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Abstract

This work revisits the information given by
the graph-of-words and its typical utilization
through graph-based ranking approaches in
the context of keyword extraction. Recent,
well-known graph-based approaches typically
employ the knowledge from word vector repre-
sentations during the ranking process via popu-
lar centrality measures (e.g., PageRank) with-
out giving the primary role to vectors’ distri-
bution. We consider the adjacency matrix that
corresponds to the graph-of-words of a target
text document as the vector representation of
its vocabulary. We propose the distribution-
based modeling of this adjacency matrix us-
ing unsupervised (learning) algorithms. The
efficacy of the distribution-based modeling ap-
proaches compared to state-of-the-art graph-
based methods is confirmed by an extensive
experimental study according to the F1 score.
Our code is available on GitHub1.

1 Introduction

Automatic Keyword Extraction (AKE) intends to
discover a limited but concise set of words that
reflect the main topics discussed within a text docu-
ment, avoiding the expensive and time-consuming
process of manual annotation by experts (Vega-
Oliveros et al., 2019). Besides, many keyphrase
extraction methods form and rank the candidate
phrases using the previously scored candidate uni-
grams by a keyword extractor, as keyphrases con-
sist of n-grams with n ≥ 1 (Wan and Xiao, 2008a;
Hasan and Ng, 2014; Florescu and Caragea, 2017).

Both supervised and unsupervised approaches
are quite famous for the AKE task (Papa-
giannopoulou and Tsoumakas, 2020). During the
last two years, the research community pays signif-
icant attention on (supervised) deep learning meth-
ods (Chan et al., 2019; Wang et al., 2019; Zhao

1https://github.com/epapagia/KE_
adjacency_matrix_modelling

and Zhang, 2019; Chen et al., 2020) as the per-
formance of the unsupervised ones shows a rela-
tive stagnation (or minimal improvements) com-
pared to the supervised techniques. The use of stan-
dard external tools for grammatical/syntactic anal-
ysis and information sources such as (pre-trained)
static word embeddings (Bennani-Smires et al.,
2018; Mahata et al., 2018) that have a bias over
the corpora domains used for training may also
exacerbate the problem. Moreover, most meth-
ods suggest a fixed or relative with the document
length number of keywords dissociating the num-
ber of returned keywords from the number of topics
discussed in the document (Rousseau and Vazir-
giannis, 2015). However, unsupervised methods
are of timeless interest. They often are domain
or language-independent and do not need any la-
belled data to train models compared to the super-
vised ones. The graph-based approaches (i.e., the
most popular category of the unsupervised AKE)
consider the “central” nodes of a graph-of-words
as the most representative ones usually according
to (variations of) the PageRank (Brin and Page,
1998) centrality, i.e., the most effective graph-based
ranking method employed by the majority of the
state-of-the-art (Mihalcea and Tarau, 2004; Wan
and Xiao, 2008b; Florescu and Caragea, 2017;
Vega-Oliveros et al., 2019). Additionally, tradi-
tional (semi-)supervised, or even deep learning ap-
proaches (Wang and Li, 2017; Gollapalli et al.,
2017; Ye and Wang, 2018) utilize the unsupervised
methods mentioned earlier to improve their perfor-
mance.

This work takes a novel unsupervised path to
keyword extraction revisiting the information pro-
vided by the graph-of-words and its conventional
utilization via PageRank. Inspired by the recent
approach of Papagiannopoulou et al. (2020), we
investigate the effectiveness of the distribution-
based modeling of the adjacency matrix, that cor-
responds to various versions of the (unweighted,

https://github.com/epapagia/KE_adjacency_matrix_modelling
https://github.com/epapagia/KE_adjacency_matrix_modelling
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weighted or/and enhanced with positional infor-
mation) graph-of-words for the target document.
We also propose the use of more advanced unsu-
pervised algorithms to model the main distribu-
tion of the adjacency matrix, determine the num-
ber of the retrieved keywords at document level,
and score/rank the corresponding candidate key-
words. To the best of our knowledge, this is the
first work that proposes such modeling of the adja-
cency matrix using unsupervised machine learning
approaches in the context of keyword extraction.
Our empirical study confirms the efficacy of the
distribution-based modeling approaches (regarding
the F1 score) on six datasets (full-texts of scien-
tific publications, paper abstracts and news articles)
compared to state-of-the-art graph-based methods.

The main contributions of this work are as
follows: (a) We propose multiple ways for the
distribution-based modeling of the adjacency ma-
trix that corresponds to various versions of the
graph-of-words for a target document. Specifically,
we investigate the use of unsupervised (learning)
algorithms to model the distribution of the adja-
cency matrix, score the candidate words, and (b)
discover the appropriate number of keywords (Sec-
tion 3). (c) Our empirical study provides strong
evidence about the relationship between the graph-
based techniques and the proposed ones emphasiz-
ing the cases that the distribution-based modeling
is more promising (Section 4). Finally, Section 2
and 5 present related work on unsupervised AKE
(issues/trends) as well as conclusions and future
directions of our work, respectively.

2 Related Work

Issues. The comprehensive representation of
the information via graphs and the efficiency of
the graph-based ranking methods (e.g., PageRank
(Brin and Page, 1998), HITS (Kleinberg, 1999),
etc.) in many applications (including keyword ex-
traction) led the research community to show a
preference to graph-based AKE using unsupervised
approaches (Papagiannopoulou and Tsoumakas,
2020). The popular TextRank (Mihalcea and Tarau,
2004) first builds an undirected, unweighted graph-
of-words representation and runs the PageRank
algorithm until convergence. In this vein, SingleR-
ank (Wan and Xiao, 2008b), RAKE (Rose et al.,
2010), ExpandRank (Wan and Xiao, 2008b), and
CollabRank (Wan and Xiao, 2008a) are extensions
of TextRank. The first two methods add weights

to edges, equal to the number of co-occurrences of
the two corresponding words within the predefined
window, whereas, the last ones incorporate infor-
mation from relevant documents. Much later, Po-
sitionRank (Florescu and Caragea, 2017) achieved
significantly higher performance proposing a bi-
ased PageRank that considers both the word-word
co-occurrences and the word’s positions. Then,
Biswas et al. (2018) and Vega-Oliveros et al. (2019)
proposed graph-based keyword extraction methods
that combine multiple centrality measures.

Another important issue is choosing the right
number of keywords for a document. Rousseau
and Vazirgiannis (2015) apply the concept of K-
Core on the graph-of-words of a document retain-
ing only the nodes from the main core as keywords.
Their method is parameter-free as the K-Core prin-
ciple adjusts the number of keywords concerning
each graph’s structure. Later, Tixier et al. (2016)
show that retaining only the main core (or truss
(Cohen, 2008)) is suboptimal as the complete set of
a document’s gold keywords cannot appear within
a single subgraph and propose alternative heuristics
(stopping criteria) to remove undesired words.

Trends. Information coming from word embed-
dings (Mikolov et al., 2013) proved useful for the
AKE task. Numerous AKE methods use word em-
beddings (Mnih and Hinton, 2007; Bojanowski
et al., 2017; Joulin et al., 2017) as an (external)
semantic knowledge source. Representative graph-
based approaches are the one of Wang et al. (2015)
and Key2Vec (Mahata et al., 2018) that incorporate
semantic information from pre-trained distributed
word representations and word embeddings trained
on a domain-specific corpus, respectively. Both
methods utilize the information from word em-
beddings through the usual way of graph-based
ranking without giving to the vector representation
of terms the primary role. On the contrary, Papa-
giannopoulou and Tsoumakas (2018) present the
Reference Vector Algorithm (RVA) that uses lo-
cal GloVe (Pennington et al., 2014) word vectors
(i.e., trained only on the target document). Em-
bedRank (Bennani-Smires et al., 2018) uses pre-
trained sentence embeddings, Sent2Vec (Pagliar-
dini et al., 2018), to embed both candidate terms
and documents in the same high-dimensional vec-
tor space. Finally, Papagiannopoulou et al. (2020)
proposed an unsupervised AKE method that uses
the weighted adjacency matrix’s rows as word vec-
tors to model their distribution. The authors show
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that the centre of the distribution is closer to the
non-keywords, as the main bulk of words are neu-
tral or slightly relevant to the documents’ topics.

3 Our Approach

3.1 Document Pre-processing

First, we eliminate from the target document punc-
tuation marks and words that (a) are stopwords , (b)
consist only of numbers, (c) have length less than
two characters to avoid trivial or insignificant terms.
Before we get the final set of candidate words as
keywords, we use stemming.

3.2 Creation of the Adjacency Matrix

The majority of the graph-based approaches mea-
sure the importance of the graph-of-words’ nodes
using PageRank (see Section 2) that adds more
value to a node connected with high-scoring nodes
rather than low-scoring ones through an iterative
process. However, our approach follows a differ-
ent direction by identifying the most central (i.e.,
significant) words of the graph-of-words via the
distribution-based modeling of the corresponding
adjacency matrix.

We investigate our approach’s effectiveness on
three distinct versions of the adjacency matrix that
correspond to three variants of the graph-of-words
(i.e., unweighted, weighted with/without enhanced
with positional information) for a target document.
Specifically, given a set of unique, valid words of
the text, d ∈ D, we could have one of the following
types of word vectors (each row of the adjacency
matrix constitutes a vector representation of a spe-
cific word):

a. Unweighted adjacency matrix, AN×N where
N = |D|. The AN×N matrix represents
the undirected2 unweighted graph-of-words
G = (U,E), U is the set of vertices (that
correspond to the set of words d ∈ D) and
E is the set of edges; Each element Ai,j is
1 when there is an edge from vertex ui to
vertex uj (ui 6= uj) of G, i.e., the correspond-
ing words di and dj co-occur within a win-
dow of T words, and 0 when there is no edge,
i, j ∈ [1..N ].

b. Weighted adjacency matrix, A′N×N with
N = |D|. The A′N×N matrix represents the
undirected weighted graph-of-words G′ =

2i.e., the adjacency matrix is symmetric.

(U,E′), U is the set of vertices and E′ is the
set of edges; Each element A′i,j contains the
weight of the edge from vertex ui to vertex uj
(ui 6= uj), i.e., the number of co-occurrences
of the corresponding words di and dj within
a window of T words, i, j ∈ [1..N ]. In case
that there is no edge connecting the two nodes,
A′i,j = 0.

c. Weighted adjacency matrix with positional
information, QN×N where N = |D|.
The QN×N matrix represents the undirected
weighted graph-of-words A′ = (U,E′) but
also incorporates positional information, i.e.,

Q = A′ � P

where � is the element-wise multiplication
symbol, A′ is the weighted adjacency matrix,
A′N×N , detailed in (b) and PN×N is a posi-
tional matrix such that each element is defined
as:

Pi,j =
1

s(di) + s(dj)

where s(d) gives the first sentence where the
word d occurs in the document.

3.3 Distribution-based Modeling and
Candidates Scoring

The next step of our approach is the distribution-
based modeling of the adjacency matrix that corre-
sponds to one of the various versions of the target
document’s graph-of-words described above (Sec-
tion 3.2) and the candidate words’ scoring. In this
section, we detail three distribution-based model-
ing alternatives describing the intuition behind each
one approach and the scoring functions used to give
the final ranking of the words as keywords.

3.3.1 The Mean Vector Approach
Papagiannopoulou et al. (2020) proposed Local
Vectors (LV), an unsupervised AKE method that
uses the weighted adjacency matrix of the graph-
of-words as word vectors to model the distribution
of the target document’s words by averaging the
corresponding vectors (i.e., rows of the matrix).
The authors show that the centre of the distribu-
tion is closer to the non-keywords, as the main
bulk of words are neutral or slightly relevant to the
documents’ topics. Moreover, in the same work,
they show through an empirical study that the local
word vectors coming from the weighted adjacency
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matrix mentioned above encode statistical infor-
mation equivalent to the one encoded by the local
run of GloVe on a single document proposed in
Papagiannopoulou and Tsoumakas (2018).

Particularly, in this work, we consider the sam-
ple’s estimated mean µ of the corresponding vector
matrix, i.e., the AN×N or A′N×N or QN×N , as the
distribution’s center (each word participates once
in the computation). Then, we score each word
with a value S, according to the following formula:
S(x) = d(µ,x), where d(µ,x) is the Euclidean
distance between the mean vector µ and the vector
representation x of the word, as distance metrics
that incorporate the vectors’ magnitude capture the
similar behaviour of the non-keywords’ vectors
over the keywords’ ones (Papagiannopoulou et al.,

2020), i.e., d(µ,x) =
√∑N

i=1(xi − µi)2, where
N is the number of dimensions. The higher the
score S, the more important the word for the doc-
ument, i.e., we are interested in words with high
distance values, as most of the words, which deter-
mine the distribution’s center, are non-keywords.
The main difference with the approach proposed by
Papagiannopoulou et al. (2020) is that we score the
words based only on their distance from the mean
vector without involving any external heuristics
such as the word’s position. This way, we consider
in advance any positional information via the Q
adjacency matrix (i.e., incorporated in the vector
representation).

3.3.2 Unsupervised Learning Approaches

One-Class SVM. Instead of calculating the distri-
bution’s center of the adjacency matrix by aver-
aging its rows, we could use geometric concepts
such as hyperspheres or hyperplanes to delimit
the area of space that includes most of the word
vectors (i.e., the main bulk of unimportant words)
and, then, score the candidates using functions that
express the vectors’ deviation from the main dis-
tribution. According to this approach, the most
important words are the most outlying ones (i.e.,
outliers) as most words are neutral or slightly rele-
vant to the documents’ topics (i.e., inliers). Tax and
Duin (1999a,b) proposed a method based on SVM
(Cortes and Vapnik, 1995), called One-Class SVM,
that seeks the smallest hypersphere consisting of all
the dataset points. Thus, training this model may
reject a fraction of the positively-labelled training
objects when this adequately minimizes the hyper-
sphere volume.

There are also other approaches, such as the one
of Schölkopf et al. (1999), which is similar, but
instead of using a small hypersphere, it uses a hy-
perplane which is far from the origin (this is the
version implemented by scikit-learn3 and used in
our study). This algorithm employs a function f
that takes the value +1 in a “small” region, cov-
ering most of the data points, and -1 elsewhere.
Formally, suppose the dataset consists of the word
vectors (samples) x coming from the correspond-
ing adjacency matrix XN×N (i.e., XN×N can be
one of the AN×N , A′N×N , QN×N ). Let Φ be a
feature map X → F 4, i.e., a specific dot product
space. Then, we can separate the dataset’s word
vectors from the origin by solving the following
quadratic optimization problem:

min
w,ξ,ρ

1

2
||w||2 +

1

νl

∑
i

ξi − ρ

subject to (w · Φ(xi)) ≥ ρ− ξi, ξi ≥ 0

where i represents the ith sample, l = N , ν is
the percentage of samples considered as outliers
(the expected keywords’ ratio), ξi are the slack
variables that relax the constraints, ρ refers to the
distance of the hyperplane from the origin5 and w
represent the parameters of the SVM that define
the hyperplane (we need to learn them using the
dataset’s samples)6. Then, the decision function
f(x) = sgn((w · Φ(x))− ρ) will be positive for
the most samples xi in the dataset. In our case, an
ideal scoring function that ranks the correspond-
ing document’s words is the signed distance to the
separating hyperplane that will be positive for the
main bulk of words and negative for the different
ones. We consider only the words with a negative
score as candidate keywords (the lower the value,
the higher the word’s importance).

We have experimented with various kernel func-
tions, e.g., polynomial, sigmoid, etc. but the most
suitable in our case is the Radial Base Function
(RBF). Formally, The RBF kernel on two samples
x and x′ is defined as:

K(x,x′) = exp

(
− ||x− x

′||2

2σ2

)
3https://scikit-learn.org/stable/index.

html
4F is a dot product space such that the dot product in the

image of Φ can be computed by evaluating some kernel.
5This distance is equal to ρ

||w|| .
6i.e., ρ and w solve the problem.

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
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Figure 1: An isolation tree built based on the adjacency
matrix’s word vector representations for the article en-
titled “On the Tradeoff between Privacy and Utility in
Data Publishing” with golden keywords: anonymity,
data, publishing, privacy. The isolation tree recursively
divides the 20 samples (i.e., words used to train the tree)
by randomly selecting an attribute (matrix dimension)
b and a split value m until either the node has only one
instance or all node’s data have the same values. Key-
words tend to have shorter path lengths than the non-
keywords that constitute the main bulk of (unimportant)
words.

where σ ∈ R is a kernel parameter and ||x− x′||2
can be considered as the squared Euclidean dis-
tance between the two word vectors. These dis-
tances between the pairs of the word feature vec-
tors incorporated by the RBF kernel make it the
best choice. Moreover, distance metrics that con-
sider the vectors’ magnitude (e.g., the Euclidean
distance) can capture the non-keywords’ vectors’
similar behavior over the keywords’ ones as men-
tioned earlier in Section 3.3.1.

Isolation Forest. Instead of modeling the vectors’
distribution and then estimating the distance from a
reference point (e.g., the mean vector or the hyper-
plane), we propose to detect and rank the few differ-
ent (important) word vectors via the mechanism of
isolation Liu et al. (2008, 2012) utilizing the binary
tree structure, called isolation tree. Because of the
susceptibility to isolation, the few outlying word
vectors (i.e., expected to be the important ones) are
more prone to be isolated closer to the root of an
isolation tree than the common ones. An isolation
forest builds an ensemble of isolation trees for the
given set of word vectors. The forest of random
trees collectively produces shorter path lengths7 for
the outlier samples, i.e., the ones we search.

In other words, isolation forest is a tree-based
algorithm built around the theory of decision trees
and random forests. It also creates many isolation

7The path length of a point x is measured by the number
of edges x traverses an isolation tree from the root node until
the traversal is terminated at an external node.

(decision) trees, but it calculates the path length
necessary to isolate an observation in the tree. The
idea is that keywords as a minority in a document
can be treated as anomalies and thus are easier
to be isolated because there are fewer conditions
required to separate them from the “normal” non-
keywords. Therefore, outliers (i.e., keywords) will
have shorter paths than the “normal” non-keywords
and reside closer to the tree’s root. When many
isolation trees are created, the forest is necessary
to average the corresponding scores (path length
calculations), providing a sense about the words
that are indeed outliers.

Figure 1 shows an isolation tree built based on
the Q adjacency matrix’s word vector representa-
tions for a computer science abstract from the KDD
collection (Caragea et al., 2014). The article enti-
tled “On the Tradeoff between Privacy and Utility
in Data Publishing” is accompanied by the follow-
ing golden keywords: anonymity, data, publishing,
privacy. The number of samples to draw from X
to train each base estimator is equal to 20. We
also applied PCA on X and use the two first prin-
cipal components to facilitate visualization. The
isolation tree recursively divides the 20 samples by
randomly selecting an attribute b and a split value
m, until either the node has only one instance or
all data at the node have the same values. We no-
tice that keywords tend to have shorter path lengths
than the non-keywords. Similar isolation trees, sup-
portive of our crucial intuition, are obtained from
other documents, too.

A more in-depth view of the Isolation Forest
scoring function reveals that itself defines a “natu-
ral” threshold that determines whether a sample be-
longs to inliers or not by borrowing the analysis of
Binary Search Trees (BSTs) as isolation trees have
an equivalent structure (Preiss, 2000). This prop-
erty is remarkable as the number of topics a docu-
ment discusses should determine the corresponding
number of keywords instead of suggesting a fixed
or proportional to the text size number of keywords
as most methods do. According to the theory, the
average path length c(ψ) of unsuccessful searches
in a BST (i.e., the equivalent of external node ter-
minations in an isolation tree) given a sample set
of ψ instances is:

c(ψ) =


2H(ψ − 1)− 2ψ−1n , ψ > 2,

1, ψ = 2,

0, otherwise.



99

where H(i) is the harmonic number (estimated by
ln(i)+ the Euler’s constant). Hence, the Isolation
Forest scoring function is:

s(x, ψ) = 2
−E(h(x))

c(ψ)

where x is the sample, h(x) is the path length of x
and E(h(x)) is the average of h(x) for a collection
of isolation trees. The above function ensures that
samples with scores close to 1 imply diversity from
the majority (i.e., E(h(x)) → 0), whereas scores
much lower than 0.5 indicate normal samples (i.e.,
E(h(x)) → ψ − 1). Also, suppose all instances
have a score of approximately equal to 0.5. In
that case, we can consider the whole sample as a
set of normal instances (i.e., E(h(x)) → c(ψ)).
The above findings transform the value 0.5 into an
especially important threshold for determining a
case as different from the whole sample or not.

4 Experimental Study

4.1 Setup

We choose six popular datasets: three collections
with full-text publications, i.e., NUS (Nguyen and
Kan, 2007), Semeval (SE) (Kim et al., 2010), and
ACM (Krapivin et al., 2008) with 211, 244, and
2304 documents, respectively, two with scientific
abstracts, i.e., KDD (Caragea et al., 2014) and
WWW (Gollapalli and Caragea, 2014) with 755,
and 1330 documents, respectively, and one with
news texts, i.e., DUC-2001 (DUC) (Wan and Xiao,
2008b) with 308 documents. This way, we include
to our study both long and short texts, either scien-
tific or news articles. SE is already separated into
training (144) and test (100) sets, and for the ACM
separation, most works choose the first 400 papers
from the ACM following Meng et al. (2017) as test
set. However, there are no guidelines for separating
the NUS, KDD, WWW, and DUC datasets. Thus,
we pick the first 330 from WWW, the last 100 pa-
pers from NUS (Papagiannopoulou et al., 2020),
and the last 100 from DUC, alphabetically ordered
as the test data. We use the whole KDD dataset as
test set as we do not use it for parameters’ tuning.

In addition to the proposed approaches for AKE,
i.e., the new version of LV, the Isolation Forest (IF)
and the One-Class SVM (OC), four state-of-the-art
unsupervised graph-based AKE methods partici-
pate in this empirical study: K-Core (K) (Seidman,
1983; Batagelj and Zaversnik, 2011), PageRank (P)
(Mihalcea and Tarau, 2004; Wan and Xiao, 2008b),

Betweenness (B), and Node degree (N) (the last
one proposed first by Rose et al. (2010). We present
the experimental results organized in three groups
based on the type of information used to run (Ta-
bles 2, 3). The first two groups include the methods’
runs on the unweighted and weighted graphs-of-
words/adjacency matrices, i.e., with an A and A′

subscript on the right of each method according
to the notation introduced in Section 3.2, respec-
tively (e.g., KA means that K method runs on an
unweighted graph-of-words, whereas KA′ runs on
the weighted one, i.e., weighted K-Core of Batagelj
and Zaversnik (2011)). The third group includes
the proposed methods’ runs on theQ adjacency ma-
trix (weighted with words’ co-occurrences and po-
sitional information) and a Personalized weighted
variant of PageRank that considers both node as
well as the typical edge weights (PA′′). The node
weight is equal to 1

s , where s is the first sentence’s
index that the corresponding word occurs in the
document. In all cases, the methods build the
graph-of-words following the pre-processing steps
described in Section 3.1.

After splitting the golden keyphrases into uni-
grams, we use exact string matching to determine
the number of correctly matched words with the
golden ones for a document following the paradigm
of Tixier et al. (2016). We also apply stemming to
the output of the methods and the article’s golden
unigrams as a pre-processing step before the evalu-
ation process. We employ the authors’ keywords
as a gold evaluation standard for all academic doc-
uments (long/short) except for the news dataset
where only the readers’ keywords are available. We
used the IsolationForest and OneClassSVM classes
from the scikit-learn8 library for the IF and OC,
respectively. For the implementation of the com-
petitive approaches, we employ the PKE toolkit
(Boudin, 2016), the NetworkX9 and the gowpy10

python libraries.
We use one dataset per text category (full-

texts, abstracts, news), i.e., the training sets of
NUS, WWW, DUC, to determine IF and OC
models’ tuning parameters to optimize the F1

score. The parameters chosen for the experi-
ments on test sets are for the IF nestimators=200,
maxsamples=auto, maxfeatures=0.75 and the OC
kernel=rbf, gamma=scale. The best percentages

8https://scikit-learn.org/stable/index.
html

9https://networkx.org/
10https://github.com/GuillaumeDD/gowpy

https://scikit-learn.org/stable/index.html
https://scikit-learn.org/stable/index.html
https://networkx.org/
https://github.com/GuillaumeDD/gowpy
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for the IF’s contamination and OC’s nu parame-
ters (related to outliers’ ratio) are 0.05, 0.1, 0.2 for
the full-text publications, news texts and abstracts,
respectively (used in the context of F1@20 scores
calculation, see Table 2). Furthermore, we compute
the F1 scores in Table 3 based on the number of
keywords returned by the KA, KA′ , IFA, IFA′ and
IFQ (the value of the IF’s contamination parame-
ter is equal to auto11) approaches, i.e., F1@|KA|,
F1@|KA′ |, F1@|IFA|, F1@|IFA′ |, F1@|IFQ|, respec-
tively. The LV approach is parameter-free.

We follow the paradigm of existing experimental
studies from the related task of keyphrase extrac-
tion (Wan and Xiao, 2008a; Bougouin et al., 2013),
and set a window size T equal to 10 to construct
the graphs-of-words used by the graph-based ap-
proaches. Earlier, Wan and Xiao (2008b) show
that in the case of weighted graphs-of-words, the
greater the window size, the higher the extractor’s
accuracy (window sizes greater than 10 achieve
more or less the same accuracy level).

F1
NUS WWW DUC

T5 T10 T5 T10 T5 T10

LVA 0.319 0.324 0.279 0.282 0.389 0.410
IFA 0.313 0.319 0.294 0.284 0.372 0.377

OCA 0.093 0.126 0.237 0.243 0.265 0.284
LVA′ 0.311 0.315 0.283 0.285 0.401 0.405
IFA′ 0.319 0.324 0.313 0.314 0.376 0.395

OCA′ 0.129 0.142 0.256 0.261 0.282 0.293
LVQ 0.339 0.336 0.280 0.278 0.408 0.416
IFQ 0.338 0.342 0.321 0.335 0.383 0.413
OCQ 0.339 0.338 0.266 0.271 0.344 0.343

Table 1: F1@20 of the LV, IF and OC keyword extrac-
tion methods using different types of adjacency matrix
(A, A′, Q) created with two different window sizes,
T = 5 (T5) and T = 10, on three different datasets
(NUS, WWW, DUC). The highest values appear in
bold font.

Moreover, Table 1 shows the F1@20 scores of
LV, IF, and OC on the training sets of three rep-
resentative datasets NUS, WWW and DUC (one
from each category of documents, long/short sci-
entific articles and news texts, respectively) using
unweighted (A), weighted (A′), and weighted with
positional information (Q) adjacency matrix with
two different window sizes, a lower widow size
T = 5 (T5) and the usual one T = 10 (T10). The
highest F1 scores are highlighted in bold font. The
experimental results confirm that smaller window
sizes led to lower F1 scores for most of the pro-

11value for the “natural” threshold of outliers for IF, see
Section 3.3.2

posed methods. However, in few cases where the
methods with T5 give higher F1 scores compared to
those with T10, the differences are not statistically
significant according to the two-sided Wilcoxon
signed-rank nonparametric test. Finally, another
reason to consider the same co-occurrence window
size for both the state-of-the-art graph-based ap-
proaches and the proposed ones is our interest in
investigating the methods’ efficacy employing the
same words’ context (captured in a specific window
size).

4.2 Performance Evaluation Results

Table 2 shows the F1@20 scores of various key-
word extraction methods, whereas Table 3 presents
the F1 scores calculated based on the returned num-
ber of keywords by KA, KA′ , IFA, IFA′ , and IFQ
on the six datasets using unweighted (A), weighted
(A′), and weighted with positional information (Q)
graph-of-words or adjacency matrix. The high-
est F1 scores in both tables are highlighted in red
bold font. Table 2 presents the best scores for each
group of methods in bold, whereas the second best
are underlined. We have also checked the statis-
tical significance of the results using two-sided
Wilcoxon signed-rank nonparametric test between
the graph-based (the ones in the gray background)
and the distribution-based modeling approaches
(LV, IF, OC) at significance level 0.01. Our anal-
ysis shows that differences in values > 2% are
statistically significant. In case of statistical signif-
icance between the values of two methods whose
difference is ≤2%, a superscript with the name of
the corresponding graph-based method is added
on the distribution-based modeling approach. We
compute statistical significance separately for the
groups of methods that use edge weights, node
and edge weights, and no weights, respectively, to
facilitate the results’ interpretation.

Table 2 shows that in most cases except for
the news collection (DUC), the more information
we consider, i.e., both words’ co-occurrences and
positional info, the higher F1 scores we achieve
(e.g., OCQ’s high scores compared to the ones of
OCA, OCA′). Particularly, the transition from the
unweighted graph-of-words/adjacency matrix to
their weighted versions slightly improves the per-
formance in almost all methods besides the B’s
(in all datasets) and LV’s scores (in longer doc-
uments). IFA′ outperforms the competitive ap-
proaches that consider edge weights to score the
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F1 ACM NUS SE DUC WWW KDD
PA 0.329 0.331 0.261 0.381 0.279 0.265
BA 0.318 0.325 0.260 0.354 0.270 0.256
NA 0.330 0.328 0.263 0.385 0.284 0.269

LVA 0.327B 0.321 0.267 0.384 0.277N 0.265B

IFA 0.319P,N 0.320 0.268 0.362P 0.284B 0.260
OCA 0.154 0.144 0.133 0.244 0.232 0.221
PA′ 0.331 0.326 0.269 0.383 0.284 0.270
BA′ 0.314 0.317 0.257 0.349 0.257 0.247
NA′ 0.324 0.314 0.268 0.388 0.288 0.272

LVA′ 0.311P,N 0.300 0.263 0.380 0.279N 0.269
IFA′ 0.328B 0.326N 0.275B 0.368 0.316 0.289P,N
OCA′ 0.158 0.153 0.142 0.289 0.249 0.242
PA′′ 0.374 0.358 0.300 0.383 0.285 0.269
LVQ 0.373 0.343P 0.299 0.328 0.268P 0.260
IFQ 0.353 0.348 0.287 0.384 0.338 0.305

OCQ 0.372 0.340P 0.290 0.311 0.286 0.275

Table 2: F1@20 of various keyword extraction methods
using different types of graph-of-words/adjacency ma-
trix (A,A′,Q) on six different datasets. Superscripts on
a method’s score show statistical significance between
the current method and the one whose name appears
as superscript (see Section 4.2). The highest values ap-
pear in bold red font. The best scores for each group
of methods are in bold, whereas the second best are un-
derlined.

candidates (2nd group of methods with subscript
A′) in four out of six datasets (NUS, SE, WWW,
KDD) and achieves high scores in ACM and DUC
with statistically insignificant differences compared
to the competitive methods. Moreover, the addition
of positional weights compared to the typical use of
edge weights increases most methods’ performance
remarkably apart from the LV’s (in shorter docu-
ments) and the P’s that remains almost invariable
in shorter texts. In the 3rd group of methods, IFQ
ranks first in half datasets (DUC, WWW, KDD) and
performs high in NUS and SE (without statistically
significant differences from PA′′). Additionally, LV
achieves quite high F1 scores as well.

Figure 2 shows a visual interpretation of why the
additional information facilitates the distribution-
based approaches to distinguish the keywords from
the non-keywords via heatmaps of the Euclidean
distances between the word vectors of the A (2a)
and Q (2b), respectively, for a news text. We
notice that positions combined with words’ co-
occurrences help the text’s keyword vectors diverge
from the main distribution (see the few high dis-
tances/yellow or light green values that correspond
mostly to the first words of the document that in-
clude many keywords). We also see that most vec-
tors (common words - group of inliers) are close
to each other (low/dark distance values). However,
the distances between word vectors of A do not

(a) (b)

Figure 2: The distances between the main bulk of word
vectors from the Q adjacency matrix (2b) range in low
(dark) values compared to a minority of distant word
vectors (yellow/green values). However, the word vec-
tors of A (2a) do not provide such clear separation be-
tween the main distribution of common words and the
minority of keywords (high and low distances are just
as many).

F1@T ACM NUS SE DUC WWW KDD
KA 0.176 0.160 0.132 0.240 0.250 0.234
IFA 0.273 0.305 0.274 0.186 0.307 0.267
KA′ 0.297 0.309 0.278 0.300 0.343 0.323
IFA′ 0.323 0.372 0.322 0.183 0.315 0.283
IFQ 0.360 0.413 0.345 0.223 0.347 0.313

Table 3: F1@T of KA, KA′ , IFA, IFA′ and IFQ meth-
ods on the 6 datasets, where T is equal to |KA|, |KA′ |,
|IFA|, |IFA′ | and |IFQ|, respectively. The highest values
appear in red bold font.

reveal any clear separation between the main dis-
tribution of common words and the minority of
keywords making difficult the outliers’ detection.
Note that the words’ ids (range from 0 to 363) cor-
respond to the order of the words’ presence in the
text, confirming the importance of the positional
information in the AKE task (keywords tend to ap-
pear at the beginning of a document). Similar plots
are also obtained from multiple documents.

Next, we focus on the AKE methods that deter-
mine the number of returned keywords at document
level, i.e., the KA, KA′ , IFA, IFA′ and IFQ. We
study the results of Table 3, considering Table 4

@ ACM NUS SE DUC WWW KDD
|KA| 74.1 70.2 71.5 53.8 24.5 25.4
|IFA| 10.5 8.7 10.3 2.6 5.8 5.4
|KA′ | 8.7 8.4 7.6 18.1 12.4 12.4
|IFA′ | 6.7 6.1 7.1 2.3 5.0 4.6
|IFQ| 7.5 6.6 7.5 2.3 4.8 4.4
|V| 757.7 772.4 641.8 268.8 58.2 60.1

Table 4: Average number of keywords returned by the
K and IF methods using different types of information
(A, A′, Q). The last row shows the average number of
candidate words |V| per dataset.
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that shows the average numbers of keywords re-
turned by the methods mentioned earlier for each
dataset. The last row in Table 4 shows the average
number of candidate words |V| per dataset to give
an impression for the texts’ vocabulary sizes. We
are interested in investigating which method returns
the most “accurate” keywords’ sets in terms of the
corresponding F1 scores. However, we should keep
in mind that the methods are not evaluated on the
same number of keywords. Through this discus-
sion, our goal is to discover which AKE approach
is more suitable for each type of documents in a
general sense. The low F1@|KA| scores of KA

compared to the F1 scores of KA′ , IFA, IFA′ and
IFQ are plausible due to the low precision scores
of KA as the number of the words included in the
K-Core of the unweighted graph-of-words is quite
high (greater than 70, 53 and 24 returned keywords
for the academic full-texts, news texts and scientific
abstracts, respectively). In all datasets KA′ outper-
forms KA giving reasonable number of keywords.
Moreover, in most datasets (scientific full-texts and
abstracts), IFQ outputs more accurate keyword sets
(i.e., higher F1@|IFQ| scores) than those returned
by rest approaches. Exceptions are the performance
on (a) the DUC (news) dataset where IFA, IFA′ and
IFQ detect lower number of words as keywords
compared to the golden ones and (b) the KDD col-
lection where the F1@|IFQ| score achieved by IFQ
is slightly worse than the one of KA′ .

We also present the correlation according to the
Spearman correlation coefficient between the IF’s
scoring function described in Section 3.3.2 and tra-
ditional weighting schemas, i.e., P, N, B, and K,
for each information type used by IF and the rest
graph-based methods, i.e., unweighted, weighted
and weighted with positional information graphs-
of-words/adjacency matrices. Table 5 shows that
there is a very strong positive correlation (≥ 0.8)
between the words’ scores returned by IF and those
produced by P and N for all information (input)
types for almost all datasets, interpreting (partly)
the comparable F1 scores achieved by these meth-
ods. In this vein, there is a strong positive correla-
tion (≥ 0.6) between IF and B in most cases. More-
over, the very strong positive correlation (≥ 0.8)
on the datasets with full-texts of scientific publica-
tions goes hand-in-hand with the similar accuracy
levels achieved in case there are no weights on the
corresponding input. Finally, the K’s output does
not seem to correlate with the IF’s output when

no weights are used. However, if the methods use
weights, the correlation between them turns into a
strong/moderate positive one.

S.C.C. ACM NUS SE DUC WWW KDD
IFA-PA 0.91 0.90 0.92 0.84 0.82 0.81
IFA-NA 0.92 0.91 0.92 0.84 0.81 0.81
IFA-BA 0.84 0.82 0.85 0.77 0.76 0.75
IFA-KA 0.26 0.27 0.27 0.35 0.32 0.30
IFA′-PA′ 0.91 0.91 0.92 0.85 0.84 0.83
IFA′-NA′ 0.88 0.88 0.90 0.84 0.82 0.81
IFA′-BA′ 0.75 0.75 0.78 0.71 0.63 0.62
IFA′-KA′ 0.71 0.71 0.73 0.51 0.49 0.50

IFQ-PQ 0.87 0.87 0.88 0.75 0.81 0.80

Table 5: Spearman’s correlation coefficient (S.C.C.) be-
tween the proposed approach IF and traditional graph-
based methods.

5 Conclusions and Future Work

In this article, we address the AKE task via the
distribution-based modeling of the adjacency ma-
trix that corresponds to various versions of the
graph-of-words for a target document. More specif-
ically, we propose capitalizing on unsupervised
learning algorithms for the distribution-based mod-
eling and scoring of the candidate words. Based on
our performance evaluation, the IF approach shows
the best effectiveness results in almost all datasets,
concerning the F1 score determining the number of
keywords in document level.

There are many interesting future research di-
rections, such as i) improving the scoring func-
tions of the unsupervised learning approaches used
in the context of the keyword extraction task, ii)
adapting the proposed approach to the keyphrase
extraction task , iii) developing novel distribution-
based modeling methods that simultaneously uti-
lize the information from one/multiple adjacency
matrices , and iv) applying the adjacency matrix’s
distribution-based modeling in other tasks where
only graph-based methods are used to date.
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