Li, Yun Chen,
and Qun Liu. 2020a. Dictionary-based data augmen-
tation for cross-domain neural machine translation.
CoRR, abs/2004.02577.

Wei Peng, Jianfeng Liu, Minghan Wang, Liangyou
Li, Xupeng Meng, Hao Yang, and Qun Liu. 2020b.
Huawei’s submissions to the WMT20 biomedical
translation task. In Proceedings of the Fifth Confer-
ence on Machine Translation, WMT@EMNLP 2020,
Online, November 19-20, 2020, pages 857–861. As-
sociation for Computational Linguistics.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Improving neural machine translation models
with monolingual data. In Proceedings of the 54th
Annual Meeting of the Association for Computational
Linguistics, ACL 2016, August 7-12, 2016, Berlin,
Germany, Volume 1: Long Papers. The Association
for Computer Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998–6008. Curran Asso-
ciates, Inc.

Yiren Wang, Lijun Wu, Yingce Xia, Tao Qin, ChengX-
iang Zhai, and Tie-Yan Liu. 2020. Transductive en-
semble learning for neural machine translation. In
The Thirty-Fourth AAAI Conference on Artificial In-
telligence, AAAI 2020, The Thirty-Second Innova-
tive Applications of Artificial Intelligence Conference,
IAAI 2020, The Tenth AAAI Symposium on Educa-
tional Advances in Artificial Intelligence, EAAI 2020,
New York, NY, USA, February 7-12, 2020, pages
6291–6298. AAAI Press.

873



Proceedings of the Sixth Conference on Machine Translation (WMT), pages 874–878
November 10–11, 2021. ©2021 Association for Computational Linguistics

Tencent AI Lab Machine Translation Systems for the WMT21
Biomedical Translation Task

Xing Wang Zhaopeng Tu Shuming Shi
Tencent AI Lab, Shenzhen, China

{brightxwang,zptu,shumingshi}@tencent.com

Abstract

This paper describes the Tencent AI Lab sub-
mission of the WMT2021 shared task on
biomedical translation in eight language di-
rections: English-German, English-French,
English-Spanish and English-Russian. We
utilized different Transformer architectures,
pre-training and back-translation strategies
to improve the translation quality. Con-
cretely, we explore mBART (Liu et al., 2020)
to demonstrate the effectiveness of the pre-
training strategy. Our submissions (Tencent
AI Lab Machine Translation, TMT) in
German/French/Spanish⇒English are ranked
1st respectively according to the official evalu-
ation results in terms of BLEU scores.

1 Introduction

This paper describes the Tencent AI Lab submis-
sion of the WMT2021 shared task on biomed-
ical translation. Last year, we participated in
three translation tasks: News (Wu et al., 2020),
Chat (Wang et al., 2020a), and Biomedical (Wang
et al., 2020b). In biomedical translation, we adopt
DEEP TRANSFORMER (Dou et al., 2018, 2019),
HYBRID TRANSFORMER (Hao et al., 2019) and
DATA REJUVENATION1 (Jiao et al., 2020). This
year, we participated in eight language directions:
English-German (En-De), English-French (En-Fr),
English-Spanish (En-Es) and English-Russian (En-
Ru) in the biomedical translation.

In this paper, we also apply the pre-train and
fine-tune paradigm for the biomedical translation
task. The pre-train model is first trained on the the
large-scale monolingual data in a self-supervised
manner, then is fine-tuned on downstream bilingual
data. Specifically, we adopt the encoder-decoder
pre-trained model mBART (Liu et al., 2020) to
implement the pre-training strategy.

1https://github.com/wxjiao/
Data-Rejuvenation

The rest of this paper is organized as below. Sec-
tion 2 presents our system: Transformer and pre-
trained model mBART. Section 3 describes the
training and validation data used in our system.
Section 4 reports experimental results in the par-
ticipated eight language directions. Finally, we
conclude our work in Section 5.

2 System

Our systems are implemented with Trans-
former (Vaswani et al., 2017) and the pre-trained
model mBART. The training details of theses mod-
els are described in Section 4.

2.1 Transformer

We adopt the BIG and LARGE Transformer models
used in the previous year (Wang et al., 2020b) as the
basic Transformer models. BIG and LARGE Trans-
former models contain 6-layer and 20-layer en-
coders with TRANSFORMER-BIG setting (Vaswani
et al., 2017), respectively.

2.2 Pre-train Model

For the sequence-to-sequence pre-training, we
adopt mBART25 (Liu et al., 2020) as the pre-train
model for our experiments, which consists of 12
encoder and decoder layers with the default size of
hidden state is 1024. The model is pre-trained with
the denoising objective on the large-scale monolin-
gual data and is fine-tuned on the downstream tasks.
mBART has achieved significant improvements on
many low resource language paris.

3 Data

In this section, we present the training and valida-
tion data used in our system.

Besides the in-domain data provided by organ-
isers, we collect the out-of-domain bilingual data
from WMT news translation shared task.
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En-De En-Fr En-Es En-Ru

Out-of-domain 37.8M 28.0M 30.3M 92.0M
In-domain 2.5M 3.5M 1.6M 43.0K

Validation set 9.8K 1.5K 1.5K 4.0K

Table 1: The detailed statistics of training and validation data used in our system.

• En-De: Europarl-v102, Common Crawl cor-
pus3, ParaCrawl4, News Commentary-v155

and Wiki Titles-v26.

• En-Fr: Europarl-v77, Common Crawl corpus,
News Commentary8, English-French Giga
Corpus9.

• En-Es: Europarl-v710, Common Crawl cor-
pus, News Commentary11, ParaCrawl12.

• En-Ru: Common Crawl corpus, News Com-
mentary13, ParaCrawl14, Yandex Corpus15,
Wiki Titles-v2, Back-translated news16.

For the validation data, we use the Khresmoi
development data17 (En-De, En-Fr, En-Es) as the
validation sets. We also use the HimL test sets 2015
and 201718 to enlarge the En-De validation set. For
En-Ru, we randomly sample 4000 examples from
the training data as the validation set.

2http://www.statmt.org/europarl/v10/
3www.statmt.org/wmt13/

training-parallel-commoncrawl.tgz
4https://s3.amazonaws.com/

web-language-models/paracrawl/release8/
en-de.txt.gz

5http://data.statmt.org/
news-commentary/v15/

6http://data.statmt.org/wikititles/v2/
7http://www.statmt.org/wmt13/

training-parallel-europarl-v7.tgz
8http://www.statmt.org/wmt15/

training-parallel-nc-v10.tgz
9http://www.statmt.org/wmt10/

training-giga-fren.tar
10training-parallel-europarl-v7.tgz
11http://www.statmt.org/wmt13/

training-parallel-nc-v8.tgz
12https://s3.amazonaws.com/

web-language-models/paracrawl/release8/
en-es.txt.gz

13http://data.statmt.org/
news-commentary/v16

14http://paracrawl.eu/download.html
15https://translate.yandex.ru/corpus?

lang=en
16http://data.statmt.org/wmt20/

translation-task/back-translation/
17https://lindat.mff.cuni.cz/

repository/xmlui/handle/11234/1-2122
18https://www.himl.eu/test-sets

The statistics of the in-domain and out-of-
domain training data and the validation data are
listed in Table 1.

To enlarge the in-domain bilingual corpus,
we follow Wang et al. (2020b) to adopt back-
translation method to generate synthetic bilingual
sentence pairs. For English-X pair, we train a
English-X LARGE model on the combination of in-
domain and out-of-domain data, and use the model
to generate synthetic bilingual data. We also collect
the En-Ru bilingual biomedical data (about 1.0 M
sentence pairs) from Internet as the in-domain data.

In this work, all corpora are tokenized by
sentence-piece (Kudo and Richardson, 2018)
model19 without any pre-processing procedures.

4 Experiments

For the corpus filtering, we follow Wang et al.
(2020b) to filter duplicate sentence pairs (Khayral-
lah and Koehn, 2018), sentence pairs with wrong
language (Khayrallah and Koehn, 2018) or length
problem (Ott et al., 2018).

For the synthetic bilingual data generation, we
adopt iterative knowledge distillation (Li et al.,
2019) to improve the translation quality. Our it-
erative knowledge distillation is performed with 3
BIG Transformer teachers and 3 iterations. We also
try to use the Right-to-Left (R2L) training (Wu
et al., 2020) but fail in achieving significant im-
provements on the test sets.

We follow Wang et al. (2020b) to train the BIG

and LARGE Transformer models. Specifically, we
first use the combination of the out-of-domain data
and the in-domain data to train the teacher model.
Then we use the teacher model to generate the syn-
thetic bilingual data. Finally, we train the student
model on the combination of the synthetic and real
bilingual data (Jiao et al., 2021). The learning rate
is set to 0.0007. All models are trained for 600K
steps on 8 Tesla V100 GPUs where each is allo-
cated with a batch size of 8192 tokens.

19https://github.com/google/
sentencepiece
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System De Fr Es Ru

2019 2020 2019 2020 2019 2020 2020

Best Official 19 (Bawden et al., 2019) 38.84 – 38.24 – 48.33 – –
Best Official 20 (Bawden et al., 2020) – 41.65 – 44.45 – 50.75 43.31

Transformer-Big 38.66 39.15 37.32 41.92 50.63 48.22 30.89
Transformer-Large 39.41 39.64 38.12 42.77 52.58 49.26 31.92

Table 2: BLEU scores on the German/French/Spanish/Russian⇒English biomedical test sets. Only the correctly
aligned sentences are used in the test set.

System De Fr Es Ru

2019 2020 2019 2020 2019 2020 2020
Best Official 19 (Bawden et al., 2019) 35.39 – 42.41 – 48.96 – –
Best Official 20 (Bawden et al., 2020) – 36.89 – 43.51 – 46.72 39.36

mBART 29.96 28.47 40.13 44.04 44.79 42.92 32.23
Transformer-Big 30.43 29.56 40.33 43.58 44.23 42.87 31.96
Transformer-Large 31.60 30.89 41.04 44.01 44.68 43.05 31.79

Table 3: BLEU scores on the English⇒German/French/Spanish/Russian biomedical test sets. Only the correctly
aligned sentences are used in the test set.

System 2019

Baseline 37.72
+ In-domain Data 38.14

+ Data Rejuvenation 38.47
+ Back-translation 38.66

+ Ensemble 39.14

Table 4: BLEU scores of the Transformer-Big model
on the German⇒English WMT2019 biomedical test
set. Only the correctly aligned sentences are used in
the test set.

For the pre-train model, we adopt the publicly
available mBART2520 model and fine-tune the
mBART25 on the in-domain data. In the fine-
tuning phase, we minimize the label smoothed
cross entropy with the smoothing factor of 0.2. We
use the Adam (Kingma and Ba, 2015) optimizer
with β1 = 0.9, β2 = 0.98, and ε = 1e−6. The
learning rate is scheduled to increase from 0 to
the maximum value in the warm-up phase and de-
creases linearly to 0 in the remaining steps. The
dropout rate is 0.3 for each residual connection and
0.1 for attention matrices.

We carry out ablation study on De→En transla-

20https://github.com/pytorch/fairseq/
tree/master/examples/mbart

tion task. The results are shown in Table 4. The
in-domain data improves the baseline Transformer-
Big model with 0.42 BLEU point. We then ap-
ply the Data Rejuvenation, Back-translation and
model ensemble strategies and achieve the further
improvement.

We adopt the In-domain Data, Data Rejuvena-
tion, Back-translation as the default setting and ap-
ply the setting to Transformer-Big and Transformer-
Large models on the eight language directions. We
train 5 BIG and 5 LARGE Transformer models
with different random seeds initialization. With
the trained models, we employ the model ensemble
strategy with the greedy based ensemble (Li et al.,
2019; Wu et al., 2020) to get the final translation
outputs. For model inference, the length penalty is
set to 0.6 and the beam size is set to 4.

Translation results are reported in term of BLEU
score in Table 2 and Table 3. From the tables,
we find that 1) utilizing different Transformer ar-
chitectures, pretraining and back-translation strate-
gies achieve strong performance on the De→En,
En↔Fr and Es→En translation tasks. 2) the lack
of the large-scale in-domain data makes our En-Ru
NMT system significantly lower than the state-of-
the-art systems, demonstrating that the in-domain
data plays a critical role in the development of
NMT system.
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System En-De En-Fr En-Es En-Ru
Direction ← → ← → ← → ← →

Best Official 38.16 27.76 48.05 44.65 52.99 48.52 36.23 30.78
TMT 38.16 23.32 48.05 43.90 52.99 41.57 29.98 25.43

Table 5: Official BLEU scores of our submissions for WMT21 biomedical task.

Post-process We find that several long sentences
exist in the 2021 test sets, which pose a great chal-
lenge for our NMT system. Take the following two
sentences for example:

Sentence 6 in doc73 in medline_fr2en_fr.txt:
“Nous avons constaté que: (i) malgré le fardeau
de plus en plus lourd des maladies non transmissi-
bles, nombre de pays à faible et moyen revenu
ne possédaient pas les fonds suffisants pour as-
surer des services de prévention; (ii) les profes-
sionnels de santé au sein des communautés man-
quaient fréquemment de ressources, de soutien et
de formation; (iii) les frais non remboursables dé-
passaient 40% des dépenses de santé dans la moitié
des pays étudiés, ce qui entraîne des inégalités; et
enfin, (iv) les régimes d’assurance maladie étaient
entravés par la fragmentation des systèmes publics
et privés, le sous-financement, la corruption et la
piètre mobilisation des travailleurs informels.”

Sentence 3 in doc27 in medline_es2en_es.txt:
“Este artículo tiene como objeto el análisis de
los ensayos clínicos que permitieron dicha au-
torización, así como la revisión de nuevas ter-
apias para el tratamiento del carcinoma urotelial
localmente avanzado o metastásico. MÉTODO:
Búsqueda bibliográfica realizada en Pub-Med y
ClinicalTrials.gov mediante la combinación de las
palabras clave, en español e inglés: “carcinoma
urotelial”, “cáncer de vejiga”, “localmente avan-
zado”,“metastásico”, “inmunoterapia”, “CTLA-4”,
“PD1”, “PDL-1”, “atezolizumab”, “nivolumab”,
“ipilimubab”, “pembrolizumab”,“avelumab”, “dur-
valumab”, “tremelimumab”, “terapia antian-
giogénica”, “terapia molecular dirigida” e “in-
hibidores VEGF”.”

To address the problem, we manually split the
long sentences into multiple sentences, and use the
splitted ones as the system input to perform the
translation.

We also find our system may generate wrong
translations for the very short input sentences,
e.g., “RéSUMé: ” (Sentence 1 in doc92 in med-
line_fr2en_fr.txt), “(” (Sentence 4 in doc11 in med-

line_es2en_es.txt). To overcome the problem, we
extract the target translation from the SMT phrase
table and use it as the final translation output, as the
NMT and SMT models are identical in modeling
the bilingual knowledge (He et al., 2020).

5 Official Results

The official automatic evaluation results of our sub-
missions for WMT 2021 biomedical translation
task are shown in Table 5. Our final systems in
German/French/Spanish⇒English are ranked 1st
respectively, in terms of BLEU score.

6 Conclusion

In this paper, we present Tencent AI Lab ma-
chine translation systems for the WMT21 biomed-
ical translation shared task. we participated in
eight language directions: English-German (En-
De), English-French (En-Fr), English-Spanish (En-
Es) and English-Russian (En-Ru). Our systems
German/French/Spanish⇒English are ranked 1st
according to the official evaluation results in terms
of BLEU scores.

It is worth mentioning that most advanced tech-
nologies reported in this paper are also adapted
to our systems for news translation task (Wang
et al., 2021), which achieve the 1st rank in
Chinese⇒English task.

In the future, we plan to explore Non-
Autoregressive machine Translation (NAT) models
to improve the system performance (Zhou et al.,
2020; Ding et al., 2020; Hao et al., 2021) and will
integrate these advanced techniques in our Tencent
TranSmart System (Huang et al., 2021)21.
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Abstract
This paper describes the submission of
Huawei Translation Service Center (HW-TSC)
to WMT21 biomedical translation task in
two language pairs: Chinese↔English and
German↔English (Our registered team name
is HuaweiTSC). Technical details are intro-
duced in this paper, including model frame-
work, data pre-processing method and model
enhancement strategies. In addition, us-
ing the wmt20 OK-aligned biomedical test
set, we compare and analyze system perfor-
mances under different strategies. On WMT21
biomedical translation task, Our systems in
English→Chinese and English→German di-
rections get the highest BLEU scores among
all submissions according to the official evalu-
ation results.

1 Introduction

We have witnessed great progress made by neu-
ral machine translations (Bahdanau et al., 2015;
Vaswani et al., 2017) in recent years. However,
domain adaptation remains to be a tough issue. As
noted by Koehn and Knowles (Koehn and Knowles,
2017), translations by NMT systems in out-of-
domain scenarios are relatively poor, and high-
quality data in specific domains are difficult to
obtain, which pose great challenges to certain trans-
lation tasks (e.g. biomedical translation). To ad-
dress the domain adaptation issue, on one hand, we
leverage data diversification (Nguyen et al., 2020),
forward translation (Wu et al., 2019) and back trans-
lation (Sennrich et al., 2016a; Edunov et al., 2018)
to generate synthetic in-domain corpora. On the
other hand, fine-tuning (Sun et al., 2019) and en-
semble (Freitag et al., 2017; Li et al., 2019) are
used to further enhance system performances in the
biomedical domain.

We introduce our data strategy in section 2, and
model architectures as well as model enhancement
techniques in section 3. Section 4 presents experi-
mental results of both language pairs on the wmt20

OK-aligned biomedical test set. Section 5 is a con-
clusion of our work.

2 Dataset

2.1 Data Source
Our baseline model is trained with out-of-domain
WMT21 news data. The sizes of bilingual
and monolingual data for Chinese↔English and
German↔English language pairs are shown in Ta-
ble 1.

With regard to in-domain data, we use both the
bilingual data and monolingual data provided by
the WMT21 Biomedical Translation Shared task.
For German↔English task, we select Biomed-
ical Translation and UFAL Medical Corpus as
in-domain training data. Besides, 21.43M in-
house English monolingual data are used. For
Chinese↔English task, the used in-house data
includes: 1.35M parallel data, 21.43M English
monolingual data, and 36.11M Chinese monolin-
gual data. Table 2 shows the details of data in
the biomedical domain for German↔English and
Chinese↔English tasks.

2.2 Data Pre-processing
Our data pre-processing methods include:

• Filter out repeated sentences (Khayrallah and
Koehn, 2018; Ott et al., 2018).

• Normalize punctuations using Moses (Koehn
et al., 2007).

• Filter out sentences with repeated fragments.

• Filter out sentences with mismatched paren-
theses and quotation marks.

• Filter out sentences of which punctuation per-
centage exceeds 0.3.

• Filter out sentences with the character-to-
word ratio greater than 12 or less than 1.5.
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corpus Mono
Language WMT21 News Shared Task’s Corpus English German Chinese

German↔English 96.6M 150M 150M -
Chinese↔English 16.5M 150M - 150M

Table 1: Out-domain data size of WMT21 Biomedical Translation Task

corpus Mono
Language Biomedical Translation && UFAL In-house Corpus English German Chinese

German↔English 3.06M - 21.43M - -
Chinese↔English - 1.35M 21.43M - 36.11M

Table 2: In-domain data size of WMT21 Biomedical Translation Task

• Filter out sentences with more than 120 words.

• Apply langid (Joulin et al., 2017, 2016) to
filter sentences in other languages.

• Use fast-align (Dyer et al., 2013) to filter sen-
tence pairs with poor alignment.

It should be noted that for the German↔English
translation task, we employ joint SentencePiece
model(SPM) (Kudo and Richardson, 2018; Kudo,
2018) for word segmentation, with the size of the
vocabulary set to 32k. As for the Chinese↔English
translation task, Jieba tokenizer is used for Chi-
nese word segmentation while Moses tokenizer for
English word segmentation. Byte Pair Encoding
(BPE) (Sennrich et al., 2016b) is adopted for Chi-
nese and English sub-word segmentation. We train
BPE models with 32,000 merge operations for both
the source and target sides.

3 System overview

3.1 Model
Our system uses Transformer (Vaswani et al., 2017)
model architecture, which adopts full self-attention
mechanism to realize algorithm parallelism, accel-
erate model training speed, and improve translation
quality. Two Transformer deep-large model archi-
tectures are used in our experiments:

• Deep 25-6 (Wang et al., 2018; Li et al., 2019):
Based on the Transformer-base model archi-
tecture, the deep 25-6 model features 25-layer
encoder, 6-layer decoder, 1024 dimensions
of word vector, 4096-hidden-state, 16-head
self-attention and layer normalization.

• Deep 35-6 (Wu et al., 2020; Sun et al., 2019):
Based on the Transformer-base model archi-
tecture, the deep 35-6 model features 35-layer

encoder, 6-layer decoder, 788 dimensions of
word vector, 3072-hidden-staten, 16-head self-
attention and layer normalization.

We use the open-source Fairseq (Ott et al., 2019)
for training. The main parameters are as follows:
Each model is trained using 8 GPUs. The size of
each batch is set as 2048, parameter update fre-
quency as 32, learning rate as 5e-4 (Vaswani et al.,
2017) and label smoothing as 0.1 (Szegedy et al.,
2016). The number of warmup steps is 4000, and
the dropout is 0.1. We also use the Adam opti-
mizer (Kingma and Ba, 2015) with β1 = 0.9, β2
= 0.98. In the inference phase, The beam-size is
8, The length penalties for Chinese→English and
German→English are set to 0.5, and the length
penalties for the other two directions are set to 1.5.

3.2 Data augmentation
Given the small size of in-domain bilingual data,
how to generate more training data becomes a cru-
cial issue for model performance enhancement in
the biomedical field. We adopt three data augmen-
tation methods:

• Data diversification (Nguyen et al., 2020):
Data diversification is a simple but effective
strategy to enhance the performance of NMT.
It uses predictions from multiple forward and
backward models and then combines the re-
sults with raw data to train the final NMT
model. The method does not require addi-
tional monolingual data and is suitable for
all types of NMT models. It is more effi-
cient than knowledge distillation and dual
learning, and exhibits strong correlation with
model integration. In our Chinese↔English
and German↔English systems, we use only
the forward model and the backward model to
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create synthetic data and add the data to the
original parallel corpora.

• Forward translation (Wu et al., 2019): For-
ward translation usually refers to using source
language monolinguals to generate synthetic
data through beam search decoding, and then
add synthetic data to the training data so as
to increase the training data size. Although
merely using forward translation may not
work well, forward translation can be used
in conjunction with a back translation strat-
egy, which also works better than using back
translation alone. We do not use forward trans-
lation for the German→English system task
due to the lack of high-quality in-domain Ger-
man monolinguals. We then give up forward
translation for the English→German direction
because forward translation and back transla-
tion cannot be used jointly for better effects.
Ultimately, we only adopt forward translation
for our Chinese↔English systems.

• Back translation (Edunov et al., 2018): Back
translation translates target side monolingual
data back to the source language so as to
increase the training data size, which has
been proved to be an effective method to
improve neural machine translation perfor-
mances. There are many methods for gen-
erating synthetic corpus through back trans-
lation. In a non-extremely low-resource sce-
nario, sampling or noisy beam search decod-
ing method is more effective than beam search
or greedy search, and the synthetic data gener-
ated by sampling or noisy beam search decod-
ing method may introduce more diversity to
training data. In our experiment, sampling de-
coding is adopted. We use back translation for
all directions expect English→German, due
to the lack of high-quality in-domain German
monolinguals.

3.3 Training strategy

We first use in-domain training data to conduct
incremental training with baseline models trained
by WMT21 news data for domain transfer. Then,
we use three monolingual enhancement strategies,
data diversity, forward translation and back trans-
lation, to create synthetic data and add them to the
in-domain training data to further expand the scale

of the training data, and then perform incremen-
tal training again. In addition, we fine-tune our
models with test sets from previous years of the
same task in hope of further improving in-domain
performances. Specifically, we ensemble multiple
models to forward translate the source side of test
sets to increase the size of the training data, and
then add noise (Meng et al., 2020) to the target side
of the training data to achieve a better fine-tuning
effect. Finally, multiple models are ensembled to
achieve better performance.

Algorithm 1: Strategies for selecting en-
semble models

Input :
The list of all NMT models to

be selected M := [M1, ..., Mn], n is
the Number of M , and the test Set T ;
Output :

The optimal model combination
B := [M i, ..., M j ];

1 Initialize the test set T ’s maximum BLEU
score maxbleu := 0;

2 Initialize the optimal model combination
B := [];

3 for num ∈ range(1, n) do
4 Generate a list of model combination

numlist, which is all possible
combination of num models in M ;

5 for current model combination
subnumlist ∈ numlist do

6 Calculate the current BLEU score
curbleu of the current combined
model on the test set T .;

7 if curbleu > maxbleu: then
8 B := subnumlist
9 maxbleu := curbleu

10 end
11 end

12 end
13 return B

3.4 Ensemble

For each translation task, we randomize two sets of
training data and train four models using the two
model architectures mentioned above. In the course
of our experiments, we find that directly ensemble
all models does not necessarily perform better on
test set than a single model. To achieve a better
ensemble effect, we design an algorithm, as shown
in the algorithm 1. The core idea is to traverse all
combinations of models and find the best one in the
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System English→Chinese Chinese→English
baseline 40.0 28.3
+ biomedical corpus 44.5 (+4.5) 31.4 (+3.1)
+ data diversification 44.9 (+0.4) 32.3 (+0.9)
+ forward translation & back translation 45.8 (+0.9) 34.6 (+2.3)
+ fine-tuning 47.6 (+1.8) 35.9 (+1.3)
+ ensemble 47.7 (+0.1) 36.4 (+0.5)
WMT20 best official 46.9 35.3

Table 3: Chinese↔English BLEU scores on the WMT20 OK-aligned biomedical test set.

test set. The experiment results show that ensemble
with the best combination found by the traverse
strategy is much better than simply ensemble all
models. In our experiment, the model combina-
tion that performs best on the wmt20 OK-aligned
biomedical test set is used as the final submission.

4 Experimental result

We train baseline models using WMT21 news data,
then incrementally train them using medical bilin-
gual corpora and synthetic data generated by data
augmentation techniques, fine-tune models with
previous years’ test sets, and finally ensemble mul-
tiple models to produce submitted results. We
benchmark our submissions using the WMT20 OK-
align test set. BLEU scores are calculated using the
MTEVAL script from Moses (Koehn et al., 2007).
The results are shown in Table 3 and Table 4. Our
models outperform last year’s official best results
in three language directions. The tables mainly
show the results of deep 35-6 models. Only in the
last ensemble phase, multiple model architectures
are used. we compare our results with the best
official results from last year. We notice that our
baseline models trained by WMT news data may
also perform quite well in the biomedical field. For
example, in German→English, Our baseline model
is only 2.2 BLEU below last year’s best result.

4.1 Chinese↔English

For Chinese↔English task, we first train the base-
line model on WMT21 news data. Then, in-
cremental training is conducted with in-domain
bilingual and synthetic data. Finally, models are
fine-tuned with the previous test sets, and multi-
ple models are ensembled to produce the final re-
sult. The experimental results of Chinese↔English
are shown in Table 3. Compared with the
baseline model, the final systems achieve im-
provements of 8.1 BLEU and 7.7 BLEU on

Chinese→English and English→Chinese direc-
tions, respectively. Incremental training alone
leads to increases of 3.1 BLEU and 4.5 BLEU
on Chinese→English and English→Chinese re-
spectively. Besides, the combination of data di-
versity, forward translation, and back translation
also lead to significant improvements (3.2 BLEU
increase for Chinese→English and 1.3 BLEU for
the opposite direction). Fine-tuning on previous
test sets further improves the model quality by
1.3 BLEU for Chinese→English and 1.8 BLEU
for English→Chinese. Notably, no further im-
provements is achieved by ensemble all models,
while ensemble the model combinations found
through the ergodic approach further improves
translation quality by 0.5 BLEU and 0.1 BLEU on
Chinese→English and English→Chinese, respec-
tively. Ultimately, on Chinese↔English task, our
results outperform last year’s official best results.

4.2 German↔English

For German↔English task, the model train-
ing strategy used is similar to that for
Chinese↔English task, except data augmen-
tation techniques. As mentioned above, due
to the lack of in-domain German monolingual
data, we use data diversity and back translation
strategies for German→English direction and only
data diversity for English→German direction.
The German↔English experiment results are
shown in Table 4. Data augmentation results
in significant performance improvements, with
1.1 BLEU and 1.7 BLEU on German→English
and English→German respectively. Fine-tuning
with previous years’ test sets has also improved
the quality of in-domain translations. On
German→English, we fine-tune the model
with wmt18 and wmt19 test sets and see an
improvement of 1.1 BLEU. On English→German,
fine-tuning leads to an increase of 0.4 BLEU.
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System English→German German→English
baseline 33.8 39.5
+ biomedical corpus 34.9 (+1.1) 39.8 (+0.3)
+ data diversification 35.5 (+0.6) 40.4 (+0.6)
+ back translation - 40.6 (+0.2)
+ fine-tuning 35.9 (+0.4) 41.7 (+1.1)
+ ensemble 36.5 (+0.6) 42.4 (+0.7)
WMT20 best official 36.9 41.7

Table 4: German↔English BLEU scores on the WMT20 OK-aligned biomedical test set.

Ensemble the model combinations found through
the ergodic approach contribute to 0.7 BLEU
increase for German→English and 0.6 BLEU for
English→German. Ultimately, due to the lack of
effective in-domain German monolingual data,
we only surpass last year’s official best results on
German→English direction.

5 Conclusion

This paper presents the submissions of HW-TSC to
the WMT21 Biomedical Translation Task. We per-
form experiments with a series of pre-processing
and training strategies. The effectiveness of each
strategy is demonstrated by our experiment re-
sults. Combining with data augmentation strate-
gies, incremental training with in-domain data
on the basis of a baseline model from new do-
main can effectively improve in-domain transla-
tion quality. Our systems in English→Chinese and
English→German directions get the highest BLEU
scores among all submissions according to the offi-
cial evaluation results.
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Abstract

We obtain new results using referential transla-
tion machines (RTMs) with predictions mixed
to obtain a better mixture of experts prediction.
Our super learner results improve the results
and provide a robust combination model.

1 Introduction

Quality estimation task in WMT21 (Specia et al.,
2021) (QET21) address machine translation (MT)
performance prediction (MTPP), where transla-
tion quality is predicted without using reference
translations, at the sentence-level (Tasks 1, 2, and
3) and with classification of sentences into con-
taining a critical error or not (Task 3). Task 1 pre-
dicts the sentence-level direct assessment (DA) in
11 language pairs categorized according to the MT
resources available:

• high-resource, English–German (en-de),
English–Chinese (en-zh), and Russian-
English (en-ru),

• medium-resource, Romanian–English (ro-
en) and Estonian–English (et-en),

• low-resource, Sinhalese–English (si-en) and
Nepalese–English (ne-en), and

• no-resource, English–Czech (en-cs),
English–Japanese (en-ja), Pashto–English
(ps-en), and Khmer–English (km-en) for
zero-shot prediction.

en-ru contains sentences from both Wikipedia and
Reddit articles while others use only Wikipedia
sentences with 7000 sentences for training, 1000
for development, 1000 for test QET in 2020, and
1000 for testing at QET21. The target to pre-
dict in Task 1 is z-standardised DA scores, which
changes the range from [0, 100] for DA scores to
[3.178,−7.542] in z-standardized DA scores.

RTM interpretants
Task Train Test setting Training LM

Ta
sk

1
an

d
Ta

sk
2

en-de 9000 1000 bilingual 0.3 M 3.5 M
en-zh 9000 1000 bilingual 0.2 M 3.5 M
et-en 9000 1000 bilingual 0.2 M 3.5 M
ne-en 9000 1000 bilingual 0.2 M 3.5 M
ro-en 9000 1000 bilingual 0.2 M 3.5 M
ru-en 9000 1000 bilingual 0.2 M 3.5 M
si-en 9000 1000 bilingual 0.2 M 3.5 M
en-cs 63000 1000 bilingual 0.2 M 3.5 M
en-ja 63000 1000 bilingual 0.2 M 3.5 M
km-en 63000 1000 bilingual 0.2 M 3.5 M
ps-en 63000 1000 bilingual 0.2 M 3.5 M

Ta
sk

3 en-cs 9000 1000 bilingual 0.2 M 3.5 M
en-de 9000 1000 bilingual 0.2 M 3.5 M
en-ja 9000 1000 bilingual 0.2 M 3.5 M
en-zh 9000 1000 bilingual 0.2 M 3.5 M

Table 1: Number of instances in the tasks and the size
of the interpretants used.

The target to predict in Task 2 is sen-
tence HTER (human-targeted translation edit rate)
scores (Snover et al., 2006). We participated in
sentence-level subtasks. Table 1 lists the num-
ber of sentences in the training and test sets
for each task and the number of instances used
as interpretants in the referential translation ma-
chine (RTM) (Biçici and Way, 2015; Biçici, 2020)
models (M for million). In zero-shot predic-
tion, we use all of the training instances made
available to the task in all 7 translation direc-
tions. We tokenize and truecase all of the cor-
pora using Moses’ (Koehn et al., 2007) process-
ing tools.1 Language models (LMs) are built using
kenlm (Heafield et al., 2013).

2 RTM for MTPP

We use RTM models for building our predic-
tion models. RTMs predict data translation be-
tween the instances in the training set and the test
set using interpretants, text data selected close to
the task instances in bilingual training settings or

1https://github.com/moses-smt/
mosesdecoder/tree/master/scripts
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Figure 1: RTM: parfwd selects interpretants close to the training and test data using parallel corpus in bilingual set-
tings and monolingual corpus in the target language or just the monolingual target corpus in monolingual settings;
an MTPPS use interpretants and training data to generate training features and another use interpretants and test
data to generate test features in the same feature space (largest sphere); learning and prediction use these features
as input.

monolingual LM settings. Interpretants are text
data that provide context for the prediction task
and are used during the derivation of the fea-
tures measuring the closeness of the test sentences
to the training data, the difficulty of translating
them, and to identify translation acts between
any two data sets for building prediction models.
With the enlarging parallel and monolingual cor-
pora made available by WMT2, the capability of
the interpretant datasets selected to provide con-
text for the training and test sets improve with
parallel feature weight decay (parfwd) instance
selection (Biçici, 2019). RTMs use parfwd
for instance selection and for machine translation
performance prediction system (MTPPS) (Biçici
et al., 2013; Biçici and Way, 2015) to obtain
the features, where additional features from word
alignment are added. Figure 1 depicts RTMs and
explains the model building process.

We treated all of Tasks 1, 2, and 3 as bilin-
gual tasks where parallel corpora are obtained
from WMT translation task.3 The related mono-
lingual or bilingual datasets are used during fea-
ture extraction. The machine learning mod-
els we use include ridge regression (RR), sup-
port vector regression (SVR) (Boser et al., 1992),
gradient tree boosting, extremely randomized
trees (Geurts et al., 2006), and multi-layer per-
ceptron (Bishop, 2006) in combination with fea-
ture selection (FS) (Guyon et al., 2002) and
partial least squares (PLS) (Wold et al., 1984)
where most of these models can be found in

2http://statmt.org/wmt21/
3http://statmt.org/wmt21/

translation-task.html

scikit-learn.4 We use RR to estimate the
noise level for SVR, which obtains accuracy with
5% error compared with estimates obtained with
known noise level (Cherkassky and Ma, 2004) and
set ε = σ/2. We use Pearson’s correlation (r),
mean absolute error (MAE), root mean squared
error (RMSE), relative absolute error (RAE), rel-
ative MAE (MAER), and mean RAE relative
(MRAER) as evaluation metrics (Biçici and Way,
2015). Our best non-mixed results are in Table 2.
Official evaluation metric is rP .

3 Mixture of Experts Models

We use prediction averaging (Biçici, 2018) to ob-
tain a combined prediction from various predic-
tion outputs better than the components, where the
performance on the training set is used to obtain
weighted average of the top k predictions, ŷ with
evaluation metrics indexed by j ∈ J and weights
with w:

wj,i =
wj,i

1−wj,i

ŷ̂ŷyµk = 1
k

∑k
i=1 ŷ̂ŷyi MEAN

ŷ̂ŷy
j,wj

k
= 1∑k

i=1 wj,i

∑k
i=1wj,i ŷ̂ŷyi

ŷ̂ŷyk = 1
|J |
∑

j∈J ŷ̂ŷyj,wj
k

MIX
(1)

MEAN is the averaged results and MIX is the
weighted average. We assume independent pre-
dictions and use pi/(1 − pi) for weights where pi
represents the accuracy of the independent classi-
fier i in a weighted majority ensemble (Kuncheva
and Rodrı́guez, 2014). We use the MIX prediction
only when we obtain better results on the training
set. We select the best model using r and mix the

4http://scikit-learn.org/
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rP MAE RMSE

Ta
sk

1

en-de 0.212 0.4752 0.6809
en-zh 0.223 3.8003 3.9333
et-en 0.143 2.3699 2.5863
ne-en 0.088 5.06 5.291
ro-en 0.59 1.3623 1.5143
ru-en 0.475 0.6301 0.8149
si-en 0.21 0.8208 1.0258
en-cs 0 7.6367 7.6871
en-ja 0 7.5808 7.6215
km-en 0.0209 7.4564 7.5266
ps-en -0.028 7.5792 7.638

Ta
sk

2

en-de 0.195 0.1605 0.2389
en-zh 0.04 0.7707 0.8145
et-en 0.148 0.1885 0.2271
ne-en 0.075 0.1629 0.2058
ro-en 0.716 0.1644 0.1927
ru-en 0.356 0.1843 0.2383
si-en 0.218 0.1946 0.2457
en-cs 0.031 0.745 0.7876
en-ja 0.031 0.3114 0.3872
km-en -0.094 0.3618 0.4379
ps-en 0 0.5278 0.6322

Table 2: RTM test results in sentence-level MTPP in
tasks 1 and 2 using the best non-mix result. rP is Pear-
son’s correlation.

results using r, RAE, MRAER, and MAER. We
filter out those results with higher than 0.95 rela-
tive evaluation metric scores.

We also use generalized ensemble method
(GEM) as an alternative to MIX to combine using
weights and correlation of the errors, Ci,j , where
GEM achieves smaller error than the best com-
bined model (Perrone and Cooper, 1992):

ŷGEM =
∑L

i=1wiψi(x) = y +
∑L

i=1wiεi
Ci,j = E[εi, εj ] = (ψi(x)− y)T (ψi(x)− y)

wi =
∑L

j=1 Ci,j∑L
k=1

∑L
j=1 Ck,j

Super learner (Polley and van der Laan, 2010) is
a stacking model on a library of L learning mod-
els that are V -fold cross-validated on the training
set and constructs an V ×L level 1 dataset. Theo-
retical results show that as the number of differ-
ent predictors in the ensemble increase, the en-
semble result gets closer to the oracle result (Du-
doit and van der Laan, 2005). The function that
minimize the empirical risk on the validation set
will achieve lower error than the function that

Figure 2: Model combination.

minimize the overall risk: 1
m

∑m
i=1 L(ψ∗, yi) −

1
m

∑m
i=1 L(ψ̂, yi) ≥ 0 (Vapnik, 1998).

Model combination (Figure 2) selects top k
combined predictions and adds them to the set of
predictions where the next layer can use another
model combination step or just pick the best model
according to the results on the training set. We use
a two layer combination where the second layer is
a combination of all of the predictions obtained.
The last layer is an argmax.

Our test set results using super learner are in Ta-
ble 3. Before model combination, we further filter
prediction results from different machine learning
models based on the results on the training set to
decrease the number of models combined and im-
prove the results. A criteria that we use is MREAR
≥ 0.95 since MRAER computes the mean relative
RAE score, which we want to be less than 1. In
general, the combined model is better than the best
model in the set. Super learner improve the results
(Table 3).

The baseline deepQuest (Ive et al., 2018) use
bidirectional gated recurrent unit type recurrent
neural networks to model QET. RTM + deepQuest
combination results in Task 2 use linear interpola-
tion of RTM and deepQuest results with weights
0 ≤ λ ≤ 1 and 1 − λ respectively as well as
polynomial function fits to find the best combi-
nation model optimized on the development set.
The most common function fit found is f(x) =
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rP MAE RMSE

Ta
sk

1

en-de 0.246 0.5312 0.7699
en-zh 0.228 4.4588 4.559
et-en 0.13 2.9666 3.0942
ne-en 0.087 3.6449 3.8997
ro-en 0.376 3.1361 3.2656
ru-en 0.347 0.9238 1.2276
si-en 0.066 2.0869 2.3426
en-cs 0.053 7.0391 7.1159
en-ja -0.01 6.9076 6.9553
km-en 0.032 5.6718 5.7694
ps-en -0.159 7.1563 7.27

Ta
sk

2

en-de 0.125 0.1614 0.237
en-zh -0.052 0.516 0.5648
et-en 0.24 0.2147 0.276
ne-en 0.299 0.1797 0.2293
ro-en 0.276 0.5562 0.603
ru-en 0.143 0.2186 0.3197
si-en 0.171 0.307 0.3713
en-cs -0.108 0.7076 0.7535
en-ja 0.013 0.4636 0.5456
km-en 0.008 0.5161 0.5928
ps-en -0.064 0.4854 0.5671

Table 3: RTM test results in sentence-level MTPP in
tasks 1 and 2 using super learner. Improved results are
shown in bold.

ax + bx3 + cx2 + dx+ e (Table 4).
Task 3 results are in Table 5.

4 Conclusion

Referential translation machines pioneer a lan-
guage independent approach and remove the need
to access any task or domain specific information
or resource and can achieve good results in auto-
matic, accurate, and language independent predic-
tion of translation scores. We present RTM ensem-
ble results with super learner.
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Abstract
This paper presents our work in WMT 2021
Quality Estimation (QE) Shared Task. We par-
ticipated in all of the three sub-tasks, including
Sentence-Level Direct Assessment (DA) task,
Word and Sentence-Level Post-editing Effort
task and Critical Error Detection task, in all
language pairs. Our systems employ the frame-
work of Predictor-Estimator, concretely with
a pre-trained XLM-Roberta as Predictor and
task-specific classifier or regressor as Estima-
tor. For all tasks, we improve our systems by
incorporating post-edit sentence or additional
high-quality translation sentence in the way
of multitask learning or encoding it with pre-
dictors directly. Moreover, in zero-shot set-
ting, our data augmentation strategy based on
Monte-Carlo Dropout brings up significant im-
provement on DA sub-task. Notably, our sub-
missions achieve remarkable results over all
tasks.

1 Introduction

Quality Estimation (QE) focuses on estimating the
quality of machine translation (MT) system output
when no ground truth reference is available (Specia
et al., 2018). QE covers wide range of tasks includ-
ing word-level, sentence-level and document-level.
It has wide range of applications in MT quality
check and post-editing effort estimation.

In WMT2021 Quality Estimation shared task1,
there are three sub tasks — Sentence-Level Direct
Assessment task, Word and Sentence-Level Post-
editing Effort task and Critical Error Detection task.
Each sub task involves several language pairs. Our
team participated in all the above three tasks over
all language pairs. We summarized our main con-
tributions as follow:

• We employ Predictor-Estimator architecture
(Kim et al., 2017b; Kim and Lee, 2016) which

* Indicates equal contribution.
1http://www.statmt.org/wmt21/quality-estimation-

task.html

is a two-stage model consisting of a word pre-
diction model trained from large-scale paral-
lel corpora, and a estimation model trained
from quality-annotated QE data. Different
from the original Predictor-Estimator model
in (Kim et al., 2017a), we use pre-trained
XLM-Roberta large as predictor instead of
RNN-based model to achieve better QE fea-
tures, and use task-specific classifier or regres-
sor as quality estimator.

• We extend PE assisted QE (PEAQE) (Kepler
et al., 2019; Wang et al., 2020) by integrating
real PE or addtional high-quality translation
in the way of multitask learning or directly
encoding it with predictor.

• We explore data augmentation method based
on Monte Carlo (MC) dropout (Gal and
Ghahramani, 2016) to enhance the perfor-
mance of zero-shot language pairs in Direct
Assessment(DA) task.

Our methods achieve impressive performance
on both word and sentence level tasks. Specifi-
cally, we peak the top-1 on sentence-level DA over
English-German and English-Japanese pairs. For
word and sentence-level post-editing effort task,
our submissions of the majority language pairs ob-
tain the best Pearson’s correlation or Matthews cor-
relation coefficient. We also win the first place in
critical error detection task in English-Chinese and
English-Japanese.

We will describe the tasks, datasets, and our
methods for DA task, post-editing task, and critical
error detection task in section 2, section 3, and
section 4 respectively. Section 5 presents details
of our experimental setup and results, with a brief
discussion and conclusion in the end.
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2 Sentence-Level Direct Assessment Task

2.1 Task Description

The sentence-level Direct Assessment task focuses
on estimating sentence-level translation quality
scores which are annotated with Direct Assessment
(DA) scores by professional translators. The origi-
nal DA scores are in scale of 0-100. The scores are
then standardised using the z-score by rater. The
goal is to estimate a z-standardised DA score for
each translation sentence.

Sentence-level DA task is evaluated by Pearson’s
correlation between the predicted score and the
gold human annotated z-standardised DA score.
The system is assessed from two aspects: single
language pair and multilingual track which takes all
languages into account, including zero-shot pairs,
calculating the averaged Pearson correlation over-
all.

2.2 Dataset

For each language, 7000, 1000 and 1000 sen-
tence pairs are provided officially as training, de-
velopment and test20 set before releasing another
1000 for the real blind test21, including high-
resource English-German (En-De) and English-
Chinese (En-Zh), medium-resource Romanian-
English (Ro-En) and Estonian-english (Et-En), low-
resource Sinhalese-English (Si-En) and Nepalese-
English (Ne-En), as well as Russian-English (Ru-
En). Besides, 4 language pairs — English-Czech
(En-Cz), English-Japanese (En-Ja), Pashto-English
(Ps-En) and Khmer-English (Km-En), are only of-
fered blind test (1000), without training data.

2.3 Implemented Systems

The systems for DA employ Predictor-Estimator
architecture. Following previous sota works
(Fomicheva et al., 2020; Moura et al., 2020; Rei
et al., 2020), we use a pre-trained XLM-Roberta
(XLM-R)(Conneau et al., 2019) model as a pre-
dictor due to its impressive performance on cross-
lingual downstream tasks.

Practically, we concatenate source(SRC) and
target(MT) sentences in the format [CLS] SRC
[EOS] [SEP] MT [EOS] following XLM-R
usage, and take the embedding of pooled output
of [CLS] token as features of a sentence pair. For
Estimator, we simply stack two-layer FFN, taking
the [CLS] feature generated above as the input to
predict sentence-level DA scores.

2.3.1 PE Assisted Sentence-Level DA
Prediction

Inspired by the Pseudo-PE techniques (Kepler et al.,
2019; Wang et al., 2020), we take full use of post-
editing sentences provided in Post-editing Effort
task through multitask learning. The model jointly
learns to score (SRC, MT) pair in a regression
task, and distinguish between translations and post-
edited sentences — which is the better translation
in a classification task. In inference stage, the
model only conducts regression task to predict DA
score, as post-editing sentences are not available
for blind test set.

The regression task applies loss function as:

Lreg = (φ(Es,t)− Yhuman)
2 (1)

where Es,t is the embedding of sentence pair
(source, mt), φ is the regressor taking them as input,
through a two-layer FFN to compute DA score, and
Yhuman is the Z-normalized DA score annotated
by human.

The classification task forces the model to cap-
ture more expressive cross-lingual sentence rep-
resentation which is paramount for DA score. In
implementation, we get the model to learn which
is the pair with better translation between embed-
ding of concatenated source and target Es,t and
embedding of concatenated source and PE Es,p.
We splice two vectors in random order and apply
two stacked FFN layers to compute classification
result, in which 0 means the former pair is the
better (i.e. the former contains PE), 1 means the
former is the worse and 2 means translation and
post-edit are exactly the same. Equation (2) gives
the loss function for the classification task, where
M is the number of classes (M = 3), Y is the
binary indicator (0, 1, 2) if class label c is the cor-
rect classification for observations, P is the model
predicted probabilities that the observation is of
classes.

Lcls = −
M−1∑

c=0

Yc log(Pc) (2)

2.3.2 Data Augmentation for Zero-shot
Languages

Instead of directly applying the multilingual DA
model trained on other 7 language pairs to zero-
shot languages, we exploit a data augmentation
strategy based on MC dropout to improve the per-
formance. Specifically, we compute the expecta-
tion and variance for the set of estimated DA scores
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of zero-shot languages obtained by performing N
(N=30) stochastic forward passes through the well-
trained but dropout-perturbed QE model. In order
to control the uncertainty introduced by the dis-
turbance, we only retain dropout in estimator and
last two layers in XLM-R. We take variance as
an indicator to detect observations with less un-
certainty and use expectation as DA score label.
Then, we mix the generated zero-shot DA data
with randomly selected non-zero-shot training set
to fine-tune the model. Experiments show that our
data augmentation is effective to improve the per-
formance, achieving better Pearson correlation.

3 Word and Sentence-Level Post-editing
Effort Task

3.1 Task description

Word-Level QE estimates the translation quality
by producing a sequence of tags for source and tar-
get. For target sentences(MT), each token is tagged
as either OK or BAD, each gap between two words
is tagged as BAD if one or more missing words
should have been there, and OK otherwise. So
the number of total tags for each target sentence is
2N + 1, where N is the number of tokens in the
target sentence. For source sentences(SRC), tokens
are tagged as OK if they were correctly translated,
and BAD otherwise. The number of total tags for
each source sentence isM , whereM is the number
of tokens in the source sentence. The evaluation
metrics of the word-level task is the Matthews Cor-
relation Coefficient (MCC).
Sentence-Level QE predicts the Human Transla-
tion Error Rate (HTER). HTER is the ratio between
the number of edits (insertions / deletions / replace-
ments) needed and the reference translation length.
The evaluation metrics of the sentence-level task is
Pearson’s correlation metric.

3.2 Dataset

The dataset in these task provides the same source
and translation as DA task, with an extra post-
edit sentence for each observation and task-specific
token-level and sentence-level labels. Besides, we
generate addition-translation sentence (AMT) for
each source sentence by using well-trained ma-
chine translation systems. The motivation here is
to add an additional criterion which is in the same
language as the provided translation sentence. We
suppose that to detect the difference between two
sentence in the same language is a simpler task for

model. There are some important label properties
to highlight:

• The number of BAD tags and OK tags is im-
balanced, especially for GAP tags.

• AMT’s BLEU score is significantly lower than
MT taking post-edits as reference. Its average
HTER is higher than MT. It indicates that the
generated AMT is less closer to post-edits
than MT.

3.3 Method
The systems for QE shared task2 also em-
ploy Predictor-Estimator architecture(Kim et al.,
2017b).
Predictor. Similar to Task1, we use pre-trained
XLM-Roberta (XLM-R) model as predictor af-
ter fine-tuning it with mask language modeling
task(Devlin et al., 2018) using the provided source
and PE sentences. In order to improve the perfor-
mance, refers to approach in (Wang et al., 2020),
we concatenate SRC, MT, AMT sentences together
in the format of [BOS] SRC [EOS] [SEP]
MT [EOS] [SEP] AMT [EOS].

We notate the predictor as f ; SRC, MT and AMT
text as X and Y and Z, corresponding features as
Hx, Hy, Hz respectively:

Hx, Hy, Hz = f(X,Y, Z), (3)

Estimator. We utilise 4 independent 2-layers
FFN including binary three classification tasks
to predict SRC word tags, MT/AMT word tags,
MT/AMT gap tags respectively, and a regression
task to predict HTER score of MT/AMT. All pre-
dictions are obtained by performing specific trans-
formations φ. We define the predicted logits of
SRC word, MT word, MT gap, AMT word, AMT
gap as ˆVxw, ˆVyw, V̂yg, ˆVzw, V̂zg; and HTER pre-
dicted score of MT and AMT as V̂yh, V̂zh. The
estimator can be described as:

ˆVxw = φxw(Hx),

ˆVyw = φw(Hy),

ˆVzw = φw(Hz),

V̂yg = φg(fcat(Hy, ˆVyw)),

V̂zg = φg(fcat(Hz, ˆVzw)),

V̂yh = φh(fgap(fcat(Hy, ˆVyw, V̂yg))),

V̂zh = φh(fgap(fcat(Hz, ˆVzw, V̂zg))),

(4)

where fcat is the concatenate method in the last
dimension, fgap is the global average pooling in
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the second dimension ignoring padding tokens in a
batch just like (Lin et al., 2013) 3.2.

Loss. We prepend and append two special
<pad> labels to the original word label sequence,
append a special <pad> label to the original gap la-
bel sequence during training, but loss of the padded
labels is not computed. For all classification tasks,
to deal with the problem of imbalance between OK
and BAD number, we use weighted cross entropy
as the loss function, and the weight is calculated
as wi =

N∑
Ci

, where wi is the inverse of the pro-
portion of the instance with class Ci. For sentence-
level HTER score loss, we use mean squared error
(MSE) as the loss function. We define the tags of
SRC word, MT word, MT gap, AMT word, AMT
gap as Vxw, Vyw, Vyg, Vzw, Vzg; and HTER score
of MT and AMT as Vyh, Vzh.

The model is trained under the multi-task learn-
ing framework by summing up the loss of all sub-
tasks with specific weights:

loss =
∑

τ∈{xw,yw,yg,zw,zg}
λτ logP (Vτ |X,Y, Z)+

∑

τ∈{hy,hz}
λτ

√∑
(Vτ − V̂τ )2,

(5)

where xw, yw, yg, zw, zg represents for classifica-
tion tasks, hy, hz represents for regression tasks,
λ is the weight of loss for a specific task. The
multi-task framework can improve the overall per-
formance.

4 Critical Error Detection

4.1 Task Description
This is a new QE task focusing on predicting
sentence-level binary scores indicating whether
or not a translation contains (at least one) criti-
cal error. The key point is to identify whether the
translation will lead to misleading or more serious
consequences, e.g. the translation involves criti-
cal mistranslation, hallucination or critical content
deletion. Only binary prediction (whether or not
any critical error contained) is required. The evalu-
ation metrics of this task is also the MCC.

4.2 Dataset
The dataset contains 4 languages which are English-
German, English-Chinese, English-Czech, English-
Japenese. 7000 training, 1000 validation, and 1000
blind test sentence pairs are available for each lan-
guage. Ground truth label has two classes, NOT
means no catastrophic error, and ERR means at

Language Baseline +Multitask +Ensemble
En-De 0.490 0.552 0.547
En-Zh 0.494 0.502 0.519
Ro-En 0.886 0.897 0.902
Et-En 0.798 0.805 0.814
Ne-En 0.776 0.789 0.801
Si-En 0.648 0.677 0.675
Ru-En 0.761 0.787 0.787

Average 0.693 0.716 0.721

Table 1: Pearson correlation between prediction of our
system and human DA judgement of non-zero-shot lan-
guage pairs on test20 set.

Language Baseline +AugData +All
En-De 0.481 / 0.584
En-Zh 0.523 / 0.583
Ro-En 0.878 / 0.901
Et-En 0.775 / 0.808
Ne-En 0.810 / 0.858
Si-En 0.564 / 0.581
Ru-En 0.753 / 0.787
En-Cz 0.546 0.557 0.573
En-Ja 0.297 0.349 0.364
Ps-En 0.592 0.622 0.622

Km-En 0.661 0.653 0.659
Multilingual 0.621 / 0.665

Table 2: Pearson correlation between prediction of our
system and human DA judgement on test21 set.

least one catastrophic error in the translation. It is
noticed that the number of NOT and ERR tag is
imbalanced.

4.3 Methods

Similar as the above two tasks, our baseline system
takes pre-trained XLM-R as predictor, stacked FFN
layers as binary classifier. We also experimented
with replacing XLM-R by mBART (Liu et al.,
2020) and replacing FFN layers with TextCNN,
Bi-LSTM and other types of network.

Based on the intuition that the semantic differ-
ence between two monolingual sentences are easier
to distinguish than that of two cross-lingual sen-
tences, we propose to incorporate a “good” MT of
the source sentence into (src. mt) pair during train-
ing, so that the auxiliary information provided by
the “good” MT can help the model to directly com-
pare mt with MT+src, instead of only depending on
cross-lingual src. With consideration of expensive
overhead of manual translation, we assume that au-
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Score Method En-Zh En-DE Ru-En Ro-En Et-En Si-En Ne-En
baseline(dev) 0.3013 0.4910 0.4475 0.5381 0.5997 0.6062 0.5899

Pearsonr +AMT(dev) 0.3481 0.6003 0.5387 0.8479 0.7832 0.8031 0.6902
+Ensemble(dev) 0.3772 0.6678 0.5704 0.8914 0.8249 0.8573 0.7849

All(test) 0.3681 0.6531 0.5615 0.8623 0.8094 0.8690 0.7976
baseline(dev) 0.1991 0.3019 0.2904 0.4132 0.4173 0.3899 0.4027

SRCW +AMT(dev) 0.2895 0.4378 0.3991 0.6027 0.5204 0.5780 0.5109
+Ensemble(dev) 0.3128 0.4502 0.4277 0.6374 0.5396 0.6033 0.5576

All(test) 0.3098 0.4499 0.4258 0.6140 0.5490 0.6159 0.5450
baseline(dev) 0.1354 0.3988 0.3500 0.4980 0.4533 0.5393 0.4418

MTW +AMT(dev) 0.3346 0.4907 0.4331 0.6642 0.6006 0.7446 0.6721
+Ensemble(dev) 0.3726 0.5149 0.4479 0.6807 0.6177 0.8102 0.7007

All(test) 0.3536 0.5095 0.4507 0.6664 0.6058 0.8469 0.6741
baseline(dev) 0.0998 0.1987 0.2249 0.2856 0.2017 0.2844 0.3129

MTG +AMT(dev) 0.1799 0.3101 0.3481 0.4379 0.3119 0.5023 0.4001
+Ensemble(dev) 0.1822 0.3158 0.3725 0.4531 0.3280 0.5573 0.4490

All(test) 0.1719 0.2997 0.3877 0.4457 0.3115 0.6392 0.4027

Score Method En-Cs En-Jp Ps-En Km-En Multilingual
Pearsonr baseline(test) 0.2910 0.0999 0.3722 0.3571 0.5002

+Ensemble(test) 0.4750 0.2620 0.5343 0.4750 0.6314
SRCW baseline(test) 0.1981 0.1523 0.2344 0.3183 —-

+Ensemble(test) 0.3128 0.2166 0.3044 0.4101 —-
MTW baseline(test) 0.2107 0.1372 0.2789 0.3077 —-

+Ensemble(test) 0.3801 0.2581 0.4497 0.6364 —-
MTG baseline(test) 0.1149 0.0901 0.1342 0.2691 —-

+Ensemble(test) 0.2126 0.1523 0.2602 0.4190 —-

Table 3: Pearsonr correlation, MCC of words in SRC, MCC of words in MT and MCC of gaps in MT between
prediction of our system and labels. SRCW is SRC words MCC, MTW is MT words MCC, MTG is MT gaps
MCC, Test20 set is used as training set. Results of test set are from official leaderboard.

tomatic machine translation (AMT) of top commer-
cial machine translation tools can also be compe-
tent at this work. Practically, we apply Baidu Fanyi
2 and Google Translate 3 API, obtaining two cor-
responding AMTs given a source sentence. Then
we concatenate it with source and original machine
translation in the format of [CLS] SRC [EOS]
[SEP] MT [EOS] [SEP] AMT [EOS], fol-
lowed by encoding the concatenated triplet to the
predictor.

Voting-Based Ensemble. Finally, we ensemble
several models and take their majority voting as
prediction results.

5 Experimental Results

5.1 Task1: Sentence-level Direct Assessment

Experimental Settings Our system is imple-
mented with hugging face transformers package.
The pre-trained xlm-roberta-large model which has
approximately 550M parameters is taken as pre-

2https://fanyi.baidu.com/
3https://translate.google.com/

dictor. We train the predictor and the estimator
together on the multilingual QE DA dataset using
Adam(Kingma and Ba, 2015) as optimizer with
constant learning rate of 1e−6 and training batch
size of 16. The model is trained on a Nvidia Tesla
V100 GPU.

Results Table 1 shows the results on test20 set.
Our baseline is the system described in section
2.3. +multitask method is introduced in section
2.3.1. To achieve more competitive scores while
also maintain a relatively small number of param-
eters, we ensemble our result with MC dropout
approach, that is to run N (N=50) pass forwards
with dropout and take the expectation of the N
predictions as final answers. Table 2 presents the
experimental results on blind test21 set. The base-
line here is the same as Table 1 baseline. +AugData
is the approach mentioned in section 2.3.2. +All is
our final submitted result that integrates multi-task,
data augmentation and ensemble.
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Dataset Pre-trained Model Classification Layer AMT En-Zh En-De En-Cs En-Ja

Dev

baseline
FFN /

0.1873 0.4008 0.3974 0.2193
MBart 0.2317 0.3940 0.4112 0.2148

XLMR-Large 0.2989 0.4846 0.4537 0.2744

XLMR-Large
TextCNN

/
0.1820 0.2008 0.2139 0.1429

Bi-LSTM 0.2350 0.4279 0.4132 0.1981
RCNN 0.2045 0.3850 0.3463 0.2523

XLMR-Large FFN
BaiduTrans 0.3474 0.4623 0.4372 0.2948

GoogleTrans 0.2515 0.4732 0.4551 0.2724
Ensemble 0.3962 0.5104 0.4854 0.3542

Test Ensemble 0.3533 0.4899 0.4482 0.3184

Table 4: MCC of all language pairs over development(dev) set and test set.

5.2 Task2: Word and Sentence-Level
Post-editing Effort Task

Settings: The batch size in training stage is 8.
We use Adam as optimizer with learning rate of
2e−5. Each estimator FFN layer has a 0.1 dropout.
Loss weight are: (λyh = 2, λzh = 2, λxw = 4,
λyw = 1, λyg = 1, λzw = 1, λzg = 1) / 12. Our
model params is 560,944,640, disk footprint(in
bytes, without compression) is 2,243,954,093.

Results Table 3 shows the results on dev and
test21 set. Our baseline is the QE system with-
out AMT data. +AMT method is the QE system
with AMT data. In the experiments, we generate 3
different kinds of AMT data with the machine trans-
lation system trained for the WMT2021 Machine
Translation of News Shared Task, Baidu Fanyi 4

and Google Translate5. For each kind of AMT, we
run N (N=10) pass forward with dropout=0.1 using
the a unified model trained with all AMT together.
The expectations of 3N predictions of score and
token labels is taken as the final answers.

5.3 Task3: Critical Error Detection

Table 4 shows the results of our system on devel-
opment and blind test set. Experiments show that
the best results obtained when applying XLMR-
Large and FFN layer on development set. The
involvement of AMT also brings significant im-
provement over all language pairs. For ensemble
settings, we ensemble multiple models with dif-
ferent pre-trained models and classification layers
using voting-based method as introduced in section
4.3.

In order to solve the problem of label imbalance,

4https://fanyi.baidu.com/
5https://translate.google.com/

we also investigate different label weights when
computing cross-entropy loss. Due to the large
gap between the number of NOT and ERR labels
in the dataset, the weights(NOT:ERR) are clipped
as 1:6, 1:4, 1:5, 1:15 for enzh, ende, encs, enja.
Meanwhile, to better fit the data in the test set and
avoid over-fitting, we utilise dropout with rate of
0.1 and weight decay of 1e−5.

6 Conclusion

We present our work on WMT 2021 QE shared
task in this paper. For all the three tasks to esti-
mate sentence-level DA, token and sentence-level
post-edit effort and sentence-level critical error, we
employ predictor-estimator framework as our base-
line. To further boost performance, we investigate
the usage of additional high-quality translations.
For task1, we mainly focus on introducing post-
edits with multi-task learning. Also, the effect of
data augmentation method based on MC dropout is
studied here to improve the result of zero-shot pairs.
For task 2 and 3, we generate high-quality trans-
lations for each observation using multiple well-
trained machine translation systems. By directly
concatenating AMT with the original source and
target sentence then encoding it with pre-trained
predictor, we achieved remarkable results over all
language pairs and tasks. In future, we will con-
tinue to invest time and effort on studying the effect
of involving additional translations into QE tasks,
for example, how the additional translation quality
will affect QE performance, what the better ways
are to incorporate additional translations in.
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Abstract

Quality Estimation (QE) is an important com-
ponent of the machine translation workflow as
it assesses the quality of the translated out-
put without consulting reference translations.
In this paper, we discuss our submission to
the WMT 2021 QE Shared Task. We partici-
pate in Task 2 sentence-level sub-task that chal-
lenge participants to predict the HTER score
for sentence-level post-editing effort. Our
proposed system is an ensemble of multilin-
gual BERT (mBERT)-based regression mod-
els, which are generated by fine-tuning on dif-
ferent input settings. It demonstrates compara-
ble performance with respect to the Pearson’s
correlation and beats the baseline system in
MAE/ RMSE for several language pairs. In ad-
dition, we adapt our system for the zero-shot
setting by exploiting target language-relevant
language pairs and pseudo-reference transla-
tions.

1 Introduction

Progress in machine translation (MT) has accel-
erated due to the introduction of deep learning
based approaches, dubbed as neural machine trans-
lation (NMT) (Cho et al., 2014; Sutskever et al.,
2014; Bahdanau et al., 2014). Several metrics (e.g.,
BLEU (Papineni et al., 2002), METEOR (Agar-
wal and Lavie, 2008)) are used to automatically
evaluate the quality of the translations outputted by
the NMT systems. However, these evaluation met-
rics require comparing the NMT outputs against
human-prepared reference translations, which can-
not be readily obtained. To tackle this predicament,
recently quality estimation (QE) (Blatz et al., 2004;
Specia et al., 2018) has emerged as an alternative
evaluation approach for NMT systems. QE obvi-
ates the need for human judgements and hence can
be efficiently integrated into the dynamic transla-
tion pipeline in the industry setting.

∗work done during internship at IQVIA

QE is performed at different granularity (e.g.,
word, sentence, document) (Kepler et al., 2019a);
in this work we focus on the sentence-level post-
editing effort task, which predicts the quality of
the translated sentence as a whole in terms of the
number of edit operations that need to be made to
yield a post-edited translation, termed as HTER
(Snover et al., 2006).

Sentence-level QE using neural approaches is
generally treated as a supervised regression prob-
lem involving mainly two steps. In the first step,
an encoder is used to learn vector representation/s
of the source and translation sentences. While in
the second step, the learned representations are
passed through a sigmoid output layer to estimate
the HTER score. These two steps can be per-
formed either with a single model in an end-to-
end fashion (e.g., Bi-RNN (Ive et al., 2018)), or
using two separate models (e.g., POSTECH (Kim
et al., 2017)). The different QE systems vary in
their choice of the encoder, which range from RNN-
based to Transformer-based models.

In this work, we leverage the fine-tuning capa-
bility of a Transformer-based encoder, namely the
mBERT (Devlin et al., 2018) pre-trained model.
Alongside the standard practice of feeding both
the source and target (i.e., translation) sentences
as the input sequence (Kepler et al., 2019a; Kim
et al., 2019), we also explore other input settings
based on only the target-side sentences (i.e., mono-
lingual context). To this end, our final QE system
is an ensemble of several mBERT models 1, each
generated by fine-tuning on a different input com-
bination comprising the source and/or target sen-
tences. We experiment with the following three
input settings: (1) both source and target, (2) just
target and (3) both target and a randomly-sampled
target sentence in the data forming the input se-

1we also experimented with XLM-RoBERTa (Conneau
et al., 2019) as the component model in our preliminary run;
however, the results were worse compared to mBERT
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quence. Empirical analysis on 6 language pairs
shows that the ensemble model is able to perform
better than the individual fine-tuned models. More-
over, we provide experimental results for zero-shot
QE, where training data for the test language pair
is not available. This we tackle by improvising
on the available training/dev data that match the
target language of the test language pair and also
by generating the pseudo-reference translations in
that language.

2 Data

We use the WMT21 QE Shared Task 2 sentence-
level data (Specia et al., 2021; Fomicheva et al.,
2020a,b) for the following 7 language pairs:
English-German (En-De), Romanian-English (Ro-
En), Estonian-English (Et-En), Nepalese-English
(Ne-En), Sinhala-English (Si-En), Russian-English
(Ru-En) and Khmer-English (Km-En). Source-side
data for each language pair includes sentences from
Wikipedia articles, with part of the data gathered
from Reddit articles for Ru-En. To obtain the trans-
lations, state-of-the-art MT models (Vaswani et al.,
2017) built using fairseq toolkit (Ott et al., 2019)
were used. The label for this task is the HTER
score for the source-translation pair. Annotation
was performed first at the word-level with the help
of TER 2 tool. The word-level tags were then aggre-
gated deterministically to obtain the sentence-level
HTER score. The training, development, test and
blind test data sizes for each language pair (except
Km-En) are 7K, 1K, 1K and 1K instances respec-
tively. As Km-En language pair was introduced for
zero-shot prediction, only the test data containing
990 source and translation sentences was provided.

3 Our Approach

A key innovation in recent neural models lies in
learning the contextualized representations by pre-
training on a language modeling task. One such
model, the multilingual BERT (mBERT) 3, is a
transformer-based masked language model that is
pre-trained on monolingual Wikipedia corpora of
104 languages with a shared word-piece vocabu-
lary. Training the pre-trained mBERT model for
a supervised downstream task, aka finetuning, has
dominated performance across a wide spectrum
of NLP tasks (Devlin et al., 2018). Our proposed

2http://www.cs.umd.edu/ snover/tercom/
3https://github.com/google-

research/bert/blob/master/multilingual.md

approach leverages this fine-tuning capability of
mBERT so as to form the component models in the
ensemble QE system (Section 3.3). That is, each
component model is a re-purposed mBERT that
is fine-tuned for the sentence-level HTER score
prediction task on one of the three input settings
discussed in Section 3.2.

3.1 Fine-tuning mBERT for Regression

mBERT’s model architecture is similar to BERT
4 and contains the following parameter settings:
12 layers, 12 attention heads and 768 hidden di-
mension per token. However, the only difference
is that mBERT is trained on corpora of multiple
languages instead of just on English. This enables
mBERT to share representations across the differ-
ent languages and hence can be conveniently used
for all language pairs in the WMT21 data.

We first load the pre-trained mBERT model 5

and use its weights as the starting point of fine-
tuning. The pre-trained mBERT is then trained on
QE-specific input sequences (Section 3.2) for a few
epochs such that the constructed sequence X is
consumed by mBERT to output the contextualized
representation h = (hCLS , hx1 , hx2 , ..hxT , hSEP ).
Here, [CLS] is a special symbol that denotes down-
stream classification and [SEP ] is for separating
non-consecutive token sequences. Considering the
final hidden vector of the [CLS] token as the aggre-
gate representation, it is then passed into the output
layer with sigmoid activation to predict the HTER
score:

y = sigmoid(W · hCLS + b) (1)

W is a weight matrix for sentence-level QE fine-
tuning that is trained along with all the parameters
of mBERT end-to-end.

3.2 Input Settings

We construct the input sequence for each language
pair in the following three ways:

SRC-MT: Given a source sentence s =
(s1, s2, ...sN ) from a source language (e.g.,
English) and its translation t = (t1, t2, ...tM )
from a target language (e.g., German),
we concatenate them together as X =
([CLS], t1, t2, ...tM , [SEP ], s1, s2, ...sN ,
[SEP ]) to form the input sequence.

4https://huggingface.co/bert-base-uncased
5https://huggingface.co/bert-base-multilingual-uncased
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MT: The target sentence is only
used to form the input sequence,
X = ([CLS], t1, t2, ...tM , [SEP ]).

MT-MT’:
Given the translation t for a source sen-
tence s, we randomly sample another trans-
lation t’ = (t′1, t

′
2, ...t

′
K) from the train-

ing data having HTER label close to t 6.
Although the source sentences for t and
t’ are different, we assume the additional
monolingual context would help mBERT
learn the correlating QE-specific features
between t and t’ for the target-side lan-
guage. The resultant input sequence is X =
([CLS], t1, t2, ...tM , [SEP ], t

′
1, t
′
2, ...t

′
K ,

[SEP ]).

We fine-tune each of these mBERT models us-
ing AdamW optimizer (Kingma and Ba, 2014;
Loshchilov and Hutter, 2017) for two epochs
with a batch size of 32 and a learning rate of
2e−5.

3.3 Ensemble Model
To take advantage of the individual strengths of the
three mBERT component models fine-tuned on the
aforementioned input settings, we combine their
HTER score predictions by training an ensemble
model. In particular, we experiment with three dif-
ferent ensemble models - Gradient Boosting (Fried-
man, 2001), AdaBoost (Freund and Schapire, 1997)
and Average. For Gradient Boosting and AdaBoost
we use the implementation in scikit-learn 7 with
10-fold cross validation. The settings for Gradient
Boosting are: number of estimators 600, learning
rate 0.01, minimum number of samples 3 and other
default settings. We use the default settings for
AdaBoost. In Average ensembling, we average the
HTER score predictions by the three mBERT mod-
els. Our system submission to WMT21 is based on
Gradient Boosting as it gave the best performance
on the test data, as shown in Table 1.

3.4 Zero-Shot QE
Performing sentence-level QE in the zero-shot set-
ting presents a unique challenge as the QE system
is expected to predict HTER scores for sentences
in a test language pair (e.g., Km-En) without hav-
ing been trained on any instances from that test

6to ensure that t’ is similar to t, we check that the difference
between their HTER scores is within 0.1

7https://scikit-learn.org

Table 1: Performance of ENSBRT with different en-
semble methods on the En-De test set.

Avg AdaBoost GradBoost

Pearson’s 0.266 0.458 0.473
Spearman’s 0.249 0.436 0.443

language pair. We address this by training on lan-
guage pairs in the WMT21 QE data that match
the target-side language (i.e., En) in the test lan-
guage pair. The reason we focus on the target-side
language is because the component mBERT mod-
els in the proposed ensemble QE system are fine-
tuned on monolingual input sequences in the target-
side language, which could potentially help the
QE system generalize on the unseen test language
pair. We consider the training and development
data for the following language pairs in WMT21
QE data: Ro-En, Si-En, Et-En. Additionally, we
augment this data by generating pseudo-references
in the target language. A pseudo-reference (Scar-
ton and Specia, 2014) is a translation for a source
sentence that is outputted by a different NMT sys-
tem than the one that produced the actual transla-
tions (e.g., transformer-based translation system
proposed in (Vaswani et al., 2017)) and has shown
to improve sentence-level QE performance (Sori-
cut and Narsale, 2012). We use Google Translate
8 to get the pseudo-references in En for the Ro, Si
and Et source sentences. The HTER scores for the
translation and pseudo-reference pairs are then ob-
tained using the TER tool. We train the ensemble
QE system on the combined WMT21 QE data and
the pseudo-reference parallel data, and test on the
unseen test language pair.

4 Baseline

The baseline QE system (BASELINE) set by the
WMT21 organizers this year is the Transformer-
based Predictor-Estimator model (Kepler et al.,
2019b; Moura et al., 2020). XLM-RoBERTa is
used as the Predictor for feature generation. The
baseline system is fine-tuned on the HTER scores
and word-level tags jointly.

5 Results

Table 2 presents the experimental results of mBERT
fine-tuned on the SRC-MT , MT and MT -MT ′

8https://github.com/lushan88a/google_trans_new

899



Table 2: Performance in Pearson’s correlation of mBERT fine-tuned with different input settings on the test set.
ENSBRT is the proposed ensemble mBERT QE system.

En-De Ro-En Ru-En Si-En Et-En Ne-En

SRC-MT 0.389 0.793 0.400 0.526 0.601 0.489
MT 0.469 0.762 0.374 0.552 0.580 0.491
MT-MT’ 0.431 0.761 0.350 0.492 0.556 0.454
ENSBRT 0.473 0.802 0.418 0.576 0.632 0.525

Table 3: Performance of BASELINE and ENSBRT on the WMT21 blind test set for different language pairs. Bold
indicates ENSBRT beats BASELINE in that metric.

En-De Ro-En Ru-En Si-En Et-En Ne-En Km-En

BA
SE

LI
N

E Pearson’s ↑ 0.529 0.831 0.448 0.607 0.714 0.626 0.576
MAE ↓ 0.183 0.142 0.255 0.204 0.195 0.205 0.241
RMSE ↓ 0.129 0.115 0.188 0.159 0.149 0.160 0.196

E
N

SB
R

T Pearson’s ↑ 0.519 0.795 0.376 0.522 0.666 0.572 0.529
MAE ↓ 0.171 0.171 0.251 0.206 0.171 0.176 0.262
RMSE ↓ 0.129 0.141 0.189 0.162 0.132 0.139 0.197

input settings, as well as the performance of the
ensemble of the three mBERT models, which we
call ENSBRT. First, comparing among the three
input settings, it seems that mBERT exhibits com-
petitive results even when it does not have knowl-
edge of the source-side text in the MT and MT -
MT ′ settings, in particular for the following lan-
guage pairs - En-DE, Si-En, Ne-En. While the
ensemble mBERT model, ENSBRT, outperforms
the independent counterparts for all the language
pairs. This shows that the ensemble method can
help to balance out the weakness of any compo-
nent model, thereby benefiting the sentence-level
QE task overall. We also visualize ENSBRT’s pre-
dictions against the ground truth HTER scores in
Figure 1.

Table 3 compares the QE performance between
the BASELINE and ENSBRT in terms of Pearson’s
correlation, RMSE and MAE on the WMT21 blind
test set, for which the ground truth HTER scores
were not available at the time. We submitted results
for 6 language pairs (En-De, Ro-En, Ru-En, Si-En,
Et-En, Ne-En) in the normal QE setting and one
language pair (Km-En) for zero-shot prediction.
ENSBRT demonstrates comparable performance
to the BASELINE for Pearson’s and outperforms it
in either MAE or RMSE for the following language

pairs: En-De, Ru-En, Et-En and Ne-En.

6 Conclusion

In this work, we describe the ENSBRT system sub-
mission to the WMT21 QE Shared Task. ENSBRT
is based on fine-tuning the multilingual BERT pre-
trained model for sentence-level translation quality
score prediction. We explore three different in-
put settings for fine-tuning which include either
bilingual or monolingual context, and combine the
predictions of the three models using ensemble
methods as our final system. Furthermore, zero-
shot QE is facilitated by using labeled data for
existing language pairs and pseudo-references that
align with the target language of the unseen test
data.
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Abstract

This paper presents the JHU-Microsoft joint
submission for WMT 2021 quality estimation
shared task. We only participate in Task 2
(post-editing effort estimation) of the shared
task, focusing on the target-side word-level
quality estimation. The techniques we experi-
mented with include Levenshtein Transformer
training and data augmentation with a combi-
nation of forward, backward, round-trip trans-
lation, and pseudo post-editing of the MT out-
put. We demonstrate the competitiveness of
our system compared to the widely adopted
OpenKiwi-XLM baseline. Our system is also
the top-ranking system on the MT MCC met-
ric for the English-German language pair.

1 Introduction

In the machine translation (MT) literature, qual-
ity estimation (QE) refers to the task of evaluating
the translation quality of a system without using
a human-generated reference. There are several
different granularities as to the way those quality
labels or scores are generated. Our participation
in the WMT21 quality estimation shared task fo-
cuses specifically on the word-level quality labels
(word-level subtask of Task 2), which are helpful
for both human (Lee et al., 2021) and automatic
(Lee, 2020a) post-editing of translation outputs.
The task asks the participant to predict one binary
quality label (OK/BAD) for each target word and each
gap between target words, respectively.1

Our approach closely follows our contemporary
work (Ding et al., 2021), which focuses on en-de
and en-zh language pairs tested in the 2020 ver-
sion of the shared task. The intuition behind our
idea is that translation knowledge is very useful for
predicting word-level quality labels of translations.

∗ Shuoyang Ding had a part-time affiliation with Mi-
crosoft at the time of this work.

1While there is another sub-task for predicting source-side
quality labels, we do not participate in that task.

However, usage of machine translation models is
limited in the previous work mainly due to (1) the
difficulties in using both the left and right context of
an MT word to be evaluated; (2) the difficulties in
making the word-level reference labels compatible
with subword-level models; and (3) the difficul-
ties in enabling translation models to predict gap
labels. To resolve these difficulties, we resort to
Levenshtein Transformer (LevT, Gu et al., 2019), a
model architecture designed for non-autoregressive
neural machine translation (NA-NMT). Because of
its iterative inference procedure, LevT is capable
of performing post-editing on existing translation
output even just trained for translation. To further
improve the model performance, we also propose
to initialize the encoder and decoder of the LevT
model with those from a massively pre-trained mul-
tilingual NMT model (M2M-100, Fan et al., 2020).

Starting from a LevT translation model, we then
perform a two-stage finetuning process to adapt the
model from translation prediction to quality label
prediction, using automatically-generated pseudo-
post-editing triplets and human post-editing triplets
respectively. All of our final system submissions
are also linear ensembles from several individual
models with weights optimized on the development
set using the Nelder-Mead method (Nelder and
Mead, 1965).

2 Method

Our system building pipeline is consisted of three
different stages:

• Stage 1: Training LevT for translation

• Stage 2 (Optional): Finetuning LevT on syn-
thetic post-editing triplets

• Stage 3: Finetuning LevT on human post-
editing triplets

Stage 1: Training LevT for Translation We
largely follow the same procedure as Gu et al.
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(LevT, 2019) to train the LevT translation model,
except that we initialize the embedding, the en-
coder, and decoder of LevT with those from the
small M2M-100-small model (418M parameters,
Fan et al., 2020) to take advantage of large-scale
pretraining. Because of that, we also use the same
sentencepiece model and vocabulary as the M2M-
100 model.

For to-English language pairs, we explored train-
ing multi-source LevT model. According to the
results on devtest data, this is shown to be benefi-
cial for the QE task for ro-en, ru-en and ne-en, but
not for other language pairs.

Stage 2: Synthetic Finetuning During both
finetuning stages, we update the model parameters
to minimize the NLL loss of word quality labels
and gap quality labels, for the deletion and inser-
tion head, respectively. To obtain training targets
for finetuning, we need translation triplet data, i.e.,
the aligned triplet of source, target, and post-edited
segments. Human post-edited data naturally pro-
vides all three fields of the triplet, but only comes
in a limited quantity. To further help the model to
generalize, we conduct an extra step of finetuning
on synthetic translation triplets, similar to some pre-
vious work (Lee, 2020b, inter alia). We explored
five different methods for data synthesis, namely:

1. src-mt-tgt: Take the source side of a parallel
corpus (src), translate it with a MT model to
obtain the MT output (mt), and use the target
side of the parallel corpus as the pseudo post-
edited output (tgt).

2. src-mt1-mt2: Take a corpus in the source lan-
guage (src) and translate it with two different
MT systems that have clear system-level trans-
lation quality orderings. Then, take the worse
MT output as the MT output in the triplet (mt1)
and the better as the pseudo post-edited output
in the triplet (mt2).

3. bt-rt-tgt: Take a corpus in the target language
(tgt) and back-translate it into the source lan-
gauge (bt), and then translate again to the target
language (rt). We then use rt as the MT output
in the triplet and tgt as the pseudo post-edited
output in the triplet.

4. src-rt-ft: Take a parallel corpus and translate
its source side and use it as the pseudo post-
edited output (ft), and round-trip translate its

target side (rt) as the MT output in the transla-
tion triplet.

5. Multi-view Pseudo Post-Editing (MVPPE):
Same as Ding et al. (2021), we take a parallel
corpus and translate the source side (src) with
a multilingual translation system (mt) as the
MT output in the triplet. We then generate
the pseudo-post-edited output by ensembling
two different views of the same model: (1)
using the multilingual translation model as
a translation model, with src as the input;
(2) using the multilingual translation model
as a paraphrasing model, with tgt as the
input. The ensemble process is the same as
ensembling standard MT models, and we
perform beam search on top of the ensemble.
Unless otherwise specified, we use the same
ensembling weights of λt = 2.0 and λp = 1.0
as Ding et al. (2021).

Stage 3: Human Post-editing Finetuning We
follow the same procedure as stage 2, except that
we finetune on the human post-edited dataset pro-
vided by the shared task organizers for this stage.

Compatibility With Subwords As pointed out
before, since LevT predicts edits on a subword-
level starting from translation training, we must
construct reference tags that are compatible with
the subword segmentation done for both the MT
and the post-edited output. Specifically, we need
to: (1) for inference, convert subword-level tags
predicted by the model to word-level tags for eval-
uation, and (2) for both finetuning stages, build
subword-level reference tags. We follow the same
heuristic subword-level tag reference construction
procedure as Ding et al. (2021), which was shown
to be helpful for task performance.

Label Imbalance Like several previous work
(Lee, 2020a; Wang et al., 2020; Moura et al., 2020),
we also observed that the translation errors are of-
ten quite scarce, thus creating a skewed label distri-
bution over the OK and BAD labels. Since it is critical
for the model to reliably predict both classes of la-
bels, we introduce an extra hyperparameter µ in the
loss function that allows us to upweight the words
that are classified with BAD tags in the reference.

L = LOK + µLBAD

Ensemble For each binary label prediction made
by the model, the model will give a score p(OK),
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Language Pair Data Source Sentence Pairs

English-German WMT20 en-de parallel data 44.2M
English-Chinese shared task en-zh parallel 20.3M
Romanian-English shared task ro-en parallel 3.09M
Russian-English shared task ru-en parallel 2.32M
Estonian-English shared task et-en parallel 880K
Estonian-English shared task et-en parallel + NewsCrawl 14-17 3.42M
Nepalese-English shared task ne-en parallel 498K
Pashto-English WMT20 Parallel Corpus Filtering Task 347K

Table 1: Source and statistics of parallel datasets used in our experiments.

which are translated into binary labels in post-
processing. To ensemble predictions from k mod-
els p1(OK), p2(OK), . . . , pk(OK), we perform a linear
combination of the scores for each label:

pE(OK) = λ1p1(OK) + λ2p2(OK) + · · ·+ λkpk(OK)

To determine the optimal interpolation weights, we
optimize towards target-side MCC on the devel-
opment set. Because the target-side MCC com-
putation is not implemented in a way such that
gradient information can be easily obtained, we
experimented with two gradient-free optimization
method: Powell method (Powell, 1964) and Nelder-
Mead method (Nelder and Mead, 1965), both as
implemented in SciPy (Virtanen et al., 2020). We
found that the Nelder-Mead method finds better
optimum on the development set while also lead-
ing to better performance on the devtest dataset
(not involved in optimization). Hence, we use the
Nelder-Mead optimizer for all of our final submis-
sions with ensembles. We set the initial points of
Nelder-Mead optimization to be the vertices of the
standard simplex in the k-dimensional space, with
k being the number of the models.

We find that it is critical to build ensembles from
models that yield diverse yet high-quality outputs.
Specifically, we notice that ensembles from multi-
ple checkpoints of a single experimental run are not
helpful. Hence, for each language pair, we select
2-8 models with different training configurations
that also have the highest performance to build our
final ensemble model for submission.

3 Experiments

3.1 Data Setup
LevT Training We used the same parallel data
that was used to train the MT system in the shared
task, except for the en-de, et-en, and ps-en language
pairs. For en-de language pair, we use the larger

parallel data from the WMT20 news translation
shared task. For et-en language pair, we experi-
ment with augmenting with the News Crawl Esto-
nian monolingual data from 2014 to 2017, which
was inspired by Zhou and Keung (2020). For ps-
en language pair, because there is no MT system
provided, we take the data from the WMT20 par-
allel corpus filtering shared task and applied the
baseline LASER filtering method. For the multi-
source LevT model, we simply concatenate the
data from ro-en, ru-en, es-en (w/o monolingual
augmentation) and ne-en. The resulting data scale
is summarized in Table 1.

Following the setup in Gu et al. (2019), we con-
duct sequence-level knowledge distillation during
training for all language pairs except for ne-en and
ps-en2. For en-de, the knowledge distillation data is
generated by the WMT19 winning submission for
that language pair from Facebook (Ng et al., 2019).
For en-zh, we train our own en-zh autoregressive
model on the parallel data from the WMT17 news
translation shared task. For the other language
pairs, we use the decoding output from M2M-100-
mid (1.2B parameters) model to perform knowl-
edge distillation.

Synthetic Finetuning We always conduct data
synthesis based on the same parallel data that was
used to train the LevT translation model. For the
only language pair (en-de) where we applied the
src-mt1-mt2 synthetic finetuning for shared task
submission, we again use the WMT19 Facebook’s
winning system (Ng et al., 2019) to generate the
higher-quality translation mt2, and the system pro-
vided by the shared task to generate the MT output
in the pseudo translation triplet mt1. For all other
combinations of translation directions, language
pairs and MVPPE decoding, we use the M2M-100-

2The exception was motivated by the poor quality of the
translation we obtained from the M2M-100 model.
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Configuration Stage 2 Stage 3 Target MCC

en-de OpenKiwi N default 0.337
en-de bilingual best src-mt1-mt2 µ = 1.0 0.500
en-de ensemble N/A N/A 0.504

en-zh OpenKiwi N default 0.421
en-zh bilingual best mvppe µ = 1.0 0.459
en-zh ensemble N/A N/A 0.466

ro-en OpenKiwi N default 0.556
ro-en bilingual best src-rt-ft µ = 1.0 0.604
ro-en multilingual best N µ = 1.0 0.612
ro-en ensemble N/A N/A 0.633

ru-en OpenKiwi N default 0.279
ru-en bilingual best src-rt-ft µ = 3.0 0.316
ru-en multilingual best N µ = 3.0 0.339
ru-en ensemble N/A N/A 0.349

et-en OpenKiwi N default 0.503
et-en bilingual best N µ = 3.0 0.556
et-en bilingual best (w/ aug) N µ = 3.0 0.548
et-en multilingual best N µ = 3.0 0.533
et-en ensemble N/A N/A 0.575

ne-en OpenKiwi N default 0.664
ne-en bilingual best N µ = 3.0 0.677
ne-en multilingual best N µ = 3.0 0.681
ne-en ensemble N/A N/A 0.688

Table 2: Target MCC results on test20 dataset for all
language pairs we submitted systems for (except for ps-
en which is not included in test20). Stage 2 stands for
synthetic finetuning (where N stands for not perform-
ing this stage). Stage 3 stands for human annotation
finetuning. µ stands for the label balancing factor.

Target MCC F1-OK F1-BAD

N 0.489 0.955 0.533
src-mt-ref 0.493 0.955 0.537
src-mt1-mt2 0.500 0.956 0.544
bt-rt-tgt 0.490 0.956 0.534
src-rt-ft 0.494 0.956 0.538
mvppe 0.500 0.960 0.540

Table 3: Analysis of different data synthesis methods
on en-de language pair. All models here are initialized
with M2M-100-small.

mid (1.2B parameters) model.

Human Annotation Finetuning We follow the
data split for human post-edited data as determined
by the task organizers and use test20 as the devtest
for our system development purposes.

Reference Tag Generation We implemented an-
other TER computation tool3 to generate the word-
level and subword-level tags that we use as the
reference for finetuning, but stick to the original
reference tags in the test set for evaluation to avoid
potential result mismatch.

3https://github.com/marian-nmt/moses-scorers

3.2 Model Setup

Our LevT-QE model is implemented based on
Fairseq (Ott et al., 2019). All of our experiments
uses Adam optimizer (Kingma and Ba, 2015) with
linear warmup and inverse-sqrt scheduler. For
stage 1, we use the same hyperparameters as Gu
et al. (2019) for LevT translation training, but use
a smaller learning rate of 2e-5 to avoid overfitting
for all to-English language pairs. For stage 2 and
beyond, we stick to the learning rate of 2e-5 and
perform early-stopping based on the loss function
on the development set. For stage 3, e also ex-
periment with label balancing factor µ = 1.0 and
µ = 3.0 for each language pair and pick the one
that works the best on devtest data, while for stage
2 we keep µ = 1.0 because early experiments indi-
cate that using µ = 3.0 at this stage is not helpful.

For pre-submission developments, we built
OpenKiwi-XLM baselines (Kepler et al., 2019)
following their xlmroberta.yaml recipe. Keep
in mind due to the fact that this baseline model
is initialized with a much smaller XLM-Roberta-
base model (281M parameters) compared to our
M2M-100-small initialization (484M parameters),
the performance comparison is not a strict one.

3.3 Devtest Results

Our system development results on test20 devtest
data are shown in Table 24. In all language pairs,
our systems can outperform the OpenKiwi baseline
based upon the pre-trained XLM-RoBERTa-base
encoder. Among these language pairs, the benefit
of LevT is most significant on the language pairs
with a large amount of available parallel data. Such
behavior is expected, because the less parallel data
we have, the less knowledge we can extract from
the LevT training process. Furthermore, the lack
of good quality knowledge distillation data in the
low-resource language pairs also expands this per-
formance gap. To our best knowledge, this is also
the first attempt to train non-autoregressive transla-
tion systems under low-resource settings, and we
hope future explorations in this area can enable us
to build a better QE system from LevT.

In terms of comparison between multilingual and
bilingual models for to-English language pairs, the
results are mixed, with the multilingual model per-

4Note that the results on en-zh also reflect a crucial bug fix
on our TER computation tool that we added after the system
submission deadline. Hence the results shown here are from a
different system as in the official shared task results. The bug
fix should not affect the results of the other language pairs.
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Configuration Stage 2 Stage 3 Target MCC F1-OK F1-BAD

ro-en multilingual N µ = 1.0 0.612 0.949 0.659
ro-en multilingual mvppe µ = 1.0 0.611 0.951 0.659
ro-en multilingual src-mt1-mt2 (Bing mt2) µ = 1.0 0.585 0.936 0.630
ro-en bilingual (Bing KD) N µ = 1.0 0.581 0.949 0.632
ro-en bilingual (Bing KD) src-mt1-mt2 (Bing mt2) µ = 1.0 0.568 0.938 0.619

et-en bilingual N µ = 3.0 0.548 0.914 0.622
et-en bilingual mvppe µ = 3.0 0.544 0.929 0.615
et-en bilingual src-mt1-mt2 (Bing mt2) µ = 3.0 0.563 0.919 0.634
et-en bilingual (Bing KD) N µ = 3.0 0.557 0.918 0.629
et-en bilingual (Bing KD) src-mt1-mt2 (Bing mt2) µ = 3.0 0.559 0.916 0.631

Table 4: Analysis of src-mt1-mt2 and mvppe method on ro-en and et-en language pair.

forming significantly better for ru-en language pair,
but significantly worse for et-en language pair. Fi-
nally, our Nelder-Mead ensemble further improves
the result by a small but steady margin.

3.4 Analysis

Ding et al. (2021) already conducted comprehen-
sive ablation studies for techniques such as the ef-
fect of LevT training step, heuristic subword-level
reference tag, as well as the effect of various data
synthesis methods. In this section, we extend the
existing analyses by studying if the synthetic fine-
tuning is still useful with M2M initialization, and if
it is universally helpful across different languages.
We also examine the effect of label balancing factor
µ and take a detailed look at the prediction errors.

Synthetic Finetuning We redo the analysis on
en-de synthetic finetuning with the smaller 2M par-
allel sentence samples from Europarl, as in Ding
et al. (2021), but with the updated test20 test
set and models with M2M-100-small initialization.
The results largely corroborate the trend in the other
paper, showing that src-mt1-mt2 and mvppe being
the most helpful two data synthesis methods. We
then extend those two most helpful methods to ro-
en and et-en, using the up-to-date Bing Translator
production model as the stronger MT system (a.k.a.
mt2) in the src-mt1-mt2 synthetic data. The re-
sult is mixed, with mvppe failing to improve perfor-
mance for both language pairs, and src-mt1-mt2

only being helpful for et-en language pair. We
also trained two extra ro-en and et-en LevT mod-
els using the respective Bing Translator models to
generate the KD data, which are neither helpful for
improving performance on their own nor working
better with src-mt1-mt2 synthetic data.

We notice that the mvppe synthetic data seems

Configuration Target MCC F1-OK F1-BAD

ro-en µ = 1.0 0.612 0.949 0.659
ro-en µ = 3.0 0.577 0.930 0.619

ru-en µ = 1.0 0.267 0.960 0.284
ru-en µ = 3.0 0.339 0.943 0.390

et-en µ = 1.0 0.478 0.933 0.511
et-en µ = 3.0 0.512 0.925 0.587

ne-en µ = 1.0 0.660 0.885 0.774
ne-en µ = 3.0 0.681 0.855 0.788

Table 5: Analysis of different label balancing factors
initialized on to-English language pairs. All results are
based on the multilingual model and not performing
synthetic finetuning step.

to significantly improve the F1 score of the OK la-
bel in general, for which we don’t have a good
explanation yet.

Label Balancing Factor We find the QE task
performance to be quite sensitive to the label bal-
ancing factor µ, but there is also no universally opti-
mal value for all language pairs. Table 5 shows this
behavior for all to-English language pairs. Notice
that while for most of the cases µ simply controls
a trade-off between the performance of OK and BAD

outputs, there are also cases such as ro-en where a
certain choice of µ hurts the performance of both
classes. This might be due to a certain label class
being particularly hard to fit, thus creating more
difficulties with learning when the loss function is
designed to skew to this label class.

It should be noted that this label balancing factor
does not correlate directly with the ratio of the OK

vs. BAD labels in the training set. For example, to
obtain the best performance, ne-en requires µ =
3.0 while en-de requires µ = 1.0, while the OK to
BAD ratio for ne-en (2.14:1) is much less skewed
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Lang. Tgt. MCC MT MCC MT BAD (P/R/F1) MT OK (P/R/F1) GAP MCC GAP BAD (P/R/F1) GAP OK (P/R/F1)

en-de 0.504 0.503 0.476 0.731 0.576 0.950 0.863 0.904 0.280 0.366 0.238 0.288 0.980 0.989 0.984
en-zh 0.466 0.381 0.467 0.787 0.586 0.879 0.633 0.736 0.146 0.276 0.099 0.145 0.965 0.990 0.977
ro-en 0.612 0.645 0.729 0.709 0.719 0.922 0.929 0.926 0.164 0.411 0.073 0.125 0.973 0.997 0.985
ru-en 0.349 0.329 0.296 0.675 0.411 0.945 0.775 0.852 0.167 0.265 0.123 0.168 0.978 0.991 0.985
et-en 0.575 0.553 0.676 0.681 0.679 0.875 0.873 0.874 0.251 0.426 0.169 0.242 0.967 0.991 0.979
ne-en 0.694 0.434 0.760 0.918 0.832 0.746 0.454 0.564 0.192 0.444 0.098 0.161 0.955 0.994 0.974

Table 6: Detailed evaluation metric breakdown of all submitted ensemble system on test20 test set.

compare to en-de (10.2:1).

Detailed Error Breakdown We found it hard
to develop an intuition for the model performance
from the MCC metric. To further understand which
label categories our models struggle with the most,
we breakdown the target-side metric into a cross
product of {MT, GAP} tags and {OK, BAD} classes and
compute precision, recall and F1-score for each cat-
egory. The breakdown is shown in Table 6. It can
be seen that our model is making the most mistakes
with the GAP BAD category, while the category with
the least mistakes is the GAP OK category. Also,
note that for MT word tags, the models often seem
to suffer more from low precision rather than low
recall, while for gaps it is the opposite.

Overall, we see that the highest F1 scores we can
achieve for detecting bad MT words or gaps are
rarely higher than 0.8, which indicates that there
should be ample room for improvement. It would
also be interesting to measure the inter-annotator
agreement of these word-level quality labels, in
order to get a sense of the human performance we
should be aiming for.

4 Conclusion

In this paper, we present our WMT21 word-level
QE shared task submission based on Levenshtein
Transformer training and a two-step finetuning pro-
cess. We also explore various ways to create syn-
thetic data to build more generalizable systems with
limited human annotations. We show that our sys-
tem outperforms the OpenKiwi+XLM baseline for
all language pairs we experimented with. Our of-
ficial results on the blind test set also demonstrate
the competitiveness of our system. We hope that
our work can inspire other applications of Leven-
shtein Transformer beyond the widely studied case
of non-autoregressive translation.
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Abstract

This paper presents our submissions to the
WMT2021 Shared Task on Quality Estima-
tion, Task 1 Sentence-Level Direct Assess-
ment. While top-performing approaches uti-
lize massively multilingual Transformer-based
language models which have been pre-trained
on all target languages of the task, the re-
sulting insights are limited, as it is unclear
how well the approach performs on languages
unseen during pre-training; more problemati-
cally, these approaches do not provide any so-
lutions for extending the model to new lan-
guages or unseen scripts—arguably one of the
objectives of this shared task. In this work,
we thus focus on utilizing massively multilin-
gual language models which only partly cover
the target languages during their pre-training
phase. We extend the model to new languages
and unseen scripts using recent adapter-based
methods and achieve on par performance or
even surpass models pre-trained on the respec-
tive languages.

1 Introduction

In Machine Translation (MT), the Quality Estima-
tion (QE) task attempts to characterize the quality
of a translation, without the availability of a (gold-
label) reference translation. The introduction of a
QE system would consequently allow for the au-
tomatic analysis of machine-translated sentences
without costly human reference translation, with
numerous applications, such as: the selection of
candidate translations, the estimation of human
editing effort, or the detection of low-quality or
misleading translations (Kepler et al., 2019). How-
ever, in order to acquire training data, professional
human translators are required to score the trans-
lation quality of many examples, making labeled
data difficult to obtain, especially for low-resource
languages. This highlights the importance of cross-
lingual zero-shot transfer of QE systems, one of
the objectives of the WMT21 shared task (Specia

et al., 2021), which introduces zero-shot evaluation
sets of four new language pairs.

Previous approaches have predominantly fo-
cused on languages for which training data is
available, such as the QE task at WMT20. The
best results were obtained by fine-tuning massively
multilingual Transformer-based language models
(Vaswani et al., 2017) such as multilingual BERT
(mBERT) (Devlin et al., 2019) or XLM-R (Con-
neau et al., 2020) (Specia et al., 2020; Ranasinghe
et al., 2020b; Sun et al., 2020a; Nakamachi et al.,
2020, inter alia), on the target QE tasks. These
supervised methods considerably outperform un-
supervised methods (Zhao et al., 2020; Fomicheva
et al., 2020c; Sun et al., 2020a; Zhao et al., 2021;
Song et al., 2021) even in zero-shot settings (Sun
et al., 2020a). However, analyzing the applicabil-
ity of fine-tuning multilingual models on the target
language pairs that are covered during pre-training
considerably limits the generated insights. They
are only applicable to the ∼100 languages covered
during pre-training, excluding the remaining ma-
jority of languages as the “curse-of-multilinguality”
(Conneau et al., 2020) prohibits the over 7000 lan-
guages in the world (Joshi et al., 2020) to be repre-
sented within a single model

In this work, we thus aim to address these limita-
tions by utilizing multilingual language models that
only cover a subset of the target languages. Here
we focus on mBERT which—in contrast to XLM-
R—has not seen the languages Sinhala, Pashto,
and Khmer, all part of the WMT21 shared task. As
the script of Sinhala and Khmer are not included
in the mBERT vocabulary, it is impossible for
the corresponding tokenizer to correctly tokenize
text in those languages. Following Pfeiffer et al.
(2020b, 2021b) we thus propose an adapter-based
approach to extend mBERT to new languages and
new scripts.

Our contributions are as follows: 1) we ana-
lyze adapter-based supervised approaches for QE
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and demonstrate their competitive performance
compared to full model fine-tuning, both in su-
pervised as well as zero-shot settings; 2) we use
recent adapter based methods to extend mBERT
to unseen languages and scripts, achieving consid-
erable performance gains over standard mBERT
for unseen languages; 3) we demonstrate competi-
tive performance of our adapted mBERT approach
compared to XLM-R, which has seen the respec-
tive languages during pre-training. We release our
code and adapters at https://github.com/
Aaronsom/wmt21-qe-tudarmstadt/.

2 Method

We describe our adapter-based approaches for su-
pervised QE and the extension to unseen languages.

2.1 Task Formulation
We model QE as a regression task. The Trans-
former receives as input both the source sentence
and the translation hypothesis and is trained to pre-
dict the quality score for the sentence pair. For
this, we take the final contextualized representa-
tion of the special [CLS]-token produced by the
Transformer and feed it into a multi-layer regres-
sion head to compute the predicted quality f(s, t):

f(s, t) = W2 · (tanh(W1 · r[CLS](s, t))) (1)

with W1 ∈ Rh×h, W2 ∈ R1×h, tanh is the hy-
perbolic tangent, h is the hidden dimension of
the Transformer, and r[CLS](s, t) is the output
representation of the [CLS]-token for the source-
translation input pair s, t. We train the model using
mean squared error.

2.2 Adapters
Adapters are randomly initialized weights, newly
introduced at every layer of the pre-trained Trans-
former model. During fine-tuning, only the adapter
weights (and the regression head) are updated while
the remaining model weights are kept frozen.

Houlsby et al. (2019) propose a feed-forward
bottleneck adapter architecture consisting of a
down-projection, a non-linearity, and finally an up-
projection, both after the multi-attention as well as
after the feed-forward component at every Trans-
former layer. We use the adapter architecture pro-
posed by Pfeiffer et al. (2021a) which achieves on
par results while reducing the number of trainable
parameters of Houlsby et al. (2019) by only placing

adapters after the feed-forward component (see Fig-
ure 1a). Adapters at layer l are defined as follows:

al(hl, rl) = Ul · (ReLU(Dl · hl)) + rl (2)

where Dl ∈ Rbhr c×h, Ul ∈ Rh×bhr c, ReLU is the
rectified linear unit, hl is the hidden input represen-
tation, rl is the residual after the fully-connected
layer, and r is the reduction factor—a hyperparam-
eter that decides how much the adapter compresses
the hidden representation.

2.3 Extending to Unseen Languages
While both XLM-R and mBERT have been pre-
trained on a large number of languages, XLM-R
has seen all languages appearing in the WMT21
dataset, while mBERT has not been pre-trained
on Sinhala, Khmer, and Pashto. Further, the
scripts of Sinhala and Khmer are not covered by
mBERT’s vocabulary. We thus follow Pfeiffer et al.
(2020b, 2021b) to extend both the latent Trans-
former as well as input embedding representations
to the respective languages, using adapter-based
approaches.

Language Adapters. Language adapters (LAs)
(Pfeiffer et al., 2020b) are trained to encode idiosyn-
cratic, language-specific information, and trans-
form the underlying multilingual model’s latent
representations to better align with the respective
languages. Correspondingly, they are trained mono-
lingually using the masked language modeling
(MLM) objective on unlabeled textual data in the
target language.

Extending to unseen scripts. Word piece tok-
enizers can (arguably inadequately (Rust et al.,
2021)) tokenize unseen languages that are writ-
ten in seen scripts, with a fall-back character-level
tokenization. Unfortunately, these tokenizers fail
for unseen scripts, as even character-level tokens
are not part of the vocabulary, leaving the tokenizer
only with instantiating unknown placeholder to-
kens (UNKs) as alternatives. Consequently, even
by extending the overall capacity of the language
model using language adapters, the model will not
be able to adequately represent the respective lan-
guages. To extend the model to unseen scripts, we
learn a new language-specific tokenizer and train
a new embedding matrix, initialized with lexically
overlapping tokens of the original embedding ma-
trix, and random initialization for the remaining
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prises of an down- and up-
projection and is inserted after
the feed-forward layer within
each Transformer layer.

Multi-Head 
Attention

Feed 
Forward

Task
Adapter

En Lang
Adapter

De Lang
Adapter

(b) Task adapters for QE with
multiple language adapters for
the multilingual input. The in-
put parts are passed through the
respective language adapter be-
fore the entire representation is
passed to the task adapter.

extra
Embs.

multilingual 
Embeddings

�ංහලEnglish, русские, ...

(c) Extra monolingual embed-
dings for scripts and languages
not included in the multilingual
embeddings alongside the mul-
tilingual embeddings. The input
embedding is chosen depending
on the input language.

Figure 1: The architecture additions to the Transformer architecture: (a) Adapters; (b) Language and task adapters
with multilingual input; (c) Extra monolingual embeddings alongside multilingual embeddings.

unseen tokens (Pfeiffer et al., 2021b). Here, lan-
guage adapters are trained together with the new
embedding matrix, while the pre-trained Trans-
former weights are frozen. Similar to standard
LAs, these components are trained monolingually
using the MLM objective on unlabeled textual data
in the target language.

Task Adapters. For target task fine-tuning we
stack task-specific adapters on top of the pre-
trained LAs. For most tasks, sentences of only
one language are passed through the model, while
for QE the original sentence in the source language
and the translation of the target language are simul-
taneously passed through the model. The tokens of
the respective languages are thus passed through
their respective LA. The subsequent task adapter is
shared between the two languages (see Figure 1b).
For cross-lingual transfer, the LAs of the training
languages are replaced with the LAs of the evalua-
tion languages. For this reason, not only the trans-
former weights but also the LAs are frozen during
training and only the task adapters are fine-tuned
on the target task. For languages with scripts not
covered during pre-training, the new embedding
matrix is used. The embedding representations are
subsequently concatenated (see Figure 1c).

3 Data

The sentence-level direct assessment task of
WMT21 builds upon the data of WMT20 task 1
(Fomicheva et al., 2020a). The WMT20 dataset
consists of seven language pairs ranging from
the high-resource English–German (En-De) and
English–Chinese (En-Zh), to the medium-resource
Romanian–English (Ro-En), Estonian–English (Et-
En) and Russian-English (Ru-En), and the low-
resource Sinhalese–English (Si-En) and Nepalese–
English (Ne-En). For each pair, sentences in the
source language are sampled from Wikipedia (or
in the case of Russian, from Wikipedia and Red-
dit), translated with fairseq (Ott et al., 2019) to
the target language, and then annotated by at least
three professional translators with Direct Assess-
ment (DA) (Guzmán et al., 2019). The DA scores
are z-normalized for each annotator and averaged
to form the final score. For each of the seven lan-
guage pairs, the dataset contains 7000 training pairs
and 1000 test and dev pairs.

The WMT21 dataset extends the WMT20
dataset by providing new test sets—with unpub-
lished labels—consisting of 1000 sentences for
each language pair of the WMT20 dataset. In
addition, they provide testsets for four new lan-
guage pairs for zero-shot evaluation, each compris-
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ing of 1000 sentence pairs with unpublished labels:
English–Czech (En-Cs), English–Japanese (En-Ja),
Pashto–English (Ps-En), Khmer–English (Km-En).

4 Experiments

We describe our experimental setup along with the
training and implementation details.

Training & Model Hyperparameters. We ini-
tialize our models with mBERT and XLM-R (both
large and base-sized). We use a reduction factor r
of 8 for our task adapters. Language adapters use
r = 2 and have been trained on Wikipedia articles
of the respective language. The additional embed-
dings for Khmer and Sinhala contain 10k tokens
each and have been fine-tuned together with the
respective LAs on the Wikipedia data.

We fine-tune our models using AdamW
(Loshchilov and Hutter, 2019) with a linear learn-
ing rate schedule without warm-up. We simulate
early stopping by storing the checkpoint with the
best dev set performance—evaluating every 500
steps. For all models, we use a learning rate of
1e-4 and a batch size of 8. We train each model
for 8k steps. Hyperparameters have been chosen
based on the WMT20 dev set performance. We
have chosen the above hyperparameters from the
following values ranges: learning rate {5e-5, 1e-4,
2e-4, 5e-4}, batch size {4, 8, 16, 32, 96}, reduc-
tion factor r for the task adapters {4, 8, 16}, and
training steps {2k, 3k, 5k, 8k, 10k}.

Implementation Details. To train adapters, we
use the AdapterHub framework (Pfeiffer et al.,
2020a) which builds upon the Hugging Face Trans-
formers library (Wolf et al., 2020). In each batch
we samples examples from only one language pair.

Experimental Setup. We evaluate the perfor-
mance of our QE models using Pearson correlation
between the predicted quality and the actual label
(Specia et al., 2020).

We evaluate our adapter approaches in an ALL

and a leave-one-out zero-shot setup (ZERO). In the
ALL setup, we train a model on all seven language
pairs with training data available and then evaluate
the model on all eleven language pairs—the seven
pairs with training data and the four pairs without.
In the ZERO setting, for each of the seven language
pairs which have a training set, we train a model
with six of the pairs and then evaluate on the left-
out seventh pair.

We evaluate both the large-sized XLM-R with
adapters (denoted A-XLMRLARGE) and base-
sized mBERT and XLM-R with adapters (denoted
A-MBERT and A-XLMRBASE respectively). For
mBERT, we use both language adapters (+LA)
and additional embeddings for Sinhala and Khmer
(+EMB). We denote the setup with both as
A+LA+EMB-MBERT. We also consider adapter
ensembles for XLM-R. Here, we train five adapters
in the ALL setup using different random seeds. Dur-
ing the evaluation, we average the predictions of
the five adapters for the final prediction.

5 Results & Discussion

We present the Pearson correlation results for our
models on the WMT21 test set. The reported values
are obtained from the CodaLab competition.1

5.1 Language Extension Results

We present our results on the WMT21 test set for
our two setups. The results for the ALL setup where
we train with all seven pairs that have training data
and then evaluate the model on all eleven pairs, i.e.
the seven with training data and the four which are
zero-shot, are found in Table 1. The leave-one-out
ZERO results where we train on six of the seven
pairs with training data and then evaluate in a zero-
shot setup on the left-out pair are in Table 2.

We consider how our language extension meth-
ods improve the results for the unseen languages
Sinhala, Khmer, and Pashto. We first evaluate how
much we gain by representing input in the unseen
script with extra embeddings instead of simply re-
placing all by the [UNK]-token. For this, we com-
pare A-MBERT with A+EMB-MBERT. When we
train with the Si-En data in ALL, the additional em-
beddings only give a relatively small performance
boost of 0.04 points on top of already quite good
results. This is unexpected since half the input is
not correctly represented. We investigate this in
more detail in §5.2. In zero-shot (Table 2 for Si-En
and Table 1 for Km-En), the extra embeddings re-
sult in greatly improved results for Si-En by 0.25
points and by 0.05 points for Km-En.

Next, we compare models with and without
language adapters in both setups. For the lan-
guages seen by mBERT during pre-training, there
is little difference between A(+EMB)-MBERT
and A+LA(+EMB)-MBERT in both setups. This

1https://competitions.codalab.org/
competitions/33411
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Unseen Seen

Si-
En

Km-
En

Ps-
En

Ne-
En

Et-
En

Ro-
En

Ru-
En

En-
De

En-
Zh

En-
Cs

En-
Ja

A-MBERT 0.44 0.37 – – – – – – – – –
A+EMB-MBERT 0.48 0.42 0.22 0.73 0.68 0.84 0.63 0.36 0.50 0.41 0.24
A+LA+EMB-MBERT 0.51 0.49 0.50 0.74 0.68 0.84 0.64 0.33 0.48 0.47 0.23

A-XLMRBASE 0.52 0.57 0.53 0.71 0.68 0.82 0.68 0.33 0.49 0.45 0.27
A-XLMRLARGE 0.56 0.62 0.59 0.80 0.78 0.87 0.73 0.47 0.54 0.54 0.33
A-XLMRLARGEENSEMBLE 0.57 0.64 0.61 0.83 0.79 0.89 0.76 0.43 0.56 0.55 0.32

Table 1: Pearson correlation results of the ALL setup for trained results for the seven pairs with training set and
zero-shot results for the four pairs without. We group the language pairs in those unseen and seen by mBERT
during pre-training and we mark the zero-shot results of the pairs without training set with italic. We report the
results for our adapters with mBERT, XLM-R (base), and XLM-R (large). For mBERT, we extend the model with
language adapters (+LA) and additional embeddings for Sinhala and Khmer (+EMB)

Unseen Seen

Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh

A-MBERT 0.03 – – – – – –
A+EMB-MBERT 0.28 0.63 0.63 0.76 0.55 0.41 0.43
A+LA+EMB-MBERT 0.46 0.64 0.65 0.75 0.54 0.37 0.39

A+XLMRBASE 0.51 0.67 0.63 0.68 0.56 0.33 0.38
A+XLMRLARGE 0.55 0.79 0.75 0.81 0.66 0.43 0.56

Table 2: Pearson correlation results of the leave-one-out ZERO setup for zero-shot results of the seven language
pairs with training set. We report the results for our adapters with mBERT and XLM-R (base & large). For mBERT,
we extend the model with language adapters (+LA) and additional embeddings for Sinhala and Khmer (+EMB)

aligns with the findings by Pfeiffer et al. (2020b)
and suggests that language adapters are less helpful
for seen languages. For the three pairs with un-
seen languages, the language adapters can greatly
improve the performance. In zero-shot situations
(Table 2 for Si-En and Table 1 for the other two),
we gain 0.18 points for Si-En, 0.07 for Km-En, and
0.28 points for Ps-En. Similar to extra embeddings,
when we train with the Si-En data in ALL, we only
gain 0.03 points more with language adapters.

Finally, we compare mBERT with lan-
guage adapters and additional embeddings
(A+LA+EMB-MBERT) to a base-sized XLM-R
A-XLMRBASE. This comparison is not ideal
due to the differences in pre-training between the
Transformers—training set, selected languages,
etc.—but we can assume that for the unseen
languages, XLM-R serves as an estimated upper
bound for the performance. For seen language
pairs (i.e., not Si-En, Km-En, and Ps-En), both
methods perform comparably. For unseen lan-
guages, our adapter-based extensions to mBERT
close the gap to XLM-R for most languages,
except for Km-En where there is still a noticeable
performance difference.

Si-
En

Ne-
En

Et-
En

Ro-
En

Ru-
En

En-
De

En-
Zh

Avg

A-MBS+T 0.54 0.68 0.69 0.85 0.63 0.42 0.43 0.61
A-MBT 0.52 0.52 0.61 0.70 0.58 0.40 0.38 0.53
A-MBS 0.19 0.53 0.56 0.63 0.60 0.33 0.30 0.45

Table 3: Pearson correlation for mBERT with
adapters (A-MB)—without language extensions—on
the WMT20 test set trained with all pairs where we use
both source and translation (S+T), only the translation
(T), or only the source (S) during training. Evaluation
is performed with both source and translation.

5.2 Analysis of Results on Trained Pairs

For the three unseen languages, we achieve large
performance gains in zero-shot scenarios. How-
ever, while we witness large performance gains in
zero-shot scenarios of the adapter-based methods,
the difference considerably smaller when training
data in the target language is available. Intuitively,
we would expect a larger boost, considering half
the input is in an unknown language and mostly not
encoded. However, these results align with previ-
ous findings. Sun et al. (2020b) show for WMT19
and WMT18 that training with only the translation
still results in strong results—77-100% of the per-
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Si-En Ne-En Et-En Ro-En Ru-En En-De En-Zh Avg

A+LA+EMB-MBERTALL 0.59 0.69 0.71 0.85 0.65 0.44 0.43 0.62
BERGAMOT-LATTE (mBERT) 0.53 0.69 0.70 0.85 0.65 0.42 0.45 0.61
A-XLMRBASEALL 0.59 0.67 0.70 0.81 0.68 0.41 0.41 0.61

A-XLMRLARGEALL 0.65 0.75 0.78 0.88 0.75 0.48 0.46 0.68
A-XLMRLARGEENSEMBLE 0.66 0.79 0.80 0.89 0.77 0.47 0.47 0.69
TransQuest (XLM-R) 0.65 0.76 0.76 0.89 0.75 0.44 0.46 0.67
BERGAMOT-LATTE (XLM-R) 0.67 0.78 0.80 0.89 0.78 0.50 0.49 0.70
TransQuest (best) 0.68 0.82 0.82 0.91 0.81 0.55 0.54 0.72
BERGAMOT-LATTE (best) 0.68 0.81 0.83 0.91 0.80 0.54 0.53 0.72

A+LA+EMB-MBERTZERO 0.54 0.57 0.65 0.77 0.53 0.44 0.33 0.55
A+XLMRBASEZERO 0.56 0.61 0.63 0.67 0.59 0.35 0.32 0.53

A+XLMRLARGEZERO 0.63 0.74 0.76 0.80 0.69 0.41 0.41 0.63
BERGAMOT-LATTE (zero-shot) 0.68 0.76 0.75 0.80 0.68 0.45 0.42 0.65

Table 4: Pearson correlation on the WMT20 test set for the ALL and ZERO setup. We group the results in the setups
in base-sized and large models. TransQuest and BERGAMOT-LATTE use fully fine-tuned models. TransQuest re-
sults are taken from (Ranasinghe et al., 2020b), BERGAMOT-LATTE from (Sun et al., 2020a)—their best models
are the winners of the WMT20 shared task and additionally use ensembles.

formance of training with the complete pair. We
are able to reproduce these findings for WMT20
in Table 3, and achieve similar results for Si-En
when passing only the English translation as in-
put to the model, compared to when training on
both inputs. However, when training with only the
(Sinhala) source, we witness the expected drop in
performance. It is likely that in the zero-shot setup,
the model cannot learn to exploit the statistical cues
that allow it to function without the source sentence.
Hence, we obtain more appropriate representations
with adapter-based methods where the language-
specific word-embedding representations result in
considerable performance gains.

5.3 Ensembles

Ensembles have been used in previous work with
great success (Ranasinghe et al., 2020a; Fomicheva
et al., 2020b; Nakamachi et al., 2020). With
an adapter ensemble, the underlying Transformer
weights are re-used resulting in a very parameter-
efficient setup—our ensemble with five adapters
adds only 6.5% more parameters on top of the large
XLM-R Transformer. However, our adapter ensem-
ble A-XLMRLARGEENSEMBLE only brings a slight
performance boost, smaller than the reported boost
by the ensembles of previous works. More work is
needed here to investigate why this is the case.

5.4 Comparison to Fully Fine-Tuned Models

We evaluate the general performance of adapters
for the QE task in comparison to fully fine-tuned
models. For this, we compare our models on

the WMT20 test set against the top submissions
of the WMT20 shared task in Table 4. We find
that they achieve competitive results with fully
fine-tuned models that do not employ additional
techniques like ensembles in both the ALL and
ZERO setups. Our highest-scoring submission, A-
XLMRLARGEENSEMBLE, places in the midfield for
the WMT21 competition.

5.5 Parameter Count

Adapters are considerably more parameter efficient
with respect to the number of fine-tuned parameters,
compared to fully fine-tuned models. The number
of adapter parameters is equivalent to only 1.3% of
the Transformer parameters for our models. This
makes adapters very lightweight for model shar-
ing or for loading multiple adapters on the same
GPU, e.g., for language adapters or for multiple
task adapters in a pipeline (Nguyen et al., 2021;
Rücklé et al., 2021). The extension for the unseen
languages for mBERT also adds only a small num-
ber of parameters: 2.4% for each language adapter
and 1.4% for each monolingual embedding.

6 Conclusion

In this work, we proposed the use of adapters to
fine-tune massively multilingual Transformers for
the sentence-level QE task. We demonstrated that
adapters are able to achieve competitive results
with fully fine-tuned models. However, as fully
fine-tuned approaches are limited to the languages
seen during pre-training, we have employed recent
language extension methods to integrate languages
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unseen by mBERT. We extended mBERT with
language adapters and monolingual embeddings
for Sinhala, Khmer, and Pashto. These methods
greatly improved the zero-shot performance of the
model and largely closed the gap to XLM-R which
has been pre-trained on all languages appearing in
WMT21. This demonstrates that our approach is
applicable, not only to languages seen during pre-
training, but also to unseen languages, even with
unseen scripts. This suggests that our method is
able to extend multilingual models to a wider range
of language not covered during pre-training.

We suggest that future shared tasks should con-
sider disentangling languages which massively
multilingual language models have been pre-
trained on, from those that are unseen during pre-
training, to more closely reflect realistic scenarios,
as the majority of languages cannot be represented
within a single model (Conneau et al., 2020).
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Abstract

This paper describes POSTECH’s quality es-
timation systems submitted to Task 2 of the
WMT 2021 quality estimation shared task:
Word and Sentence-Level Post-editing Effort.
We aim to improve the stability of recently pro-
posed quality estimation models, which usu-
ally have a single encoder based on the self-
attention mechanism to simultaneously pro-
cess both of the two input data: a source se-
quence and its machine translation; consid-
ering that such models are not propped up
by pre-trained language models’ monolingual
word representations, which are generally ac-
cepted as reliable representations for various
natural language processing tasks. Therefore,
our model first uses two pre-trained monolin-
gual encoders and then exchanges their out-
put information through two additional cross
attention networks. According to the official
leaderboard, our systems outperform the base-
line systems in terms of the Matthews correla-
tion coefficient for machine translations’ word-
level quality estimation and in terms of the
Pearson’s correlation coefficient for sentence-
level quality estimation by 0.4126 and 0.5497
respectively.

1 Introduction

Quality estimation (QE) is the task of estimating
the quality of given machine translations without
regard to their reference translations (Blatz et al.,
2004; Specia et al., 2009). As reference translations
are generally unavailable in real life, QE should
help to treat output texts of machine translation
(MT) systems. QE can be categorized into sev-
eral subtasks, and this round of the WMT QE task
has three subtasks, yet we focus on Task 2: Word
and Sentence-Level Post-editing Effort. In Task 2,
while sentence-level QE aims to predict the Human-
Targeted Translation Edit Rate (HTER, Snover et al.
2006), which measures the edit distance between an
MT output (mt) and its human post-edited text (pe),

word-level QE aims to predict OK–BAD tags for
three sequences of tokens: the sequence of words
in a source text (src) depending on whether they are
correctly translated referring to mt; the sequence
of words in mt depending on their correctness; and
<GAP> tokens, which each represent the gap be-
tween two adjacent words, depending on the exis-
tence of any missing words (Specia et al., 2020).

As other recent QE models do, our method
also applies transfer learning, considering that pre-
trained language models (LM) have been success-
fully applied to various natural language processing
(NLP) tasks including QE; many previous studies
(Fomicheva et al., 2020; Hu et al., 2020; Wu et al.,
2020; Lee, 2020; Moura et al., 2020; Nakamachi
et al., 2020; Rubino, 2020) that apply pre-trained
LMs to QE have adopted multilingual or cross-
lingual LMs such as multilingual-BERT (Pires
et al., 2019), XLM (Conneau and Lample, 2019),
and XLM-R (Conneau et al., 2020) to process the
two input data src and mt. Such cross-lingual LMs
have a single Transformer (Vaswani et al., 2017)
encoder using only the self-attention mechanism to
create vector representations of the input data and
predict the labels. However, it appears possible to
further improve the stability of those models, con-
sidering that they are not propped up by pre-trained
LMs’ monolingual word representations, which are
generally accepted as reliable representations for
various NLP tasks.

With this background, we propose a QE model
that has two separate pre-trained encoders that each
produce monolingual representations of src and
mt, respectively. On top of each encoder, we add
a cross attention network for the learning of the
cross-lingual context between src and mt; these
networks will produce two sets of cross-lingual
representations for QE. We conduct simple experi-
ments to compare the performance of our systems
and ensembles of them with that of the baseline
systems and that of other submitted systems for
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Figure 1: A diagram depicting the training task of ELECTRA (Clark et al., 2020)

Task 2. Experimental results imply that although
our systems do not always outperform the baseline
systems, they do in terms of the Matthews corre-
lation coefficient (MCC) for mt’s word-level QE
and in terms of the Pearson’s correlation coefficient
(PCC) for sentence-level QE by 0.4126 and 0.5497
respectively.

2 Related Work

Because our model does not confine its monolin-
gual encoders to specific pre-trained LMs, all pre-
trained LMs can be considered relevant. Among
them, most of the recently proposed pre-trained
LMs are denoising autoencoders, of which the pre-
training task is usually to select about 15% of to-
kens in unlabeled input sequences and apply the
attention mechanism to those tokens (Yang et al.,
2019) or is to mask certain tokens (Devlin et al.,
2019) and then restore them. However, in our ex-
periments, our systems use ELECTRA (Clark et al.,
2020). ELECTRA introduces “replaced token de-
tection” as an additional pre-training task and let
the language model learn to distinguish between
real input tokens and specious but artificially gener-
ated tokens. In detail, when the generator network
predicts the tokens in the masked positions, some
of the predicted tokens are corrupted, and then this
output sequence is fed into a Transformer-based dis-
criminator network, which predicts whether each
token in the fed sequence is the same as the original
one or is a replaced one (Figure 1). We suppose
that this process and QE are similar to each other in
that both of them predict the soundness of the given
tokens, so ELECTRA would be one of the most
appropriate pre-trained LMs for our QE model’s
monolingual encoders, especially for Task 2.

3 Model Description

Our model uses two ELECTRAs: one ELECTRA1

that is pre-trained with English corpora and the
other ELECTRA2 pre-trained with German cor-
pora. Figure 2 depicts the overall structure of our
model.

3.1 Dual Monolingual Encoders

Our model has dual encoders: a pre-trained En-
glish ELECTRA processing src and a pre-trained
German ELECTRA processing mt. These encoders
will produce reliable monolingual representations
of src and mt respectively to provide these refined
representations to the upper cross attention net-
works.

Because unlike other pre-trained QE models that
have a single Transformer encoder being fed with
the concatenation of src and mt, our model lets the
two different encoders process the two input data
respectively, we exclude the segment embeddings,
which are used to distinguish one language from
another, and assign different positional embeddings
to each input data. In addition, for sentence-level
QE, mt’s special token <CLS> is used to predict
the HTER.

3.2 Cross Attention Networks

We attach a cross attention network to each pre-
trained encoder; it learns the cross-lingual context
information by using the encoders’ refined mono-
lingual representations of the two input data. Al-
though the structure of a cross attention network is
identical to that of the encoders, the cross attention
networks are not pre-trained, so we train them after
the random initialization of their parameters. We

1https://huggingface.co/google/
electra-base-discriminator

2https://huggingface.
co/german-nlp-group/
electra-base-german-uncased
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Figure 2: The overall structure of our model

find that applying transfer learning to the cross at-
tention networks is not available due to the absence
of pre-trained language models that are pre-trained
to perform cross attention on cross-lingual input
data by using one side as a query vector and the
other side as both a key vector and a value vector
just as the Transformer decoder performs multi-
head attention on the output of the Transformer
encoder.

3.2.1 Sentence-Level QE
To predict the HTER for sentence-level QE we em-
ploy the final hidden vector m<CLS> of the mt-side
cross attention network, which is the final represen-
tation of the <CLS> token, as the representation of
the mt sequence as a whole. After this representa-
tion passes through double linear layers with the
GELU (Hendrycks and Gimpel, 2016) activation
function, the HTER of the given mt sentence is
estimated as follows.

l = Whm
<CLS> + b0

ŷHTER = wT
h GELU(l) + b1 (1)

We have trainable parameters Wh ∈ RH×H ,
wh ∈ RH , b0 ∈ RH , and b1 ∈ R; H denotes
hidden vectors’ dimension.

We use the mean squared error of this estimator,
that is, the difference between the estimated HTER
ŷHTER and the ground truth HTER value yHTER , as
the training loss

LHTER = MSE(ŷHTER , yHTER). (2)

3.2.2 Word-Level QE

src-Side Prediction We use the final hidden vec-
tor s(i) (i ∈ {1, ..., |S|}, where |S| is the number
of tokens in the tokenized src sequence) of the src-
side cross attention network corresponding to each
token in src to predict OK or BAD in the token’s
position. After each of these representations passes
through a linear layer, the word-level probability
of the corresponding token being OK or BAD is
predicted with a sigmoid activation function:

P (i)
s = sigmoid(wT

s s
(i)), (3)

where ws ∈ RH is a trainable parameter.
We use the binary cross-entropy loss function;

we also introduce an extra hyperparameter ks to
prevent our model from being overfitted because
the statistics of the ratio between the number of OK
tags and that of BAD tags in our training data (Ta-
ble 1) can misguide the model to have the tendency
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# of words OK BAD

Artificial data
src 54.6M 34.3M (62.81%) 20.3M (37.19%)

mt.word 50.5M 29.7M (58.82%) 20.8M (41.18%)
mt.gap 53.5M 50.6M (94.53%) 2.9M (5.47%)

WMT 21 train
src 115K 84K (73.05%) 31K (26.95%)

mt.word 112K 81K (71.85%) 32K (28.15%)
mt.gap 119K 114K (95.41%) 5K (4.59%)

WMT 21 dev
src 16K 12K (74.21%) 4K (25.79%)

mt.word 16K 12K (72.49%) 4K (17.51%)
mt.gap 17K 16K (95.83%) 0.7K (4.17%)

Table 1: Statistics of QE datasets used in our experiments.

of outputting OK even when it should output BAD.
The src-side loss is as follows:

Lsrc =
1

|S|

|S|∑

i=1

{
ksy

(i)
s logP (i)

s

+ (1− y(i)s )log(1− P (i)
s )
}
, (4)

where y(i)s is a ground-truth OK–BAD tag.

mt-Side Prediction We use the final hidden vec-
tor m(i) (i ∈ {1, ..., |M |}, where |M | is the num-
ber of tokens in the tokenized mt sequence) of the
mt-side cross attention network corresponding to
each token in mt to predict OK or BAD in the to-
ken’s position. We estimate the probabilities of the
word tokens

P (i)
m = sigmoid(wT

mm
(i)), (5)

where wm ∈ RH is a trainable parameter.
We also use the final hidden vector m(j) (j ∈
{1, ..., |M |+1} including the vector in the position
of the last <SEP> token to predict OK or BAD for
the last <GAP> token. We estimate the probabili-
ties of the <GAP> tokens

P (j)
g = sigmoid(wT

gm
(j)), (6)

where wg ∈ RH is a trainable parameter.
The mt-side prediction loss equals the sum of

the losses for word tokens and <GAP> tokens:

Lmt = Lm + Lg, (7)

where

Lm =
1

|M |

|M |∑

i=1

{
kmy

(i)
m logP (i)

m

+ (1− y(i)m )log(1− P (i)
m )
}
, (8)

and

Lg =
1

(|M |+ 1)

|M |+1∑

j=1

{
kgy

(j)
g logP (j)

g

+ (1− y(j)g )log(1− P (j)
g )
}
, (9)

y
(i)
m and y(j)g being ground-truth OK–BAD tags

for a word token and a <GAP> token respectively
and hyperparameters km and kg being introduced
for the same reason why we introduce ks.

Finally, we define the word-level loss and the
overall QE loss of our model as follows.

Lword = Lsrc + Lmt (10)

LQE = Lword + LHTER (11)

4 Experiments

4.1 Datasets
In our experiments, we used the eSCAPE (Negri
et al., 2018) dataset, which is a collection of data
triplets each of which is composed of src, mt, and
pe; we used this dataset to make artificial QE train-
ing data. In this process, to make our artificial data
have a similar statistics as those of WMT 2021’s
official training data, we filtered eSCAPE triplets
according to various criteria, such as the sequence
lengths of src and mt, the sequence length ratio
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Encoder PCC↑ src-side MCC↑ mt-side
Words MCC↑ <GAP>s MCC↑

BERT 0.4832 0.3092 0.3684 0.03617
ELECTRA 0.5109 0.3100 0.4104 0.1401

Table 2: Single Dual-Encoder model’s performance respect to pre-trained model applied to its encoders for the
WMT 2020 English-German QE task2.

Systems PCC↑ src-side MCC↑ mt-side
Words MCC↑ <GAP>s MCC↑

Baseline 0.5285 0.3220 0.3696 0.1157
Single 0.5038 0.3200 0.4126 0.1096

Top4-ens 0.5458 0.3165 0.4296 0.1096
Top6-ens 0.5497 0.3186 0.4271 0.1225

Table 3: Our systems’ performance for the WMT 2021 English–German QE Task 2. Single is a single system
modelled on our proposed model. Top4-ens and Top6-ens are the ensembles of the top four and the top six single
systems respectively in terms of their performance on the validation dataset.

between src and mt, and TER. Then, we created a
tuple of labels (Tsrc, Tword

mt , Tgap
mt , the TER (Snover

et al., 2006)) for each triplet 3. Finally, we tok-
enized and truncated both of the artifical data and
the WMT 2021 official data by using a pre-trained
tokenizer based on WordPiece (Wu et al., 2016).

4.2 QE Pre-training

After obtaining about three million of artificial
triplets, we made the final QE pre-training data
by joining the artificial training data and the offi-
cial human-labeled data together; especially, we
augmented the quantity of the latter by replication
to allow our systems to learn from both kinds of
training data relatively more evenly during the QE
pre-training. Our systems learn to predict all kinds
of labels jointly (LQE, Eqn. 11) considering the
close correlation among the subtasks in Task 2. We
used 1,000 triplets in the WMT 2021’s official de-
velopment dataset as validation data.

4.3 Fine-Tuning

We used only the WMT 2021 human-labeled data
for fine-tuning. In contrast with the QE pre-
training, we fine-tuned our systems to each subtask:
the prediction of the sentence-level task (LHTER ,
Eqn. 2) and the word-level task (Lword , Eqn. 10)
Considering the overproportion of OK tags in our
training data (Table 1), we set a large ks, km, and
kg (§ 3.2.2) in our experiments.

3https://github.com/deep-spin/
qe-corpus-builder

4.4 Ensemble Learning

Besides single fine-tuned systems, we also made
ensembles of our best fine-tuned systems, each of
which has a different random seed from that of
the others. In detail, after fine-tuning several sin-
gle systems with different random seeds, for each
seed, we picked out the top two systems, each of
which is different from the other in certain variable
training conditions such as how its cross attention
networks have been randomly initialized in that
instance, in terms of their performance on our vali-
dation dataset. Finally, we averaged the weights of
the systems element-wisely for better generaliza-
tion and made the ensembles.

4.5 Hyperparameters

We used ELECTRA-base (Clark et al., 2020)s as
pre-trained monolingual LMs for our dual mono-
lingual encoders4. In the QE pre-training, we used
get_schedule_with_warmup5 as our learn-
ing rate scheduler with 3,000 warm-up steps. We
used the AdamW (Loshchilov and Hutter, 2018) op-
timizer that has a weight decay with λ=0.5, β1=0.9,
β2=0.999, and ε=1e-8, together with gradient clip-
ping. Setting a batch size of 64 for both the QE
pre-training and fine-tuning, we set a learning rate
of 1e−5 and a tuple of (ks = 1, km = 1, kg = 3)
for the QE pre-training and a learning rate of 5e−5
and a tuple of (ks = 2, km = 2, kg = 4) for the

4Our encoders are available at https://
huggingface.co/models

5https://huggingface.co/transformers/
main_classes/optimizer_schedules.html
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Systems PCC↑ RMSE↑ MAE↑ Disk Footprint (GB)↓ Model Params↓
HW-TSC 0.6531 0.1513 0.1079 2.0898 560.9M

IST-Unbabel 0.6173 0.1715 0.1163 2.1373 569.4M
ACBU-NMT 0.5773 0.1743 0.1154 2.0894 560.1M

POSETCH (Ours) 0.5497 0.1741 0.1304 1.4540 390.2M
Baseline 0.5285 0.1828 0.1291 1.0640 281.3M
ENSBRT 0.5199 0.1711 0.1287 1.2700 502M

Table 4: The reported sentence-level QE performance of the systems submitted to the WMT 2021 English–German
QE Task 2 according to the official leaderboard.

Systems
mt-side

src-side MCC Disk Footprint (GB)↓ Model Params↓
Words MCC <GAP>s MCC

JHU-Microsoft 0.5231 0.2559 - 6.3918 484.4M
HW-TSC 0.5095 0.2997 0.4499 2.0898 560.9M

IST-Unbabel 0.4661 0.1833 0.4042 2.1373 569.4M
ACBU-NMT 0.4368 - 0.3915 2.0894 560.1M

POSETCH (Ours) 0.4126 0.1096 0.3200 1.4540 390.2M
Baseline 0.3696 0.1157 0.3220 1.0640 281.3M

Table 5: The reported word-level QE performance of the systems submitted to the WMT 2021 English–German
QE Task 2 according to the official leaderboard. A hyphen indicates that no corresponding score exists.

fine-tuning, respectively. We validated the perfor-
mance of our systems on our validation set every
5,000 steps during the QE pre-training and every
200 steps during the fine-tuning, respectively; we
applied early stopping with a patience of 30.

4.6 Results

In comparison with our single system, our ensem-
bles report an improved PCC, mt-side words MCC,
and mt-side <GAP>s MCC of about 0.5497, 0.4296,
and 0.1225 respectively (Table 2). Compared to
other systems submitted to the WMT 2021 English–
German QE Task 2, our systems outperform the
baseline systems in terms of the sentence-level
PCC (Table 3) and the mt-side words MCC (Ta-
ble 4). Our systems are inferior to the baseline sys-
tems in terms of the src-side MCC and the mt-side
<GAP>s MCC by a narrow margin (Table 4). How-
ever, because our systems have a smaller number
of parameters than other submitted systems, we ex-
pect that it is possible to improve the performance
of our systems by adopting larger pre-trained LMs
such as ELECTRA-large (Clark et al., 2020).

5 Conclusion

We model our systems submitted to Task 2 of the
WMT 2021 QE shared task on our proposed model,
which uses dual pre-trained monolingual encoders
and two additional cross attention networks to pro-

cess the two input data src and mt more effectively
considering that the latest Transformer-based QE
models are not propped up by pre-trained mono-
lingual word representations. We expect that the
cross attention networks enable the two pre-trained
monolingual encoders to exchange cross-lingual in-
formation without losing their stability and to learn
the subtasks of Task 2 jointly and also separately.
Experimental results partially supports this expec-
tation: according to the official leaderboard, our
systems outperform the baseline systems in terms
of the mt-side words MCC and the sentence-level
PCC by 0.4126 and 0.5497 respectively, although
they do not in terms of the src-side MCC and the
mt-side <GAP>s MCC. Neverhteless, it appears
possible to improve the performance of our sys-
tems by adopting larger pre-trained LMs, and thus,
our future work will explore such aspects and other
related new methods.
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Abstract
This paper presents Imperial College London’s
submissions to the WMT21 Quality Estima-
tion (QE) Shared Task 3: Critical Error De-
tection. Our approach builds on cross-lingual
pre-trained representations in a sequence clas-
sification model. We improve the base classi-
fier by (i) adding a weighted sampler to deal
with imbalanced data and (ii) introducing fea-
ture engineering, where features related to tox-
icity, named-entities and sentiment, which are
potentially indicative of critical errors, are ex-
tracted using existing tools and integrated to
the model in different ways. We train models
with one type of feature at a time and ensem-
ble those models that improve over the base
classifier on the development set. Our official
submissions achieve very competitive results,
ranking second for three out of four language
pairs.

1 Introduction

Critical Error Detection (CED) is a new task which
has been introduced in the WMT21 Quality Estima-
tion (QE) Shared Task.1 The purpose of CED is to
address a challenging problem in Machine Transla-
tion (MT): translations produced by state-of-the-art
MT systems can be grammatical and fluent but
do not always retain the meaning of the source
text. More importantly, incorrect translations can
be misleading and even have catastrophic conse-
quences such as health, safety, legal, or financial
implications. However, these can be hard errors to
capture by general QE architectures, which have
been shown to be prone towards relying mainly on
the translated sentence (Sun et al., 2020).

According to the Shared Task definition, a crit-
ical translation error is a type of error that occurs
when the meaning of the translation deviates from
source sentence in a critical way. The task data
(Section 2.1) includes five categories of such er-
rors: deviation in toxicity (TOX), in named entities

1http://statmt.org/wmt21/quality-estimation-task.html

(NAM), in sentiment polarity or negation (SEN),
or in numbers (NUM), or introduction of health or
safety risks (SAF).

The baseline model for this task utilises the
XLM-RoBERTa (Conneau et al., 2020) for se-
quence classification model, following the Mono-
TransQuest architecture proposed by Ranasinghe
et al. (2020). Inspired by the fact that these five
critical error types refer to specific linguistic phe-
nomena, we aim to bring additional information
to the models on the presence of such phenomena.
The intuition is that sentences containing certain
types of linguistic features, such as named entities
or dates, are more likely to lead to errors. There-
fore, we first process the dataset to extract features
reflecting the sentences’ toxicity, sentiment and
named entities, using off-the-shelf toolkits or APIs
(Section 2.2). We then enhance the baseline archi-
tecture with this additional information.2

We experiment with two approaches to take the
additional features into account, at token and hid-
den state levels. We build multiple models taking
one type of feature at a time and finally ensemble
“promising” models. Promising models are those
that lead to improvements over the baseline on the
dev set (Section 2.3).

Our results comparing different features show
that some of the features are indeed useful, but
there is no general pattern that applies to all lan-
guage pairs (Section 3.1). The official submission,
which uses an ensemble of the models that lead to
improvements over the baseline on the dev set for
each language shows that ensembling only mod-
els with promising features are better than ensem-
bling models with all kinds of features (Section
3.2). Upon manual inspection, we observed that
additional features indeed help the model to make
predictions but this is subject to the accuracy of
features (Section 3.3).

2Our code and data are available from https://github.com/
conanjgz/critical-error-detection-for-MT
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2 Experiment Settings

2.1 Dataset

According to the description of WMT21 CED
Shared Task, the dataset for this task was col-
lected from Wikipedia comments (Wulczyn et al.,
2017) in English with translations generated by
the ML50 multilingual translation model (Tang
et al., 2020), consisting of four language pairs:
English-Czech (En-Cs), English-German (En-De),
English-Japanese (En-Ja) and English-Chinese (En-
Zh). The number of data samples in the training
set differs for the four language pairs but is around
6500-8000. Each language pair has 1000 data sam-
ples in the dev set and 1000 data samples in the
test set. For each sentence pair in the dataset, there
are three labels given by three human annotators.
The three labels are aggregated to the final label
of the dataset using majority strategy. The final
label is either ERR or NOT, where ERR means the
translation has at least one critical error and NOT
means the translation does not have a critical error.

Pair Dataset Count Label Count
Train set 7476 NOT 6188

ERR 1288
En-Cs Dev set 1000 NOT 840

ERR 160
Test set 1000 – –
Train set 7878 NOT 5674

ERR 2204
En-De Dev set 1000 NOT 719

ERR 281
Test set 1000 – –
Train set 7658 NOT 6939

ERR 719
En-Ja Dev set 1000 NOT 904

ERR 96
Test set 1000 – –
Train set 6859 NOT 5749

ERR 1110
En-Zh Dev set 1000 NOT 859

ERR 141
Test set 1000 – –

Table 1: Statistics of datasets for four language pairs.
The distribution of labels for the test set is unknown as
this is a blind evaluation task.

The dataset information for each language pair
can be found in Table 1. As can be seen, the data is
very imbalanced, with the En-Ja dataset suffering
the most: the ERR label only accounts for 9.4%
in the training set. The En-De dataset is the least
imbalanced compared to other three language pairs,
where the proportion of ERR label in En-De train-
ing set reaches 27.9%.

2.2 Features

We extract features reflecting sentences’ toxicity
score, sentiment and named entities. The expecta-
tion is that these features could be helpful in de-
tecting critical errors since these errors stem from
issues with the translation/introduction of these and
other linguistic phenomena. Ideally we would have
wanted to extract this information for both source
and translated sentences to be able to perform some
sort of comparison between the two, for example,
presence of toxicity in the translation but not in the
source sentence. However, we are limited by the
availability of tools in the four language pairs, as
we explain below.

For all features, our goal is to have a discrete
representation which will allow us to easily incor-
porate them to the architecture, as will be explained
in Section 2.3.2. Therefore, we need to threshold
some of these features.

The toxicity score is produced by Perspective
API,3 which supports only English and German
amongst our five languages. Based on some manual
inspection of the predictions by Perspective, we
consider that if the toxicity score of a sentence
is greater than 0.5, the sentence will be regarded
as toxic. We leave for future work experiments
varying this threshold. Since this API does not
support Czech, Japanese and Chinese, we were
only able to extract a toxicity feature in the source
sentences for En-Cs, En-Ja and En-Zh.

The sentiment score is produced by Google
Cloud Natural Language API,4 which supports En-
glish, German, Japanese and Chinese. Therefore,
we can get the sentiment feature of both source sen-
tence and translation for En-De, En-Ja and En-Zh.
The score returned by this API is a float number
ranged from -1 to 1. Empirically, we consider a
sentence to be negative if the score is smaller than
-0.2, and positive if the score is greater than 0.2,
otherwise the sentence’s sentiment is neutral. In
our experiments, the sentiment feature is not ap-
plied to En-Cs because Czech is not supported by
this API.

The information of named entities (NE) is ex-
tracted using spaCy,5 which can recognise over 15
NE types. We count the number of named entities
for each NE type and finally choose seven NE types
with the highest counts as features. The description

3https://www.perspectiveapi.com/
4https://cloud.google.com/natural-language
5https://spacy.io/

929



of the seven NE types can be found in Table 2. We
extract named entities in both source sentence and
translation for En-De, En-Ja and En-Zh. However,
Czech is not supported by spaCy, therefore we do
not use NE features for En-Cs.

Type Description Abbr.
ORG Organisation name ORG
PERSON Person name PER
DATE Year, month or day DAT
CARDINAL Numerals CRD
ORDINAL Ordinal numerals ORD
NORP Religious group, etc NRP
GPE Geographical name GPE

Table 2: Descriptions of seven types of NE features and
their abbreviations.

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N

E[CLS] E1 EN E[SEP] E'1 E'N

C

Classifier

Tokenizer

Source sentence Translation

Figure 1: Architecture of baseline model. This is a
MonoTransQuest model where we pass the output of
the [CLS] token to a classifier.

2.3 Models

2.3.1 Baseline Model
The baseline model employs the MonoTransQuest
framework (Ranasinghe et al., 2020), which is pro-
posed for general quality estimation (QE) tasks and
is shown in Figure 1. Essentially this is used to pro-
duce the baseline score of CED Shared Task. The
model is based on a pre-trained XLM-RoBERTa
transformer model (Conneau et al., 2020) and is
used to perform sentence-level classification tasks.
The model takes a sequence of tokens as input
which starts with <s>, denoting [CLS] token,
followed by tokens for source sentence and trans-
lation and ended with </s> token. The source
sentence and its translation, separated by[SEP]
token, are fed into one single transformer encoder
at the same time. Then the output of the trans-
former encoder is fed into a classification head

where cross-entropy is adopted as the loss func-
tion. We use pre-trained XLM-RoBERTa models
released by HuggingFace’s model repository (Wolf
et al., 2020) for the implementation.

To alleviate the influence of imbalanced training
data, a weighted sampler can be applied to the data
loader during training. The weighted sampler is to
make the label distribution in the training batch as
balanced as possible. The weight of the sampler is
computed as reciprocals of label proportions.

2.3.2 Model with Features
To utilise the features mentioned in Section 2.2, we
proposed two different approaches.

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N

E[CLS] E1 EN E[SEP] E'1 E'N

C

Classifier

Tokenizer

Source sentence Translation

TOX/SEN/NE API

Src sentence with special tokens Translation with special tokens

Figure 2: Architecture of the first approach (adding spe-
cial tokens). We insert TOX/SEN/NE information to
the source sentence and its translation as special tokens,
and then feed sentences with special tokens to the base-
line architecture.

The first approach (shown in Figure 2) is to
add special tokens. Here the features (toxicity,
sentiment, named entities) are directly inserted as
special tokens to the input source sentence and,
where available, its translation before getting to-
kenised. To correctly tokenise sentences with fea-
tures, these special tokens are also added to the
XLM-RoBERTa tokeniser. The remaining architec-
ture is the same as the baseline model except for
the dimension of model’s word embeddings as the
model’s token embeddings should be resized when
adding new tokens.

For the toxicity feature, a special token [TOX]
is added to the beginning of the input token se-
quence if and only if the sentence is toxic. If the
sentence is not toxic, the [TOX] token will not be
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added. For En-De, the [TOX] token is applied to
both source sentence and translation. But for other
three language pairs it is only applied to the source
sentence (English), because the Perspective API
does not support Czech, Japanese and Chinese.

For the sentiment feature, there are three
special tokens, [SEN_POS], [SEN_NEG],
[SEN_NEU], representing positive, negative
and neutral sentiment respectively. Each time
only one token denoting sentence’s sentiment is
added to the beginning of that sentence. All the
sentences should have one sentiment token at the
beginning. The sentiment token is applied to both
source sentence and translation for En-De, En-Ja
and En-Zh. We do not perform experiments on
sentiment feature for En-Cs due to lack of support
on Czech from sentiment analysis API.

For named-entities feature, there are seven spe-
cial token pairs corresponding to seven types
of named entities generated by SpaCy API, e.g.
[ORG] and [/ORG], [DAT] and [/DAT], etc.
We use special token pairs to encase the named en-
tities with relevant type in sentences at word level.
Similarly to sentiment feature, the tokens of named-
entities feature are also applied to both source and
translation for En-De, En-Ja and En-Zh. Czech is
not supported by spaCy, hence we do not apply this
feature to En-Cs.

By adding extra features to the texts, we ex-
pect to guide the model with the toxicity/named-
entities/sentiment information on the source sen-
tence or the discrepancy of such information be-
tween the source sentence and the translation,
which might indicate the existence of critical trans-
lation errors.

The second approach (shown in Figure 3) is to
modify hidden states, where the extracted features
are presented as numerals and appended to the hid-
den states of [CLS] token. Due to limited time, we
only experimented with NE features using this ap-
proach. Since some named entity types are similar,
they can be grouped as one type. In this approach,
except for DAT, which is an independent category,
we group ORG and PER as a category, CRD and
ORD as a category, NRP and GPE as a category so
that finally we have four categories. The feature
that is used here is the count of the four NE types in
source and target sentences. It is presented as a vec-
tor of length 8, where the first 4 numbers represent
the counts of these NE categories for the source
sentence, and the last 4 numbers are for the trans-

XLM-RoBERTa

... ...[CLS] Token 1 [SEP]Token N Token 1 Token N

T1 TN T[SEP] T'1 T'N

E[CLS] E1 EN E[SEP] E'1 E'N

C

Classifier

Hidden states NE vector

Tokenizer

Source sentence Translation

spaCy

NE Counter

Figure 3: Architecture of the second approach (modify-
ing hidden states). The sentence pair is fed into the
XLM-RoBERTa encoder and into spaCy to generate
NEs, resulting in the NE vector with the count of name
entities of different types. We concatenate the output
of [CLS] with the NE vector and send the modified
hidden states to the classifier.

lation. First we feed the source sentence and its
translation into the XLM-RoBERTa encoder, then
we append the vector of counts to the output of the
[CLS] token. The modified hidden states is then
fed to the classification head.

Our expectation is that the additional informa-
tion (vector of counts) could guide the classifier to
give more accurate predictions, because a deviation
in named entity counts may be indicative of critical
errors. For example, if the source sentence contains
3 named entities and the translation contains only 1
named entity, the translation may be missing some
named entities.

2.3.3 Ensemble
To boost the performance, we ensemble several
models to produce the final predictions. We exper-
iment with two ensemble strategies. One strategy
is label-level (late) ensemble. We first obtain the
label predictions generated by different models us-
ing different features, then combine these predicted
labels by performing majority vote to get a final
label. The other strategy is logit-level ensemble,
where we average the logits produced by different
models and then produce the final label using the
averaged logits.

3 Results

This section presents the evaluation results of the
proposed methods. Except for the baseline score on
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Method En-Cs En-De En-Ja En-Zh
Baseline 0.393 0.413 0.217 0.255
Baseline best 0.397 0.422 0.231 0.276
(with sampler) average 0.396 0.418 0.224 0.262
Adding TOX token best 0.391 0.448 0.254 0.284

average 0.385 0.435 0.220 0.261
Adding SEN token best – 0.429 0.228 0.296

average – 0.416 0.226 0.276
Adding NE (ORG) token best – 0.430 0.237 0.248

average – 0.422 0.211 0.239
Adding NE (PER) token best – 0.446 0.229 0.265

average – 0.415 0.224 0.225
Adding NE (DAT) token best – 0.439 0.220 0.259

average – 0.427 0.212 0.232
Adding NE (CRD) token best – 0.438 0.248 0.222

average – 0.426 0.195 0.217
Adding NE (ORD) token best – 0.442 0.236 0.262

average – 0.430 0.214 0.239
Adding NE (NRP) token best – 0.440 0.247 0.252

average – 0.420 0.193 0.247
Adding NE (GPE) token best – 0.429 0.220 0.251

average – 0.418 0.186 0.247
Modifying hidden states best – 0.455 0.257 0.280

average – 0.435 0.238 0.253

Table 3: Matthews’s Correlation Coefficient (MCC) between predictions and gold labels using different methods
on development set, trained on XLM-RoBERTa-base model. “Best” and “average” stand for the highest score and
average score of three runs respectively. The bold numbers are the best result for the average of three runs in that
language pair. For En-Cs, we only experiment on two cases due to lack of feature availability for Czech.

test set in Section 3.2 which is produced by Mono-
TransQuest using pretrained XLM-RoBERTa-base
model with batch size of 128, learning rate of 2e-5,
and a linear learning rate warm-up ratio of 10%, all
the other scores (including baseline score on dev
set in Section 3.1) are produced using following hy-
perparameters: 64 for batch size, 2e-5 for learning
rate, 30% for the warm-up ratio.

3.1 Results on Dev Set

As described in Section 2.2, we explore nine fea-
ture types: source and target toxicity, source and
target sentiment and 7 types of source and target
named entities. We trained our model using the
first approach (adding special token) for each of
the nine feature types and the second approach
(modifying hidden states) for named entities only.
For each method or feature, we run the model for
three times with different seeds and report average
performance, as well as the performance of the best
of the three models. The results on the development
set are shown in Table 3.

The results follow our expectation that En-De
could achieve the highest MCC score among the
four language pairs as the training set of En-De is
more balanced, compared to other three language
pairs. Meanwhile, En-Ja has the lowest MCC score,
as the dataset is the most imbalanced. The results

also show that adding a weighted sampler to deal
with imbalanced data improves the models’ perfor-
mance in most cases. As for the additional features,
some of them are useful, but it depends on the lan-
guage pair. For example, the toxicity feature can
improve the score in En-De but cannot improve per-
formance in En-Ja and En-Zh, while the sentiment
token is helpful in En-Ja and En-Zh but not boost
the score in En-De.

We note that the results may be affected by fluc-
tuations because of different random seeds. Some-
times multiple runs of the same case will produce
fairly different results. This is a general problem
of neural models for QE as well as other tasks and
requires further investigation. For example, the re-
sults of three runs of adding NE (NRP) feature in
En-Ja vary a lot. The best score from the three runs
is 0.247 which is over the baseline score, but the
average score is 0.193 which is largely below the
baseline.

3.2 Results on Test Set

We use ensembling to produce final results. The dif-
ferent models to ensemble are trained using differ-
ent features, and hence focus on difference types of
errors, thus potentially leading to different predic-
tions. Not all these models lead to improvements
over the base (no features) model; in fact, adding
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some features decreases the performance for some
languages. Therefore, we tested ensembles of mod-
els with all feature and ensembles of only models
with features which achieve higher score on the
development set in our ablation experiments (Table
3). We found that ensembling all models leads to a
lower score than ensembling the best few models.

In our experiments, ensembling models with bet-

ter performance than the base model improves the
results of all languages except En-De. For that
language pair, the best result is achieved by only
adding NE (DAT) token to the XLM-RoBERTa-
large base architecture. The final results of submis-
sion for CED shared task and ranks are shown in
Table 4.

Method En-Cs En-De En-Ja En-Zh
Baseline 0.388 0.397 0.214 0.187
Ours 0.473 (2nd) 0.498 (2nd) 0.314 (2nd) 0.305 (4th)
(gjiang) reached by ensembling following: reached by single model: reached by ensembling following: reached by ensembling following:

• 4 × baseline models (base) • 1 × NE (DAT) model (large) • 1 × baseline models (base) • 1 × baseline models (base)
• 1 × baseline model (large) • 1 × NE (CRD) model (base) • 2 × SEN models (base)

• 1 × TOX model (large) • 1 × TOX model (base)
• 1 × baseline model (large)
• 1 × NE (DAT) model (large)
• 1 × TOX model (large)

Table 4: Final results and ranks of CED shared task in WMT 2021. These results can also be found on CodaLab
result page where the name of our team is gjiang. The metric in the table is Matthews’s Correlation Coefficient
(MCC) between predictions and gold labels. Below our score for each language pair is the model(s) that we
used to achieve this score. “(base)” and “(large)” denotes this model is trained using XLM-RoBERTa-base and
XLM-RoBERTa-large respectively.

Source YOU SUCK IT!!! AS YOU’RE USED TO SUCK PHALLUS, NAZI HINDUIST LIKE HITLER!!!
Translation 你吸了它,就像你以前吸过帕卢斯一样,纳西迷人就像希特勒一样!
Baseline label NOT
Our label ERR
True label ERR
Analysis The source sentence is toxic and has negative sentiment. But the sentiment of translation is positive.

Therefore, there is a deviation in sentiment between source and translation and this is a critical error.
Source Upon further research I have found irrefutable proof that he got the nickname for the masterful way he

cleaves beavers with his massive member.
Translation 经过进一步的研究,我发现了不可否认的证据,那就是他用他巨大的成员把贝弗切开的巧妙方

法获得了绰号。
Baseline label NOT
Our label ERR
True label ERR
Analysis The source sentence is not toxic and the sentiments of both sentences are neutral. However, the machine

translator mistakenly regards “beavers” as a name and produce a name in Chinese, which is detected by
spaCy. The translation introduces one named entity which does not exist in source sentence. Therefore,
this is a critical error.

Source REDIRECT Talk:Historical Archive of the City of Cologne
Translation 主题演讲: 科隆市历史档案
Baseline label NOT
Our label ERR
True label NOT
Analysis In this case, spaCy does not report “Cologne” as a named entity in source sentence, but in translation it

reports the city name in Chinese as a named entity (GPE). Therefore, our model regards the translation
introduces a new named entity. There is a deviation in named entities between source and translation
and this is mistakenly classified as a critical error.

Source Goanikontes is an oasis is hidden within the Goanikontes Region.
Translation 戈亚尼科恩特是戈亚尼科恩特地区内的一个绿洲。
Baseline label NOT
Our label ERR
True label NOT
Analysis Similarly to previous case, spaCy correctly detects “Goanikontes” as a location name, but in translation

spaCy mistakenly reports the corresponding location name in Chinese as person’s name. Hence, our
model thinks there is a deviation in named entities and predicts this case to a critical error. The mistakes
from APIs are likely to lead the model to give wrong predictions.

Table 5: Case study: comparison of baseline predictions and our ensembled predictions in En-Zh
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3.3 Qualitative Analysis

We conducted manual inspection on En-Zh in an
attempt to understand whether the additional fea-
tures actually contribute to better performance. The
choice of the language pair that we analysed was
determined by the availability of understanding
languages in both sides. We compared our final
submitted predictions on test set with the baseline
predictions. We found that, compared to the base-
line result, our final model predicts more ERR la-
bels. 82 out of 1000 samples’ label in test set
are flipped from NOT to ERR, among which 35
samples are correct change (from false negative to
true positive), 47 are incorrect (from true negative
to false positive). We give some examples in Ta-
ble 5 to compare our predictions with the baseline
results. These examples show that feature engi-
neering actually pushes the model to predict more
ERRs. Overall this improves the performance to
some extent, but is subjected to the correctness of
the feature extractor. Inaccurate results from APIs
will give the model wrong information and limit
the improvement of performance of our models.

4 Conclusions

This paper describes our submission to sentence-
level CED task in WMT21. Our work extends the
baseline MonoTransQuest architecture by explor-
ing feature engineering and model ensembling, as
well as weighted sampling to deal with imbalanced
datasets. Potentially due to the skewed distribu-
tion of labels in the dataset, the model performance
varies substantially over different runs. However,
our results averaged over multiple random seeds
show that our feature engineering and ensembling
lead to large improvements over the baseline. Our
official submission achieves the 2nd position in En-
Cs, En-De, En-Ja, and the 4th postion in En-Zh.
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Abstract

This paper describes Papago’s submission
to the WMT 2021 Quality Estimation
Task 1: Sentence-level Direct
Assessment. Our multilingual Quality
Estimation system explores the combination
of Pretrained Language Models and Multi-
task Learning architectures. We propose an
iterative training pipeline based on pretraining
with large amounts of in-domain synthetic
data and finetuning with gold (labeled) data.
We then compress our system via knowledge
distillation in order to reduce parameters yet
maintain strong performance. Our submitted
multilingual systems perform competitively
in multilingual and all 11 individual language
pair settings including zero-shot.

1 Introduction

Quality Estimation (QE) evaluates the quality of
machine translated output without human refer-
ence translation (Blatz et al., 2004). QE has a
variety of applications in the Machine Translation
(MT) pipeline and is particularly useful in indus-
try settings by informing translation quality to end-
users. High performance in sentence-level QE (Spe-
cia et al., 2020) is achieved by building a model
on top of Pretrained Language Model (PLM);
XLM-RoBERTa-large (Conneau et al., 2020) per-
forms particularly well as shown in previous WMT
sentence-level QE Shared Task. However, such
PLMs contain extremely large number of param-
eters. This year’s task is different from the pre-
vious years’ task as submitted systems are ranked
based on both model size1 and model performance2.
For concurrent work Gajbhiye et al. (2021) applies
knowledge distillation (Hinton et al., 2015) from
a PLM-based QE architecture to a much lighter

1Disk space without compression and number of parame-
ters.

2Pearson’s correlation coefficient, root mean square error
(RMSE), mean absolute error (MAE).

BiRNN-based architecture, reducing memory re-
quirements. Data scarcity is another issue relevant
to QE tasks where there are often limited amount
of gold training data. Previous WMT systems in-
corporate data augmentation techniques and show
improvements in model performance when training
with additional sources of data (Baek et al., 2020;
Ranasinghe et al., 2020a).

Our system builds a model on top of PLM and
trains with Multi-task Learning (MTL) (Caruana,
1997). Similar to Hoang et al. (2018); Zhang
et al. (2018) where back-translation is iteratively
applied to the same monolingual corpus to succes-
sively generate higher quality synthetic training
data in the context of Neural Machine Translation
(NMT), our proposed approach consists of an it-
erative knowledge transfer procedure which aims
to repeatedly produce better quality pseudo labels
for large amounts of synthetic training data. Dur-
ing the final stage of our training pipeline, knowl-
edge distillation is applied from teacher to student
model in order to reduce model size while main-
taining competitive performance. We participate
in WMT 2021 Quality Estimation (Specia et al.,
2021) Task 1 for multilingual and all individual
language pair settings. Our system is a single mul-
tilingual sentence-level QE model that performs
very strongly in both multilingual and individual
language pair settings.

2 Data

In this year’s task, participants are provided
with 7K train set (Train), 1K development set
(Dev), and 1K test set (Test20) for 7 language
pairs: high-resource English-German (En-De)
and English-Chinese (En-Zh), medium-resource
Romanian-English (Ro-En) and Estonian-English
(Et-En), and low-resource Sinhalese-English (Si-
En) and Nepalese-English (Ne-En), as well as
Russian-English (Ru-En). The source side sen-
tences of language pairs excluding Ru-En are col-
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lected from Wikipedia data; the source side sen-
tences of Ru-En is collected from a combination
of Wikipedia articles and Reddit articles. Target
side sentences are collected by translating source
side sentences using NMT models and each sen-
tence pair is annotated by at least three professional
translators with a score between 0-100 according
to the perceived translation quality. Systems are
required to inference z-standardized direct assess-
ment (DA) scores for 1K blind test set for each lan-
guage pair. This year’s task also include zero-shot
scenario for 4 new language pairs: English-Czech
(En-Cs), English-Japanese (En-Ja), Pashto-English
(Ps-En), and Khmer-English (Km-En). As addi-
tional resource, participants are also provided with
parallel data used to train NMT models (except
for Ru-En and zero-shot language pairs) and NMT
models used to generate target side sentences of
the dataset.

3 Approach

Figure 1 summarizes our approach. Below we
describe relevant components to our sentence-level
QE model.

3.1 Base Model Architecture

Our QE model stacks feed-forward layers on top of
feature vector extracted from Pretrained Language
Models (PLM). Our choices of PLM are XLM-
RoBERTa-base (L = 12) and XLM-RoBERTa-
large (L = 24). Given source sentence srcX in
language X and target sentence tgtY in language
Y , the concatenation of srcX and tgtY are fed as
input to the PLM and feature vector CLScat is
produced by taking the concatenation of [CLS] rep-
resentations from all layers of the PLM; our feature
vector is based on using [CLS] token representation
due to its superior performance over other pooling
strategies (Ranasinghe et al., 2020b; Fomicheva
et al., 2020). QE model f predicts direct assess-
ment scores as follows:

f(srcX , tgtY ) = Wscore · LeakyReLU(

W2 · LeakyReLU(

W1 · CLScat + b1) + b2)

(1)

where Wscore ∈ R1×512, W2 ∈ R512×2048, b2 ∈
R, W1 ∈ R2048×N , b1 ∈ R, and N is XLM-
RoBERTa’s hidden dimension size (1024) times
number of layers (L).

Figure 2: The network architecture for Multi-task
Learning (§3.2) with XLM-RoBERTa as PLM. Con-
catenation of source and target sentences (with special
tokens) are tokenized and fed as input to the PLM.
Numbers in parenthesis denote the output dimension
size of each network block.

3.2 Multi-task Learning (MTL)
We train our QE model in multi-task fashion by
adding a classification objective to the base model
architecture (§3.1). As shown in Figure 2, a clas-
sification layer Wclass, where Wclass ∈ R10×512,
is stacked next to Wscore in equation (1). Given
the nth train set sample’s z-standardized DA score
scoren, we scale scoren by applying min-max nor-
malization and assign bin (class) labels to each
sample. For our experiments, the number of bins is
set to 10. Note that min-max scaling is applied to
each language pair data set in order to account for
different scales of scoren per data set. The model
is trained with a combined loss of mean squared
error and cross entropy loss as shown in equation
(2), with λ set to 0.6. Our intuition is that QE is
inherently a complex task even for humans such
that human-labeled DA scores may contain noise.
We expect that training with an auxiliary classifica-
tion loss, where bin labels are less susceptible to
noise, can make training more robust and produce
a model that is more generalizable.

L = λ · Lmse + (1− λ) · Lce (2)

3.3 Data Augmentation
We create large amounts of synthetic direct assess-
ment samples for 7 language pairs (non zero-shot)
using parallel data and NMT models which both
are provided as additional resource. For data aug-
mentation, we utilize source side sentences from
parallel data. We sub-sample from parallel data
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Figure 1: Pipeline of our proposed approach. Gold refers to Train set provided by task organizers (§2). Pseudo
refers to synthetic sentence pairs generated as described in §3.3, while labels for Pseudo are created as described
in §3.4. Phase 2 and Phase 3 each refer to §3.4 and §3.5 respectively. Model A and Model B each refer to
large and small models in terms of model size. In our experiments, the architecture for Model A is a base model
architecture (§3.1) with MTL (§3.2) using XLM-RoBERTa-large as PLM, which we denote as Baselarge + MTL;
Model B instead uses XLM-RoBERTa-base as its PLM and we denote it as Basesmall + MTL.

Language # parallel data # sampled
En-De 19,298,476 400,000
En-Zh 15,178,232 400,000
Ro-En 3,901,626 400,000
Et-En 879,922 400,000
Ne-En 498,272 73,207
Si-En 646,781 400,000
Ru-En 12,061,155 400,000

Table 1: Number of parallel data provided in
WMT2021 Task 1 and number of synthetic sentence
pairs sampled as augmented data. For Ru-En, we col-
lect parallel data from the Commoncrawl dataset.

for each language pair such that the distribution of
sampled source sentences follows the distribution
of source side sentences of gold data (§2) in terms
of sentence length; this is to reduce the discrepancy
between actual data and synthetic data. We then
forward-translate source side sentences to target
using provided NMT models to collect approxi-
mately 2.4M pseudo sentence pair data which are
used as additional training resource. Table 1 shows
the total amount of parallel data provided and the
amount of synthetic sentence pairs generated. We
describe how pseudo labels for synthetic data are
created in the next section (§3.4).

3.4 Iterative Knowledge Transfer (IKT)

Given a QE model that is initially trained only on
gold data (refer to Phase 1 in Figure 1), iterative
knowledge transfer aims to produce higher qual-
ity training signals or pseudo labels for synthetic
data by iteratively performing pretraining and fine-
tuning as shown in Phase 2 in Figure 1. For

pretraining, the model is always initialized with
random weights (PLM weights are loaded from
HuggingFace3) and is trained using synthetic di-
rect assessment sentence pair data collected from
§3.3. Pseudo labels for synthetic data in the current
iteration are created with score predictions from
model trained in the prior phase or iterative step.
The aim of pretraining is to expose our model to
large amounts of in-domain synthetic training data
with sub-optimal labels. Similar to Sellam et al.
(2020), the key aspect of the pretraining technique
is to "warm up" the model before finetuning on
gold data. At the start of finetuning, the model is
initialized with parameter weights from the pretrain
stage and is trained only with gold data. Because
psuedo labels for synthetic data are newly gener-
ated for each iterative step in Phase 2, we expect
the quality of "warm up" during pretraining to in-
crease in each successive iteration. We stop the
iterative process when the model’s Pearson’s corre-
lation performance does not improve on Test20;
we empirically find that performance does not im-
prove after the second iteration.

3.5 Knowledge Distillation (KD)
Phase 3 in Figure 1 demonstrates knowledge dis-
tillation from a large to smaller model. Akin to
Phase 2 (§3.4), a 2 stage pretrain-to-finetune
training procedure is conducted and pseudo la-
bels for synthetic data is generated using a teacher
model which is the model produced from the last
iteration of Phase 2. As our results will show,
the compressed model performs on par with our
baseline large model with approximately less than
half the number of model parameters.

3https://huggingface.co/
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Model Data En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En Avg # params

Basesmall (§3.1)
Dev 0.447 0.475 0.841 0.722 0.715 0.631 0.685 0.645

297M
Test20 0.428 0.437 0.843 0.742 0.706 0.611 0.720 0.641

+ MTL (§3.2)
Dev 0.452 0.496 0.847 0.737 0.730 0.639 0.683 0.655

297M
Test20 0.473 0.449 0.854 0.740 0.729 0.625 0.732 0.657

Baselarge
Dev 0.488 0.496 0.891 0.788 0.794 0.703 0.715 0.696

611M
Test20 0.481 0.473 0.882 0.803 0.762 0.664 0.764 0.690

+ MTL
Dev 0.530 0.489 0.901 0.796 0.788 0.706 0.737 0.707

611M
Test20 0.563 0.486 0.892 0.812 0.795 0.667 0.786 0.715

+ IKTiter=1 (§3.4)
Dev 0.550 0.527 0.906 0.809 0.798 0.716 0.751 0.722

611M
Test20 0.543 0.502 0.903 0.814 0.806 0.676 0.791 0.719

+ IKTiter=2
Dev 0.576 0.535 0.910 0.807 0.801 0.714 0.742 0.726

611M
Test20 0.583 0.497 0.901 0.817 0.792 0.678 0.803 0.724

+ KD (§3.5)
Dev 0.523 0.522 0.880 0.773 0.758 0.680 0.712 0.692

297M
Test20 0.544 0.488 0.883 0.770 0.764 0.662 0.756 0.695

Table 2: Pearson’s correlation with human judgments on the Dev and Test20 set. Model names starting with +
sign indicates approaches that are cumulative.

4 Settings

For all training phases and experiments, we train
our model in data parallelism on multiple NVIDIA
Tesla V100 GPUs for 3 epochs with batch size of
8 and is optimized with Adam (Kingma and Ba,
2015) with a learning rate of 7e−6. Dropout (Srivas-
tava et al., 2014) with 0.15 is applied to activation
function outputs in equation 1. Each model vari-
ant is trained 3 times with different random seeds,
and for each model variant the best performing sys-
tem in terms of Pearson’s correlation coefficient is
reported.

All models trained within the scope of this paper
are multilingual QE models. We concatenate the
Train set of each individual language pair to cre-
ate a single multilingual train set for training. We
apply the same for Dev and Test20 set such that
validation, model selection and evaluation can be
performed at a multilingual level.

5 Results

In this section, we present results of our architec-
tures described in §3. Pearson’s correlation co-
efficient between predictions and gold standard
scores is the main evaluation metric to measure
performance; this year’s task also considers model
size to rank systems. Table 2 shows the Pearson’s
correlation with human judgments on the devel-
opment and test set (Dev and Test20). Each
row in Table 2 corresponds to model variants de-
rived from certain phases of the training pipeline
as described in Figure 1. We first observe that in-

corporating MTL (§3.2) improves over both our
small baseline model Basesmall and large base-
line model Baselarge with respect to all language
pair settings. We observe further improvements
in performance using Iterative Knowledge Trans-
fer (§3.4) where the average performance of sec-
ond iterative model Baselarge+MTL+IKTiter=2 is
better than the first iterative model. Comparing
Baselarge+MTL+IKTiter=2 to our large baseline
model Baselarge, the average performance gain is
3.4 percentage point but gain with respect to indi-
vidual language pairs varies, with 10.2 percentage
point increase for En-De being the greatest.

Our final compressed model
Baselarge+MTL+IKTiter=2+KD not only out-
performs Basesmall+MTL in all language pairs
but also outperforms our large baseline model
Baselarge in 4 out of 7 language pair settings with
less than half the number of model parameters.

Table 3 compares performance between
the organizer’s baseline model and two
of our submitted systems. We submit
two systems: Baselarge+MTL+IKT and
Baselarge+MTL+IKT+KD. Systems can be
evaluated on two ranking schemes: R1 indicates
overall ranking4 which considers both model
performance and size, while R25 ranks systems
based only on model performance. As shown

4Overall ranking is computed by taking the average of in-
dividual ranks of the following metrics: Pearson’s correlation
coefficient, root mean square error, mean absolute error, disk
space without compression and number of parameters.

5Ranking scheme based on Pearson’s correlation coeffi-
cient
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+ IKT (§3.4) + KD (§3.5) Organizer’s
Pearson R2 Pearson R1 Pearson

Multi 0.6577 4th 0.6132 3rd 0.5411
En-De 0.5677 3rd 0.5511 2nd 0.4025
En-Zh 0.5668 4th 0.5534 3rd 0.5248
Ro-En 0.9008 2nd 0.8786 3rd 0.8175
Et-En 0.7941 4th 0.7588 3rd 0.6601
Ne-En 0.8530 4th 0.8233 3rd 0.7376
Si-En 0.5947 3rd 0.5819 1st 0.5127
Ru-En 0.7927 2nd 0.7436 4th 0.6766
En-Cs 0.5722 4th 0.4969 5th 0.3518
En-Ja 0.3315 4th 0.2755 5th 0.2301
Ps-En 0.6368 2nd 0.5816 3rd 0.4760

Km-En 0.6616 2nd 0.6251 6th 0.5623
# params 611M 297M 281M

Disk space 2,503MB 1,249MB 1,142MB

Table 3: Submission results on the Test21 blind set. +IKT refers to model from either row 5 or 6 of Table 2;
+KD refers to model from row 7 of Table 2.

Supervised Zero-shot
En-De En-Zh Ro-En Et-En Ne-En Si-En Ru-En En-Cs En-Ja Ps-En Km-En

∆ Pearson -0.016 -0.013 -0.022 -0.035 -0.029 -0.012 -0.049 -0.075 -0.056 -0.055 -0.036
∆ RMSE +0.007 +0.019 +0.034 +0.039 +0.040 +0.022 +0.043 +0.017 +0.011 +0.032 +0.064
∆ MAE +0.007 +0.020 +0.034 +0.040 +0.040 +0.023 +0.043 +0.017 +0.012 +0.033 +0.064
% ∆ Pearson -2.8 -2.3 -2.4 -4.4 -3.4 -2.1 -6.1 -13.1 -16.9 -8.6 -5.5
% ∆ RMSE +1.2 +3.0 +8.6 +7.6 +7.6 +2.9 +7.5 +2.2 +1.2 +4.3 +7.3
% ∆ MAE +1.2 +3.2 +8.6 + 7.8 +7.6 +3.0 +7.5 +2.2 +1.4 +4.4 +7.8

Table 4: Changes in performance on the Test21 blind set when transitioning from +IKT (before compression) to
+KD (after compression). Supervised indicates 7 language pairs that are provided in Train, Dev and Test20;
Zero-shot indicates 4 zero-shot language pairs that are only evaluated with Test21 blind set. ∆ metric (row
1 to 3) measures the change in performance; % ∆ metric (row 4 to 6) measures the percentage change.

in Table 3, when ranking systems based purely
on performance (R2), Baselarge+MTL+IKT
performs strongly. However, when systems are
ranked based on both performance and size (R1),
our compressed model Baselarge+MTL+IKT+KD
ranks very competitively. Moreover, our com-
pressed model outperforms the organizer’s baseline
in all language pair settings with a great margin
using approximately 5.7% more parameters.

We observe in Table 3 that our compressed
model is relatively less competitive under zero-
shot than in supervised settings when ranked based
on R1. As demonstrated in Table 4, model com-
pression causes performance degradation in all lan-
guage pairs with respect to all three performance
metrics. In particular, the amount of degradation in
terms of Pearson’s correlation coefficient is greater
under zero-shot than in supervised settings. Inter-

estingly, this trend does not apply to other perfor-
mance metrics (RMSE, MAE) where the amount
of degradation under zero-shot and supervised set-
tings is not significantly different. This indicates
that model compression degrades the strength of
correlation particularly more under zero-shot than
in supervised settings, while degradation in per-
formance measured by magnitude of error is not
significantly different between two settings.

6 Conclusions

In this paper, we describe our submission to
the WMT 2021 Quality Estimation Task 1:
Sentence-level Direct Assessment.
We introduce a QE model architecture trained with
multi-task objective and show improvements in
performance. We show that iterative knowledge
transfer techniques applied in QE tasks can further
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improve model’s performance and demonstrate
that knowledge distillation is effective for building
a competitive lighter-weight QE model, making
it more suitable for practical use. Although our
submitted systems show strong performance in
general, we observe that our compressed model be-
comes relatively less competitive under zero-shot
settings. Further analysis of this phenomenon and
improvements on zero-shot are challenges that we
need to overcome in future work.
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Abstract

This paper presents the NICT Kyoto submis-
sion for the WMT’21 Quality Estimation (QE)
Critical Error Detection shared task (Task 3).
Our approach relies mainly on QE model pre-
training for which we used 11 language pairs,
three sentence-level and three word-level trans-
lation quality metrics. Starting from an XLM-
R checkpoint, we perform continued training
by modifying the learning objective, switch-
ing from masked language modeling to QE
oriented signals, before finetuning and ensem-
bling the models. Results obtained on the
test set in terms of correlation coefficient and
F-score show that automatic metrics and syn-
thetic data perform well for pretraining, with
our submissions ranked first for two out of four
language pairs. A deeper look at the impact of
each metric on the downstream task indicates
higher performance for token oriented metrics,
while an ablation study emphasizes the use-
fulness of conducting both self-supervised and
QE pretraining.

1 Introduction

This paper describes the NICT Kyoto submission to
the WMT’21 Quality Estimation (QE) shared task.
We participated in Task 3 “Critical Error Detection”
involving four language pairs, namely English–
Chinese, English–Czech, English–Japanese and
English–German. A critical error is defined as
a translation error falling into one of the follow-
ing five categories: toxicity, health or safety risk,
named entity, sentiment polarity and number or
unit deviation.1

The objective of the task is to classify a sequence
pair, composed of a sentence in the source language
and its automatic translation in the target language,
in a binary fashion whether it contains or not at
least one of the five types of critical errors. This

1More details about these categories and the task it-
self can be found here: http://statmt.org/wmt21/
quality-estimation-task.html

task differs from the other QE tasks as not all trans-
lation errors should be detected but only critical
ones. Labels were produced by majority vote over
three annotators for each pair leading to two pos-
sible classes: ERR (or class 1) when at least one
critical error is spotted and NO (or class 0) when
no critical errors are present.

Our approach relies mainly on QE model pre-
training leveraging a large amount of synthetic data
produced using parallel corpora and MT systems.
Because annotating translations for critical error is
costly, we propose to pretrain a model on transla-
tion quality scores computed with automatic met-
rics. To capture multiple translation error gran-
ularities during pretraining, we employ multiple
metrics and evaluate their performance individu-
ally on the downstream task. Additionally, we pre-
train the QE model jointly on all WMT QE shared
tasks language pairs as a data augmentation method.
Transfer learning is then conducted for each lan-
guage pair by finetuning the pretrained model on
the downstream task with the officially released
training data annotated with critical errors.

The remainder of this paper is organized as fol-
lows. In Section 2, we introduce our approach
involving multimetric and multilingual pretraining.
In Section 3, the data, tools and training proce-
dure are presented, followed by the experimental
results and their analysis in Section 4, before the
conclusion in Section 5.

2 Multimetric & Multilingual
Pretraining

Multilingual pretrained masked language models
(LMs) were shown to perform well in several down-
stream natural language processing tasks (Devlin
et al., 2019; Conneau et al., 2020; Liu et al., 2020).
Starting from an XLM-R checkpoint (Conneau
et al., 2020), we performed continued (or inter-
mediate) training (Phang et al., 2018; Rubino and
Sumita, 2020) with large amount of automatically
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translated source language texts (thereafter called
synthetic data), replacing the masked LM objec-
tive with QE oriented ones. Because XLM-R is
multilingual and all languages in this model share
a common vocabulary of sub-words, we decided to
conduct QE pretraining on the 11 language pairs
from all subtasks of WMT’21 QE. These language
pairs all share English, whether on the source or
target side, and this method can be seen as a data
augmentation approach to increase vocabulary cov-
erage.

The objective of QE Task 3 is to classify sen-
tence pairs in a binary fashion. Formally, given a
source sequence s and its translation t, we want to
learn a function f : fθ(s, t)→ y where y ∈ {0, 1}
is the class associated with the sequence pair (s, t)
and θ represents the model parameters. While fine-
tuning a pretrained model on the official QE task 3
data allows us to directly learn model parameters
approximating y given (s, t), we do not have such
classes for synthetic data. We decided to use MT
automatic metric scores as objective instead, assum-
ing that critical error classes could correlate with
translation quality scores at least in extreme cases
(e.g. no translation errors also means no critical
errors).

Several automatic metrics are used by the re-
search community to evaluate the performance of
MT systems by measuring translation accuracy
against a human-produced reference at different
granularity levels. We opted for metrics capturing
quality information at the character (chrF (Popović,
2017)), token (TER (Snover et al., 2006)) and to-
ken n-gram (BLEU (Papineni et al., 2002)) levels.
For the latter, the smoothed sentence-level BLEU
was chosen (Chen and Cherry, 2014). In addition to
sentence-level metrics, token-level binary tags were
also extracted following the usual procedure to de-
termine post-editing effort (Specia et al., 2020).2

To allow for sentence-level QE predictions, we
added a feed-forward layer on top of XLM-R for
each of the three metrics employed without param-
eter sharing, following:

ŷs = tanh (φ(h)Ws1 + bs1)Ws2 + bs2 (1)

where ŷs ∈ R1 is the sentence-level score, Ws1 ∈
Rd×d, bs1 ∈ Rd, Ws2 ∈ Rd×1 and bs2 ∈ R1

are parameters of the model with dimensionality
d = 1, 024, φ is a pooling function and h ∈ Rn×d

2Scripts and procedure available at https://github.
com/deep-spin/qe-corpus-builder

is the set of contextual embeddings correspond-
ing to the n tokens in (s, t). The pooling function
is the class token added at the beginning of each
input sequence. For token-level predictions, we
used a linear transformation from contextual em-
beddings to two-dimensional output (for binary
token-level classes): ŷt = softmax (hWt + bt),
with ŷt ∈ Rn×2 are token-level scores, Wt ∈ Rd×2

and bt ∈ R2 are the parameter matrix and bias.
Parameters of the model are learned with mini-
batch stochastic gradient descent based on losses
computed for sentence-level and token-level predic-
tions. For the former loss, we used mean squared
error, while cross-entropy was used for the latter.
All losses are linearly summed with equal weights
before back-propagation. The parameters of the
classification and regression heads are optimized
along with XLM-R.

3 Data and Tools

This section presents the data used in our experi-
ments, including the synthetic data produced for
pretraining and the official QE task 3 corpora, along
with the tools required to train our models and the
procedure employed for both pretraining and fine-
tuning.

3.1 Datasets

In order to gather as much data as possible for many
language pairs, we collected all parallel data from
the QE shared tasks (from all subtasks). Addition-
ally, we retrieved parallel data from the WMT news
translation task (Barrault et al., 2020) and from
OPUS (Tiedemann, 2016).3 The source side of
these parallel corpora was translated using publicly
available neural MT models based on the Trans-
former architecture (Vaswani et al., 2017). For
Estonian–English (et–en), Nepalese-English (ne–
en), Romanian–English (ro–en), Russian–English
(ru–en), Sinhala–English (si–en), English–German
(en–de) and English–Chinese (en–zh), we used the
MT systems made available by the shared task orga-
nizers,4 while for English–Czech (en–cs), English–
Japanese (en–ja), Khmer–English (km–en) and
Pashto–English (ps–en), we used the mBART50

3The corpora from OPUS used in our experiments are:
Common Crawl, ParaCrawl, OpenSubtitles, DGT, IWSLT,
KFTT and XLEnt.

4Links to models available at https://github.com/
facebookresearch/mlqe/blob/master/nmt_
models/README-models.md
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Lang. Token Type
src tgt Sent. src tgt src tgt

Synthetic Data (pretraining)
en cs 14.1M 244.4M 220.2M 2.3M 2.5M
en de 22.3M 477.5M 442.9M 2.5M 4.6M
en ja 3.3M 64.7M 86.7M 1.2M 732.1k
en zh 16.2M 407.2M 350.4M 1.1M 1.1M
et en 14.8M 143.3M 176.8M 2.3M 0.9M

km en 3.7M 47.7M 34.8M 1.3M 480.5k
ne en 0.9M 10.1M 8.5M 307.6k 343.2k
ps en 1.0M 11.6M 10.2M 332.6k 190.3k
ro en 2.3M 55.7M 51.9M 331.7k 261.1k
ru en 5.0M 82.1M 90.1M 1.8M 0.9M
si en 1.4M 17.6M 12.8M 366.7k 344.4k

Official QE Task 3 Data (finetuning)
en cs 7.5k 122.2k 125.9k 23.6k 22.5k
en de 7.9k 127.7k 154.6k 24.7k 19.6k
en ja 7.7k 126.3k 213.7k 24.6k 12.8k
en zh 6.9k 110.7k 122.9k 21.9k 12.9k

Table 1: Number of sentences (Sent.), tokens and types
in the source (src) and target (tgt) corpora used in our
experiments (M stands for millions and k for thou-
sands).

model (Liu et al., 2020; Tang et al., 2020).5

Statistics about the synthetic corpora after trans-
lation are presented in Table 1, along with the offi-
cial QE data for Task 3 released by the shared task
organizers. After deduplicating and cleaning the
synthetic corpora produced to conduct QE pretrain-
ing, the total amount of data reached 72.3M triplets
(source, translation and reference sentences).

3.2 Tools

Data preprocessing was conducted using the to-
kenizer and truecaser from the Moses distribu-
tion (Koehn et al., 2007), except for Chinese,
Japanese, Nepalese and Sinhala, for which the tok-
enization was conducted using jieba,6 KyTea7 and
FLORES (Goyal et al., 2021) respectively.

To compute the sentence-level and token-level
scores, we used automatic metrics implementations
available in the tools SacreBLEU (Post, 2018) for
BLEU and chrF and tercom (Snover et al., 2006)
for TER and token-level classes.

The XLM-R checkpoint used was the xlm-
roberta-large from HuggingFace Transformers li-
brary (Wolf et al., 2020). We used in-house Py-
torch (Paszke et al., 2019) code and V100 GPUs
hardware for QE pretraining and finetuning, 8

5More details about the model available at
https://github.com/pytorch/fairseq/tree/
master/examples/multilingual

6https://github.com/fxsjy/jieba
7http://www.phontron.com/kytea/

GPUs for the former step and 1 GPU for the latter.

3.3 Training Procedure

Model pretraining on synthetic data was con-
ducted for one epoch (approx. 500k updates) with
batches of 128 source and target sequences for a
total training time of 3 days. The AdamW opti-
mizer (Loshchilov and Hutter, 2019) was used with
β1 = 0.9, β2 = 0.999 and ε = 1 × 10−6, while
the weight decay was set to 0. A linear learning
rate warmup was used during the first 50k updates
to reach a maximum value of 5 × 10−6, which
remained without decay until the end of the first
epoch. The dropout rates were set to 0.1 for both
the embeddings and the transformer blocks (feed-
forward and attention layers). A total of four mod-
els were pretrained with different random seeds
before being finetuned on the official QE Task 3
data.

To conduct finetuning, we added a classification
layer on top of XLM-R following:

ŷe = softmax(tanh (φ(h)We1 + be1)We2 + be2)
(2)

where ŷe ∈ R2 is the sentence-level probability
distribution over the two classes, We1 ∈ Rd×d,
be1 ∈ Rd, We2 ∈ Rd×2 and be2 ∈ R2 are param-
eters of the model with d = 1, 024. The pooling
function φ is the same as the one employed during
pretraining presented in Section 2. Due to the class
imbalance of the critical error dataset, we used the
weighted cross-entropy loss function to finetune
our models. The weight given to the error class
(the least populated) was tuned on the validation
set in a grid-search manner, with integer values
ranging from 1 to 8.

During finetuning, which lasted 40 minutes per
model, we used the validation set to select the best
performing models according to the Matthews cor-
relation coefficient (MCC), which is the main met-
ric chosen by the shared task organizers for the final
evaluation. One model per seed was selected and
a total of four models were ensembled to produce
our final submission to the shared task.

4 Results and Analysis

We present in this section the main results obtained
on the official shared task test set as reported by the
organizers, followed by an analysis with ablation
study and various pretraining objectives.
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Lang. MCC F1 ERR F1 NOT F1 Multi

Official Baseline
en–cs 0.3875 0.8992 0.4768 0.4287
en–de 0.3974 0.8484 0.5317 0.4511
en–ja 0.2139 0.9505 0.2439 0.2318
en–zh 0.1873 0.8980 0.2694 0.2419

Our Baseline
en–cs 0.4030 0.8984 0.4985 0.4478
en–de 0.5204 0.8687 0.6495 0.5642
en–ja 0.2523 0.9294 0.3191 0.2966
en–zh 0.2413 0.8667 0.3714 0.3219

Our Ensemble
en–cs 0.5105 0.9132 0.5949 0.5433
en–de 0.5464 0.8767 0.6667 0.5845
en–ja 0.2375 0.9447 0.2896 0.2736
en–zh 0.3109 0.8833 0.4260 0.3763

Table 2: Results obtained on the test set for the
WMT’21 QE shared task, Task 3 “Critical Error De-
tection”. F1 ERR denotes the F-score obtained on the
error class, F1 NOT denotes the F-score obtained on the
non-error class, F1 Multi stands for the multiplication
of F1 ERR and F1 NOT.

4.1 Shared Task Results

The official results reported by the shared task or-
ganizers are presented in Table 2. We compare
our final ensemble results, obtained with four mod-
els trained on different seeds, to our baseline, ob-
tained with a single model. We also include the
official baseline provided by the shared task orga-
nizers. All our submissions outperform the official
baseline and our ensembles reach the highest per-
formance according to the correlation score and
F-measure. One exception, however, is for the
English–Japanese language pair. Despite several
attempts to improve our ensembling method for
this pair, we could not improve over our baseline.

A comparison with other shared task participants
in terms of MCC and F1 scores shows that our sub-
missions were ranked first for English–Czech and
English–German, third for English–Chinese and
sixth for English–Japanese. We assume that the
smaller amount of synthetic data, as well as a pos-
sible preprocessing mismatch between the official
data and our synthetically generated corpora, could
be the reason behind the low performance of the
two latter language pairs. More precisely, the data
preprocessing pipeline for English, German and
Czech are commonly based on the Moses tokenizer
and truecaser, and it is possible to infer the parame-
ters used with these tools by looking at the official
training data released for the task. For Chinese and
Japanese, however, due to the lack of details given

Lang. MCC F1 ERR F1 NOT F1 Multi

No Checkpoint
en–cs 0.3844 0.4847 0.8996 0.4360
en–de 0.3796 0.5575 0.8219 0.4582
en–ja 0.1963 0.2047 0.9461 0.1937
en–zh 0.2461 0.3513 0.8948 0.3143

No QE Pretraining
en–cs 0.4728 0.5593 0.9132 0.5107
en–de 0.5182 0.6192 0.8804 0.5451
en–ja 0.2999 0.3439 0.9441 0.3247
en–zh 0.3649 0.4633 0.8897 0.4122

Checkpoint + QE Pretraining
en–cs 0.5271 0.6000 0.9266 0.5560
en–de 0.5501 0.6615 0.8829 0.5840
en–ja 0.3286 0.3497 0.9499 0.3322
en–zh 0.3833 0.4784 0.8905 0.4260

Table 3: Results obtained on the WMT’21 QE Task 3
“Critical Error Detection” validation set. All results are
obtained with ensemble of 4 models. No Checkpoint
denotes QE pretraining of randomly initialized XLM-
R without usual masked LM pretraining, followed by
finetuning, No QE Pretraining denotes direct finetun-
ing of an XLM-R checkpoint on the official task spe-
cific training data, Checkpoint + QE Pretraining is our
submission to the shared task based on XLM-R and QE
pretraining with finetuning.

by the shared task organizers, it was not possible
to use the same preprocessing tools and parameters
with certainty.

4.2 Impact of Pretraining Steps

While our approach relied on a two-step process,
QE pretraining on synthetic data followed by fine-
tuning on the task specific training set, we still
made use of a pretrained XLM-R model by initi-
ating QE pretraining from a checkpoint. Overall,
three steps are thus required to obtain the results
presented in Table 2. XLM-R and QE pretraining,
as well as producing synthetic data, are the most
computationally expensive steps, whereas finetun-
ing is relatively cheap to perform due to the small
amount of task specific data. Therefore, we per-
formed an ablation study aiming at evaluating the
impact of each pretraining step and ran two sets of
experiments following the same experimental setup
employed for our main submission to the shared
task.

For the first set of experiments, no pretraining of
XLM-R was conducted, meaning that we did not
start QE pretraining from an existing checkpoint,
but instead randomly initialized XLM-R parame-
ters and ran QE pretraining from scratch (this setup
is noted No Checkpoint). For the second set of
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Lang. MCC F1 ERR F1 NOT F1 Multi

TER pretraining
en–cs 0.4725 0.5605 0.9235 0.5176
en–de 0.5092 0.6378 0.8786 0.5604
en–ja 0.2891 0.3628 0.9490 0.3443
en–zh 0.3284 0.4324 0.9158 0.3960

BLEU pretraining
en–cs 0.4760 0.5629 0.9266 0.5216
en–de 0.4917 0.6290 0.8725 0.5488
en–ja 0.2982 0.3636 0.9513 0.3459
en–zh 0.3442 0.4450 0.9061 0.4032

chrF pretraining
en–cs 0.4200 0.4988 0.9210 0.4594
en–de 0.4122 0.5911 0.8540 0.5048
en–ja 0.2375 0.3163 0.9496 0.3004
en–zh 0.2925 0.3838 0.9242 0.3547

All sentence-level pretraining
en–cs 0.4700 0.5539 0.9258 0.5128
en–de 0.5229 0.6609 0.8726 0.5767
en–ja 0.2982 0.3636 0.9496 0.3453
en–zh 0.3660 0.4639 0.9207 0.4271

All word-level pretraining
en–cs 0.4697 0.5556 0.9172 0.5096
en–de 0.5323 0.6667 0.8728 0.5819
en–ja 0.3100 0.3743 0.9505 0.3558
en–zh 0.3756 0.4688 0.9127 0.4279

All metrics pretraining
en–cs 0.5015 0.5796 0.9289 0.5384
en–de 0.5276 0.6431 0.8779 0.5646
en–ja 0.3131 0.3824 0.9507 0.3635
en–zh 0.3546 0.4391 0.9112 0.4001

Table 4: Results obtained on the WMT’21 QE Task
3 “Critical Error Detection” validation set with single
models (no ensemble) based on various learning objec-
tives used during pretraining. Results in bold indicate
the best MCC scores among the pretraining configura-
tions for a given language pair.

experiments, we finetuned the XLM-R checkpoint
directly on the task specific data, without conduct-
ing QE pretraining. This alleviates the need to
produce large amount of synthetic QE data (this
setup is noted No QE Pretraining). We conducted
an additional set of experiments based on XLM-
R and QE pretraining without finetuning on the
official training set but the obtained results were
subpar compared to the baseline, due to the ran-
domly initialized parameters of the classification
layer (see eq. (2)) which was not tuned for the task
following this configuration. We present the results
of the two ablation experiments in Table 3.

While combining both the use of a pretrained
XLM-R with masked LM and QE pretraining on
synthetic data leads to the best results on the four
language pairs, No QE Pretraining performs bet-
ter than the No Checkpoint configuration. These

results emphasize the usefulness of large self-
supervised LM pretraining. The amount of data
used for QE pretraining is smaller compared to
the large quantity of monolingual and parallel data
used to train xlm-roberta-large, which could be an
explanation for the difference in downstream per-
formances according to the MCC and F1 metrics.

4.3 Impact of Pretraining Objectives

As an additional analysis, we propose to evaluate
the impact of different metrics used as pretraining
objectives on the downstream critical error detec-
tion task. Several independent QE pretraining were
conducted for this purpose: one for each sentence-
level translation quality metrics, one for the combi-
nation of sentence-level metrics and finally one for
word-level metrics which includes source, target
and gap error predictions as described in Section 2.
The finetuning step for each pretrained model is
identical, only the learning objective during pre-
training differs. The results obtained on the vali-
dation set for the critical error detection task are
presented in Table 4.

Based on MCC scores, using sentence-level met-
rics during pretraining is not leading to the best
downstream performance compared to using word-
level metrics or combining both sentence and word-
level quality indicators. From the three sentence-
level metrics used as learning objectives during
pretraining, TER and BLEU outperform chrF. For
English–German and English–Chinese, using word-
level metrics outperforms the combination of all
metrics, while it is the opposite for English–Czech
and English–Japanese. These results show that
the optimal quality indicator for QE pretraining
depends on the language pair and the translation
direction, and should therefore be considered as a
hyper-parameter to be optimized. However, due to
the costly nature of large model pretraining, com-
bining multiple translation quality indicators in a
multi-task learning fashion appears to be an effi-
cient solution, in addition to using masked LM
pretrained model as shown in the results presented
in Section 4.2.

5 Conclusion

This paper presented the NICT Kyoto submission
for the WMT’21 QE Task 3 “Critical Error Detec-
tion”. Our submissions were ranked first for two
out of four language pairs. Our approach relies
mainly on model pretraining with large amount of
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synthetic data, followed by finetuning on the offi-
cial data released for the shared task. We proposed
a novel QE pretraining approach which allows for
a multimetric learning objective based on relatively
cheap to compute MT automatic metrics. An anal-
ysis of each automatic metric used during QE pre-
training shows the complementarity of metrics both
at level of sentences and words. The ablation study
emphasized the usefulness of both self-supervised
and QE pretraining. Future work focuses on ex-
ploring additional metrics and their performance
on various downstream QE tasks.
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Abstract

Quality Estimation, as a crucial step of quality
control for machine translation, has been ex-
plored for years. The goal is to investigate au-
tomatic methods for estimating the quality of
machine translation results without reference
translations. In this year’s WMT QE shared
task, we utilize the large-scale XLM-Roberta
pre-trained model and additionally propose
several useful features to evaluate the uncer-
tainty of the translations to build our QE sys-
tem, named QEMind. The system has been ap-
plied to the sentence-level scoring task of Di-
rect Assessment and the binary score predic-
tion task of Critical Error Detection. In this pa-
per, we present our submissions to the WMT
2021 QE shared task and an extensive set of
experimental results have shown us that our
multilingual systems outperform the best sys-
tem in the Direct Assessment QE task of WMT
2020.

1 Introduction

Quality estimation (QE) aims to predict the qual-
ity of a machine translation (MT) system’s output
without any access to ground-truth translation ref-
erences or human intervention (Blatz et al., 2004;
Specia et al., 2009, 2018). Automatic methods for
QE are highly appreciated in MT applications when
we expect to efficiently obtain the quality indica-
tions for a larget amount of machine translation out-
puts in a short time, or even at run-time. This paper
describes Alibaba’s submissions to the WMT 2021
Quality Estimation Shared Task. We developed a
novel QE system, called QEMind, that have been
applied to two tasks this year, the sentence-level
direct assessment (DA) and binary score prediction
of Critical Error Detection (CED).

Common approaches in the previous years heav-
ily focus on human-crafted rule-based feature engi-
neering mode such as QuEst++ (Specia et al., 2015).

∗ indicates equal contribution.
† indicates corresponding author.

XLM-Roberta  

[CLS] Output

Feed Forward Layer

Output Projection

Scoring for Direct Assessment
or 

Binary Classification for Critical Error Detection 

Source Text Machine
Translation

+
Uncertainty

Features

Figure 1: Structure of the uncertainty quantification
feature-enhanced model.

The features extracted are usually fed into tradi-
tional machine learning algorithms such as a sup-
port vector regression for the sentence-level scor-
ing or a sequence-labeling model with conditional
random fields for the word-level labeling respec-
tively. With the development of neural networks
applied in machine translation and other NLP tasks,
a neural predictor-estimator framework for QE was
proposed and achieved better results in WMT 2017
and WMT 2018 QE shared tasks (Fan et al., 2019;
Kim et al., 2017). This framework extensively re-
quires a pre-training procedure with a large amount
of parallel corpora in the predictor mode and stacks
a downstream estimator mode with additional lay-
ers for a supervised regression or classification task.
Since 2019, state-of-the-art (SOTA) QE systems
(Kepler et al., 2019; Ranasinghe et al., 2020) have
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hit record high with transfer learning by leveraging
SOTA pre-trained NLP neural network models, for
example, mBERT (Pires et al., 2019) and XLM-
Roberta (Conneau et al., 2019). Till then, only
"black-box" QE methods had been mainly used in
WMT QE shared tasks.

Furthermore, with the accessibility to the NMT
systems, some "glass-box" QE features have been
explored and verified to bring improvements upon
"black-box" approaches (Moura et al., 2020). In
addition, Fomicheva et al. (2020) have showed that
useful information that are extracted from the MT
systems performs good correlation with human
judgements of quality. Inspired by these works, we
propose more useful features in this paper, among
which, some are derived from the NMT systems
and others are created via utilizing the masked lan-
guage model of XLM. We develop our QE systems
by incorporating all the features that can poten-
tially evaluate the uncertainty of the machine trans-
lations into a supervised QE model based on the
transfer learning from XLM-Roberta. We evaluate
our method on the Direct Assessment QE tasks of
WMT 2020 and WMT 2021 and our experiment
results demonstrate the efficiency and versatility
of the features we have proposed on the quality
estimation in different language pairs.

2 Task & Data Set

We participate the sentence-level Direct Assess-
ment task and Critical Error Detection tasks of this
year’s QE shared task. (1) For the DA task, we
merge 7000 and 1000 labeled data in the training
and development data sets as our training set and
treat the test20 data set as our development set for
each of the seven language pairs. However, for
the four zero-shot language pairs, we only have
the blind test sets. (2) For the CED task, we ob-
served that the distributions of two classes, NOT
and ERR, are extremely unbalanced for all four
language pairs. Therefore, we simply up-sample
the samples with ERR labels to get a relatively
balanced training set. This strategy of data aug-
mentation has also been empirically verified to be
valid.

3 Methodology

In this section, we provide a complete view of our
uncertainty feature enhanced approach, including:

(1) The overall framework of QEMind is carried
out in Section 3.1: how uncertainty features are

combined with a pre-trained multilingual language
model to enhance transfer learning;

(2) Uncertainty features used in QEMind are
described in Section 3.2: how uncertainty features
are defined and extracted for translation quality
estimation;

(3) Strategies we applied in the WMT QE shared
task to further improve the system’s performance,
such as data augmentation and model ensemble,
are explained in Section 3.3.

3.1 QEMind Framework

QEMind follows the general transfer learning pro-
cedure while allowing extra meta features to en-
hance the model. We concatenate the source text
and machine translation and feed them into the
pre-trained XLM-Roberta model to get the output
representation of the special [CLS] token. After-
wards, the output representation is combined with
the normalized uncertainty features described in
Section 3.2. They are fed into a simple linear re-
gression/classification layer to predict the contin-
uous or binary quality score. The architecture of
our feature enhanced model is shown in Figure 1.
This model is equivalent to TransQuest’s (Ranas-
inghe et al., 2020) when no extra feature is used.
Considering the size of the training set is small, we
have not added extra parameters, such as bottle-
neck adapter layers used in Moura et al. (2020),
to fuse uncertainty features and the output from
XLM-Roberta.

3.2 Uncertainty Features

Fomicheva et al. (2020) proposed several "glass-
box" features extracted from the NMT model. Es-
timating translation quality with these features
achieves state-of-the-art results as an unsupervised
approach. However, the performances of this ap-
proach are still far below those of the supervised
model from transfer learning (Ranasinghe et al.,
2020). Moura et al. (2020) combined limited
"glass-box" features with the hidden state of a
bottle-neck adapter layer attached on the output
from the XLM-Robert, and the results indicate that
these features can bring slight but significant im-
provements to the transfer learning model. Wang
et al. (2021) proposed more unsupervised "glass-
box" and "black-box" QE features and investigated
further on the contributions of each one to the QE
model’s performance via a feature-enhanced super-
vised model.
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Inspired by their work, we explored deeply in the
aspect of uncertainty quantification to obtain uncer-
tainty features in this section to enhance the transfer
learning model. First, we extend "glass-box" fea-
tures in Fomicheva et al. (2020) to the Decoding
Probability Features and the Monte Carlo Dropout
Features. And then, the Noised Data Features are
proposed similar to the Monte Carlo Dropout Fea-
tures.

Decoding Probability Features. For auto-
regressive sequence generating models like Trans-
formers (Vaswani et al., 2017), the decoding proba-
bility at each step can be extracted from the softmax
layer directly in a "glass-box" setting:

P
(x,t,θ)
step = logP (yt|y<t,x, θ) (1)

where x represents the input source text and y is the
output machine translation. Pstep is a probability
sequence with the same length of the generated
sequence y. Three statistical indicators ofPstep can
be used to estimate the uncertainty of the output:
expectation, standard deviation, and the combined
ratio of them:

E(Pstep|x, θ) =
1

T

T∑

t=1

P
(x,t,θ)
step (2)

σ(Pstep|x, θ)

=
√
E(P 2

step|x, θ)− E2(Pstep|x, θ)
(3)

Combo(Pstep|x, θ) =
E(Pstep|x, θ)
σ(Pstep|x, θ)

(4)

Intuitively, larger expectation, smaller deviation
and larger combined ratio of Pstep indicate lower
uncertainty and higher quality. Pstep is an ex-
tended version of the TP feature in Fomicheva
et al. (2020) and the expectation of Pstep is the
same as TP .

Monte Carlo Dropout Features. Monte Carlo
(MC) Dropout sampling, that has been exploited in
Gal and Ghahramani (2016), is an efficient "glass-
box" approach to estimate uncertainty. It enables
random dropout on neural networks during infer-
ence and the predictive probabilities through differ-
ent sampling paths are used to obtain measures of
uncertainty (Fomicheva et al., 2020). The output
sequences ŷ sampled across stochastic forward-
passes by MC dropout with different sampled
model parameters θ̂ can be different as well. If
y is a high-quality output with low uncertainty, the

Monte Carlo sampled outputs ŷ should be close to
y and the variance of ŷ should be low. Hence, two
measurements of sampling based on text similarity
are carried out here:

MC-Sim = Sim(y, ŷi) (5)

MC-Sim-Inner =
1

N

N∑

j=1

Sim(ŷi, ŷj) (6)

where ŷi is the i-th sample of ŷ, and 1 ≤ i ≤ N .
For the similarity score function, as in Fomicheva
et al. (2020), Meteor metric (Denkowski and Lavie,
2014) is applied. Besides, as a sentence-level prob-
ability score, E(Pstep) can also be calculated with
different model parameters θ̂ by MC dropout sam-
pling:

MC-Pstep = E(Pstep|x, θ̂) (7)

The expectation, standard deviation, and com-
bined ratio of MC-Sim, MC-Sim-Inner and
MC-Pstep are calculated over all MC dropout sam-
ples and will be used as "glass-box" uncertainty fea-
tures. Among them, E(MC-Pstep), σ(MC-Pstep),
Combo(MC-Pstep), and E(MC-Sim-Inner)
are equivalent to D-TP , D-V ar, D-Combo, and
D-Lex-Sim in Fomicheva et al. (2020)

Noised Data Features. Monte Carlo Dropout
approaches mentioned above can be regarded as
a robustness test of the NMT model. Due to its
validity in Fomicheva et al. (2020), it is ratio-
nal to believe that a similar way with appropriate
noise in the input of MT may perform comparably.
Therefore, we define the following uncertainty fea-
tures similar to MC-Sim, MC-Sim-Inner and
MC-Pstep. The differences are: (1) the NMT
model weights are fixed θ without MC dropout
sampling; (2) the model decodes translations ỹ
with a noised input x̃.

Noise-Sim = Sim(y, ỹi) (8)

Noise-Sim-Inner =
1

N

N∑

j=1

Sim(ỹi, ỹj) (9)

Noise-Pstep = E(Pstep|x̃, θ) (10)

One crucial point in designing this type of features
is how to generate noised input x̃. One solution is
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Algorithm 1 Generate Noise Input with "Post-
Editing"

Require: input x = {xt|t = 1, 2, ..., T}, hyper-
parameters R, pi, pd.

1: Initialize xmask = x
2: for r = 1, ..., R do
3: xmask = randomly delete tokens from

xmask with probability pd
4: xmask = randomly insert special <mask>

tokens into xmask with probability pi
5: end for
6: x̃ = MLM(xmask), where MLM is a pre-

trained masked language model.
7: return x̃

a "black-box" way that takes the advantage of the
masking strategy of the pre-trained XLM-Roberta.
Basically, we can mask some words in the source
text and get a noised source text by the predictions
from the pre-trained model in the masked positions.
This simple approach only conducts substitutions
on x with the [mask] token, but it limits the di-
versity of the noised sample inputs. To enrich the
variety of x, we adjust the imitation learning algo-
rithm in Wang et al. (2020) to a simplified version
to obtain noised input x̃. We "post-edit" the in-
put x by randomly deleting tokens and inserting
masks for several rounds to get xmask. Then, the
pre-trained XLM-R is used as a masked language
model to predict the tokens in the masked posi-
tions of xmask to get the post-edited x̃. Pseudo
codes of this "post-editing" algorithm is provided
in Algorithm 1.

3.3 Strategies

Multilingual Training. Considering zero-shot lan-
guage pairs in the DA task, we mix up all seven
language pairs’ training data to fine-tune the XLM-
Roberta model and predict on the whole test set
including zero-shot language pairs. We have tried
two different ways of mixing up training data from
different language pairs to fine-tune XLM-Roberta:
(1) source sentence + translation sentence; (2) En-
glish sentence + non-English sentence. Our ex-
perimental results demonstrate that multilingual
models usually perform better than bilingual mod-
els trained on a single language pair, but there is
no prominent difference in performance of the two
different multilingual strategies. We keep both mul-
tilingual models and bilingual models for model
ensemble.

Data Augmentation. Two data augmentation
strategies are applied for the CED task. First, con-
sidering the imbalance between positive and nega-
tive samples in the CED dataset, we up-sample the
data withERR labels in each language pair to obtain
a balanced dataset. Secondly, inspired by exam-
ples provided by the organizer, we have also tried
to replace the original machine translation with a
back-translated sentence and hope that the gap be-
tween the source sentence and the back-translated
sentence can provide insights of the detection of
potential critical errors. The back translations come
from the released ML50 multilingual translation
model (Tang et al., 2020).

Model Ensemble. For the DA task, models
trained with different multilingual strategies and
different uncertainty features are ensembled by av-
eraging predicted scores. While for the CED task,
we average classification probability outputs from
models trained with different data augmentation
strategies and uncertainty features to obtain ensem-
ble results. We apply a greedy ensemble strategy.
First, all models are sorted by their performance on
the development sets. Then, upon the best single
model, we take one more model into the ensemble
at each step until there is no more performance
gain on the development sets or the maximum step
is reached. We set the maximum step to avoid
overfitting on the development sets.

4 Experiments

4.1 Model Settings

We follow the model settings of Transquest (Ranas-
inghe et al., 2020) to fine-tune our QE model based
on the XLM-Roberta large model with a classifi-
cation/regression head on a single P100 GPU. The
training batch size is set to 8 and the training pro-
cess takes about 2 hours to convergence. For the
DA task, the total number of parameters of QE-
Mind with uncertainty features is 560981507; if no
uncertainty features are used, it is 560941571. And
for the CED task, the numbers of parameters with
and without uncertainty features are 560982532
and 560942596 respectively.

4.2 Experiments of DA task

We conduct all experiments and evaluate our model
on last year’s test sets to optimize model config-
urations for each language pair. In particular, the
model performed best on all seven language pairs
in average is selected to generate submissions for
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Model
High-Resource Mid-Resource Low-Resource
En-De En-Zh Et-En Ro-En Ru-En Si-En Ne-En

OpenKiwi (Official Baseline) 0.1455 0.1902 0.4770 0.6845 0.5459 0.3737 0.3860
TransQuest Single 0.4669 0.4779 0.7748 0.8982 0.7734 0.6525 0.7914
QEMind-Bi 0.4463 0.4471 0.7569 0.8961 0.7990 0.6443 0.7988
QEMind-Multi 0.5107 0.4762 0.8031 0.9009 0.7984 0.6775 0.7958
QEMind-Multi + UNC 0.5746 0.5094 0.8156 0.9039 0.8044 0.6843 0.8130

TransQuest Ensemble 0.5539 0.5373 0.8240 0.9082 0.8082 0.6849 0.8222
QEMind Ensemble 0.6054 0.5445 0.8410 0.9173 0.8273 0.7079 0.8374

Table 1: The Pearson’s correlation between model predictions and human DA judges on the WMT 2020 QE test
sets

Model
High-Resource Mid-Resource Low-Resource
En-De En-Zh Et-En Ro-En Ru-En Si-En Ne-En

Official Baseline 0.4025 0.5248 0.6601 0.8175 0.6766 0.5127 0.7376
QEMind Single 0.5281 0.5635 0.7909 0.8954 0.7893 0.5769 0.8406
QEMind Ensemble 0.5666 0.6025 0.8117 0.9082 0.8060 0.5956 0.8667

Table 2: Pearson’s correlations results of 2021 DA task on non-zero-shot language pairs

Model En-Ja En-Cs Km-En Ps-En

Official Baseline 0.2301 0.3518 0.5623 0.4760
QEMind Single 0.3354 0.5456 0.6509 0.6159
QEMind Ensemble 0.3589 0.5816 0.6787 0.6474

Table 3: Pearson’s correlations results of 2021 DA task
on zero-shot language pairs

Model En-Cs En-De En-Ja En-Zh

QEMind 0.3915 0.4629 0.2559 0.2629
QEMind + BK 0.4257 0.4914 0.2471 0.2800
QEMind + UNC 0.4111 0.4859 0.2606 0.2897

QEMind Ensemble 0.4864 0.5257 0.3325 0.3587

Table 4: Matthews correlation results of WMT 2021
CED task on development sets

Model En-Cs En-De En-Ja En-Zh

Official Baseline 0.3875 0.3974 0.2139 0.1873
QEMind-Single 0.4129 0.4257 0.2139 0.2356
QEMind Ensemble 0.4539 0.4797 0.2601 0.2777

Table 5: Matthews correlation results of WMT 2021
CED task on test sets

zero-shot language pairs.
The Pearson’s correlations between our model’s

predictions and the human DA judges (z-
standardized mean DA score) are shown in Table 1.
TransQuest Single and TransQuest Ensemble are
the best single and ensemble models of Ranasinghe
et al. (2020), which is the winner system of last
year’s DA task. QEMind-Bi and QEMind-Multi
are models without uncertainty features, between
which, the difference is that the model is trained on
bilingual data or mixed multilingual data. QEMind-
Multi + UNC is the complete QEMind model en-
hanced by various uncertainty features described
in Section 3.2. Finally, predictions from bilingual
models, multilingual models, and uncertainty fea-
tures enhanced models are ensembled following
Section 3.3, marked as QEMind Ensemble in the
table.

Results on the DA test sets of WMT 2020 show
that: (1) multilingual strategies work well on this
task, especially for high-resource language pairs;
(2) the uncertainty features enhanced multilingual
model achieves the highest performance among all
single models, which verifies that these uncertainty
features are useful to all language pairs and can
be fused in multilingual models. (3) ensemble of
multiple models of different settings can further
improve the performance of QEMind systems.

We pick the best single and ensemble models
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for each language pair and produce predictions on
the newly released blind test sets of WMT 2021,
including the 4 zero-shot language pairs. Results
of Pearson’s correlations are shown in Table 2 and
Table 3.

4.3 Experiments of CED task

We test different strategies and uncertainty features
on the CED development sets. Brief results of
Matthews correlations (MCC) on development sets
are shown in Table 4. All models are trained on
up-sampled training data of each language pair.
From the results observations, compared to QE-
Mind, which only applies up-sampling on the train-
ing data, the strategies of back-translation (QEMind
+ BK) and uncertainty features (QEMind + UNC)
can achieve comparable or better performances.
The ensemble of all these models makes a signifi-
cant improvement. Similar to the DA task, the best
single and ensemble models are picked to generate
our final submissions. Results on test sets of this
year are listed in Table 5.

5 Conclusion

This paper introduces our machine translation qual-
ity estimation model, QEMind, for the sentence-
level Direct Assessment and Critical Error Detec-
tion tasks of WMT 2021. We propose novel fea-
tures to estimate the uncertainty of machine trans-
lations and incorporate them into the transfer learn-
ing from the large-scale pre-trained model, XLM-
Roberta. Besides, three important strategies are
particularly utilized for improving the QE system’s
performance such as multilingual training, data
augmentation and model ensemble. Our system
has achieved the first ranking in average Pearson
correlation across all languages, including the zero-
shot ones in the multilingual DA task of WMT
2021.
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Abstract

The paper presents our submission to the
WMT2021 Shared Task on Quality Estimation
(QE)1. We participate in sentence-level predic-
tions of human judgments (Task 1) and post-
editing effort (Task 2). We propose a glass-
box approach based on attention weights ex-
tracted from machine translation systems. In
contrast to the previous works, we directly ex-
plore attention weight matrices without replac-
ing them with general metrics (like entropy).
We show that some of our models can be
trained with a small amount of a high-cost la-
belled data. In the absence of training data our
approach still demonstrates a moderate linear
correlation, when trained with synthetic data.

1 Introduction

Quality Estimation (QE, Blatz et al., 2004; Spe-
cia et al., 2009) is an essential part of the machine
translation (MT) pipeline, which estimates the qual-
ity of the translation output without relying on any
reference.

Unlike the previous year, three QE sentence-
level tasks were presented in the WMT2021 Shared
Task (Specia et al., 2021). The goal of Task 1
is to predict direct assessments (DA), i.e. human
judgments of translation quality (Graham et al.,
2015), whereas in Task 2, the task is to estimate
the post-editing effort required to obtain a correct
translation which is measured by the HTER metric
(Snover et al., 2006). The goal of Task 3 is to
determine if the translation output contains at least
one critical error.

We propose a lightweight glass-box approach
that can be applied to Task 1 and Task 2. The
approach is based on using the encoder-decoder
attention weight matrices as input features for su-
pervised translation quality estimation. Next we

1http://www.statmt.org/wmt21/
quality-estimation-task.html

describe our approach (Section 2) and evaluate it
experimentally (Sections 3–5).

2 Approach

There are several QE models based on atten-
tion weights of neural MT systems described ear-
lier (Yankovskaya et al., 2018; Fomicheva et al.,
2020a,b). Their main idea is to compute the entropy
of encoder-decoder attention weights for each tar-
get token and then average these entropies to get a
sentence-level metric:

Entropy = −1

I

I∑

i=1

J∑

j=1

αji logαji,

where α represents attention weights, I is the num-
ber of target tokens and J is the number of source
tokens.

Yankovskaya et al. (2018) work with attention
weights extracted from LSTM (Hochreiter and
Schmidhuber, 1997) MT systems. As LSTM has
only one attention matrix, the approach of comput-
ing entropies is straightforward. However, neural
MT models based on Transformer (Vaswani et al.,
2017) have several layers and heads, so the number
of computed entropies equals [Layers× Heads] for
each sentence, which introduces some difficulties
in this approach. To overcome it, Fomicheva et al.
(2020a) summarise entropies by taking the average
or minimum value to get an unsupervised attention-
based QE metric. Fomicheva et al. (2020b) use the
obtained entropies as features of regression models.

In this article, we propose another approach of
using attention weights obtained from Transformer
MT models: instead of summarising them into
one metric, we feed all encoder-decoder attentions
weights into a convolutional neural network (CNN)
to get a QE score. We test the approach in a super-
vised setting, and also show that it can be applied
in a zero-shot scenario when training data for the
required language pair is not available.
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3 Data

This year, three sentence-level tasks are available:
predicting human judgments, post-editing effort
and critical errors. In this work, we have focused
on the first two tasks.
Task 1 and 2 include eleven language pairs,

seven of which have training (7 000 sentences),
development (1 000 sentences) and two test sets
(WMT2020 and WMT2021, 1 000 sentences each).
For the other four languages only test sets (1 000
sentences) are available, which is called the zero-
shot subtask. WMT2020 test set includes gold-
labels whereas WMT2021 is the usual blind test
without labels before submission.

To test our approach, we have focused on two
language pairs with training data: English-German
(En-De) and Estonian-English (Et-En), as well as
one language pair without training data: English-
Czech (En-Cz).

Besides data provided by the shared task or-
ganizers, we used additional parallel corpora to
train CNN networks: the OpenSubtitles (Lison
and Tiedemann, 2016), JRC Acquis (Steinberger
et al., 2006), EuroParl (Koehn, 2005), DGT and
EMEA (Tiedemann, 2012) corpora.

4 Settings

To compare the performance of our approach with
CNN models to a previous baseline, we also ran ex-
periments with models based on machine learning
algorithms with entropies as input features (ML-
Ent).

Below we present the experimental settings
which we used for training ML-Ent and CNN mod-
els.

4.1 Machine Learning models with entropies
as input features (ML-Ent)

There are two machine learning methods that we
used. Random Forest (Ho, 1995) was chosen as a
relatively easy and fast approach. We used the
sklearn2 library, set a randomized search on
the hyperparameters and performed 5-fold cross-
validation.

The second method is ensemble building based
on (Caruana et al., 2004). The main idea be-
hind the method is doing a greedy search over all
trained models to find such models that would im-
prove the ensemble’s performance when added. We

2https://scikit-learn.org/stable

used the mljar3 library, Random Forest and Cat-
Boost (Prokhorenkova et al., 2018) algorithms, set
Pearson as the evaluation metric and ran 5-fold
cross-validation.

For both models and both tasks, we com-
bined the proposed training and development sets
(8 000 sentences in total) and used [Heads ×
Layers] (in our case 48) entropies for each trans-
lation as input.

4.2 CNN-based models

Attention Weights

CNNCNNCNN

AdaMax
Pool

Feed
Forward
Feed

Forward
Feed

Forward

QE score

Figure 1: The proposed architecture of the QE model.

The base architecture of proposed CNN models
is presented on Figure 1. The model’s input is atten-
tion weights with shape ([Heads × Layers],
number of the source tokens, number of the target
tokens). The number of [Heads × Layers]4

is constant for all weights obtained from the same
system, whereas the number of source and tar-
get tokens of each sentence can vary noticeably.
To reduce the amount of padding added to each
batch, we sort all sentences by the number of
source/target tokens (max(src, tgt)) and only after
that form a batch. Each CNN-based model consists
of two or three CNN blocks, each of them com-
prises 2D-CNN, Batch Normalization, MaxPooling
and Dropout Layers. We use Relu as the activa-
tion function. To handle the variable size of input
batches, we use the Adaptive Max pooling layer.
The last block of the model consists of three feed-
forward layers. As a result, the model is trained
to produce the desirable score: DA or HTER. We
optimised our neural models with Adam (Kingma

3https://supervised.mljar.com/
48 × 6 for En-Et and En-De, and 16 × 12 for En-Cs NMT

systems
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En-De Et-En En-Cs
wmt20 wmt21 wmt20 wmt21 wmt21

ML-Ent-RF 0.373 0.301 0.499 0.455
ML-Ent-Ensemble 0.395 0.341 0.517 0.48
CNN-DA 0.22 0.21 0.518 0.464
CNN-BLEURT 0.383 0.357 0.577 0.526 0.299
CNN-BLEURT+ 0.381 0.369 0.599 0.547

Table 1: Pearson correlation coefficients between human DA scores and predicted values for WMT2020 and
WMT2021 test sets (Task 1).

En-De Et-En
wmt20 wmt21 wmt20 wmt21

ML-Ent-RF 0.389 0.519 0.505 0.534
ML-Ent-Ensemble 0.408 0.531 0.519 0.561
CNN-HTER 0.430 0.503 0.580 0.549
CNN-HTERart 0.334 — 0.482 —

Table 2: Pearson correlation coefficients between HTER scores and predicted values for WMT2020 and WMT2021
test sets (Task 2).

and Ba, 2015).
Task 1: To predict DA scores, we considered

three models with different training sets:

CNN-DA: we use human-labelled data provided
by the shared task organizers: 7 000 for train-
ing set and 1 000 for development set;

CNN-BLEURT: we experiment with pre-training
on synthetic data and for that we compute the
BLEURT (Sellam et al., 2020) score for ran-
domly chosen 300 000 sentences and use them
as labels for training and development tests.
We have chosen BLEURT to get artificial la-
bels due to its good agreement with human
judgments (Mathur et al., 2020);

CNN-BLEURT+: we fine-tune the model CNN-
BLEURT on data provided by the organizers.

Task 2 evaluates the proposed QE models for
post-editing purposes.

CNN-HTER: we train a model with data pro-
vided by the shared task organizers;

CNN-HTERart: we use synthetically computed
HTER between translation and reference.
Though the preliminary experiments showed a
poor performance compared to CNN-HTER,
but this setting might be used in the absence
of the human annotated training data.

5 Results

Below we present the obtained results and discuss
the most interesting observations. To assess the
performance of sentence-level QE models, Pearson
correlation coefficient is used.

Table 1 shows results for the Task 1. For
Et-En language pair, both CNN-BLEURT models
show better results compared to ML-Ent models
and CNN model trained only on DA score. For
En-De, results are mixed. The CNN-DA model
shows abysmal performance compared to both
CNN-BLEURT and ML-Ent models. In contrast
to Et-En, we can see that the performance of CNN-
BLEURT and ML-Ent models is comparable.

Results for zero-shot En-Cs are not impres-
sive (Table 1). One of the possible reasons for that
is not using enough synthetic training data: while
there are 300 000 examples for experiments with
En-De and Et-En, we only use 50 000 for En-Cs.

The essential advantage of using CNN-BLEURT
models is that they might be used for zero-shot
settings when a training dataset is not available.
However, the building and tuning of the neural
network is not an easy task compared to ML-Ent
models. The benefits of last ones are relatively
fast training and fewer parameters that need to be
tuned.

Table 2 presents results for the Task 2. We
can see that for both languages, the results of ML-
Ent and CNN-HTER models are pretty similar and
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Figure 2: Pearson correlation coefficient between pre-
dicted values of WMT2020 test set and HTER scores
for Et-En (top) and En-De (bottom) language pairs.

show a moderate correlation. As we mentioned
in the previous chapter, the performance of CNN-
HTERart is not as good as CNN-HTER, that is
why we focus in this chapter only on CNN-HTER
model.

Features of ML-Ent models are identical across
DA- and HTER-models as well as CNN-DA and
CNN-HTER share the same input features. Com-
puted correlation coefficients of HTER- and DA-
models are comparable for Et-En language pair.
Nevertheless, we see a completely different picture
for En-De: coefficients of DA-models are notice-
ably lower compared to HTER-models. As dis-
cussed in (Fomicheva et al., 2020a), the low results

of DA models for En-De language pair might be
caused by highly-skewed distribution of DA scores,
as most translations have high quality scores.

Getting DA scores as well as HTER scores is a
time-consuming and expensive task, so the less
data you need, the better. To examine how la-
belled data we need to train models, we ran 10
tests for each examined amount of data (25%, 50%,
75%) and averaged the obtained correlation coef-
ficients. According to our experiments, both dis-
cussed approaches, ML-Ent and CNN-HTER/DA,
show comparable high performance even with a
small amount of training/validation data. As Fig-
ure 2 shows, the performance of ML-Ent models
for Et-En (top) and En-De (bottom) language pairs
slightly worsens with decreased amounts of train-
ing data. The performance of CNN-HTER models
decreases more noticeably, but still remains quite
high. Especially in case of the En-Et language pair,
all models demonstrate a moderate linear correla-
tion with post-editing effort even with using 2000
training/validation examples (1750 for training and
250 for validation).

Raganato et al. (2018); Voita et al. (2019)
showed that different layers play different roles
in the attention mechanism. To examine it from
the QE point of view, we compared CNN-HTER
models with attention weights extracted from the
first three layers, the last three layers and all six
layers. According to Table 3, the performance of

Et-En En-De
all layers 0.580 0.43
first 3 layers 0.490 0.136
last 3 layers 0.536 0.43

Table 3: Pearson correlation coefficients between pre-
dicted values of WMT2020 test set and HTER scores.
Results of three settings of CNN-HTER model are pre-
sented: with attention weights obtained (1) from all lay-
ers, (2) from the first three layers and (3) from the last
three layers.

the models with last layers is comparable to the
“all layers” models, whereas the difference between
models with first layers and “all layers” models
is more noticeable. While the performance gap
between different models is not so noticeable for
Et-En, then for En-De the difference is significant
and even more, the lower layers do not provide any
“useful” information to the model.
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6 Conclusions

We presented sentence-level quality estimation
models based on attention weights. The proposed
models demonstrated a moderate linear correlation
with human judgments as well as with required
post-editing effort. The described models can be
used as a cost-effective and light-weight QE ap-
proach in the machine translation pipeline. Results
of empirical evaluation show a good performance
even with a small amount of training data, as well
as moderate performance in the absence of training
data (“zero-shot” settings).
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Abstract

We present the joint contribution of IST and
Unbabel to the WMT 2021 Shared Task on
Quality Estimation. Our team participated
on two tasks: Direct Assessment and Post-
Editing Effort, encompassing a total of 35
submissions. For all submissions, our ef-
forts focused on training multilingual models
on top of OpenKiwi predictor-estimator ar-
chitecture, using pre-trained multilingual en-
coders combined with adapters. We further
experiment with and uncertainty-related objec-
tives and features as well as training on out-of-
domain direct assessment data.

1 Introduction

Quality estimation (QE) is the task of evaluating
a translation system’s quality without access to ref-
erence translations (Blatz et al., 2004; Specia et al.,
2018). This paper describes the joint contribution
of Instituto Superior Técnico (IST) and Unbabel to
the WMT21 Quality Estimation shared task (Spe-
cia et al., 2021), where systems were submitted to
two tasks: 1) sentence-level direct assessment; 2)
word- and sentence-level post-editing effort.

This year’s submission combines several ideas
built on top of the OpenKiwi framework. Moti-
vated by the mixture of blind and seen language
pairs in the test sets, we experimented with ex-
tensions that would allow us to train multilingual
models that maintain good generalization ability
and are robust to the presence of epistemic and
aleatoric uncertainty.

For both tasks we trained and submitted an en-
semble of multilingual models. All submitted mod-
els follow the predictor-estimator architecture (Kim
and Lee, 2016; Kim et al., 2017) and use pre-
trained models for feature extraction. Also, we
fine-tune all models on the provided QE data us-
ing stacked adapter layers (Pfeiffer et al., 2020).

∗ The first three authors have equal contribution.

We show that we can thus achieve comparable per-
formance across language pairs while minimising
the number of trainable parameters (see Table 1).
Furthermore, we experimented with different types
of uncertainty-related information to leverage it’s
benefits, improving performance and robustness
of the submitted systems (see §3.1.1). All related
code extensions will be publicly available.

Our main contributions are:

• We build on our OpenKiwi architecture by
exploring adapter layers (Houlsby et al., 2019;
Pfeiffer et al., 2020) for quality estimation
as these demonstrated to be less amenable
to overfitting while presenting the same or
superior quality performance than fine-tuning
the whole base pre-trained model for different
NLP tasks (He et al., 2021).

• We incorporate different types of uncertainty
into our architectures. We make use of the
glass-box features (Fomicheva et al., 2020)
extracted from the NMT models, the aleatoric
(data) uncertainty derived from the human
annotations and the epistemic (model) uncer-
tainty (Hora, 1996; Kiureghian and Ditlevsen,
2009; Huellermeier and Waegeman, 2021)
that originates from the QE model.

• We show that training the QE models on addi-
tional out-of-domain direct assessment (DA)
data gives considerable gains in performance
for the new language pairs from the blind test
sets.

2 Quality Estimation Tasks

In this year’s shared task edition we submitted mod-
els for the first two tasks:

1. Task 1: sentence-level direct assessment

2. Task 2: word- and sentence level post-editing
effort, comprising of two subtasks: a) predict-
ing the HTER score of the translated sentence
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(hypothesis); and b) predicting OK/BAD tags
for the words and gaps (both in source and
translation)

We note that this year, both tasks 1 and 2 pro-
vided additional blind test sets with language pairs
that were not included in the data made available
for training/development, providing an interesting
challenge and motivating multilingual and general-
isable approaches.

3 Implemented Systems

3.1 Task 1
For Task 1 our final submission consisted of an
ensemble of two different multilingual models, that
differ in the way they process the input source (orig-
inal sentence) and hypothesis (machine translation).
Both models are based on the predictor-estimator
architecture, using different pre-trained models to
extract features and different training approaches
to optimise for the QE task.

The key idea explored with our first model (de-
noted by M1 variations in the experiments), re-
volved around pursuing highly generalisable mul-
tilingual models, robust to overfitting. To this
end, we train a cross-lingual transformer (XLM-
RoBERTa (Conneau et al., 2020)) on large, multi-
lingual data with direct assessments and then use
adapters (Houlsby et al., 2019; Pfeiffer et al., 2020)
to adapt to the domain specific data of the QE
task with minimal training effort. In line with
our efforts for good generalisation, we use only
task-specific adapters and refrain from using spe-
cific adapters for each language pair. For these
experiments we build on the OpenKiwi archi-
tecture (Kepler et al., 2019), using a pre-trained
xlm-roberta-large encoder as a feature pre-
dictor. The source and hypothesis sentences are
jointly encoded with hypothesis first. Then, source
and hypothesis features are generated using aver-
age pooling over the hypothesis embeddings and
forwarded to the estimator module which corre-
sponds to a feed-forward layer. Figure 1 provides
the general architecture1

The model was first trained on the direct assess-
ment data provided in the Metrics shared tasks
(Mathur et al., 2020), as described in §3.1.2. Upon
training, the XML-R encoder is frozen and the the
model is fine-tuned on sentence regression with

1Note that glass-box features are integrated but not used in
this submission as they did not significantly improve perfor-
mance.

Figure 1: General architecture of M1 model variations.
Word tag prediction is used only for Task 2.

the task-specific data, using stacked adapters. We
hence manage to maintain a low number of train-
able parameters during fine-tuning and minimize
training time while learning to predict task-specific
sentence scores.

For the second model (denoted by M2-KL-G-
MCD) we aimed to explore the potential of a large
pre-trained multilingual model (trained with MT
objectives). We use the mBART (Liu et al., 2020)
encoder-decoder architecture to encode the source
and force-decode the hypothesis. We specifically
use the mBART50 model (Tang et al., 2020) which
is trained with multilingual finetuning on 50 lan-
guages, including all languages of interest for the
QE 2021 task. We obtain the features by aver-
aging the decoder embeddings and concatenating
with the <eos> token of the sequence. The esti-
mator part of the model consists of a bottleneck
feed-forward layer that reduces the dimensionality
of the decoder output, and is concatenated with a
vector with additional glass-box features from the
NMT models (see §3.1.1). The combined vector is
then forwarded to a feed-forward estimator and the
full model is fine-tuned on the task specific QE data.
Apart from the glass-box features we experimented
further with methods that allow the model to be
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Figure 2: General architecture of M2 model variations.

more robust towards the underlying uncertainty of
its predictions. We elaborate that in the next sec-
tion. Figure 2 provides a general architecture of
the M2 model variations.

3.1.1 Learning from uncertainty
Multiple neural models are involved in the pro-
cess of obtaining and scoring machine translations,
which naturally leads to several sources of uncer-
tainty. These sources can be very informative and
useful for MT evaluation. In this work we try to
consider three types of uncertainty: (1) uncertainty
of the NMT models used to obtain the hypotheses,
(2) data (aleatoric) uncertainty for which we use
the inter-annotator disagreement as a proxy, and (3)
uncertainty of the MT evaluation model itself.

NMT model uncertainty The idea of extract-
ing uncertainty-related features from the MT sys-
tems in order to estimate the quality of their predic-
tions, was originally introduced by Fomicheva et al.
(2020). This glass-box approach to QE is mostly
focusing on capturing epistemic uncertainty, and
the proposed features are extracted either using
Monte Carlo (MC) dropout on the NMT or using
the output probability distributions obtained from
a standard deterministic MT system. In our last
year’s submission (Moura et al., 2020) the integra-
tion of such features proved to be effective, thus
we decided to incorporate it into our new model as
well. We list the extracted features below:

• TP sentence average of word translation prob-
ability

• Softmax-Ent sentence average of softmax
output distribution entropy

• Sent-Std sentence standard deviation of
word probabilities

• D-TP average TP across N(N = 30) stochastic
forward-passes

• D-Var variance of TP across N stochastic
forward-passes

• D-Combo combination of D-TP and D-Var
defined by 1−D − TP/D − V ar

• D-Lex-Sim lexical similarity - measured by
METEOR score (Lavie and Denkowski, 2009)
- of MT output generated in different stochas-
tic passes.

Aleatoric uncertainty The noise and complex-
ity of the training data is a source of predictive
uncertainty in itself, referred to as data or aleatoric
uncertainty (Kiureghian and Ditlevsen, 2009). This
uncertainty is often reflected in the disagreement
between human annotations for the same source-
hypothesis segment (Cohn and Specia, 2013; For-
naciari et al., 2021). We hypothesize that the direct
assessments can be better modelled as normally dis-
tributed scores rather than a single score, and that a
model trained to predict this distribution (mean and
standard deviation) could provide better quality es-
timates 2. We formalise this as a KL divergence ob-
jective, using the closed form solution to estimate
the KL divergence between the target distribution
p(x) = N(µ1, σ1) and the predicted distribution
q(x) = N(µ2, σ2), as shown in Eq. 1.

KL(p||q) = log
σ2
σ1

+
σ21 + (µ1 − µ2)2

2σ22
− 1

2
(1)

where we take the mean and standard deviation
(std) of the direct assessment z_scores as the tar-
get (ground truth proxy) values p. This way, we
account for the annotator disagreement (reflected
in the std value) during learning.

QE epistemic uncertainty We use MC dropout
(Gal and Ghahramani, 2016) to account for the un-
certainty of the QE model. Specifically, we enable
dropout during inference and run multiple forward
runs over each test instance. Thus we obtain a dis-
tribution of quality predictions for each instance

2Note that for this task’s data we only had access to 3
scores per segment so the mean and std values are calculated
over these numbers.
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instead of a single point estimate. We use the es-
timated mean of the distribution as our predicted
quality estimate. MC dropout has been shown to
improve predictive accuracy and perform on par or
even better compared to deep ensembles for MT
evaluation tasks (Glushkova et al., 2021). It thus
allows us to simulate ensembling in a cheap and
effective way, without the need to train multiple
checkpoints.

3.1.2 Out-of-domain direct assessment data

The QE data is relatively limited, making it harder
to train multilingual models with a large number
of parameters without over-fitting. Thus, as ex-
plained in §3.1 we aimed to investigate whether we
could obtain models that generalise better and are
more robust to noise and out-of-distribution data by
training the XLM-RoBERTa model first on a larger
–yet noisier and out-of-domain dataset. To that end
we leverage the data provided for the past Metrics
shared tasks, which covers the language pairs used
in this year’s QE task, including the blind tests for
which we had no in-domain data available. Al-
together, it encompasses 30 language pairs from
the news domain (versus 7 in the QE dataset). We
provide more detailed statistics for each language
pair of the Metrics data in Appendix C. We refer to
experiments using the model initially trained on the
Metrics data as M1M-. We also show that using
the trained XLM-RoBERTa encoder from the M1M
model can prove beneficial for the predictions on
post-edited data of Task 2 (see Table 3).

3.2 Task 2

For Task 2 we submitted an ensemble of two varia-
tions of the first model (M1-ADAPT and M1M-
ADAPT) presented for Task 1 (see §3.1). In
both cases, we use multi-task training and a feed-
forward for each output types: hypothesis word
tags, hypothesis gap tags, source word tags, and
sentence regression (on HTER scores). Both vari-
ations use a pre-trained XLM-RoBERTa (large)
encoder to extract features as described for Task
1, but differ in the training of the encoder. In the
first case we use the pre-trained model 3 and fine-
tune on the QE data using stacked adapters. In the
second variation we swap the original pre-trained
model with the XLM-RoBERTa model that has
been trained on the Metrics data as described in

3https://huggingface.co/transformers/
model_doc/xlmroberta.html

§3.1.2. We note that the two variations favor dif-
ferent language pairs, hence we combine multiple
checkpoints from each variation (ranging training
steps). We use the test-20 split of the data to
optimise the hyper-parameters and following this
approach we use the estimated top-3 checkpoints
from each variation using the combined dataset 4

and the top checkpoint for the non-augmented
model trained exclusively on the train set, resulting
in total 7 checkpoints in our final ensemble.

4 Experimental Results

We present the performance of the implemented
models on the test-20 dataset.

4.1 Task 1

The results can be seen in Tables 1 and 2. In line
with the shared task guidelines we treat Pearson r
as the primary performance metric and select the
submitted models accordingly. We can observe,
that while on average the M1 model and its varia-
tions outperform the M2 model, their performance
is comparable, and M2-KL-G-MCD can even out-
perform M1M-ADAPT for specific language pairs,
hence it made sense to combine them in the final
ensemble. We can also see that fine-tuning the M1
model on the Metrics data, results in performance
gains for the majority of the language pairs. Specif-
ically, even applying the M1M directly, without
further fine-tuning on QE data, achieves compet-
itive performance for most pairs, which further
improves upon fine-tuning. It helps in increasing
the performance on the blind sets (denoted as zero-
shot in the Appendix B). The performance gains
concern mostly the correlation performance indi-
cators (Pearson and Spearman correlations), since
especially for M1 the error-based indicators (MAE
and RMSE) seem to favor the versions of the model
that have not seen the Metrics data. One possible
explanation for this discrepancy could lie in the dif-
ferences between the range and distribution of DA
scores for the two datasets. Indicatively, the range
of scores on the train-dev-test-20 concate-
nation of the QE data is [−7.542, 3.178] and for
the Metrics data [−8.624, 4.332]. The target DA
scores in both datasets are calculated via standard-
izing (taking the z score) the direct assessments for
each annotator and then averaging all standardized

4The combined dataset in this case refers to the concatena-
tion of the train/dev/test20 annotated data splits provided for
the shared task
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Pears↑ Spear↑ MAE↓ RMSE↓
E

N
-D

E M1 BASE 0.4534 0.4532 0.4482 0.6371
M1-ADAPT 0.5092 0.4825 0.4868 0.6288

M1M 0.5288 0.4872 0.4485 0.6327
M1M-ADAPT 0.5695 0.5131 0.4127 0.6095

E
N

-Z
H M1 BASE 0.4429 0.4362 0.5364 0.6867

M1-ADAPT 0.4723 0.4755 0.5228 0.6714
M1M 0.4447 0.4400 0.4772 0.6110

M1M-ADAPT 0.4815 0.4872 0.5502 0.7017

E
T-

E
N

M1 BASE 0.7939 0.8076 0.5388 0.6928
M1-ADAPT 0.7948 0.8061 0.4518 0.5810

M1M 0.7580 0.7611 0.5820 0.7134
M1M-ADAPT 0.7956 0.8110 0.5358 0.6921

N
E

-E
N M1 BASE 0.7805 0.7592 0.4278 0.5461

M1-ADAPT 0.7609 0.7475 0.4075 0.5393
M1M 0.7477 0.7324 0.4499 0.6161

M1M-ADAPT 0.7888 0.7556 0.4192 0.5332

R
O

-E
N M1 BASE 0.8718 0.8360 0.3598 0.4878

M1-ADAPT 0.8923 0.8533 0.3068 0.4201
M1M 0.8345 0.8132 0.4585 0.5863

M1M-ADAPT 0.8889 0.8488 0.3142 0.4437

R
U

-E
N M1 BASE 0.7587 0.6919 0.4885 0.6949

M1-ADAPT 0.7736 0.7142 0.4138 0.6082
M1M 0.6703 0.6535 0.5606 0.7583

M1M-ADAPT 0.7425 0.7159 0.4989 0.7250

S
I-

E
N

M1 BASE 0.6456 0.6112 0.5060 0.6481
M1-ADAPT 0.6613 0.6172 0.4742 0.5939

M1M 0.6308 0.6535 0.4742 0.5786
M1M-ADAPT 0.6649 0.6225 0.4863 0.6064

M
L

M1 BASE 0.6781 0.6565 0.4722 0.6276
M1-ADAPT 0.6949 0.6709 0.4377 0.5775

M1M 0.6593 0.5131 0.4127 0.6095
M1M-ADAPT 0.7045 0.6791 0.4596 0.6160

Table 1: Results for Task 1 with the M1 predictor-
estimator (XLM-RoBERTa) and different training/fine-
tuning approaches. M1M is the M1 model trained on
the Metrics dataset and M#-ADAPT signifies a model
fine-tuned on the QE data with adapters. ML stands for
MULTILINGUAL, showing the performance averaged
over all language pairs. Underlined numbers indicate
the best result for each language pair and evaluation
metric. Bold systems were selected for the final ensem-
ble.

assessments for each segment. Thus, the difference
in target score range and distribution could affect
the magnitude of predicted scores and the distance
to the ground truth values, which is reflected in
the MAE and RMSE metrics. These findings, fur-
ther supported by the results on Task 2, is a first
step in exploring the underlying connection and
bridging the gap between the Metrics and Quality
Estimation shared tasks.

4.2 Task 2

The results can be seen in Table 3. Similarly to Task
1, the primary evaluation metric for the sentence
level sub-task of Task 2 is the Pearson r coefficient,

Pears↑ Spear↑ MAE↓ RMSE↓

E
N

-D
E M2 BASE 0.4889 0.4645 0.4608 0.6180

M2-KL 0.4971 0.4769 0.4549 0.6191
M2-KL-G 0.5110 0.4738 0.4396 0.6133

M2-KL-G-MCD 0.5093 0.4754 0.4495 0.6128

E
N

-Z
H M2 BASE 0.4484 0.4355 0.4940 0.6374

M2-KL 0.4574 0.4471 0.5042 0.6485
M2-KL-G 0.4566 0.4543 0.5278 0.6751

M2-KL-G-MCD 0.4628 0.4584 0.4973 0.6390

E
T-

E
N

M2 BASE 0.7792 0.7842 0.4581 0.5624
M2-KL 0.7833 0.7896 0.4684 0.5824

M2-KL-G 0.7847 0.7962 0.4643 0.5924
M2-KL-G-MCD 0.7868 0.7951 0.4539 0.5674

N
E

-E
N M2 BASE 0.7333 0.7154 0.4347 0.5531

M2-KL 0.7638 0.7393 0.4040 0.5247
M2-KL-G 0.7529 0.7228 0.4194 0.5353

M2-KL-G-MCD 0.7596 0.7269 0.4125 0.5313

R
O

-E
N M2 BASE 0.8780 0.8407 0.3403 0.4514

M2-KL 0.8826 0.8406 0.3199 0.4305
M2-KL-G 0.8728 0.8397 0.3314 0.4635

M2-KL-G-MCD 0.8777 0.8429 0.3209 0.4426

R
U

-E
N M2 BASE 0.7406 0.6874 0.4696 0.6381

M2-KL 0.7532 0.7123 0.4558 0.6299
M2-KL-G 0.7485 0.7191 0.4630 0.6612

M2-KL-G-MCD 0.7509 0.7204 0.4492 0.6358
S

I-
E

N

M2 BASE 0.6243 0.5899 0.4709 0.5939
M2-KL 0.6373 0.6000 0.4572 0.5726

M2-KL-G 0.6506 0.6168 0.4586 0.5796
M2-KL-G-MCD 0.6545 0.6199 0.4495 0.5697

M
L

M2 BASE 0.6704 0.6454 0.4469 0.5792
M2-KL 0.6821 0.6580 0.4378 0.5725

M2-KL-G 0.6825 0.6604 0.4434 0.5886
M2-KL-G-MCD 0.6859 0.6627 0.4333 0.5712

Table 2: Results for Task 1 with the M2 predictor-
estimator (mBART) and different uncertainty handling
additions. “KL” signifies the incorporation of KL loss,
“G”the incorporation of glass-box features and MCD
the addition of MC dropout. ML stands for MULTILIN-
GUAL, showing the performance averaged over all lan-
guage pairs. Underlined numbers indicate the best re-
sult for each language pair and evaluation metric. Bold
systems were selected for the final ensemble.

while the word level sub-task is evaluated using the
Matthews correlation coefficient (MCC, (Matthews,
1975)) as the primary performance indicator.

We can see that while HTER scores do not al-
ways correlate highly with DAs (see Table 4), the
use of the M1M model encoder that was trained on
large data with direct assessments can still prove
useful. Indeed, when fine-tuning on the Task2
data, the model using the M1M encoder (M1M-
ADAPT in the table 3) provides a performance
boost for the Pearson correlation in most language
pairs, and competitive performance for the rest.
Based on these results, we deem it worthwhile
to include checkpoints trained with this configu-
ration in the ensemble estimating that they will
contribute in higher performance, especially on the
blind test sets. This can be further confirmed when

965



Pearson↑ SRC-MCC↑ TGT-MCC↑
E

N
-D

E M1 BASE 0.5256 0.3331 0.4092
M1-ADAPT 0.5573 0.4211 0.36454

M1M-ADAPT 0.5499 0.3647 0.4239

E
N

-Z
H M1 BASE 0.3786 0.3253 0.3589

M1-ADAPT 0.3711 0.4346 0.3288
M1M-ADAPT 0.3721 0.4255 0.3643

E
T-

E
N M1 BASE 0.7319 0.4537 0.5110

M1-ADAPT 0.7360 0.5545 0.4978
M1M-ADAPT 0.7498 0.4929 0.5513

N
E

-E
N M1 BASE 0.5898 0.5198 0.4386

M1-ADAPT 0.5987 0.6884 0.5426
M1M-ADAPT 0.6252 0.4244 0.4682

R
O

-E
N M1 BASE 0.8531 0.5727 0.6190

M1-ADAPT 0.8282 0.5984 0.5653
M1M-ADAPT 0.8280 0.5682 0.5813

R
U

-E
N M1 BASE 0.4899 0.2766 0.3213

M1-ADAPT 0.4811 0.341 0.3071
M1M-ADAPT 0.5060 0.2927 0.3421

S
I-

E
N M1 BASE 0.6659 0.4653 0.4776

M1-ADAPT 0.6698 0.6776 0.5057
M1M-ADAPT 0.6935 0.3872 0.4937

M
L M1 BASE 0.6050 0.4209 0.4479

M1-ADAPT 0.6061 0.5323 0.4445
M1M ADAPT 0.6178 0.4222 0.4607

Table 3: Results for Task 2 with the M1 predictor-
estimator (XLM-RoBERTa) and different training/fine-
tuning approaches. M1M is the M1 model trained on
the Metrics dataset and M#-ADAPT signifies a model
fine-tuned on the QE data with adapters. ML stands for
MULTILINGUAL, showing the performance averaged
over all language pairs. Underlined numbers indicate
the best result for each language pair and evaluation
metric. Bold systems were selected for the final ensem-
ble.

inspecting the results for the blind sets (en-cs,
en-ja, km-en and ps-en) in the official results
on test-21 as shown in Appendix B.

lp TRAIN DEV TEST-20

EN-DE -0.1654 -0.4032 -0.3850
EN-ZH -0.2947 -0.1895 -0.1932
ET-EN -0.5464 -0.5850 -0.5995
NE-EN -0.4527 -0.5004 -0.4558
RO-EN -0.5887 -0.7932 -0.7880
RU-EN -0.5358 -0.5055 -0.5152
SI-EN -0.3916 -0.4384 -0.4125

Table 4: Pearson correlation between the z_mean of
the direct assessments for the QE Task 1 data and the
HTER score for the post edits in QE Task 2 data.

5 Conclusions

We presented a joint contribution of IST and Un-
babel to the WMT 2021 QE shared task. Our

submissions are ensembles of multilingual check-
points extending the OpenKiwi framework. We
found adapter-tuning to be suitable for fine-tuning
OpenKiwi on the QE tasks data and less prone to
overfitting. We showed that pre-training on large,
out-of-domain annotated data can prove benefi-
cial both for the direct assessment and the post-
editing QE tasks. We also demonstrated that han-
dling uncertainty-related sources of information
improves the performance when integrated into the
QE system. For Task 2 we do multi-task training
based on the models from the previous task and
use multiple checkpoints to create the submitted
ensemble.
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A Hyperparameters

A.1 M1

In Table 5 is an excerpt of the training configura-
tion used for training OpenKiwi for our M1 models.
Note that the configurations follow the configura-
tion file format of OpenKiwi and any additional
configurations are identical to the ones proposed
in the sample configuration file of the github
repository5.

System
batch_size 2

Encoder
hidden_size 1024

Decoder
bottleneck_size 1024
dropout 0.05
hidden_size 1024

Optimizer
class_name adam
encoder_learning_rate 0.0001
learning_rate_decay 1.0
learning_rate_decay_start 0
learning_rate 0.0001

Trainer
training_steps 2180
early_stop_patience 10
validation_steps 0.5
gradient_accumulation_steps 4
gradient_max_norm 1.0

Table 5: Hyperparameters for M1 models

A.2 M2

In Table 6 is an excerpt of the training configuration
used for training the M2 models using the mBART
encoder-decoder:

B Evaluation on test set of WMT21

We present the performance of the submitted en-
sembles on the TEST-21 dataset as calculated in the
official QE results 6 for each task and sub-task. We
also provide the comparison with the organisers’
baseline.

5https://github.com/Unbabel/OpenKiwi/
blob/master/config/xlmroberta.yaml

6https://www.statmt.org/wmt21/
quality-estimation-task_results.html

System
bottleneck_size 256
dropout 0.1
hidden_size 2048
nr_frozen_epochs 0.333

Optimizer
optimizer adam
encoder_learning_rate 6.0e-06
learning_rate 1.0e-05

Trainer
training_steps 5512
early_stopping_patience 2
save_top_k 3
batch_size 4
gradient_accumulation_steps 4

Table 6: Hyperparameters for M2 models

B.1 Task 1: Direct Assessments prediction at
sentence-level

The results for Task1 on TEST-21 are presented in
Table 7.

B.2 Task 2: HTER prediction at
sentence-level

The results for Task2 on TEST-21TEST-21 are pre-
sented in Table 8, showing the performance for the
sentence level, HTER score predictions.

B.3 Task 2: Word-level prediction
The results for Task2 on TEST-21 are presented in
Table 9, showing the performance for the word tag
predictions.

C Statistics on the Metrics data

We present below (Tables 10 and 11) the statistics
on the Metrics data used to train the M1M model
on direct assessments.
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METHOD PEARSON R↑ MAE↓ RMSE↓

MULTILINGUAL

IST-UNBABEL 0.665 0.627 0.482
BASELINE 0.541 0.729 0.562

EN-DE

IST-UNBABEL 0.579 0.567 0.393
BASELINE 0.403 0.629 0.433

EN-ZH

IST-UNBABEL 0.586 0.631 0.499
BASELINE 0.525 0.683 0.534

RO-EN

IST-UNBABEL 0.899 0.393 0.289
BASELINE 0.818 0.556 0.408

ET-EN

IST-UNBABEL 0.796 0.519 0.404
BASELINE 0.660 0.700 0.543

NE-EN

IST-UNBABEL 0.856 0.515 0.401
BASELINE 0.738 0.657 0.524

SI-EN

IST-UNBABEL 0.605 0.742 0.583
BASELINE 0.513 0.797 0.626

RU-EN

IST-UNBABEL 0.792 0.583 0.412
BASELINE 0.677 0.702 0.492

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.577 0.751 0.583
BASELINE 0.352 0.845 0.686

EN-JA

IST-UNBABEL 0.355 0.764 0.566
BASELINE 0.230 0.816 0.617

PS-EN

IST-UNBABEL 0.628 0.780 0.658
BASELINE 0.476 0.852 0.711

KM-EN

IST-UNBABEL 0.650 0.721 0.568
BASELINE 0.562 0.788 0.614

Table 7: Results for Task 1 on the held-out evaluation
set of WMT 2021.

METHOD PEARSON R↑ MAE↓ RMSE↓

MULTILINGUAL

IST-UNBABEL 0.597 0.219 0.171
BASELINE 0.502 0.235 0.188

EN-DE

IST-UNBABEL 0.617 0.172 0.116
BASELINE 0.529 0.183 0.129

EN-ZH

IST-UNBABEL 0.290 0.266 0.220
BASELINE 0.282 0.287 0.246

RO-EN

IST-UNBABEL 0.879 0.122 0.098
BASELINE 0.831 0.142 0.115

ET-EN

IST-UNBABEL 0.811 0.153 0.112
BASELINE 0.714 0.195 0.149

NE-EN

IST-UNBABEL 0.718 0.161 0.126
BASELINE 0.626 0.205 0.160

SI-EN

IST-UNBABEL 0.710 0.178 0.136
BASELINE 0.607 0.204 0.159

RU-EN

IST-UNBABEL 0.539 0.224 0.165
BASELINE 0.448 0.255 0.188

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.529 0.271 0.200
BASELINE 0.306 0.262 0.206

EN-JA

IST-UNBABEL 0.275 0.279 0.224
BASELINE 0.098 0.279 0.232

PS-EN

IST-UNBABEL 0.555 0.328 0.284
BASELINE 0.503 0.333 0.290

KM-EN

IST-UNBABEL 0.655 0.243 0.199
BASELINE 0.576 0.241 0.196

Table 8: Results for Task 2 sentence-level system on
the held-out evaluation set of WMT 2021.
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METHOD SRC-MCC↑ TGT-MCC-WORDS↑ TGT-MCC-GAPS↑

EN-DE

IST-UNBABEL 0.404 0.466 0.183
BASELINE 0.322 0.370 0.116

EN-ZH

IST-UNBABEL 0.286 0.310 0.068
BASELINE 0.241 0.247 0.065

RO-EN

IST-UNBABEL 0.603 0.649 0.357
BASELINE 0.511 0.536 0.205

ET-EN

IST-UNBABEL 0.522 0.570 0.254
BASELINE 0.405 0.461 0.136

NE-EN

IST-UNBABEL 0.445 0.508 0.268
BASELINE 0.390 0.440 0.215

SI-EN

IST-UNBABEL 0.406 0.528 0.258
BASELINE 0.335 0.425 0.208

RU-EN

IST-UNBABEL 0.351 0.332 0.165
BASELINE 0.251 0.256 0.073

ZERO-SHOT LANGUAGE PAIRS

EN-CZ

IST-UNBABEL 0.294 0.376 0.125
BASELINE 0.224 0.273 0.039

EN-JA

IST-UNBABEL 0.175 0.169 0.025
BASELINE 0.175 0.131 0.036

PS-EN

IST-UNBABEL 0.294 0.370 0.177
BASELINE 0.249 0.313 0.134

KM-EN

IST-UNBABEL 0.345 0.448 0.259
BASELINE 0.279 0.351 0.175

Table 9: Results for Task 2 word-level system on the
held-out evaluation set of WMT 2021.
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CS-EN DE-EN FI-EN RU-EN RO-EN TR-EN ZH-EN ET-EN
LT-EN GU-EN KK-EN JA-EN KM-EN PL-EN PS-EN TA-EN

Total tuples 28887 91584 47205 61505 560 30746 71941 20496
10315 9063 6789 8917 4722 11666 4611 7562

Avg. tokens (reference) 31.43 24.61 20.48 23.31 24.35 23.32 31.70 23.93
26.84 17.73 20.65 28.64 19.49 21.93 19.87 19.91

Avg. tokens (source) 25.65 22.93 14.49 19.77 24.99 19.01 6.05 18.61
20.61 15.13 16.47 3.27 29.91 18.55 21.87 15.31

Avg. tokens (MT) 29.99 24.19 19.95 23.51 24.42 22.97 30.60 24.06
25.44 17.15 20.00 27.41 19.59 21.64 19.37 20.14

Table 10: Statistics for the WMT 15 to 20 Direct Assessments corpus into-English language pairs.

EN-RU EN-CS EN-DE EN-FI EN-LV EN-TR EN-ZH
EN-ET EN-LT EN-GU EN-KK EN-JA EN-PL EN-TA

Total tuples 63771 60905 55352 30924 5810 5171 66830
13376 8959 6924 8219 9573 10506 7886

Avg. tokens (reference) 22.48 23.48 23.96 17.7 20.45 19.74 7.26
18.83 20.61 22.07 19.21 1.4 24.54 19.84

Avg. tokens (source) 24.5 25.82 24 23.21 24.99 24.2 28.81
24.23 24.09 24.3 24.13 25.2 25.33 25.15

Avg. tokens (MT) 22.14 23 23.84 17.81 21.18 19.24 7.53
18.96 20.62 22.39 19.71 2.29 23.19 19.18

Table 11: Statistics for the WMT 15 to 20 Direct Assessments corpus from-English language pairs.
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Abstract

In this paper, we present the systems submit-
ted by our team from the Institute of ICT
(HEIG-VD / HES-SO) to the Unsupervised
MT and Very Low Resource Supervised MT
task. We first study the improvements brought
to a baseline system by techniques such as
back-translation and initialization from a par-
ent model. We find that both techniques are
beneficial and suffice to reach performance
that compares with more sophisticated sys-
tems from the 2020 task. We then present the
application of this system to the 2021 task for
low-resource supervised Upper Sorbian (HSB)
to German translation, in both directions. Fi-
nally, we present a contrastive system for HSB-
DE in both directions, and for unsupervised
German to Lower Sorbian (DSB) translation,
which uses multi-task training with various
training schedules to improve over the base-
line.

1 Introduction

In this paper, we present the systems submitted
to the WMT 2021 task on Unsupervised MT and
Very Low Resource Supervised MT. We first build
a series of baseline systems, driven mostly by con-
siderations of simplicity, trained on data from the
2020 edition of the task, for translation between
Upper Sorbian (HSB) and German (DE). These sys-
tems, described in Section 3, enable us to quantify
the merits of using additional back-translated data
(Sennrich et al., 2016) and of initializing the sys-
tem for a low-resource pair with parameters learned
on a high-resource pair (same target language and
related source language).

The systems described above serve as the ba-
sis for our 2021 baseline submitted to the shared
task, for DE→HSB and HSB→DE, presented in
Section 4, which improves upon our 2020 base-
line with the addition of more parallel data, and
achieves competitive performance with the use
of back-translation and parent-initialization only.

However, this approach does not lead to an effec-
tive baseline for unsupervised German to Lower
Sorbian (DSB) translation (Section 5). In Section 6,
we present experiments with a contrastive system
that implements multi-task learning, with several
schedules, in which denoising tasks together with
translation are presented to the systems in increas-
ing order of complexity, leading to more robust
HSB↔DE systems, together with a strategy of di-
verse ensembling. We also use our DE→HSB sys-
tem to initialize a multi-task DE→DSB system for
the unsupervised task, although in this case the
performance is not competitive.

2 Datasets

We use various Upper Sorbian datasets from the
2020 edition of the task, and additional WMT
data, as presented in Table 1. The monolingual
HSB data from 2020 comes from three sources:
sorbian_institute_monolingual con-
sists of a mix of high- and medium-quality
HSB data provided by the Sorbian Institute;
witaj_monolingual consists of high-quality
HSB data from the Witaj Sprachzentrum; finally,
web_monolingual consists of web-scraped
noisier HSB data gathered by the Center for
Information and Language Processing from LMU
Munich (Fraser, 2020). We kept from all datasets
only sentences that have strictly more than 2 and
strictly fewer than 301 words.

3 Baseline HSB→DE System on 2020
Data

3.1 Subword Vocabulary

For the HSB→DE system, we use CS→DE ini-
tialization in several experiments, because Czech
(CS) is a high-resource language and close neigh-
bor to Upper Sorbian. Therefore, we create a
tri-lingual shared subword vocabulary (CS, DE,
HSB) using the Unigram LM model (Kudo,
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Dataset Language Before filtering After filtering
sentences words sentences words

Sorbian Institute Monolingual HSB 339,822 5,044,079 339,822 5,044,079
Web Monolingual HSB 121,003 1,661,898 115,632 1,651,154
Witaj Monolingual HSB 222,027 2,672,255 215,370 2,660,805
Europarl v8 DE 2,234,583 48,430,884 2,186,477 48,347,698
JW300 DE 2,366,722 34,782,112 2,182,801 34,519,064
News Commentary v15 DE 422,009 8,942,517 409,955 8,939,335
Europarl v8 CS-DE CS 568,589 11,571,876 562,716 11,561,049
Europarl v8 CS-DE DE = 13,098,638 = 13,086,320
JW300 CS-DE CS 1,052,338 13,579,350 982,034 13,435,536
JW300 CS-DE DE = 15,133,882 = 14,992,424
News Commentary v13 CS-DE CS 174,789 3,486,672 172,987 3,479,819
News Commentary v13 CS-DE DE = 3,751,102 = 3,746,708
WMT 2020 HSB-DE Train DE 60,000 724,572 59,030 722,076
WMT 2020 HSB-DE Train HSB = 639,740 = 637,883
WMT 2021 HSB-DE Train DE 87,521 1,251,339 87,502 1,251,287
WMT 2021 HSB-DE Train HSB = 1,094,421 = 1,094,375

Table 1: Monolingual and parallel corpora with their languages and numbers of lines (sentences) and words, before
and after filtering by length (keeping sentences with more than 2 and fewer than 301 words).

2018) as implemented in SentencePiece.1 We
apply 32,000 merges and the other parame-
ters of SentencePiece are kept to default val-
ues. We obtain 600k sentences of HSB data
from sorbian_institute_monolingual,
witaj_monolingual and train.hsb-de,
the latter being the HSB side of the 2020 train-
ing data. We do not use web_monolingual as
it appears to be noisy, due to the collection pro-
cess. For CS and DE, 600k sentences are selected
randomly from the monolingual corpora listed in
Table 1. The vocabulary generated by Sentence-
Piece is converted from log probabilities to frequen-
cies using the spm_to_vocab.py tool from the
OpenNMT-py toolkit. Using a common Sentence-
Piece model for the three languages is not obliga-
tory, but appeared to improve the performance by
2-3 BLEU points in most cases.

3.2 System Parameters and Results

We use OpenNMT-py (Klein et al., 2017) for our
experiments.2 We start with Transformer-Base
(Vaswani et al., 2017) (78M parameters) but also ex-
periment with Transformer-Big (245M parameters),
with their main parameters described in Table 2.
We apply the same regularization and optimization
procedures to the two models. We accumulate gra-

1https://github.com/google/sentencepiece (v. 0.1.95)
2https://github.com/OpenNMT/OpenNMT-py (v. 2.0.1)

dients over 2 batches and train on 2 GPUs, with a
batch_size of 1k for Base and and 2k for Big.
We use the “noam” learning rate schedule (Vaswani
et al., 2017) with its values at each step multiplied
by two, and 8k warmup steps. We evaluate and save
checkpoints every 5k steps. Final translations are
generated with a beam width of 5, ensembling the
last two checkpoints in these experiments. We re-
port BLEU scores (Papineni et al., 2002) obtained
with SacreBLEU (Post, 2018) on detokenized text.

N h dmodel dff Pdrop steps
Base 6 8 512 2048 0.1 60k
Big 6 16 1024 4096 0.3 100k

Table 2: Parameters of the two Transformer models
used in our experiments. Other parameters are set to
the default values of the OpenNMT-py toolkit.

3.3 Use of Back-translated Data

The first HSB→DE system we trained, for com-
parison purposes, used only the HSB/DE parallel
data provided for the WMT 2020 Low-Resource
task. Its BLEU scores are 47.98 on the ‘dev’ set
(devel.hsb-de) and 41.22 on the ‘devtest’ set
(devel_test.hsb-de) after 60k steps of train-
ing (first line of Table 3). The already high BLEU
scores that are reached, compared to scores gen-
erally observed on high-resource language pairs,
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indicate that the ‘dev’ and ‘devtest’ sets are proba-
bly quite similar to the training data.

We obtain additional training data through back-
translation (Sennrich et al., 2016) of widely avail-
able monolingual German data. To this end, we
train a DE→HSB model on the same parallel cor-
pus as above, which reaches BLEU scores of 45.23
/ 40.62 respectively on ‘dev’ and ‘devtest’. Using
this model, we translate News Commentary V15
from German into Upper Sorbian. The resulting
pseudo-parallel data (noisy on the HSB side) is
used in addition to the initial data for training a
new HSB→DE model, which reaches a score of
52.91 / 44.39 (second line of Table 3). The im-
provement of this single enrichment with imperfect
data of the initial low-resource system thus exceeds
4 BLEU points.

3.4 Initialization with Parameters from a
High-Resource Pair

The second technique we use for improvement is
transfer from a high-resource pair (Zoph et al.,
2016; Kocmi and Bojar, 2018), i.e. initialization
with parameters from an MT system trained on
such a pair. As Upper Sorbian has many similari-
ties with Czech, which is a high-resource language,
we initialize the HSB-DE model with the param-
eters of a model trained for CS→DE, then train
it with the same data as in the previous subsec-
tion. Firstly, the CS→DE model is trained using
Europarl and News Commentary, and reaches a
BLEU score of 27.13 on a sample test set extracted
from these two corpora.

The resulting HSB→DE system reaches BLEU
scores of 55.99 / 47.53, a further increase of about
3 BLEU points (third line of Table 3). The use of an
even larger dataset further improves performance:
the addition of the JW300 corpus (Agić and Vulić,
2019) to the CS→DE training data increases BLEU
by half a point (56.5 on ‘dev’). The rather small
increase could be attributed to the large difference
in domains between JW300 and the HSB/DE data.

Since back-translation can provide very large
amounts of data, we also trained a Transformer
Big (with the parameters shown in Table 2) with
the addition of the monolingual German corpora
of Europarl and JW300 backtranslated into Up-
per Sorbian. This model reaches 58.08 / 49.99
BLEU points respectively on ‘dev’ and ‘devtest’,
improving performance by more than 1.5 BLEU
points. This is currently our best baseline model for

HSB→DE, obtained with two simple augmentation
techniques only.

We can compare this score with three of the
highest-scoring systems on the 2020 HSB→DE
‘devtest’ set, noting some of the differences be-
tween them and our baseline. Scherrer et al.
(2020) achieved a BLEU score of 56.9 using back-
translation and bilingual pre-training with CS→DE,
but also scheduled multitask with several monolin-
gual and multilingual tasks. Knowles et al. (2020)
achieved a BLEU score of 58.9 using iterative back-
translation, multiplication of the HSB data for BPE
training, and character- and word-level lexical mod-
ifications of Czech to make it more similar to Upper
Sorbian. Libovický et al. (2020) achieved a score of
56.0 with much larger corpora for back-translation
and CS→DE pre-training (14M lines) and the use
of an unsupervised CS→HSB system to translate
the CS side of the DE/CS parallel data into HSB.

3.5 Initialization with Parameters from
Other High-Resource Pairs

We studied the role of the closeness between Up-
per Sorbian and the high-resource source language
used for initialization, by reproducing the above
initialization experiments (CS→DE) with Polish
and French instead of Czech. Polish is a West
Slavic language just as Czech and Upper Sorbian,
although geographically more remote, whereas
French is a Romance language: we thus expected
the former to outperform the latter. To keep train-
ing time more manageable, we used a Transformer-
Base, and trained the parent model on Europarl and
JW300, because News Commentary is not avail-
able for Polish. For each experiment we build a
different tri-lingual SentencePiece model trained
with 600k sentences per language.

The use of the PL→DE model (with a 22.33
BLEU score on its respective test set) for initializa-
tion leads to a HSB→DE performance of 56.07 /
47.94, which is very similar to the system initial-
ized with CS→DE parameters (55.99 / 47.53). The
use of the FR→DE model (with a 19.25 BLEU
score) for initialization leads to a HSB→DE sys-
tem reaching 54.92 / 46.30. This is about 1.3 BLEU
points lower than with Polish or Czech, although
the difference is smaller than expected given the
linguistic distance between French and Upper Sor-
bian. These results are in line with the findings of
Aji et al. (2020) who argue that no parent is clearly
better than other for transfer learning in MT.
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System HSB→DE DE→HSB
dev devtest dev devtest

1. Transformer-Base, 2020 parallel data 47.98 41.22 45.23 40.62
2. Add back-translated data to #1 52.91 (+4.93) 44.39 (+3.17) 51.00 (+5.77) 43.23 (+2.61)

3. Initialize #2 with high-resource pair 55.99 (+3.08) 47.53 (+3.14) – –
4. Transformer-Big with #3 58.08 (+2.09) 49.99 (+2.46) – –
5. Add 2021 parallel data to #4 59.29 (+1.21) 51.86 (+1.87) 57.22 (+6.22) 49.95 (+6.72)

Table 3: Scores of our 2020 (1–4) and 2021 (5) baseline systems, with absolute improvements brought by each
additional technique or data set.

3.6 Two Rounds of Back-Translation

Multiple rounds of back-translation can be done
on each side, but this computational effort is not
always compensated by a significant increase of
the BLEU score. Using the best HSB→DE system
above, we translate monolingual HSB data and use
it to train an improved DE→HSB model, which
reaches 51.00 on the ‘dev’ data (+5.77 with respect
to the initial DE→HSB system) and 43.23 on the
‘devtest’ data (+2.61). We then use this improved
model to translate the monolingual German data
again and use the resulting pseudo-parallel data to
train a new HSB→DE model. The model without
CS initialization reaches BLEU scores of 53.62
on ‘dev’ (+0.62) and 44.95 on ‘devtest’ (+0.43).
If CS initialization is used, the models reaches
respectively 58.44 (+0.36) and 50.03 (+0.04) on
‘dev’ and ‘devtest’. The improvement brought by
the additional rounds of back-translation is quite
marginal, therefore we do not pursue this approach,
and focus on a system which is initialized from a
parent high-resource pair and trained with original
and back-translated data, where the latter comes
from a reverse system trained only with the original
parallel HSB-DE data provided by the shared task.

4 Baseline HSB↔DE Low Resource
Systems for 2021

Given the results of the previous section, we choose
the Transformer-Big for our 2021 baseline. We
change the dropout level from 0.3 to 0.1 since our
experiments revealed an increase in performance
with the latter value. Furthermore, we add the
87,502 sentences of additional parallel HSB-DE
training data provided in 2021 to the datasets used
in our 2020 baseline. We use the same Sentence-
Piece model with DE, HSB, and CS data that we
used for our 2020 baseline system, with approx-
imately 700k lines for each language. At trans-
lation time, after observing a number of out-of-

vocabulary tokens, we replace the unknown tokens
with the source token that has the highest atten-
tion weight. We do not make any further changes
regarding our 2020 Transformer-Big model.

The scores of our baseline systems on 2020 and
2021 data are synthesized in Table 3 for the various
techniques we experimented with. Our baseline
HSB→DE model with combined 2021 and 2020
data is system #5 in Table 3: it reaches BLEU
scores of 59.29 on the ‘dev’ set and 51.86 on the
‘devtest’ set after training for 150,000 steps and
by ensembling the best 4 saved checkpoints. For
our DE→HSB model, we obtain 57.22 on the ‘dev’
set and 49.95 on the ‘devtest’ set after training for
85,000 steps and by ensembling the best 4 saved
checkpoints.

After the submission to the 2021 shared task,
we continued training the above HSB→DE model
up to 300,000 steps- Ensembling the last 4 saved
checkpoints, BLEU scores were close to the ones
shown in the last line of Table 3, reaching 59.42 on
the ‘dev’ set and 51.37 on the ‘devtest’ set. How-
ever, several checkpoints gained almost 2 BLEU
points on ‘dev’, pointing to the potential benefits
of training for a longer time.

5 Baseline for Unsupervised DE→DSB
Translation

Moreover, we studied the same techniques for trans-
lating Lower Sorbian (DSB), for which no parallel
resources are provided. We translated the mono-
lingual DSB data provided by the organizers with
our HSB→DE model, hypothesizing that the dif-
ferences between DSB and HSB are small enough
to obtain an acceptable DSB-DE pseudo-parallel
corpus, with high-quality text on the DSB side,
following insights from our experience with Swiss-
German dialects (Honnet et al., 2018).

We use the parameters from our best DE→HSB
model to initialize a DE→DSB model that we train
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for 120k steps with the DSB-DE pseudo-parallel
data. When ensembling the best 4 checkpoints, we
reach BLEU scores of 8.25 / 8.22 without observ-
ing any significant increase of the scores during
training. In fact, the initial score, which is the per-
formance of a DE→HSB model on the DE-DSB
‘devtest’ data, is even slightly higher. An even
lower BLEU score was reached when using our
CS→DE model to translate monolingual DSB data
into DE to obtain a pseudo-parallel corpus, thus
confirming the finding that this approach does not
lead to pseudo-parallel corpora of sufficient quality.
Therefore, we did not submit these translations to
the 2021 shared task.

6 Contrastive HSB↔DE and DE→DSB
Systems using Multi-Task Learning

In contrast to the baseline systems presented above,
we study an innovative approach, in which we train
multitask systems with denoising auxiliary tasks
that are presented in order of increasing complex-
ity. This insight is drawn from curriculum learning
(Bengio et al., 2009). We thus test whether increas-
ing the complexity of the tasks makes it easier for
an NMT model to learn the simple tasks first, and
the harder ones later in training.

As Raffel et al. (2020) showed, source–to–
source pre-training and multitasking improves
translation, but not enough to compete with state-
of-the-art setups. Therefore, instead, we perform
target–to–target and source+target–to–target de-
noising. Considering their findings, we decide
not to introduce special tokens into our vocabu-
lary, such as mask tokens (instead just deleting the
tokens with wish to mask), or sentence and lan-
guage separators. Finally, due to computational
constraints, we use the Transformer-Base as our
architecture.

6.1 Data and Auxiliary Tasks

For our contrastive system we consider two new
monolingual corpora in Czech and in German: the
document-separated news crawls from WMT20
(Barrault et al., 2020), consisting of text extracted
from online newspapers. They contain 17M lines
and 43M lines respectively in each language. To
keep training time within acceptable limits, we
sample 1.4M lines from these corpora (including
empty lines that serve as document-separators), we
apply the same length-based filtering criterion (2 <
L < 301) as for our baseline data, and we also

delete all sentences that are made of more than 15%
non-alphabetic characters. The resulting Czech
corpus is 1.3M lines and 131,644 documents long,
and the German corpus is 1.2M lines and 130,891
documents long.

For our document-level denoising tasks, we
first divide into “chunks” a tokenized document-
separated corpus so that each chunk is no more
than 500 subwords in length, made up of consec-
utive lines in the same document; we only select
documents made of at least 3 sentences. In Ta-
ble 4 we list all corpora that we use to create
our auxiliary data, including monolingual corpora
back-translated with our baseline systems. The
DE→DSB back-translated data was obtained with
a baseline DE→HSB model.

We make use of the four following auxiliary
denoising tasks (the main task being of course stan-
dard sentence-level translation, with all parallel and
back-translated data), with the first two inspired by
Devlin et al. (2019); Raffel et al. (2020) and Con-
neau and Lample (2019):

1. Masking (MASK): randomly delete 15% of
words of a line on the source side, but keep
the full original sequence on the target side.

2. Translation Language Modeling (TLM):
concatenate the source and target sentences
from a parallel corpus, and apply separately
the MASK algorithm to each one. The target is
the original target sentence.

3. Mask Document First Words (MF): for each
chunk, leave the first sentence untouched, and
for the remaining ones delete the first word of
each sentence, with the target being the full
original sequence in the same language.

4. Next Sentence Generation (NSG): for each
chunk, leave all the sentences untouched ex-
cept the last one, of which delete all but the
two longest words; the model has to output
the full original sequence. Keeping the two
longest words (in characters) is based on the
assumption that they are the most informative
ones in the sentence.

The denoising tasks are listed above by increas-
ing complexity. Indeed, MASK, as a monolingual
sentence-level task, is the simplest denoising task
we present, with TLM following, as it includes a
context in a different language which needs to be
identified. The two document-level tasks are more
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complex, as they require a larger context. In partic-
ular, NSG is harder than MF, since it consists of re-
constructing a whole sentence with just two words
from the original sequence, forcing the model to
look for a more abundant context to estimate the
correct answer. Furthermore, predicting the first
word requires to take into account exclusively inter-
sentential context, whereas masking a single ran-
dom word allows also for the use of intra-sentential
context, with the latter providing more direct con-
text than the former.

Corpus Lines Words Aux. tasks
CS-DE 1.5M 25M / 28M TLM
HSB-DE 144k 2M / 2M TLM
CS 1.3M 41M MF, NSG
DE 1.2M 44M MF, NSG
HSB 640k 9M MASK
DSB 128k 2M MASK
HSB→DE 4.5M 94M / 104M
DE→HSB 637k 10M / 9M
DE→DSB 124k 2M / 2M

Table 4: Parallel (2), monolingual (4), and back-
translated corpora (3) used for our contrastive system
trained with multi-tasking. Each corpus is assembled
from the raw datasets presented in Table 1 with the fil-
tering setup described in Subsection 6.1. For bilingual
corpora, we indicate the number of words in each lan-
guage.

6.2 Training Schedules

All our models translate to one target language
only, therefore the target side of our datasets is al-
ways the same language, be it for the monolingual
denoising tasks or for TLM. Since all datasets cor-
respond to sequence-to-sequence tasks, we are in
essence simply removing and introducing datasets
during training. The specific splits of the tasks
in each training schedule have been manually set,
guided by the reasons given below, without any
attempt for fine-tuning.

All the hyperparameters of the models are those
presented in Section 3, with the only exception of
the parameters of CS↔DE models for initialization,
which were trained on 4 GPUs to reduce training
time. When we introduce new tasks during the
training of a model, we continue training from the
last checkpoint of the previous task.

Training CS↔DE models. Both directions are
trained according to the same schedule, shown in

Table 5, with simply the source and target lan-
guages switched. First, we train for 30k steps with
a TLM task, then we train for another 30k steps
with a mixture of the MF auxiliary task (50% of
the samples) and the main translation task (50%).
Then we continue for another 30k steps, changing
MF to NSG. Finally, we finish with 30k steps on
translation only. In total, the model is being trained
for 30k steps (25%) with TLM, 15k steps (12.5%)
with MF, 15k steps (12.5%) with NSG, and 60k
steps (50%) with the main task, i.e. sentence-level
translation.

Steps ×1000
Task 0-30 30-60 60-90 90-120
TLM 100%
MF 50%
NSG 50%
Translation 50% 50% 100%

Table 5: Training schedule of the parent models in
CS↔DE. For each direction, the model is only trained
to output target language, so corpora differ depending
on the direction (see 6.1). Both models are trained for
120k steps with three auxiliary denoising tasks and the
main sentence-level translation task.

HSB→DE. The schedules of the child models
are shown in Table 6 for the (DE, HSB) pair. For
HSB→DE, we continue training from the best scor-
ing checkpoint of the last 60k steps of the parent
CS→DE model, and start with a TLM task for 60k
steps. Then, we introduce back-translated data only
for 60k steps. We continue with 60k steps with true
parallel data only.

Additionally, we train two more models by con-
tinuing to train another 60k steps from the best scor-
ing checkpoint (which is also the last one saved),
with one of the models having its learning rate
schedule reset. Although at first performance wors-
ens due to a more aggressive learning rate during
the warmup steps, the model ends up converging to
a score similar to the one we obtain if we continue
to train without resetting the learning rate sched-
ule. The goal is to emulate a multiple-run seeding
strategy for ensembling, by achieving a different
weight distribution among the two models. We ad-
ditionally train a randomly-initialized model with
parallel data only, for 60k steps, also for ensem-
bling. We generate our translations of the test data
with an ensembling of 16 models: the best 4 check-
points from the parallel-only randomly-initialized
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model, the best 4 of our main setup during the
first 60k steps of parallel-only training, and the 4
checkpoints each for the two runs that continued to
train with, and respectively without, resetting the
learning rate schedule.

DE→HSB. We continue training from the best-
scoring checkpoint of the last 60k steps of DE→CS,
and provide it with a MASK task for 60k steps, since
the model has not seen the target language at all
during pre-training, for this direction. Then, we
provide the model with a TLM task for 60k steps.
Since in this direction we have much less back-
translated data than in the opposite, we decide to
train for 60k more steps with 50% of the samples
being from the back-translated data, and the other
50% from the true parallel corpora. Finally, we
continue training two more models in the same
manner as explained for the HSB→DE direction.
We additionally train a randomly-initialized paral-
lel data only model for 60k steps for ensembling.
We translate with the same ensembling setup as
described for the HSB→DE direction.

Steps ×1000
Task 0-60 60-120 120-180

HSB→DE
TLM 100%
Trans-BT 100%
Trans-Parallel 100%

DE→HSB
MASK 100%
TLM 100%
Trans-BT 50%
Trans-Parallel 50%

Table 6: Training schedule of the child models for the
HSB→DE and DE→HSB models presented in 6.2.

DE→DSB. We start training with a MASK task
for 60k steps from the highest-scoring checkpoint
DE→HSB. We continue training for 60k steps with
just the back-translated data, although we notice
that the quality of the translation affects negatively
the scores. To address this issue, for another 60k
steps we give it the back-translated corpus for 50%
of the samples and the MASK task for the other
50%, starting training from the previous highest-
scoring checkpoint. Finally, for another 60k steps
we give it a parallel-only DE-HSB task for 50% of
the samples, MASK for 30%, and back-translated
data for 20%. After testing, using just the highest-

scoring checkpoint for the back-translation only,
back-translation + MASK, and DE-HSB + back-
translation + MASK appeared to work better on the
development data than using the highest four ones.

Steps ×1000
Task 0- 60- 120- 180-

-60 -120 -180 -240
MASK 100% 50% 30%
Trans-BT 100% 50% 20%
DE-HSB 50%

Table 7: Training schedule of the child DE→DSB mod-
els presented in 6.2

6.3 Results

The scores of the parent DE→CS and CS→DE
models obtained with multi-task training are shown
in Table 8. Compared to the CS→DE models from
Sections 3 and 4, the present models have markedly
lower scores. This difference can be due to the use
of Transformer-Base vs. Big, or to differences in
training data, apart from the multi-task training
procedure itself. Still, we decided to use these
models as parents for initializing the DE→HSB
and HSB→DE models respectively, so that both
parents and children are trained with multi-tasking.
Although changes in the parameters of a parent
model that result in better translations may not
necessarily also result in better child initialization,
it would be interesting to also test here the parent
models from Section 4.

System DE→CS CS→DE
1. MF + translation 14.05 15.46
2. NSG + translation 15.30 16.17
3. Translation 18.19 19.80

Table 8: BLEU scores of parent models after each stage
of the training schedule described in 6.2, on the ‘de-
vtest’ set from 4.

Our child DE↔HSB models show that the sched-
uled training improves results over the baseline.
The HSB→DE model with a training schedule (sys-
tem 2 in Table 9), trained with a lighter architecture
(Base vs. Big) and lower quality parent model (19.8
vs. 24.5), achieves a higher BLEU score than the
system in Section 4, as shown in Table 3: 52.2 vs.
51.86. Additionally, the diversity of the ensem-
bling of the models appears to improve the overall
quality of the translation.
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System DE→HSB HSB→DE
1. Parallel data 50.37 48.50
2. Multi-task 52.10 52.21
3. #2 cont. train 53.42 52.37
4. #2 cont. train

with l. r. reset 53.05 52.12
Ensemble 54.58 53.21

Table 9: BLEU scores of child DE↔HSB models for
various training schedules on the 2021 ‘devtest’ set.

The scores of our DE→DSB model (Table 10)
show that the quality of the back-translated data
with our HSB→DE model improved slightly with
the addition of the MASK monolingual task, but
not with the addition of a DE→HSB translation
task. However, when including in the ensemble
the models trained on a DE→HSB task, scores
improved from 8.7 to 9.6 on the ‘devtest’ set. This
was the version submitted to the shared task on
unsupervised MT (DE→DSB).

System DE→DSB
1. Back-translation only 8.23
2. BT + MASK 8.57
3. BT + MASK + DE→HSB 7.14
Ensemble 9.62

Table 10: BLEU scores of child DE↔DSB models for
various training schedules on the 2021 ‘devtest’ set.

Finally, as we can see in Table 11, even with our
possibly suboptimally trained parent models and
lighter architecture, the strategy of diverse ensem-
bles and scheduled multi-task training improved
over our best performing baselines given in Sec-
tion 4 for all directions of the low-resource MT
task.

HSB→DE DE→HSB DE→DSB
dev devtest dev devtest dev devtest
62.74 53.21 62.49 54.58 9.22 9.62
(+3.45) (+1.35) (+5.27) (+4.63) (+0.97) (+1.40)

Table 11: BLEU scores of our primary system’s final
configurations, on the development data, with the im-
provements over our highest baselines from Section 4.

7 Conclusion

In this work, we showed that non-iterative back-
translation and parent-model transfer learning pro-
vide improvements for translation in a low-resource

setting. Furthermore, multi-task scheduled training
with monolingual or cross-lingual tasks also re-
sulted in better models. In particular, child models
starting with Translation Language Modeling tasks
and Masking tasks improved over the baseline in
all translation directions. Finally, our strategy of
ensembling diverse models also produced higher
scores than a mere checkpoint ensemble strategy.
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Abstract

This paper describes the methods behind the
systems submitted by the University of Gronin-
gen for the WMT 2021 Unsupervised Ma-
chine Translation task for German–Lower Sor-
bian (DE–DSB): a high-resource language to
a low-resource one. Our system uses a trans-
former encoder-decoder architecture in which
we make three changes to the standard train-
ing procedure. First, our training focuses on
two languages at a time, contrasting with a
wealth of research on multilingual systems.
Second, we introduce a novel method for
initializing the vocabulary of an unseen lan-
guage, achieving improvements of 3.2 BLEU
for DE→DSB and 4.0 BLEU for DSB→DE.
Lastly, we experiment with the order in which
offline and online back-translation are used to
train an unsupervised system, finding that us-
ing online back-translation first works better
for DE→DSB by 2.76 BLEU. Our submis-
sions ranked first (tied with another team) for
DSB→DE and third for DE→DSB.

1 Introduction

Unsupervised Neural Machine Translation
(UNMT) has become increasingly useful in the
field of MT, given that monolingual data is easier
to gather compared to bilingual (or parallel)
data. Such is especially the case for low-resource
languages, which constitute the majority of
languages in the world.

The WMT 2021 Unsupervised MT Task focuses
on one such low-resource language: Lower Sorbian
(DSB). The task is to translate between German
(DE), a high-resource language, and Lower Sor-
bian, which is a very low resource language with
roughly 150 thousand sentences of monolingual
data available for the task at hand. The unsuper-
vised task from prior years of WMT focused on
German–Czech and German–Upper Sorbian trans-
lation. Unique to this year however is the relatively

small amount of monolingual data available for
DSB, compared to last year in which roughly 750
thousand sentences of Upper Sorbian were avail-
able. This makes it increasingly difficult to rely
on the ubiquitous state-of-the-art UNMT methods
(Lample and Conneau, 2019; Song et al., 2019;
Liu et al., 2020), as they typically rely on a large
amount of monolingual data available for both lan-
guages.

To alleviate the difficulty that comes with the
lack of monolingual data for DSB, this year’s WMT
task allows for the use of monolingual and parallel
data outside of DE–DSB. Specifically, all Upper
Sorbian (HSB) data from WMT20 and all paral-
lel data for German (DE) from WMT and OPUS
(Tiedemann and Nygaard, 2004) are made avail-
able to use. Additionally, as auxiliary languages
related to DSB, monolingual data for Czech (CS)
and Polish (PL) is also provided.

Given the success of language transfer via multi-
lingual models such as mBART (Liu et al., 2020),
this fundamentally changes this year’s unsuper-
vised task from a bilingual NMT task to a mul-
tilingual task. However, pretrained multilingual
models like mBART cannot be used as they do not
fit the limitations on the training data that one is
allowed to use for this shared task.

As the problem is unique to date due to the lim-
ited available data as well as the limitation on pre-
existing pretrained models, we aim to establish a
standard for training systems under these restric-
tions. Specifically, we ask three research questions
(RQs):

1. Is it better to pretrain and fine-tune a multilin-
gual model or to focus the training on a few
languages at a time when data and time are
limited?

2. How can we obtain a good initialization for
the vocabulary of an unseen language for
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which there is very limited training data?

3. Given there are two methods for doing back-
translation, online and offline, what is the best
way to combine them?

Concerning RQ1, there is a wealth of research
into multilingual models, however these typically
require a large amount of monolingual data for each
language in addition to a wealth of computational
resources and time. Therefore, we develop the hy-
pothesis that under limited constraints (time and
computational resources) training only on two lan-
guages at a time will result in better performance
due to there being fewer training objectives. Spe-
cific to this task, we propose training on DE cou-
pled with CS, then HSB, then DSB itself, following
the order of least to most linguistically similar to
the low resource language that we target: DSB.

As for RQ2, due to the scarcity of monolingual
data and complete absence of parallel data for DSB,
our ability to train the model on this language is lim-
ited, thus the model’s initialization for the language
plays an increasingly important role in its resulting
performance. Relying on the similarity of the two
Sorbian languages, we aim to improve this initial-
ization by transferring the model’s knowledge of
the HSB vocabulary to the DSB vocabulary.

Finally, with respect to RQ3, Garcia et al. (2020)
established a method for incorporating offline and
online back-translation (BT) into their MT system
by first using offline BT then online BT, both fol-
lowing a multilingual pretraining. However, the re-
verse order (i.e. online BT followed by offline BT)
has not been tested to the best of our knowledge,
and theoretically doing online BT should improve
the quality of the synthetic data that would be used
for offline BT. Therefore, we test Garcia et al.’s
method as well as the reverse order to establish the
best practice for this task specifically.

The remaining of the paper is organized as fol-
lows. We first outline the data we chose to use
and our preprocessing steps in Section 2. We then
specify our architecture and training methods in
Section 3. Our results are in Section 4, followed by
our conclusions in Section 5.

2 Data

Apart from our main language pair of DE and DSB,
we opted to use data from two languages that are

related to the latter, namely CS and HSB.1

For HSB and DSB, we use all of the data pro-
vided for training by WMT. For DE and CS, we
use data from WMT NewsCrawl, years 2010-11
and 2018-20. We chose these years as they are
the most frequent years occurring in the HSB data,
following Edman et al. (2020). For DE, we take
the first 1 million sentences each from 2018-20 and
0.5 million from 2010-11, totalling 4 million. For
CS, we take 0.5 million and 0.25 million from the
respective years, totalling 2 million.

In terms of parallel CS–DE data, we use Multi-
ParaCrawl, Europarl v8, WMT News v2019, and
News Commentary v16, all available from the
OPUS project (Tiedemann and Nygaard, 2004).
The datasets are shown in Table 1.

Language(s) Dataset Name Sentences

CS NewsCrawl 2010-11, 18-20 2,000,000

DE NewsCrawl 2010-11, 18-20 4,000,000

DSB WMT 2021 145,198

HSB WMT 2020 696,271

CS–DE

Europarl v8 568,589
MultiParaCrawl v7.1 5,680,308

NewsCommentary v16 204,311
WMT News v2019 20,567

HSB–DE WMT 2020-21 147,521

Table 1: Training data used in our models.

While MultiParaCrawl (MPC) is the largest por-
tion of Czech–German data, it is constructed using
English as a pivot language, so we anticipate the
data to be lower quality in general. As such, we run
2 models, 1 including MPC and 1 without MPC.

For development and testing, we use the DE–
HSB and DE–DSB devel and devel_test
datasets provided by WMT. For CS–DE, we make
use of the WMT News Translation Task dev
set, using newstest2012 for development and
newstest2013 for testing.

All data is tokenized using the Moses toolkit
(Koehn et al., 2007). We then apply BPE (Sen-
nrich et al., 2016), for all languages jointly, us-
ing FastBPE.2 The segmentation is applied on the
same number of randomly-selected sentences for
each language, roughly 145 thousand, matching the
number of sentences in the DSB training data. We
experiment with the number of joins used (trying
{20, 40, 50, 60, 80} thousand), finding 50 thousand

1We initially also used Polish data but did not see any
improvements so we ultimately left it out.

2https://github.com/glample/fastBPE
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to perform the best, according to BLEU scores after
step 4.

3 Method

3.1 Architecture
We used the MASS (Song et al., 2019) model,
which is a 12-layer encoder-decoder (6 layers each)
Transformer model identical to the XLM (Lample
and Conneau, 2019) architecture. The difference
comes in the training, using the MASS sequence
masking (MA) objective allows both the encoder
and decoder to be trained in the language model
pretraining phase. This can be contrasted with
XLM, which only pretrains the encoder.

3.2 Training
The training objectives we use are:

• MASS sequence masking (MA): Reconstruct-
ing a sentence fragment (a token sequence)
given the remaining part of the sentence.

• Machine translation (MT): The standard trans-
lation objective with a cross-entropy loss.

• Denoising auto-encoding (AE): Reconstruct-
ing the original text from a noisy version cor-
rupted by a set of functions.

• Back-translation (BT): Both online (on-the-
fly) and offline back-translation, where syn-
thetic data created from the forward direction
is used to train the backward direction, and
vice versa.

• Cross-lingual back-translation (XBT) (Li
et al., 2020): Using an intermediate reference
language for forward and backward transla-
tion during online BT.

We tested various training schemes, ultimately
deciding upon a 6-step process, shown in Figure 1.

In Figure 1, UNMT (steps 4 and 6) refers to
the combination of AE, online BT, and XBT. For
the AE, we use word shuffling, masking, and re-
moval as noise functions, following XLM (Lam-
ple and Conneau, 2019). Online BT is done on
DE–DSB as well as on HSB–DSB.3 XBT is done
using our DE–HSB parallel data for the directions
HSB→DSB→DE and DE→DSB→HSB.4

3We found in initial testing that including HSB–DSB gave
a slight improvement to BLEU scores.

4We also tried using our DE–CS data for XBT, but this
performed worse.

3.3 Vocabulary Transfer

To facilitate a better alignment of DSB to DE, we
make use of the linguistic similarity of DSB to
HSB, coupled with the fact that HSB is expected
to be reasonably well-aligned to DE after training
with the HSB–DE parallel data (step 2). As the
model is language agnostic, apart from the lan-
guage embeddings as well as word embeddings
that occur exclusively in one language, we initially
align these parts on the DSB side to the HSB side
(step 3), prior to the first UNMT training (step 4).

We align the language embeddings by copy-
ing the HSB language embeddings to the DSB
language embeddings. To align the vocabulary,
we first train two word embeddings on the DSB
and HSB data using fastText (Bojanowski et al.,
2017). Next, we align these two embeddings using
VecMap (Artetxe et al., 2018), treating identical
words in HSB and DSB as the same.

From the aligned embeddings, we construct a
bilingual dictionary. This is done by first getting
the top 10 nearest HSB neighbors, according to
the cosine similarities of the aligned embeddings,
for each DSB word. From these 10 candidates,
we choose the closest HSB word, determined by
the lowest Levenshtein distance between the DSB
word and the respective HSB candidate.5 We also
filter out DSB words that occur frequently in the
DE training data, removing all those which occur
more than 0.001% of the time.

We use this filtered bilingual dictionary to copy
the embeddings within the encoder and decoder of
the MASS model. Specifically, all of the embed-
dings for the words on the DSB side of the bilingual
dictionary are copied from the embedding of their
corresponding HSB word pair.

As DSB has not yet been seen in the training, a
large number of the embeddings for DSB words
are essentially not learned at this stage. However,
since the Sorbian languages are closely related and
often the differences between words are merely
in spelling, we expect this approach to help with
initializing the model’s DSB vocabulary.

3.4 Experimental Setup

Training is done on an Nvidia V100 32GB GPU.
Each training step of the model is limited to 24
hours, with the exception of our model using MPC
data, in which the first step is trained for 2 days

5We strip accents before calculating the Levenshtein dis-
tance.
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Figure 1: Diagram of the training steps. The circular nodes are datasets, the larger boxes are training steps of the
MASS model, and the smaller boxes represent the steps for vocabulary transfer. German monolingual data is not
shown as it is used in every step.

Data Training Step DE→DSB DSB→DE

Without MPC
4 22.46 30.04
5 24.92 28.48
6 23.22 31.34

With MPC
4 23.03 30.70
5 23.62 24.92
6 22.95 32.06

Table 2: BLEU scores for our submitted models at var-
ious training steps. Best scores are in bold, and under-
lined scores are the models submitted to OCELoT, the
submission system used for the shared task.6 We com-
pare performances of models trained with or without
MultiParaCrawl (MPC) data.

due to the large amount of data. The training of
fastText and VecMap and application of vocabulary
transfer take less than an hour, and the offline BT
for DSB→DE takes around 1 hour.

We use an additional stopping criterion of no
improvement on the validation set in 1 million
iterations. The metric we use for measuring im-
provement is the into-DE BLEU score, with the
exception of step 6, in which we use the into-DSB
BLEU score.

The hyperparameters used follow those used in
Song et al. (2019), except for the epoch size being
set at 100 thousand steps, rather than 200 thousand
steps 7. We shorten this as it saves systems more
often and early stopping is applied more quickly.

6https://ocelot-west-europe.
azurewebsites.net/

7The implementation we use, which is based on the MASS
implementation (https://github.com/microsoft/
MASS), defines epochs in steps.

Our code is made freely available.8

Model DE->DSB DSB->DE

Multilingual 19.70 25.29
Multilingual + VT 20.30 28.14
Ours 19.25 26.00
Ours + VT 22.46 30.04

Table 3: BLEU scores comparing the two-language ver-
sus multilingual training schemes, with and without vo-
cabulary transfer (VT).

4 Results

Table 2 shows our BLEU scores for our submit-
ted models DE–DSB, starting from step 4. As we
can see, the 5th step of MT using the synthetic
data obtained from offline BT scores the best for
DE→DSB, as such we used our models at this
step for our submissions for this direction. For
DSB→DE, we see the BLEU score actually drops
for step 5, but the second phase of UNMT training
improves the BLEU by roughly 1 point over step 4.

4.1 Pretraining Two Languages at a Time
In our first research question, we asked if it is best
to train on two languages at a time. To answer this,
we compare our model (without the MPC data) to
another model trained on all 4 of our languages
from the start. Specifically, we do MA for all lan-
guages, and MT for those with parallel data. We
train this for 2 days, so that it is trained for the
same length as steps 1 and 2. We then train using

8https://github.com/Leukas/WMT21
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Model DE→CS CS→DE DE→HSB HSB→DE

Multilingual 11.56 14.36 49.22 49.14
Ours (step 1) 15.05 16.16
Ours (step 2) 52.14 51.57

Table 4: BLEU scores of the auxiliary directions during
pretraining.

the UNMT objectives. The results are shown in
Table 3.

Despite the model being exposed to DSB for
longer, the performance is equal compared to our
model without vocabulary transfer, and worse com-
pared to the model with vocabulary transfer.

Without vocabulary transfer, the results being
equal shows that exposing the model to DSB early
within the training is not important to the final per-
formance. We expect this might be due to the lim-
ited training data of DSB, as Wu and Dredze (2020)
similarly found that the multilingual model mBERT
performed more poorly on languages lacking in
monolingual data.

With vocabulary transfer, we see that the model
that has not seen DSB at all benefits more from the
initialization than the model which has. We believe
this shows the underlying advantage of training a
model on few languages at a time, as it develops
a better internal representation for the auxiliary
languages, which enables better transfer. Table 4
shows that the performance of our model on the
auxiliary languages is better when it can focus on
learning one language pair at a time.

Moreover, while the multilingual model could
learn to mimic its internal representation of HSB
when encoding DSB, its representation according
to Table 4 is poorer, and our model with vocabu-
lary transfer explicitly copies the only language-
dependent information the model receives, forcing
an internal representation of DSB based on that of
HSB.

4.2 Vocabulary Transfer Analysis

We also conduct an ablation of our novel method
of vocabulary transfer. Table 5 shows the results of
step 4, with and without vocabulary transfer. We
also show results for a simpler transfer method:
rather than taking the top 10 most similar candi-
dates and choosing based on Levenshtein distance,
we simply select the most similar candidate.

The addition of vocabulary transfer adds over
3 BLEU to the performance. We also see both
transfer methods are competitive with each other

Transfer Method DE→DSB DSB→DE

None 19.25 26.00
Simple 22.64 29.98
Levenshtein 22.46 30.04

Table 5: BLEU scores comparing no vocabulary trans-
fer to our 2 methods.

Transfer Method DSB→DE

None 3.15
Simple 19.00
Levenshtein 21.27

Table 6: Comparison of our model from step 2 with and
without vocabulary transfer.

in terms of improvement to performance. We ex-
pect the simple method to work better for language
pairs with less similar spelling than the Sorbian
languages. However our following analysis leads
us to believe the Levenshtein version may perform
better for similar languages.

We also perform a form of “zero-shot” transfer,
where we use the model from Step 2 and test its
ability to translate DSB→DE, despite the neural
model never being trained on DSB at this stage. We
contrast that with applying our 2 transfer methods.
The results are in Table 6.

Without vocabulary transfer, the model expect-
edly has trouble with translation as it has not yet
seen any DSB, so its vocabulary is not properly
initialized. However with vocabulary transfer, we
see an improvement of 16-18 BLEU, with the Lev-
enshtein version performing best. This shows the
degree to which a good initialization of the word
embeddings can play a role in the overall perfor-
mance of the model on an unseen language. Al-
though UNMT (step 3) helps narrow the gap in
performance, the difference of 3 BLEU also shows
that unsupervised training can also stand to benefit
from a better vocabulary initialization.

4.3 Back-translation
Our final research question concerns the order of
back-translation. Garcia et al. (2020) found that,
using a multilingual model trained on a hub lan-
guage (e.g. German), one can achieve noticeable
improvement by first zero-shot translating into the
hub language (e.g. DSB→DE as done in step 5),
then using this synthetic data for MT training. This
can be followed by UNMT training (which includes
online BT) for further improvement. We compare
this method with the reverse, where we do UNMT
training before offline BT, with the assumption that
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Back-translation DE→DSB DSB→DE

Offline 21.74 22.74
Offline ⇒ Online 21.88 30.14
Online 22.46 30.04
Online ⇒ Offline 24.64 27.89

Table 7: BLEU scores for the different back-translation
methods.

the better-quality translation after first training with
online BT will result in better MT training. We
show the results in Table 7.

As we can see, the performance of the model
using only offline BT produces lower quality trans-
lations compared to using only online BT. While
following offline BT with online BT makes up the
difference in performance into DE, it still performs
much worse into DSB. This supports our assump-
tion that the better quality synthetic data leads to
better MT training, as the main goal of creating
synthetic DE data is to improve training with DSB
on the target side.

5 Conclusion

The translation of Lower Sorbian to and from Ger-
man presents a unique challenge in the field of
unsupervised MT, due to the absence of parallel
data and the scarcity of monolingual data for train-
ing. Therefore, the task necessitates an initial pre-
training with similar, higher-resource languages.
With this assumption, we experimented with vari-
ous methods of pretraining, positing that training
on 2 languages at a time is competitive with train-
ing with all languages at once, while allowing for
a better initialization of DSB.

We also showcase a new method for transfer-
ring knowledge to the word embeddings of a trans-
former, provided a similar language is used in pre-
training. We intend to experiment with this method
further to gauge its applicability for more distantly-
related languages. Finally, the use of both online
and offline back-translation can improve the perfor-
mance of a model, and if not done in an iterative
fashion, the order in which they are performed can
greatly affect the results.
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Abstract

We present our submissions to the WMT21
shared task in Unsupervised and Very Low-
Resource machine translation between Ger-
man and Upper Sorbian, German and Lower
Sorbian, and Russian and Chuvash. Our
low-resource systems (German↔Upper Sor-
bian, Russian↔Chuvash) are pre-trained on
high-resource pairs of related languages. We
fine-tune those systems using the available
authentic parallel data and improve by it-
erated back-translation. The unsupervised
German↔Lower Sorbian system is initial-
ized by the best Upper Sorbian system and
improved by iterated back-translation using
monolingual data only.

1 Introduction

In this paper, we describe systems for translation
between German (de) and Upper Sorbian (hsb),
German (de) and Lower Sorbian (dsb), and Russian
(ru) and Chuvash (cv) developed at LMU Munich
for the WMT21 shared task on unsupervised and
very low resource machine translation (MT).

Upper Sorbian is a minority language spoken
by around 30,000 people in today’s German fed-
eral state of Saxony, Lower Sorbian has around
7,000 speakers and is spoken in the German federal
state of Brandenburg. With such a small number of
speakers, machine translation and automatic pro-
cessing of Sorbian language is an inherently low-
resource problem without any chance that the re-
sources available for Sorbian would ever approach
the size of resources for languages spoken by mil-
lions of people. On the other hand, being Western
Slavic languages related to Czech and Polish, it
is possible to take advantage of relatively rich re-
sources collected for these two languages.

Unlike our last year’s submission for Upper Sor-
bian (Libovický et al., 2020), we decided not to
use synthetic data from unsupervised translation
between Czech and Upper Sorbian and only did

iterative back-translation. Despite having more
authentic parallel data than last year, our system
reaches approximately the same translation quality.
Our Upper Sorbian systems ranked third out of six
systems in the official ranking.

We leverage the relatedness between the Sorbian
languages and use the Upper Sorbian system as a
starting point for iterative back-translation using
monolingual data only. Our Lower Sorbian Sys-
tems ranked second (de→dsb) and third (dbs→de)
out of four teams in the official ranking.

Chuvash is a minority language spoken in the
Volga region in the southwest of Russia. Although
it uses the Cyrillic script, it is not related to eastern
Slavic languages, but it is a Turkic language, rel-
atively isolated in the Turkic language family. As
a language with the highest number of speakers in
this shared task, it also has the highest amount of
available parallel data. We adopt a similar approach
as for German-Upper Sorbian translation and pre-
train our models on the related Kazakh language.
In addition, we experiment with character-level
models in the hope that they will be particularly
effective for agglutinative morphology.

2 Experimental Setup

Most of our experimental setup is shared across all
the language pairs. All our models use the Trans-
former architecture (Vaswani et al., 2017) as imple-
mented in FairSeq (Ott et al., 2019).

All data is segmented using BPE (Sennrich et al.,
2016b) with 16k merge operations as implemented
in YouTokenToMe1 without previous explicit tok-
enization. The merges are computed using a con-
catenation of all training data: German, Czech,
Upper and Lower Sorbian in the first set of ex-
periments, Russian, Kazakh, and Chuvash in the
second set of experiments.

For the supervised task, we first pre-train mod-

1https://github.com/VKCOM/YouTokenToMe
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de→cs

cs→de

de→hsb
authentic

hsb→de
authentic

de→hsb
BT iter. 1

hsb→de
BT iter. 1

· · ·

· · ·

de→hsb
BT iter. 4

hsb→de
BT iter. 4

de→dbs
iter. 1

dsb→de
iter. 1

de→dbs
iter. 2

dsb→de
iter. 2

de→dbs
iter. 3

· · ·

· · ·

Figure 1: A diagram of the training procedure of the German↔Upper/Lower Sorbian systems. Gray dashed arrows
( ) denote model initialization, solid black arrows ( ) denote syntetic data generation by back-translation.

els on high-resource related languages: Russian-
Kazakh for Chuvash and German-Czech for Upper
Sorbian. We first train Transformer Base models
on authentic data. These systems are used to gen-
erate back-translation (Sennrich et al., 2016a) of
monolingual data. Using tagged back-translation
(Caswell et al., 2019), we trained Transformer Big
models for German↔Czech and Russian↔Kazakh
translation. All back-translation steps use sampling
and simple length-based filtering as proposed by
Edunov et al. (2018)2. We upsample the authentic
parallel data to match the size of the synthetic data.

We keep most default hyperparame-
ters from the predefined architectures in
FairSeq (transformer for the Base model,
transformer_wmt_en_de_big_t2t for
the Big model. The batch size is 6k tokens for the
Base models, 2k tokens for Big models on a single
GPU, Because we always start with high-resource
training, we keep the dropout on the standard value
of 0.1.

We use these models to initialize the weights
(Nguyen and Chiang, 2017; Kocmi and Bojar,
2018) of the supervised low-resource models with-
out restarting the optimizer. Because the learn-
ing rate is already low at that stage of training,
we do not need to change the dropout to prevent
overfitting. First, we train the supervised models
using the authentic parallel data only, then we con-
tinue with iterated back-translation. The best Up-
per Sorbian-to-German model is used to translate
Lower Sorbian monolingual data into German. In
the next steps, we continue with a standard iterative
back-translation procedure for unsupervised neural
machine translation (Artetxe et al., 2018; Lample
et al., 2018).

2We re-used the published code https://
github.com/pytorch/fairseq/tree/master/
examples/backtranslation.

Our final submission is an ensemble (with the
vote strategy) of the best-scoring systems in the
process of iterated back-translation. Language-pair-
specific descriptions and results are discussed in
the following sections.

We evaluate our systems using the BLEU Score
(Papineni et al., 2002), chrF score (Popović, 2015)
as implemented in SacreBLEU (Post, 2018).3 Fur-
ther, we evaluate the models using BERTScore
(Zhang et al., 2020)4 with XLM-RoBERTa Large
(Conneau et al., 2020) as an underlying model for
German and Russian and mBERT (Devlin et al.,
2019) for Chuvash. Similar to the official task eval-
uation, we also report for each system the number
of significantly worse systems in each metric at
the significance level 0.95 with bootstrap resam-
pling (Koehn, 2004) with 1k samples. For each
metric, each system receives one point for each
system it significantly outperforms in the metric at
the significance level of 0.95.

3 German↔ Upper Sorbian

Pre-training. For training the German↔Czech
systems, we followed the same setup as in our last
year’s submission (Libovický et al., 2020). We
used all parallel datasets from the Opus project
(Tiedemann, 2012), which was 15.4M sentences
after filtering by length and language identity. We
trained a Transformer Base model on this data and
used this model to generate back-translation. We
used 20M Czech and 20M German sentences from
the WMT News Crawl. We mix the back-translated
and authentic parallel data one-to-one and train
Transformer Big models on it.

3BLEU score signature nrefs:1|case:mixed|
eff:no|tok:13a|smooth:exp|version:2.0.0
chrF score signature nrefs:1|case:mixed|eff:yes|
nc:6|nw:0|space:no|version:2.0.0

4https://github.com/Tiiiger/bert_score
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hsb → de de → hsb

BLEU chrF BERTScore Points BLEU chrF Points

Authentic data only 53.4 0 .763 0 .933 0 0 54.9 0 .769 0 0

BT iter 1 55.2 0 .773 0 .936 1 1 56.4 0 .778 0 0
BT iter 2 55.8 1 .777 1 .937 2 4 56.5 0 .778 0 0
BT iter 3 55.8 1 .777 1 .937 3 5 56.2 0 .778 0 0
BT iter 4 56.1 1 .779 1 .938 5 7 56.0 0 .776 0 0

Ensemble 56.2 1 .779 1 .938 4 6 56.4 0 .779 0 0

Table 1: Quantitative results of the German↔Upper Sorbian translation systems on the development test data.

Sorbian data. We used all Upper Sorbian data
provided for the shared task, i.e., 148k parallel
sentence pairs (this is 88k sentence pairs more than
last year), we did not apply any filtering on the
parallel dataset. The development validation and
the development test set of 2k sentences were the
same as the last year.

Back-translation. We used 15M German sen-
tences from the WMT News Crawl and all avail-
able monolingual Upper Sorbian data, 696k sen-
tences, for back-translation. We applied the same
rule-based statistical fixing of hyphenation-related
OCR errors as the last year (Libovický et al., 2020,
§ 3.1). To better leverage the limited amount of
monolingual data, we sample the Upper Sorbian
translations 5×. We iterated the back-translation 4
times, always initializing the model with the Czech-
German models (see Figure 1).

Results. The results are presented in Table 1. In
the translation direction into German, the transla-
tion quality gradually increased between the back-
translation steps. In the opposite direction, the
translation quality oscillated. We attribute this to a
larger amount of authentic German sentences. En-
sembling only has a negligible effect. Note also that
for translation into Sorbian, no differences between
the models are statistically significant. In the oppo-
site direction, the BLEU and the chrF score only
separate the systems into two clusters, whereas
the differences among BERTScores are always sig-
nificant in the bootstrap testing, even though the
absolute score differences are smaller. The best
system for translation into German is a single from
the last iteration of back-translation despite scoring
slightly worse in the BLEU score.

4 German↔ Lower Sorbian

Data. Because this is a purely unsupervised task,
we did not use any Lower Sorbian parallel data.

BLEU chrF BERTScore

dsb→de Single 33.7 .606 .873
Ensemble 33.8 .602 .874

de→dsb Single 30.1 .587 —
Ensemble 30.1 .588 —

Table 2: Automatic scores for the best German↔Lower
Sorbian Systems.

1 2 3 4 5 6 7
Iteration

.57

.58

.59

.60

.61

ch
rF

dsb→ de

1 2 3 4 5 6 7 8
Iteration

.52

.53

.54

.55

.56

.57

.58

.59

ch
rF

de→ dsb

Figure 2: chrF scores during iterative back-translation
for unsupervised German↔Lower Sorbian translation.
The orange vertical lines denote 95%-confidence inter-
vals using bootstrap resampling.

We used the same German monolingual data as we
used for back-translation for Upper Sorbian. We
use all the Lower Sorbian monolingual data, 145k
sentences, provided by the organizers.

Iterative back-translation. Similarly to Upper
Sorbian, we sample the back-translation of Lower
Sorbian 10× for higher diversity in the training
data.

Results. The final results are tabulated in Table 2.
Figure 2 shows the translation quality in terms of
chrF score during back-translation iterations. Sim-
ilar to Upper Sorbian, the direction into German
that uses larger monolingual data tends to improve
more smoothly than the opposite direction. Also,
the ensembling of the three best-scoring systems
only has a negligible effect. The single system and
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cv → ru ru → cv

BLEU chrF BERTScore Points BLEU chrF BERTScore Points

Authentic data only 20.5 2 .451 2 .847 3 7 18.4 0 .486 2 .854 3 5

BT iteration 1 19.1 0 .443 2 .846 2 4 18.6 0 .487 2 .854 4 6
BT iteration 2 20.3 2 .450 2 .848 4 8 18.5 0 .487 2 .854 2 4

Ensemble of the two above 20.0 2 .450 2 .848 4 8 18.8 1 .489 2 .855 5 8

BT iteration 1 to char 18.0 0 .423 0 .843 1 1 16.9 0 .457 0 .850 0 0
BT iteration 2 to char 17.4 0 .420 0 .841 0 0 17.1 0 .463 0 .851 1 1

Ensemble of the two above 20.0 2 .450 2 .848 4 8 18.9 1 .490 2 .855 5 8

Table 3: Quantitative results of the Russian↔Chuvash translation systems on the development test data.

the ensemble do not significantly differ in any of
the metrics.

5 Russian↔ Chuvash

Pre-training. Similar to Upper Sorbian systems,
we pre-train the systems on high-resource related
language pair, Kazakh-Russian. We used the
crawled Kazakh-Russian corpus of 5M sentence
pairs published for WMT19 (Barrault et al., 2019)
to train a Transformer Base model. We used these
models to back-translation 3M Kazakh and 3M
Russian sentences from the WMT News Crawl
from the most recent years.

Chuvash data. We used all parallel data pro-
vided by the organizers, 717k sentence pairs, with-
out any filtering. For back-translation, we used all
2.8M monolingual Chuvash sentences provided for
the competition. For Russian, we used 18M mono-
lingual sentences from the WMT News Crawl.

Back-translation. We ran two iterations of back-
translation. We sample from the model during back-
translation. We sampled 4 different translations for
each Chuvash sentence to increase the training data
diversity. We mix the authentic and synthetic paral-
lel training data in the one-to-one ratio. All models
are initialized by the Russian↔Kazakh models.

Character models. We further experiment with
finetuning the system to the character level. Li-
bovický and Fraser (2020) managed to train a
character-level system for another Turkic language,
English-to-Turkish translation. Here, we test if
this is a property of Turkic languages or an artifact
of the dataset English-Turkish dataset. We follow
Libovický and Fraser (2020) and finetune the sub-
word model to the character level.

ru→kk

ru→kk

ru→cv
authentic

cv→ru
authentic

ru→cv
BT iter. 1

cv→ru
BT iter. 1

ru→cv
BT iter. 1

cv→ru
BT iter. 1

ru→cv
char. 1

ru→cv
char. 2

cv→ru
char. 1

cv→ru
char. 2

Figure 3: A diagram of the training procedure of the
Russian↔Chuvash. Gray dashed arrows ( ) denote
model initialization, solid black arrows ( ) denote
syntetic data generation by back-translation.

Results. The results are presented in Table 3.
Compared to other language pairs, back-translation
had a surprisingly small effect on the translation
quality. We suspect this result might be due to
errors in data processing or signalize a need for
a better data filtering technique. Model ensem-
bling has no effect here. The character-level sys-
tems are on average 2 BLEU points worse than
their subword counterparts, which is consistent
with the results of character-level models on high-
resource languages (Libovický and Fraser, 2020).
Surprisingly, the character-level models seem to
have much larger gains from model ensembling
than the subword-based models. In fact, the ensem-
ble of the character-level models is statistically in-
distinguishable from the best subword-based mod-
els.

6 Conclusions

We presented our systems for low-resourced trans-
lation between German and Upper Sorbian, unsu-
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pervised translation between German and Lower
Sorbian, and translation between Chuvash and Rus-
sian.

Our systems used standard state-of-the-art tech-
niques for low-resource and unsupervised machine
translation but did not exhaust all available meth-
ods. Better results could be achieved using more
monolingual data and by more careful filtering of
the synthetic parallel data.
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A Training hyper-parameters

We use the following command line options
for fairseq-train command in all ex-
periments. For the Transformer Base mod-
els, we use the pre-defined transformer
architecture, for Transformer Big, we use
transformer_wmt_en_de_big_t2t. The
batch size is 6000 tokens for the Base models and
2000 tokens for the Big models.

fairseq-train \
$DATA \
--arch $ARCHITECTURE \
--share-all-embeddings \
--label-smoothing 0.1 \
--criterion \

label_smoothed_cross_entropy \
--optimizer adam \
--adam-betas ’(0.9, 0.998)’ \
--clip-norm 5.0 \
--lr 5e-4 \
--lr-scheduler inverse_sqrt \
--warmup-updates 16000 \
--max-tokens $TOKENS
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Abstract

This paper describes our submission for the
shared task on Unsupervised MT and Very
Low Resource Supervised MT at WMT 2021.
We submitted systems for two language pairs:
German↔Upper Sorbian (de↔ hsb) and Ger-
man ↔ Lower Sorbian (de ↔ dsb). For de
↔ hsb, we pretrain our system using MASS
(Masked Sequence to Sequence) objective and
then finetune using iterative back-translation.
We perform final finetuning using the provided
parallel data for translation objective. For de
↔ dsb, no parallel data is provided in the task,
we use final de ↔ hsb model as initialization
of the de↔ dsb model and train it further us-
ing iterative back-translation, using the same
vocabulary as used in the de↔ hsb model.

1 Introduction

Transformer based architecture (Vaswani et al.,
2017) has become the de-facto approach for
training NMT models. These models have
achieved good performance for resource rich
languages. NMT models are usually data hungry
and require lot of parallel data to get trained.
However, many low-resource languages have very
little or no parallel data to train a NMT model.
For low resource language pairs, unsupervised
MT (Artetxe et al., 2018; Lample et al., 2018;
Lample and Conneau, 2019; Song et al., 2019),
and transfer learning (Zoph et al., 2016a) have
proven to be helpful in improving the translation
performance. Unsupervised MT has gained a lot
of attention in the past 3 years as it utilizes only
monolingual data to train a NMT system.
In this paper, we present our system for shared
task on Unsupervised MT and Very Low Resource
Supervised MT at WMT2021. The task covers
three languages pairs German (de) ↔ Lower
Sorbian (dsb), German (de) ↔ Upper Sorbian
(hsb), and Russian (ru) ↔ Chuvash (ch). We
submitted systems for de ↔ hsb and de ↔ dsb.

For de↔ dsb there is no parallel data provided but
for de↔ hsb, there is small parallel data.

Summary of our submitted systems:

• We use language model pretraining using
MASS (Song et al., 2019) objective to pretrain
a model for de↔ hsb using shared encoder,
shared decoder, and shared vocabulary, which
is followed by finetuning using iterative back-
translation. The final model is finetuned using
parallel data with translation objective.

• For de↔ dsb, our model is trained using pro-
vided monolingual dsb and de data using itera-
tive back-translation. The model is initialized
using the final model of de↔ hsb.

2 Related Work

Supervised NMT using transformer based architec-
tures (Vaswani et al., 2017) has achieved high trans-
lation accuracy for high resource languages like
English-French and English-German. Supervised
NMT requires lots of parallel data to get trained.
For low resource languages (which does not have
large amount of parallel data) the performance of
NMT systems is usually poor. We briefly describe
some literature on Unsupervised MT and transfer
learning.

2.1 Unsupervised NMT

Unsupervised MT gained quite a lot of attention
of researchers because of its ability to train MT
system without using any parallel data. The re-
search in Unsupervised MT started with techniques
which are based on statistical decipherment (Ravi
and Knight, 2011; Dou and Knight, 2012, 2013;
Dou et al., 2014, 2015). The approaches proposed
in Artetxe et al. (2018); Lample et al. (2017) are
majorly based on unsupervised cross-lingual em-
beddings, denoising auto-encoders, and iterative
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back-translation. Later, some approaches of Unsu-
pervised SMT have been proposed where a phrase
table is constructed using bilingual embeddings
and training is performed using language model
and distortion model (Artetxe et al., 2019; Lample
et al., 2018).
State of the art approaches of Unsupervised NMT
are based on cross-lingual language model pretrain-
ing followed by iterative back-translation (Lam-
ple and Conneau, 2019; Song et al., 2019; Lewis
et al., 2019). All these models differ with respect
to pretraining objective. Lample and Conneau
(2019) pretrain encoder and decoder separately us-
ing masked language modeling objective, while
Song et al. (2019) pretrains encoder and decoder to-
gether using MASS (masked sequence to sequence)
objective. Lewis et al. (2019) pretrains encoder and
decoder using an objective similar to MASS but
here the decoder is supposed to predict the whole
sentence rather than only predicting the masked
span of tokens.

2.2 Transfer Learning

Transfer learning have proven to be helpful for
low resource languages (Zoph et al., 2016b; Dabre
et al., 2017; Nguyen and Chiang, 2017). In Zoph
et al. (2016b), authors use a model trained on one
language pair as the initialization of the model for
another language pair, they do not consider or do
anything with the vocabulary. Gheini and May
(2019) proposed to create a universal vocabulary
before starting the training of the parent model. The
transfer learning works best if the language pairs
are related (Dabre et al., 2017). Aji et al. (2020)
shows that the internal layers are most important in
transfer learning.

3 System Overview

In this section, we describe the details of the sub-
mitted systems to shared task on Unsupervised MT
and Very Low Resource Supervised MT at WMT
2021. We report results for our 2 types of models:

• Language model pretraining using MASS
objective: For de ↔ hsb, we pretrain our
model using MASS objective and then fine-
tune it using iterative back-translation. Final
finetuning is performed using parallel data of
de↔ hsb provided in the task.

• Transfer learning: For de↔ dsb, we use the
final model of de↔ hsb to initialize the model

of de↔ dsb and train it further using iterative
back-translation using monolingual data of de
and dsb.

To train our models, we use shared encoder-
decoder transformer architecture. We also use
shared vocabulary of both source and target lan-
guages. For de↔ dsb, we use the same vocabulary
as used in de↔ hsb model without considering the
vocabulary mismatch.

4 Experiments

In this section, we describe the experimental setup
and the hyper-parameters used.

4.1 Data and Preprocessing
For de↔ hsb, we use monolingual data of hsb pro-
vided in the task and we use a subset (equal to the
size of the hsb monolingual data) of news-crawl-
2020 dataset downloaded from WMT1 provided
in the WMT news translation task for de monolin-
gual data, and also use the parallel data provided in
the task. For de↔ dsb, we use monolingual data
of dsb provided in the task together with a subset
(equal to the size of the dsb data) of news-crawl-
2020 dataset provided in WMT news translation
task for de monolingual data.
We tokenize using Moses tokenizer (Koehn et al.,
2007). We use fastBPE2 to learn BPE (Byte pair
encoding) (Bojanowski et al., 2017) with 32k BPE
codes over the combined tokenized data of both lan-
guages. For de↔ dsb, we use the same vocabulary
and codes learnt for de↔ hsb.

4.2 Experimental Setup
We use 6 layers in the encoder and decoder with 8
attention heads and 1024 embedding dimension.
We use Adam (Kingma and Ba, 2015) optimizer.
We use, a warm-up phase of 4000 steps with initial
learning rate starting from 1e−7 to 1e−4, in the
warm-up phase learning rate is increased linearly
and then starts to decrease with inverse square
root learning rate schedule. We use mini-batches
of size 2000 tokens and set the dropout to
0.1 (Gal and Ghahramani, 2016). Maximum
sentence length is set to 100 after applying BPE.
At the time of decoding, we set beam size to
1. For experiments, we are using MASS3 codebase.

1http://statmt.org/wmt21/
translation-task.html

2https://github.com/glample/fastBPE
3https://github.com/microsoft/MASS
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The pretraining is performed for 100 epochs for
both de↔ hsb. de↔ hsb model is further finetuned
using iterative back-translation for 60 epochs and
then trained using parallel data for 60 epochs. de
↔ dsb model is further finetuned for iterative back-
translation using the final de↔ hsb model for 60
epochs. Epoch size is set to .2M sentences.

4.3 Results and Discussion

Lang Pair Train Valid Test

de-hsb 147521 2000 2000

de-dsb 0 601 602

Table 1: Parallel data (Number of sentences)

Language Train

hsb 695721

dsb 145198

Table 2: Monolingual data (Number of sentences) (We
use equal amount of german data from news-crawl2020
as dsb and hsb to train their respective models)

Lang Pair Our system Best system

de-hsb 60.2 66.3

hsb-de 60.1 67.7

de-dsb 6.4 29.9

dsb-de 5.9 33.5

Table 3: Results: BLEU scores for our system and high-
est scoring system in the task

All the results are shown in 3. We achieve BLEU
score of 60.2 and 60.1 for de → hsb and hsb →
de respectively. Using the final model of de ↔
hsb as initialization of the model for de ↔ dsb,
we achieve BLEU score of 6.4 and 5.9 for de→
dsb and dsb → de respectively even with using
the same vocabulary of de ↔ hsb. The percent-
age of vocabulary overlap (the percentage of de↔
dsb vocabulary that is present in de↔ hsb vocabu-
lary) is 68.21 after applying BPE which makes the
transfer learning work. After MASS pretraining
and iterative back-translation (without using any
parallel data), the BLEU scores are 4.74 and 4.92
for de→ hsb and hsb→ de respectively. We are

able to achieve above BLEU scores without using
any parallel data because of the similarity between
de and hsb. The percentage of vocabulary overlap
between de and hsb (the percentage of vocabulary
of de present in hsb) is 60.73, which makes them
highly similar languages. Similarly, the percent-
age of vocabulary overlap between de and dsb (the
percentage of vocabulary of de present in dsb) is
54.26. The vocabulary here refers to the number of
unique tokens after applying BPE.

5 Conclusion

In this paper, we study the impact of language
model pretraining together with iterative back-
translation for very low resource language pair i.e.
de ↔ hsb. We also study the impact of transfer
learning from de↔ hsb to de↔ dsb. In future, we
plan to filter bad back-translated data while train-
ing for de↔ dsb using iterative back-translation
and also different transfer learning techniques to
improve the performance for de↔ dsb.
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Abstract

We describe our neural machine translation
systems for the 2021 shared task on Unsuper-
vised and Very Low Resource Supervised MT,
translating between Upper Sorbian and Ger-
man (low-resource) and between Lower Sor-
bian and German (unsupervised). The sys-
tems incorporated data filtering, backtransla-
tion, BPE-dropout, ensembling, and transfer
learning from high(er)-resource languages. As
measured by automatic metrics, our systems
showed strong performance, consistently plac-
ing first or tied for first across most metrics and
translation directions.

1 Introduction

This work describes our machine translation (MT)
systems for translating between Upper Sorbian–
German and Lower Sorbian–German (all transla-
tion directions). We focused primarily on the su-
pervised task of Upper Sorbian–German, and then
applied those systems to the task of building simple
Lower Sorbian–German systems.1

Upper Sorbian and Lower Sorbian are Slavic mi-
nority languages spoken in eastern Germany, along-
side German. The shared task data was provided
to the organizers through collaborations with the
Sorbian Institute2 and the Witaj Language Cen-
tre,3 as described in Fraser (2020), to which we
direct interested readers for additional information
on the languages and data. Following the 2020
shared task, the Witaj Language Centre released
a publicly-available Sorbian–German MT system
sotra (Witaj Language Centre, 2021) based on
Moses (Koehn et al., 2007) and OpenNMT (Klein
et al., 2017).4

∗Both authors contributed equally to this work.
1We abbreviate language names as follows: cs (Czech), de

(German), dsb (Lower Sorbian), and hsb (Upper Sorbian).
2https://www.serbski-institut.de/en/

Institute/
3https://www.witaj-sprachzentrum.de/
4https://sotra.app

We provide an overview of the data, preprocess-
ing, and model architectures in Sections 2, 3, and
4. We then discuss baselines, systems, experiments
in monolingual filtering, and backtranslation (all
focused on Upper Sorbian–German) in Sections 5,
6, 7, and 8. In Section 9, we discuss how we ap-
plied and finetuned our existing Upper Sorbian MT
systems for the task of translating Lower Sorbian.
Section 10 discusses additional experiments with
negative results. Finally, Sections 11 and 12 sum-
marize the final systems and our conclusions.

2 Data

We used all provided parallel German–Upper Sor-
bian data and all monolingual Upper Sorbian data
(after filtering), along with German–Czech parallel
data from Open Subtitles (Lison and Tiedemann,
2016),5 DGT (Tiedemann, 2012; Steinberger et al.,
2012), JW300 (Agić and Vulić, 2019), Europarl
v10 (Koehn, 2005), News-Commentary v15, and
WMT-News.6 We also used the monolingual Upper
Sorbian Web, Witaj and Sorbian Institute datasets
as well as the Lower Sorbian monolingual data (the
latter for Lower Sorbian tasks only).7 We used
the provided devel sets for development, and
the devel_test systems for measuring progress
and choosing which systems to submit.

3 Preprocessing and Postprocessing

As preprocessing, we first clean all of the
available training data (but not development or
test data) using clean-utf8-text.pl
with the -no-phrase-sep flag from
PortageTextProcessing.8 For parallel
training data, we use clean-corpus-n.perl

5http://www.opensubtitles.com
6http://www.statmt.org/wmt20/

translation-task.html
7http://www.statmt.org/wmt21/unsup_

and_very_low_res.html
8https://github.com/nrc-cnrc/

PortageTextProcessing
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Data Lines BPE Voc. CS-DE Parent Multi. Multi. ML-0
train.hsb-de.de 60,000 Y Y 21 × 36 ×
train.hsb-de.hsb 60,000 Y × 2 Y 21 × 36 ×
train2021.hsb-de.de 87,521 Y Y 21 × 36 ×
train2021.hsb-de.hsb 87,521 Y × 2 Y 21 × 36 ×
sorbian_institute_monolingual.hsb 337,730 Y × 2 Y 6 × <BT>
web_monolingual.hsb 105,484 6 × <BT>
witaj_monolingual.hsb 219,177 Y × 2 Y 6 × <BT>
OpenSubtitles.cs-de.{de,cs} 11,073,440 Y +10× BPE-dr
DGT.cs-de.{de,cs} 3,653,397 Y +10× BPE-dr
JW300.{de,cs} 1,037,533 Y +10× BPE-dr
Europarl.cs-de.{de,cs} 558,693 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
News-Commentary.cs-de.{de,cs} 180,053 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
WMT-News.cs-de.{de,cs} 19,892 Y Y Y +10× BPE-dr 3 × <CS> 3 × <CS>
news.2019.de.shuffled.deduped.de 31,650,966
news-commentary-v15.dedup.de 226,820 Y Y
news.2019.de.shuffled.deduped.ml_t00 5,071,268 1 x <BT>

Table 1: Data and how it was used, whether for BPE training and vocabulary extraction, parent model training,
or child model training. All numbers of lines reflect data after initial cleaning and filtering by known characters.
Special tags (for language or backtranslation) are shown where they are used, upsampling is shown with ×, and
BPE-dropout is shown.

from Moses (Koehn et al., 2007) with ratio 15,
and for monolingual data we remove empty
lines. We normalize punctuation with Moses’s
normalize-punctuation.perl and
remove the non-breaking space \xa0. We
perform additional sentence splitting to improve
tokenization,9 then tokenize with Moses’s
tokenizer.perl -a -l $LNG (where
$LNG is cs, de, or hsb), then re-merge the
sentences that were split into single lines. For all
German-Czech parallel data and all monolingual
German or Czech data, we removed any lines that
contained characters that had not been observed in
DE-HSB training data, WMT-News, or Europarl.
This helps clean data of unusual encoding issues,
as well as removing text that is clearly in other
languages (i.e., written in other scripts).

We build BPE vocabularies of size 10k, 15k, 20k,
and 25k merges using subword-nmt10 (Sennrich
et al., 2016). We also add all Moses and Sockeye
special tags (ampersand, <unk>, etc.) and a num-
ber of additional reserved tags (for backtranslation,
languages, etc.) to a glossary file used for applying
BPE, which prevents them from being segmented.
For building the BPE models, we used all HSB-
DE data, the Sorbian Institute and Witaj monolin-
gual HSB data, CS-DE data, and news-commentary
(DE) data; the HSB data was upscaled twice (see
Table 1 for full details). The same datasets were

9Using utokenize.pl with -p -ss
-notok -paraline -lang=en from
PortageTextProcessing.

10https://github.com/rsennrich/
subword-nmt

used for extracting the joint vocabulary, which was
then used for source and target.

In standard postprocessing, we de-BPE and deto-
kenize (using the Moses detokenizer.perl
-a -l $LNG).

4 Models

We built Transformer models (Vaswani et al., 2017)
using Sockeye (Hieber et al., 2018) version 2.3.14
and cuda-10.1. We used the default value of 6 en-
coder/decoder layers, 8 attention heads, the Adam
(Kingma and Ba, 2015) optimizer, label smooth-
ing of 0.1, a cross-entropy-without-softmax-output
loss, and a model size of 512 units with a FFN
size of 2048. We performed early stopping after
32 checkpoints without improvement. We chose
custom checkpoint intervals of 4000 updates when
the train corpus was deemed big enough and 500
updates when the train corpus was small. We op-
timized for BLEU (Papineni et al., 2002)11 and
used the whole validation set during validation.
The batch size was set to 8192 tokens, and the
maximum sequence length for both source and tar-
get was set to 200 tokens. We used weight tying
and vocabulary sharing, but we set gradient clip-
ping to absolute and kept the initial learning rate
of 0.0002. We used a beam size of 5 in all submit-

11All BLEU scores were computed using
sacreBLEU (Post, 2018) with the signature
BLEU+case.mixed+numrefs.1+smooth.exp+
tok.13a+version.1.4.14. The chrF scores (Popović,
2015) were generated in the submission interface.
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ted systems.12 When systems deviate from these
(i.e., different learning rates or label smoothing),
we make note of it in our descriptions.

5 Baselines

We build several types of baselines against which
to measure our improvements. They are shown in
Table 2 and discussed in the following sections.

System DE-HSB HSB-DE
Translation Memory 16.3 15.5
2020 Bitext Baseline 47.0 (10k) 45.7 (10k)
Bitext Baseline 53.2 (10k) 51.9 (15k)
2020 Final Submission 59.4 (20k) 58.9 (10k)

Table 2: BLEU scores for baseline systems measured
on devel_test data (vocabulary size in parentheses).

5.1 Translation Memory
We build translation memory baselines, following
Simard and Fujita (2012). For each source sentence
in devel_test, we find the most similar (as measured
by sentence-level BLEU) source sentence in the
full training set and return its translation as our
hypothesis. The relatively high scores obtained
demonstrate the high levels of similarity between
the devel_test and train domains (though we note
that very few sentences are exact matches for ones
in the training data).

5.2 Bitext Baselines
We build baselines using the available DE-HSB
bitext, first with only the bitext available for the
2020 iteration of the task, and then with the 2020
and 2021 training data combined. As we see in
the middle rows of Figure 2, the increase in data
from 60,000 to 147,521 lines resulted BLEU score
increases of +6.2 in both translation directions.

5.3 2020 Final Systems
As a last “baseline”, we consider our final sub-
missions to the 2020 shared task. In the DE-HSB
direction, this was a four system ensemble, all of
which were child systems incorporating backtrans-
lation and built on top of parent systems trained on
either DE-CS or DE-“pseudo-HSB”, with a mix of
types of BPE-dropout. The HSB-DE direction was
an ensemble of 5 child systems using backtransla-
tion on top of a similar set of parent systems. These
are described in detail in Knowles et al. (2020).

12In paraphrasing experiments where we generated 10-best
lists, we used a beam size of 10, but these did not contribute
to our final systems.

6 Systems

Here we describe the general types of systems that
we have built, including parent DE-CS systems,
multilingual systems, and the child (and grand-
child) systems we built on top of those.

6.1 Parent Systems

We first built DE-CS and CS-DE parent systems, us-
ing OpenSubtitles, DGT, JW300, Europarl, News-
Commentary, and WMT-News as training data.
The training data is used once in its original form,
and concatenated with 10 different versions each
generated by an iteration of BPE-dropout (both
source and target)13 with a dropout rate of 0.1.
We use newstest2019-csde as the development
set. This results in DE-CS and CS-DE systems
with BLEU scores between 22 and 25 on the
newstest2019-csde development set. We use these
parent systems for transfer learning.

6.2 Multilingual Systems

When we build CS-DE and DE-CS parent systems
and then use them for transfer learning by finetun-
ing on HSB-DE or DE-HSB data, they undergo
“catastrophic forgetting” (Thompson et al., 2019;
Gu and Feng, 2020) and lose the ability to trans-
late Czech while gaining the ability to translate
Upper Sorbian, as measured on their respective de-
velopment sets. While we don’t necessarily need to
maintain the ability to translate Czech, we explored
whether multilingual systems might improve per-
formance on our task of interest. To this end, we
build multilingual systems, which incorporate CS-
DE data, upsampled HSB-DE data, and backtrans-
lated data (DE in the case of HSB-DE systems,
HSB in the case of DE-HSB systems). In these
systems we performed upsampling with the aim
of having approximately 1 part CS-DE to 4 parts
HSB-DE data (reflective of our priority to translate
HSB-DE). We did not experiment with additional
ratios; we leave this to future work.

For DE-HSB multilingual systems, we used
monolingual HSB data (backtranslated and upsam-
pled 6 times) tagged with <BT> tags, DE-CS data
(Europarl, News-Commentary, WMT-News; up-
sampled 3 times) tagged with <CS>, and the par-
allel DE-HSB training data (upsampled 21 times
and untagged). For HSB-DE multilingual systems,

13Note that we only apply BPE-dropout to training data,
never to development or test data.
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we used a sample14 of the news 2019 DE data back-
translated and tagged with <BT>, the same three
CS-DE corpora tagged with<CS> and upsampled,
and the HSB-DE training data upsampled (the up-
sampling of these latter corpora depended on the
size of the backtranslated data).

6.3 Child Systems

Child systems are initialized with the parameters of
some given system and are then finetuned on a new
set of data with continued training. This is how we
perform transfer learning, taking a parent system
trained on CS-DE (or DE-CS) data and converting
it to an HSB-DE (or DE-HSB) system by starting
from the parent system parameters and training on
the appropriate language data, as in Kocmi and
Bojar (2018). In some cases, we repeat this process
multiple times with different sets of data, building
“grandchild” systems on top of child systems.

7 Monolingual Data Filtering

Given the tight coupling between the domain of the
development/development-test data and the train-
ing data, the large quantity of monolingual data
available for backtranslation from German, and in-
spired by the filtering used in the high-performing
2020 submission by Scherrer et al. (2020) we exam-
ined whether we should subsample data for back-
translation.15 We used the 2020 final systems de-
scribed in Knowles et al. (2020) to backtranslate all
available News 2019 DE. This enabled us to train
child systems with a random sample of 1.5 million
lines of text, the full available backtranslated data,
and several approaches to sampling the data.

We first describe HSB-DE experiments with the
fixed data size of 1.5 million lines of backtranslated
DE monolingual data. We use a random sample
as a baseline. We compare to it two approaches
to using pretrained Sentence-Transformer embed-
dings16 (Reimers and Gurevych, 2019) and cosine
similarity for domain filtering: ranking sentences
in the monolingual data based on their similarity
to the average embedding of the full DE side of

14As described in Section 7, Moore-Lewis filter.
15Data subsampling or filtering or of one sort or another

was also used by several other submissions in 2020, including:
Dutta et al. (2020), Edman et al. (2020), and Knowles et al.
(2020).

16From https://github.com/UKPLab/
sentence-transformers, with model paraphrase-
xlm-r-multilingual-v1, a multilingual version of paraphrase-
distilroberta-base-v1, trained on parallel data for 50+
languages (Reimers and Gurevych, 2020).

Filter Both Src. None
Random 57.5 57.1 57.3
Average 57.5 57.4 57.1
Individual 57.7 56.9 57.1
Moore-Lewis 57.7 57.2 57.3
M-L thresh.: 0 57.7 58.1 57.9

Table 3: BLEU scores of HSB-DE child systems
trained on authentic HSB-DE parallel text (upsampled)
and 1.5 million lines of backtranslated (iteration 1)
News 2019 data, sampled using different approaches.
Results shown are for 15k vocabulary. Columns in-
dicate type of BPE-dropout (both source and target,
source only, and neither). The last line shows thresh-
olded Moore-Lewis, with 5,071,268 lines selected.

the DE-HSB training data and selecting the 1.5
million most similar,17 and selecting the 1.5 mil-
lion sentences most similar to any individual sen-
tence in the DE side of the DE-HSB training data.18

We also apply Moore-Lewis filtering (Moore and
Lewis, 2010), again treating the DE side of the
DE-HSB training data as the “in-domain” data.
Moore-Lewis (M-L) uses language models19 to
compare out-of-domain data to in-domain data on
the basis of cross-entropy, enabling the sampling
of in-domain-like text from the out-of-domain set.

We find that the Moore-Lewis approach outper-
forms or matches the random baseline across three
variations of BPE-dropout. Table 3 shows results
for 15k BPE, but we found the same across 10k,
15k, 20k, and 25k vocabularies. With both source
and target BPE-dropout, the Moore-Lewis sample
was always best or tied for best, with source side
or no dropout it was always best or second best.

We also built systems with no BPE dropout, us-
ing full backtranslated News 2019 data; for larger
BPE sizes, the Moore-Lewis samples outperformed
the full data (despite being much smaller and thus
more efficient), while for the smaller BPE sizes,
Moore-Lewis came in second behind the full data.

With 1.5 million as a relatively arbitrary size, we
proceeded with using a threshold for Moore-Lewis
filtering. A threshold of 0 resulted in 5,071,268
lines sampled from News 2019. With upsampling

17Similar to the domain-cosine approach in Aharoni and
Goldberg (2020).

18We note that this uses external pretrained models, and
we have done this only for the purpose of experimenting with
backtranslation; none of our final submissions are built using
these approaches, so they remain constrained.

194-gram language models built with MITLM (https:
//github.com/mitlm/mitlm).
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HSB-DE data to match it in size, we found that
the Moore-Lewis threshold child models outper-
formed the 1.5 million size and also outperformed
or matched the full data size systems.

We also tested Moore-Lewis filtering on the Up-
per Sorbian monolingual data, but found it to be
less useful in that case, likely due to the much
smaller size of available data, and potentially to
closer matches (due to the shared origins of the
training data and some of the monolingual data).

8 Backtranslation

8.1 BT1

For our first iteration of backtranslation, BT1, we
use our final submitted systems from last year’s
task, as described in Section 5.3.

8.2 BT2

Our second iteration of backtranslation was per-
formed using ensembles of (at the time) best-
performing systems at the midpoint of the shared
task. Keeping in mind that ensembles typically
outperform single systems, and that we found that
diverse ensembles seemed to outperform less di-
verse ensembles, we chose our best-performing
systems and then two variants of each to ensemble
for the second round of backtranslation. For DE-
HSB, the child systems ensembled were the both,
src, and none BPE-dropout variants trained on
the true DE-HSB data (upsampled 3 times) and
BT1 backtranslated HSB data, with a 25k vocab-
ulary. For HSB-DE, the child systems ensembled
were also both, src, and none BPE-dropout
variants trained on the the true DE-HSB data (up-
sampled 35 times) and BT1 News 2019 DE data
filtered using Moore-Lewis and a threshold of 0,
with a 15k vocabulary.

8.3 Analysis of Backtranslation

We compared BT1 and BT2 outputs and found
them to be quite similar, sometimes even identical.
This brought us to a closer examination of the back-
translation systems and the training data itself. As
part of our analysis and experiments, we performed
backtranslation of the full DE-HSB training data.

Doing so, we observed that significant portions
of the training data had been memorized by many
of our systems, and where differences existed, they
tended to be quite small. As evidence of this, for
both BT1 and BT2, in both translation directions,
the BLEU scores for backtranslated training data

were 98.2 or higher. Nevertheless, the high auto-
matic metric scores on held-out data suggest that
these systems are still able to generalize (that is,
they have not only memorized data), though it
does raise questions about how general the models
are: would they perform nearly as well on out-of-
domain data?

9 Lower Sorbian

The data provided for Lower Sorbian consists of
145,196 lines of monolingual data and the small
(approx. 600 line) parallel devel and devel_test sets.
In order to build systems, we relied on the related-
ness of Lower Sorbian and Upper Sorbian. Since
we primarily focused on Upper Sorbian, our BPE
vocabularies were not learned using Lower Sor-
bian; we leave an exploration of that to future work.
Here we describe our process of building Lower
Sorbian systems from Upper Sorbian systems.

9.1 Initial Round

Without any parallel data, we first tried simply
translating with our existing HSB-DE and DE-HSB
systems and ensembles. In the DE-DSB direction,
the resulting devel_test DSB scores were between
7.7 and 8.1 BLEU, while in the DSB-DE direction,
the scores were naturally a bit higher (since the sys-
tem has trained on the output language of German),
between 17 and 19 BLEU.

From there, we translated the full DSB mono-
lingual data using one of our best HSB-DE single
systems: 25k vocabulary, standard parent CS-DE
(BPE-dropout both), finetuned child system using
BT2 M-L threshold 0 news data and the original
HSB-DE training data with BPE-dropout (both)
and label smoothing of 0.15. The relatively high
BLEU scores that we observed when translating
DSB devel and devel_test data with HSB-DE sys-
tems allowed us to assume that the output might
be more than just noise, and ideally at least good
enough for use as the source side.

For backtranslation of DE into DSB, we used
an ensemble of two 25k vocabulary DE-DSB sys-
tems. The first started from a default parent DE-
CS system with BPE-dropout (both) and was then
finetuned as a multilingual system using BT2 back-
translated HSB monolingual data and DE-CS data
(as described in Section 6.2) with BPE-dropout
(both). Then it was finetuned with the initial
round backtranslated DSB monolingual data just
described, again with BPE-dropout (both). The
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second also started from the default DE-CS BPE-
dropout (both) system and was finetuned with BT2
backtranslated HSB monolingual data with BPE-
dropout (both) and learning rate of 0.0001. This
was then also finetuned with initial round backtrans-
lated DSB monolingual data, with BPE-dropout
(both) and a learning rate of 0.0001.

9.2 Next Round

We also built another DSB-DE system for perform-
ing next round backtranslation. It began with a 20k
vocabulary standard parent CS-DE (BPE-dropout
both), as with previous systems, finetuned child sys-
tem using BT2 M-L threshold 0 news data and the
original HSB-DE training data with BPE-dropout
(both) and label smoothing of 0.15. We then fine-
tuned this with the DE side of the full HSB-DE
training data, backtranslated to DSB using the ini-
tial round DE-DSB system.

10 Inconclusive and Negative Results

We now discuss negative results, i.e., experiments
that we performed that were unsuccessful. All of
these were performed on Upper Sorbian-German.

10.1 Fuzzy Matching

We performed brief and ultimately unsuccessful
experiments with using similar translations from
the training data to guide translation, as in Xu et al.
(2020). In this approach, for each source sentence
(train, development, or test), we first extract its best
“fuzzy match” from a translation memory (we use
the parallel HSB-DE data for this, and select the
best non-exact fuzzy match) if any is available. The
system input then consists of the source sentence,
followed by a special token, followed by the tar-
get language sentence corresponding to the closest
source fuzzy match from the translation memory
(called FM# in Xu et al. (2020)). We also tried
an approach like their FM* approach, where target
language tokens are masked with a special token
if they do not align20 to a source language word
that is contained in the source sentence to be trans-
lated. In either case, if no fuzzy match is returned, a
special null token replaces the target language text
in the input. Both approaches performed almost
identically to the baseline, so we did not proceed
with additional experiments (including those ap-
proaches that used factors). We experimented with
a range of thresholds for fuzzy matches (0.0, 0.35,

20We used fast_align (Dyer et al., 2013).

0.5), all using FuzzyMatch-cli21 but all per-
formed comparably. We believe this remains an
open area for exploration: did the systems fail to
outperform the baseline because the baseline had
already attained high quality? Did the small size of
the translation memory hurt performance?

10.2 Backtranslation as Paraphrasers

Inspired by work like Khayrallah et al. (2020), we
also experimented with whether we could treat
our high-quality backtranslation systems as para-
phrasers to generate more diverse data by translat-
ing the HSB-DE parallel data (in each direction)
with sampling rather than using one-best output of
beam search. We tried building children with this
data (both with only authentic target side data and
with full combinations of sampled datasets), but
did not find that it improved over comparable sys-
tems. One issue is that the HSB-DE training data is
nearly memorized, as discussed in Section 8.3, so
even in the sampled data, many of the differences
between translations are quite small.

10.3 Backtranslation-Only Systems

Following Abdulmumin et al. (2021), we experi-
mented with finetuning our parent systems using
only backtranslated data, followed by then finetun-
ing on the authentic parallel data. We had mixed
results with this approach – one of them was high-
performing enough to include in our HSB-DE final
ensemble, but there was not enough evidence for
this language pair to conclude that the approach is
broadly useful (beyond providing additional diver-
sity to ensembles).

11 Final Systems

According to preliminary automatic metric results
from the shared task organizers, our systems per-
formed quite well. The metrics considered were
BLEU, chrF, and – in the case of translation into
German – BERT Score. Each translation direc-
tion saw five systems submitted, with the exception
of DSB-DE, which only had four. Our HSB-DE
had the best BERT score (0.981), the second-best
BLEU score (67.3, 0.4 BLEU behind NoahNMT),
and the best chrF score; it was significantly better
than all four other systems in terms of BERT score,
while in terms of BLEU and chrF it was better
than three other systems (tying with NoahNMT).

21https://github.com/SYSTRAN/
fuzzy-match
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Test devel_test
System BLEU chrF BLEU BLEU (sing.)
HSB-DE 67.3 (-0.4) 0.836 (+0.002) 60.0 58.5
DE-HSB 66.3 (+0.4) 0.837 (+0.004) 59.9 58.1
DSB-DE 33.5 (+0.2) 0.638 (+0.016) 34.9 34.5
DE-DSB 29.9 (+2.4) 0.599 (+0.020) 31.0 30.1

Table 4: Final submission scores on test sets. In parentheses, we show the difference between our system and the
best performing system by another task participant (positive indicates our system scored highest, negative indicates
that the other team’s score was higher). The last two columns show scores on devel_test, first for the ensemble and
then for the single best component systems in the ensemble (sing.).

Our DSB-DE system had the best BLEU and chrF
scores and was tied for the best BERT score (0.953)
with CL_RUG; in terms of BLEU and chrF it was
significantly better than one other system (along-
side CL_RUG and LMU) and in terms of BERT
score it was significantly better than two other sys-
tems (alongside CL_RUG). Both of our systems
translating out of German had the highest BLEU
and chrF scores. Our DE-HSB system was, along-
side NoahNMT, significantly better than three other
systems in both automatic metrics. Our DE-DSB
system was, alongside LMU, significantly better
than three other systems in both automatic metrics.

11.1 HSB-DE

Our Upper Sorbian-German submission is an en-
semble of eight systems with 25k vocabulary,
which scored 67.3 BLEU (0.836 chrF) on the test
set. The first six systems in the ensemble are chil-
dren and grandchildren of a CS-DE system (with
both source and target BPE-dropout). The final
two were multilingual systems trained on a mix
of CS-DE and HSB-DE data. Their details are as
follows:

1. HSB-DE data, BT2 news (M-L threshold 0),
BPE-dropout (both), and label smoothing set
to 0.15 (best single system)

2. HSB-DE data, BT2 news (M-L threshold 0),
BPE-dropout (both), and transformer dropout
at 0.20

3. Child of system 1, finetuned on only HSB-DE
(with BPE-dropout, both)

4. Multilingual (mix of CS-DE language-tagged,
BT1 news M-L top 1.5M tagged as BT, and
HSB-DE upscaled)

5. HSB-DE data, BT1 and BT2 (M-L threshold
0, each), BPE-dropout (both)

6. Child of a backtranslation-only, BT1 and BT2
(M-L threshold 0, each), BPE-dropout (both)

system; finetuned on only HSB-DE (with
BPE-dropout, both)

7. Multilingual (not a child) mix of CS-DE and
HSB-DE data, BT2 (M-L threshold 0), BPE-
dropout (both)

8. Multilingual (not a child) mix of CS-DE and
HSB-DE data, BT1 (M-L top 1.5M), BPE-
dropout (both)

11.2 DE-HSB

Our German-Upper Sorbian system is an ensemble
of seven systems with 25k vocabulary, of which the
first five are children or grandchildren of a DE-CS
parent system (with both source and target dropout).
The final two are multilingual systems. In all cases,
any backtranslation listed (BT1 or BT2) is back-
translation of the monolingual HSB data. For
this language direction, our primary submission
does not use additional postprocessing. While the
additional postprocessing improved all other lan-
guage directions/pairs, it decreased BLEU by 0.1 in
this pair (chrF remained unchanged). The system
scored 66.3 BLEU (0.837 chrF) on test.

1. Multilingual system with BT2 and BPE-
dropout (both)

2. Child of system 1, finetuned on DE-HSB with
BPE-dropout (both)

3. DE-HSB data, BT2, BPE-dropout (both), la-
bel smoothing set to 0.15

4. Same as system 3, with transformer dropout
set to 0.15

5. DE-HSB data, BT1, BPE-dropout, both
6. Multilingual (not child), BT2, BPE-dr. (both)
7. Multilingual (not child), BT1, BPE-dr. (both)

11.3 DSB-DE

Our Lower Sorbian-German system is an ensemble
of two systems with 20k vocabulary, scoring 33.5
BLEU (0.6388 chrF) on test. Both systems are
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children of the 20k vocabulary equivalent of the
first component of the HSB-DE ensemble: taking a
CS-DE parent, then training on HSB-DE data and
BT2 news (M-L threshold 0), with BPE-dropout
(both), and label smoothing set to 0.15.

They train on authentic DE data that is paired
with DSB backtranslations, generated by the ini-
tial round DE-DSB ensemble (described in Sec-
tion 9.1).

1. Child trained on backtranslation paired with
DE side of the DE-HSB training data, BPE-
dropout (both), learning rate 0.0001.

2. Same as the first system, with the addition of
backtranslated news 2019 (M-L threshold 0).

11.4 DE-DSB
Our German-Lower Sorbian system is an ensem-
ble of four 20k BPE systems, and scored 29.9
BLEU (0.599 chrF) on test. All four systems are
based on a default DE-CS parent with BPE-dropout
(both). The first three are then finetuned with BT2
backtranslated HSB data and BPE-dropout (both).
The last was finetuned with a multilingual system
(again with BT2 backtranslated HSB and BPE-
dropout both). We now describe how those sys-
tems were finetuned to the DE-DSB task (all used
BPE-dropout both):

1. Finetuned with DSB monolingual data (initial
round backtranslated).

2. Finetuned with DSB monolingual data (next
round backtranslated).

3. Same as system 2 with learning rate 0.0001.
4. Same as system 3 (different parent).

12 Conclusions

As with last year’s task, we found that our best
systems consisted of ensembles, with more diverse
ensembles performing better than less diverse ones.
The very high automatic metric scores along with
our experiments in backtranslation led us to exam-
ine the state of memorization of the training data,
which we found to be quite high. We also found
that the close relationship between Upper Sorbian
and Lower Sorbian enabled us to bootstrap seem-
ingly strong Lower Sorbian systems through itera-
tive backtranslation. We believe that the true test
of these systems will be through human evaluation,
as well as an analysis of how well they perform in
a real-life setting (i.e., with more out-of-domain
test data), as the current set seems potentially quite
constrained in domain.
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Abstract

This paper describes the NoahNMT system sub-
mitted to the WMT 2021 shared task of Very
Low Resource Supervised Machine Transla-
tion. The system is a standard Transformer
model equipped with our recent technique of
dual transfer. It also employs widely used tech-
niques that are known to be helpful for neural
machine translation, including iterative back-
translation, selected finetuning, and ensemble.
The final submission achieves the top BLEU
for three translation directions.

1 Introduction

In this paper, we describe the NoahNMT system
submitted to one of the WMT 2021 shared tasks.
The shared task features both unsupervised ma-
chine translation and very low resource supervised
machine translation. As our core technique is
mainly suitable for low resource supervised ma-
chine translation, we participated in four translation
directions between Chuvash-Russian (chv-ru)
and Upper Sorbian-German (hsb-de).

Our core technique is called dual transfer (Zhang
et al., 2021), which belongs to the family of trans-
fer learning. It transfers from both high resource
neural machine translation model and pretrained
language model to improve the quality of low re-
source machine translation. During the preparation
for the shared task, we conducted additional experi-
ments that supplement the original paper, including
the choice of parent language, the validation of
Transformer big model, and the usage of dual trans-
fer along with iterative back-translation.

In addition, we also applied proven techniques
to strengthen the quality of our system, includ-
ing selected finetuning and ensemble. Our final
submission achieves the top BLEU on the blind
test sets for three translation directions: chv→ru,
ru→chv, and hsb→de.

2 Approach

In this section, we describe the techniques used in
our system. Interested readers are encouraged to
check out the original papers for further details.

2.1 Dual Transfer

We reproduced the illustration of dual transfer from
the original paper (Zhang et al., 2021), as shown in
Figure 1. This illustration shows the case of gen-
eral transfer, where the high resource translation
direction is A→B, and the low resource transla-
tion direction is P→Q. As discussed in the original
paper, in many cases, it is possible to use shared tar-
get transfer (B=Q) or shared source transfer (A=P).
Taking chv→ru as an example, we can choose
en→ru as the high resource translation direction,
resulting in an instance of shared target transfer. In
this shared task, when training the high resource
translation model, we always initialize the shared
language side with the pretrained language model
BERT (Devlin et al., 2019).

2.2 Iterative Back-Translation

Iterative back-translation (Hoang et al., 2018) is
an extension of back-translation (Sennrich et al.,
2016a). It can exploit both sides of monolingual
data of a language pair, and produces translation
models for both directions, which is suitable for
this shared task.

The initial models for generating synthetic par-
allel data are produced by using dual transfer with
low resource authentic parallel data. In each itera-
tion of iterative back-translation, we use the latest
model to greedily decode a disjoint subset of 4m
monolingual sentences1 to generate synthetic paral-
lel data. Then a new model is trained on a mixture
of authentic and synthetic parallel data. With the
use of dual transfer, model training can start from

1For chv and hsb, all monolingual sentences are used in
each iteration.
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Figure 1: Dual transfer from pretrained language model and high resource A→B neural machine translation to low
resource P→Q neural machine translation. Dashed lines represent initialization. Parameters in striped blocks are
frozen in the corresponding step, while other parameters are trainable. Different colors represent different languages.
Data used in each step is also listed.

language code # sentence (pair)
cs-de 15m
hsb-de 0.1m
kk-ru 3.9m
en-ru 17m
chv-ru 0.7m

cs 90m
de 100m
hsb 0.8m
kk 17m
en 54m
ru 110m
chv 3m

Table 1: Training data statistics.

the initial parameters as shown in Step (4) of Fig-
ure 1. This has the additional benefit of reducing
training time, because convergence is faster than
training from random initialization.

2.3 Selected Finetuning

Selected finetuning aims to deal with the domain
difference that may exist between the test set and
the training set. Given the source side of the test
set, we try to select similar source sentences from
the training set, and then finetune the translation
model on the selected subset of training sentence
pairs.

We use BM25 (Robertson and Zaragoza, 2009)
to calculate the similarity between two sentences
for retrieval. The BM25 score between a query
sentence Q and a sentence D in the corpus for

parent language chv→ru BLEU
kk 18.47
en 18.61

Table 2: Test set BLEU for chv→ru, when the parent
language is either kk or en (i.e. the parent translation
direction is either kk→ru or en→ru). The translation
model is Transformer base.

retrieval C is given by

s (D,Q)

=

LQ∑

i=1

IDF (qi) · (k + 1) · TF (qi, D)

k ·
(
1− b+ b · LD

Lavg

)
+TF (qi, D)

,

where the query sentence Q is a sequence of LQ

subwords {qi}LQ

i=1, IDF (qi) is the Inverse Docu-
ment Frequency for qi in the corpus C, TF (qi, D)
is the Term Frequency for qi in the sentence D, LD

is the length of the sentence D, Lavg is the average
length of the corpus C, k and b are hyperparameters,
which are set as 1.5 and 0.75, respectively.

Based on the BM25 score, we calculate the simi-
larity between a source test sentence (as the query
sentence) and the source sentences in the training
set to obtain the top 500 sentences. After perform-
ing the selection for all the source test sentences,
we merge them and remove duplicates to obtain the
set for finetuning.
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model chv→ru ru→chv hsb→de de→hsb
Transformer base 18.61 16.18* 55.60 55.98
Transformer big 19.24 17.12 56.10 57.12

Table 3: Test set BLEU for the four translation directions, using either Transformer base or Transformer big for dual
transfer. *: The parent translation direction is ru→kk, and we did not train a Transformer base with ru→en as
the parent, though the resulting ru→chv BLEU scores should be close based on the experiment in Section 4.1.

runtime (hours)
BERTen 143
BERTchv 54

NMTen→ru 52
NMTchv→ru 14

Table 4: Runtime of each step in dual transfer for
NMTchv→ru with Transformer big.

3 Experimental Setup

3.1 Data

We collected allowed data for the involved lan-
guages and followed the same preprocessing
pipeline of punctuation normalization and tokeniza-
tion, using scripts from Moses2. The English mono-
lingual data came from the English original side of
ru-en back-translated news3, but its automatic
translation to Russian was discarded. The pro-
vided Chuvash-Russian dictionary was not used.
Each language was encoded with byte pair encod-
ing (BPE) (Sennrich et al., 2016b). The BPE codes
and vocabularies were learned on each language’s
monolingual data, and then used to segment paral-
lel data. We used 32k merge operations for all lan-
guages. After BPE segmentation, we discarded sen-
tences with more than 128 subwords, and cleaned
parallel data with length ratio 1.5. Training data
statistics is provided in Table 1. Note that we exper-
imented with Kazakh (kk) data (Section 4.1), but
did not use it for our final submission. Evaluation
on test sets is given by SacreBLEU4 (Post, 2018),
after BPE removal and detokenization.

3.2 Hyperparameters

We use Transformer (Vaswani et al., 2017) as our
translation model, but with slight modifications

2https://github.com/moses-smt/
mosesdecoder

3http://data.statmt.org/wmt20/
translation-task/back-translation

4SacreBLEU signature: BLEU+case.mixed+numrefs.1+
smooth.exp+tok.13a+version.1.4.12.

that follow the implementation of BERT5. The ab-
solute position embeddings are also learned as in
BERT. The encoder and decoder embeddings are in-
dependent because each language manages its own
vocabulary, but we tie the decoder input and out-
put embeddings (Press and Wolf, 2017). We apply
dropout with probability 0.1. We use LazyAdam as
the optimizer. Learning rate warms up for 16,000
steps and then follows inverse square root decay.
The peak learning rate is 5× 10−4 for parent trans-
lation models, and 1 × 10−4 for child translation
models. Early stopping occurs when the validation
BLEU does not improve for 10 checkpoints. We
set checkpoint frequency to 2,000 updates for par-
ent translation models and 1,000 updates for child
translation models. The batch size is 6,144 tokens
per GPU and 8 NVIDIA V100 GPUs are used.

Hyperparameters for BERT are the same as in
the original paper (Zhang et al., 2021).

For selected finetuning, we use stochastic gradi-
ent descent as the optimizer, and the learning rate is
1×10−5. We finetune for 10,000 updates, and save
a checkpoint every 100 updates. The checkpoint
with the highest validation BLEU is kept.

4 Results

4.1 The Choice of Parent Language
In our preliminary experiments, we found it bene-
ficial to use a closely related language as the par-
ent language. It is clear that there are several fac-
tors that should be taken into account, such as the
degree of closeness, and the amount of resource
for training the parent model. For Upper Sorbian,
Czech (cs) is closely related to it, and Czech-
German has a good amount of parallel data, so
we directly choose Czech as the parent language.

Chuvash, however, is a rather isolated language
in the Turkic family. The closest language with us-
able data is Kazakh (kk), but the amount of parallel
data for Kazakh-Russian is relatively small, and we
found it to be quite noisy. Therefore, we considered

5https://github.com/google-research/
bert
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iteration chv→ru ru→chv hsb→de de→hsb
0 19.24 17.12 56.10 57.12
1 19.73 17.45 57.23 56.81
2 20.42 17.69 57.12 56.79
3 19.85 17.81 57.72 57.47
4 19.57 17.78 57.40 57.33
5 19.60 17.48 57.66 57.07

Table 5: Test set BLEU for the four translation directions with iterative back-translation. Iteration 0 is the
Transformer big model in Table 3. Best BLEU scores are in bold.

method chv→ru ru→chv
before selected finetuning 20.42 17.69
after selected finetuning 20.55 18.03

Table 6: Test set BLEU to show the effect of selected finetuning.

model hsb→de de→hsb

best single 57.72 57.47
ensemble 58.54 58.28

Table 7: Test set BLEU to show the effect of ensemble.

using English (en) as the parent language of Chu-
vash. Even though English is unrelated to Chuvash
and they use different scripts, English-Russian has
more parallel data that can guarantee the quality of
the parent model.

We conducted an experiment with Transformer
base. Results in Table 2 indicate that English can
serve as an eligible parent for Chuvash. Consider-
ing that we plan to use Transformer big for which
data amount is likely to play a more important role,
we decided to use English as the parent language
for Chuvash.

4.2 The Effect of Transformer Big

The original paper (Zhang et al., 2021) evaluated
dual transfer only with Transformer base. In this
shared task, we scale up to Transformer big. We
also face a more realistic setting where the mono-
lingual data for the low resource languages (chv
and hsb) are quite scarce. Therefore it is worth
testing the effect of scaling up. Results in Table
3 show that Transformer big brings consistent im-
provements. We also report the runtime of each
step in dual transfer for NMTchv→ru with Trans-
former big in Table 4 for reference, but the numbers
can vary depending on implementation and data
size. In the following experiments and our final
submission, we use Transformer big models.

4.3 Iterative Back-Translation

We ran five iterations of iterative back-translation.
Results are shown in Table 5. The best BLEU
scores are attained with two or three iterations. An-
other observation is that iterative back-translation
brings larger improvements for chv→ru and
hsb→de than ru→chv and de→hsb. This is
probably because the monolingual data for chv
and hsb are small in quantity.

4.4 Selected Finetuning

We only use selected finetuning for the chv-ru
pair because parallel data for hsb-de is scarce.
In order to test the effect of selected finetuning,
we start from the models of Iteration 2 in Table 5.
Results in Table 6 indicate that selected finetuning
gives modest improvements.

4.5 Ensemble

We validate the effectiveness of ensemble on
hsb→de and de→hsb, by performing ensem-
ble decoding from the five models from iterative
back-translation. Results in Table 7 demonstrate
that ensemble gives BLEU improvements of about
0.8.

4.6 Final Submission

For chv→ru and ru→chv, we perform selected
finetuning starting from the best models from it-
erative back-translation (Iteration 2 for chv→ru,
Iteration 3 for ru→chv). Note that the selected
training subsets are different from those in Section
4.4 because the selection is based on the source
side of the blind test sets. We finetune five times
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with different random seeds for model ensemble.
For hsb→de and de→hsb, we ensemble the five
models from iterative back-translation.

5 Conclusion

In this paper, we describe a series of experiments
that contribute to our submission to the WMT 2021
shared task of Very Low Resource Supervised Ma-
chine Translation. These experiments, as well as
the good results of the final submission, show that
dual transfer can work in synergy with several
widely used techniques in realistic scenarios.
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Abstract

Human evaluation has always been expen-
sive while researchers struggle to trust the
automatic metrics. To address this, we pro-
pose to customise traditional metrics by tak-
ing advantages of the pre-trained language
models (PLMs) and the limited available hu-
man labelled scores. We first re-introduce
the hLEPOR metric factors, followed by the
Python version we developed (ported) which
achieved the automatic tuning of the weight-
ing parameters in hLEPOR metric. Then
we present the customised hLEPOR (cushLE-
POR) which uses Optuna hyper-parameter op-
timisation framework to fine-tune hLEPOR
weighting parameters towards better agree-
ment to pre-trained language models (using
LaBSE) regarding the exact MT language
pairs that cushLEPOR is deployed to. We
also optimise cushLEPOR towards profes-
sional human evaluation data based on MQM
and pSQM framework on English-German
and Chinese-English language pairs. The ex-
perimental investigations show cushLEPOR
boosts hLEPOR performances towards better
agreements to PLMs like LaBSE with much
lower cost, and better agreements to human
evaluations including MQM and pSQM scores,
and yields much better performances than
BLEU (data available at https://github.
com/poethan/cushLEPOR). Official re-
sults show that our submissions win three lan-
guage pairs including English-German and
Chinese-English on News domain via cushLE-
POR(LM) and English-Russian on TED do-
main via hLEPOR.

1 Introduction

Machine Translation (MT) is a rapidly developing
research field that plays an important role in NLP
area. MT started from 1950s as one of the earli-
est artificial intelligence (AI) research topics and
gained a large improvement in the output quality in
large resourced language pairs after the introduc-

tion of Neural MT (NMT) in recent years (Kalch-
brenner and Blunsom, 2013; Cho et al., 2014; Bah-
danau et al., 2014). However, the challenge still
remains in achieving human parity of MT output
(Han et al., 2021a). Thus MT evaluation (MTE)
continues to play an important role in aiding MT
development from the aspects of timely and high
quality evaluations, as well as reflecting the trans-
lation errors that MT systems can take advantages
of for further improvement (Han et al., 2021b). On
one hand, human evaluations have long been criti-
cised as expensive and unrepeatable. Furthermore,
the inter- and intra-agreement levels from Human
raters may struggle to achieve a consistent and
reliable score, unless done in rigour with highly
trained and skilled evaluators (Alekseeva et al.,
2021). On the other hand, even though researchers
have claimed that the automatic evaluation met-
rics have reached much better performances in the
category of system level evaluations of MT out-
puts, with high correlation to human judgements,
the segment level performance is still a large gap
from human experts’ expectation (Freitag et al.,
2021; Barrault et al., 2019, 2020; Han et al., 2013a;
Macháček and Bojar, 2013).

In the meantime, many pre-trained language
models have been proposed and developed in very
recent years and showing big advantages in differ-
ent NLP tasks, for instance, BERT (Devlin et al.,
2019) and its further developed variants (Feng et al.,
2020). In this work, we take the advantages of both
high performing automatic metric and pre-trained
language model, aiming at one step further towards
higher quality performing automatic MT evalua-
tion metric from both system level and segment
level perspectives.

Among the evaluation metrics developed recent
years, hLEPOR (Han et al., 2013b,a) is an aug-
mented metric that include many evaluation factors
with tunable weights assigned including precision,
recall, word order (via position difference factor),

1014



and sentence length. It has also been applied by
researchers from different NLP fields including nat-
ural language generation (NLG) (Novikova et al.,
2017; Gehrmann et al., 2021), natural language un-
derstanding (NLU) (Ruder et al., 2021), automatic
text summarization (ATS) (Bhandari et al., 2020),
and searching (Liu et al., 2021), in addition to MT
evaluation (Marzouk, 2021).

However, original hLEPOR has disadvantage of
the manual tuning of its parameter weights which
take a lot of human efforts. We choose hLEPOR
(Han et al., 2013b,a) as our baseline model, and
use the very recent language model LaBSE (Feng
et al., 2020) to achieve automatic tuning of its pa-
rameters thus aiming at reducing the evaluation
cost and further boosting the performance. This
system description paper is based on our earlier
work, especially the training models (Erofeev et al.,
2021).

The rest of the paper is organised as below: Sec-
tion 2 revisits hLEPOR metric, its factors, advan-
tages and disadvantages, Section 3 introduces our
Python ported version of hLEPOR and the further
customised hLEPOR (cushLEPOR) using language
models, Section 4 presents our experimental devel-
opment and evaluation that we carried out on cush-
LEPOR metric using WMT historical data, Section
5 reserves space for our submission to this year
WMT21 metrics task, and Section 6 finishes this
paper with discussions of our findings and possible
future work.

2 Revisiting hLEPOR

hLEPOR is a further developed variant of LEPOR
(Han et al., 2012) metric which was firstly pro-
posed in 2013 including all evaluation factors from
LEPOR but using harmonic mean for grouping
factors to produce final calculation score (Han
et al., 2013b). Its submission to WMT2013 metrics
task achieved system level highest average corre-
lating scores to human judgement on English-to-
other (French, Spanish, Russian, German, Czech)
language pairs by Pearson correlation coefficient
(0.854) (Han, 2014; Macháček and Bojar, 2013).
Other MT researchers also analysed LEPOR metric
variant as one of the best performing segment level
metric that was not significantly outperformed by
other metrics using WMT shared task data (Gra-
ham et al., 2015). hLEPOR is calculated by:

hLEPOR = Harmonic(wLPLP,

wNPosPenalNPosPenal, wHPRHPR)

where LP is a sentence length penalty factor which
was extended from brevity penalty utilised in
BLEU metric, NPosPenal is for n-gram position
difference penalty which captures the word or-
der information, as bellow, where MatchNhyp

and MatchNref indicate the position number of
matched words in hypothesis and reference sen-
tences:

LP =





e
1− Lengthref

Lengthhyp if Lengthhyp < Lengthref
1 if Lengthhyp = Lengthref

e
1−Lengthhyp

Lengthref if Lengthhyp > Lengthref

NPosPenal = e−NPD

NPD =
1

Lengthhyp

Lengthhyp∑

i=1

|PDi|

|PDi|= |MatchNhyp −MatchNref |

The factor HPR is the harmonic mean of Precision
and Recall values.

HPR =
(α+ β)PrecisionxRecall

αPrecision+ βRecall

Precision =
Alignednum

Lengthhypothesis

Recall =
Alignednum

Lengthreference

We refer the work (Han, 2014; Han et al., 2013a,
2012) for detailed factor calculation with examples
there.

The basic version of hLEPOR carries out simi-
larity calculation between MT system outputs and
reference translations, in the same language set-
ting, based on the word surface level tokens. The
hybrid hLEPOR metric also carries out similarity
calculation based on POS sequences from system-
output and reference text. To do this, POS tagging
is needed as the first step, then hLEPOR(POS) cal-
culation uses the same algorithms used for the word
level similarity score hLEPOR(word). Finally, hy-
brid hLEPOR is a combination of both word level
and POS level score. In this system submission
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work, with the time limitations, to make an eas-
ier to use customised hLEPOR, we take the basic
version of hLEPOR, i.e. the word level similarity
calculation and leave the hybrid hLEPOR into the
future work.

The weighting parameters for the three main
factors in original hLEPOR metric, i.e the (wLP ,
wNPosPenal, wHPR) set, in addition to the other
parameters inside each factor, were tuned by man-
ual work based on development data (see Ap-
pendix for detailed parameter value sets on each
language pair for word-surface level evaluation, en
⇔ cs/fr/de/es/ru). This is very time consuming,
tedious, and costly. In this work, we will introduce
an automated tuning model for hLEPOR to cus-
tomise it regarding deployed language pairs, which
we name as cushLEPOR.

3 Proposed Model

3.1 Python port of hLEPOR
Original hLEPOR was published as Perl code 1,
in a non-portable format, which is not very suit-
able for modern AI/NLP applications, since they
are using almost exclusively Python. Python is a
programming language of choice for AI and ma-
chine learning (ML) tasks, thanks to its amazing
ecosystem of open source or simply free libraries
available to researchers and developers. However,
hLEPOR was not available in NLTK (Bird et al.,
2009) or any other public Python libraries. We
therefore took original published Perl code and
ported it to Python, carefully comparing the logic
of original paper and the Perl implementation. Dur-
ing this work we run both Perl code to reproduce
the results of original code, and the new Python
implementation. This work helped us to spot and
fix at least three minor errors which did not signifi-
cantly affected the score, but nevertheless we fixed
the bugs of the Perl code.

While doing the porting we did also notice that
hLEPOR parameter values were taken empirically
and never explained in detail except for the sug-
gested parameter setting table in the paper (Han
et al., 2013b,a) for eight language pairs that were
tested for the WMT2013 shared task, including EN-
CZ/DE/FR/ES and the opposite direction. They
were:

• alpha: the tunable weight for recall

• beta: the tunable weight for precision
1https://github.com/poethan/LEPOR

• n: words count before and after matched word
in npd calculation

• weight_elp: tunable weight of enhanced
length penalty

• weight_pos: tunable weight of n-gram posi-
tion difference penalty

• weight_pr: tunable weight of harmonic mean
of precision and recall

The parameter values for hLEPOR as published
in the publicly available Perl code were mannually
tuned for English-to-Czech/Russian (EN=>CS/RU)
language pair setting (Han et al., 2013b,a) as be-
low:

• alpha = 9.0,

• beta = 1.0,

• n = 2,

• weight_elp = 2.0,

• weight_pos = 1.0,

• weight_pr = 7.0.

We refer to our Appendix for the manually
tuned parameters for other language pairs available
in the paper by (Han et al., 2013a,b) includ-
ing English=>French/German (EN=>FR/DE)
and Czech/Spanish/French/German=>English
(CS/ES/FR/DE=>EN) and Russian=>English
(RU=>EN) which was set up using CS=>EN
without extra manual tuning. We came to the
conclusion that we need to check whether these
parameters are optimal, and find out whether better
set of values exist to improve agreement with
human judgement.

Because the different characteristics of each lan-
guage, and language families, the evaluation of MT
outputs would emphasis on different factors. For
instance, word order factor reflected by n-gram po-
sition different penalty in hLEPOR (NPosPenal),
can be with higher or lower weight for strict order
languages and loose/flexible word order languages.
Thus, we assumed that hLEPOR optimisation to-
wards different languages will generate correspond-
ing different set of parameter values. We call this
step language-specific optimisation, and it will save
much cost and time to achieve an automatic tun-
ing process. The Python ported hLEPOR is avail-
able at Pypi https://pypi.org/project/
hLepor/.
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3.2 Customised hLEPOR: cushLEPOR

With the recent development of pre-trained neural
language models and their effective applications in
different NLP tasks, including question answering,
language inference and MT, it becomes a natural
question that why do not we apply them in MT
evaluation as well.

Very recent work from Google team verified that
MQM (Multi-dimension quality metric) (Lommel
et al., 2014) and SQM (Scalar Quality Metrics)
(Freitag et al., 2021) have good agreement with
each other when they were carried out both by
professional translators. However, this does not
correlate to Mechanical Turk based crowd-sourced
human evaluation that was carried out by general
researchers or untrained online workers with low
professional linguistic skills. It also reflected that
crowd-sourced evaluation tends to favour very lit-
eral translations instead of better translations with
more diverse meaning equivalent lexical choices.

To customise hLEPOR (cushLEPOR) towards
optimised parameter setting for deployed lan-
guage pairs, we choose Optuna open source hyper-
parameter optimisation framework (Akiba et al.,
2019) to automate hyper-parameter search for best
agreement between cushLEPOR and human ex-
perts evaluation wherever such data-set is available.

SQM (Freitag et al., 2021) borrows WMT shared
task settings to collect segment-level scalar rating,
but set the score scale from 0 to 6 instead of 0 to
100. Professional translator labelled scores using
SQM is named as pSQM.

We aim at optimising cushLEPOR parameters
to obtain best agreement with pSQM scores. How-
ever, in practical situation, human evaluations are
not often feasible to obtain due to the constrains
from both time and financial aspects.

We therefore propose to carry out an alterna-
tive optimisation model, i.e. customising cushLE-
POR parameters towards pre-trained large scale
language models, e.g. LaBSE (Language Agnos-
tic BERT Sentence Embedding) model similarity
score.

LaBSE model is built on BERT (Bidirectional
Encoder Representations from Transformers) archi-
tecture and trained on monolingual (for dictionar-
ies) and bilingual training data. LaBSE training
data is filtered and processed. The resulting sen-
tence embeddings achieve excellent performance
on measures of sentence embedding quality such
as the semantic textual similarity (STS) benchmark

and sentence embedding based transfer learning
(Feng et al., 2020).

LaBSE linguistic similarity score finds matching
translations very well. The disadvantages, however,
are high demand for computational resources (with
GPUs), intensive application coding with require-
ment for ML skills, and slow performance.

The design of using optimised hLEPOR (cush-
LEPOR) in lieu of LaBSE similarity aims at devel-
oping a simple, high-performing, easy to run and
not computationally demanding script to achieve
results similar to high-end LaBSE similarity score,
and hopefully towards human judgement. The
cushLEPOR parameters can be optimised for agree-
ment with any type of scores, such as pSQM,
MQM, and LaBSE, etc.

Regarding the optimisation stage using Optuna,
the task is to find the extremum values of con-
tinuous (not discrete) surface in a 6-dimensional
space of six cushLEPOR parameters. The values
of parameter set change continuously which means
there’s an infinite number of parameter values; how-
ever it is not a differentiable situation mathemat-
ically, and there are gaps. Generally we cannot
presume that it is a smooth surface. Before Op-
tuna, computational tools used to deploy a discrete
mesh in such cases by using discretization method,
which was less computationally intense than full
scale continuous search on all possible values of
parameter sets.

Optuna framework is currently one of the best
Tree-structured Parzen Estimator (TPE) model im-
plementations, which kind of estimators converges
to optimal solution in 200-300 epochs, and the
method can work with continuous (real) parame-
ters (Bergstra et al., 2011).

4 Experimental Evaluations

The training and development data we used re-
garding MQM scores and pSQM labels is from
the recent work by Google Research team on
investigating into human evaluations based on
WMT2020 shared task (Freitag et al., 2021)
(data available at https://github.com/
google/wmt-mqm-human-evaluation).

We first focus on English-to-German language
(EN-DE) pair, which includes MQM and pSQM
labels, acquired from 10 submission of WMT 2020,
then take ZH-EN data-set. We refer to the paper
(Freitag et al., 2021) for detailed MT system names
and offering institutions.
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Firstly, a multi-parameter optimisation against
LaBSE for EN-DE language pair gave the follow-
ing values for cushLEPOR parameters:

• alpha = 2.97,

• beta = 1.97,

• n = 4,

• weight_elp = 1.0,

• weight_pos = 14.97,

• weight_pr = 2.2.

This set of values reflected very different weight-
ing systems in comparison to the original hLE-
POR metric. For instance, 1) cushLEPOR assigned
recall and precision much closer weight (2.97 vs
1.97) in comparison to hLEPOR (9.0 vs 1.0), 2)
cushLEPOR chose 4-gram in chunk matching in-
stead of bi-gram used in hLEPOR, 3) cushLEPOR
assigned NPosPenal (n-gram position difference
penalty) factor a very heavy weight against other
two factors LP (length penalty) and HPR (harmonic
mean of precision and recall) by (14.97 vs 1.0 and
2.2) in comparison to hLEPOR which emphasised
the weight on HPR (1.0 vs 2.0 and 7.0). From these
points of view, cushLEPOR trained on EN-DE lan-
guage pair indicates the importance of the larger
window context consideration during word match-
ing, as well as the word order information reflected
by n-gram (n value) and novel factor NPosPenal
introduced by hLEPOR respectively.

This also reflected that LaBSE similarity is in-
deed a feasible goal for cushLEPOR optimisation.
The correlations of hLEPOR and cushLEPOR to
LaBSE are shown in Fig. 1 and 2.

However, we found out that we were not able to
decrease much on RMSE (Root Mean Square Er-
ror) score for cushLEPOR towards pSQM , in com-
parison to original hLEPOR, (0.28 vs 0.29)which
does indicate that original hLEPOR empirically
shows very good fit for pSQM type human evalu-
ation, using the suggested parameter settings for
EN-DE (Han et al., 2013a,b) as bellow.

• alpha = 9.0,

• beta = 1.0,

• n = 2,

• weight_elp = 3.0,

Figure 1: Agreement with LaBSE: hLEPOR

Figure 2: Agreement with LaBSE: cushLEPOR

• weight_pos = 7.0,

• weight_pr = 1.0.

The RMSE value between pSQM and hLEPOR,
vs pSQM and cushLEPOR is shown in Fig. 3.
However, it indeed shows much better performance
then BLEU metric, as in Fig. 4 (0.28 vs 0.46).

Optuna did optimise cushLEPOR against LaBSE
very well, halving the RMSE distance between
LaBSE and cushLEPOR as compared to original
hLEPOR, shown in Fig. 5.

The performances of tuning on LaBSE and
pSQM are shown in Fig. 6 and 7 respectively. The
horizontal axis is the score value (0, 1) and the ver-
tical axis is the sentence number that falls into the
corresponding score intervals.
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Figure 3: RMSE: hLEPOR vs cushLEPOR to pSQM
(lower score is better)

Figure 4: RMSE: BLEU vs cushLEPOR to pSQM
(lower score is better)

Figure 5: RMSE: hLEPOR vs cushLEPOR to LaBSE
(lower score is better)

From the score distribution visualisation, it re-
flects the tuning on pSQM has a larger covered
error types while LaBSE is less sensitive to some er-
rors that human experts would spot out. As shown
on these charts, pSQM human rating shows much
wider "tail" of "low score ratings", while LaBSE
rating is much more focused. The reason is that
LaBSE similarity model underestimates the sever-

Figure 6: Score Distribution: tune on LaBSE

Figure 7: Score Distribution: tune on pSQM

ity of errors and error types, while humans analyse
the meaning and assign proper error penalties in
more diverse setting. As an example, the sentence
"The comet did not struck the Earth this time." and
"The comet did struck the Earth this time." has very
close lexical similarity, but the meaning is very dif-
ferent, in this case “opposite”. LaBSE similarity
score would not assign significant penalty to such
difference, while human will treat it as a major er-
ror. This difference plays a crucial role for reliable
translation quality evaluation.

5 Submission to WMT21

For WMT2021 Metrics Task, we submitted our
cushLEPOR system scores for zh=>en and en=>de
language pairs, both segment-level and system-
level evaluation. The training and development set
we used are exact the ones from last section (Sec-
tion 4). We can not tune our cushLEPOR model pa-
rameters on en=>ru language pair from the WMT21
official data, because the human labelled MQM and
pSQM scores as validation data that cushLEPOR
requires do not exist from last year WMT20 set. In-
stead, we submitted hLEPOR metric for EN=>RU
using the parameter settings in hLEPOR as men-
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tioned in the last section. We carried out evaluation
on all four official data-sets: newstest2021 (tradi-
tional task), florestest2021 (sentences translated as
part of the WMT News translation task), tedtalks
(additional sets of sentences translated by WMT21
translation systems in the TED talks domain), and
challengeset (synthetic outputs generated specifi-
cally to challenge automatic metrics).

5.1 Submitted Parameter Setting
The optimised parameter values set for our zh=>en
submission to WMT21 is displayed below.

For cushLEPOR(LM) using LaBSE training:

• alpha = 2.85,

• beta = 4.73,

• n = 1,

• weight_elp = 1.01,

• weight_pos = 11.13,

• weight_pr = 4.62

For cushLEPOR(pSQM) using professional
translator labelled SQM training:

• alpha = 9.09,

• beta = 3.55,

• n = 3,

• weight_elp = 1.01,

• weight_pos = 14.98,

• weight_pr = 1.57

The optimised parameter values set for our
en=>de submission to WMT21 is displayed below:

For cushLEPOR(LM) using LaBSE training:

• alpha = 2.95,

• beta = 2.68,

• n = 2,

• weight_elp = 1.0,

• weight_pos = 11.79,

• weight_pr = 1.87

For cushLEPOR(pSQM) using professional
translator labelled SQM training:

• alpha = 1.13,

• beta = 1.71,

• n = 2,

• weight_elp = 1.06,

• weight_pos = 11.90,

• weight_pr = 1.01

5.2 Official Results from Metrics Task
The official results from WMT2021 Metrics task
show that cushLEPOR(LM) ranks in the first clus-
ter in performance on News test data with single
reference evaluated on overall English-to-German,
Chinese-to-English and English-to-Russian where
professional human evaluation data is available
(Ref. Table 8 “Metric rankings based on pair-
wise accuracy” in Findings paper (Freitag et al.,
2021)). Furthermore, in the language specific
ranking, cushLEPOR(LM) also wins English-to-
German and Chinese-to-English language pairs,
including TED data condition. Our hLEPOR base-
line metric wins English-to-Russian TED domain
language specific ranking (Ref. Table 12 “Sum-
mary of language-specific results” in the official
findings paper (Freitag et al., 2021)). The offi-
cial result on “System-level Pearson correlations
for English-to-German” (Table 23 of findings)
shows that cushLEPOR(LM) achieves score 0.938
in News domain, ranking number 1 in Cluster 1
metrics, out of overall 29 metric submissions.

6 Discussions and Future Work

In this work, we described cushLEPOR, a cus-
tomised hLEPOR metric which can be automat-
ically trained and optimised using both human la-
belled MQM scores, as well as large scale pre-
trained language model (LM) LaBSE towards bet-
ter agreement to human experts level judgements
and distilled LM performance respectively, and
reducing cost at the meantime, e.g. the manual tun-
ing from hLEPOR and high computational demand
from LMs.

We also optimised cushLEPOR towards human
translators’ evaluation scores, i.e. pSQM, which
showed much improved performance than BLEU
and original hLEPOR (with default parameters).
Our research is in line with the MT evaluation
guideline suggestions from the very recent work
(Marie et al., 2021) that better evaluation metrics in
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correlation to human judgement shall be tested and
deployed. Or human judgements shall be carried
out directly wherever possible.

We have some findings during the experimental
investigation: 1) cushLEPOR trained on LaBSE
can replace LaBSE to carry out similarity calcula-
tion task in MT evaluation, which is much more
light weighted and low cost from computational
power and complexity point of view. 2) we can
choose alternative pre-trained language models
(LMs) in the future to boost performance. 3) this
cushLEPOR optimisation framework proves to be
functional, offering high performance towards pre-
trained LMs, much improved agreement of cush-
LEPOR to LaBSE scores in comparison to hLE-
POR (as in Figure 1 and 2). 4) optimised cush-
LEPOR achieves better agreement towards profes-
sional translator’s evaluation (pSQM).

Optuna, the hyper parameter optimisation toolkit
we used, can generate different set of cushLEPOR
parameter values in different runs, which could be
an consistency issue. However, we believe it op-
timises the performance of cushLEPOR towards
the highest agreement to the reference scoring (pre-
trained LMs or human evaluations), but not to en-
sure the same set of parameter values to be gener-
ated, so this will not be a problem. We will carry
out further analysis on this aspect in the future
work.

The hybrid version of hLEPOR (Han et al.,
2013b) use POS features to function as pseudo syn-
onyms to capture alternative correct translations.
However it relays on POS taggers for target lan-
guage, which does not exist for newly proposed
languages, and its tagging accuracy may be low,
and it costs extra processing steps. In the future
work, we plan to carry out integrated model which
combine the POS tagging as a command function
in data pre-processing for hybrid cushLEPOR.

Overall, cushLEPOR achieved the first cluster
performances in News Domain data on Chinese-
English and English-German in WMT2021 Met-
rics task, while hLEPOR wins TED domain data on
English-Russian (Freitag et al., 2021). In the future
work, we plan to carry out optimisation of cush-
LEPOR on more language pairs as well as more
domains. We will keep our updated parameter set
for extended languages and domains available on
our cushLEPOR open-sourced platform.
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Ondřej Bojar. 2021. Results of the wmt21 metrics
shared task: Evaluating metrics with expert-based
human evaluations on ted and news domain. In Pro-
ceedings of the Six Conference on Machine Transla-
tion. Association for Computational Linguistics.

Sebastian Gehrmann, Tosin Adewumi, Karmanya Ag-
garwal, Pawan Sasanka Ammanamanchi, Aremu
Anuoluwapo, Antoine Bosselut, Khyathi Raghavi
Chandu, Miruna Clinciu, Dipanjan Das, Kaustubh D.
Dhole, Wanyu Du, Esin Durmus, Ondřej Dušek,
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Appendices

Appendix A: hLEPOR parameters

The word level hLEPOR default parameters
manually tuned for WMT2013 MT evalua-
tion task across language pairs (Han et al.,
2013a,b) are displayed as below. Both Python
(https://pypi.org/project/hLepor/)
and Perl (https://github.com/lHan87/
aaron-project-hlepor) version codes can
be applied to:

On English-to-Czech/Russian (EN=>CS/RU):

• alpha = 9.0,

• beta = 1.0,

• n = 2,

• weight_elp = 2.0,

• weight_pos = 1.0,

• weight_pr = 7.0.

On English-to-German (EN=>DE):

• alpha = 9.0,

• beta = 1.0,

• n = 2,

• weight_elp = 3.0,

• weight_pos = 7.0,

• weight_pr = 1.0.

On Czech / Spanish / Russian to English
(CS/ES/RU =>EN):

• alpha = 1.0

• beta = 9.0

• n = 2

• weight_elp = 2.0

• weight_pos = 1.0

• weight_pr = 7.0

On German/French-to-English (DE/FR=>EN)
and English-to-Spanish/French (EN=>ES/FR):

• alpha = 9.0

• beta = 1.0

• n = 2

• weight_elp = 2.0

• weight_pos = 1.0

• weight_pr = 3.0
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Abstract
In this paper, we describe our submission to
the WMT 2021 Metrics Shared Task. We
use the automatically-generated questions and
answers to evaluate the quality of Machine
Translation (MT) systems. Our submission
builds upon the recently proposed MTEQA
framework. Experiments on WMT20 evalua-
tion datasets show that at the system-level the
MTEQA metric achieves performance com-
parable with other state-of-the-art solutions,
while considering only a certain amount of in-
formation from the whole translation.

1 Introduction

The goal of automatic Machine Translation (MT)
evaluation is to automatically evaluate the output
quality produced by MT systems. Metrics used for
this task assign a score by comparing the MT out-
put to either a reference translation or to the source
sentence. The main indicator that is used to assess
the performance of a specific metric is the correla-
tion with human judgement computed for outputs
from several systems. It was recently shown that
metrics based on contextualized embeddings, such
as YISI (Lo, 2019) or ESIM (Mathur et al., 2019),
are able to achieve better performance than the
most common BLEU (Papineni et al., 2002).

In this paper, we describe application of the
recently proposed metric – MTEQA (Krubiński
et al., 2021) for the task of evaluating the quality of
MT outputs in the context of the WMT21 Metric
task.

The MTEQA1 framework is inspired by previ-
ous works on evaluating abstractive summaries. It
builds upon the fact that state-of-the-art (neural)
MT systems tend to produce a fluent output but
sometimes fail in adequacy of the translation. It
leverages the recent progress in Question Genera-
tion (QG) and Question Answering (QA) to formu-
late and answer questions based on the MT output.

1https://github.com/ufal/MTEQA

2 Related Work

2.1 MT Evaluation

Metrics that are most widely used for automatic
evaluation of MT outputs produce a score by com-
paring surface-level forms of hypothesis and refer-
ence translation. The most common one, BLEU, is
a modified version of n-gram precision calculated
by averaging over different values of n with penal-
ization for too short translations (brevity penalty).
The recently proposed CHRF (Popović, 2015) con-
siders the character-level n-grams, making it possi-
ble to reward partially matched tokens. Recently,
various works (e.g., Lo, 2019; Mathur et al., 2019;
Bawden et al., 2020) explored the usage of con-
textualized word- or sentence-level embeddings to
compare the numerical representations of reference
and hypothesis. Such metrics enable explicit regres-
sion towards the desired human-produced labels.

2.2 Question-based Evaluation

Previous works examined the usage of reading com-
prehension tests to measure the quality and “use-
fulness” of MT systems (Tomita et al., 1993; Fuji
et al., 2001; Castilho and Guerberof Arenas, 2018).
Berka et al. (2011) were the first to use the yes/no
type of questions for manual evaluation of MT sys-
tems, examining the English-to-Czech direction.
Scarton and Specia (2016) approached the prob-
lem of document-level Quality Estimation (QE) by
extending the CREG corpus (Ott et al., 2012) of
German documents designed for reading compre-
hension exercises.

More work on the questions-based evaluation
was done in the context of text summarization. Eyal
et al. (2019) proposed the APES metric for the task
of evaluating abstractive text summarization. They
used the reference summary to produce fill-in-the-
blank type of questions, by finding all possible
entities using a NER system. The APES score
for a given summarization model is the percentage
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Reference Extracted 
Answers Generated Questions MT output Test Answers

The 56-year-old Macura studied 
at Prague University of 

Economics.

56 How old is Macura?

Fifty-six-year-old Macura graduated from the 
University of Economics in Prague.

Fifty-six

Prague University 
of Economics Where did Macura study? University of 

Economics

Um 19 Uhr haben wir das Auto 
gepackt und sind an Bord der 

Fähre nach Portsmouth 
gegangen.

Portsmouth Wo sind wir hin, nachdem wir das Auto 
gepackt haben?

Gegen 19 Uhr haben wir das Auto gepackt 
und die Fähre nach Portsmouth bestiegen.

Portsmouth

19 Uhr An welchem Datum haben wir das Auto 
gepackt? 19 Uhr

Figure 1: Example of the Extracted Answers, Generated Questions and corresponding Test Answers from a new-
stest2021 reference file.

of questions that were answered correctly (using
a Question Answering system), averaged over the
whole test-set. Scialom et al. (2019) extended their
work into unsupervised settings by generating ques-
tions from the source document. The FEQA (Dur-
mus et al., 2020) and QAGS (Wang et al., 2020)
metrics further extend the idea by automatically
generating human-readable questions.

2.3 MTEQA

MTEQA is the first MT metric based on the princi-
ples of question answering.

The automatically generated pairs of a question
and its (gold-standard) answer from the reference
translation are used by a question answering system
to provide a new (test) answer given the question
and the MT output (translation) used as the context.

The generated (test) answer is then compared
to the gold-standard answer, using the string-
comparison metric. The final score for a given
MT output is the average taken over all of the ques-
tion/answer pairs generated for a corresponding
reference.

3 Experiments

Our implementation of the MTEQA metric is based
on the state-of-the-art system capable of solving the
initial three tasks of the procedure: answer extrac-
tion, question generation, question answering. It is
the T5 model (Raffel et al., 2020) fine-tuned on the
SQuADv1 dataset (Rajpurkar et al., 2016) by Patil
(2020) and available from GitHub2. The limitation
of the T5 model is that it was trained on English
data and most importantly tuned on the SQuADv1

2https://github.com/patil-suraj/
question_generation

dataset which is in English. Thus, this model only
allows evaluation of MT systems translating from
any language to English.

To overcome that, we used the multilingual
mT5 model (Xue et al., 2021) and fine-tuned it
on machine translation of SQuADv1 dataset. We
exploited the existing translations into German
(Lewis et al., 2020) and into Czech (Macková and
Straka, 2020) which allows score translations into
German (xx-de) and into Czech (xx-cs) directions.
Due to time constraints we were not able to train
QA and QG systems in other languages.

Figure 1 presents examples of extracted answers
and generated questions.

3.1 Baseline

The baseline implementation is based on the T5
model tuned on the SQuADv1 dataset and used to
generate: 1) the gold-standard answers from the
reference translations, 2) a question for each gold-
standard answer, 3) a test answer for each question
and MT output (context) pair. The test answers are
compared by the word-level F1 score commonly
used for QA evaluation (Rajpurkar et al., 2016;
Trischler et al., 2017; Chen et al., 2019; Durmus
et al., 2020).

For each of the MT systems participating in
WMT20 News translation task (Barrault et al.,
2020), we compute both segment-level scores and
a single system-level score, an average of segment-
level scores. We report the system-level Pearson
correlation with a DA human assessment using the
newstest2020 references We report correlation for
a English→ German, English→ Czech and a few
to-English directions (see Table 1, row MTEQA
F1). We also include an average over all of the
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cs-en de-en zh-en en-de en-cs
12 12 16 avg 14 12

MTEQA F1 0.782∗ 0.997∗ 0.952∗ 0.893∗ 0.946∗ 0.845∗

MTEQA F1 KEYPHRASE 0.851∗ 0.998∗ 0.944∗ 0.896∗ 0.941∗ 0.877∗

MTEQA CHRF KEYPHRASE 0.890∗ 0.998∗ 0.951∗ 0.905∗ 0.952∗ 0.859∗

SENTBLEU 0.844 0.978 0.948 0.859 0.934 0.840
BLEU 0.851 0.985 0.956 0.854 0.928 0.825
PRISM 0.818 0.998 0.957 0.880 0.958 0.949
YISI-2 0.764 0.988 0.964 0.821 0.899 0.714

Table 1: System-level Pearson correlation for selected metrics used for measuring MT quality with DA human
assessment over MT systems using the newstest2020 references. Average (avg) is computed over all to-English
directions available. Number below the language pair indicates the number of systems considered. Figures without
∗ are taken from Mathur et al. (2020a).

to-English directions, which were part of WMT20
Metric Task (Mathur et al., 2020b) evaluation cam-
paign3. Other metrics are included for a compari-
son. At the segment-level, we report the Kendall’s
Tau correlation of segment-level metric scores with
DARR human assessment scores, see Table 2. We
use the same Kendall’s Tau-like formulation which
was used by Mathur et al. (2020b) in WMT20 eval-
uation campaign.

On average, the baseline outperforms the tra-
ditional MT evaluation metrics (SENTBLEU,
BLEU) as well as the recently proposed ones that
performed very well in the WMT20 Metric Task
(PRISM, YISI-2), though for some of the transla-
tion directions (e.g. cs-en) MTEQA F1 is much
worse (but for cs-en YISI-2 also does not beat
BLEU). The segment-level correlation is much
lower, even negative for some directions (e.g. zh-
en) .

3.2 Generating Additional Answers

Since the QG system generates a single question
for each sub-sequence of words marked as an ex-
tracted answer, the limit factor is the number of
gold-standard answers we extract. To generate
more questions we need more keyphrases to be
asked about.

Considering the whole predictive power of the
MTEQA metric is based on questions, we used lin-
guistic processing of the sentence based on Part-of-
Speech (POS) pattern matching and Named Entity
Recognition (NER) to extract more keyphrases.

Given a sentence as the input, first, we parse the
sentence using UDPipe (Straka et al., 2016) to ex-
tract part of speech (POS) tags. Then, we extract
phrases that are matched with one of the patterns
in our POS pattern bank. The POS pattern bank

3cs, de, ja, pl, ru, ta, zh, iu, km, ps→ en

is created by parsing the sentences from XQuAD
(Artetxe et al., 2020) dataset, extracting the POS
patterns corresponding to the gold-standard an-
swers, and taking the most frequent patterns. This
dataset contains professional translations of the
development set of SQuADv1, translated into var-
ious languages from different language families
and using different scripts. Second, we extract
named entities mentioned in the input sentence
using a combination of two multilingual NER mod-
els, POLYGLOT-NER (Al-Rfou et al., 2015), and
Stanza (Qi et al., 2020). Finally, we output the
union of the extracted phrases and named enti-
ties as the potential answers. At both system- and
segment-level using the MTEQA F1 KEYPHRASE

variant yields improvements for most of the trans-
lation directions.

3.2.1 Tuning the Answer Comparison Metric

The choice of the Answer Comparison Metric can
have a considerable impact on the final perfor-
mance. Using the word-level F1 metric, given
the gold-standard answer “Tchaikovsky”, both the

“Tchaikovski” and “Beethoven” would get the same
score. In the context of MT, it may be worth to
consider a more fine-grained comparison.

We decided to use the CHRF (Popović, 2015)
metric, since it operates on the level of characters,
and enables scoring even partial matches. Using
the MTEQA CHRF KEYPHRASE variant yields
further improvements at both system- and segment-
level.

For the WMT21 Metrics Shared Task we sub-
mit this variant of the metric – the gold-standard
answers are extracted by POS pattern matching
and NER, and the chrF metric is used for answer
comparison (MTEQA CHRF KEYPHRASE).
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cs-en de-en zh-en en-de en-cs
MTEQA F1 −0.422∗ 0.041∗ −0.430∗ −0.581∗ −0.480∗
MTEQA F1 KEYPHRASE −0.108∗ 0.273∗ −0.058∗ −0.016∗ 0.100∗

MTEQA CHRF KEYPHRASE 0.017∗ 0.327∗ 0.030∗ 0.159∗ 0.227∗

SENTBLEU 0.068 0.413 0.093 0.303 0.432
PRISM 0.143 0.475 0.167 0.447 0.619
YISI-2 0.068 0.413 0.116 0.296 0.187

Table 2: Segment-level Kendall’s Tau correlation for a few metrics used for measuring MT quality with DARR
human assessment scores, over MT systems using the newstest2020 references. Numbers without ∗ are taken from
(Mathur et al., 2020a).

4 MQM scores

Recently, Freitag et al. (2021) demonstrated that
the WMT DA method traditionally used for hu-
man evaluations has actually lower correlation
with expert-based labels than the Multidimensional
Quality Metrics (MQM) scoring method developed
in the EU QTLaunchPad and QT21 projects. Fol-
lowing their findings, the WMT21 Metric Task will
report the correlation with MQM labels in the offi-
cial results.

To provide a more complete picture of the per-
formance of the MTEQA metric, we also report
correlation with the MQM assessments. Table 3
presents the system-level Pearson correlation of
the metric with both the MQM and DA labels for
8 systems that were re-annotated by Freitag et al.
(2021) and are available from GitHub4.

The results are surprising and to a large extent
unintuitive. Metrics performing well in comparison
with MQM are often bad in comparison with DA.

5 Conclusions

In this paper we described our submission to the
WMT21 Metrics Shared Task. We showed that
the degree to which the MT output can be used to
answer questions about the reference can be used
as a proxy to evaluate the translation quality.

We showed a gradual improvement of our sub-
mission. We examined a linguistically motivated
way of extracting keyphrases from the sentence,
and showed that it boosts both the segment- and
system-level correlation with DA human judg-
ments. We were able to further boost the final
performance by using the CHRF metric to compare
the reference and test answers.

Finally, we examined the performance against
the MQM labels and compared the performance
against the DA labels.

4https://github.com/google/
wmt-mqm-human-evaluation
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Abstract

In this paper, we present the joint contribu-
tion of Unbabel and IST to the WMT 2021
Metrics Shared Task. With this year‘s focus
on Multidimensional Quality Metric (MQM)
as the ground-truth human assessment, our
aim was to steer COMET towards higher cor-
relations with MQM. We do so by first pre-
training on Direct Assessments and then fine-
tuning on z-normalized MQM scores. In
our experiments we also show that reference-
free COMET models are becoming competi-
tive with reference-based models, even outper-
forming the best COMET model from 2020 on
this year‘s development data. Additionally, we
present COMETINHO, a light-weight COMET
model that is 19x faster on CPU than the orig-
inal model, while also achieving state-of-the-
art correlations with MQM. Finally, in the “QE
as a metric” track, we also participated with a
QE model trained using the OPENKIWI frame-
work leveraging MQM scores and word-level
annotations.

1 Introduction

In this paper, we present the joint contribution of
Unbabel and IST to the WMT 2021 Shared Task
on Metrics. We participated in the segment-level
and system-level tracks, as well as the “QE as a
Metric” task.

Similar to our participation last year (Rei et al.,
2020b), most of the models are based on the
COMET framework1 (Rei et al., 2020a). In
last year‘s shared task (Mathur et al., 2020),
COMET along with other trainable metrics such
as PRISM (Thompson and Post, 2020) and
BLEURT (Sellam et al., 2020) showed superior cor-
relations with the Direct Assessments (DA) col-
lected for the News Translation Shared Task. This

1Crosslingual Optimized Metric for Evaluation
of Translation hosted at: https://github.com/
Unbabel/COMET

year, we build on top of the models used last
year to take into account that human assessments
will be carried out using variants of the Multidi-
mensional Quality Metric (MQM) (Lommel et al.,
2014) framework and no longer based on DA (Gra-
ham et al., 2013). For this reason, we extended
our training dataset to include DA evaluations from
WMT ranging 2015 to 2020, with the exception
of en-de and zh-en for which we do not include
the 2020 data given that the same is included in
the MQM development data (Freitag et al., 2021).
Finally, we fine-tuned these new models on the z-
normalized MQM scores provided for this year‘s
shared task.

One of the remaining redeeming qualities of au-
tomated metrics such as BLEU (Papineni et al.,
2002) is that they are incredibly light-weight. De-
spite the higher correlation with human judgement,
trainable metrics tend to be slower to run. In an
effort to close this gap we present COMETINHO, a
light-weight model based on the COMET frame-
work that replaces the original XLM-R large en-
coder with MiniLMv2 (Wang et al., 2020). This
model is approximately 19x faster at inference time
compared to the original COMET model (Rei et al.,
2020a) and maintains state-of-the-art correlations
with MQM in reference-based evaluations.

For the “QE as a metric” track, we show that
reference-free evaluation models can reach surpris-
ingly high correlations with human judgements and
are competitive with their corresponding reference-
based models. Last year we also participated with
a similar model in the Metrics Shared Task, but
here we elaborate in more detail on the primary dif-
ferences between this model architecture and other
COMET models.

Finally, and for the first time, we submit and
describe a reference-free model that in addition
to learning from MQM scores also makes use of
word-level error annotations. This is possible this
year given the shift in evaluation method from DA
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Tags OK OK OK OK OK OK OK OK OK OK OK OK BAD BAD
MT the main purpose of this project is to design a car for blind driving.

Source: 这个项目的主要目的是设计一辆盲人驾驶的车。
Reference: the main goal of this project is to develop a car for the blind.

Table 1: Example of word-level OK and BAD tags produced by our OPENKIWI model trained with word-level
annotation spans. This translation received an overall sentence score of 0.2 and the model was able to identify that
the words “blind driving” are translation errors giving a good insight on why the sentence score is low.

to MQM. This model uses the OPENKIWI 2 archi-
tecture and its word-level tagging feature to pre-
dict OK/BAD word tags along with a sentence-level
quality score.

2 The COMET Framework

For a more comprehensive description of the
COMET architecture we direct the reader to the
original paper (Rei et al., 2020a). Below we will
highlight some relevant features that contrast with
the COMET reference-free model (COMET-QE). In
COMET we encode segment-level representations
using the pretrained, cross-lingual, model XLM-
RoBERTa (Conneau et al., 2020). Even though
we encode the source, the hypothesis, and the ref-
erence (i.e. the human curated translation of the
source) separately, their embeddings are mapped
into a shared feature space. Subsequently, we ob-
tain combined features using the three embeddings
(s, h, and r, for the source, hypothesis, and refer-
ence, respectively): h � s , h � r, |h − s|, and
|h − r|. These features, concatenated to r and
h and the resulting vector is the input to a feed-
forward regressor.

2.1 Reference-free COMET

The architecture of the COMET model used in the
“QE as a metric” task (COMET-QE) is very simi-
lar to the main COMET model (Rei et al., 2020a)
briefly described above and RUSE (Shimanaka
et al., 2018). The biggest difference being that in
the COMET-QE model the reference is not used and,
consequently, the combination of features used as
input to the feed-forward regressor are also differ-
ent from reference-based COMET. In this case, the
combined features are simply: h� s and |h− s|;
the final vector to the feed-foward regressor be-
ing the concatenation of the latter features together
with h and s. A schematic representation is shown
in Figure 1.

2OpenKiwi hosted at: https://github.com/
Unbabel/OpenKiwi

Figure 1: The COMET-QE model follows the dual en-
coder architecture proposed in RUSE (Shimanaka et al.,
2018) but replacing the reference translation with the
source sentence.

3 Lightweight COMET: COMETINHO

Our light-weight version of the original COMET

model is almost an exact replica in terms of
architecture save that we replaced the under-
lying pre-trained encoder with MiniLMv2
(Wang et al., 2020) which is a distilled
version of XLM-R large (Conneau et al.,
2020). This distilled model is made avail-
able by HuggingFace Transformers (Wolf
et al., 2020): nreimers/mMiniLMv2-L6-
H384-distilled-from-XLMR-Large

Our COMETINHO models are 19x faster on CPU
and 14.3x times faster on GPU than COMET models
based on XLM-R large. Also, in terms of disk
footprint, these models are 5x smaller 3.

4 The OPENKIWI Framework

When using the MQM framework for the calcula-
tion of the quality score, human annotators seek
to identify and annotate error spans at the word-
level, as well as the severity of those errors. We

3Contrastive inference times were tested using a 2.3 GHz
Intel Core i5 for CPU, and using a Nvidia T4 for GPU.
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leveraged these word-level annotations using the
OPENKIWI framework (Kepler et al., 2019), by
transforming each word into an OK or BAD tag.
In the OPENKIWI architecture, in contrast with
COMET-QE, source and hypothesis are jointly en-
coded. A sentence pair representation is then ob-
tained using average pooling over the hypothesis
word embeddings and then used as features to a
feed-forward regression layer that learns to pro-
duce a sentence level score. At the same time, the
word embeddings from the hypothesis are used to
predict OK/BAD tags and therefore, the model is
trained in a multitask setting (regression and se-
quence labelling).

5 Corpora

In this year‘s shared task the organisers provided a
development set with MQM annotations for the en-
de and zh-en participating systems on WMT20 (Fre-
itag et al., 2021). Apart from the official devel-
opment data we used all the Direct Assessments
available from previous years.

5.1 Multi-dimensional Quality Metric
Corpus

In this corpus, for each language pair, each trans-
lation was annotated by 3 raters from a pool of 6.
Following what is a common practice for the DA‘s
we convert the segment-level scores of each anno-
tator into a z-normalized score and the final trans-
lation quality score is an average of the 3 z-scores.
Also, because the sign of these MQM annotations
is the opposite of the Direct Assessments we invert
the score. Subsequently we generate a train and
test split leaving 20% of the documents for each
language pair for testing. This results in a total
of 11230 en-de training samples and 15600 zh-en
training samples, with testsets of 2950 and 4400
samples, respectively. All results reported in this
paper are with respect to the above train and test
split. The documents contained in each split are
listed in the Appendix of this paper.

Annotators are not always consistent and the
annotations of one annotator might differ from an-
other (Graham et al., 2017). With this in mind,
we decided to calculate the Kendall’s Tau cor-
relation between all annotators as a measure of
inter-annotator agreement (Figure 2). The inter-
annotator Kendall Tau can then be used as a ceil-
ing effect for the developed metrics which ideally
should behave as an additional annotator.

Figure 2: Kendall Tau Correlations between the en-de
annotators used to develop the shared task development
set (Freitag et al., 2021).

For training of the OPENKIWI model described
herein we used proprietary MQM data from the
customer support domain, covering several indus-
tries such as tech industry and travel industry. This
data is composed by 1.1M (source, hypothesis)
pairs with corresponding MQM annotations from
38 language pairs mostly out-of-english.

5.2 Direct Assessments
Each year, the WMT News Translation shared task
organisers collect human judgements in the form
of Direct Assessments. Those assessments are then
used in the Metrics task to measure the correlation
between metrics and therefore decide which met-
ric works best. In recent years researchers have
been using these annotations to create trainable
metrics that regress on these scores (Shimanaka
et al., 2018; Sellam et al., 2020; Rei et al., 2020a).
We follow the same approach and use Direct As-
sessments ranging from 2015 to 2020 for training.
The collective corpora contain a total of 33 lan-
guage pairs including low-resource languages such
as English-Tamil (en-ta) and a total of 795269 tu-
ples with source, hypothesis, reference and direct
assessment z-score. The only exception to this data
is that we did not include the en-de and zh-en as-
sessment from 2020 because they overlap with the
MQM development data described in section 5.1.

6 Segment-level task

The COMET framework is highly flexible and easy
to adapt to different types of human judgements
(Rei et al., 2020a). This year we first pre-trained on
the DA collected from 2015 to 2020 except for en-
de and zh-en as described above. Like in Glushkova
et al. (2021) we trained 5 models for 1 epoch each
using 5 different seeds and created an ensembled

1032



zh-en en-de
Nº Segments 4400 2950

Pearson Kendall Pearson Kendall Pearson Avg. Kendall Avg.

B
as

el
in

es

BLEURT 0.492 0.405 0.107 0.060 0.299 0.232
PRISM 0.399 0.337 0.072 0.020 0.235 0.178
BERTSCORE 0.441 0.344 0.116 0.060 0.279 0.202
BLEU 0.196 0.275 0.062 0.004 0.129 0.140
CHRF 0.267 0.219 0.119 0.059 0.193 0.139
COMET-DA (2020) 0.538 0.435 0.425 0.282 0.481 0.359

R
ef

.b
as

ed COMET-DA (2021) 0.559 0.454 0.464 0.309 0.511 0.382
COMET-MQM (2021) 0.717 0.546 0.488 0.361 0.602 0.454
COMETINHO-DA 0.484 0.386 0.299 0.204 0.392 0.295
COMETINHO-MQM 0.670 0.496 0.311 0.237 0.490 0.367

R
ef

.F
re

e COMET-QE-DA (2021) 0.567 0.436 0.497 0.308 0.532 0.372
COMET-QE-MQM (2021) 0.720 0.531 0.470 0.359 0.595 0.445
OPENKIWI 0.522 0.385 0.448 0.287 0.485 0.336

Table 2: Segment-level correlations on the en-de and zh-en testset.

model (COMET-DA). During our experiments we
tested two ensembling techniques; averaging the
different model predictions and averaging the pa-
rameters from the 5 models. Those two approaches
had similar results but in the end we decided to use
the later one for performance.

Subsequently, we fine-tuned each of the 5 mod-
els on the MQM data provided as development for
another epoch. As before, we performed weight
averaging to obtain an ensemble of those models
(COMET-MQM). In both the pre-training and fine-
tuning we only perform 1 training epoch in order to
ensure that the final models are able to generalise
to many language pairs and do not overfit to the
News domain. This is especially important since
the MQM dataset only contains en-de and zh-en.

For COMETINHO, as previously mentioned, we
used the distilled version of XLM-R (MiniLMv2),
available through Hugging Face, and we followed
the same training recipe where we pre-train the
model using DA’s for 1 epoch and then we adapt
the model to the MQM data for another epoch.

7 System-level task

For the System-level task we compute the system-
level score for each system by averaging the
segment-level scores obtained. This follows the
same approach used to compute system-level
scores based on segment-level human annotations
such as DA’s and MQM which means that a met-

ric that achieves strong segment-level correlation
should also achieve strong system-level perfor-
mances.

8 QE as a Metric Task

We trained a reference-free model (COMET-QE) in
the same way we did for reference-based COMET

models described in section 6. As described in
section 2.1, the primary difference between the two
models is the inclusion or exclusion of the source
as input.

9 Experimental Results

9.1 Segment-level task

Reference-based segment-level correlations on the
en-de and zh-en testsets are shown in Table 2. We
used both Pearson and Kendall Tau correlation met-
rics to evaluate our models. As baselines we used
lexical metrics such as CHRF (Popović, 2015) and
BLEU (Papineni et al., 2002), an embedding-based
metric BERTSCORE (Zhang et al., 2020) and three
trainable-metrics; BLEURT (Sellam et al., 2020),
PRISM (Thompson and Post, 2020) and COMET-
DA (2020) (Rei et al., 2020b).

The fact that the COMET-DA (2021) gives
higher correlations than the COMET-DA (2020)
shows that adding more training data and combin-
ing checkpoints trained on different seeds already
provides a boost in performance. However, fine-
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All systems Human vs MT
en-de en-zh en-de en-zh

Nº Comparisons 45 45 21 16

Kendall Avg Kendall Avg
B

as
el

in
es

BLEU 0.378 0.311 0.345 0.095 0.077 0.086
CHRF 0.444 0.422 0.433 0.143 0.000 0.072
BERTSCORE (F1) 0.356 0.356 0.356 0.143 0.000 0.072
PRISM 0.444 0.422 0.433 0.143 0.077 0.110
COMET-DA (2020) 0.822 0.533 0.678 0.714 0.231 0.473

R
ef

.b
as

ed COMET-DA (2021) 0.844 0.489 0.667 0.761 0.231 0.496
COMET-MQM (2021) 0.867 0.778 0.823 0.762 0.875 0.819
COMETINHO-DA 0.533 0.378 0.456 0.238 0.000 0.119
COMETINHO-MQM 0.355 0.311 0.333 0.095 0.000 0.048

R
ef

.F
re

e COMET-QE-DA (2021) 0.778 0.778 0.778 0.667 0.938 0.803
COMET-QE-MQM (2021) 0.933 0.800 0.867 1.000 1.000 1.000
OPENKIWI 0.822 0.733 0.778 0.762 0.769 0.766

Table 3: System-level Kendall’s Tau (τ ) correlations for all system combinations (on the left) and Human vs MT
(on the right).

tuning on the MQM development data was the most
significant addition to previous work: the COMET-
MQM (2021) model increased on average more
than 0.1 Pearson correlation. This improvement is
consistent with regard to the two COMETINHO mod-
els (with COMETINHO-MQM having notably higher
correlations than COMETINHO-DA). Nevertheless,
the fact that COMETINHO-DA has competitive or
state-of-the-art performance with all the other met-
rics such as BLEURT, PRISM, and BERTSCORE,
while also being much faster, presents an ideal
opportunity for future work to investigate the in-
corporation of trainable metrics into the training
objectives of MT systems.

For reference-free metrics, the fine-tuning on
the MQM data, on average, gave a boost in perfor-
mance (the only exception being the Pearson cor-
relation for the en-de where COMET-QE-DA has a
slightly higher correlation than COMET-QE-MQM).
Overall, it is somewhat surprising that COMET-QE-
* (2021) and COMET-* (2021) show relatively
comparable correlations, suggesting that using the
reference as input for MT evaluation might be less
useful than expected and could feasibly become
redundant. This surprising result was also reported
by Kocmi et al. (2021) and is especially important
since curating reference sentences is usually costly
and time consuming and can introduce undesired
bias in the evaluation (Freitag et al., 2020).

Finally, the OPENKIWI model has competitive
correlations when looking to other trainable met-
rics and to COMET models that were not fine-tuned
on the MQM development data. This add fur-
ther weight to the suggestion above that references
might not add substantial value to MT evaluation.
Its performance is even more surprising when con-
sidering the fact that this model was train with data
from a completely different domain.

It is worth highlighting that the Kendall’s Tau
correlations for all models (with exception of the
two reference-based COMETINHO models) are in
the range obtained for correlations between differ-
ent annotators, for en-de, Figure 1. This further
validates the value of our models.

9.2 System-level task

System-level results are presented in Table 3 where
we report a Kendall Tau correlation defined as fol-
lows:

τ =
Concordant− Discordant
Concordant + Discordant

(1)

where Concordant defined as the number of
times a metric agrees with humans that a given
system x is better than a given system y and Dis-
cordant is the opposite. These decisions are the
computed for all combinations of systems in the
testset.
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Due to the low number of systems and the rel-
ative proximity of the ground-truth MQM system
scores we also compare metrics on their ability
to distinguish human references from MT outputs.
With reference to table 7 in the appendix we note
that, for zh-en, all 8 MT systems demonstrate com-
parable performance but that there is a clear sepa-
ration of human translations. For that reason Table
3 also presents the Kendall Tau correlations consid-
ering only “Human” systems against MT systems
where we can observe that reference-free metrics
achieve better performance. This results confirms
the finding from last year‘s shared task (Mathur
et al., 2020) where COMET-QE was highlighted as
being the only metric able to differentiate human
translations from MT.

10 Related work

Classic n-gram matching MT evaluation metrics
such as BLEU (Papineni et al., 2002) have been
adopted by the MT community as a primary form of
MT evaluation, yet, in the recent years of the WMT
Metrics shared task (Bojar et al., 2017; Ma et al.,
2018, 2019; Mathur et al., 2020) these classic met-
rics have been outperformed first by embedding-
based alternatives and more recently by trainable
metrics based on pre-trained models.

With the rise of word embeddings (Pennington
et al., 2014; Peters et al., 2018; Devlin et al., 2019),
metrics such as BLEU2VEC (Tättar and Fishel,
2017) and MEANT 2.0 (Lo, 2017) replaced the typ-
ical word/n-gram matching by fuzzy matches based
on distributional word representations. These met-
rics appeared for the first time at the WMT Metrics
task in 2017 with MEANT 2.0-SRL achieving the
highest results at segment-level. In 2018 and 2019
YISI-1 (Lo, 2019), a successor of MEANT 2.0 (Lo,
2017), was among the winners of the WMT Metrics
task. YISI-1 (Lo, 2019) mostly takes advantage of
BERT embeddings (Devlin et al., 2019) to create
soft alignments between hypothesis and reference.

Trainable metrics started as simple regressions
based on lexical features (e.g BLEND (Ma et al.,
2017)) but nowadays these metrics also use em-
beddings to extract features that are then used to
regress on quality assessments. The first of such
metrics were RUSE (Shimanaka et al., 2018) and
ESIM (Mathur et al., 2019) which were based on
RNN encoders and worked mostly for English. In
2020, BLEURT (Sellam et al., 2020) and COMET

(Rei et al., 2020a) were proposed. Both metrics

used pre-trained transformer based encoders to ex-
tract sentence-level features that are then passed to
a regression model; the difference is that COMET

also extracts features for the source segment which
was something overlooked by predecessor metrics.
In the 2020 Metrics Shared task both COMET and
BLEURT achieved some of the highest correlations
with human judgements and shared the podium
with PRISM (Thompson and Post, 2020)

11 Conclusions

In this paper we present the Unbabel-IST’s con-
tribution to the WMT 2021 Metrics shared task
which for the first time, introduced evaluation us-
ing MQM. Our specific contributions include; the
fine-tuning of Direct Assessment based models on
MQM data which yields impressive gains on the
described test sets and a new, lightweight COMET

model which achieves comparable performance to
its predecessors. Such a light model can provide
interesting opportunities for future work into the in-
corporation of modern metrics into MT training. Fi-
nally, but perhaps our most important contributions;
we further validate the observations in (Kocmi et al.,
2021) that QE as a metric is becoming competi-
tive as an alternative to reference-based evaluation,
and, we show that a word-level QE system can be
successfully trained on MQM annotations and be
competitive with current trainable metrics while
providing some intuition about “what” is wrong
with a specific translation.
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A Appendix

A.1 COMET Hyper-Parameters
In Table 5 is an excerpt of the training configuration
used for training the COMET-DA model and Table 5
for the COMET-QE-DA. Then these models are fine-
tuned for 1 extra epoch with same hyperparameters
except the learning_rate that is decreased to
1.0e − 05 and the nr_frozen_epochs which
we increase to 1 to completely freeze the encoder
model.

A.2 OPENKIWI Hyper-Parameters
The hyperparameters used for the OpenKiwi model
are expressed in Table 4 and follows the configu-
rations proposed in the sample file of the github
repository4.

System
batch_size 2

Encoder
hidden_size 1024

Decoder
bottleneck_size 1024
dropout 0.05
hidden_size 1024

Optimizer
class_name adam
encoder_learning_rate 0.0001
learning_rate_decay 1.0
learning_rate_decay_start 0
learning_rate 0.0001

Trainer
training_steps 2180
early_stop_patience 10
validation_steps 0.5
gradient_accumulation_steps 4
gradient_max_norm 1.0

Table 4: Hyperparameters for OPENKIWI MQM model

4https://github.com/Unbabel/OpenKiwi/
blob/master/config/xlmroberta.yaml

nr_frozen_epochs 0.3
keep_embeddings_frozen True
optimizer AdamW
encoder_learning_rate 1.0e-05
learning_rate 3.1e-05
layerwise_decay 0.95
encoder XLM-RoBERTa
pretrained_model xlm-roberta-large
pool avg
layer mix
dropout 0.15
batch_size 4
gradient_accumulation_steps 4
hidden_sizes [3072, 1024]
epochs 1

Table 5: Hyper-parameters for fine-tuning Reference-
based COMET model on Direct Assessments.

nr_frozen_epochs 0.3
keep_embeddings_frozen True
optimizer AdamW
encoder_learning_rate 1.0e-05
learning_rate 3.1e-05
layerwise_decay 0.95
encoder XLM-RoBERTa
pretrained_model xlm-roberta-large
pool avg
layer mix
dropout 0.15
batch_size 4
gradient_accumulation_steps 4
hidden_sizes [2048, 1024]
epochs 1

Table 6: Hyper-parameters for fine-tuning Reference-
free COMET model on Direct Assessments.
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en-de zh-en
System MQM System MQM

Human-B.0 0.794 Human-A.0 3.114
Human-A.0 0.933 Human-B.0 3.149
Human-P.0 1.547 Huoshan_Translate.919 5.077
Tohoku-AIP-NTT.890 2.043 Tencent_Translation.1249 5.163
OPPO.1535 2.284 OPPO.1422 5.309
Tencent_Translation.1520 2.333 THUNLP.1498 5.389
Online-B.1590 2.516 DeepMind.381 5.442
eTranslation.737 2.530 WeChat_AI.1525 5.469
Huoshan_Translate.832 2.600 DiDi_NLP.401 5.484
Online-A.1574 3.189 Online-B.1605 5.512

Table 7: System-level Ranking and corresponding MQM scores for the test split described in section 5.1
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A.3 Train/Test Split Documents
In our train/test split described in section 5.1 we
leave the following documents for testing:

• reuters.276709

• cnbc.com.33889

• cnn.385672

• aj-english.8643

• express.co.uk.10983

• cbsnews.302258

• sky.com.20683, chicago_defender.80

• sciencedaily.com.75569

• seattle_times.7141

• huffingtonpost.com.19389

• huffingtonpost.com.19385

• upi.205721

• dailymail.co.uk.365293

• upi.205735

• standard.co.uk.14562

• foxnews.100085

• allafrica.15342

• abcnews.364021

• kcal.279

• sky.com.20667

• en.ndtv.com.13143

• reuters.276541

• heraldscotland.com.7318

• foxnews.100073

• upi.205695

• tsrus.cn.2113

• chinanews.com.102574

• chinanews.com.102805

• chinanews.com.102708

• xinhua-zh-01.6415

• chinanews.com.102657

• chinanews.com.102700

• chinanews.com.102573

• chinanews.com.102534

• chinanews.com.102914

• tsrus.cn.2112

• xinhua-zh-01.6608

• australian-zh.104

• chinanews.com.102580

• xinhua-zh-01.6520

• chinanews.com.102767

• chinanews.com.102748

• chinanews.com.102807

• international_times-zh.165

• chubun-zh.1066

• international_times-zh.160

• international_times-zh.150

• xinhua-zh-01.6434

• xinhua-zh-01.6586

• xinhua-zh-01.6307

• xinhua-zh-01.6529

• chinanews.com.102780

• hunan_ribao-zh.199

• chinanews.com.102737

• chinanews.com.102722

• chinanews.com.102709
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Abstract
This work introduces a simple regressive en-
semble for evaluating machine translation qual-
ity based on a set of novel and established
metrics. We evaluate the ensemble using a
correlation to expert-based MQM scores of
the WMT 2021 Metrics workshop. In both
monolingual and zero-shot cross-lingual set-
tings, we show a significant performance im-
provement over single metrics. In the cross-
lingual settings, we also demonstrate that an en-
semble approach is well-applicable to unseen
languages. Furthermore, we identify a strong
reference-free baseline that consistently out-
performs the commonly-used BLEU and ME-
TEORmeasures and significantly improves our
ensemble’s performance.

1 Introduction
Automated evaluation of text generation is challeng-
ing due to many orthogonal qualitative aspects that
the user expects from a text generation system. In
machine translation, we can observe errors of the
so-called critical category (Wulczyn et al., 2017)
such as hallucinating (Lee et al., 2019), omitting
parts of the input from translation, or the negation
of meaning (Matusov, 2019).
Consider an example of the last category:

• Reference: “I never wrote this article, I just
edited it.”

• Hypothesis 1: “It is not my article, I just edited
it.”

• Hypothesis 2: “I never wrote this article, I
never edited it.”

In this example, all BERTScore (Zhang et al., 2019),
BLEUrt (Sellam et al., 2020), and Prism (Thomp-
son and Post, 2020b) metrics rank Hypothesis 2
higher than Hypothesis 1. In BLEUrt and Prism,
this can be due to a known vulnerability of Trans-
formers, which rely on a lexical intersection (Mc-
Coy et al., 2019) if such a heuristic fits the prob-

lem sufficiently well. Trivially, just counting the
negations can easily remedy this specific problem.
However, such a heuristic would fail in many other
cases, such as when we adjust Hypothesis 1 to “It
is an article of somebody else, I just edited it.”.

Such cases motivate our ensemble approach that
aims to expose both surface and deeper semantic
properties of texts and subsequently learn to utilize
these for the specific task of translation evaluation.
Even though the objective might constrain the par-
ticular metrics, data set, or systematically fail in
some cases, another metric or their combination in
the ensemble allows the flaw to be corrected.

2 Metrics for machine translation
evaluation

This section reviews the related work, focusing on
the metrics we used in our ensemble.

The standard and still widely-used surface-level
metrics for the evaluation of machine translation
quality are BLEU (Papineni et al., 2002), ROUGE
(Lin, 2004), and TER (Snover et al., 2006). Surface-
level metrics are not able to capture the proximity
of meaning in cases where one text paraphrases the
other, which is an ability commonly observed in
deep neural language models (Lewis et al., 2020).
One metric that addresses this flaw is METEOR
(Banerjee and Lavie, 2005), which utilizesWordNet
to account for synonymy, word inflection, or token-
level paraphrasing.

Evaluation of semantic text equivalence is closely
related to a problem of accurate textual repre-
sentations (embeddings). The traditional method
that we identify as relevant for the evaluation of
segment-sized texts is FastText (Bojanowski et al.,
2017). FastText learns representations of charac-
ter n-grams from which it creates a unified repre-
sentation of tokens by averaging. Additionally, a
distance of a pair of texts can be computed directly
from the token-level embeddings using methods
such as the soft vector space model (the soft co-
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sine measure, SCM) (Novotný, 2018), or by solving
a minimum-cost flow problem (the word mover’s
distance, WMD) (Kusner et al., 2015).
Similar matching is performed by BERTScore

(Zhang et al., 2019), which uses internal token em-
beddings of a selected BERT layer optimal for the
task. Although the token representations are multi-
lingual in some models (Devlin et al., 2018), which
makes BERTScore usable without references, we
are not aware of prior work evaluating it as such. A
possible drawback of cross-lingual alignment using
a max-reference matching scheme of BERTScore
lies in a possibility of a significant mismatch of
sub-word tokens in source and target text. In con-
trast, the metric that we refer to asWMD-contextual
uses the same embeddings as BERTScore but uses
the network-flow optimization matching scheme of
WMD.

Task-agnostic methods have recently been out-
performed by methods that fine-tune a pre-trained
model for a related objective: BLEUrt (Sellam
et al., 2020) fine-tunes a BERT (Devlin et al., 2018)
model directly on Direct Assessments of submis-
sions to WMT to predict the judgements using a
linear head over contextual embeddings of a clas-
sification [CLS] token. Comet (Rei et al., 2020)
learns to predict Direct Assessments from tuples
of source, reference, and translation texts with the
triplet objective or the standard MSE objective.
Some of the most recent work incorporates la-

tent objectives and/or data sets. For instance, Prism
(Thompson and Post, 2020b,a) learns a language-
agnostic representation from multilingual para-
phrasing in 39 languages, thus being one of the
few well-performing reference-free metrics. The
orthogonality of its training objective might lower
its correlation to other methods that use contextual
embeddings.

3 Methodology
Our methodology aims to answer the following ma-
jor question with additional supporting questions:

1. Can an ensemble of surface, syntactic,
and semantic-level metrics significantly im-
prove the performance of single metrics?

2. Can such an approach be applied cross-
lingually, i.e., on languages that it has not been
trained on?

3. Can surface-level metrics in reference-free

configuration achieve results comparable to
the reference-based ones?

4. Are contextual token representations impor-
tant for evaluating semantic equivalence, or
can these be replaced with pre-inferred token
representations?

3.1 Experimental setup

We perform our primary evaluation on Multidimen-
sional Quality Metrics (MQM) data set (Freitag
et al., 2021), where we use averaged judgement
scores as our gold standard. Where multiple judge-
ments are available for the given pair of a source
and a hypothesis, we average the scores over the
judgements and consider this average as our gold
standard. We split the samples into train (80%) and
test (20%) subsets based on unique source texts.

In our experimental framework, which we release
as an open-source Python library and Docker image
for ease of reproduction12, we implement a selected
set of the metrics based on their guidelines, together
with a bunch of novel metrics, introduced in Sec-
tion 3.2 aiming to provide additional, orthogonal
insight of textual equivalence.

Subsequently, we train a regressive ensemble on
the standardized metric features of the whole train
set, intending to predict the averaged MQM expert
judgements. We evaluate the ensemble, together
with all other selected metrics using pairwise Spear-
man’s rank correlation (Spearman’s ρ) with the
MQM judgements on the held-out 20% test split.
In addition to our primary evaluation on the

MQM data set, we perform our experiments on
the Direct Assessments (DA) from WMT 2015 and
2016, and a dev set of Catastrophic errors from
the Post-editing Dataset (Fomicheva et al., 2020a)
of the Multilingual Quality Estimation Dataset
(MLQE-PE) (Fomicheva et al., 2020b) used for eval-
uation at the Quality Estimation workshop of WMT
2021. Refer to Section 3.6 for a detailed description
of our experiments on DA and MLQE-PE.
We performed all our evaluations on segment-

level judgements. To minimize the impact of cal-
ibration for each of the specific metrics to evalua-
tion, we report Spearman’s rank correlation coef-
ficient, reflecting the mutual qualitative ordering
rather than particular values of the judgements.

1https://github.com/MIR-MU/regemt
2https://hub.docker.com/r/miratmu/regemt
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3.2 Novel metrics
In addition to a selected set of metrics based on
a literature review, we implement a set of novel
metrics that allows our ensemble to reflect a wider
variance of properties of the evaluated texts.

3.2.1 Soft Cosine Measure
The soft cosine measure (SCM) (Novotný, 2018)
is the cosine similarity of texts in the soft vector
space model, where the axes of terms are at an angle
corresponding to their cosine similarity S in a token
embedding space:

SCM(~x, ~y) =
~xT · S · ~y√

~xT · S · ~x ·
√
~yT · S · ~y

(1)

where ~x is a weighted bag-of-words (BoW) vector
of a reference (or a source in a reference-free
setting), and ~y is a weighted BoW vector of a
hypothesis.
We use SCM with two token representations:

1. We use the static token representations of Fast-
Text (Grave et al., 2018). We refer to the re-
sulting metric as SCM.

2. We use the contextual token representations of
BERT (Devlin et al., 2018) using the method-
ology of BERTScore (Zhang et al., 2019). We
collect representations of all tokens segmented
by the WordPiece (Wu et al., 2016) tokenizer,
and we treat each unique (token, context) pair
as a single term in our vocabulary.
Subsequently, we decontextualize these rep-
resentations as follows: For each WordPiece
token, we average the representations of all
(token, context) pairs in the training corpus.
We refer to the resulting metric as SCM-
decontextualized. Due to the multilingual
character of the learned BERT token repre-
sentations, this metric is applicable both in
reference-based and source-based approaches.

In addition to two token representations, we also
use two different SMART weighting schemes of
Salton and Buckley (1988) for the BoW vectors ~x, ~y
and the construction of the term similarity matrix S:

1. We use raw term frequencies as weights in
the BoW vectors, the nnx SMART weight-
ing scheme, and we construct the term simi-
larity matrix in the vocabulary order. We re-
fer to the resulting metrics as SCM and SCM-
decontextualized.

2. We use term frequencies discounted by inverse
document frequencies as weights in the BoW
vectors, the nfx SMART weighting scheme,
and we construct the term similarity matrix
in the decreasing order of inverse document
frequencies (Novotný, 2018, Section 3). We
refer to the resulting metrics as SCM-tfidf and
SCM-decontextualized-tfidf.

3.2.2 Word Mover’s Distance
The Word Mover’s Distance (WMD) (Kusner et al.,
2015) finds the minimum-cost flow F between vec-
tor space representations of two texts:

WMD(~x, ~y) = minimum cumulative cost FT·S

subject to
∑

j

Fij = xi,
∑

i

Fij = yj , (2)

where ~x is an `1-normalized weighted BoW vector
of a reference (or a source in reference-free setting),
~y is an `1-normalized weighted BoW vector of a
hypothesis, and S is a term similarity matrix.
Similar to SCM described in the previous sec-

tion, we experiment with two token representations:
FastText embeddings of whole tokens (WMD) and
decontextualized embeddings of WordPiece tokens
(WMD-decontextualized). Additionally, we also
use the contextual embeddings of WordPiece to-
kens (WMD-contextual) to show the impact of de-
contextualization on the metric performance: If the
impact is negligible, future work could avoid the
costly on-the-fly inference of BERT representation
and significantly reduce the vocabulary size.
Similarly to SCM, we also use two different

weighting schemes: raw term frequencies (WMD-*)
and term frequencies discounted by inverse docu-
ment frequencies (WMD-*-tfidf ).

3.2.3 Compositionality
Our custom metric that we refer to as Compo-
sitionality constructs a transition graph of an
arbitrary text Gt based on directed, pairwise
transitions of the tokens’ part-of-speech (PoS)
categories. As the models for PoS tagging
are language-dependent, we use the compliant—
though not always systematically aligned—schemes
of tagging used for training the taggers in
English (Weischedel et al., 2013), German
(Brants et al., 2002), Chinese (Weischedel et al.,
2013), and Norwegian (Unhammer and Trosterud,
2009).
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Subsequently, we row-normalise the values of
matrix Gt and we define a distance metric of Com-
positionality C for x = Gt1 and y = Gt2 :

C(x, y) = `1-norm(xii − yii), (3)

where the PoS tags i ∈ x and i ∈ y.
In our submission, we apply this metric only if

the language belongs to a set of the languages for
which we have a tagger: English, German, Chi-
nese, or Norwegian. In reference-based evaluations,
this constraint applies to the target language; in the
case of reference-free evaluations, it applies to both
source and target languages.

3.3 Ensemble
We ensemble the aforementioned metrics as predic-
tors in a regression model, minimizing the residual
between the average segment-level MQM scores
and predicted targets.
We experiment with a wide range of simple re-

gressors and observe a superior performance of
simple approaches of fully connected, two-layer
perceptron with 100-dimensional hidden layer and
ReLu activation and linear regression with squared
residuals. We report the results for RegEMT as the
best-performing one of these classifiers picked on a
20% held-out validation subset of the train data set.
In addition to the ensemble of all available met-

rics, we evaluate a baseline regressive ensemble
Reg-base using solemnly two surface-level features:
character-level source and target length according
to WordPiece (Wu et al., 2016) tokens.

3.4 Cross-lingual experiments
As expert judgments are incredibly costly to obtain,
it is unrealistic to expect that the training data for
the trained systems will be available in the future for
a vast majority of language pairs containing under-
resourced languages. To estimate the performance
of all metrics on uncovered language pairs, we per-
form a cross-lingual evaluation on average MQM
judgements of two available language pairs: zh-en
and en-de.
Where applicable, we fit the metric parameters

on the train split of the non-reported language pair.
Subsequently, we evaluate and report the results on
a test split of the reported pair to MQM judgements.

3.5 Ablation study
To understand the impact of individual metrics in
their roles as predictors for our ensemble, we use

their pairwise correlations for systematic feature
elimination.
In our ablation study, we iteratively select the

metric with the highest Spearman’s ρ to any other
metric. We eliminate the selected metric from our
ensemble by fitting a new regression model on the
remaining features. We continue until all metrics
are eliminated and evaluate the ensemble at each
step of the process.

3.6 Additional evaluations
To allow for additional insight into the consistency
of the results to other relevant evaluation sources,
together with an evaluation of the metrics in the
novel application of critical error recognition, we
perform the experiments analogically on a DA data
set of the WMT submissions from years 2015 and
2016, as well as to the Critical Errors dev set of
MLQE-PE data set for reference-free metrics.

In the case of DA judgements, we use the assess-
ments from the year 2015 as a training split and
assessments from the year 2016 as a test split.
In the case of MLQE-PE, we split the data ana-

logically to MQM by splitting the unique source
texts in an 80:20 ratio. In this case, we consider as
gold judgements the mean severity of error assigned
by three annotators to each of the translations.

4 Results

Correlations to MQM judgements. Table 1
lists correlations to MQM for source-based, i.e.,
reference-free metrics (upper) and reference-based
metrics (middle). Results reported for RegEMT
fit a selected regression model on the estimates
of all the other metrics available for a given
evaluation scheme. As described in Section 3.3,
we pick the evaluated regression model based on
its performance on a held-out portion of the train
set: a two-layer perceptron for the source-based
zh-en pair and a simple linear regression in all
other cases, with negligible mutual differences
between regression models in performance on the
validation set (below 2%). In the reports suffixed
with X, we fit the regression model on the other
language pair than the one used for the evaluation.
The results suggest that a simple regressive en-

semble can benefit from the variance of the predic-
tors in a majority of the evaluated configurations,
including the cross-lingual settings and other eval-
uated datasets. We observe the highest margins in
correlations in the case of MQM judgements.

1044



Re
gE
MT

Pr
ism

BE
RT
Scr

WM
D-
con

t

WM
D-
dec

WM
D-
dec
-tf

SC
M-
dec

SC
M-
dec
-tf

Co
mp
os

Re
g-b
ase

Co
me
t
SC
M
SC
M-
tf

WM
D
WM

D-
tf

BL
EU
rt

BL
EU

ME
TE
OR

MQM-src zh-en .59 .36 .44 .44 .29 .17 .19 .13 .13 .34
MQM-src zh-en-X .49 .36 .44 .44 .29 .17 .19 .13 .13 .34
MQM-src en-de .36 .09 .14 .06 .04 .07 .03 .02 .23 .28
MQM-src en-de-X .31 .09 .14 .06 .04 .07 .04 .02 .23 .28

MQM-ref zh-en .62 .45 .45 .43 .27 .21 .10 .26 .01 .35 .51 .19 .35 .29 .27 .48 .25 .28
MQM-ref zh-en-X .62 .45 .45 .43 .27 .21 .09 .25 .01 .31 .51 .19 .35 .29 .27 .48 .25 .28
MQM-ref en-de .60 .32 .22 .25 .32 .28 .33 .18 .12 .27 .48 .06 .14 .13 .07 .10 .13 .20
MQM-ref en-de-X .38 .32 .22 .25 .32 .28 .34 .17 .12 .29 .48 .06 .14 .13 .07 .10 .13 .20

DA 2016-src .84 .72 .74 .73 .57 .51 .37 .51 .29 .18 .82 .39 .45 .44 .42 .81 .42 .50
DA 2016-tgt .68 .70 .34 .25 .09 .10 .10 .24 .13 .04
catastrophic-src .29 .26 .13 .11 .12 .15 .13 .09 .10 .09

Table 1: Results for Spearman’s correlations with selected gold standards. From top: correlation of source-based
metrics (top) and reference-based metrics (middle) to averaged scores of MQM expert judgements for specified lan-
guages. Results suffixed with X are evaluated cross-lingually: both ensemble metrics are trained on other language
pairs than evaluated. (Bottom): Results for other data sets: Direct assessments of WMT 2016 submissions and
dev set of Catastrophic translations from MLQE-PE data set; reported values are an average of correlations over all
available language pairs.

Baseline ensemble. Table 1 shows that Reg-base,
using only the counts of reference and hypothesis
Word-pieces, demonstrates its consistent superior-
ity over the standard surface-level metrics of BLEU
and METEOR, even in the cross-lingual vs. mono-
lingual comparison. With respect to the MQM
judgements, the correlations ofReg-base are reason-
ably consistent; hence, in the reference-free cases
of en-de language pair, the correlation of Reg-base
is very close to the correlations of RegEMT.

Importance of contextualization. The results
in Table 1 are inconsistent concerning the impor-
tance of contextualization in token-level metrics
(WMD-cont* vs. WMD-dec* and SCM-cont* vs.
SCM-dec*). We observe a significant (15–16%)
decrease of correlation between a contextualized
and decontextualized versions of WMD in all cases
of zh-en language pair. The situation differs in
en-de pair, where for the reference-based case, the
correlation of decontextualized version of WMD
is superior by 7%.

Metrics correlations. Table 2 demonstrates mu-
tual correlations of the evaluated metrics. We see
the strong pairwise correlations among the metrics
based on contextualized representations, such as
between Comet, Prism, BERTScore and BLEUrt;
all of these are higher than 0.79. The situation is
similar among the metrics based on static token

representations of SCM andWMD, both with and
without TF-IDF.

In contrast, we observe a low correlation of
BLEU andMETEOR to Reg-base forming a cluster
of surface-level metrics.

Ablation study. Figure 1 displays performance
development in Spearman’s ρ of the regressive en-
semble when we incrementally eliminate the met-
rics from the set of ensembled predictors. Follow-
ing the methodology described in Section 3.5, the
exact ordering of the metrics in ablation for zh-en
pair is shown in Table 2, and we observe it to be
similar also for the other language pair of MQM.
In ensembles of reference-based metrics (left),

we observe a high consistency throughout the re-
moval of most of the metrics. A longer consistency
in zh-en case is attributed to a consistent perfor-
mance in ensembling BLEUrt (removed in step 14)
and METEOR (removed in step 15). These metrics
only reach the correlation of 0.48 and 0.28, respec-
tively, when evaluated independently. In en-de case,
the most significant drops can be attributed to a re-
moval of the best-performing Comet (step 9) and
Prism (step 11).

Ensemble of source-based metrics (right) shows
significant drops in zh-en pair after removing Prism
(step 3) andWMD-contextual (step 4). In en-de lan-
guage pair, the correlation is relatively low through-
out the whole ablation process. The least corre-
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0) 1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18)

0) MQM avg scr 1. .62 .51 .45 .45 .43 .27 .21 .1 .26 .19 .35 .29 .27 .48 .25 .28 .01 .35

1) RegEMT .59 1. .56 .5 .44 .42 .25 .23 .4 .28 .15 .36 .3 .3 .55 .26 .32 .11 .51
2) Comet 1. .79 .82 .82 .71 .61 .54 .62 .57 .64 .64 .6 .83 .64 .63 .44 .4
3) Prism .36 .5 1. .9 .9 .85 .77 .63 .71 .71 .77 .79 .77 .8 .81 .77 .54 .19
4) BERTScr .44 .48 .13 1. .13 .06 .01 .11 .1 .13 .04 .76 .73 .82 .77 .74 .56 .18
5) WMD-cont .44 .5 .53 .88 1. .92 .8 .68 .69 .71 .74 .77 .73 .82 .81 .75 .58 .18
6) WMD-dec .29 .42 .22 .4 .6 1. .89 .81 .7 .77 .72 .77 .77 .75 .81 .71 .66 .37
7) WMD-dec-tf .17 .3 .08 .12 .32 .69 1. .71 .66 .73 .71 .74 .8 .63 .74 .64 .6 .32
8) SCM-dec .19 .26 .03 .21 .35 .71 .49 1. .51 .67 .49 .55 .58 .57 .61 .53 .65 .58
9) SCM-dec-tf .13 .26 .2 .32 .43 .47 .26 .29 1. .58 .72 .64 .61 .62 .62 .58 .48 .19

10) SCM 1. .78 .9 .86 .54 .75 .74 .67 .37
11) SCM-tf 1. .85 .84 .6 .71 .72 .52 .13
12) WMD 1. .94 .6 .81 .83 .6 .17
13) WMD-tf 1. .58 .78 .78 .58 .22
14) BLEUrt 1. .6 .58 .43 .11
15) BLEU 1. .85 .66 .27
16) METEOR 1. .56 .15
17) Compos .13 .11 .13 .06 .01 .11 .1 .13 .04 1. .52
18) Reg-base .34 .44 .37 .07 .07 .24 .19 .28 .02 .34 1.

Table 2: Pairwise Spearman’s correlations of the evaluated metrics and their correlations to averaged MQM judge-
ments for zh-en language pair. Top-right triangle: mutual correlations of reference-based metrics, bottom-left
triangle: correlations of metrics supporting multilingual source-based evaluation.

lated and hence the last ones eliminated are WMD-
decontextualized-tfidf (step 6) and Prism (step 7).

5 Discussion
Regressive ensemble. Following the objectives
that we set in Section 3, we empirically confirm
that an ensemble can push the quality of modeling
the expert judgements in most of the configurations
while performing close-to-the-best metrics on the
others. Additionally, we demonstrate that such en-
semble is transferable to new language pairs and
that its use is motivated by qualitative gains even in
cross-lingual settings.

At the same time, one must acknowledge the lim-
itations that an ensemble system exposes compared
to single and unsupervised metrics. An ensemble
might inherit the systematic biases of each of its
metrics. This problem is observable in the results
of the source-based en-de pair of MQM in Table 1,
where the ensemble follows the low correlations
of its ensembled metrics. Further, relying entirely
on the metrics’ consistency, the ensemble will in-
evitably expose errors in domains where some met-
rics behave markedly out of their usual range.

On the other hand, we argue that this might rarely
be the case with the surface-level metrics that are
mainly unsupervised. We suspect it to be unlikely
with learnable metrics, too, having their output

space constrained by the range of their imitated
metrics.
Values of correlations in Table 2 and partially

also the threshold metrics in Figure 1 suggest that
our ensemble relies primarily on trained contextu-
alized metrics with regards to their correlation with
the target as summarized in Table 1. We suspect
that oversampling of under-represented categories
of errors would increase the significance of other
types of metrics, as the under-represented error cat-
egories would be the ones where the fine-tuned
metrics perform worse.

Baseline ensemble. Surprisingly, our baseline
ensemble Reg-base consistently outperforms other
standard surface-based metrics such as BLEU (Pa-
pineni et al., 2002). This suggests possible applica-
bility of surface-level metrics also in reference-free
evaluation.
We suspect that the baseline features of length

based on a multilingual WordPiece tokenizer (Wu
et al., 2016) might reflect on the missing or inap-
propriately added segments more strictly than other
surface-level metrics. At the same time, these errors
are usually highly weighted in the overall score.

Table 2 shows considerable orthogonality of Reg-
base to other metrics. This motivates the inclusion
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Figure 1: Ablation study: correlation of ensemble estimator to averaged MQM judgements during incremental
elimination of the most-correlated metric from the ensembled predictors. Left: ablation of reference-based metrics,
right: ablation of source-based metrics.

of the other weak surface metrics into the baseline
ensemble to alleviate some of its apparent flaws.

Impact of contextualization. Based on the re-
sults ofWMD-* described in Section 3.2.2, one can
not draw a consistent conclusion regarding the im-
pact of contextualization. On average, decontextual-
ization has decreased the performance of WMD by
8%, but the original motivation of a significant im-
provement in the usability of estimators might com-
pensate. On the other hand,WMD-decontextualized
and WMD-decontextualized-tfidf reached a consid-
erable improvement of 16–18% as compared to
WMD andWMD-tfidf using FastText embeddings,
while losing none of their flexibility.

“It is the harmony of the diverse parts, their
symmetry, their happy balance; in a word it is all

that introduces order, all that gives unity, that
permits us to see clearly and to comprehend at

once both the ensemble and the details.”
Henri Poincaré

6 Conclusion
This work evaluates the potential of ensembling
multiple diverse metrics (RegEMT ) for an evalua-
tion of machine translation quality and offers a new
simple baseline metric Reg-base that achieves bet-
ter results than BLEU andMETEOR by using just
the source and reference lengths. We measure sig-
nificant gains in Spearman’s correlation to MQM
with RegEMT compared to standalone metrics and
we demonstrate that even simple linear estimators
can benefit from the expressivity that the methods
of all levels of representation provide. Additionally,
as we demonstrate, the ensemble based on metrics
supporting multilingualism can push the quality
further even on unseen language pairs.

We recognize the inherent limitations of the
regressive ensemble, which is inevitably slower,
resource-heavier, and prone to inherit latent induc-
tive biases of underlying metrics or their combi-
nations. However, RegEMT shows the agility of
the simple ensemble approach, which is in contrast
to attempts to learn the full complexity of quality
estimation through a single objective and allows the
quality estimator to avoid the blind spots of particu-
lar metrics. We hope that our results will motivate
future work in the ensemble evaluation.
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Abstract

This paper describes our submission to the
WMT2021 shared metrics task. Our metric
is operative to segment-level and system-level
translations. Our belief toward a better metric
is to detect a significant error that cannot be
missed in the real practice cases of evaluation.
For that reason, we used pseudo-negative ex-
amples in which attributes of some words are
transferred to the reversed attribute words, and
we build evaluation models to handle such se-
rious mistakes of translations. We fine-tune a
multilingual largely pre-trained model on the
provided corpus of past years’ metric task and
fine-tune again further on the synthetic nega-
tive examples that are derived from the same
fine-tune corpus. From the evaluation results
of the WMT21’s development corpus, fine-
tuning on the pseudo-negatives using WMT15-
17 and WMT18-20 metric corpus achieved a
better Pearson’s correlation score than the one
fine-tuned without negative examples. Our
submitted models are named C-SPEC (Cross-
lingual Sentence Pair Embedding Concatena-
tion) and C-SPECpn, are the plain model us-
ing WMT18-20 and the one additionally fine-
tuned on negative samples, respectively.

1 Introduction

Recent studies of automatic evaluation is mostly
based on the family models of BERT (Devlin et al.,
2019). BERTscore (Zhang et al., 2020), BLEURT
(Sellam et al., 2020), COMET (Rei et al., 2020)
have shown a strong correlation with human judge-
ment scores. However, we reported in our previous
study (Takahashi et al., 2020), it is hard for BERT
based metrics to correctly evaluate the translation
errors that are annotated with low Direct Assess-
ment (DA) score.

Upon the problems of evaluating poor quality
translations, Sudoh et al. (2021) has attempted to
solve the problem by creating a different human
annotation set and corpus. Compared to DA, their

idea is to make a clear definition of critical transla-
tion errors and let models learn the critical errors
that can cause a serious misunderstanding.

Following the idea, we used pseudo-negative ex-
amples to train the evaluation model. Since, empiri-
cally, the cases of the evaluation failure happens fre-
quently with the nouns translation errors, we gen-
erated pseudo-negative sentences by transferring
the attribute of nouns with Word Attribute Transfer
(Ishibashi et al., 2020). This system is based on our
previous work (Takahashi et al., 2020), with an ex-
tension with fine-tuning with the pseudo-negative
examples.

2 Related Work

BERTscore (Zhang et al., 2020), BERT regres-
sor (Shimanaka et al., 2019), BLEURT (Sellam
et al., 2020), and COMET (Rei et al., 2020) are
applications of BERT to the machine translation
evaluation. BERTscore measures the similarity of
reference and hypothesis translation by the cosine-
similarity of the token embeddings for each to-
ken in the reference and hypothesis. It uses a pre-
trained BERT model without fine-tuning on evalua-
tion data. Instead, BERT regressor and BLEURT
are fully parameterized and require a human an-
notated evaluation corpus to fine-tune the models.
Both metrics have the same model architecture; a
linear layer is attached on top of the BERT encoder.
They encode a paired reference and hypothesis sen-
tence with BERT and predict the human evaluation
score. Additionally, BLEURT conducts warm-up
training of BERT before fine-tuning on an evalu-
ation corpus. The model architecture of our sub-
mission is similar to BERT regressor and BLEURT,
but its uniqueness comes from using the synthetic
negative data to fine-tune the models to evaluate
poor translations better.

1049



MLP

evaluation score

XLMRoBERTa

hypothesis 
+ source

concatenation vhyp+src, vhyp+ref

hypothesis 
+ reference

sentence-pair 
vector vhyp+src

sentence-pair 
vector vhyp+ref

Figure 1: Architecture of C-SPEC

3 Our system

3.1 Model architecture

We extend the BERT regressor (Shimanaka et al.,
2019) and use a cross-lingual language models,
XLMRoBERTa (Conneau et al., 2020), to utilize
a source sentence as a pseudo reference. In order
to obtain a sentence-pair vector from source lan-
guage and target language sentences together, our
model encodes input sentences with a cross-lingual
language model instead of monolingual BERT.

The model procedure is illustrated in the Fig-
ure 1. Our metric, called C-SPEC (Cross-lingual
Sentence Pair Embedding Concatenation), uses
paired inputs of hypothesis-source and hypothesis-
reference. It introduces another vector for
hypothesis-source (vhyp+src) in addition to the stan-
dard one for hypothesis-reference pair (vhyp+ref )
to make an ensemble evaluation. Both sentence
vectors are concatenated and used to predict the
evaluation score in multi-layer perceptron (MLP).
At first of the evaluation process, the cross-lingual
language model encodes an input sentence into a
sentence-pair vector. Then, using the sentence-pair
vector, a MLP outputs the final evaluation score in
regression manner. In training, we used standard-
ized z score of DA (Direct Assessment; Graham
et al. (2013)) as the ground truth and updated the
model parameters by backpropagation (Rumelhart
et al., 1986) with Mean Squared Error (MSE) Loss.

Our model was trained by the following steps.

Firstly, in order to speed up and stabilize the train-
ing procedure, our models were trained on the cor-
pus of WMT2015-2016’s DA. Secondly, the mod-
els were additionally trained on WMT2015-2017’s
DA, WMT2018-2020’s DA, or WMT2015-2020’s
DA. Thirdly, they were fine-tuned with the pseudo
negative examples. Lastly, they were fine-tuned
again on the WMT20’s MQM segment-level cor-
pus.

In each step of fine-tuning, we initialize the
output-layer and only inherit the parameters of
XLMRoBERTa. We tried three different condi-
tions in the second step because DA corpus after
WMT2018 is relatively noisy, and removing those
data may play out well.

In the system-level evaluation, we simply aver-
aged the segment-level evaluation scores for each
system.

3.2 Word Attribute Transfer
We used the reflection-based word attribute trans-
fer Ishibashi et al. (2020) for data augmentation.
This transfer can make conversion of words into a
certain word attribute, such as queen to king, using
parameterized mirrors composed of two multi-layer
perceptrons.

For the pseudo-negative hypothesis generation,
we used two types of word attribute transfer in gen-
der (male/female) and antonym. The word attribute
transfer was applied onto all the words in an input
sentence, and words having a target attribute were
rewritten into their transferred counterparts while
those that were not related to the target attribute
were kept unchanged. For example, a sentence “It
is our duty to remain at his sides”, he said, to ap-
plause is transferred into “It is our duty to change
at his sides”, he said, to whisper, by the antonym
transfer. Note that the word attribute transfer may
not make any changes on an input sentence when
all the words were identified as non-related words.
We eliminated such sentences from our pseudo-
negative examples.

3.3 Fine-tuning using pseudo-negative
examples

Our pseudo-negative examples were obtained from
the reference sentences in the training corpus of all-
English that was used to firstly fine-tune a model,
because the word attribute transfer model works
only in English. However, we did not have any
DA scores on these pseudo-negative examples. So,
we used them to fine-tune the evaluation models
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in classification manner. We introduced a different
output layer on the top of the model illustrated
in Figure 1 to classify an input example into the
following categories:

1. A hypothesis is the same as its original system
translation.

2. A hypothesis is the same as its reference.

3. A hypothesis is from the pseudo-negative ex-
amples

In the fine-tuning, we used three types of inputs
corresponding to the classes above, and the models
were trained to discriminate them. We expected
such fine-tuned models to identify the serious
word choice translation errors given in the pseudo-
negative examples. We call the metric trained
using the pseudo-negative examples C-SPECpn
(pn:psuedo-negative).

4 Segment-level evaluation experiments

Our experiment was conducted on the development
data for WMT21 metric task, which is randomly
selected 10% of WMT20 MQM segement-level
corpus. All the results were calculated by the Pear-
son’s correlation with the MQM segment scores.

4.1 Results
The results of the WMT20 MQM segment-level
corpus are shown in Table 1.

From the results, the models trained on nega-
tive examples of WMT15-17 and WMT18-20 over-
came the plain models in Pearson’s correlation.
Among the models, the best score was archived
by the one trained on WMT18-20 with the nega-
tive examples. Although WMT15-20 is a larger
corpus than WMT18-20, the score of plain models
was negligible at best, and the model trained on
WMT18-20 and with negative examples did not
overcome the plain one.

In order to figure out whether and how fine-
tuning on the negative examples had impact on
the evaluation performance, we calculated the Pear-
son’s correlation for each small chunk of segment-
level MQM scores and visualized the gap between
models’ outputs in Figure 2. Both the models
trained on WMT15-17 and WMT18-20 with nega-
tive examples performed better in the MQM range
of [-25.0, -5.0) and [-0.1, 0.0]. This suggests that
using negative examples can improve the perfor-
mance of evaluating high and critically low qual-
ity translations. However, the model trained on

WMT15-20 with negative examples dropped its
performance in the [-25.0, -5.0) range compared
to the plain model. We assume the reason of the
score drop is that the model was overly fine-tuned
to the high quality translations, as it can be seen
that the Pearson’s correlation score in the [-0.1, 0.0]
improved tremendously.

5 Conclusion

In this paper, we presented a BERT-based multilin-
gual evaluation metric that is boosted by pseudo-
negative examples to evaluate poor translations
more precisely. Our model leverages our previ-
ous work Takahashi et al. (2020) and have shown
an improvement of Pearson correlation when fine-
tuning on the synthetic examples in the WMT15-17
and WMT18-20 corpus settings.
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Abstract

In this paper, we present our submission to
Shared Metrics Task: RoBLEURT (Robustly
Optimizing the training of BLEURT). After
investigating the recent advances of trainable
metrics, we conclude several aspects of vital
importance to obtain a well-performed met-
ric model by: 1) jointly leveraging the advan-
tages of source-included model and reference-
only model, 2) continuously pre-training the
model with massive synthetic data pairs, and 3)
fine-tuning the model with data denoising strat-
egy. Experimental results show that our model
reaching state-of-the-art correlations with the
WMT2020 human annotations upon 8 out of
10 to-English language pairs.

1 Introduction

Automatically evaluating the adequacy of machine
translation (MT) candidates is crucial for judging
the quality of MT systems. N-gram-based metrics,
such as BLEU (Papineni et al., 2002), TER (Snover
et al., 2006) and chrF++ (Popovic, 2015, 2017),
have dominated in the topic of MT metric. De-
spite the success, recent studies (Smith et al., 2016;
Mathur et al., 2020a) also pointed out that, N-gram-
based metrics often fail to robustly match para-
phrases and capture distant dependencies. As MT
systems become stronger in recent decades, these
metrics show lower correlations with human judge-
ments, leading the derived results unreliable.

One arising direction for metric task is using
trainable model to evaluate the semantic consis-
tency between candidates and golden references via
predicting scores. BERTScore (Zhang et al., 2020),
BLEURT (Sellam et al., 2020) and COMET (Rei
et al., 2020) have shown higher correlations with
human judgements than N-gram-based automatic
metrics. Benefiting from the powerful pre-trained

∗Work was done when Yu Wan was interning at DAMO
Academy, Alibaba Group.

†Corresponding authors.

language models (LMs), e.g., BERT (Devlin et al.,
2019), those fine-tuned metric models first derive
the representation of each input, then introduce an
extra linear regression module to give predicted
score which describes to what degree the MT sys-
tem output adequately expresses the semantic of
source/reference contents. Furthermore, related
work (Takahashi et al., 2020; Rei et al., 2020) re-
ports that, metrics which additionally introduces
source sentences into inputs can further boost the
performance of metric model.

To push such “model as a metric” approach fur-
ther, we present RoBLEURT – Robustly optimiz-
ing the training of BLEURT (Sellam et al., 2020),
to achieve a better consistency between model pre-
dictions and human assessments. Specifically, for
low-resource scenarios, using only hypotheses and
references can give more accurate results, allevi-
ating the sparsity of source-side language; for the
high-resource language pairs, we format the model
input as the combination of source, hypothesis and
reference sentences, making model attending to
both source input and target reference when evaluat-
ing the consistency of semantics. Then, we collect
massive pseudo data from real MT engines tagged
by pseudo scores with strong baselines for super-
vised model pre-training. As to the fine-tuning
phase, we rescore the noisy WMT metric data of
previous years with strong metric baselines, which
are then utilized to fine-tune our model. Experi-
mental results show that, following the setting of
WMT2021 metric task, our RoBLEURT model
outperforms the reported results of state-of-the-art
metrics on multilingual-to-English language pairs.

2 RoBLEURT

2.1 Combining Multilingual and
Monolingual Language Model

Same as previous years, translation tasks cover
both low-resource and high-resource scenarios. To
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give higher reliable outputs, we believe our metric
model can benefit from separately pre-trained and
fine-tuned over each kind of scenarios:

• For low-resource multilingual-to-English lan-
guage pairs, we can hardly obtain massive par-
allel data with high quality, nor access well-
performed automatic translation systems to
produce syntectic data for pre-training. We
mainly consider model outputs and gold ref-
erences as our model inputs. Thus we mainly
consider the monolingual English language
model (called RoBLEURT-NOSRC) in this
scenario.

• As to high-resource language pairs, they do
not suffer from limitations above, thus can
benefit from the information of source input,
model output and target reference. A mul-
tilingual version of pre-trained LM (called
RoBLEURT-SRC) can be used for this sce-
nario.

The main architecture of our model is TRANS-
FORMER (Vaswani et al., 2017), which has been
widely used in recent researches. As related stud-
ies point out that RoBERTa (Liu et al., 2019)
outperforms conventional BERT (Devlin et al.,
2019), we employ the well-trained model check-
point from RoBERTa family. Besides, the conven-
tional BLEURT model is trained based on uncased-
BERT, which tokenizes the input sentences with
the lower case format whereas RoBERTa uses case-
sensitive tokenizer, which may be helpful to dis-
tinguish more information. Moreover, model with
larger scale is generally related with better per-
formance and higher capacity of available knowl-
edges.

Recently, several approaches which further fine-
tune RoBERTa model can give better performance
over multiple natural language inference tasks.
To make sure our model can also benefit from
this, we finally use RoBERTa-large-mnli1

and RoBERTa-large-xnli2 (Conneau et al.,
2020) for low-resouce and high-resource language
pairs, respectively.

2.1.1 Model Combination
We are also interested in exploring whether we can
boost the performance of combine RoBLEURT-
NOSRC and RoBLEURT-SRC. Combining the out-

1https://huggingface.co/roberta-large-mnli
2https://huggingface.co/joeddav/xlm-roberta-large-xnli

puts from models trained with different settings is
widely used in MT tasks (Barrault et al., 2020). In
this paper, We simply use weighted combination of
all available well-trained models.

2.1.2 Input Formatting
Our model consists of a well-trained RoBERTa
model to obtain segment-level representations.
Here we also try with two solutions: the model
input includes source sentence (RoBLEURT-SRC)
or not (RoBLEURT-NOSRC). For the former, the
model input is formatted as:

<s> hyp’ </s> </s> ref </s>. (1)

As the latter, due to the number of input sentences
is larger than RoBERTa predefined training format,
we redesigned the input format as:

<s> src </s> </s> hyp’ </s> </s> ref </s>. (2)

2.1.3 Prediction Module
To obtain a scalar value as predicted score, we di-
rectly derive the representation at the first position
of input X ∈ R1×d as the representation of input
tuple, where d is the size of hidden states. It is
then fed to projection layer, after which we yield a
scalar for describing how adequately the hypothesis
express the semantics:

s = WX> + b, (3)

where W ∈ R1×d, b ∈ R1 are both trainable pa-
rameters.

During training, the learning objective is to re-
duce the mean squared error (MSE) between model
prediction s and annotated score score:

L = (s− score)2. (4)

2.2 Continuous Pre-training with Synthetic
Data

Continuous Pre-training the model on synthetic
data is proven helpful to improve the perfor-
mance (Sellam et al., 2020), where BLEURT ob-
tain the synthetic data by randomly perturbing 1.8
million segments from Wikipedia for this continu-
ous pre-training (also called mid-training). How-
ever, we doubt that applying datasets out of MT do-
main, or even use learning signals tagged from non-
reliable automatic metrics (e.g., BLEU), may harm
the model learning during pre-training phase. As a
consequence, we consider collecting synthetic data
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with real MT models over MT task datasets. To this
end, we first collect the available translation out-
puts by using accessible engines3 to generate MT
hypotheses. Specifically, we collect high-quality
cross-lingual parallel MT training data, including
Czech (cs) / German (de) / Japanese (ja) / Russian
(ru) / Chinese (zh) – English (en), from the WMT
News translation track of each year. By taking
the source side (cs/de/ja/ru/zh) as input for transla-
tion engines, we collect multiple triples formatted
as (src, hyp, ref), where src, hyp, ref represent
source, hypothesis, and reference respectively.

Adding Noise to Data As Sellam et al. (2020)
demonstrated that, when collecting synthetic data
for pre-training metric model, adding noise to data
is helpful for model learning. Due to the high qual-
ity of automatically generated MT candidates in
recent decades, such noise can smoothen the distri-
bution of semantic consistency over whole dataset,
which benefits the metric model learning. We thus
follow their research, randomly select 30% of col-
lected data to be added with noise at the hypothesis
side. More specifically, we use the “word drop”
noise – randomly dropping words with a random-
ized ratio for chosen sentence – to achieve such
goal of quality reduction. Finally, we obtain a syn-
thetic dataset formatted as (src, hyp′, ref), where
hyp′ is the noisy hypothesis.

Data Pseudo Labeling As our model tends to
be a regression model – predicting score for each
inputted triplet, supervisedly guiding the model
learning with given scores is essential. To give
more adequate scores for each data item, we use
COMET (Rei et al., 2020) for tagging each triplet,
resulting into the data items formatting as quadru-
ple (src, hyp′, ref, score). To make sure our
model should be stably trained, we rescale the
scores with Z-score format following Sellam et al.
(2020).

2.3 Fine-tuning with Data Denoising Strategy

As reported in Sellam et al. (2020), Ma et al. (2019),
and Mathur et al. (2020b), noisy data may give in-
correct judgements on the reliability of one specific
MT metric. After collecting the data from previ-
ous years, we find out that the DA datasets from
year 2018-2019 are recognized as noisy ones, how-
ever they contribute a considerable portion to the
available DA datasets. To give more accurate learn-

3We use own MT engines to obtain translation hypotheses.

ing signals for training, we believe identifying the
noisy data items is of vital importance. Specifi-
cally, we prepare the required metrics following
two methods:

• RoBLEURT checkpoints. We first train
several RoBLEURT models with different
portions of training data, as well as multi-
ple experiments by setting different random
seeds. Here we use both RoBLEURT and
RoBLEURT-NOSRC settings, and derives 4
checkpoints following each setting.

• Available well-performed checkpoints. We
collect the officially released COMET4 and
BLEURT checkpoints5.

After collecting the predictions with all check-
points above, we identify the noisy data items by
computing the variance of rankings within whole
dataset. Finally, we rescore those noisy items with
those models, tagging pseudo labels for fine-tuning.
Besides, to guarantee the scores are unbiased, we
re-normalize them within the dataset of each year
by Z-score following Sellam et al. (2020).

3 Experiments

3.1 Settings of Continuous Pre-training
Synthetic Data Collection To continue pre-
training the model, we simply collect parallel data
from the previous WMT conferences, taking the
training data from MT track cs/de/ja/ru/zh-en lan-
guage pairs to obtain high-resource pseudo data. Fi-
nally, for each language pair, we collect 2.0 million
quadruples for metric model pre-training. For low-
resource scenarios, we reuse the datasets above,
where the only difference is removing the source
sentences.

As to development set, we directly collect the di-
rect assessment (DA) dataset from the WMT2020
Metrics task track. We evaluate the model perfor-
mance following DARR assessments (Ma et al.,
2019; Rei et al., 2020), and choose the best check-
point for fine-tuning.

Hyper-parameters During the continuous pre-
training, we determine the maximum learning rate
as 5 · 10−6, training steps as 0.5M and warm-up
steps as 50K. The learning rate first linearly warms
up from 0 to maximum learning rate, then decays to

4https://github.com/Unbabel/COMET
5https://github.com/google-research/

bleurt
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Model High-Resource Low-Resource
cs de ja ru zh iu km pl ps ta

Baseline
SENTBLEU 6.8 41.3 18.8 -0.5 9.3 18.2 22.6 -2.4 9.6 16.2
TER -4.0 35.5 4.4 -11.7 -1.0 2.1 12.5 -17.2 -3.6 4.6
CHRF++ 9.0 43.5 4.4 -11.7 -1.0 24.6 27.5 3.4 14.5 18.6
BLEURT (Sellam et al., 2020) 12.6 45.6 25.8 9.3 13.7 25.8 32.7 5.7 20.7 23.0
COMET (Rei et al., 2020) 12.9 48.5 27.4 15.6 17.1 28.1 29.8 9.9 15.8 24.1
SOTA Results (Mathur et al., 2020b) 14.3 48.5 27.7 15.6 17.1 28.1 33.0 10.9 20.7 25.3

Our method
RoBLEURT 15.2 49.3 29.1 17.3 17.7 29.0 31.4 13.2 20.1 25.4

Table 1: DARR Kendall correlation (%) over WMT2020 data for each language pair (xx-en). Results of baseline
systems are conducted from official report (Mathur et al., 2020b). Best viewed in bold.

0 till the end of training. To avoid over-fitting, we
apply the dropout ratio as 0.1. We conduct the pre-
training experiments with 8 Nvidia V100 GPUs,
where each batch size for each GPU device con-
tains 4 quadruplets. To avoid memory issues dur-
ing pre-training, we simply reduce the number of
total tokens, leaving 128 and 192 for RoBLEURT-
NOSRC and RoBLEURT-SRC, respectively.

3.2 Settings of Fine-tuning

Data Collection We fine-tune our model with
the WMT2015-2019 dataset as training set, where
the WMT2018-2019 subsets are processed with our
data denoising strategy as discussed in § 2.3. To
directly confirm the effectiveness of our approach,
we simply use WMT2020 dataset as dev set to
compare reported results in WMT2020 metric task.

To select the model for participating the
WMT2021 metric task, we divide the WMT2020
dataset into 4 folds, where the data items are firstly
gathered with the identical source and reference
sentence. For each fold, we select the correspond-
ing fold of the WMT2020 subset as the dev set,
and use the combination of the WMT2015-2019
dataset and the other unused WMT2020 subsets as
the training set.

Hyper-parameters During fine-tuning, we set
the training steps and warm-up steps as 20K and
2K, respectively. The other hyper-parameters are
identical to those of pre-training phase. For each
fine-tuning experiment, we determine the batch
size as 16, and whole training process requires one
single Nvidia V100 GPU.

Main Results We first testify the effectiveness of
our approach by comparing with the results from
the WMT2020 Metrics Task submissions. To be
fairness, all of the model based metric baselines

are trained on the WMT2015-2019 dataset. As
shown in Table 1, comparing to baselines, our
RoBLEURT achieves the best performance on
cs/de/ja/ru/zh/iu/pl/ta-to-en settings, and achieves
competitive results on km-to-en and ps-to-en.

4 Ablation Studies

4.1 Model Pedestal and Size

We first investigate the impact of model pedestal for
metric task. As shown in Table 3, using RoBERTa-
large instead of RoBERTa-base model as the base
of RoBLEURT-SRC model gives a better perfor-
mance. Furthermore, using the fine-tuned check-
point RoBERTa-large-xnli can further improves
the performance. This indicates our view, that pow-
erful pre-trained LM, as well as the carefully re-
optimized variants, can boost the performance of
fine-tuned metric model.

4.2 Pre-training

To identify the improvement after introducing extra
pre-training steps for metric model, we conduct the
results in Table 4 for comparison. As seen, the per-
formance drops significantly without pre-training
phase. This caters to the previous findings (Sellam
et al., 2020), where pre-training with pseudo data
helps the supervised learning of metric model.

4.3 Data Denoising Strategy

As reported in (Sellam et al., 2020), the WMT2018-
2019 DA subsets are bothered with noisy la-
bels. We also investigate the impact of those data,
whether introducing them into model training, or
even clean them via rescoring with stronger metric.
We thus arrange such ablation study during fine-
tuning, and results are conducted in Table 5. Al-
though the noisy portion contributes a great share
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Model cs de ja ru zh iu km pl ps ta
RoBLEURT-NOSRC 13.5 46.9 27.4 10.8 14.8 28.2 30.6 8.3 14.7 25.0
RoBLEURT-SRC 14.1 47.9 28.7 11.7 14.9 27.5 29.9 6.4 16.0 24.0
RoBLEURT 15.2 49.3 29.1 17.3 17.7 29.0 31.4 13.2 20.1 25.4

Table 2: DARR Kendall correlation (%) over WMT2020 data with model combination. For each setting, we present
the averaged correlation with well-trained 3 models. Combining both RoBLEURT-SRC and RoBLEURT-NOSRC
models can give significant improvement.

Model cs-en de-en ja-en ru-en zh-en
base 11.7 44.3 24.1 9.1 12.1
large 12.4 46.2 26.2 12.0 14.1
large-xnli 14.1 47.9 28.7 11.7 14.9

Table 3: DARR Kendall correlation (%) over
WMT2020 data with different pedestals for
RoBLEURT-SRC setting. Larger model size can
give better performance for metric model, and
finetuned RoBERTa-large-xnli model can push the
improvement further.

Model cs-en de-en ja-en ru-en zh-en
w/o pretrain 10.6 44.8 21.4 6.1 10.2
w pretrain 14.1 47.9 28.7 11.7 14.9

Table 4: DARR Kendall correlation (%) over
WMT2020 data with data filtering. We use
RoBLEURT-SRC model to conduct the results. Sim-
ply removing the noisy portion does not help the model
training. However, reintroducing them into training set
after rescoring them gives a significant improvement.

Model cs-en de-en ja-en ru-en zh-en
full set 9.1 45.0 23.5 8.1 9.8
& remove 13.4 46.8 26.1 11.7 14.1
& rescoring 14.1 47.9 28.7 11.7 14.9

Table 5: DARR Kendall correlation (%) over
WMT2020 data with data filtering. We use
RoBLEURT-SRC model to conduct the results. Sim-
ply removing the noisy portion does not help the model
training. However, reintroducing them into training set
after rescoring them gives a significant improvement.

of full training set (237K vs. 247K), the perfor-
mance of RoBLEURT model trained without these
noisy items does not diminish significantly. After
rescoring with available checkpoints, these data
segments further improves model performance.

4.4 Model Combination

We first identify whether introducing source side
information to metric model helps training. As
seen in Table 2, accepting source (row RoBLEURT-
SRC) than not (row RoBLEURT-NOSRC) as extra
input significantly improves the correlation scores.
However, for low-resource scenarios, experimental
results show that source-side information does not
help much for model training. This indicates that
source information does not provide help for model
training over low-resource scenarios, as the inade-
quacy of pre-training data may harms model train-
ing if source side is introduced. To derive better
performance, one general idea is to combine sev-
eral well-trained models during inference. We also
explore whether combining both RoBLEURT-SRC

and RoBLEURT-NOSRC models can give better
performance.

As shown in Table 2, directly averaging scores
from multiple models lead to a significant perfor-
mance drop. On the contrary, our model, which
takes models over both RoBLEURT-NOSRC and
RoBLEURT-SRC settings can effectively leverage
the predictions, achieving significant performance
gain across all language pairs.

5 Conclusion

In this paper, we describe our submission metric
– RoBLEURT, from the perspective of combining
multilingual and monolingual language model, con-
tinuous pre-training with the massive synthetic data
pairs, and fine-tuning with data denoising strategy.
Experimental results confirms the effectiveness of
our pipeline, demonstrating state-of-the-art correla-
tions with the WMT2020 human annotations upon
8 out of 10 to-English language pairs.
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Abstract

We are using a semi-automated test suite in
order to provide a fine-grained linguistic eval-
uation for state-of-the-art machine translation
systems. The evaluation includes 18 German
to English and 18 English to German systems,
submitted to the Translation Shared Task of
the 2021 Conference on Machine Translation.
Our submission adds up to the submissions of
the previous years by creating and applying a
wide-range test suite for English to German as
a new language pair. The fine-grained eval-
uation allows spotting significant differences
between systems that cannot be distinguished
by the direct assessment of the human evalua-
tion campaign. We find that most of the sys-
tems achieve good accuracies in the majority
of linguistic phenomena but there are few phe-
nomena with lower accuracy, such as the id-
ioms, the modal pluperfect and the German
resultative predicates. Two systems have sig-
nificantly better test suite accuracy in macro-
average in every language direction, Online-W
and Facebook-AI for German to English and
VolcTrans and Online-W for English to Ger-
man. The systems show a steady improvement
as compared to previous years.

1 Introduction

Evaluation in NLP and particularly in Machine
Translation (MT) is an essential process for iden-
tifying flaws and leading further system improve-
ments. Nevertheless, the exact method of evalu-
ation to be used varies, given the quality require-
ments of the particular use case. Whereas the vast
majority of the evaluation methods reside on met-
rics or direct assessment by humans to produce a
single quality score given an entire test set, a re-
cent trend has opted to evaluating the details of the
produced translations, with major focus on their
correctness from a linguistic perspective. For this
reason, the translation systems are not tested based
on generic test-sets, but they are given input which

is particularly crafted to trial their performance.
Most commonly, this is done with the help of a test
suite (cf. Guillou and Hardmeier, 2016; Isabelle
et al., 2017b; Burchardt et al., 2017).

The paper at hand describes the use of a test
suite in order to evaluate 18 German to English
and 18 English to German MT systems that partici-
pated at the Shared Task of the Sixth Conference on
Machine Translation (WMT21)1. The evaluation
is performed by an extensive test suite that tests
a wide range of linguistically motivated phenom-
ena. In addition to our contributions in the previous
years, which focused only on German to English,
this year we are presenting for the first time results
with an extensive test suite with a similar logic
for the opposite direction English to German. Our
German to English test set contains 5,560 test sen-
tences, covering 107 linguistic phenomena that are
organized in 14 categories. The English to Ger-
man test set contains 4,443 test sentences, covering
111 linguistic phenomena that are organized in 12
categories.

2 Related Work

Test suites have already been used since the be-
ginnings of MT in the 1990s (King and Falkedal,
1990; Way, 1991; Heid and Hildenbrand, 1991).
With the rise of deep learning, the quality of MT
outputs has improved significantly, which in turn
lead to a recent revival of test suites that focus
on the evaluation of specific linguistic phenomena
(e.g., pronoun translation (Guillou and Hardmeier,
2016), or on the comparison of different MT tech-
nologies (Isabelle et al., 2017a; Burchardt et al.,
2017), and Quality Estimation methods (Avramidis
et al., 2018).

Within the scope of the test suite track of
the Conference on Machine Translation, several
test suites for multiple language directions have

1http://statmt.org/wmt21/
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Lexical Ambiguity
Er las gerne Novellen.
He liked to read novels. fail
He liked to read novellas. pass
Phrasal verb
Warum starben die Dinosaurier aus?
Why did the dinosaurs die? fail
Why did the dinosaurs die out? pass
Why did the dinosaurs become extinct? pass
Ditransitive Perfect
Ich habe Tim einen Kuchen gebacken.
I have baked a cake. fail
I baked Tim a cake. pass

Table 1: Examples of passing and failing MT outputs

been introduced. These test suites focus on one
or multiple different phenomena, such as con-
junctions (Popović, 2019), grammatical contrasts
(Cinkova and Bojar, 2018), discourse (Bojar et al.,
2018; Rysová et al., 2019), domain-specific trans-
lations (Vojtěchová et al., 2019), gender corefer-
ence (Kocmi et al., 2020), markables (Zouhar et al.,
2020), morphology (Burlot et al., 2018), pronouns
(Guillou et al., 2018), or word sense disambigua-
tion (Rios et al., 2018; Raganato et al., 2019; Scher-
rer et al., 2020). In contrast to the majority of these
test suites, our test suite does not focus on a single
phenomenon but performs a systematic evaluation
of more than one hundred phenomena per language
direction.

3 Methods

Our test suite consists of two test sets (one per
language direction) that have been created man-
ually with the aim of testing the performance of
MT systems. They cover a wide variety of lin-
guistic phenomena which are grouped in different
categories. While there is a big overlap between
the linguistic categories and phenomena in the two
test sets, there are also many differences as the
categories and phenomena are language-specific.
Some exemplary test sentences can be seen in Ta-
ble 1.2 Each linguistic phenomenon in the test suite
is represented by multiple test sentences. Each test
sentence is tied to a number of rules that deter-
mine whether a translation of the sentence would
be deemed correct or incorrect. The performance
of an MT system with regard to the linguistic phe-
nomena is then evaluated by observing the amount
of test sentences that are translated correctly.

2A larger set of exemplary test sentences can be
found in the GitHub repository: https://github.com/
DFKI-NLP/TQ_AutoTest.

3.1 Application of the test suite
The construction of the test suite has been described
in detail in the papers for the test suite track from
the previous years. Figure 1 depicts the prepara-
tion and application of the test suite with steps
a to c representing the construction. The appli-
cation starts with step d: The test sentences are
given as input to the MT systems. The MT outputs
are then evaluated by the set of rules which define
whether the phenomenon under inspection is trans-
lated correctly or not (step e). The rules consist
of regular expressions and fixed strings. When the
rules cannot be applied to a translation to automat-
ically determine whether it is correct or incorrect,
the test sentence is marked with a warning. Those
warnings are consequently inspected manually by
a human annotator with linguistic knowledge who
decides on the correctness of the translation and
adapts the set of rules accordingly (step e).

Thereafter, the phenomenon-specific translation
accuracy is calculated by dividing the number of
correctly translated test sentences of a phenomenon
by the total number of test sentences of that phe-
nomenon:

accuracy =
correct translations
sum of test items

Since the aim of this evaluation is to compare the
systems in a fair way, we include only the test
items that do not contain any warnings for any of
the systems in the calculation. Test items that have
an unresolved warning for at least one system are
excluded from the calculation. Unfortunately, this
reduces the amount of the test items by removing
properly validated ones, and this is where we see
the importance of the extensive manual evaluation
and the creation of rules with good coverage.

To define which systems perform better for a par-
ticular phenomenon (or category), we compare all
systems to the one with the highest accuracy. When
we compare the highest scoring system with the
rest, we confirm the significance of the comparison
with a one-tailed Z-test with α = 0.95. The sys-
tems which do not differ significantly from the best
system are considered to be in the first performance
cluster and indicated with boldface in the tables.
The boldfaces therefore have a meaning only for
the respective row of the table.

The average scores are computed in three differ-
ent ways, because each category or phenomenon
has a different amount of test items. Micro-average
aggregates the contributions of all test items to
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Er las gerne Novellen.

1. He liked to read novellas.
2. He liked to read novels.

regex: (+) novellas  (-) novels

1. He liked to read novellas.
2. He liked to read novels. 
3. He liked to read short stories. 
4. He liked reading novellas. 
5. He liked to read a novel. 
                      ...

1. ✓ 
2. ✗
3. ?
4. ✓
5. ?
  ...

⇨ ⇨

 
produce paradigms apply 

regex
⟲

check

 

a.

b.

c.

d. e. f.

1. ✓ 
2. ✗
3. ✓
4. ✓
5. ✗
  ...

 

write regular expressions

fetch sample translations

⇨

fetch more translations

Figure 1: Example of the preparation and application of the test suite for one test sentence

compute the average percentages, category macro-
average computes the percentages independently
for each category and then averages them (i.e. treat-
ing all categories equally), and phenomenon macro-
average computes the percentages independently
for each phenomenon and then takes the average
(i.e. treating all phenomena equally).

3.2 Experiment setup

In the evaluation presented in this paper, we ob-
tained translations of our test suite by 36 sys-
tems that are part of the news translation task
of the Sixth Conference on Machine Translation
(WMT21). In previous years, we solely applied
our test suite to the German to English MT outputs.
However, this year, we did not only analyse the MT
outputs from 18 German to English systems, but
also from 18 English to German systems.

While there were already many rules for the eval-
uation of German to English MT output in our test
suite, very few rules were available for the other
language direction when we received the transla-
tions. Therefore, a significantly bigger amount of
manual work was involved in the evaluation this
year. For German to English there were on average
5.76% of warnings when we received the transla-
tions, while for English to German there were on
average 84.21% of warnings. The manual evalu-
ation process was conducted by three annotators
with linguistic knowledge over the course of seven
weeks and involved around 80 person hours. Af-
ter the extensive manual evaluation, there were on
average 3.04% of warnings for German to English
and 4.87% for English to German.

As we explained previously, in order to have a
fair comparison between the systems we excluded
items where at least one system has an unresolved

warning. Therefore, in the results that we are pre-
senting in this paper we can only use 3,806 out of
the 5,560 (68.4%) test items for German to English
and 3,096 out of the 4,443 (69.7%) test items for
English to German for the systems comparison.

4 Results

The accuracies resulting from the application of the
test suite on the system outputs can be seen in the
tables in the Appendix. We first present the results
aggregated in categories (Tables 4 and 5) so one can
have a broad overview of the systems performance,
whereas afterwards a yearly comparison with last
years (Table 6) and the detailed phenomenon-level
results (Tables 7 and 8) are shown. The systems
are ordered based on their macro-average accuracy,
from high to low.3

4.1 Comparison between systems

For German to English, two systems have the high-
est category macro-averaged accuracy, Online-W
and FacebookAI, whereas when considering the
phenomenon macro-averaged accuracy, the signifi-
cantly best systems are FacebookAI and Online-A.
UEdin, Online-A and borderline compete with the
best systems when the micro-average is considered,
mainly because of their good accuracies on phe-
nomena related to verb tense/aspect/mood, where
there are many individual phenomena with a lot
of test items in one category. Overall, the average
accuracies are very high, with the lowest system
(happyface) having a micro-average of 72.3%. De-
spite the high accuracies there is definitely room

3For German-English the two VolcTrans system variations
appear as one system, since they delivered the same output.
This is not the case for the English-German direction where
they appear separately.
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for improvement.
For English to German, based on the cate-

gory macro-average, FacebookAI and VolcTransAT
share the first position. Based on the micro-average
and the phenomenon macro-average however, Face-
bookAI, Online-B and VolcTrans-GLAT share the
first position. The accuracies for this language
direction in overall are much higher on the micro-
average, but not on the macro-average. However,
due to the fact that the test items are different in
their nature and in the amount, we cannot make a
direct comparison between the two language direc-
tions.

4.2 Categories
For some categories, the accuracies have reached
very high numbers, which is the case for negation
and punctuation, both having a 100% for German
to English. Concerning punctuation, in the pre-
vious years we had seen individual systems with
considerable punctuation errors, which seem to not
appear this year. However, the high scores do not
necessarily mean that all problems for these phe-
nomena are solved. It could rather mean that our
test suite does not cover the current edge cases,
a consideration that is subject to further research.
Other categories such as composition, subordina-
tion and named entities & terminology reach an
average of more than 90% accuracy in German to
English. The worst performing category in German
to English is false friends, where all systems per-
form 64-86%. Ambiguity, verb tense/aspect/mood
and multi-word expressions (MWE) also perform
relatively low, with accuracies less than 85%.

For English to German, there are no categories
for which all systems reach an accuracy of 100%.
However, there are several categories with average
accuracies above 95%, that is function words, nega-
tion, verb tense/aspect/mood, and subordination.
The category with the lowest average is coordina-
tion & ellipsis, with an average accuracy of only
70.8%. The individual systems reach a wide range
of 58.6% to 81.6% accuracy for this category while
for most other systems, the range is not as big for
the systems. There are two more categories with
a relatively low accuracy on average (below 85%),
namely verb valency (81.4 % accuracy) and ambi-
guity (83.3% accuracy).

4.3 Phenomena
For German to English, the most difficult phe-
nomena this year remain the modal pluperfect

Idiom
Er redet um den heißen Brei herum.
He’s talking around the hot porridge. fail
He’s talking around the bush. fail
He’s beating around the bush. pass
Modal pluperfect
Sie hatten lesen wollen.
They wanted to read. fail
They had to read. fail
They had wanted to read. pass
Resultative predicate
Lisa fuhr das Auto kaputt.
Lisa drove the car broken. fail
Lisa broke the car. pass
Lisa crashed the car. pass

Table 2: Examples of De-En linguistic phenomena with
low accuracy with passing and failing MT outputs

(negated and non-negated), the resultative pred-
icates and the idioms. Online-W does impres-
sively well with idioms, achieving almost 60%,
with another two systems, FacebookAI and Online-
A, reaching 33.3%. These numbers were signif-
icantly lower in the previous years, which indi-
cates an improvement in this direction. There are
some phenomena for which all systems reached
100% accuracy, such as negation, internal posses-
sor, comma, ditransitive perfect, and intransitive
future I.

Table 2 contains translation examples from lin-
guistic phenomena with the lowest accuracy for
German to English. Idioms are types of multiword
expressions. The meaning of an idiom goes be-
yond the meanings of its individual elements. Most
idioms are very language-specific and therefore dif-
ficult to translate. For the German idiom “um den
heißen Brei herumreden”, there is the equivalent
English idiom “to beat about the bush”. The first
incorrect translation contains a direct translation of
all the individual elements of the German idiom.
The second incorrect translation, which was pro-
duced by several MT systems, is very interesting
because it does indeed contain the “bush” of the
English idiom. However, it still contains the wrong
verb as the verb “is talking” is simply a translation
of the German “redet”. Therefore, the second trans-
lation is still incorrect. Only the third translation
which contains the full English idiom is correct.

The second example contains a test sentence
from the phenomenon modal pluperfect. Modal
verbs can usually have several meanings which of-
ten leads to translation errors. Furthermore, the
tense pluperfect is often mistranslated as preterite,
as in the first incorrect translation. The second in-
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Idiom
The mafia boss has spilled the beans.
Der Mafiaboss hat die Bohnen verschüttet. fail
Der Mafiaboss hat sich verplappert. pass
Der Mafiaboss hat es ausgeplaudert. pass
Pseudogapping
Jackie likes the doctor but she doesn’t the nurse.
Jackie mag den Arzt, aber sie nicht
die Krankenschwester. fail
Jackie mag den Arzt, aber sie ist
nicht die Krankenschwester. fail
Jackie mag den Arzt, aber nicht die
Krankenschwester. pass
Middle Voice
This car drives easily.
Dieses Auto fährt leicht. fail
Dieses Auto fährt sich leicht. pass
Das Auto ist leicht zu fahren. pass

Table 3: Examples of En-De linguistic phenomena with
low accuracy with passing and failing MT outputs

correct translation additionally leaves out the Ger-
man modal verb “wollen” (“to want”) which com-
pletely changes the meaning of the translation.

Resultative predicates contain a verb and an ad-
jective which describes the result of the verb action.
Resultative predicates do not exist that way in En-
glish, which makes them hard to translate. In the
example at hand, the meaning of the German sen-
tence is that Lena drove the car which resulted in
the car being broken. A literal translation like in
the first translation is ungrammatical. The second
and third translation are possible correct transla-
tions – even though the “driving” part is left out,
these translations are still deemed best options to
translate this phenomenon.

In English to German, idioms show even more
difficulties as in German to English (average ac-
curacy only 14.6%, the lowest average accuracy
on any phenomenon for this language direction).
Here, 9 systems totally fail to translate any idiom,
whereas the system with the highest accuracy is
an unconstrained system, which may attributed
to the fact that additional data led to better cov-
erage of such cases. Furthermore, middle voice
(45.9%), pseudogapping (60.5%), and stripping
(57.0%) and also have a relatively low accuracy.
On the other hand, there were also many phenom-
ena which reached (nearly) 100% accuracy, such as
internal possessor, comma, indirect speech, infini-
tive clause, object clause, subject clause, passive
voice, and ditransitive, intransitive and transitive
verbs in many tenses.

Table 3 covers example translation from low ac-

curacy phenomena for English to German. The
first example again contains an idiom. The English
idiom “to spill the beans” does not have an equiv-
alent idiomatic translation in German. Therefore,
the first translation, which is a literal translation
of the separate idiom elements, is incorrect. The
second and third translation are possible correct
translations.

The second example sentence is taken from the
phenomenon pseudogapping. Put simply, in pseu-
dogapping, part of the verb phrase is omitted. In
the example at hand, the non-finite verb part “like”
is omitted in the second conjunct of the construc-
tion. In the first incorrect German translation, the
verb has been completely left out in the second
conjunct (while the subject “sie” persists). In the
second incorrect translation, the second conjunct
contains the auxiliary verb ‘ìst” which also leads to
ungrammaticality. The third translation leaves out
the non-finite verb part “like” as well as the subject
which results in a grammatical German construc-
tion.

The third example contains a sentence in mid-
dle voice. In middle voice, the subject of the verb
is neither agent nor patient. A sentence in active
voice would be: “I am driving the car.”, with the
subject (“I”) being the agent. A sentence in passive
voice would be: “The car is driven by me.” with the
subject (“the car”) being the patient. The subject
of the example sentence in Table 3 (“This car”) is
neither agent nor patient. As middle voice does not
exist in German, such sentences have to be trans-
lated in other constructions. A literal translation
like the first example translation is incorrect. Possi-
ble correct translations can be seen in the second
and third translation.

5 Comparison with previous years

The progress of the systems performance through
the last four years for German-English can be seen
in Table 6. The calculation is done based on the
common test items without warnings over all these
years (4,366 test items), this is why the scores dif-
fer slightly from the ones in Table 4. In the first
columns of Table 6 the best systems of every year
are compared. One can see that the best system
of 2021 has significantly better macro-averaged
accuracy as compared to the best system of 2020,
but when the micro-averaged accuracy is consid-
ered, there has been no significant improvement or
deterioration. This year’s best system also seems
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to perform better in a few categories, with most
impressive improvements at false friends (+14%)
and the non-verbal agreement (+5%).

Individual systems show some small improve-
ments in general, but the fine-grained evaluation
is able to indicate some significant deterioration
in particular categories. For example, Online-B,
Online-G and VolcTrans, despite their overall im-
provement, show a significant deterioration regard-
ing verb tense/aspect/mood, which reaches a -9%
in the case of VolcTrans. Other deteriorations oc-
cur for several systems regarding false friends and
function words. This shows that the overall im-
provement in translation quality may occur at the
expense of particular qualitative aspects.

6 Conclusions and Further Work

We presented the result of applying a fine-grained
linguistically motivated test suite on the outputs
of 36 state-of-the-art machine translation systems,
as submitted in the Sixth Conference on Machine
Translation. We presented detailed accuracies of
translations of 18 German to English as well as
18 English to German MT systems based on more
than 3,000 test items each, organized in various
linguistic categories and fine-grained phenomena.
Additionally, we drew a comparison to previous
years’ evaluations.

In both language directions, the systems achieve
good accuracies in most phenomena or categories
and there is some advancement as compared to
last year, although there is space for about 10%
improvement on the average accuracy. A few phe-
nomena still suffer considerably, such as the idioms,
the modal pluperfect and the German resultative
predicates, although there is notable improvement
as compared to previous years.

As discussed, the very high accuracies for some
categories or phenomena raise the question whether
the difficulty of the respective test items should be
increased. In future work, we plan to investigate
this by constructing more test items. Further work
includes the development of similar test suites for
other language pairs.
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Abstract

Unlike most work on pruning neural networks,
we make inference faster. Group lasso regular-
isation enables pruning entire rows, columns
or blocks of parameters that result in a smaller
dense network. Because the network is still
dense, efficient matrix multiply routines are
still used and only minimal software changes
are required to support variable layer sizes.
Moreover, pruning is applied during training
so there is no separate pruning step. Exper-
iments on top of English→German models,
which already have state-of-the-art speed and
size, show that two-thirds of feedforward con-
nections can be removed with 0.2 BLEU loss.
With 6 decoder layers, the pruned model is
34% faster; with 2 tied decoder layers, the
pruned model is 14% faster. Pruning entire
heads and feedforward connections in a 12-
1 encoder-decoder architecture gains an addi-
tional 51% speed-up. These push the Pareto
frontier with respect to the trade-off between
time and quality compared to strong baselines.
In the WMT 2021 Efficiency Task, our pruned
and quantised models are 1.9–2.7× faster at
the cost 0.9–1.7 BLEU in comparison to the
unoptimised baselines. Across language pairs,
we see similar sparsity patterns: an ascend-
ing or U-shaped distribution in encoder feed-
forward and attention layers and an ascending
distribution in the decoder.

1 Introduction

Making transformer-based machine translation
models (Vaswani et al., 2017) faster and smaller is a
common requirement for server and mobile deploy-
ment. We focus on pruning methods that actually
improve speed upon strong baselines. There is a va-
riety of work on pruning individual parameters (See
et al., 2016; Brix et al., 2020), structures like atten-
tion heads (Voita et al., 2019; Behnke and Heafield,
2020), and even whole layers (Sajjad et al., 2020).
Unfortunately, much of the prior work on pruning
does not report speed or makes inference slower:

Brix et al. (2020) achieved no speed-up while Yao
et al. (2019) report a 87.5% sparse model took
1.6× as long using cuSPARSE. However, Gale
et al. (2020) point out that coefficient-sparse ker-
nels like cuSPARSE are highly unoptimised. Even
block-sparse kernels are 1.8× slower at 70% spar-
sity (Gray et al., 2017) though they did eventually
achieve a 1.4× speed-up with “balanced pruning”.
We propose pruning entire rows or columns and
even whole submatrices of a tensor, resulting in a
smaller dense matrix. Because the inference prob-
lem remains dense, we sidestep the need for sparse
kernels to improve speed.

We use group lasso (Yuan and Lin, 2006) regu-
larisation, which encourages groups to diminish to-
gether, during the usual training procedure. Murray
et al. (2019) used group lasso to prune feedforward
layers in their submission to the Efficient Transla-
tion Task at WNGT 2019 (Kim et al., 2019a). Their
submissions, which “eliminate more than 25% of
the model’s parameters while suffering a decrease
of only 1.1 BLEU” were at best 6% faster than their
baseline. When tuned for the same quality loss, our
method reduces size by 66% and translates 52%
faster. Moreover, their submissions were slower
than higher-quality competitors by an order of mag-
nitude, whereas our baselines are state-of-the-art.

Too much work (Gu et al., 2018; Lee et al., 2020;
Wang et al., 2020b) on efficiency compares a base-
line unoptimized system with their optimized sys-
tem, which is smaller or faster in exchange for
some reduction in BLEU. What these papers fail
to prove is that their method works better than ex-
isting methods that also make models smaller or
faster in exchange for some reduction in BLEU like
knowledge distillation (Kim and Rush, 2016), quan-
tisation, reducing the number of layers, prior work
on pruning, or simply training a smaller model. In
other words, is the trade-off offered by their method
any better than the trade-offs already available, re-
gardless of the type of method? Stacking the exist-
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ing methods produces a variety of data points with
different speed and quality. The Pareto frontier
is the set of data points that a practitioner would
choose from: no other data point is simultaneously
faster (or smaller) and of higher quality. We argue
that a new method’s empirical justification should
advance the Pareto frontier. In this work, we build
upon and compare to strong baselines to show the
frontier advances.

To compare with the state-of-the-art in terms
of speed and to investigate the impact this prun-
ing makes on different languages, we build
upon English→German, Spanish→English and
Estonian→English student models trained with
sequence-level knowledge distillation (Kim and
Rush, 2016). We experiment with four architec-
ture variations: a typical decoder with 6 layers and
faster variations with shallow decoder of only 1–2
layers. We also include our experiments from the
WMT 2021 Efficiency Shared Task.

Our key findings show that:
1. It is possible to prune entire nodes from feed-

forward layers early during training, result-
ing in Pareto optimal architectures (quality vs
speed). Similarly, pruning entire heads on the
top of it results in even faster models.

2. Different language pairs exhibit similar struc-
tural sparsity patterns.

3. Pruning during training matches, and some-
times outperforms, retraining the pruned
model from scratch.

4. Among the English→German Pareto optimal
models, the notable examples include a model
with a 6-layered decoder being 34% faster at
the cost of 0.2 BLEU and a model with 12-1
encoder-decoder ratio gaining additional 51%
speed-up costing 0.3 BLEU.

5. This type of pruning combined with quanti-
sation gives a significant speed boost. Our
models are 1.9–2.7× faster at the cost of 0.9–
1.7 BLEU.

2 Related work

Extensive research to reduce workload, compress
and speed-up neural machine translation models
includes methods such as knowledge distillation
(Kim and Rush, 2016), quantisation (Quinn and
Ballesteros, 2018; Aji and Heafield, 2020), layer
approximation (Kim et al., 2019b) and pruning.
For the best results, they can be stacked together to
train the efficient state-of-the-art model.

In their analysis, Dalvi et al. (2020) claim that
85% of transformer neurons are redundant across
the network. Using transfer learning, they find
the minimal set of neurons that achieve optimum
performance given the task. However, that method
requires a fully pretrained model to perform a brute-
force search on it, making overall training time too
long.

Pruning techniques are usually split into two
groups: unstructured and structured. Unstructured
removes individual coefficients. It is straightfor-
ward to apply and yields good quality results simul-
taneously, which makes it popular. Unstructured
magnitude pruning, while successfully applied to
NMT (See et al., 2016), often needs retraining to
recover from quality damage. Moreover, it also
requires an efficient matrix multiplication routine
to get any speed-up besides size compression. The
latest research on combining lottery ticket hypothe-
sis with other methods (Brix et al., 2020) sparsified
NMT models by 70 to 90% while losing between
0.6 to 3.3 BLEU points in quality. They used a
sparse matrix representation for compression but
did not report any speed gains.

On the other hand, structured pruning removes
whole layers or groups of parameters, such as
blocks (Narang et al., 2017), which makes it easier
to optimise on hardware via a special block-sparse
matrix multiply (Gray et al., 2017). We apply block
sparsity, but the blocks are entire rows or columns
so that the usual dense matrix multiply can be used
with less overhead. Another line of work prunes
entire attention heads from a model (Voita et al.,
2019; Behnke and Heafield, 2020), which we also
explore in our approach.

Yao et al. (2019) combine unstructured sparsity
with a light structure that aims to balance parallel
workloads. They introduce a specialised kernel
for their structured sparsity. Our workloads are
easier to balance because they retain density. The
idea that different levels of coarseness can be com-
bined may also extend to prune coefficients, rows,
columns, and layers simultaneously in future work.

Wang et al. (2020c) parametrise weight matri-
ces with low-rank factorisations and remove rank-1
components during training, which is said to bet-
ter preserve linear transformation of uncompressed
matrices. They report compressing a Transformer-
XL language model by 90% with 1.6× speed-up
during inference. Low-rank approximations pre-
serve density, albeit at the cost of doing serial ma-
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trix multiplications.
Fan et al. (2019) explored a structured dropout

that allows users to prune models for inference.
Unfortunately they fail short on NMT experiments.
They call WMT14 en-de a ‘competitive benchmark’
which it has not been for many years. Most prob-
lematically, they use tokenised BLEU, which has
been noted to be harmful and gives false ‘boost’
of multiple points on tokenised data. They do
not specify the tokeniser or script they use either.
Again, there do not include any report on speed or
model sizes despite claiming to have much smaller
models as a result.

Dodge et al. (2019) used group lasso to sparsify
a variant of RNN for text classification, which is an
easier task to learn than NMT. They have to train
until convergence twice, which we avoid. They pro-
vide no speed or model size analysis, suggesting
that there is no improvement or proper implemen-
tation.

Group lasso has also been previously used by
Wuebker et al. (2018) to compress the delta be-
tween a base model and a domain adapted version
of the model. They still have to run a full-size
model in inference, so they have no overall speed
gain. They also have to store the full base model;
compression only refers to the delta. In contrast,
our work makes the base model faster and smaller.
The different goals also mean different groups: they
focused on embeddings that update in domain adap-
tation while we focus on costly parts of the archi-
tecture.

Though we use the same algorithm of group
lasso, our method differs in several ways from
(Murray et al., 2019). We prune submatrices in
addition to rows and columns, though experiments
on just rows and columns show better performance
than theirs. They pruned only feedforward layers;
we see more speed-up from feedforward layers and
additionally prune attention. Finally, we use the
normal Adam optimiser (Kingma and Ba, 2014)
instead of proximal gradient descent (Parikh and
Boyd, 2014). Empirically, we find turning regu-
larisation off after some training is important to
quality. Overall, we achieve a much better trade-
off between quality and speed/compression.

Most of the methods above need either tuning or
retraining, often multiple times. They are usually
treated as techniques to compress already existing
models. Still, there are ongoing research efforts
on training a reduced model from start to finish in

one go. For example, Golub et al. (2018) pruned
weights with the lowest total accumulated gradi-
ents and reduced the memory footprint to allow
training much larger models than possible on avail-
able hardware. Some methods prune immediately
after initialisation, in either unstructured (Lee et al.,
2019) or structured (Wang et al., 2020a) way. Our
method is orthogonal and is integrated into a train-
ing scheme instead.

Using regularisation to sparsify groups of param-
eters was introduced by Yuan and Lin (2006) and
has been since then built upon in the machine learn-
ing field (Scardapane et al., 2017; Wen et al., 2016).
In this paper, we use group lasso in its simplest
form to achieve structural sparsity in transformer
layers, focusing on inference speed of machine
translation.

3 Methodology

To allow regularisation to remove parameters struc-
turally, we need to define how we group parameters.
Depending on which matrix it is, we treat parame-
ters in its rows, columns or heads as one entity to
be pruned together. Thus, we apply a group lasso
over them. A bias term, if necessary, is treated as a
part of regularised groups. We want such a sparsity
pattern to emerge early into training so that there is
no need to retrain or tune it later.

Group lasso regularisation

Given a matrix w split into non-overlapping groups
of parameters G, the group lasso is defined as:

R(w) =
G∑

g=1

γ ‖wg‖2 =
G∑

g=1

γ

√√√√√
|Gg |∑

j=1

(
wj
g

)2
.

(1)

This penalty term applies L2 norm over the pa-
rameters in each group to force them to go towards
0 together, with L1 on top of it to enforce overall
sparsification. γ is a scalar that orthonormalises
groups of different sizes (Simon and Tibshirani,
2012), scaling by the number of elements in a group√
dg. If regularising only rows and columns, all

groups are of the same size. However, in later ex-
periments, we also regularise whole attention heads
alongside individual feedforward connections.

In the end, the penalty for each layer is added
to the cost function and scaled by λ and averaged

1076



0.6
1.2
1.8
2.4
3.0

Figure 1: An example of block-sparse matrices in the
first layer of decoder (top) and encoder (bottom) pruned
by group lasso regularisation.

over words in a batch along with cross-entropy:

1

|B|(
∑

x∈B
CE(x) + λ ∗

∑

w∈W
R(w)) . (2)

Initially we experimented with 8x8 blocks in
group lasso. However, this approach removed en-
tire rows and columns that correspond to pruning
connections. Figure 1 shows an example of this ef-
fect on parameter matrices. When an entire row or
column is zero, it can be deleted to form a smaller
dense matrix. If an input connection is ignored and
not used elsewhere, it can be removed from the
upstream matrix. If an output connection is con-
stant, the constant can be folded into downstream
bias. These optimisations are typically discovered
automatically by regularisation. We mainly focus
on pruning feedforward layers, but later include
experiments that prune attention heads as well.

4 Setup

4.1 Data & architectures

We concentrate on three language pairs:
English→German, Spanish→English and
Estonian→English. We use knowledge distillation
(Kim and Rush, 2016) under teacher-student
regime.

In English→German, we follow the Workshop
on Neural Generation and Translation 2020 Effi-
ciency shared task (WNGT2020) 1 under the WMT
2019 data condition (Barrault et al., 2019). As
a teacher, we use a WMT 2019 system submit-
ted by Microsoft to news translation task (Junczys-
Dowmunt, 2019). It is an ensemble of four deep
transformer-big models (Vaswani et al., 2017)
with 12 layers in encoder and decoder, embed-
ding size of 1024 and feedforward size 4096 and
8 attention heads. For Spanish→English and
Estonian→English, we use teachers provided by

1https://sites.google.com/view/wngt20

the Bergamot,2 which is an ensemble of two similar
architectures but with 6 layers instead.

We start with strong student baselines, which are
already very small and fast, closely following the
latest trends set by WNGT2020.

Students for all language pairs have an em-
bedding dimension of 256 and feedforward of
1536, based on “tiny” architecture from Kim et al.
(2019a). The attention has 8 heads in each layer
except for decoder self-attention, which is replaced
by a faster SSRU (Simpler Simple Recurrent Unit)
(Kim et al., 2019b). The models use a shared vocab-
ulary of 32,000 subword units generated by Senten-
cePiece (Kudo and Richardson, 2018) and translate
using shortlists of top 50 words.

We tried different configurations of layers to in-
vestigate trade-offs between them and potential bot-
tlenecks. We describe each architecture by layer
number in encoder and decoder and whether the
decoder layers are tied. Thus, we investigate the fol-
lowing architectures (chronologically): “6-2tied”,
“6-6”, “12-1” and “6-2”.

Other training hyperparameters were Marian de-
faults for training a transformer base model.3 We
used dynamic batching, filling a 10GB workspace
on each of 4 GPUs, resulting in about 71,000 words
per batch in a “6-2tied” student and about 46,000
words per batch in a “6-6” student. As is more
effective in the teacher-student regime, we did not
use dropout or label smoothing. We use the Adam
optimiser (Kingma and Ba, 2014).

The English→German models were trained on
13M sentences of available parallel data, using
the concatenated English-German WMT testsets
from 2016–2018 as a development set. The
Spanish→English students were trained on 242M
sentences which included about 15M of mixed
forward- and backtranslations. We used a WMT13
testset for development. Estonian→English stu-
dents were trained on 132M sentences which in-
cluded about 30M of mixed forward- and back-
translations, and WMT18/dev was used for devel-
opment.

We trained and decoded all our models using
the Marian NMT toolkit (Junczys-Dowmunt et al.,
2018). We evaluate quality and speed on 1 CPU
core. In order to expand beyond BLEU and in-
centivise others to do the same, we additionally

2https://github.com/browsermt/students
3Available via --task transformer-base.
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evaluate with chrF (Popović, 2015) and COMET4

(Rei et al., 2020) as well. We use SacreBLEU (Post,
2018) for BLEU and chrF. Training progressed un-
til BLEU stopped improving for 20 consecutive
validations. The checkpoint with the highest BLEU
score was selected.

4.2 Training regime

Our training regime for all of ours models has three
phases:

1. Pretrain for 25k batches.
2. Train with a regulariser for 250k batches.
3. Remove rows/columns with a sum less than

1e−5, collapse a model and then train without
regularisation until convergence.

It is well known that initial transformer training
is problematic and sensitive to model hyperparam-
eters (Nguyen and Salazar, 2019; Aji et al., 2019;
Liu et al., 2020). A transformer starts training with
1–2 BLEU and quickly jumps over to 15–30 or
more within a short training period, then slows
down. Thus, we start pruning after BLEU improve-
ment slowed down to be less than 1 BLEU point
in a single checkpoint. This way, we avoid any po-
tential damage to a model during the critical initial
period. In this case, we pretrain for 25k batches.

Next, we had to decide how long to regularise
our model to achieve a good trade-off between qual-
ity and sparsity levels. We started with regularising
a model until convergence. As shown in Fig. 2,
most of the parameters are already pruned in the
first half of the training. Since students require
significantly more updates to train than standard
models, we want to give a model enough time to
sparsify and converge without any constraints. For
this reason, we split an average training time into
two halves: the first with pruning, the second with-
out it with normal convergence. We found that
switching the regulariser off at some point is less
aggressive and allows a model to recover some of
its lost quality. We chose 250k updates as a pivot
as it is about halfway to when the model has begun
stalling in Fig. 2.

After each step, we copy the latest checkpoint
and start a fresh training round. Thus, all training
hyperparameters are reset. We checked and found
no additional advantage to our baselines by refresh-
ing learning rate scheduling or Adam optimiser.
We do so to avoid partially retraining the same set-
tings during our development phase, but Brix et al.

4We used the default ’wmt20-comet-da’ metric model.
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Figure 2: An example of pruning FFN layers in an
English→German tied model (λ = 0.5). About
“halfway” through, most parameters are already re-
moved.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
BLEU 37.2 37.8 37.4 36.8 36.5 36.1
chrF 63.3 63.8 63.4 63.1 62.8 62.5
COMET 49.7 51.1 50.4 48.9 47.2 46.0
FFN sparsity 0% 45% 63% 73% 85% 92%
Size (MB) 61 51 47 45 43 41
WPS 2404 2613 2748 3067 3215 3420
Speed-up 1.00 1.09 1.14 1.28 1.34 1.42

(a) With pruned encoder + decoder.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
BLEU 37.2 37.6 37.3 36.8 36.8 36.4
chrF 63.3 63.4 63.4 63.1 62.9 62.8
COMET 49.7 50.4 49.8 49.8 48.3 47.8
FFN sparsity 0% 48% 64% 72% 79% 82%
Size (MB) 61 50 47 45 44 43
Words per sec 2404 2748 2916 2929 3054 3096
Speed-up 1.00 1.14 1.21 1.22 1.27 1.29

(b) With pruned encoder.

Table 1: The evaluation of English→German “6-2tied”
students pruned using group lasso.

(2020) found it beneficial in their pruning scheme.

5 Experiments

5.1 Pruning “6-2tied” models
(English→German)

We begin our experiments with the state-of-the-
art English→German student with a tied decoder
(Bogoychev et al., 2020). This is their fastest ar-
chitecture and we want to investigate how much
further it can be pushed in that regard. In terms
what is a typical difference in inference speed, a
tiny distilled model is usually at least 20× faster
than its teacher (Germann et al., 2020).

We investigate two scenarios: pruning both
the encoder and decoder (Tab. 1a) or prun-
ing only the encoder (Tab. 1b). The mod-
els were trained with the regularisation term
λ ∈ {0.3, 0.4, 0.5, 0.7, 1.0}.

Since there is only one layer’s worth of decoder
parameters, the regularisation is reluctant to re-
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Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0

BLEU Pruned 37.2 37.8 37.4 36.8 36.5 36.1
Reinit - 37.1 36.5 36.5 36.1 35.3

chrF Pruned 63.3 63.8 63.4 63.1 62.8 62.5
Reinit - 63.2 62.8 62.7 62.3 62.0

COMET Pruned 49.7 51.1 50.4 48.9 47.2 46.0
Reinit - 48.8 47.3 47.3 45.7 42.7

Table 2: The average BLEU of English→German
“6-2tied” students with pruned encoder and decoder
(Pruned), compared to the same architecture trained
from scratch (Reinit).

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Enc. L1 1536 821 453 259 100 56 35 12
Enc. L2 1536 932 506 327 166 93 65 22
Enc. L3 1536 1009 502 298 129 79 47 10
Enc. L4 1536 1213 663 384 147 70 41 11
Enc. L5 1536 1149 646 392 186 119 87 16
Enc. L6 1536 1366 919 610 322 208 148 43
Dec. L1 1536 542 231 121 43 15 8 1
Dec. L2 1536 836 435 259 108 50 27 4
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 1064 623 422 229 142 111 25
Dec. L5 1536 1528 1260 876 450 276 198 49
Dec. L6 1536 1536 1536 1536 1517 1216 835 178
BLEU 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8
chrF 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1
COMET 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6
FFN sparsity 0% 31% 55% 69% 81% 87% 91% 98%
Size (MB) 83 72 63 58 54 52 50 48
WPS 1225 1377 1543 1639 1741 1827 1867 1976
Speed-up 1.00 1.12 1.26 1.34 1.42 1.49 1.52 1.61

Table 3: The evaluation of English→German “6-6”
students pruned with group lasso on 1 CPU core, with
the distribution of parameters left in each layer.

move any parameters from it (Tab. 1a). A simi-
lar effect was observed by Behnke and Heafield
(2020).

Because only the encoder was pruned, the speed-
up is relatively small. Still, we successfully prune
from half up to two-thirds of feedforward param-
eters with ±0.2 BLEU change with 9–14% faster
inference. In the most extreme case, it gains 42%
speed-up at the cost of 1.5 BLEU.

To investigate whether this pruning just found a
new type of architecture structure, we reinitialise
and retrain the smaller pruned models from scratch
with reduced dimensions. As seen in Tab. 2, the
same models achieve noticeably worse translation
quality when trained from the get-go in comparison
to careful pruning.

Next, we concentrate on pruning encoder only
(Tab. 1b). The model with about 50% of feedfor-
ward parameters removed is 14% faster with no
change to the overall quality. The most aggressive
pruning removes almost all feedforward layers in

Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

BLEU Pruned 38.5 38.7 38.6 38.3 37.7 37.6 37.4 36.8
Reinit - 38.1 38.0 37.6 37.3 37.2 37.0 36.6

chrF Pruned 64.2 64.5 64.4 64.1 63.7 63.6 63.5 63.1
Reinit - 64.0 63.9 63.7 63.6 63.4 63.3 63.0

COMET Pruned 54.8 55.7 54.7 53.8 52.9 52.8 51.9 49.6
Reinit - 53.8 53.3 52.3 51.5 51.4 49.7 49.1

Table 4: The evaluation of English→German “6-6”
students with pruned both encoder and decoder
(Pruned), compared to the same architecture trained
from scratch (Reinit).

Reg. λ→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
BLEU 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
chrF 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
COMET 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
FFN sparsity 0% 48% 67% 77% 86% 91% 94% 98%
Size (MB) 83 59 66 55 52 50 49 48
WPS 1407 1655 1811 1891 2017 2071 2112 2204
Speed-up 1.00 1.18 1.29 1.34 1.43 1.47 1.50 1.57

Table 5: The evaluation of Spanish→English “6-6” stu-
dents pruned with group lasso on 1 CPU core averaged
over WMT12–13.

the encoder at the loss of 1.2 BLEU.
In both cases, only one-third of feedforward pa-

rameters is required to perform within a small mar-
gin of BLEU loss (−0.2 to −0.3). Removing more
than that results in progressively worse quality.

5.2 Pruning “6-6” models
(English→German, Spanish→English)

The models with “6-6” architecture were trained
with λ = {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0} prun-
ing both encoder and decoder. The results are pre-
sented in Tab. 4. Additionally, we show the number
of remaining rows/columns left in each layer, along
with sparsity and inference speed-up.

The pruned models behave similarly to the
smaller models in Tab. 1. The regularised mod-
els are of a better translation quality than the same
architectures trained from scratch (Tab. 6). Sim-
ilarly, it is possible to remove two-thirds of all
feedforward parameters with -0.2 BLEU and +34%
speed-up. Pruning more than that causes a notable
step down in quality, which may not be worth aim-
ing for since the “6-2tied” architectures outperform
that loss. The sparsity pattern follows an ascending
trend in both encoder and decoder layers.

We repeat the experiments but this time with
Spanish→English using the same “6-6” architec-
ture. The models were trained with regularisation
λ = {0.1, 0.15, 0.2, 0.3, 0.4, 0.5, 1.0}. The results
are presented in Tab 5.
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Reg. λ −→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0

BLEU Pruned 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
Reinit - 37.0 36.7 36.5 36.3 36.2 36.2 35.8

chrF Pruned 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
Reinit - 62.5 62.2 62.1 62.0 61.9 61.9 61.7

COMET Pruned 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
Reinit - 57.3 56.7 55.9 55.1 54.6 54.5 53.0

Table 6: The evaluation of Spanish→English “6-6” stu-
dents with pruned encoder and decoder (Pruned), com-
pared to the same architecture trained from scratch
(Reinit) averaged over WMT12–13.

Reg. λ −→ Base 0.2 0.3 0.4 0.5 0.7
BLEU 38.2 37.9 37.3 37.0 37.0 36.6
chrF 63.9 63.6 63.2 62.9 62.9 62.5
COMET 49.5 49.6 48.2 46.5 45.5 44.6
Att. sparsity 0% 48% 56% 58% 57% 59%
FFN sparsity 0% 63% 76% 81% 84% 87%
Size (MB) 85 54 48 45 44 43
WPS 1930 2918 3029 3430 3446 3485
Speed-up 1.00 1.51 1.57 1.78 1.79 1.81

Table 7: The evaluation of English→German “12-1”
students pruned with group lasso on 1 CPU core.

The only differences between German and Span-
ish experiments are the languages involved and the
scale of the training data: Spanish students trained
on a 19× larger corpus. Experiments of such scale
are still widely unexplored in machine translation,
raising the question of whether known methods are
beneficial in real-life scenarios. Most pruning pa-
pers use English→German models under WMT14
constraints (Bojar et al.), which is only 4.5M sen-
tences (See et al., 2016; Brix et al., 2020; Hsu
et al., 2020), sometimes branching into different
languages such as Russian or French in a similar
scope (Voita et al., 2019; Kasai et al., 2020). For
that reason, we sampled 13M from 242M sentences
(the same amount as English→German) and re-
peated the experiments. In the end, we came to sim-
ilar conclusions, meaning that the Spanish subpar
results are not related to architecture or data size.
The reinitialised models (Tab. 6) on full dataset
achieve comparable quality to their pruned counter-
parts. We conclude that in some cases, structural
pruning serves as an architecture search method to
find Pareto optimal quality-speed trade-off.

5.3 Pruning “12-1” models
(English→German)

Kasai et al. (2020) argues that shifting layers from
decoder to encoder makes a model much faster at
almost no cost in translation quality. Their experi-
ments have shown that 12-1 encoder-decoder layer

Baseline rc+heads rc+rc
FFN Heads FFN Heads FFN Heads

Encoder 1 1536 8 579 0 210 7
Encoder 2 1536 8 793 1 552 1
Encoder 3 1536 8 959 0 712 3
Encoder 4 1536 8 913 0 459 6
Encoder 5 1536 8 1212 3 708 4
Encoder 6 1536 8 1523 2 1033 8
Decoder 1 1536 8 1536 2 1535 7
Decoder 2 1536 8 1536 7 1536 8

BLEU Pruned 31.5 29.8 30.4
Reinit - 28.5 30.3

chrF Pruned 58.4 57.0 57.6
Reinit 56.0 57.5

COMET Pruned 54.8 49.9 53.0
Reinit - 46.8 50.7

Time 21.57 15.16 18.9
WPS 1414 2012 1614
Speed-up 1.00 1.42 1.14

Table 8: The WMT18 testset evaluation of
Estonian→English “6-2” students pruned with
group lasso on 1 CPU core with the same architectures
trained from scratch (Reinit).

proportions perform as good as 6-6. Pruning an
already reduced decoder may cause a bottleneck
that damages quality too much. However, if we
shift most of the workload into an encoder, we can
focus on pruning it exclusively.

This time we prune attention layers as well.
Pruning attention structurally is more tricky — you
cannot remove individual connections easily due to
how matrix multiplications perform their routine.
The only option is to remove respective heads or an
entire layer. To keep it simple, we regularise indi-
vidual connections and remove an entire attention
head if at least half of its connections are dead (its
rows/columns < 1e− 5). The results are in Tab. 7,
with an extended version of it in the appendix.

In terms of quality and speed-up, it outperforms
other models presented so far. This type of pruning
was not aggressive on attention, preferring to prune
feedforward layers instead, indicating that attention
connections perform more critical work in a model.
At the small cost of 0.3 BLEU, the model is 51%
faster than the baseline.

5.4 Pruning “6-2” models with head lasso
(Estonian→English)

Finally, we train Estonian→English models, prun-
ing both feedforward and attention layers across
the whole model. We do not sweep parameters,
choosing λ = 0.3. The results are in Tab. 8.

This time we try two options:
• regularising individual connections and then

removing heads with more than half of con-
1080



BLEU COMET Sparsity
WMT20 WMT21 WMT20 WMT21 Att. FFN Speed (s)

12-1.tiny 36.1 27.6 48.2 41.9 0% 0% 19.2
+ head-lasso pruning 34.7 27.0 42.9 38.8 3% 75% 14.5

+ 8bit quantisation 33.9 26.2 38.8 33.6 3% 75% 9.3
+ 8bit finetuning 34.1 26.7 39.8 33.0 3% 75% 9.3

+ rowcol-lasso pruning 33.8 26.3 39.3 34.2 68% 73% 11.6
+ 8bit quantisation 32.9 25.6 33.7 28.7 68% 73% 6.9

+ 8bit finetuning 32.9 26.0 35.7 31.3 68% 73% 7.1

12-1.micro 35.4 27.6 46.2 40.2 0% 0% 17.1
+ head-lasso pruning 34.6 26.7 43.0 35.4 3% 72% 14.1

+ 8bit quantisation 33.4 26.0 36.7 31.2 3% 72% 9.2
+ 8bit finetuning 33.7 26.5 38.3 33.3 3% 72% 9.2

+ rowcol-lasso pruning 34.3 26.4 40.7 35.1 60% 59% 12.0
+ 8bit quantisation 32.7 25.5 34.2 29.1 60% 59% 7.5

+ 8bit finetuning 33.3 25.9 35.2 30.5 60% 59% 7.5

Table 9: 8-bit model performance. BLEU score is calculated from WMT20. Speed is measured on a single core
CPU with a mini-batch of 32. We experimented with two types of pruning. Head pruning removes entire heads.
Row and column pruning removes entire rows or columns of matrices, resulting in a smaller matrix.
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Figure 3: Pareto trade-off between average trans-
lation quality and average translation time for
English→German students of different architectures.

nections inactive (rc+rc = rows/columns in
FFN and attention both)

• regularising entire heads with group lasso
(rc+heads = rows/columns in FFN, heads in
attention)

Due to how the penalty is scaled with γ in Eq. 1,
the regularisation of entire heads is much more
aggressive towards them, removing some layers
entirely, which we skip during inference. Both
pruning methods perform within a -0.1 to -0.3
BLEU difference compared to the same architec-
ture trained from scratch. However, despite only
0.1 BLEU difference, the same model loses 2.3
COMET points, further validating the fact that
training from scratch is subpar. Those results show
that there is a potential in regularising larger struc-

tures and even entire layers as a way of architec-
ture searching. We leave the improvement of the
method for future work.

6 Pareto trade-off (English→German)

In this section, we look at the Pareto trade-off be-
tween the translation quality and speed for all our
English→German models (Fig. 3). To be fair in our
comparison, we trained several simpler baselines
with uniformly smaller feedforward dimensions set
to {768, 384, 192, 96}. For“12-1” we additionally
set heads per layer to 4 to roughly reflect sparsity
percentages of pruned models.

We pit against each other the said baselines, the
pruned models and their reinitialised counterparts.
Naturally, the models with 6 decoder layers are
slower but of a higher quality. However, it is better
to switch to fewer decoder layers than to prune
too far. Our experiments on “12-1” architecture
show that its pruned models outperform all others
(including all simpler baselines), being a leader in
the Pareto frontier.

7 WMT2021 Efficiency Shared Task

To put our method to the final test, we partici-
pated in WMT2021 Efficiency Task5 (Behnke et al.,
2021). Under the task constraints, we trained,
pruned and quantised 12–1.tiny and 12–1.micro ar-
chitectures. We tried two pruning settings, follow-
ing the directions set in Sect. 5.3 and 5.4: rowcol-

5http://www.statmt.org/wmt21/
efficiency-task.html

1081



200

600

1000

1400

50
100
150
200
250

L1 L2 L3 L4 L5 L6 L1 L2 L3 L4 L5 L6

FF
N

di
m

Encoder feedforward Decoder feedforward

A
tte

nt
io

n
di

m

Layers

Encoder self-attention

Layers

Baseline
Reg. 0.1
Reg. 0.2
Reg. 0.3
Reg. 0.4

Decoder context attention

Figure 4: The distribution of feedforward and attention connections in Spanish→English “6-6” pruned students.

lasso and head-lasso. Both prune feedforward and
attention layers in the encoder. rowcol-lasso reg-
ularised individual connections and removed an
entire attention head if at least half of its connec-
tions are dead. head-lasso applied lasso to a whole
head submatrix. Due to the scale of the task, we
had no opportunity to grid-search for the best prun-
ing hyperparameters, thus the experiments are as
close to ’out-of-the-box’ usage as they can be. We
used λ = 0.5 for both methods. The models were
pretrained for 50k updates and regularised for 150k,
after which the models were sliced and trained until
convergence. The results are presented in Tab. 9.

head-lasso left attention layers almost com-
pletely unpruned, focusing on removing connec-
tions from feedforward layers instead. rowcol-
lasso was much more aggressive in both layers at
the cost of quality. To further optimise the models,
they were quantised to 8bit. However, we observe
that the smaller a model is, the larger the quality
drop after its quantisation. Additional finetuning
allows us to recover at least partially from the quan-
tisation damage. Evaluating on the latest testset
WMT21, our pruned models are 1.2–1.7× faster at
the cost of 0.6–1.3 BLEU. With quantisation, those
models are 1.9–2.7× faster losing 0.9–1.7 BLEU
in comparison to the unpruned and unquantised
baselines.

8 Analysis

To analyse sparse architecture patterns, we exper-
iment with Spanish→English models. We prune
individual connections in all attention and feedfor-
ward layers. In Fig. 4, we present the distribution
of remaining parameters for the baseline and the
models regularised with λ = {0.1, 0.2, 0.3, 0.4}.

Since the decoder self-attention is replaced with
SSRU (Kim et al., 2019b), we only show two “pairs”
of parameters: encoder self-attention and decoder

context attention, with their feedforward counter-
parts.

Both encoder layer types follow a similar spar-
sity pattern making a “U-shape”, with the second
and third ones being the most aggressively pruned.
On the other hand, the decoder parameters are
pruned less and less with each subsequent layer.
This arrangement of parameters is identical to that
exhibited by pruned attention heads in Behnke and
Heafield (2020). In that paper, the attention in the
encoder also prunes middle layers, and the context
attention retains more heads in further layers. It
strongly indicates that the decoder prefers to attend
to itself first and confront context later.

The Estonian architectures, in which we pruned
entire attention heads, exhibit a roughly similar
structure. For us, this is a strong signal that struc-
tural pruning with its architecture search may have
a broader generalisation.

9 Conclusions

This paper investigated the structural pruning of
a transformer incorporated into a typical training
routine. We focused on shredding nodes in feed-
forward layers and whole attention heads as train-
ing progresses. Our experiments on knowledge-
distilled models with deep and shallow decoders
have shown that this type of pruning leads to Pareto
optimal architectures in quality and speed. More-
over, it converges in just one “pass” like a baseline
since there is no need to repeat an entire or a part
of the training. The resulting sparsity patterns are
similar across different languages, with the first
and middle layers being the most prioritised dur-
ing pruning. On the other hand, our experiments
on pruning both feedforward and attention layers
reveal that some of them, such as the last context
attention layer, distinctively avoid being pruned.
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10 Appendix

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
Enc. L1 1536 330 179 113 52 29
Enc. L2 1536 633 387 266 135 57
Enc. L3 1536 882 533 351 175 82
Enc. L4 1536 738 420 269 137 66
Enc. L5 1536 720 447 309 179 100
Enc. L6 1536 1079 686 488 293 166
Dec. L1 1536 1534 1373 1072 626 339
BLEU 37.2 37.8 37.4 36.8 36.5 36.1
chrF 63.3 63.8 63.4 63.1 62.8 62.5
COMET 49.7 51.1 50.4 48.9 47.2 46.0
FFN sparsity 0% 45% 63% 73% 85% 92%
Size (MB) 61 51 47 45 43 41
WPS 2404 2613 2748 3067 3215 3420
Speed-up 1.00 1.09 1.14 1.28 1.34 1.42

(a) With pruned encoder + decoder.

Reg. λ −→ Base 0.3 0.4 0.5 0.7 1.0
Enc. L1 1536 310 164 98 42 24
Enc. L2 1536 597 372 239 104 50
Enc. L3 1536 831 480 302 143 59
Enc. L4 1536 692 376 234 115 48
Enc. L5 1536 664 400 253 142 73
Enc. L6 1536 948 575 399 209 112
Dec. L1 1536 1536 1536 1536 1536 1536
BLEU 37.2 37.6 37.3 36.8 36.8 36.4
chrF 63.3 63.4 63.4 63.1 62.9 62.8
COMET 49.7 50.4 49.8 49.8 48.3 47.8
FFN sparsity 0% 48% 64% 72% 79% 82%
Size (MB) 61 50 47 45 44 43
Words per sec 2404 2748 2916 2929 3054 3096
Speed-up 1.00 1.14 1.21 1.22 1.27 1.29

(b) With pruned encoder.

Table 10: The evaluation of English→German “6-
2tied” students pruned using group lasso on 1 CPU
core.

Reg. λ→ Base 0.1 0.15 0.2 0.3 0.4 0.5 1.0
Enc. L1 1536 563 258 137 52 30 24 12
Enc. L2 1536 454 236 156 73 47 31 15
Enc. L3 1536 421 221 135 73 47 37 19
Enc. L4 1536 799 368 197 96 52 34 16
Enc. L5 1536 999 565 350 189 114 83 32
Enc. L6 1536 1227 751 472 258 166 115 40
Dec. L1 1536 418 167 77 15 5 2 1
Dec. L2 1536 491 229 117 38 18 10 1
Dec. L3 1536 448 227 129 49 26 16 3
Dec. L4 1536 787 443 294 143 104 68 24
Dec. L5 1536 1475 1037 684 343 214 156 33
Dec. L6 1536 1536 1536 1533 1220 753 459 138
BLEU 37.3 36.9 36.8 36.6 36.3 36.3 36.1 35.9
chrF 62.6 62.4 62.3 62.3 62.0 62.0 61.9 61.8
COMET 58.1 57.3 56.8 56.2 55.1 55.4 54.6 54.3
FFN sparsity 0% 48% 67% 77% 86% 91% 94% 98%
Size (MB) 83 59 66 55 52 50 49 48
WPS 1407 1655 1811 1891 2017 2071 2112 2204
Speed-up 1.00 1.18 1.29 1.34 1.43 1.47 1.50 1.57

Table 11: The evaluation of Spanish→English 6–6
students pruned with group lasso on 1 CPU core.

Reg. λ −→ Base 0.2 0.3 0.4 0.5 0.7
Enc. L1 1536 728 414 250 183 108
Enc. L2 1536 927 619 436 325 202
Enc. L3 1536 540 338 222 173 105
Enc. L4 1536 415 250 166 123 77
Enc. L5 1536 429 255 167 116 66
Enc. L6 1536 382 191 123 89 60
Enc. L7 1536 334 138 81 50 30
Enc. L8 1536 297 129 69 50 19
Enc. L9 1536 321 135 69 44 28
Enc. L10 1536 319 174 117 88 48
Enc. L11 1536 474 298 214 165 112
Enc. L12 1536 635 376 264 184 114
Dec. L1 1536 1536 1536 1536 1536 1536
Self att. L1 8 5 5 4 4 4
Self att. L2 8 3 2 2 2 2
Self att. L3 8 4 4 4 4 3
Self att. L4 8 4 3 3 3 3
Self att. L5 8 5 4 4 5 5
Self att. L6 8 4 4 4 3 3
Self att. L7 8 4 4 4 4 4
Self att. L8 8 3 1 1 1 1
Self att. L9 8 3 1 1 3 3
Self att. L10 8 3 2 1 1 1
Self att. L11 8 4 4 4 3 2
Self att. L12 8 4 4 4 4 4
Context att. L1 8 8 8 8 8 8
BLEU 38.2 37.9 37.3 37.0 37.0 36.6
chrF 63.9 63.6 63.2 62.9 62.9 62.5
COMET 49.5 49.6 48.2 46.5 45.5 44.6
Att. sparsity 0% 48% 56% 58% 57% 59%
FFN sparsity 0% 63% 76% 81% 84% 87%
Size (MB) 85 54 48 45 44 43
WPS 1930 2918 3029 3430 3446 3485
Speed-up 1 1.51 1.57 1.78 1.79 1.81

Table 12: The evaluation of English→German 12–1
students pruned with group lasso on 1 CPU core.
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Abstract
Neural machine translation (NMT) is sensi-
tive to domain shift. In this paper, we ad-
dress this problem in an active learning set-
ting where we can spend a given budget on
translating in-domain data, and gradually fine-
tune a pre-trained out-of-domain NMT model
on the newly translated data. Existing active
learning methods for NMT usually select sen-
tences based on uncertainty scores, but these
methods require costly translation of full sen-
tences even when only one or two key phrases
within the sentence are informative. To ad-
dress this limitation, we re-examine previous
work from the phrase-based machine transla-
tion (PBMT) era that selected not full sen-
tences, but rather individual phrases. However,
while incorporating these phrases into PBMT
systems was relatively simple, it is less trivial
for NMT systems, which need to be trained on
full sequences to capture larger structural prop-
erties of sentences unique to the new domain.
To overcome these hurdles, we propose to se-
lect both full sentences and individual phrases
from unlabelled data in the new domain for
routing to human translators. In a German-
English translation task, our active learning ap-
proach achieves consistent improvements over
uncertainty-based sentence selection methods,
improving up to 1.2 BLEU score over strong
active learning baselines.1

1 Introduction

Machine translation (MT) models are very sensi-
tive to domain shift (Koehn and Knowles, 2017;
Chu and Wang, 2018), and one typical way to ad-
dress this problem is adding in-domain data to the
MT training process (Luong and Manning, 2015;
Chu et al., 2017). However, this data may not be
available a priori, and hiring professional transla-
tors with knowledge of specific domains (such as
medicine or law) is usually costly.

∗Work done at Carnegie Mellon University
1Code/data is released at https://github.com/

JunjieHu/phrase-al-nmt.

Out-of-Domain
Parallel	Data

In-Domain
Source	Data

1.	Train	A
Base	NMT

Sentences

Phrases

3.	Annotate

4.	Mixed
Fine-tuning

In-Domain
Parallel	Data

2.	Hybrid	
Phrase/Sentence	

Selection

Figure 1: Overview of the active learning process

As a result, active learning approaches (Gangad-
haraiah et al., 2009; Haffari et al., 2009; Blood-
good and Callison-Burch, 2010) have been widely
adopted to reduce the annotation cost by translat-
ing a smaller representative subset of the in-domain
data, with the hope that models trained on this trans-
lated subset approximate those trained on a much
larger labeled set. In general, active learning (AL)
approaches iterate between two steps: data selec-
tion/annotation, and model update. With regards to
data selection for machine translation, most exist-
ing works (Haffari et al., 2009; Peris and Casacu-
berta, 2018; Zeng et al., 2019) focus on selecting
sentences that are most useful for training either
phrase-based machine translation (PBMT) or neu-
ral machine translation (NMT) models.

However, even the most informative sentences
inevitably involve segments that the MT system
can already translate well, and asking the trans-
lator to also translate these segments is not cost-
effective. There have been a few works used in
conjunction with older PBMT models that amelio-
rate this problem through phrase-based selection
techniques (Bloodgood and Callison-Burch, 2010;
Daumé III and Jagarlamudi, 2011; Miura et al.,

1087



2016), which select only individual phrases, maxi-
mizing information gain. However, while these
translated phrases can be easily integrated into
PBMT by adding them to the existing phrase table,
incorporating them into NMT models is less simple
because NMT has no concept of a “phrase table”
and must be trained on full sentences similar to
those that must be translated.

In this paper, we propose a method for incor-
porating phrase-based active learning into NMT.
Specifically, we first describe sentence-based and
phrase-based selection strategies, then propose a
hybrid strategy that combines both methods. We
also describe several ways to incorporate this trans-
lated data into the training of NMT systems. We
conduct experiments on German-English transla-
tion by adapting NMT models trained on WMT par-
allel data to the medicine and IT domains. Experi-
mental results show that the hybrid selection strat-
egy obtains more stable translation performance
than either phrase-based or sentence-based selec-
tion strategy.

2 Problem Definition

In the setting of active learning for domain adapta-
tion, we are given an out-of-domain labelled cor-
pus (x, y) ∈ L and an in-domain unlabelled corpus
x ∈ U . We define a phrase as a contiguous se-
quence of words up to some length limit N , and
denote a set of possible phrases in a sentence x
by ∪n∈[1,N ]n-gram(x), where we set N = 4 in
all experiments below. To obtain translations of
unlabelled data, we assume access to professional
translators O(·) who can translate source-side sen-
tences S and/or phrases P selected from U , i.e.,
O(x) ∀x ∈ S ⊂ U , and O(p) ∀p ∈ P ⊂ PU =
∪x∈U ∪n∈[1,N ] n-gram(x). We assume that trans-
lating sentences or phrases requires cost c(·), and
annotation must be performed within a fixed bud-
get B =

∑
x∈S c(x) +

∑
p∈P c(p). This active

learning procedure consists of two main steps: se-
lection/translation (§3) and fine-tuning (§4).

3 Active Selection Strategies

3.1 Sentence Selection Strategies
Existing sentence-based active learning methods
usually define a sentence-level scoring function
φ(x, ·), and select sentences with the top scores.
Following Zeng et al. (2019), we categorize these
methods into two classes: data-driven and model-
driven methods. Data-driven methods only rely on

the unlabeled data U and the labeled data L, i.e.,
φ(x,U ,L), and usually score sentences based on
the trade-off between the density and diversity of
the selected sentences. In contrast, model-driven
approaches usually estimate the prediction uncer-
tainty of a source sentence given the current MT
model θ, i.e., φ(x, θ,U ,L), and select sentences
with high uncertainty for training the model. Be-
fore getting to our proposed phrase-based strategies
in §3.2 we highlight several existing sentence se-
lection strategies.

Random Sampling: One easy strategy is ran-
domly sampling sentences from the unlabeled data
U for annotation. Although it is simple, this method
is an unbiased approximation of the data distribu-
tion in U . Therefore, this method remains a strong
baseline in the active learning literature (Gangad-
haraiah et al., 2009; Miura et al., 2016; Zeng et al.,
2019) if the annotation budget is sufficiently large.

Margin-based Ratio Score (MRS): Zhang et al.
(2018) propose to measure the distance between
sentence embeddings. This method takes each un-
labeled sentence, estimates its distance in embed-
ding space from the labeled sentences in the out-
of-domain corpus, and iteratively selects sentences
that are more distant from sentences in the labeled
data. In our instantiation of this method, we lever-
age the pre-trained mBERT model (Devlin et al.,
2019) to extract sentence representation ex of a
particular sentence x.2 Instead of using a cosine
similarity function, we measure a ratio-based score
which is the ratio between the cosine similarity
of (ex, ex′) and the average cosine similarity with
their k nearest neighbors in Eq. (1), because the
margin-based ratio score has been shown effec-
tive in sentence retrieval in (Artetxe and Schwenk,
2019).

ratio(ex, ex′) (1)

=
cos (ex, ex′)∑

z∈NNk(x)

cos (ex,ez)
2k +

∑
z∈NNk(x′)

cos (ex′ ,ez)
2k

,

where k is the number of nearest neighbors.
We then compute the distance between each

in-domain sentence and its nearest out-of-domain

2We average the word representations from the 7th layer
of the mBERT model as the sentence embedding, because the
middle-layer representations have proven effective in cross-
lingual retrieval tasks (Pires et al., 2019; Hu et al., 2020).
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neighbor within a randomly sampled subset of la-
beled sentences L′:

φ(x, ·) = dist(x,L′) = 1− max
x′∈L′

ratio(ex, ex′).

We approximate the distance between x and
out-of-domain corpus L using a subset L′ for effi-
ciency purposes, because the out-of-domain L is
usually large. Next we use the distance dist(x,L′)
as our scoring function φ(x, ·), and select the unla-
beled sentence with the largest distance from (sub-
sampled) sentences in the out-of-domain corpus.

Round Trip Translation Likelihood (RTTL):
One model-driven method is based on a method
referred to as “round trip translation” (Haffari et al.,
2009; Zeng et al., 2019). The labeled data L is used
to train two MT models θsrc-tgt, θtgt-src that translate
between the source and target languages in two di-
rections. Each unlabeled source sentence x ∈ U is
first translated to ŷ in the target language by θsrc-tgt,
and then ŷ is translated to x̂ by θtgt-src. This method
assumes that if this round-trip translation process
fails to recover some of the content on the source
side then this is an indication that the sentence may
be difficult for the current model and is a good can-
didate for human annotation. Haffari et al. (2009)
use a scoring function that computes the similar-
ity between the original sentence x and x̂ using
the sentence-level BLEU score (Chen and Cherry,
2014), while Zeng et al. (2019) estimate the likeli-
hood of the original source sentence x given ŷ by
the reverse MT model θtgt-src.

ŷ ≈ argmax
y

Pθsrc-tgt(y|x) (2)

φ(x, ·) = logPθtgt-src(x|ŷ) (3)

3.2 Phrase Selection Strategies

A few existing phrase-based active learning meth-
ods (Bloodgood and Callison-Burch, 2010; Miura
et al., 2016) have been proposed to improve PBMT
systems. These methods first determine the pos-
sible set of phrases in a sentence, select phrases
to be translated according to a scoring metric, and
incorporate these in the training of the PBMT sys-
tem. In the following paragraphs, we introduce
two phrase-based selection strategies, and discuss
how to integrate this data into NMT in §4. Simi-
lar to the sentence selection strategies, we define
a phrase-level scoring function φ(p, ·) and select
phrases with the top scores.

n-gram Frequency (NGF) (Bloodgood and
Callison-Burch, 2010): The most straightforward
phrase selection strategy is to select the most
frequent phrases in the unlabelled data that do
not appear in the already labeled data. First we
extract two sets of possible n-grams (n ≤ 4)
from sentences in U and L, which are defined
as PU = ∪x∈U ∪n∈[1,N ] n-gram(x), and PL =
∪(x,y)∈L ∪n∈[1,N ] n-gram(x). We then score each
phrase as follows:

φ(p, ·) =
{
occ(p,U), if p ∈ PU , p /∈ PL
0, otherwise

(4)

where occ(p) counts the occurrences of p in U . We
then select the top frequent phrases until we use up
the budget for annotating phrases.

Semi-Maximal Phrases (NGF-SMP): The two
phrase sets PU ,PL extracted by the n-gram Fre-
quency method contain many substrings that also
occur in some longer strings. For example, p =
“eines der” always co-occurs with the longer p′ =
“eines der besten” in the WMT14 German-English
dataset. To identify the longer strings, Miura et al.
(2016) proposed the following semi-order relation,
which defines the relation between a phrase p′ and
its sub-string p satisfying the condition that p′ oc-
curs at least half the time of p in the corpus U .

p�∗p′ ⇔ ∃α, β : αpβ = p′ (5)

∧ occ(p,U)
2

< occ(p′,U)

A phrase p is called a semi-maximal phrase if
there does not exist a phrase p′ in U such that p�∗p′.
Therefore, a compact subset of phrases P ′U can
be constructed by containing only semi-maximal
phrases in the phrase set PU in U :

P ′U = {p|@p′ ∈ PU , p�
∗
p′ ∧ p ∈ PU}. (6)

By using semi-maximal phrases in P ′U rather
than all phrases in PU , we remove a large number
of phrases that are included in a longer phrase more
than half the time, and reduce the redundancy of
the selected phrases. Next we can select phrases
similarly using Eq. (4) by replacing the original
phrase set PU with the sub-set P ′U .

Notably, we select representative phrases by
their occurrences instead of using a similarity func-
tion between phrase embeddings. Because it is easy
to count the phrase occurrences by extract string-
match while it is infeasible to do so for sentences.
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As for sentence selection, measuring a similarity be-
tween sentence embeddings (e.g., MRS) provides
an alternative way of matching sentences.

3.3 Hybrid Selection Strategy

Phrase-based selection has its benefits, such as effi-
cient annotation of core vocabulary from the target
domain. However, at the same time it lacks the abil-
ity to identify larger sentence structure that may
nonetheless be unique to the target domain. Model-
ing this structure is particularly important for NMT
(in constrast to PBMT), as NMT directly learns
both lexical and syntactic transformations within
the same model.

Because of this, we propose a simple yet novel
hybrid selection strategy that leverages the benefits
of both sentence-based and phrase-based selection
strategies. Specifically, we allocate our budget in
a way to annotate sentences with Bs words from
our set of sentences and Bp words from our set
of phrases. Depending on the specific sentence-
based and phrase-based selection strategies chosen
in the hybrid selection strategy, it is non-trivial to
determine which selection strategy improves the
in-domain translation performance more than the
other one before actual finetuning. Therefore, in
our implementation, we assume that we have no
prior knowledge about which selection strategies
will be most effective, and simply evenly distribute
the annotation budget into the sentence-based and
phrase-based strategies. We leave more sophisti-
cated allocation strategies as future work, and we
discuss some potential avenues briefly in §7.

4 Training with Sentences and Phrases

After data selection, we fine-tune the base NMT
model on the newly translated data. This is es-
sentially an extreme form of domain adaptation
where we adapt a base NMT model trained on out-
of-domain data to a new domain. Specifically, we
adapt a strategy of mixed fine-tuning (Luong and
Manning, 2015), which continues training a pre-
trained out-of-domain model on both in-domain
data and a certain amount of out-of-domain data
to prevent overfitting to relatively small in-domain
data. Compared to the standard domain adapta-
tion setting where we have only a small number of
in-domain sentences, our phrase-level active learn-
ing setting has the additional difficulty of having
to use short translations of individual phrases. In
the following, we describe both methods to choose

which data to use in mixed fine-tuning, and how to
incorporate phrasal translations.

4.1 Data Mixing
For data mixing, we sample a subset Lr of data
directly from the labeled set L′, and concatenate
Lr with the newly annotated sentences Ls and
phrases Lp for mixed fine-tuning (Line 8 in Al-
gorithm 1). Specifically, we define a distribu-
tion function ψ over L′, and either sample by
(x, y) ∼ ψ or greedily take the most likely data
by (x, y) = argmax(x,y)∈L′ ψ(x, y) iteratively for
M times to obtain the subset Lr of M parallel data.

Random Sampling: The most simple way to
select out-of-domain data is to randomly sample
sentences from the out-of-domain corpus L′, i.e.,
(x, y) ∼ Uniform(L′). Although it is simple, this
has been popularly used in the literature of domain
adaption for NMT (Chu and Wang, 2018).

Retrieve Similar Sentences: Recently, Aharoni
and Goldberg (2020) showed that pre-trained lan-
guage models implicitly learn sentence embed-
dings that cluster by domains, and proposed a data
selection method that has proven more effective
than methods based on the likelihood of an in-
domain language model (Moore and Lewis, 2010).
Since our base NMT model is pre-trained on out-
of-domain corpus, we need to adapt the model to
the domain of the unlabeled data. Instead of ran-
dom sampling, we adopt the selection method in
Aharoni and Goldberg (2020) to retrieve parallel
sentences from L′ that are close to the in-domain
sentences in U . To do so, we leverage the contex-
tualized sentence representations, and measure the
distance of a source sentence in L′ w.r.t. the unla-
beled corpus U by ratio(x,U), ∀x ∈ L′. Next, we
iteratively retrieve labeled data from L′ that have
the smallest distance scores to their nearest neigh-
bors, i.e., (x, y) = argmax(x,y)∈L′ ratio(x,U).

4.2 Incorporating Phrasal Translations
In addition to obtaining real parallel data from L′
for mixed fine-tuning, we create synthetic parallel
data (x̂, ŷ) by incorporating phrasal translations
into existing context from L′. Specifically, for an
unlabeled sentence x ∈ U containing a newly an-
notated phrase px, we retrieve the most similar
sentence pair (x∗, y∗) from L′ by

(x∗, y∗) = argmax
(x′,y′)∈L′

ratio(ex, ex′) (7)
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We then alter (x∗, y∗) with the newly annotated
phrase pair (px, py) to create synthetic sentence
pair (x̂, ŷ). Similar to data mixing, we concate-
nate the set of synthetic data with the annotated
sentences Ls and phrases Lp for mixed fine-tuning.

Switch Phrases: Inspired by existing data aug-
mentation methods (Fadaee et al., 2017), we exam-
ine a data augmentation method that switches out
phrases in the out-of-domain sentence pairs in L′
by the newly annotated phrase pairs from U . First,
we define the following operation Switch(x, p, i)
that returns a new sentence by substituting the
phrase at the i-th position in x∗ by px.

Switch(x∗, px, i) = [x∗<i; px;x
∗
≥i+|px|] (8)

Next, we enumerate all possible positions in x∗

for switching phrases, and then apply the in-domain
language model trained on U to select the most
probably synthetic sentence by

x̂ = argmax
x′=Switch(x∗,px,i)
∀0≤i<|x∗|−|px|,

px∈∪n∈[1,N ]n-gram(x)

PLM(x′), (9)

where px is a phrase in the unlabeled sentence x.
Notably, we use a 4-gram language model imple-
mented in KenLM3. Since sentences are usually
short (average length of 10-25 words), creating a
synthetic sentence takes O(|x∗||x|) scoring opera-
tions by the language model.

To synthesize the corresponding ŷ from the re-
trieved target sentence y∗, we apply a word align-
ment model trained on L to find the index j for the
translation of the replaced phrase x∗i:i+|px| in y∗,
and substitute the phrase at the j-th position in y∗

by py to obtain ŷ = Switch(y∗, py, j).

Contextualized Phrases: The other idea is to
augment the context of a newly annotated phrase
pair (px, py), since a phrase px lacks larger sen-
tence structure. Specifically, we define the contex-
tualized operation that augments a phrase px in x
by appending it to the retrieved sentence x∗.

Contextualize(x∗, px) = [x∗, px] (10)

We then enumerate all annotated phrases in x,
and apply an in-domain language model to find
the most probable annotated phrase pair (px, py)

3https://github.com/kpu/kenlm

that synthesizes x̂. The corresponding ŷ can be
obtained by Contextualize(y∗, py).

x̂ = argmax
x′=[x∗,px]

∀px∈∪n∈[1,N ]n-gram(x)

PLM(x′) (11)

5 Experiments

5.1 Experimental Setting

We use the WMT14 German-English data as the
out-of-domain labeled data for training our base
NMT model, and take the source sentences of
two parallel corpora in the medicine and IT do-
mains (Koehn and Knowles, 2017) as the unlabeled
data. More details can be found in Appendix B.1.

As our NMT model, we use a 6-layer 512-unit
Transformer (Vaswani et al., 2017) implemented
in Fairseq,4 and use a subword vocabulary of
50,000 for both languages constructed by Byte Pair
Encoding (Sennrich et al., 2016). We train the base
model with Adam for 10 epochs with 4K warmup
steps and a peak learning rate of 1e-3, and decay
the learning rate based on the inverse square root of
the number of update steps (Vaswani et al., 2017).

For active learning, we set our annotation bud-
gets by number of words translated (following the
prevailing translation market practice to charge for
jobs by the word), and investigate the budgets from
2.5K words up to 40K words.5 After data selection
(§3), we obtain a set Lr of M parallel sentences
(§4), and set the size M = |Lp| where Lp is se-
lected by NGF-SMP. We then fix Lr for mixed fine-
tuning in all experiments, and continue fine-tuning
the base model on a mixture of the newly-translated
data and Lr for 5 more epochs.

5.2 Word-level Translation Accuracy

Since our selection and mixed fine-tuning methods
focus on leveraging phrasal translations for domain
adaptation, we perform a fine-grained analysis on
the word-level translation accuracy of the NMT
systems due to the domain shift. A source word is
defined as an unseen in-domain word when it never
appears in the out-of-domain corpus. If phrase se-
lection strategies select more in-domain words, we
would expect a higher translation accuracy of such
in-domain words by the adapted NMT systems us-
ing phrase selection. As a result, we compare the

4https://github.com/pytorch/fairseq
5At current market rates, this would cost from 491 to 7,092

USD for German-English translation by professional transla-
tors at https://translated.com/.
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Figure 2: Average BLEU score over 3 runs for adapting a base NMT to the Medicine and IT domains.

translation accuracy of in-domain words by the
NMT models using different selection strategies
in Figure 3. As shown in the figure, NGF-SMP
significantly improves the translation accuracy of
the in-domain words with a small annotation bud-
get. In contrast, MRS falls short of the other com-
pared methods when the annotation budget is less
than 80K words. Moreover, we find that the hy-
brid selection strategy of NGF-SMP and MRS can
combine the merits of both methods, and obtain an
even higher accuracy when the budget is greater
than 40K annotated words. Qualitatively, the exam-
ple in Table 1 shows the translations for a source
sentence with all words appearing in the medical
domain. The NMT model adapted by MRS trans-
lates the first half of the source sentence by pick-
ing the correct word “exercised”, while the NMT
model adapted by NGF-SMP generates the correc-
tion translation “somnolence” in the second half
of the output. The NMT model using the hybrid
of NGF-SMP and MRS strategies translates both
words correctly (more examples in Appendix B.2).

5.3 How Does Each Selection Strategy Help?

We examine the question of which selection strat-
egy (§3) best improves accuracy on in-domain test
data. For mixed fine-tuning, in this section we use
the retrieved out-of-domain parallel data for a fair
comparison among all active selection strategies.
Figure 2 shows the average BLEU score and the
standard deviation of the adapted MT systems to
two new domains over 3 independent runs.6

6To obtain a stable result, we independently run the active
learning procedure with different selection strategies 3 times,
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Figure 3: Translation accuracy of in-domain words in
the test set from the medicine domain

Comparing among sentence selection strategies
in Figure 2, MRS performs slightly better than the
random sentence selection baseline on adapting the
NMT model to the IT domain with smaller stan-
dard deviation values, and performs comparably
on adapting to the medicine domain. However, we
observe that RTTL performs worst, and we conjec-
ture that this is due to the usage of the base NMT
models that are trained on the out-of-domain paral-
lel data in both directions. The errors accumulated
from the round trip translation process lead to an
inaccurate estimation of the uncertainty score for a
source sentence. Table 2 shows the top 5 sentences
selected by RTTL. The selected sentences in the
medicine domain are short phrases rather than com-
plete sentences, and those selected in the IT domain
contain duplicate phrases such as “bewerten mitâ”.

collect new translation data, and concatenate them with the
same data retrieved from out-of-domain labeled data
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Output S-BLEU

Source
Jedoch ist Vorsicht geboten, da Berichten zufolge Verwirrung und Somnolenz während der Behandlung
auftreten können.

Reference However, caution should be exercised as confusion and somnolence have been reported.
NGF-SMP However, caution is required, as there are reports of confusion and somnolence during the treatment. 15.71
MRS However, caution should be exercised, as confusion and drowsiness may occur during the treatment. 15.62
NGF-SMP+MRS However, caution should be exercised as confusion and somnolence may occur during the treatment. 15.71

Table 1: Translations generated by NMT models using different selection strategies. The last column shows the
sentence BLEU score of the translations. Translation errors are highlighted in red.

MED

Portugal Lundbeck Portugal Lda Quinta da Fonte Edifício D.
Bronchitis
Gastrointestinaltrakt :
Neugebore
139 B.

IT

Eigenschaften des Stichwortes â % 1â
bewerten mitâ Drei Sternenâ
keine Speicherplatzinformation aufâ procfsâ
bewerten mitâ Einem Sternâ
neue und einzelne auswÃ Â hlen

Table 2: Top 5 sentences selected by RTTL

For phrase-based selection methods, NGF-SMP
significantly outperforms the random phrase selec-
tion strategy. Further, NGF-SMP even outperforms
sentence selection methods when the annotation
budget is small (less than 20k words) for adaption
to the medicine domain. As we increase the annota-
tion budget to 40K annotated words, sentence selec-
tion strategies outperform phrase selection strate-
gies. This indicates that if we keep training NMT
systems on shorter phrase pairs when the annota-
tion budget is sufficient, the NMT systems would
be limited by lack of longer sentence structures. In
Figure 2b, we also find that NMT models trained
with phrasal translations fall short of those trained
with sentence translations when adapting to the IT
domain. It is hard to train the NMT systems to
translate certain phrases correctly without the sen-
tence context. For example, “Persönlichen Ordner”
in the IT domain is translated to “home directory”
rather than “personal folder” in the sentence “jedes
Skript dieses Dialogs hat Schreib-Zugriff auf Ihren
Persönlichen Ordner ”.

Finally, the hybrid selection of NGF-SMP and
MRS strategies outperforms the individual selec-
tion strategies over every budget in our set of bud-
gets, i.e., 2.5K, 5K, 10K, 20K, 40K annotated
words, improving the best phrase selection strategy
NGF-SMP by 0.49 average BLEU points, and the
best sentence selection strategy MRS by 1.11 aver-
age BLEU points in the medicine domain. Notably,

the phrase-based selection strategy especially helps
in the scenario where the context is not required to
translate domain-specific words, for example, the
name of a medicine or a disease in the medicine
domain (See the first example in Appendix B.2).
For the adaptation scenario that requires a longer
context in some domains such as IT, the hybrid
strategy can also significantly outperforms the best
phrase-based strategy NGF-SMP by 1.2 average
BLEU points, and the best sentence selection strat-
egy MRS by 0.15 BLEU points. Overall, our hy-
brid selection strategy is effective to combine the
merits of both sentence and phrase selection strate-
gies in the domain adaptation setting.

5.4 How Representative Are the Selected
Data?

If the selected data has a significant overlap of
segments with the in-domain test data, we would
expect a better adaptation performance of the NMT
trained on the selected data. Therefore we investi-
gate the n-gram overlap between the selected data
and the test data when we annotate 5K words from
the medicine corpus, and report the average BLEU
score of the adapted NMT models trained on the
selected data in Table 3. Interestingly, we find that
there exists a high correlation (ρ ≈0.8) between
the n-gram overlap and the average BLEU score,
which indicates that the n-gram overlap with the
test set can be used as a good measure of whether
the selected data is useful for improving the NMT
model in the new domain. Compared to the random
phrase selection, NGF-SMP selects phrases with a
high overlap with the test data. We also observe that
sentence selection strategies cover fewer phrases in
the test data than phrase selection strategies. This
also corroborates our assumption that asking trans-
lators to annotate phrases that the MT system can
already translate well is not cost-effective to im-
prove the in-domain translation performance.
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Methods uni-gram bi-gram tri-gram 4-gram Avg. BLEU

OoD Data 79.33 32.65 7.30 1.10 34.51
+ Random Sentence 82.81 38.45 11.62 3.73 39.27
+ RTTL 80.70 35.76 9.85 3.04 35.78
+ MRS 82.74 38.83 12.01 4.05 39.27
+ Random Phrase 82.36 35.84 7.98 1.15 38.23
+ NGF 84.45 41.82 14.94 6.17 39.96
+ NGF-SMP 85.80 43.13 16.15 7.11 40.21
+ NGF-SMP + MRS 84.48 41.89 14.98 6.48 40.55
ID Training Data 98.58 87.30 67.61 52.11 57.59

Pearson Correlation 0.90 0.83 0.80 0.78 /

Table 3: Percentage of the n-gram in the test sentences
that are covered by the selected data with 5K words, the
out-of-domain training data and the in-domain training
data. The last row shows the Pearson correlation coef-
ficient between n-gram overlap and avg. BLEU score.

5.5 How Redundant Are the Selected Data?

To answer this question, we first define “in-domain
words” as words that only appear in the in-domain
test set but do not exist in the out-of-domain data.
We report the statistics of the in-domain word types
word counts in the selected data with 10K anno-
tated words in Table 5. We find that phrase selec-
tion strategies select more unique in-domain word
types and counts than the sentence selection strate-
gies. This indicates that phrase selection strategies
leverage the same amount of budget effectively to
annotate more diverse in-domain words than sen-
tence selection strategies.

5.6 How Do Phrasal Translations Help in
Mixed Fine-tuning?

We further investigate the effect of mixed fine-
tuning using the newly annotated in-domain data
and sub-sampled out-of-domain data when com-
paring with fine-tuning only on the newly anno-
tated data. Table 4 shows the average BLEU score
and the standard deviation values over 3 indepen-
dent runs. Compared to fine-tuning on only an-
notated data, adding randomly sampled sentence
pairs from the out-of-domain data helps when the
annotation budget is less than 5K annotated words,
but hurts when we increase the budget. In contrast,
adding sentences retrieved by the similarity in the
sentence embedding space not only outperforms
fine-tuning only on annotated data and mixed fine-
tuning with randomly sampled sentences, but also
achieves smaller standard deviation values. On the
other hand, mixed fine-tuning on synthetic data
by switching phrases performs slightly worse than
the mixed fine-tuning on real retrieved data, but
outperforms the fine-tuning without any out-of-
domain data, especially when the annotation budget

is small, e.g., 5K annotated words. Combining syn-
thetic data by switching phrase and real retrieved
data for mixed fine-tuning also improves the trans-
lation performance over the training only on syn-
thetic data. However, the contextualized method
performs worst among all mixed fine-tuning meth-
ods, which indicates that simply appending existing
sentence context to phrasal translations might po-
tentially introduce noise to the training data.

6 Related Work

Active Learning for Machine Translation Pio-
neering works on active learning for machine trans-
lation focus on selecting sentences that are most
useful for training PBMT. This includes sentence
selection strategies based on maximizing the per-
centage of unseen n-gram (Eck et al., 2005), n-
gram frequency, lexical diversity (Haffari et al.,
2009), or in-domain coverage (Ananthakrishnan
et al., 2010). These sentence selection strategies
have been used in active learning algorithms to deal
with static data in the batch mode (Ananthakrish-
nan et al., 2010), or steaming data in the interac-
tive setting (González-Rubio et al., 2012; Peris and
Casacuberta, 2018; Lam et al., 2019).

For phrase-level annotations, there have been a
few works applying phrase-based selection (Blood-
good and Callison-Burch, 2010; Miura et al., 2016)
to PBMT. While the annotated phrases can be eas-
ily integrated by adding them with estimated trans-
lation probability to the existing phrase table in
PBMT, it it less trivial to integrate these phrase-
level annotations in NMT. Arthur et al. (2016) inte-
grated the word-level translations to NMT by inter-
polating the probability of the NMT decoder with
the estimated lexical probability. However, this ap-
proach requires a modification of the NMT model.
Our paper investigates data-driven approaches that
augment the training data by leveraging annotated
phrases and existing parallel data.

Word/Phrase-based Data Augmentation The
other line of research investigates data augmen-
tation methods that leverage word or phrase trans-
lations to create synthetic parallel data for training
MT models. This includes augmentation methods
that replace a word in the existing parallel data with
a low-frequency word sampled from the frequency
distribution of the vocabulary (Xie et al., 2017) or
from the probability of language models in both
directions (Fadaee et al., 2017; Kobayashi, 2018).
Wang et al. (2018) proposed an effective method
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Out-of-domain Data In-domain Data
2.5K 5K 10K 20K 40K

Sampled Retrieved Switched Contextualized NGF-SMP MRS

X 39.39 ± 0.14 39.22 ± 0.00 40.56 ± 0.02 41.19 ± 0.25 44.07 ± 0.33
X 37.94 ± 0.08 38.68 ± 0.54 40.62 ± 0.59 42.62 ± 0.03 45.00 ± 0.11

X X 38.94 ± 0.02 39.60 ± 0.09 41.34 ± 0.12 42.44 ± 0.15 44.90 ± 0.06

X X X 39.46 ± 0.14 40.51 ± 0.23 40.62 ± 0.49 41.82 ± 0.26 43.78 ± 0.57
X X X 39.73 ± 0.16 40.55 ± 0.14 42.30 ± 0.10 43.72 ± 0.04 45.41 ± 0.08

X X X 38.93 ± 0.36 40.59 ± 0.17 41.82 ± 0.29 42.70 ± 0.37 45.33 ± 0.04
X X X 35.36 ± 0.38 37.85 ± 0.68 39.96 ± 0.35 42.83 ± 0.11 44.14 ± 0.15

X X X X 39.61 ± 0.06 40.95 ± 0.06 42.19 ± 0.08 43.42 ± 0.17 45.06 ± 0.19
X X X X 37.88 ± 0.25 39.52 ± 0.32 41.17 ± 0.28 42.80 ± 0.21 44.28 ± 0.13

Table 4: Comparison between mixed fine-tuning methods. Bold indicates highest average BLEU by column.

Methods IDWT WT IDWT
WT IDWC WC IDWC

WC

Random Phrase 787 2206 35.68 860 5003 17.19
NGF 489 1053 46.44 889 5002 17.77
NGF-SMP 796 1492 53.35 1076 5001 21.52

Random Sentence 631 1984 31.80 712 5023 14.17
RTTL 592 1338 44.25 961 5023 19.13
MRS 647 2056 31.47 721 5023 14.35

NGF-SMP + MRS 667 1755 38.01 859 5035 17.06

Table 5: Statistics of the unique in-domain word types
and word counts in the selected data with 10K anno-
tated words.

that randomly replaces words in parallel sentences
with other random words from the in-domain vo-
cabulary. A more recent work on dictionary-based
data augmentation (Peng et al., 2020) proposed
to use an existing high-quality in-domain dictio-
nary, and replaced a source word in the existing
parallel data by the most similar word in the dictio-
nary according to the cosine similarity metric in the
embedding space. In contrast, we select noisy in-
domain phrases using different phrase-based selec-
tion strategies (§3.2) to ensure the selection quality
in an active learning process.

7 Discussion and Future Work

In this paper, we investigate ways to incorporat-
ing phrasal translations into training NMT for do-
main adaptation in the active learning setting. We
find that phrasal translation is particularly useful
in the adaptation scenario where longer sentence
context is not necessarily required to translate in-
domain words correctly. In contrast, NMT sys-
tems can benefit from learning sentence structure
with sentence-based selection strategies. The hy-
brid selection strategies can combine the merits
of both sentence-based and phrase-based selection
strategies. Nonetheless, there are several future
directions. (1) It is worth exploring how different
annotation strategies may result in a difference in
cost or time. (2) Although several findings could
be generalized to other language pairs, testing our

methods on morphologically rich languages is our
next step. (3) Our current hybrid strategy simply
allocates the annotation budget evenly without as-
suming any prior knowledge of the strategies and
the translation performance. Techniques in multi-
armed bandit problems (Gittins et al., 2011) can be
used to learn a good allocation strategy.
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Appendix

A Pseudo code

Algorithm 1 shows the active learning procedure
for machine translation, which consists of two main
steps: selection/translation (§3) and fine-tuning
(§4).

Algorithm 1 Active Learning for Domain Adapta-
tion of Machine Translation

1: procedure ACTIVEADAPTATION(U ,L, B)
2: Inputs: the unlabelled set U , the la-

belled set L, and a budget B.
3: Train a MT model θ on L.
4: S,P ← SELECTION(U ,L, B)
5: Translate S by Ls = {(x,O(x))|x ∈ S}
6: Translate P by Lp = {(p,O(p))|p ∈ P}
7: Lr ← Obtain parallel data from L (§4)
8: Fine-tune θ on Ls ∪ Lp ∪ Lr
9: return θ

Algorithm 2 Hybrid Phrase/Sentence Selection

1: procedure SELECTION(U ,L, B)
2: Inputs: the unlabelled set U , the la-

belled set L, and a budget B.
3: Initialize S = {}, P = {}
4: Allocate the budget: Bs, Bp ← B
5: while

∑
x∈S c(x) < Bs do

6: x← argmaxx∈U φ(x, ·)
7: U = U \ {x}
8: S = S ∪ {x}
9: Construct PU ,PL by strategies (§3.2)

10: while
∑

p∈P c(p) < Bp do
11: p← argmaxp∈PU occ(p,U)
12: PU = PU \ {p}
13: P = P ∪ {p}

return S,P

B Experiments

B.1 Experimental Details for Reproducibility

Dataset: As pointed out in Aharoni and Gold-
berg (2020), there is overlap between the training
data and the test data in the original split of the two
corpora provided by Koehn and Knowles (2017),
so we follow them in removing the duplicated sen-
tences in the in-domain data, and re-splitting two
new test sets in order to prevent the model from
memorizing the selected in-domain training data

Data Domain Lang #Sentences #Words Vocab Avg Len

L WMT14
De

4.4M
108.0M 1.9M 24.4

En 114.5M 955.3K 25.8

U Medicine De 227.2K 3.8M 114.3K 16.8
IT De 190.6K 2.1M 114.6K 11.5

Table 6: Data statistics of the out-of-domain labeled
data in WMT14 and the in-domain unlabeled data in
the medicine and IT domains.

that could potentially be included in the test data.
Table 6 shows the data statistics.

Model: As our NMT model, we use a 6-layer
512-unit Transformer (Vaswani et al., 2017) imple-
mented in Fairseq,7 and use a subword vocab-
ulary of 5,000 for both languages constructed by
Byte Pair Encoding (Sennrich et al., 2016). The
model has 45M parameters.

Training: We train the base model with Adam
for 10 epochs with 4K warmup steps and a peak
learning rate of 1e-3, and decay the learning rate
based on the inverse square root of the number of
update steps (Vaswani et al., 2017). We save the last
checkpoint as our base model, and continue fine-
tuning the base model on a mixture of the newly-
translated data and the retrieved out-of-domain data
for 5 more epochs.

Training/Inference Time: We train each model
on one NVIDIA RTX 2080Ti GPU for all our ex-
periments. Training the base NMT model takes
less than 1 days, and fine-tuning the base NMT
model on selected data takes less than 4hours. The
decoding of 2000 sentences can be finished within
5 minutes.

B.2 Qualitative Analysis
In the first example of Table 7, the NMT model
adapted by NGF-SMP can predict most words cor-
rectly while the NMT model adapted by MRS gen-
erate a random sentence.

B.3 Do Phrasal Annotations Bias NMT?
Since phrasal annotations are short and do not con-
tain complex sentence structure, we hypothesis that
NMT systems trained on phrasal annotations would
be biased towards generating shorter sentences or
sentences in different grammatical order w.r.t. the
reference sentence. To understand this question,
we analyze the length ratio between the translation
outputs and the reference sentences in Figure 4.

7https://github.com/pytorch/fairseq
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Output S-BLEU

Source Schwindel, Parästhesie, Geschmacksstörung
Reference Dizziness, paraesthesiae, taste disorder
NGF-SMP Dizziness, paraesthesia, taste disturbance 23.27
MRS The room was very small and the bathroom was very small. 0.00
NGF-SMP+MRS Dizziness, paraesthesia, taste disturbance 23.27

Source Über Hospitalisierung oder Todesfälle in Verbindung mit Infektionen wurde berichtet.
Reference Hospitalisation or fatal outcomes associated with infections have been reported.
NGF-SMP There have been reports of Hospitalisation or death associated with infections. 29.79
MRS Hospitals or deaths associated with infections have been reported. 54.63
NGF-SMP+MRS There have been reports of Hospitalisation or fatality associated with infections. 29.79

Table 7: Translations generated by NMT models using different selection strategies. The last column shows the
sentence BLEU score of the translations. Translation errors are highlighted in red.

# Annotated Words

Le
ng

th
 R

at
io

0.950

0.975

1.000

1.025

1.050

2.5K 5K 10K 20K 40K 80K

NGF-SMP NGF-SMP + Mixed (Random) NGF-SMP + Mixed (Retrieved)
NGF-SMP + Mixed (Switched) NGF-SMP + Mixed (Contextualized)

NGF-SMP + MRS + Mixed (Retrieved)

Figure 4: Length ratio between the NMT outputs and
the reference sentences.

We find that the NMT model trained only on an-
notated phrases selected by NGF-SMP generates
shorter sentences than reference sentences. In con-
trast, adding sentences randomly sampled from
the labeled corpus L make the NMT model gener-
ate longer sentences than the reference sentences,
while retrieving sentences fromL that are similar to
the sentences in U makes the model produces trans-
lation outputs with closed lengths as the reference
sentences. Qualitatively, we also show the problem
of generating sentences with different structures as
the reference sentences in the third example in Ta-
ble 1. In the third example, the NMT model trained
with NGF-SMP produces a translation in an active
voice, while the reference sentence uses a passive
voice.
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Abstract

Large web-crawled corpora represent an excel-
lent resource for improving the performance
of Neural Machine Translation (NMT) sys-
tems across several language pairs. However,
since these corpora are typically extremely
noisy, their use is fairly limited. Current ap-
proaches to deal with this problem mainly fo-
cus on filtering using heuristics or single fea-
tures such as language model scores or bi-
lingual similarity. This work presents an al-
ternative approach which learns weights for
multiple sentence-level features. These fea-
ture weights which are optimized directly for
the task of improving translation performance,
are used to score and filter sentences in the
noisy corpora more effectively. We provide
results of applying this technique to building
NMT systems using the Paracrawl corpus for
Estonian-English and show that it beats strong
single feature baselines and hand designed
combinations. Additionally, we analyze the
sensitivity of this method to different types of
noise and explore if the learned weights gener-
alize to other language pairs using the Maltese-
English Paracrawl corpus.

1 Introduction

Large parallel corpora such as Paracrawl (Bañón
et al., 2020) which have been crawled from on-
line resources hold the potential to drastically im-
prove performance of neural machine translation
systems across both low and high resource lan-
guage pairs. However, since these extraction ef-
forts mostly rely on automatic language identifica-
tion and document/sentence alignment methods,
the resulting corpora are extremely noisy. The
most frequent noise types encountered are sentence
alignment errors, wrong language in source or tar-
get, and untranslated sentences. As outlined by
Khayrallah and Koehn (2018), training algorithms
for neural machine translation systems are partic-
ularly vulnerable to these noise types. As such,

these web-crawled corpora have seen limited use
in training large NMT systems.

This paper proposes a method for denoising
and filtering noisy corpora which explores and
searches over weighted combinations of features.
During NMT training, we score sentences and cre-
ate batches using random weight vectors. These
batches are use to train the system and measure
improvement over the validation set (reward). Fi-
nally, by modeling the weight-reward function, we
learn the set of weights which maximize reward
and are used to score and filter the noisy dataset.
At a high level, this method (i) allows the use of
multiple sentence level features, (ii) learns a set of
interpolation weights for the features which directly
maximize translation performance, (iii) requires no
prior knowledge about which features are informa-
tive or even if they are mutually redundant, and
(iv) trains within the NMT pipeline and does not
require any special infrastructure.

We include experiments which apply this
method to building NMT systems for the noisy
Estonian-English Paracrawl dataset and show that
it beats strong single feature filtering-baselines and
hand-designed feature interpolation. Additionally,
we analyze the robustness of this method in the
presence of specific kinds of noise (Khayrallah and
Koehn, 2018) via a controlled experiment on the
Europarl datasets. Finally, we look at the impact
of transferring the learned weights from one lan-
guage pair (Estonian-English) to a noisy dataset of
another language pair (Maltese-English Paracrawl).

We present related work in Section 2. Section 3
describes the procedure we use to model and search
over the weight-feature-reward space to estimate
feature weights which maximize translation perfor-
mance. Our experiment design, datasets and fea-
tures, appear in Section 4. Section 5 includes our
primary results where we compare the performance
of the proposed method to strong single feature fil-
tering baselines and hand-design feature weights.
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We conclude in section 6 with an analysis of this
method’s performance at filtering specific kinds of
noise and the application of learned weights to a
different language pair.

2 Related Work

Existing efforts towards filtering and denoising
noisy corpora focus on pre-filtering using hand-
crafted rules and by using sentence pair scoring and
filtering methods. Deterministic hand-crafted rules
(Hangya and Fraser, 2018; Kurfalı and Östling,
2019) remove sentence pairs with extreme lengths,
unusual sentence length ratios and exact source-
target copies, and are extremely effective in remov-
ing most of the obvious automatic extraction er-
rors. Automatic sentence pair scoring functions
have been used successfully to filter noisy cor-
pora as well. This includes the use of language
models (Rossenbach et al., 2018), neural language
models trained on trusted data (Junczys-Dowmunt,
2018) and lexical translation scores (González-
Rubio, 2019). Chaudhary et al. (2019) propose
the use of cross-lingual sentence embeddings for
determining sentence pair quality while several ef-
forts (Kurfalı and Östling, 2019; Soares and Costa-
jussà, 2019; Bernier-Colborne and Lo, 2019) have
focused on the use of monolingual word embed-
dings. Parcheta et al. (2019) use a machine trans-
lation system trained on clean data to translate the
source sentences of the noisy corpus and evaluate
the translation against the original target sentences
using BLEU scores. Erdmann and Gwinnup (2019)
and Sen et al. (2019) propose similar methods using
METEOR scores and Levenshtein distance respec-
tively. Rarrick et al. (2011), Venugopal et al. (2011)
and Antonova and Misyurev (2011) present tech-
niques for detecting machine translated sentence
pairs in corpora. Tools such as LASER (Schwenk
and Douze, 2017), BiCleaner (Sánchez-Cartagena
et al., 2018) and Zipporah (Xu and Koehn, 2017)
have been used (Chaudhary et al., 2019) for noisy
corpus filtering. Curriculum learning has been used
to obtain policies for data selection which can ex-
pose the model to noisy samples less often during
training (Wang et al., 2018; Kumar et al., 2019).
More recently, ElNokrashy et al. (2020) and Es-
plà Gomis et al. (2020) have used classifier based
approaches to filtering noisy parallel data.

Figure 1: Overview of the proposed method for learn-
ing weights for sentence-level features to filter noisy
parallel data and improve translation performance.

3 Method

The proposed method centres around finding
weights for combining sentence-level features,
which are then used to compute sentence-level
scores and filter the noisy corpus. While the choice
of features can be arbitrary, this method’s perfor-
mance will eventually depend on their quality, and
we would ideally want them to be informative and
decorrelated.

Figure 1 provides an overview of the proposed
method. We first train a number of candidate neu-
ral machine translation (NMT) systems. During
training for each candidate system, we repeatedly
(i) generate a random weight vector, (ii) sample a
batch of sentences from the noisy corpus based on
sentence-level scores computed using this weight
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vector, (iii) update NMT system parameters using
this batch, and (iv) measure the improvement in
translation quality on a validation set following this
update. The weight vector w, the average feature
vector φ of the batch, and the improvement R on
the validation set (reward) are recorded for each
batch t during the training of each candidate NMT
system i, and 〈wi,t, φi,t,Ri,t〉 becomes a sample in
new data setD, called the tuning data set1, for learn-
ing feature weights to maximize reward. Hence,
even though the parameters of the candidate sys-
tems are not used directly, they are used to gather
noisy candidate evaluations of the latent weight-
feature-reward function.

Once we haveD, we use a feed-forward network
to learn the weight vector that maximizes the re-
ward. The learned weight vector w∗ is then used to
compute sentence-level scores and filter the noisy
data set. The final NMT system is trained using
this clean data set.

Some subtleties in normalizing the observed re-
wards and learning weights are explained below.

3.1 Candidate NMT runs

Note from the bottom of Figure 1 that the learned
weight vector w∗ is used to sort all the sentences
in the noisy training data, and the top-scoring ones
are used for final NMT training. The purpose of
the candidate NMT training runs is to generate the
tuning data set D from which w∗ is learned. There-
fore, the setup for the candidate runs mimics typical
NMT training, but for the following differences.

1. Selecting batches: For selecting sentences
to constitute a batch, we first sample a ran-
dom weight vector w of dimension |φ|, the
number of sentence-level features, uniformly2

from [−2.5, 2.5]|φ|. Ideally, we would score
all sentences in the noisy data set and then
filter the top sentences to create a batch. How-
ever, this is prohibitively slow to do for every
batch. Hence, we randomly sample twice the
number of sentences required to constitute the
batch, score them, and select the top half. For
the ith sentence, the score si is a dot product

1Not to be confused with the validation set which contains
sentence pairs, this dataset is solely used to model the weight-
reward function and contains no sentence identity beyond
feature vectors.

2The range of the uniform distribution represents the plau-
sible range of weights given the features.

of its feature vectors with the weight vector:

si =

|φ|∑

i=1

wiφi (1)

The selected sentences are removed from the
training pool for this epoch. This method
of batch selection ensures that the sampled
weight vector determines which sentences are
selected and that their average feature vector
is significantly different from one obtained
using unbiased/random selection.

2. Reward computation: The reward must rep-
resent how the choice of w (through the sen-
tences selected to form the batch) impacts
translation performance. This is approximated
by computing the perplexity of a validation set
following a parameter update with the selected
batch. However, since perplexity naturally de-
cays in standard NMT training, batches at the
beginning of the training will naturally receive
larger rewards, obscuring the impact of sen-
tence selection. We mitigate this effect by
using delta-perplexity, i.e. the change in per-
plexity of the validation set over a window of
updates.

3. Accumulating training samples: For each
batch t of candidate run i, we collect the ran-
dom weight vector wi,t, the batch feature vec-
tor φi.t, defined as the average of the feature
vectors of all sentences in the batch, and the
rewardRi,t. These triples are gathered from
all batches during training, across all candi-
date training runs, to form the data set D for
learning the feature weights.

3.2 Reward Normalization

As a further way to make the rewards time-invariant
with respect to NMT training, the observed rewards
Ri.t are normalized with respect to an expected re-
ward estimated from a set of baseline NMT runs.
Specifically, at each time step t, we compute the
rewards Rbj,t of j = 1, . . . , J concurrent train-
ing runs—whose batches selected in the standard
manner—and, for each of the candidate NMT runs,
we set

R̃i,t = Ri,t −
1

J

J∑

j=1

Rbj,t, (2)
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where J is the number of baseline systems used.
Going forward, we do not need to track the iden-

tity of the update which led to a training sample, t,
or the candidate system ci which produced it.

3.3 Learning Feature Weights

The ith sample 〈wi, φi, R̃i〉 in D may be viewed
as a (noisy) evaluation of an unknown function
R(w|φ). This function maps a vector w to final
NMT quality, given a fixed sentence-level feature
function φ and the stipulation that sentences are
selected for training based on a weighted combina-
tion of their feature values using weights w. Fur-
thermore, if we learn this function using D, we
may use the w∗ that maximizes the learned func-
tion R̃NN (w|φ) for our final denoising and NMT
training. Specifically, we propose to use

w∗ =argmax
w

R(w|φ)

≈ argmax
w

R̃NN (w|φ) (3)

We propose learning R̃NN (w|φ) via a simple feed-
forward neural network that maps the weights wi
to the observed reward R̃i. We consider two ways
of providing input to this neural network, one that
uses only the wi, and another that modulates wi
with batch quality, represented by φi.

1. Weight-based: We use a feed-forward net-
work with the weight vectors wi as input and
learn to predict the observed reward R̃i. Since
the weight vectors interact directly with the
feature vectors to determine which sentences
are sampled to create a batch, we hypothesize
that maximizing this weight-reward function
will produce feature weights which will lead
to better sentence sampling.

2. Feature-based: Since the tuning samples are
noisy evaluations of the functionR(w|φ), we
often encounter samples where weight vectors
are close in weight space but have different
rewards. To counter this problem, when using
a feed-forward network to learn R̃NN (w|φ),
we scale the weight vector input wi by the
sum of the corresponding feature vector φi.
This has the effect of keeping weight vectors
which have similar feature vectors close in
input space and moving apart those with sig-
nificantly different feature vectors.

Once this neural network is learned fromD, we per-
form a grid search over its input space, as defined
in Section 3.1, to find the maximizer of (3).

3.4 Re-sampling and training

The weight vector w∗ learned from the previous
section is used to score all sentences from the orig-
inal noisy data set. We sort the sentences by these
scores and sample the top candidates to form the
clean training data set and use it to train a standard
NMT system.

4 Experiment Setup

We use Fairseq (Ott et al., 2019) for our neural
machine translation systems configured to be iden-
tical to the systems described in Ng et al. (2019).
The feed-forward network used to tune weights has
two 512-dimensional layers and is trained using
standard SGD using a learning rate of 0.1. The
grid search for the weights was done on the range
[−2.5, 2.5] with 5000 points uniformly distributed
per dimension. The number of samples used for
reward normalization was 3 and the window for
computing the delta-perplexity reward was set to 3.

4.1 Corpora

We use the Paracrawl Benchmarks (Bañón et al.,
2020) data set in Estonian-English for all our ex-
periments. These consist of documents where sen-
tences were aligned using Vecalign (Thompson
and Koehn, 2019) and then de-duplicated so that
each sentence pair only occurs once in the data set.
The test and validation sets for our experiments
in Estonian-English are newstest2018 and news-
dev2018 respectively. Statistics of these corpora
appear in Table 1.

train valid test
Sentence Pairs 22.8m 2k 2k
Source Tokens 190m 29k 31k
Target Tokens 207m 38k 40k
Avg. Len (src) 9.8 14.5 15.3
Avg. Len (tgt) 10.7 19.1 20.1

Table 1: Statistics for the processed Estonian-Engligh
(Es-En) Paracrawl data set and its corresponding vali-
dation and test sets. The training corpus was filtered
using Vecalign scores; the raw corpus contains about
168m sentence pairs.
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4.2 Features

We use five sentence-level features for all our filter-
ing experiments. They are, (i) IBM Model 1 align-
ment scores (Brown et al., 1993), (ii and iii) source
and target language model scores, (iv) dual condi-
tional cross entropy (Junczys-Dowmunt, 2018) and
(v) sentence length ratio. We experimented with ag-
gregate features such as Zipporah (Xu and Koehn,
2017), BiCleaner (Sánchez-Cartagena et al., 2018)
and bilingual features such as LASER (Schwenk
and Douze, 2017) and these were used to repli-
cate the baselines from Bañón et al. (2020) for our
dataset. The IBM Model 1 scores were obtained
using the Moses (Koehn et al., 2007) pipeline. The
Estonian and English language models were trained
on their respective NewsCrawl data sets3. The
clean machine translation model for computing the
conditional dual-cross entropy scores is trained on
the Europarlv8 data set4. All features are gaussian-
ized using the Yeo-Johnson power transformation
and then normalized to have zero mean and unit
variance.

5 Results

For our experiments, we scored all sentences in the
noisy corpus, sorted and sampled the top parallel
sentences to form subsets with 10, 15 and 20 mil-
lion English words. These filtered data sets were
used to train standard NMT systems and perfor-
mance was evaluated on the test set described in
the previous section. The results of these filtering
experiments appear in Table 2.

First, we evaluate the efficacy of all the fea-
tures we use for our interpolation task by filter-
ing the data set on these features alone. Addi-
tionally, to include some strong baselines, we use
three out-of-the-box, scoring features which pro-
vided strong results in the WMT 2020 parallel cor-
pus filtering task5 (Bañón et al., 2020; Chaudhary
et al., 2019). These are BiCleaner, Zipporah and
LASER. Of these, LASER provides the strongest
filtering and translation results beating the other
two by 0.3 to 0.9 BLEU points. Of the five features
we use for our experiments, dual cross-entropy
(Junczys-Dowmunt, 2018) is the strongest feature
and matches the performance of LASER. Using

3statmt.org/wmt18/translation-task.
html

4statmt.org/europarl/
5statmt.org/wmt20/

parallel-corpus-filtering.html

source or target language model scores in isolation
leads to the weakest translation performance while
IBM Model 1 scores perform only slightly better
than them. Surprisingly, the simple sentence length
ratio feature beats all other features except dual
cross-entropy by 1.4 to 1.6 BLEU points. This is
a strong indicator of the type of noise in the data
set and that bilingual features (even simple ones)
perform better than monolingual features such as
language model scores.

10m 15m 20m
1-Feature Filtering Baselines
Zipporah 20.4 21.3 21.3
BiCleaner 19.8 20.9 21.2
LASER 21.7 22.4 22.5

IBM Model 1 18.1 19.9 20.8
Target LM 17.6 19.5 20.4
Source LM 17.4 19.4 20.4

Dual Cross-Entropy 21.5 22.4 22.6
Sentence Length Ratio 19.7 20.2 21.2

Filtering using Feature Weights
Uniform weight baseline 20.9 21.5 21.6

Weight based (14) 22.1 23.1 23.5
Feature based (15) 22.4 23.1 23.6

Table 2: BLEU scores for the Estonian-English NMT
systems where the training data was filtered using sin-
gle features or a learned weighted combination of fea-
tures. Feature weights were learned using the proposed
method. The number of candidate runs which produced
the best results appear in parentheses.

Next, we look at interpolation of features using
weights learned using the proposed method. As
a baseline, we also include an experiment which
filters based on a uniform interpolation of the five
features we use. This baseline performs worse than
the strongest single feature filtering experiments by
0.5 to 1 BLEU points. For both the weight-based
and feature-based methods of learning interpola-
tion weights for the features, a significant number
of candidate runs are required before adequate per-
formance is achieved. This is not surprising, since
we are searching for an optimal weight vector in
a fairly large weight space and we need a large
number of samples before a good representation of
the weight-reward function can be learned. Figure
2 shows the improvement in BLEU scores for the
weight-based approach as data from more candi-
date runs in added to the tuning stage for learning
weights and filtering the data set. The performance
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Figure 2: Improvement in BLEU scores of the final
NMT system as data from additional ‘candidate‘ train-
ing runs is added to the tuning stage to learn weights.
Training data was filtered using the learned weights.

of the final NMT system steadily improves as more
data from more systems is added and eventually
converges.

Our strongest result was achieved with 14 can-
didate runs for the weight-based approach for the
10, 15 and 20m setting respectively. This beat the
uniform weight baseline by 1.5 to 2 BLEU points
and the strongest single feature (LASER) baseline
by 1 BLEU point. The feature based approach per-
formed slightly better with 15 candidate runs and
beat the strongest single feature baseline (LASER)
by 1.3 BLEU points.

6 Analysis

The following sections examine the learned
weights, the effect of transferring them to noisy cor-
pora of a different language pair and the method’s
performance when exposed to specific kinds of
noise.

6.1 Learned Weights

Table 3 shows the weights learned using the tuning
network, normalized to sum to one. Unsurprisingly,
the strongest feature (dual cross-entropy) has the
highest weight, with the sentence length ratio and
IBM Model 1 (weak multi-lingual features) drawn
for the next place while source and target LM have
relatively low weights.

Feature Weight Feature
IBM Model 1 0.07 0.12
Source LM 0.03 0.02
Target LM 0.02 0.02
Dual xent 0.81 0.76

Sen. Length Ratio 0.07 0.08

Table 3: Feature weights learned post-tuning with the
weight-based and the feature-based approaches. The
weights have been normalized to sum to 1 (column).

6.2 Weight Transfer

Since the feature functions we use for our experi-
ments are reasonably language-independent, a rea-
sonable experiment is to see if the feature weights
learned on one language-pair can be transferred to
a noisy corpus of another another language pair.
However, we hypothesize that unless the feature
distributions (proxy for noise profile of the dataset)
of the datasets are similar, this transfer will have
limited success.

We test this hypothesis using the Maltese-
English Paracrawl corpus. The training corpus
contains 26.9 million sentence pairs and was sen-
tence aligned using Vecalign and de-duplicated in
a manner similar to our primary experiments. The
validation and the test sets for these experiments
are from the EUbookshop6 dataset and contain 3k
and 2.2k sentences respectively. The sentence level
features were computed using the procedure de-
scribed in section 4.2 and we use the DGT corpus7

(about 1.6 million parallel sentences) to the train
the clean translation models, the source and the
target language models.

1-Feature Filtering Baselines
Target LM 28.3
Source LM 27.1

Dual Cross-Entropy 32.5
Filtering using Transfer Weights
Uniform weight baseline 30.5

Weight based 31.6
Feature based 31.3

Table 4: BLEU scores for the Maltese-English
Paracrawl NMT systems where the training data was
filtered using single features or a transferred (from
Estonian-English) weighted combination of features.

6opus.nlpl.eu/EUbookshop.php
7data.europa.eu/euodp/en/data/dataset/

dgt-translation-memory
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The results of these experiments appear in Ta-
ble 4. Even though filtering with the transferred
weights beats the simpler single feature baselines,
it fails to beat the strongest one, dual cross-entropy.
It is worth noting that the reason filtering with the
learned weights does this well is because the dual
cross-entropy feature has the highest weight from
our previous experiments. These experiments sug-
gest that some form of feature distribution match-
ing across corpora is required before weight trans-
fer becomes viable.

6.3 Sensitivity to Noise Types

Inspired by Khayrallah and Koehn (2018), we
look at how the most common noisy types in the
Paracrawl data set affect the performance of the
proposed method. For the purpose of these ex-
periments, we use the Europarl v8 8 Estonian-
English data set. The training data set consists
of about 651k parallel sentences, 11.2m source and
15.7m target tokens. We only use the feature-based
method for this analysis and each experiment tunes
weights based on 5 candidate runs.

We add synthetic noise to this data set by replac-
ing 50% of the sentences in the data set to contain
a specific kind of noise. The noise types we looked
at and their perturbation methods are described be-
low:

1. Misaligned sentences: Since parallel corpora
extraction efforts use automated document
and sentence alignment methods, noise in-
cludes source sentences which are not aligned
to the correct target sentence. To emulate this,
we randomly shuffle the source sentences of
half the sentences in the clean data set.

2. Misordered words: A result of automatic or
imperfect human translation, we add this noise
to the clean data set by randomly shuffling the
words within the source sentences.

3. Wrong language: This is a very common
noise type in web-crawled corpora. We em-
ulate it by performing lexical replacements
(from Estonian to French).

4. Untranslated words: This other common noise
type is added to our data set by copying the
source sentence to the target.

8www.statmt.org/europarl

Noise Type % Retained
Misaligned sentences 92

Misordered words 81
Wrong language 89

Untranslated words 78

Table 5: The portion of the clean sentences retained
after perturbing 50% of the data set with specific noise
types, learning feature weights and resampling the top
50% samples.

For each type of noise, we perform the following
experiment: perturb 50% of the clean data with the
chosen noise type, compute feature values for the
sentences in the full data set, learn feature weights
using the weight-based method described in section
3, filter out the top 50% of the data set and measure
the percentage of clean (non-perturbed) sentences
which were retained.9 The results of this analysis
appears in Table 5. The method performs signifi-
cantly better than chance in all noise categories, but
given our choice of features, it is better at filtering
out misaligned sentences and sentences with tokens
in the wrong language and is slightly less effective
at dealing with misordered and untranslated words.

7 Future Work

The validation set based delta-perplexity is expen-
sive to compute per update and replacing it with a
more stable or time invariant reward (Wang et al.,
2019) may help improve the performance of this
method. Additionally, we plan to replace grid
search with a more granular search procedure over
the weight space with respect to the weight-feature-
reward function. The tuning network can also be
modified to include sentence-quality modulated
loss functions (via feature values). An alterna-
tive to searching for feature weights is to instead
search for the prototypical feature vector which
maximizes translation performance and then use it
to filter the closest sentence pairs from the noisy
dataset. Finally, as discussed in Section 6.2, trans-
ferring learned weights has the potential to dramat-
ically reduce the cost of applying to this method to
new language pairs and may help with performance
on low-resource language pairs where good feature
weights cannot be learned.

9We note that the performance of this analysis depends on
the chosen features. As an extreme example, if we perturb
the source sentences and only consider a target-side feature
(such as target language model scores), we will have no way
of discriminating bad noisy samples from the clean ones.
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8 Conclusion

We present a method for denoising and filtering
noisy parallel data for improving the performance
of neural machine translation systems. We learn
interpolation weights for sentence-level features by
modeling and searching over the weight-reward
space. These are used to score and filter sen-
tences in the noisy corpora. Our experiments with
Estonian-English Paracrawl show gains of over a
BLEU point over the strongest single feature filter-
ing and uniform weight baselines. Analysis also
shows that this method is effective at addressing the
most common noise types in web-crawled corpora.
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Abstract

Recent work in simultaneous machine trans-
lation is often trained with conventional full
sentence translation corpora, leading to either
excessive latency or necessity to anticipate as-
yet-unarrived words, when dealing with a lan-
guage pair whose word orders significantly dif-
fer. This is unlike human simultaneous inter-
preters who produce largely monotonic trans-
lations at the expense of the grammaticality of
a sentence being translated. In this paper, we
thus propose an algorithm to reorder and re-
fine the target side of a full sentence transla-
tion corpus, so that the words/phrases between
the source and target sentences are aligned
largely monotonically, using word alignment
and non-autoregressive neural machine transla-
tion. We then train a widely used wait-k simul-
taneous translation model on this reordered-
and-refined corpus. The proposed approach
improves BLEU scores and resulting trans-
lations exhibit enhanced monotonicity with
source sentences.

1 Introduction

Simultaneous interpretation is widely used in var-
ious scenarios such as cross-lingual communica-
tion between international speakers, international
summits, and streaming translation of a live video.
Simultaneous interpretation has a latency advan-
tage over conventional full-sentence translation, i.e.
offline translation, as it requires only partial se-
quence to start translating. However, as the source
and target languages differ in word orders, there is
a difficulty in simultaneous interpretation that does
not exist in offline translation which translates only
after the whole source sentence is received. For
example, when dealing with language pairs that
significantly differ in word order (e.g., between
SOV language and SVO language), an interpreter

∗ Equal contribution
† Work done at Samsung Research

Figure 1: An example illustration of monotonic reorder-
ing and refinement for simultaneous translation

may not receive sufficient information with par-
tial sequence to start generating a translation that
respects the natural order of the target language.
One of the approaches to address this problem is to
perform anticipation1. Note that the nature of antic-
ipation relies on interpreters’ assumptions and the
anticipation may provide incorrect translations. Al-
ternatively, human interpreters strategically resort
to producing monotonic translations that follow
the word order of the source sequence (Cai et al.,
2020).

To illustrate the differences between the two
strategies, the example in Figure 1 may be referred
to. Of the two targets, offline target y respects
the target language order and an online target ŷ
roughly follows the source word ordering. Suc-
cessful anticipation in Figure 1’s case would be to
predict the initial words in y (I was a “frog in a
well") before receiving the full x. This would pose
difficulty even to professional translators as all the
relevant information is in the latter part of the x
(저는I /“우물a well /안in /개구리a frog"였습니다was.).
Bartłomiejczyk (2008) reports the success rate of
human interpreters’ anticipation attempts to be as
low as 38.1% even though they make predictions
based on pre-acquired domain knowledge. On the
other hand, a monotonic approach would be to gen-

1A simultaneous interpretation strategy where the inter-
preter says information that is not yet said by the speaker.
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erate an ŷ style translation - the grammaticality in
the resulting sequence is sacrificed to translate only
the received information.

A similar case applies to Simultaneous Machine
Translation (SimulMT) models, which start trans-
lating before a whole sentence is given. Several
studies (Ma et al., 2019; Arivazhagan et al., 2019;
Ma et al., 2020) often utilize offline full-sentence
translation corpora to train SimulMT models. Of-
fline full-sentence parallel corpora are expected to
follow the natural order of languages and mostly
contain source to offline-target pairs. Naturally,
when SimulMT models are trained on these cor-
pora, the models inevitably learn to perform antic-
ipation. Recent SimulMT studies are focused on
reducing anticipation (Zhang et al., 2020a) or per-
forming better anticipation (Zhang et al., 2020b).
On the contrary, studies on enabling monotonic
translation in SimulMT are scarcely available. Re-
cently, Chen et al. (2020) suggest utilizing pseudo-
references for monotonic translation.

In this paper, we propose a paraphrasing method
to generate a monotonic parallel corpus to allow a
monotonic interpretation strategy in SimulMT. Our
method consists of two stages. The method first
chunks source and target sequences into segments
and monotonically reorders the target segments
based on source-target word alignment informa-
tion (Section 3.1). Then, the reordered targets are
refined to enhance fluency and syntactic correct-
ness (Section 3.2). To show the effectiveness of
our method, we train wait-k models (Ma et al.,
2019) on the resulting monotonic parallel corpus of
reordering-and-refinement. Results show improve-
ments in BLEU scores over baselines and models
producing monotonic translations. Our main con-
tributions are as follows:

• We propose a method to reorder and refine
the target side in an offline corpus to build
a monotonically aligned parallel corpus for
SimulMT.

• We investigate the monotonicity in different
language pairs, and show monotonicity can be
improved after the reordering-and-refinement
process.

• We train widely used wait-k models on gen-
erated monotonic parallel corpora in multiple
language pairs. The results show improve-
ments over baselines in both translation qual-
ity and monotonicity.

Figure 2: Monotonicity measured on offline trainsets.
Utilized data is described in Section 4.1. As Kendall’s
τ and Spearsman’s ρ show similar patterns, we only re-
port Kendall’s τ measurements in the rest of the paper.

2 Monotonicity Analysis

In this section, we analyze the degree of word or-
der differences in multiple language pairs, i.e., the
monotonicity in different language pairs. To mea-
sure the monotonicity, two rank correlation statis-
tics are utilized: Kendall’s τ and Spearman’s ρ.
The analyzed language pairs are: English-{Korean,
Japanese, Chinese, German, French}.

According to Polinsky (2012), English is a head-
initial language and Korean and Japanese are rigid
head-final languages; Korean and Japanese are
likely to exhibit extreme word order differences
with English. German and Chinese are considered
a mixture of head-final and head-initial languages;
they are likely to have word differences with En-
glish, but not as severe as Korean or Japanese.
French is also head-initial, so English and French
pair is likely to have similar word order.

Figure 2 show monotonicity measurements
between English and five different languages
which vary in monotonicity: English-German
and English-French pairs show high monotonic-
ity, while English-Japanese and English-Korean
pairs show low monotonicity.

Lower monotonicity in language pairs presents
higher difficulties for SimulMT tasks. For example,
wait-k algorithm only sees k + t source tokens to
generate a target token at step t which could lead to
unwanted anticipation. To avoid such anticipation,
as we mentioned in Section 1, human interpreters
often provide a monotonic translation. In the same
sense, we conjecture that promoting monotonic-
ity in training corpora is beneficial for translation
quality in SimulMT.
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3 Monotonic Reordering and Refinement

In this section, we describe our proposed paraphras-
ing method of chunk-wise reordering and refine-
ment to generate monotonic corpus for SimulMT.
Given source x = {x1, x2, · · · , x|x|} and offline
full sentence target y = {y1, y2, · · · , y|y|}, an
alignment a is defined as a set of position pairs
of x and y.

a = {(s, t) : s ∈ {1, · · · , |x|}, t ∈ {1, · · · , |y|}}
First, in chunk-wise reordering phase, we generate
source chunk set CX

CX = {(x1:p1), (xp1+1:p2), · · · , (xpk−1+1:pk)},
where 0 < p1 < p2 < · · · < pk = |x| and re-
ordered target chunk set CY

CY = {(y′1:q1), (y′q1+1:q2), · · · , (y′qk−1+1:qk
)},

where 0 < q1 < q2 < · · · < qk = |y|, and y′i ∈
y′ is reordered target token from offline target y.
The elements of a reordered target chunk CYi are
corresponding target tokens of a source chunk CXi
based on given alignment information a. Also,
we preserve the original target order within each
CYi . For example, offline and reordered target in
Figure 1 correspond to y and y′ respectively, and
both sequences are only different in token orders.
The number of source chunks in one sentence is
the same as the number of reordered target chunks
(|CX | = |CY |), while the number of tokens in |CXi |
and |CYi | could vary. We experiment two chunking
methods; fixed-size chunking and alignment-aware
adaptive size chunking.

Given chunked sets CX and CY , we refine re-
ordered target tokens to generate more natural and
fluent sentence with a Non-Autoregressive Trans-
lation (NAT) model. In the refinement algorithm,
final paraphrased sentence ŷ is generated from re-
ordered sequence y′. Furthermore, we incorporate
an Autoregressive Translation (AT) model into our
refinement process. The more detailed steps for
each phase will be explained in the following sub-
sections.

3.1 Chunk-wise Reordering
3.1.1 Fixed-size Chunk Reordering
In the fixed-size chunk reordering method, we sim-
ply chunk a sequence of tokens into fixed size seg-
ments. The source chunk set CX in this chunking
method is as follows:

CX = {(x1:K), (xK+1:2K), · · · , (x[|x|/K]:|x|)},

where K ∈ [1, |x|] is chunk size. If k = 1, CX
is identical with x. We conduct subword opera-
tion such as sentencepiece or BPE after chunking
process in order to avoid subword separation.

3.1.2 Alignment-Aware Chunk Reordering
In the alignment-aware chunking method, we seg-
ment a sentence adaptively by leveraging alignment
information a, as described in Algorithm 1. The
left grid in Figure 3 presents the subword alignment
between source and target sentence. We run aligner
on subword over word because the alignment per-
formance is consistently better Zenkel et al. (2020)
when using GIZA++ (Och and Ney, 2003) , which
we use in our experiments. Based on this align-
ment information, we initialize a list of chunks
C. As observable, there are some tokens which
have no alignment information. To avoid omission,
we assign the same alignment as the previous to-
ken; if a token is at the head, it follows the next
token’s alignment. To ensure subwords can be
properly detokenized after reordering, we merge
mid-splitted subwords. The middle grid in Figure
3 presents the result of these initialization steps.
After initialization, we generate consistent chunks
by merging all the inconsistent ones, following the
definition of consistency in Zens et al. (2002). In a
consistent chunk, tokens are only aligned to each
other, not to tokens in other chunks. If any chunk in
C has size smaller than a minimum size threshold
δ, we merge a chunk pair that are adjacent in both
source and target side and have the shortest target
distance between them. If the distances are the
same between multiple candidate pairs, we choose
the pair of chunks that makes the smallest size af-
ter merging. We additionally merge the chunks
adjacent to the merged one if they are arranged
monotonically. Merging is repeated until all chunks
meet the size requirements. An example of final
result is the right grid in Figure 3. Phrase extrac-
tion method used in statistical machine translation
Koehn (2004) also makes phrase level alignments
from word alignments using heuristics like ours,
but it tends to choose shorter phrases since the num-
ber of co-occurrences decrease drastically as the
phrase size grows, which makes it difficult to gen-
erate larger chunks to prevent hurting grammatical
correctness while reordering phase.

3.2 Refinement

Reordered target results from previous phase in-
evitably entail irregularities mainly for two rea-
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Figure 3: Example of alignment-aware reordering process. Left: Original alignments. Center: (Initialization)
After filling align vacancy, merging mid-split subwords and enforcing the consistency requirement. Right: After
merging all the chunks shorter than length thresholds.

Algorithm 1: Alignment-Aware reordering
Input: Source sentence x and target

sentence y
Output: Monotonically aligned chunks C′

1 a = Alignment between x and y
2 C = Initialize chunks C
3 C = Merge all the inconsistent chunks in C
4 while |CXi | < δsrc or |CYi | < δtgt

for any Ci in C do
5 Ck = The smaller of the chunks adjacent

to Ci
6 Merge Ci and Ck
7 Merge monotonic chunks adjacent to Ci
8 end
9 C′ = Reorder target side of C monotonically

sons. One could be broken connectivity of collo-
cations in segmentation process. The other would
be disfluently missing or containing words of end-
ings and preposition as the position of chunk has
been changed, thus requiring an addition of new
words or clearing unnecessary words. In this part,
we focus on refining aforementioned anormalities
in order to enhance fluency, while preserving the
monotonicity at the same time.

3.2.1 Refinement with NAT

We iteratively decode partial source CX with pre-
trained translation model, given partial reordered
target CY as a guidance in order to generate cor-
responding online target Ŷ . More specific pro-
cess is explained in Algorithm 2. As the model
refines given [Ŷi−1; CYi ], previous refined output
Ŷi−1 could be altered as the model re-generates
the entire sequence from scratch. Similarly in re-

Algorithm 2: Chunk-wise Refinement
Input: Source and target chunks CX , CY
Output: Paraphrased target ŷ

1 i = 1

2 Ŷ0 = []
3 while i ≤ |CX | do
4 Xi = CX1:i and Y ′i = [Ŷi−1; CYi ]
5 Ŷi = argmaxY log pR(Y |Xi, Y

′
i )

6 i = i+ 1

7 end
Return: Ŷ|CX |

translation (Arivazhagan et al., 2020; Han et al.,
2020b), we set an option of fixed or alterable pre-
fix to force the model whether to generate same
target prefix of Ŷi−1 or to allow the model to mod-
ify the prefix. As we limit the visibility of source
information and iteratively generate target tokens
with increasing source chunks, we expect the re-
finement model to generate monotonically aligned
and paraphrased targets ŷ with enhanced fluency.

We use NAT architecture as the core refinement
modelR. In NAT inference, the model’s decoder
is first given source features and fed an empty tar-
get sequence. Then the NAT decoder develops the
empty sequence into a translation of the source se-
quence. This development is often iterative. Note
that at every iteration step, the target sequence is
refined - closer to the source sequence in mean-
ing and become more fluent. This motivates us
to utilize NAT architecture in our refinement pro-
cess for monotonic-yet-disfluent sequences. In our
approach, the NAT model starts refinement itera-
tion with initialized tokens of previous output and
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reordered target chunk Y ′i , instead of an empty se-
quence. This target initialization act as a weak
supervision to generate monotonically aligned tar-
get, which allow model to focus only on the fluency
the reordered targets.

3.2.2 Incorporation of AT
Despite the aptness of NAT structure to our re-
finement phase, NAT model entails a performance
degradation compared to AT model in the expense
of speedup. Also, there exists repetition problem
in NAT (Lee et al., 2018; Gu and Kong, 2021)
which is generated in the process of multiple chunk-
wise iterative refinement. In order to complement
the aforementioned weaknesses of NAT decoding,
we incorporate AT into our refinement process
with NAT model.The final probability is computed
jointly with the probability of AT and NAT model:

pR(Y |Xi, Y
′
i ) ∝

pAT (Y |Xi)
α · pNAT (Y |Xi, Y

′
i )

(1−α), (1)

where α ∈ [0, 1] is hyper-parameter deciding the
ratio between AT and NAT probability.

Size/Lavg EnKo EnJa DeEn EnZh

Train 3.4M/22 3.9M/12 4M/28 15.9M/27

Valid 800/19 4451/17 3000/25 4000/30

Test 1429/21 1194/17 2169/25 4000/30

AlignAw 3.1M 1.7M 2.2M 6.5M

er 0.85 1.15 0.98 1.12

Table 1: Data statistics and average of En token length
Lavg of used corpus. AlignAw denotes number of pairs
processed with alignment aware refinement. er denotes
emission rates used in wait-k decoding. Token lengths
and er are measured base on subwords counts.

4 Experiments

4.1 Dataset

In this section, we describe the utilized datasets.
Detailed statistics are presented in Table 1. Uti-
lized EnKo trainset and devset are created using
in-house translation corpora while test scores are
reported on IWSLT17 (Cettolo et al., 2017) EnKo
testset. The DeEn trainset of WMT15 translation
task (Bojar et al., 2015) is utilized. newstest2013 is
utilized as devset and newstest2015 is used as test-
set. The EnJa trainset and validset are respectively
the combination trainsets and validsets of KFTT
(Neubig, 2011), JESC (Pryzant et al., 2018), TED

(Cettolo et al., 2012). The trainset and validset are
used as preprocessed and provided by the MTNT
authors2 (Michel and Neubig, 2018). Only the TED
portion of testsets is used. For EnZh training UN
Corpus v1.0 (Ziemski et al., 2016) is used. Train-
set, devset, and testset follow the original splits.
Monotonicity of EnFr in Figure 2 is measured on
the WMT14 (Bojar et al., 2014) trainset. Addi-
tional details regarding utilized tokenization and
vocabulary training are listed in Appendix A.

4.2 Metric

All the BLEU scores are cased-BLEU measured
using sacreBLEU (Post, 2018). Test scores are mea-
sured using models that report best BLEU on their
respective devsets. All references and translations
of each Korean, Japanese, and Chinese languages
are tokenized prior to BLEU evaluation. Tokenizers
utilized are mecab-ko3, KyTea 4, and jieba for Ko-
rean, Japanese and Chinese respectively. We report
detokenized BLEU on DeEn results. To measure
monotoniticy, we use Kendal’s τ rank correlation
coefficient.

4.3 Implementation Details

The default setting for NMT and SimulMT mod-
els follow the base configuration of transformer
(Vaswani et al., 2017). SimulMT models are
trained using wait-k algorithm, where k ∈
{4, 6, 8, 10, 12}, with uni-directional encoder sim-
ilarly to Han et al. (2020a). The base NMT and
SimulMT models are trained up to 300k train steps
on a single GPU - each step is performed on a batch
of approximately 12288 tokens. For refinement, we
utilize NAT models of Levenshtein transformer ar-
chitecture (Gu et al., 2019) with maximum iteration
of 1. The NAT models are trained using sequence-
level knowledge distillation (Kim and Rush, 2016)
- the references of trainset pairs are replaced with
beam search results (beam = 5) of NMT teach-
ers. The NAT models follow base configurations
and teacher NMT models follow big configuration.
Both types of models are trained up to 300k steps
on 8 GPUs. In each training step, a 8192 tokens
batch is used per GPU. Additional implementation
details can be found in the Appendix B.

2https://www.cs.cmu.edu/~pmichel1/
mtnt/

3https://github.com/hephaex/mecab-ko
4http://www.phontron.com/kytea/
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Wait-k BLEU k=4 k=6 k=8 k=10 k=12
Offline 10.9 12.1 12.6 12.8 13.4
Fixed + NAT 11.2 12.3 13.5 13.5 13.7
AlignAw + NAT 11.4 12.8 12.7 12.9 13.1
AlignAw + NAT + AT (α = 0.25) 11.7 12.6 12.4 12.7 13.2
AlignAw + NAT + AT (α = 0.50) 10.7 12.4 13.0 13.0 13.2

Wait-k Kendal’s τ k=4 k=6 k=8 k=10 k=12
Offline 0.65526 0.60792 0.58440 0.55169 0.53701
Fixed + NAT 0.71822 0.66811 0.63154 0.61244 0.59478
AlignAw + NAT 0.71903 0.69101 0.67149 0.65985 0.64043
AlignAw + NAT + AT (α = 0.25) 0.73215 0.69386 0.69524 0.67593 0.63335
AlignAw + NAT + AT (α = 0.50) 0.73055 0.70106 0.67674 0.65559 0.64042

Table 2: BLEU scores and monotonicity measurements of EnKo wait-k models trained on offline and reordered-
and-refined corpora. Note that monotonicity is measured between the model translations and testset references.

4.4 Corpus Generation and Training

We demonstrate the effectiveness of our reordering-
and-refinement method by training wait-k models
on the resulting datasets. The wait-k models are
trained on the combination of the monotonically
aligned training pairs and offline trainset. AlignAw
+ NAT + AT denotes monotonically aligned corpora
using alignment-aware reordering and refinement
using joint probability of NAT and AT models. And
Offline refers to the offline full-sentence corpus.

4.4.1 Reordering

Fixed: For fixed-size reordering, we experiment
with chunk sizes K ∈ {4, 6, 8, 10, 12}. In wait-
k training, k and K are matched. All fixed-size
reordered-and-refined corpora have the same size
as corresponding offline corpus.

AlignAw: For each corpus, we generate four vari-
ations of alignment-aware reordering with source
and target minimum chunk size of 2, 3. Alignment-
aware reordering is not applicable on the already-
monotonic cases and the sentence pairs which are
locally non-monotonic inside a chunk and globally
monotonic among chunks within a single pair - typ-
ically, the reordering method is applicable to 20%
to 50% of offline corpus.

We gather unique pairs from the created four
variations to generate the final reordered pairs. The
statistics of reordered set for each translation direc-
tion is in Table 1. The resulting pairs are refined
and combined with corresponding offline corpus to
train wait-k models. Here, same set of reordered
pairs are utilized for all k settings.

seq-rep-n Offline NAT NAT + AT

1-gram 0.036 0.076 0.072
2-gram 0.008 0.022 0.018
3-gram 0.003 0.009 0.006
4-gram 0.001 0.004 0.002

Table 3: N-gram repetition rate measured on offline and
reordered-and-refined EnKo corpora. α = 0.25 is set
to for NAT + AT

4.4.2 Refinement
NAT: NAT models are utilized to refine the re-
ordered pairs. Both the fixed prefix and alter-
able prefix refinement is performed and combined.
BertScore (Zhang et al., 2020c) is measured and
used to discard refinement results that show below
average scores. The size of the resulting set is the
same as the corresponding offline corpus.

NAT + AT: NAT and AT models can both be
utilized to jointly compute token probability in re-
finement (Section 3.2.2). The AT models utilized
are the baseline wait-k models trained on offline
corpora. We experiment with α ∈ {0.25, 0.5}. The
examples of reordered-and-refined sequences can
be found in Appendix E.

5 Results and Analysis

5.1 Experimental Results on EnKo

Table 2 shows BLEU scores and Kendal’s τs of
wait-k models trained using original offline corpus
and variations of reordered-and-refined corpus. We
observe that the models trained on monotonically
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Figure 4: Monotonicity of offline pairs and pairs processed with reordering-and-refinement. AlignAw indicate
that targets are alignment-aware reordering (Section 3.1.2, and AlignAw + NAT show monotonicity after NAT
refinement (Section 3.2.1) is applied to AlignAw pairs.)

Figure 5: BLEU scores and monotonicity measurements presented by wait-k models trained on offline translation
corpora and variations of reordered-and-refined corpora.

reordered-and-refined corpora show higher BLEU
scores and monotonicity.

Reordering: Of the variations, corpora including
AlignAw chunking process generally show better
BLEU scores over Fixed + NAT when k ≤ 6. This
could be the benefit of the semantically plausible
way to split sentences provided by AlignAw chunk-
ing. On the other hand, models trained with Fixed
+ NAT corpora show higher BLEU when k ≥ 8.

Refinement: Experiments on utilizing AT proba-
bilities show degraded BLEU scores in k ∈ 6, 8, 10.
On the contrary, the models trained on AlignAw
+ NAT + AT corpora show enhanced monotonic-
ity. The α value may be adjusted to make trade-off
between promoting monotonicity in translation or
enhancing translation quality in terms of BLEU.

Repetition Reduction with AT: Following
(Welleck et al., 2020), we report n-gram repeti-
tion rate, seq-rep-n, on each generated corpus in

Table 3. We observe from seq-rep-n in all of the
tested n values, that employing AT models in re-
finement help alleviating the repetition problem of
posed by NAT models.

5.2 Language Pairs Comparison

Figure 4 shows the difference in monotonicity be-
tween different language pairs: EnKo, EnJa, EnZh,
and DeEn. It is observable in Figure 4 that the
overall monotonicity in EnKo and EnJa pairs is
enhanced after paraphrasing, while monotonicity
scores of DeEn remain almost the same, only
showing slight improvement. The extent of mono-
tonicity enhancement in EnZh is between that of
EnKo/Ja and DeEn. In all language pairs, the en-
hancements are generally lower in long or very
short sequences. In the case of long sequence pairs,
a pair may contain multiple sequences and be al-
ready aligned at the sequence level, thus resulting
in marginal monotonicity enhancement. In the case
of shorter length sequences, the whole sentence
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may be merged into a single chunk, less benefiting
from our process. After the reordered sets are re-
fined, monotonicity marginally decreases. This is
expected as forcibly aligned tokens are refined to
augment the fluency in the resulting sentence.

To present the effectiveness of generated mono-
tonic corpus in different language pairs, we train
wait-k models on EnKo, EnJa, EnZh, and DeEn,
and report BLEU and Kendal’s τ of the models
in Figure 5. The horizontal dotted line presents
the BLEU of unidirectional offline model. The
important observation we can find is that the mono-
tonicity increment of wait-k model in Figure 5 is
proportional to that of generated monotonic corpus
in Figure 4, suggesting that promoting monotonic-
ity in training corpus is beneficial for SimulMT
models to generate monotonic output, especially in
language pairs with differing word orders.

Within two paraphrasing methods, Fixed + NAT
and AlignAw + NAT , we can see that the mono-
tonicity of Fixed + NAT is always in between that
of Offline and AlignAw + NAT in Figure 5, and the
gap increases as the k value get higher.

While our methods are effective in EnKo, the per-
formance of suggested method is similar or lower
than that of baseline in EnJa. We presume that
the ineffectiveness in EnJa is due to its short av-
erage sentence length with highest emission rate,
as shown in Table 1. A short sentence often can-
not preserve semantic properties while being split
into chunks and reordered. For example, Fixed-
length reordering always chunks all sentences ig-
nores such feature and only increases disfluency in
the chunked result. Also, even though AlignAw en-
forces the consistency requirement on the chunks,
adjustment of such requirement like changing min-
imum chunk size may be required considering the
high emission rate.

Based on the highest performance at k = 8,
there is about 8% BLEU improvement over Offline
in EnKo whereas there is about 3% improvement
in EnZh and about 2% improvement in DeEn. It is
roughly proportional to the monotonicity improve-
ments shown in Figure 4.

5.3 Evaluation on Online References

We test wait-k models on our in-house EnKo online
and offline testsets of 150 lines. We choose EnKo
because the impact of reordering-and-refinement
is the greatest in that pair. The source sentences of
both testsets are identical. The online references

Figure 6: Differences of BLEU score between online
and offline of EnKo wait-k models.

are constructed by a professional interpreter under a
simulated simultaneous interpretation scenario and
the offline references are constructed by the same
interpreter assuming a typical translation scenario.
In construction of online references interpreter was
encouraged to perform monotonic interpretation
rather than anticipation. BLEU scores are com-
puted with both online and offline references for
each trained model. Figure 6 plot the subtraction
of BLEU scores on offline references from BLEU
scores on online references. It is noticeable that the
wait-k models trained on offline corpus have nega-
tive value while all the models trained on generated
corpus present positive values, which implies the
effectiveness of our approach. Overall, the substan-
tial differences at k = 6 may suggest that the chunk
size utilized by human interpreter has comparable
value.

6 Related Work

Due to word order differences between languages,
SimulMT training often face situations where an-
ticipation is required. Note that word order differ-
ence is observed to be problematic even for human
interpreters (Al-Rubai’i, 2004; Tohyama and Mat-
subara, 2006). Chen et al. (2020) suggest using
pseudo-references which involve utilizing wait-k
inference output to limit "future anticipation" in
training. Zhang et al. (2020b) utilize NMT teach-
ers to implicitly embed future information in their
SimulMT students for better anticipation perfor-
mance. Zhang et al. (2020a) study adaptive policy
to tackle this problem - authors suggest an adap-
tive SimulMT policy that dictate READ/WRITE
actions based on whether "meaningful units" are
fully formed with consumed input tokens.

Related work in the broader SimulMT and para-
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phrasing domain is presented in Appendix F.

7 Conclusion

Most of SimulMT models are trained on offline
translation corpora, which could lead to limitation
in translation quality and achievable latency, es-
pecially in non-monotonic language pairs. To ad-
dress this problem, we propose a reordering-and-
refinement algorithm to generate monotonically
aligned online target with NAT model. We then
train widely used wait-k SimulMT models on this
newly generated corpus. Resulting models show
BLEU score improvement and significant enhance-
ment on monotonicity in multiple language pairs.
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A Dataset Details

All utilized texts regarding English-to-Korean
and German-to-English directions are first tok-
enized with Moses (Koehn et al., 2007), then per-
language BPE vocabularies are learned on the
moses-tokenized trainset. The sizes of the vo-
cabularies are 29k BPE English vocabulary and
44k BPE Korean vocabulary for English-to-Korean
and 16k BPE German vocabulary and 16k BPE
English vocabulary for German-to-English. The
English-to-Japanese texts are first moses-tokenized.
And KyTea5 is applied to additionally tokenize
Japanese texts. Separate English and Japanese vo-
cabulary of size 32K is trained on tokenized train-
ing data using Sentencepiece (Kudo and Richard-
son, 2018). For English-to-Chinese training, no
moses-tokenization is applied and Chinese sen-
tences are tokenized using Jieba6. Separate English
and Chinese vocabulary of size 32K is trained on
training pairs using sentencepiece. The in-house
EnKo data consists mainly of the AIHub EnKo of-
fline translation corpus7, news domain translation
data, in-house proprietary patent data, and trans-
lated dialogue data of general domain.

B Additional Implementation Details

Our implementation is based on fairseq (Ott et al.,
2019), and all GPUs used are V100s. The align-
ment information used in reordering process is ex-
tracted with GIZA++ (Och and Ney, 2003). The
alignment information used to evaluate monotonic-
ity is extracted using fast-align (Dyer et al., 2013).
The alignments are measured in subword level. Em-
bedding weights are separately learned for source
and target languages, while transposed target lan-
guage embedding weights also works as linear pro-
jection layers at the top of transformer decoders.

C Reporting AlignAw + NAT Scores

The AlignAw + NAT wait-k models are trained on
different variations of AlignAw + NAT corpora -
AlignAw + NAT corpora generated with prefixes
fixed (b0), and with alterable prefixes (b1), and
combination of b0 and b1 filtered using BertScore
(b0b1). The reported AlignAw + NAT testset
BLEU scores are of the wait-k models that show
highest BLEU score on validset regardless of the
dataset variations.

5http://www.phontron.com/kytea
6https://github.com/fxsjy/jieba
7https://aihub.or.kr

EnKo Wait-k k=4 k=6 k=8 k=10
Offline 10.9/18 12.1/12 12.6/7 12.8/4

Pseudo Refs 11.2/19 11.6/13 12.2/9 13.3/5

Fixed + NAT 11.2/12 12.3/8 13.5/5 13.7/3

AlignAw + NAT 11.4/9 12.8/6 12.7/3 12.9/2

Table 4: BLEU scores/k-AR% of EnKo wait-k models.

D Comparison with Test Time wait-k
Refs

In recent work, Chen et al. (2020) propose a method
of pseudo-references generated with test time wait-
k decoding. We apply their method in EnKo to
create pseudo references for k ∈ {4, 6, 8, 10} and
train wait-k model. The results are presented in
Table 4. Similar to our monotonicity metric, this
work also suggest k-anticipation rate (k-AR) as a
metric of parallel corpora. We also measure and
report our generated corpus with this metric. Com-
pare to Offline and Pseudo Refs , we see that our
AlignAw + NAT corpus significantly decrease k-
AR and the models trained with AlignAw + NAT
also show enhanced BLEU score in general.

E Examples of Paraphrased Targets

Figure 7 presents an example sentence of English
to Korean in whole pipeline process. We first rep-
resent the source sentence and its two different
target sentences, online and offline translation. As
results of the reordering phase, for each method
(i.e., fixed chunking and AlignAw chunking), we
provide only one case: k = 8 in fixed chunking
and δsrc = 2 and δtgt = 2 in AlignAw chunking.
Figure 8 shows the final grid of AlignAw chunking
in this example. We conduct the MOS evaluation
with the result of refinement phase. MOS is the
average of human-evaluated score by professional
interpreters. In this evaluation, AlignAW + NAT
shows the best performance than others. More-
over, we present the inference outputs of SimulMT
models which are trained on generated monotonic
corpus. In this case, results of our methods are bet-
ter than the result of offline model. We also provide
DeEn example in Figure 9.

F More Related Work

Simultaneous Translation: A fixed policy is
used in (Dalvi et al., 2018) and (Ma et al., 2019)
which train SimulMT models according to the pre-
defined policy. In particular, the Wait-k strategy
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proposed by (Ma et al., 2019) waits for k sub-words
and alternates READ/WRITE based on the emis-
sion rate. Due to the deterministic feature of this
schedule, the model can be easily implemented
and trained. On the downside, anticipation from
missing contents often fails to predict correct tar-
get tokens, and a fixed schedule could impede the
model from speeding up or slowing down flexi-
bly for source inputs. There are several works of
SimulMT with many variants of the Wait-k ap-
proach. For example, (Caglayan et al., 2020) ex-
plores whether additional visual context can com-
plement missing source information. Furthermore,
in (Zheng et al., 2020b), the opportunistic decod-
ing technique is introduced which allows partial
(certain length of suffix) corrections in a timely
fashion. Finally, (Zheng et al., 2020a) extended the
wait-k to an adaptive one by composing a set of
fixed policies heuristically.

Upon the proposal by (Cho and Esipova, 2016),
various adaptive policies have been suggested by
several works including (Gu et al., 2017; Zheng
et al., 2019a,b; Arivazhagan et al., 2019; Ma et al.,
2020). SimulMT proposed by (Cho and Esipova,
2016) use greedy decoding with heuristic waiting
criteria to decide whether the model should read or
emit, while (Gu et al., 2017) utilize a pre-trained
model with a reinforcement learning agent that
maximizes quality and minimizes latency. Advanc-
ing this work, (Alinejad et al., 2018) proposes to
add a new action PREDICT that anticipate future
source words. Recently, (Arivazhagan et al., 2019)
use hard attention to schedule the policy and intro-
duced new differentiable average lagging metrics
which can be integrated into training losses, and
(Ma et al., 2020) incorporate this work into the
multi-headed Transformer model. Furthermore,
(Zhang et al., 2020a) proposes an adaptive policy
which learns to segment source input considering
possible target output. Other researches including
(Zheng et al., 2019a) use separately trained oracles
in the supervision of extracted action sequence.

Paraphrase: Translation is one of more common
approaches for paraphrase generation. Mallinson
et al. (2017) explore pivoting (translating a source
sequence to a pivot language, then to a target lan-
guage) to generate paraphrases and assess cor-
relation between original and paraphrased sen-
tences. Back-translation has also been explored for
paraphrase generation (Wieting et al., 2017; Iyyer
et al., 2018). Other techniques, such as translating

with oversampling strategy have also bee studied
(Chada, 2020).

On the other hand, various NMT research em-
ploy paraphrased data to overcome data limitation.
Edunov et al. (2018) show that source-paraphrased
corpus generated with back-translation can signifi-
cantly improve BLEU scores in NMT tasks. Simi-
larly, Khayrallah et al. (2020) directly implements
paraphrasers in NMT training to improve transla-
tion quality.
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Figure 7: Example sentence of EnKo in whole pipeline process from inputs to SimulMT results.

Figure 8: Alignment-aware result of the EnKo pipeline example in Figure 7

Figure 9: Example outputs of DeEn wait-k models trained on reordered-and-refined corpora
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Abstract

Simultaneous translation is a task in which
translation begins before the speaker has fin-
ished speaking, so it is important to decide
when to start the translation process. However,
deciding whether to read more input words or
start to translate is difficult for language pairs
with different word orders such as English and
Japanese. Motivated by the concept of pre-
reordering, we propose a couple of simple de-
cision rules using the label of the next con-
stituent predicted by incremental constituent
label prediction. In experiments on English-
to-Japanese simultaneous translation, the pro-
posed method outperformed baselines in the
quality-latency trade-off.

1 Introduction

Simultaneous machine translation is a task in which
the machine starts outputting a translation before
reading the entire input sentence. This task is more
difficult than full-sentence translation because it
translates the initial part of a sentence without the
context of the latter part. This involves a trade-off
between delay and quality of the translation; using
a longer context should improve translation quality
at the cost of a longer delay, and vice versa. In
practice, we should control the latency so that it’s
not too large, but we may also need to allow a long
latency depending on the situation.

Most of the recent simultaneous translation mod-
els (Ma et al., 2019; Arivazhagan et al., 2019; Raf-
fel et al., 2017; Arivazhagan et al., 2019; Ma et al.,
2020b; Dalvi et al., 2018; Gu et al., 2017; Alinejad
et al., 2018; Cho and Esipova, 2016; Zheng et al.,
2020, 2019; Zhang et al., 2020) are based on neural
machine translation (NMT), although earlier stud-
ies were based on statistical machine translation
(Rangarajan Sridhar et al., 2013; Grissom II et al.,
2014; Oda et al., 2014, 2015). In simultaneous
NMT, there are two major approaches: those in
which a latency hyperparameter is given before the

training and those in which it is given at the time
of inference.

The former approach requires training a model
individually for each pre-defined latency setting,
while the latter approach uses a single model for
different latency conditions. Most human simulta-
neous interpreters would not need such long train-
ing to slightly adjust latency, while it takes much
more time to learn other languages to develop their
translation skill. Therefore, the latter approach is
closer to the learning process of human simultane-
ous interpreters.

wait-k (Ma et al., 2019) is a simple simultaneous
NMT method of the former approach that waits
k tokens before starting to translate. It also has
variants within the latter approach called test-time
wait-k, in which k is determined at the inference
time. wait-k had better performance than test-time
wait-k in that study’s experiments.

There is another method in the latter approach
that uses Meaningful Unit (Zhang et al., 2020).
In this model, chunk-based incremental decoding
is done at inference time by segmentation with
a boundary predictor. This model outperformed
baselines of the former approach. They refined
their basic boundary predictor to deal with sentence
pairs in which full-sentence translation needs long-
distance reordering. However, its training process
is very complicated: It first generates monotonic
translations, fine-tunes the NMT model with them,
then generates an oracle boundary with the model,
and finally fine-tunes a boundary-prediction model
based on BERT (Devlin et al., 2019).

Simultaneous translation is still difficult for lan-
guage pairs such as English-Japanese, which of-
ten require long-distance reordering. To tackle
the reordering problem, we propose an input-
segmentation method for simultaneous translation,
using a couple of simple rules and incremental pre-
diction of the label of a syntactic constituent com-
ing immediately after the input existing so far. This

1124



Source sentence I bought a pen.
Monotonic translation watashi wa katta pen wo.
Full-sentence translation watashi wa pen wo katta.

Table 1: Translation from English (SVO) to Japanese (SOV)

Boundary prediction I / bought a pen.
Simultaneous translation watashi wa / pen wo katta.

Table 2: Example of English-to-Japanese translation using proposed method with segment-boundary prediction

is not dependent on the trained NMT. Therefore,
once we create it, it is reusable for other models.

Our proposed method is inspired by Head Final-
ization (Isozaki et al., 2010). Head Finalization re-
orders words of the source sentence before translat-
ing from an SVO (Subject-Verb-Object) language
to an SOV language in full-sentence statistical ma-
chine translation. This method moves a syntactic
head into a later position so that the word order of
the source language (e.g., English) becomes similar
to that of the target language (e.g., Japanese). This
enables us to monotonically translate from English,
which is a typical SVO language, to Japanese, a
typical SOV language.

Recent NMT models like Transformer (Vaswani
et al., 2017) works well on reordering in general,
so this kind of pre-reordering is not usually used.
However, simultaneous translation monotonically
reads input words one by one, and therefore the
difference in word order remains a problem. As
shown in Table 1, monotonic translation often be-
comes unnatural compared to full-sentence trans-
lation. The part “bought a pen” should be trans-
lated to pen wo katta by reversing the word order.
Therefore, after reading the word “bought,” it is
important to wait for future words without starting
to translate it. In this case, “I” is the last word that
does not require reordering. This word is regarded
as a segment boundary to start a partial translation.

Table 2 shows an example of our proposed seg-
mentation. Suppose we predict the next constituent
label as a verb phrase (VP) after reading an input
word “I.” This shows the possibility that the next
words should be reordered, so the “I” becomes
the boundary. Once detecting the boundary, NMT
model starts to translate “I” into “watashi wa.” Af-
ter that, the model restarts to read the remaining
input words, then translates “bought a pen” into
“pen wo katta.” The total output of simultaneous
translation based on the proposed segmentation is
the same as that of full-translation in this simple

example. By ensuring that the Verb and its Ob-
ject of the source sentence are included in a single
segment, it is possible to output translation while
maintaining the SOV-like structure of the target
language.

In experiments on English-to-Japanese simul-
taneous translation, the proposed method outper-
formed baselines in the quality-latency trade-off.

2 Related work

In statistical machine translation, there are several
approaches to finding boundaries of segments for si-
multaneous translation. Oda et al. (2014) proposed
a method to choose segment boundaries that max-
imize the BLEU score. Rangarajan Sridhar et al.
(2013) proposed segmentation strategies based on
lexical cues.

In NMT, there have been many studies on si-
multaneous translation. The amount of latency is
decided either before training or at inference time.
wait-k (Ma et al., 2019) is the simplest variant using
fixed latency: It simply waits for k tokens before
starting translation (Ma et al., 2019). The latency
policy can be learned from a parallel corpus to-
gether with an NMT model. MILk (Arivazhagan
et al., 2019) and other approaches (Raffel et al.,
2017; Ma et al., 2020b) used a latency-augmented
loss function in training to balance latency and ac-
curacy.

In contrast, the latency policy can be learned
with a pre-trained NMT model, such as test-time
wait-k (Ma et al., 2019) and STATIC-RW (Dalvi
et al., 2018). These have fixed policies that wait for
the fixed number of tokens before translation, but
there are other models that learn a more flexible
policy for a given pre-trained NMT model. Some
studies use reinforcement learning to learn an adap-
tive READ/WRITE policy (Grissom II et al., 2014;
Satija and Pineau, 2016; Gu et al., 2017; Alinejad
et al., 2018). Training by reinforcement learning
can be unstable depending on the condition. One
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method that does not use reinforcement learning is
wait-if-* (Cho and Esipova, 2016), which translates
and segments jointly to maximize the translation
quality. Zheng et al. (2020) extended wait-k to an
adaptive policy by adaptively choosing the strategy
at inference. There is another method that gener-
ates oracle READ/WRITE actions by a pre-trained
NMT model and predicts actions using a neural
network model (Zheng et al., 2019). Meaningful
Unit (Zhang et al., 2020) works along the same
lines and has outperformed baselines such as MILk
and wait-k.

With respect to the use of syntactic clues for
simultaneous translation, Oda et al. (2015) pro-
posed a method to incrementally parse an incom-
plete sentence by predicting unseen syntactic con-
stituents on the right and left side of each segment.
They concatenated the predicted constituents and
the words in a segment and then input the result
into tree2string translation. They decided to wait
for more tokens or output the translation depending
on where the constituents appear in the translation
result.

Our proposed method is based on chunk-based
simultaneous translation using chunk boundary de-
tection with simple rules on next-constituent labels.
It basically segments an input before a verb phrase.
This is much simpler and easier to implement than
the work by Zhang et al. (2020) and Oda et al.
(2015).

3 Proposed Method

Figure 1 shows a step-by-step example of our pro-
posed method described in this section.

3.1 Standard Simultaneous Translation
A standard NMT for full sentences is represented
by the following equation:

pfull(Y |X) =

|Y |∏

t=1

P (yt|X, y<t), (1)

where X = x1, x2, ..., xn is an input sentence con-
sisting of n tokens and Y = y1, y2, ..., ym is a
predicted target language sentence consisting of m
tokens.

A simultaneous NMT uses only a prefix of the
input to predict a target language token:

psimul(Y |X) =

|Y |∏

t=1

P (yt|xg(t), y<t), (2)

where g(t) is a monotonic non-decreasing function
representing the number of read source tokens to
output the tth target token.

3.2 Chunk-based Simultaneous Translation
We use chunk-based incremental decoding for our
simultaneous translation model and a full-sentence
NMT model trained in a standard manner. How-
ever, at the time of inference, we translate the cur-
rent prefix upon chunk segmentation while keeping
the previously translated output unchanged.

Suppose we have already translated input
chunks Xi−1 = X1, X2, ..., Xi−1 into an out-
put prefix also represented by chunks: Ỹ i−1 =
Ỹ1, Ỹ2, ..., Ỹi−1, while translating the next input
chunk Xi into Ỹi. We restart the translation
from the beginning using all of the available input
chunksXi

1. This is similar to an approach called re-
translation that generates translations from scratch
for every new input word (Niehues et al., 2016; Ari-
vazhagan et al., 2020), but we apply forced decod-
ing to Ỹ i−1 in the output prefix. The probability
of the prefix Ỹ i can be denoted as follows:

pprefix(Ỹ
i|Xi) =

pfull(Ỹ
i−1|Xi)× pchunk(Ỹi|Xi, Ỹ i−1). (3)

The first term is calculated in the same way as the
standard full-sentence NMT in Eq. (1) through
forced decoding, and the second term is decom-
posed as follows, letting Ỹi = yi1, y

i
2, ..., y

i
|Ỹi|

:

pchunk(Ỹi|Xi, Ỹ i−1) =
|Ỹi|∏

t=1

P (yit|Xi, Ỹ i−1, yi<t).

(4)
This can be more efficient than an incremental

Transformer (Ma et al., 2019) that refreshes the
encoder for every input word, since our chunk-
based translation refreshes the encoder for every
input chunk, which usually consists of multiple
words.

3.3 Chunk Segmentation
We use constituent labels for our rule-based chunk
segmentation as follows.

3.3.1 Incremental Constituent Label
Prediction

We predict the label of a syntactic constituent com-
ing after a sentence prefix at the current time-step.
We call this process Incremental Constituent La-
bel Prediction (ICLP). Here, we define this next
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ICLP

I  bought 

watashi wa

ICLPNMT

VP

ICLP

I I bought a I  bought  a pen

NN

I bought a pen  . 

ICLP

NP .

NMT

(src) I bought a pen. 
(prefix) watashi wa

watashi wa pen wo katta .

I   

g =1     g =2                                                 g = 3                  g = 4                            g = 5    

Result of full-sentence parser                     (S (NP (PRP I )) (VP (VBD bought) (NP (DT a) (NN pen))))

Output                      watashi wa                                                                                       pen wo katta.                    

Figure 1: One look-ahead ICLP gives constituent labels. When a boundary is detected based on the label and rules,
NMT starts to translate the source subsequence. The previous translation, which is red in the figure, is used as
prefix words for the next translation. EOS is omitted for simplicity in the figure.

segmentation You / can save time by / doing this .
constituent label VP VP NP PP S NP .
syntax tree (S (NP (PRP You)) (VP (MD can) (VP (VB save) (NP (NN time))

(PP (IN by) (S (VP (VBG doing) (NP (DT this))))))) (. .))

Table 3: Example result of one look-ahead ICLP with a minimum segment size of one.

constituent as the one coming next to the sentence
prefix in pre-order tree traversal. However, this
label prediction is not easy without observations
on the next constituent. In this work, we allow one
look-ahead, where we read one more word and pre-
dict the label of the constituent starting from that
word. This causes an additional delay by one word
but improves the prediction accuracy. Suppose we
have an input sequence W = [w1, w2, ..., w|W |].
The one look-ahead ICLP predicts the constituent
label ci upon the observation of wi, as follows:

ci = argmax
c′∈C

p(c′|w≤i), (5)

where C is a set of constituent labels. Only a prefix
word subsequence is fed into the ICLP, so previous
label predictions do not affect later ones.

We can train the ICLP model as a multi-
class classifier using a set of training instances
in the form of prefix-label pairs. One sen-
tence generates several instances for training
data: (w1, c1), (w1, w2, c2), (w1, w2, w3, c3),
(w1, w2, w3, w4, c4), and so on. We implemented
the ICLP model in two different ways using LSTM
(Hochreiter and Schmidhuber, 1997) and BERT
(Devlin et al., 2019).

3.3.2 Segmentation Rules
Table 3 shows an example of a result by the one
look-ahead ICLP. We use one basic and two sup-
plemental rules for chunk segmentation as follows.

• Segment the input coming just before con-
stituents labeled S and VP.

• If the previous label is S or VP, do not segment
the input.

• If the chunk is shorter than the minimum
length, do not segment the input.

In incremental translation from Subject-Verb-
Object to Subject-Object-Verb, the subject can be
translated before observing the verb coming next,
but the verb should be translated after observing the
object. Therefore, the chunk boundary should be
between the subject and verb, not between verb and
object. To achieve this, we employ a simple rule to
segment a chunk just before VP. We also include
S in the rule just as with VP because S (simple
declarative clause) often appears in the form of a
unary branch “(S (VP ...))” as shown in Table 3.

However, in cases such as “can save” in the ex-
ample, VP occurs again immediately after the seg-
mentation before “can.” The basic rule suggests
segmentation before “save,” but it does not seem
appropriate. Therefore, we introduce the minimum
segment size to avoid such over-segmentation as
a hyperparameter to control the accuracy-latency
trade-off. If the hyperparameter is larger than one,
the chunk segmentation after “You” in the example
does not occur.
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4 Experimental setup

4.1 Dataset and preprocessing

We conducted experiments on English-Japanese
(En-Ja) translation. We also tried English-German
(En-De) translation to investigate the difference in
language pairs.

For En-Ja, the model was trained on 17.9 M
sentence pairs from WMT2020 and fine-tuned on
223 K sentence pairs from IWSLT2017. We used
5312 sentence pairs for the development set from
dev2010, tst2011, tst2012, and tst2013 of IWSLT.
We evaluated the model on 1442 sentence pairs
from dev2021 of IWSLT.

For En-De, the model was trained on 4.5 M
sentence pairs from WMT2014 and fine-tuned on
206 K sentence pairs from IWSLT2017. We used
5589 sentence pairs for the development set from
dev2010, tst2011, tst2012, and tst2013 of IWSLT.
We evaluated the model on 1,080 sentence pairs
from tst2015 of IWSLT.

We tokenized English and German sentences
with tokenizer.perl in Moses (Koehn et al.,
2007) and Japanese sentences with MeCab (Kudo,
2005). For each language pair, we used subwords
based on Byte Pair Encoding (BPE) (Sennrich et al.,
2016) with a shared vocabulary of 16 K entries. To
develop the subword vocabulary, we used all of
the in-domain training sentences (IWSLT) and one
million out-of-domain sentences (WMT).

We trained the ICLP models using Penn Tree-
bank 3 (Marcus et al., 1993) for training, exclud-
ing a randomly selected one percent of sentences
reserved for the development set. We used NAIST-
NTT TED Talk Treebank (Neubig et al., 2014) for
the evaluation set. The number of training, develop-
ment, and test instances (e.g., the number of labels
to be predicted) were 2.8 M, 27.9 K, and 21.9 K,
respectively. Note that multiple ICLP instances are
induced from what a single parse tree generates.

4.2 Model settings

We compared the following four models. All of
them were based on the Transformer-base (Vaswani
et al., 2017).

wait-k
The range of k is [2, 4, 6,..., 30].

Meaningful Unit
The hyperparameter is p, which is the thresh-
old of the probability of a boundary. The

ranges of p are [0.5, 0.1, 0.15,..., 0.95],
[0.99, 0.991, 0.992,..., 0.999], and [0.9991,
0.9992,..., 0.9999]. Monotonic translation
of Meaningful Unit was generated from the
fine-tuning dataset by the fine-tuned NMT
model. We used their refined Meaningful Unit
method, which improved the translation qual-
ity at low latency (Zhang et al., 2020)1. They
used a two look-ahead boundary predictor in
their experiments. We additionally tried a one
look-ahead predictor because it is not certain
how many future words should be used for the
predictor.

Fixed-size segmentation This simply segments
an input with a fixed length specified by a
hyperparameter f, which means the boundary
comes every f subwords or words. The range
of f is [2, 4, 6,..., 30] for words and [4, 8,
12,..., 60] for subwords.

ICLP
The hyperparameter is m, which means the
minimum number of words in one segment.
The range of m is [1, 2, 3, . . . , 29].

We controlled hyperparameters to adapt to a
wide range of latency. The hyperparameter is given
both in the training and at the inference time for
wait-k, but it is given only at the inference time
for other models. Therefore, we trained the wait-k
model for each kwhile in other approaches a single
NMT model is commonly used.

We used fairseq (Ott et al., 2019) to implement
these models and basically followed the official
baseline for IWSLT 20212,3 to set the hyperparam-
eters. We saved checkpoints every 5000 updates
for pre-training and every 200 updates for fine-
tuning. Other hyperparameters were the same for
pre-training and fine-tuning. We stopped training
early with patience 4. The max-tokens for the mini
batch size was 4096, and weights were updated

1Zhang et al. (2020) removed the monotonic translations
with a lower score than full-sentence translation. However, it is
rare for a monotonic translation to have a higher score than full-
sentence translation. Consequently, few sentences remained in
our setting. Therefore, we improved the translation quality by
preventing over-translation instead of removing it. Once the
same words are output four times continuously or the target
length becomes four times longer than the source length, we
expand the source prefix.

2https://github.com/pytorch/fairseq/
blob/master/examples/simultaneous_
translation/docs/enja-waitk.md

3https://github.com/pytorch/fairseq/
issues/346
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every 4 mini batches. We set the learning rate to
0.0007 and trained the model on a single GPU. The
last three models used the same NMT model. We
used beam search within chunks in a standard way
and chose 1-best hypotheses at the end of chunk
translation. The beam size was four for the chunk-
based and full-sentence models. We used greedy
decoding for wait-k.

We implemented two types of ICLP models as
mentioned earlier. For the LSTM-based ICLP, we
used two-layered unidirectional LSTMs to encode
an input sentence with a fully connected layer
for the constituent label prediction. The numbers
of dimensions for embedding and hidden states
are 512. We tokenized English sentences using
tokenizer.perl in Moses and Byte Pair En-
coding (Sennrich et al., 2016) with a vocabulary of
16 K entries. For the BERT-based ICLP, we used a
BERT-based classifier with an additional fully con-
nected layer over the [CLS] token, implemented
using Huggingface transformers (Wolf et al., 2020)
with a pre-trained model bert-base-uncased
and the corresponding subword tokenizer. For both
models, the input was a subword sequence, so the
constituent label prediction was made upon the
observation of an end-of-word subword. The fol-
lowing training conditions were commonly applied
to both models: learning rate of 5e-5, training batch
size of 512 instances, checkpoints saved at the end
of every epoch, and early stopping with the pa-
tience of three epochs.

4.3 Evaluation

We used SimulEval (Ma et al., 2020a) to evaluate
the quality and latency of simultaneous translation.
BLEU (Papineni et al., 2002) was used to evaluate
quality. We used Average Lagging (AL) (Ma et al.,
2019) to evaluate the latency. AL is widely used
and defined by the following equation:

ALg(X,Y ) =
1

τg(|X|)

τg(|X|)∑

t=1

g(t)− t− 1

γ
. (6)

τg(|X|) is the decoding step when the source sen-
tence finishes. It counts latency up to the τg(|X|)
th target token predicted just after reading the final
source token. γ is defined as |Y |/|X|. When the
source length |X| equals target length |Y |, AL of
wait-k equals its k. In this experiment, the latency
was calculated on character level for En-Ja, and
word level for En-De.

2 4 6 8 10 12 14 16
AL

8

10

12

14

16

18

BL
EU waitk

MU1
MU2
fixed (subword)
fixed (word)
VP (BERT)
VP+S (BERT)
full-sentence

Figure 2: Scatter plot of BLEU and AL (En-Ja). MU1
and MU2 correspond to Meaningful Unit with one and
two look-ahead respectively.
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ra
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MU2
fixed (subword)
fixed (word)
VP (BERT)
VP+S (BERT)
full-sentence

Figure 3: Scatter plot of length ratio and AL (En-Ja)

4.4 Results

We illustrate the results of English-Japanese trans-
lation in Figure 2. Our proposed method outper-
formed baselines in a wide range of AL. Most of
the points of the proposed method appear to the
upper-left of the other methods, thus showing the
best performance. We compared the use of seg-
mentation rules based on VP and VP+S. The points
shifted to the left by adding S as boundary be-
cause it increased the number of boundaries and
decreased latency. Although we tried the different
look-ahead lengths of one and two for the boundary
predictor of Meaningful Unit, our proposed model
outperformed both of these models in a wide range
of latency.

The difference between wait-k and the models
using the full-sentence translation model was large
in the quality-latency trade-off. Surprisingly, the
fixed-size segmentation was also effective. When
the segment size was fixed, it did not make a large
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Figure 4: Segment length distribution of fixed-size seg-
mentation with 16 subwords for AL 7.16 (En-Ja test)

Label AL BLEU
Fixed (16 subwords) 7.16 16.34
1 look-ahead MU 7.26 16.53
1 look-ahead ICLP (VP+S) 7.23 17.22

Table 4: BLEU results for AL close to 7

difference in the result, regardless of whether the
unit was a subword or a word.

5 Analysis

5.1 Length ratio
Figure 3 shows the length ratios of translation hy-
potheses and references with different latency pa-
rameters. Too large a ratio decreases the BLEU
score and makes the content delivery difficult both
in text (subtitles) and speech (text-to-speech).

The length ratio of wait-k was unstable com-
pared to other models because it was trained indi-
vidually for each k.

Except for wait-k, the length ratios were large
in the range of small latency, probably due to the
condition mismatch between training and inference.
These NMT models were trained on full sentences,
but they were used to translate short segments in
the inference. Therefore, they tend to output longer
segment translations than expected. Their ratios
gradually decrease as AL increases and the length
of segments becomes closer to the length of full
sentences.

5.2 Segment length distribution
Figures 4,5 and 6 show the distributions of source
segment length in the En-Ja test set for which AL
is close to 7.2. Table 4 shows their corresponding
AL and BLEU of each model. The length was
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Figure 5: Segment length distribution of one look-
ahead Meaningful Unit for AL 7.26 (En-Ja test)
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Figure 6: Segment length distribution of one look-
ahead ICLP model dividing with label S and VP for
AL 7.23 (En-Ja test)

calculated as the number of subwords in a segment,
and the previous segment was concatenated to the
next segment when the previous segment has no
translation output.

Segmentation with fixed size 16 has some seg-
ments shorter than size 16 because the sentence
length is not always a multiple of 16.

Compared with ICLP model, Meaningful Unit
has wider distribution, and the most segments con-
sist of two subwords. These short segments have
less context information and can output longer seg-
ment translation than expected. This would be one
of the reason why our proposed method outper-
formed Meaningful Unit.

5.3 Controlling latency
In Figures 7 and 8, each plot is labeled by the corre-
sponding value of the hyperparameter of inference.
It is difficult to control latency for Meaningful Unit
as shown in the figure. BLEU scores of hyperpa-
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Figure 7: BLEU and AL with different chunk segmen-
tation thresholds for Meaningful Unit
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Figure 8: BLEU and AL with different chunk size
thresholds for the proposed method

rameters from 0.9996 to 0.9999 were also the same
as that of a full-sentence translation model.

In contrast, our proposed method can easily con-
trol latency because it uses the minimum chunk
length as an intuitive hyperparameter to adjust it.

5.4 How many words to wait
Compared with the fixed-size segmentation model,
our proposed model and Meaningful Unit have a
disadvantage in AL, which is caused by the look-
ahead approach. Despite this disadvantage, our
proposed approach outperformed the fixed-size seg-
mentation in a wide range of AL. This means the
benefit of looking at the future words and finding
a better boundary outweighed the above disadvan-
tage.

5.5 Performance of ICLP
Tables 5 and 6 show the results in precision and
recall of the one look-ahead ICLP models. The
LSTM-based ICLP was better in precision, but the

Label Precision Recall F1
NP 0.90 0.94 0.92
VP 0.89 0.97 0.93
NN 0.95 0.97 0.96
, 0.98 1.00 0.99
PP 0.85 0.93 0.89
S 0.87 0.52 0.65

Table 5: Results of label prediction (BERT)

Label Precision Recall F1
NP 0.85 0.89 0.87
VP 0.91 0.94 0.92
NN 0.93 0.92 0.92
, 0.98 1.00 0.99
PP 0.78 0.94 0.86
S 0.84 0.52 0.64

Table 6: Results of label prediction (LSTM)

Label Precision Recall F1
NP 0.62 0.85 0.72
VP 0.75 0.80 0.78
NN 0.60 0.78 0.68
, 0.41 0.34 0.37
PP 0.50 0.47 0.48
S 0.77 0.62 0.69

Table 7: Results of label prediction (BERT) without
look-ahead

BERT-based ICLP was better in recall for VP. Fig-
ure 9 compares them in the downstream simultane-
ous translation. The lines connected by dots nearly
overlapped, so there was no large difference in
BLEU score. LSTM is more efficient than BERT
in incremental processes, so it is suitable for practi-
cal usage.

Table 7 shows the results by the ICLP model
without one look-ahead approach. Compared with
Table 5, the scores are much lower. One look-
ahead approach was important to improve its per-
formance.

5.6 En-De translation

We conducted additional experiments in En-De
translation to investigate the performance in a dif-
ferent language. German is another language with
different word order from English especially in
verbs and also suffers from the reordering problem.
Figure 10 shows the results. This is almost the op-
posite of the results of the En-Ja translation. The
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Figure 9: Comparison between the use of LSTM- and
BERT-based ICLP
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Figure 10: Scatter plot of BLEU and AL (En-De)

proposed boundary decision rules used for En-Ja
translation were not so effective for En-De transla-
tion, so we need to find other rules to detect bound-
aries in En-De translation.

6 Conclusion

We proposed a novel segmentation method for si-
multaneous translation that uses simple rules and
ICLP. Our proposed method is simple, and it outper-
formed the baselines in the quality-latency trade-off
in En-Ja translation. On the other hand, the pro-
posed method did not work effectively in En-De
translation due to the smaller word order differ-
ences than those in En-Ja translation.

In future work, we expect to extract segmenta-
tion rules automatically and apply these rules to
other language pairs as well.
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Abstract

Context-aware neural machine translation
(NMT) incorporates contextual information of
surrounding texts, that can improve the transla-
tion quality of document-level machine trans-
lation. Many existing works on context-aware
NMT have focused on developing new model
architectures for incorporating additional con-
texts and have shown some promising results.
However, most existing works rely on cross-
entropy loss, resulting in limited use of con-
textual information. In this paper, we propose
CorefCL, a novel data augmentation and con-
trastive learning scheme based on coreference
between the source and contextual sentences.
By corrupting automatically detected coref-
erence mentions in the contextual sentence,
CorefCL can train the model to be sensitive to
coreference inconsistency. We experimented
with our method on common context-aware
NMT models and two document-level transla-
tion tasks. In the experiments, our method con-
sistently improved BLEU of compared models
on English-German and English-Korean tasks.
We also show that our method significantly im-
proves coreference resolution in the English-
German contrastive test suite.

1 Introduction

Neural machine translation (NMT) has achieved
impressive performances on translation quality,
due to the introduction of novel deep neural net-
work (DNN) architectures such as encoder-decoder
model (Cho et al., 2014; Sutskever et al., 2014),
and self-attentional networks like Transformer
(Vaswani et al., 2017). The state-of-the-art NMT
systems are now even comparable with human
translators in sentence-level performance.

However, there are a number of issues on
document-level translation (Läubli et al., 2018).
These include pronoun resolution across sentences
(Guillou et al., 2018), which needs cross-sentential
contexts. To incorporate such document-level con-

textual information, several methods for context-
aware NMT have been recently proposed. Many
of the works have focused on introducing new
model architectures like multi-encoder models
(Voita et al., 2018) for encompassing contextual
texts of the source language. These works have
shown significant improvement in addressing dis-
course phenomena such as anaphora resolution
mentioned above, as well as moderate improve-
ments in overall translation quality (Lopes et al.,
2020).

Despite some promising results, most of the ex-
isting works have trained the model by minimizing
cross-entropy loss, making the model rather exploit
contextual information implicitly such as a form
of regularization (Kim et al., 2019; Li et al., 2020).
Data augmentation for context-aware NMT is also
an important issue, despite that recent works have
focused on back-translation (Huo et al., 2020).

In this paper, we propose a Coreference-based
Contrastive Learning for context-aware NMT
(CorefCL), a novel data augmentation and con-
trastive learning scheme leveraging coreference in-
formation. Cross-sentential coreference between
the source and target sentence can be a good source
of training signal for context-aware NMT since it
occurs when one or more expressions refer to the
same entity, thus reflects dependencies between the
source and contextual sentences.

CorefCL starts by conducting automatic anno-
tation of coreference between the source and con-
textual sentences. Then, the referred mentions on
contextual sentences are corrupted by removing
and/or replacing tokens to generate contrastive ex-
amples. With those contrastive examples, we intro-
duce a contrastive learning scheme equipped with
a max-margin loss which encourages the model to
discriminate between the original examples and the
contrastive ones. By doing so, CorefCL makes the
model more sensitive to cross-sentential contextual
information.
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We experimented with CorefCL on three
English-German corpora and one English-Korean
document-level corpus, including WMT, IWSLT
TED talk, and OpenSubtitles’18 English-German
subtitles translation task, and a web-crawled
English-Korean subtitles translation. In all trans-
lation tasks, CorefCL consistently improves over-
all BLEU over baseline models without CorefCL.
On experiments with three common context-aware
model settings, we show that improvements by
CorefCL are also model-agnostic. Finally, we show
that the proposed method significantly improved
the performance on ContraPro (Müller et al., 2018),
an English-German contrastive coreference bench-
mark.

2 Related Works

2.1 Context-aware NMT

Context-aware machine translation has been vigor-
ously studied to exploit the crucial context infor-
mation in surrounding sentences. Recent works
have shown that contextual information can help
the model to generate not only more consistent but
also more accurate translation (Smith, 2017; Voita
et al., 2018; Müller et al., 2018; Kim et al., 2019).

In particular, Voita et al. (2018) introduced a
context-aware Transformer model which is able to
induce anaphora relations, Miculicich et al. (2018)
showed that a model using cross-sentential con-
textual information significantly outperforms in
document-level translation tasks, and Yun et al.
(2020) insisted that context-aware models record
the best performance especially in spoken language
translation tasks where mandatory information tend
to be sparse over multiple sentences.

The simplest method for context-aware machine
translation is to concatenate all surrounding sen-
tences and treat the concatenated sequence as a
single sentence (Tiedemann and Scherrer, 2017).
Although the concatenation strategy boosted Trans-
former architectures in multiple tasks (Tiedemann
and Scherrer, 2017; Voita et al., 2018; Yun et al.,
2020), it lagged behind efficiency as the Trans-
former architecture has limited long-range depen-
dency (Tang et al., 2018).

To improve the efficiency, an additional encoder
module is introduced to encode only the context
sentences (Libovický and Helcl, 2017; Jean et al.,
2017; Voita et al., 2018). Additionally, hierarchical
structures also have been introduced because the
context sentences do not have the same significance

as the input sentences (Miculicich et al., 2018; Yun
et al., 2020).

2.2 Coreference and NMT

The difference in coreference expressions among
languages (Zinsmeister et al., 2017; Lapshinova-
Koltunski et al., 2020) gives MT systems a chal-
lenge on pronoun translation (Bawden et al., 2018).
Several recent works have attempted to incorpo-
rate coreference information (Ohtani et al., 2019).
The closest work to ours is (Stojanovski and
Fraser, 2018) which also adds noise on creating
a coreference-augmented dataset, while we do not
add oracle coreference information directly to the
training data.

2.3 Data augmentation for NMT

One of the most common methods for data aug-
mentation in NMT is back-translation that gener-
ates pseudo-parallel data from monolingual corpora
using intermediate NMT models (Sennrich et al.,
2016a). Generally, back-translation is conducted
at sentence-level, however, several works have pro-
posed document-level back-translation (Sugiyama
and Yoshinaga, 2019; Huo et al., 2020).

On the other hand, sentence corruption by remov-
ing or replacing word(s) has also been widely used
for improving model performance and robustness
(Lample et al., 2018; Voita et al., 2019). Inspired
by these works, we choose sentence corruption for
contrastive learning.

2.4 Contrastive Learning

Contrastive learning is to learn a representation by
contrasting positive and negative (contrastive) ex-
amples. It has succeed in various machine learning
fields including computer vision (Chen et al., 2020)
and natural language processing (Mikolov et al.,
2013; Wu et al., 2020; Lee et al., 2021).

Recently, several approaches to contrastive learn-
ing for NMT have also been studied. Yang et al.
(2019) proposed strategies for generating word-
omitted contrastive examples and leveraging con-
trastive learning for reducing word omission er-
rors in NMT. Pan et al. (2021) applied contrastive
learning for multilingual MT and employed data
augmentation for obtaining both the positive and
negative training examples.

While these works have been conducted in
sentence-level NMT settings, we focus on extend-
ing contrastive learning in context-aware NMT.
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3 Context-aware NMT models

In this section, we briefly overview context-aware
NMT methods and describe our baseline models
which are also commonly adopted in recent works.

Generally, a sentence-level (context-agnostic)
NMT model takes an input sentence in a source
language and returns an output sentence in a target
language. On the other hand, a context-aware NMT
model is designed to handle surrounding contextual
sentences of source and/or target sentences. We
focus on leveraging the contextual sentences of the
source language.

Throughout this work, we consider the Trans-
former (Vaswani et al., 2017) as a base model
architecture by following the majority of the re-
cent works on context-aware NMT. Transformer
consists of a stack of self-attentional layers in
which a self-attention module is followed by a feed-
forward module for each layer. Here we list four
Transformer-based configurations that we used in
the experiments:

• sent-level: As a baseline, we have experi-
mented with the basic Transformer model
which does not use any contextual sentences.

• concat: This is a straightforward approach to
incorporate contextual sentences without mod-
ifying the Transformer model (Tiedemann and
Scherrer, 2017). This concatenates all con-
textual sentences and an input sentence with
special tokens between sentences.

• multi-enc: This has an extra encoder for en-
coding contextual sentences separately. We
follow the model introduced in (Voita et al.,
2018) which obtain a hidden representation of
contextual sentences by weight-shared Trans-
former encoder. The model combines the en-
coded source and context representations us-
ing a source-to-context attention mechanism
and a gated summation.

• multi-enc-hier: To represent multiple con-
textual sentences effectively, hierarchical en-
coders for contextual sentences have been
proposed (Miculicich et al., 2018; Yun et al.,
2020). In this configuration, the context rep-
resentation is calculated in token-level first,
then finally processed in sentence-level. We
experimented with the model of (Yun et al.,
2020) in this paper.

All the model structures are described in Figure 1.

×𝑁 ×𝑁

(𝑁−1) ×

(𝑁− 2) ×

(a) sent-level (b) concat

(c) multi-enc

(d) multi-enc-hier

Transformer Layer

Encoder Output

Token Embeedings

Source Sentence

Context Sentence

Source-Context Integration

Sentence-level Pooling

Parameter Sharing

Figure 1: The structure of compared context-aware
NMT models.

4 Our Method: CorefCL

In this section, we explain the main idea of Core-
fCL, a data augmentation and contrastive learning
scheme leveraging coreference between the source
and contextual sentences.

4.1 Data Augmentation Using Coreference

Generally, constrastive learning encourages a
model to discriminate ground-truth and contrastive
(negative) examples. In existing works, a number
of approaches have been studied for obtaining con-
trastive examples:

• Corrupting the sentence by randomly remov-
ing or replacing one or more tokens in the
sentence. (Yang et al., 2019)

• Choosing an irrelevant example in the batch
or dataset. (Pan et al., 2021)

• Perturbations on representation space. Usu-
ally output vector of encoder or decoder is
used. (Lee et al., 2021)

CorefCL basically takes a similar approach to
the first one, by the sentence corruption. However,
unlike previous works that modify the source sen-
tence, CorefCL modifies the contextual sentences
to form contrastive examples. Specifically, we cor-
rupt cross-sentential coreference mentions which
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Context She opened her cupboard and gave me a petticoat.

Source I should wear it.

She opened her cupboard and gave me a petticoat. I should wear it.

She opened her cupboard and gave me a [MASK]. I should wear it.

Context’ She opened her cupboard and gave me a .
She opened her cupboard and gave me a glass.

(omission)
(replacement)

Source I should wear it.

(a) Original source and context sentences

(b) Annotate coreference chain(s)

(c) Mask word(s) in antecedents

(d) Generate contrastive examples

Figure 2: Data augmentation process of CorefCL.

occur between the source and its contextual sen-
tences. This is based on the intuition that coref-
erence is one of the core components of coherent
translation.

More formally, steps to forming contrastive ex-
amples in CorefCL are as follows (see also Figure
2):

1. Annotate the source documents automatically.
We use NeuralCoref1 to identify the coref-
erence mentions between the source and its
previous sentences as contextual sentences

2. Filter the examples with cross-sentential coref-
erence chain(s) between the source and con-
textual sentences. Around 20 to 30% of the
training corpus is annotated in this way. See
Section 5.1 for details

3. For each coreference chain, mask every word
in the antecedents with a special token. We
also keep the original examples for training

4. Masked words are replaced randomly with
other words in vocabulary (word replacement),
or omitted (word omission)

In the experiments, we take both of the corrup-
tion strategies. Precisely, the masked words are
removed with a probability of 0.5, or randomly
replaced otherwise. We found that this method is
more effective compared to the methods using only
one of the two corruption strategies. Please refer to
the ablation study in Section 5.5 for more details.

1https://github.com/huggingface/neuralcoref

4.2 Contrastive Learning for Context-aware
NMT

Context-aware NMT models can implicitly capture
dependencies between the source and contextual
sentences. CorefCL introduces a max-margin con-
trastive learning loss to train the model to explicitly
discriminate inconsistent contexts. This contrastive
loss also encourages a model to be more sensitive
to the contents of contextual sentences.

Formally, given the source x, target y, n con-
textual sentences C = [c1, · · · , cn] in the data D,
we first train the model by minimizing a negative
log-likelihood loss, which is a common MT loss:

LMT =
∑

(x,y,C)∈D
−logP (y|x, C).

Once the model is trained with MT loss, we
fine-tune the model with a contrastive loss. With
a contrastive version of context C̃, our contrastive
learning objective is minimizing a max-margin loss
(Huang et al., 2018; Yang et al., 2019):

LCL =
∑

(x,y,C,C̃)∈D
max{η + logP (y|x, C̃)

− logP (y|x, C), 0}.
Minimizing LCL encourages the log-likelihood

of the ground-truth to be at least η larger than that
of the contrastive examples. In our formulation, we
want the model to be more sensitive to the subtle
changes in the contextual sentences.

The contrastive loss is jointly optimized with
MT loss since we empirically found that the joint
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optimization has yielded better performance than
minimizing CL loss only as similar to (Yu et al.,
2020):

L = (1− α)LMT + αLCL,

where α ∈ [0, 1] is a weight for balancing be-
tween contrastive learning and MT loss. For sim-
plicity, we fixed α during fine-tuning.

5 Experiments

5.1 Datasets

We experimented with CorefCL on various
document-level parallel datasets: i) 3 English-
German datasets including WMT document-level
news translation2 (Barrault et al., 2019), IWSLT
TED talk 3 (Cettolo et al., 2017), OpenSubti-
tles’184 (Lison et al., 2018), and ii) our web-
crawled English-Korean subtitles corpus.

For all tasks, we take every 2 preceding sen-
tences as contextual sentences and we only con-
sider sentences within the same document (article,
talk, movie, one episode of TV programs, etc.) of
the source sentence. If split of the validation and
the test set is not presented in the data, we apply
document-based split to ensure that training and
validation/test data is well-separated. Details of
datasets are listed as follows:

WMT We use a set of parallel corpora anno-
tated with document boundaries which is released
in WMT’19 news translation task. Specifically,
we combine Europarl v9, News Commentary v14,
and MODEL-RAPID to form a training set con-
taining 3.7M examples and 0.85M with cross-
sentential coreferences. For validation and test sets,
we used newstest2013 and newstest2019 which
contain 3.05k and 2.14k examples respectively.

IWSLT The IWSLT dataset consists of transcrip-
tions of TED talks in a variety of languages. We
used the 2017 version of the training set, a combi-
nation of dev2010, tst2010, tst2015 as a validation
set, and tst2017 as a test set. The resulting dataset
consists of 232k (50.3k with cross-sentential coref-
erences), 3.5k, 1.2k examples of train, dev, test sets
respectively.

OpenSubtitles We also choose the English-
German pair of OpenSubtitles2018 corpora. The
raw corpus contains 24.4M parallel sentences. We

2http://www.statmt.org/wmt19/translation-task.html
3https://wit3.fbk.eu/home
4https://opus.nlpl.eu/OpenSubtitles-v2018.php

follow the filtering methods in (Voita et al., 2019)
by removing pairs that have a time overlap of sub-
title frames less than 0.9. We also use separate
documents for validation / test sets, resulting in
3.9M (1.01M with cross-sentential coreferences),
40.7k, 40.5k examples for train / validation / test
sets respectively.

En-Ko Subtitles For English-Korean experi-
ments, we first crawled approximately 6.1k bilin-
gual subtitle files from websites such as Gom-
Lab.com. Since sentence pairs of these subtitles are
already soft-aligned by the creators so we applied
a simple time-code based heuristics to filter exam-
ples. The final data contains 1.6M (0.24M with
cross-sentential coreferences), 155.6k, and 18.1k
examples of consecutive sentences in the training,
validation, and test sets respectively.

For preprocessing, all English and German cor-
pus is tokenized first with Moses (Koehn et al.,
2007) tokenizer5. We then apply the BPE (Sen-
nrich et al., 2016b) using SentencePiece6, and the
size of the merge operation is approximately 16.5k.
We also put a special token [BOC] at the beginning
of contextual sentences to differentiate them from
the source sentences.

5.2 Settings
We use model hyperparameters, such as the size of
hidden dimensions and the number of hidden lay-
ers as same the transformer-base (Vaswani
et al., 2017), since all of the compared models are
based on Transformer. Specifically, we set 512 as
the hidden dimension, the number of layers is 6,
the number of attention heads is 8, and the dropout
rate is set to 0.1.

All models are trained with ADAM (Kingma
and Ba, 2014) with different learning rates for each
dataset. We employ early stopping of the training
when the MT loss on the validation set does not im-
prove. We start training each baseline model from
scratch with random initialization and document-
level dataset. Note that all the baseline models are
not trained using iterative training as (Zhang et al.,
2018; Huo et al., 2020) which first trains the model
from sentence-level task first, then document-level
task. All the evaluated models are implemented on
top of the transformers7 framework.

We measure the translation quality by the BLEU
score (Papineni et al., 2002). For scoring BLEU,

5https://github.com/moses-smt/mosesdecoder
6https://github.com/google/sentencepiece
7https://github.com/huggingface/transformers
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System WMT OpenSubtitles IWSLT En-Ko Subtitles
detok. char.

sent-level 22.7 27.6 29.3 8.6 19.2
concat 22.4 28.3 29.7 9.3 22.1
+ CorefCL 23.5 (+1.1) 29.1 (+0.8) 30.9 (+1.3) 10.9 (+1.6) 24.9 (+2.8)
multi-enc 23.1 28.6 29.8 9.2 21.7
+ CorefCL 24.3 (+1.2) 29.8 (+1.4) 31.1 (+1.3) 10.8 (+1.6) 24.4 (+2.7)
multi-enc-hier 24.4 29.1 30.0 10.3 23.1
+ CorefCL 25.4 (+1.0) 30.2 (+1.1) 31.1 (+1.2) 11.7 (+1.4) 25.7 (+2.6)

Table 1: Corpus-level BLEU scores of compared models on different tasks. For the En-Ko subtitles task, we
list both detokenized (detok.) and character-level (char.) scores. Improvements by CorefCL are denoted in ().
Underlined score means that the model has the largest BLEU improvements among models in the same task.

we use the sacreBLEU (Post, 2018) case-sensitive,
detokenized scores for En-De, and case-insensitive
scores with intl tokenizer for En-Ko task. We
also report case-insensitive char-level scores on
En-Ko for comparison.

5.3 Overall BLEU Evaluation

We display the corpus-level test BLEU scores of
all compared models on different tasks in Table
1. Among the baseline systems, all context-aware
models show moderate improvements over the
sentence-level (sent-level) baseline. These results
are comparable to that of Huo et al. (2020) on the
IWSLT task except for multi-enc-hier, and Yun
et al. (2020) on OpenSubtitles task. One exception
is a single-encoder model (concat) on WMT task,
which seems due to the longer average sentence
length.

We evaluated CorefCL by fine-tuning the
context-aware models. Results show that models
with CorefCL outperformed their vanilla counter-
parts, with the BLEU gain of up to 1.4 in En-De
tasks, and 1.6/2.8 (detokenized/char-level BLEU)
in the En-Ko subtitles task.

We observed that while CorefCL consistently im-
proves BLEU on all tasks, it achieves better results
on IWSLT and En-Ko subtitles tasks. Since im-
provements on much larger datasets like WMT and
OpenSubtitles are smaller, we suggest that Core-
fCL also works as a regularization.

5.4 Results on English-German Contrastive
Evaluation Set

To assess how CorefCL improves the ability to deal
with pronoun-related translations more in detail,
we experiment our method with ContraPro.8 Con-

8https://github.com/ZurichNLP/ContraPro

System Trained on
WMT OpenSubtitles

BLEU Acc. BLEU Acc.
sent-level 19.3 47.9 29.6 48.4
concat 19.9 49.7 30.5 54.4
+ CorefCL 20.3 51.2 32.3 57.9
multi-enc-hier 20.4 50.9 31.7 57.3
+ CorefCL 21.9 52.4 33.6 60.5

Table 2: BLEU and pronoun resolution accuracies on
ContraPro (Müller et al., 2018) En-De contrastive test
set.

traPro is a contrastive test suit for En-De pronoun
translation introduced by Müller et al. (2018). The
evaluation is done by letting the model scores the
German sentence with correct and incorrect pro-
noun translation, given the source and contextual
English sentence. The accuracy is calculated by
counting the number of correctly scored examples
(i.e. correct examples that received a higher score
than their incorrect counterpart).

We evaluate the models trained with WMT and
OpenSubtitles tasks. We also list BLEU scores of
En-De translation using the English source text in
ContraPro. As shown in Table 2, CorefCL signifi-
cantly improves the baselines in scoring accuracy
for all models by up to 5.5%, as well as slight im-
provements in BLEU scores.

One interesting finding is that CorefCL also
achieved substantial accuracy gain on the models
trained on WMT. Since the ContraPro is created
from OpenSubtitles, WMT-trained models would
yield lower performance because of domain shift
between training and testing. Table2 clearly shows
the performance drop in BLEU, nevertheless, mod-
erate improvements in accuracy can also be ob-
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served on WMT-trained models.

5.5 Analysis

System BLEU Accuracy
multi-enc-hier 31.7 57.3
+ CorefCL 33.6 60.5
- Word omission 32.4 59.4
- Word replacement 32.3 58.6

Table 3: Ablation study on coreference corruption
strategy. All systems are trained on OpenSubtitles
English-German dataset and evaluated on ContraPro.

Ablation Study CorefCL uses the two corrup-
tion strategies for generating contrastive corefer-
ence mentions; word omission and word replace-
ment. To make a better understanding of influence
of these strategies, we evaluate CorefCL of differ-
ent settings of these strategies.

As shown in Table.3, using both types of cor-
ruptions results in better performance. Removing
one of the two strategies slightly degrades both the
pronoun resolution accuracy and BLEU. Although
not being significant, removing the word replace-
ment has more impact on accuracy. This suggests
that a standard context-aware model, at least for
multi-enc-hier is less sensitive to word substitution.
The word replacement strategy can complement
this behavior as resulted in better performance.

Context What'll I do with the coat? 
When you're through with it, send it to the police.

Source It... It didn't belong to her. 

multi-enc-hier Sie... sie gehörte nicht zu ihr.

+ CorefCL Er… er ist nicht ihr gehörte.

Reference Er... er gehörte ihr nicht.

Figure 3: Example translation with and without Core-
fCL.

Qualitative Example We display a sample from
ContraPro corpus and its translations made by
multi-enc-hier model trained with OpenSubtitle
task. In this example, since "coat" is translated as
Mantel which is a masculine noun thus Er would
be adequate translation of "It" instead of Sie which
is feminine. While multi-enc-hier incorrectly trans-
lated "It" as Sie, the model fine-tuned with CorefCL
correctly resolved it as Er.

In practice, context-aware models that do not
leverage target-side contexts struggle to maintain
these kinds of coreference consistency (Müller
et al., 2018; Lapshinova-Koltunski et al., 2019)

because of the asymmetric nature of grammatical
components and data distributions. Results show
that CorefCL can complement the limitation of
source-only context-aware models.

6 Conclusions and Future Work

We have presented a data augmentation and con-
trastive learning scheme based on coreference for
context-aware NMT. By leveraging coreference
mentions between the source and target sentence,
CorefCL effectively generates contrastive exam-
ples for applying contrastive learning on context-
aware NMT models. In the experiments, CorefCL
consistently improves the translation quality and
pronoun resolution accuracy.

As future work, we plan to extend CorefCL to
target contexts since maintaining coreference con-
sistency needs both the source and the target con-
texts. It would be also interesting that applying
CorefCL for fine-tuning pre-trained big language
models like BART (Lewis et al., 2020) or T5 (Raf-
fel et al., 2020) for downstream document-level
MT tasks.
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