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Message from the General Chair

Welcome to the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021)!

I am a great fan of the NoDaLiDa conference, as a friendly, medium sized conference that offers the
opportunity for scientific and social interaction with colleagues from neighbouring countries. When I
agreed to serve as the general chair for this years NoDaLiDa I was still relatively optimistic that we could
all meet in beautiful Reykjavik, Iceland to enjoy two days of scientific talks, posters and socialising in
early June. Unfortunately that turned out to not be possible due to the COVID-19 pandemic. Instead, we
are for the first time offering NoDaLiDa as a fully virtual event, free of charge. Even so, I am confident
that this years conference will offer the same high-quality program as in previous years and hopefully it
can also constitute a meeting place, albeit a digital one, for Northern European NLP researchers in these
unusual times.

As in previous editions, the conference features three different types of papers (long, short and demo
papers). We received 91 legal submissions, which represents an increase compared to the previous edition
of the conference. In total, we accepted 54 papers, which will be presented as 30 oral presentations, 22
posters and 2 demos at the conference. Each paper was reviewed by three experts. We are extremely
grateful to the Programme Committee members for their detailed and helpful reviews. Overall, there are
8 oral sessions with talks and two poster sessions organised into themes over the two days, as well as two
exciting keynote talks.

I would further like to thank our two great keynote speakers for sharing their work with us: Lucia Specia
from Imperial College London will talk about “Disagreement in human evaluation: blame the task not
the annotators”. Adina Williams from Facebook Al Research (FAIR) will talk about “For Matters Word
Order Little MLM”. Two exciting talks that complement each other well!

As in previous years, the conference will be preceded by three workshops: Translatology in the Digital
Age, NLP for Computer-Assisted Language Learning and Sustainable language representations. I want
to thank the workshop organisers for complementing the main program and offering opportunities for
in-depth scientific interaction on these diverse and exciting topics.

I would like to thank the entire group of people that made NoDal.iDa 2021 possible. First of all, I would
like to thank Beata Megyesi for inviting me to take up this exciting (and at times daunting) role and
all her valuable input regarding NEALT and previous editions of NoDaLiDa. I am further indebted to
Barbara Plank for her encouragement, for the sharing all the great resources from the last NoDaLiDa and
willingly answering questions on all aspects of the conference organisation. I want to thank the program
chair committee Jurgita Kapociute-Dzikien¢, Mark Fishel, Jén Gudnason, Barbara Plank, Yves Scherrer
and Sara Stymne, for working hard on putting the program together. I am particularly grateful to Jurgita
Kapociutée-Dzikiené, Jon Gudnason, Yves Scherrer and Sara Stymne for their great effort in leading the
reviewing process and shepherding papers from submission to a final decision. I could not have done this
without you! Special thanks go to the workshop chairs, Hans Moen and 1ldik6 Pildn, who have done an
invaluable job with leading the workshop selection and organisation. A big thanks also to Johannes Bjerva
for his work as social media chair and Simon Dobnik for leading the publication efforts that led to this
volume, as well as the coordination of the workshop proceedings. Thank you! Finally, my ultimate thanks
goes to the local organisation committee and team. Thank you, Hrdfn Léftsson, Anton Karl Ingason and
Steinp6r Steingrimsson. They are the ones who did all the heavy lifting in the switch to a virtual event
and did a truly amazing job!



NoDaLiDa 2021 has received financial support from our generous sponsors, which we would also like
to thank here: Lingsoft, Tilde, Mideind and Grammatek. Above all, their support made it possible for
us to offer this NoDaLiDa free of charge. I hope that this will open the conference up to an even larger
audience of NLP researchers in Northern Europe.

Once again, welcome and I hope you will enjoy the conference!

Lilja @vrelid
Oslo
May, 2021

Message from the Local Organisers

We were very much looking forward meeting you at the beginning of summer in Reykjavik, Iceland,
but due to the COVID-19 pandemic we had to move the conference completely online. This has been a
challenge for us, given the fact that NoDaLiDa has never been run online before. We looked at various
possible implementations, but at the end we selected a combination of Zoom, YouTube, Gather.town
and Trello! Hopefully, we have risen to the challenge and we hope that you will enjoy interesting talks,
posters, demos and workshops during theses three days of NoDal.iDa 2021.

Welcome to NoDaLiDa 2021 online!
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Invited Talks

Lucia Specia: Disagreement in human evaluation: blame the task not the annotators.

It is well known that human evaluators are prone to disagreement and that this is a problem for reliability
and reproducibility of evaluation experiments. The reasons for disagreement can fall into two broad
categories: (1) human evaluator, including under-trained, under-incentivised, lacking expertise, or ill-
intended individuals, e.g., cheaters; and (2) task, including ill-definition, poor guidelines, sub-optimal
setup, or inherent complexity or subjectivity. While in an ideal evaluation experiment many of these
elements will be controlled for, in this talk I will argue that task complexity and subjectivity are much
harder issues and that in some cases agreement cannot and should not be expected. I will cover several
evaluation experiments on tasks with variable degrees of complexity and subjectivity, discuss their levels
of disagreement along with other issues. I hope this will lead to an open discussion on possible strategies
and directions to address this problem.

Adina Williams: For Matters Word Order Little MLM.

One possible explanation for the impressive performance of masked language models (MLMs) is that they
can learn to represent the syntactic structures prevalent in classical NLP pipelines. Were this correct, we
would expect that fine-tuning such models on tasks requiring syntactic structure would lead them to be
sensitive to word order at inference time. To address this question, we permute example word order at sev-
eral steps in the pipeline—during fine-tuning, evaluation, and/or pre-training—and measure the results.
We find that permuting word order during fine-tuning has remarkably little effect on downstream per-
formance for several purportedly syntax sensitive NLU tasks (including NLI). Next, we pre-train MLMs
on examples with randomly shuffled word order, and find that these models still achieve high accuracy
(even after unpermuted fine-tuning) on many downstream tasks—including tasks specifically designed to
be challenging for models that ignore word order. Our results show that the success of MLLM pre-training
is largely due to distributional information not any knowledge of word order per se, and underscores the
importance of curating challenging evaluation datasets that require deeper syntactic knowledge.
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WikiBERT Models: Deep Transfer Learning for Many Languages

Sampo Pyysalo, Jenna Kanerva, Antti Virtanen, Filip Ginter
TurkuNLP group,
Department of Computing,
Faculty of Technology
University of Turku, Finland
first.last@utu.fi

Abstract

Deep neural language models such as
BERT have enabled substantial advances
in natural language processing. However,
due to the effort and computational cost
involved in their pre-training, such mod-
els are typically introduced only for high-
resource languages. In this paper, we in-
troduce a simple, fully automated pipeline
for creating language-specific BERT mod-
els from Wikipedia data and introduce 42
new monolingual models, most for lan-
guages up to now lacking such resources.
We show that the newly introduced Wiki-
BERT models outperform multilingual
BERT (mBERT) in cloze tests for nearly
all languages, and that parsing using Wiki-
BERT models outperforms mBERT on av-
erage, with substantially improved perfor-
mance for some languages, but decreases
for others. All of the resources introduced
in this work are available under open li-
censes from https://github.com/
turkunlp/wikibert .

1 Introduction

Transfer learning using language models pre-
trained on large unannotated corpora has allowed
for substantial recent advances at a broad range of
natural language processing (NLP) tasks. By con-
trast to earlier distributional semantics approaches
such as random indexing (Kanerva et al., 2000)
and context-independent neural approaches such
as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), models such as ULMFiT
(Howard and Ruder, 2018), ELMo (Peters et al.,
2018), GPT (Radford et al., 2018) and BERT (De-
vlin et al., 2019) create contextualized representa-
tions of meaning, capable of providing both con-
textualized word embeddings as well as embed-

dings for text segments longer than words. Re-
cent pre-trained neural language models have been
rapidly advancing the state of the art in a range
of natural language understanding and NLP tasks
(Wang et al., 2018, 2019; Strakova et al., 2019;
Kondratyuk and Straka, 2019).

The transformer architecture (Vaswani et al.,
2017) and the BERT language model of De-
vlin et al. (2019) have been particularly influen-
tial, with transformer-based models in general and
BERT in particular fuelling a broad range of ad-
vances and serving as the basis of many recent
studies of neural language models (e.g. Lan et al.,
2019; Liu et al., 2019; Sanh et al., 2019). As is the
case for most studies on new deep neural language
models, the original study introducing BERT ad-
dressed only English. The authors later released
a Chinese model as well as a multilingual model,
mBERT, trained on text from 104 languages, but
opted not to introduce models specifically target-
ing other languages. While mBERT is a powerful
multilingual model with remarkable cross-lingual
capabilities (Pires et al., 2019), it remains a com-
promise in that the 104 languages share the model
capacity dedicated to one language in monolingual
models, and it consequently suffers from degra-
dation of performance in language-specific tasks
(Conneau et al., 2020).

Here, we take steps towards closing various
parts of the gap between languages with dedicated
deep neural models, ones that share capacity with
others in a massively multilingual model, and ones
that lack any representation at all. We introduce
a fully automated pipeline for creating language-
specific BERT models from Wikipedia data and
apply this pipeline to create 42 new such models.

2 Related work

Considerable recent effort by various groups has
focused on introducing dedicated BERT mod-
els covering single languages or a small num-



ber of (often closely related) languages. Dedi-
cated monolingual models include e.g. BERTje!
(de Vries et al., 2019) for Dutch, CamemBERT?
(Martin et al., 2020) for French, FinBERT? (Vir-
tanen et al., 2019) for Finnish, RuBERT* (Kura-
tov and Arkhipov, 2019) for Russian, and Roma-
nian BERT (Dumitrescu et al., 2020); more fo-
cused multilingual models include e.g. the bilin-
gual Finnish-English model of Chang et al. (2020)
and the trilingual Finnish-Estonian-English and
Croatian-Slovenian-English models of Ul€ar and
Robnik-Sikonja (2020).

Many of these studies have demonstrated the
newly introduced models to allow for substantial
improvements over mBERT in various language-
specific downstream task evaluations, thus sup-
porting the continued value of creating monolin-
gual and focused multilingual models. However,
these efforts still cover only a fairly limited num-
ber of languages, and do not offer a straightfor-
ward way to substantially extend that coverage.
The studies further differ considerably in aspects
such as data collection, text cleaning and prepro-
cessing, pre-training parameter setting and other
details of the pre-training process, making it dif-
ficult to meaningfully compare the models to ad-
dress questions such as which languages benefit
most from mono/multilingual pre-training? We
are not aware of previous efforts to automate the
creation of large numbers of monolingual deep
neural language models from comparable, pub-
licly available sources nor efforts to create broad-
coverage collections of such models.

In a line of study in some senses orthogonal
to our work, a number of massively multilingual
models improving on mBERT in terms of model
architecture, training dataset, objectives, and pro-
cess or other aspects have been introduced (e.g.
Conneau et al., 2020; Xue et al., 2020). While
it is certainly an interesting question to ask what
the tradeoffs between monolingual and massively
multilingual pre-training are for models other than
BERT, it is not feasible for us to replicate the
training processes for other models, and we have
here chosen to focus on BERT-based models and
Wikipedia due to their prominence and status as
benchmarks.

'https://github.com/wietsedv/bert je

https://camembert-model.fr/

*https://turkunlp.orqg/FinBERT/

‘nttps://github.com/deepmipt/
deeppavlov/

3 Data

We next introduce the two primary datasets used in
this study: Wikipedia, used as the source of unan-
notated texts for model pre-training, and Univer-
sal Dependencies annotated corpora, used to train
preprocessing methods as well as in model evalu-
ation.

3.1 Wikipedia

Wikipedia is a collaboratively created online en-
cyclopedia that is available in a large number of
languages under open data licenses. The English
Wikipedia was the main source of text for pre-
training the original English BERT models, ac-
counting for three-fourths of its pre-training data.’
The mBERT models were likewise trained exclu-
sively on Wikipedia data. In this work, we chose
to focus on the Wikipedias in various languages
as the only source of pre-training data, thus assur-
ing that our approach can be directly applied to a
broad selection of languages and providing direct
comparability with existing models, in particular
mBERT.

As of this writing, the List of Wikipedias® iden-
tifies Wikipedias in 309 languages. Their sizes
vary widely: while the largest of the set, the En-
glish Wikipedia, contains over six million articles,
the smaller half of Wikipedias (155 languages)
put together only total approximately 400,000 ar-
ticles. As the BERT base model has over 100
million parameters and BERT models are fre-
quently trained on billions of words of unanno-
tated text, it seems safe to estimate that attempt-
ing to train BERT with the data from one of the
smaller wikipedias’ would likely not produce a
very successful model. It is nevertheless not well
established how much unannotated text is required
to pre-train a language-specific model, and how
much the domain and quality of the pre-training
data affect the model performance.

In order to focus computational resources on
models with practical value, we opted to exclude
“dead” languages that are not in everyday spoken
use by any community from our efforts. We have

>The remaining quarter of BERT pre-training data was
drawn from the BooksCorpus (Zhu et al., 2015), a unique
(and now unavailable) resource for which analogous re-
sources in other languages cannot be readily created.

*https://en.wikipedia.org/wiki/List_
of_Wikipedias

"For example, Old Church Slavonic, ranked 272nd among
wikipedias by size, has fewer than 1000 articles and under
50,000 tokens.



Language (code) | Tokens Language (code) | Tokens Language (code) | Tokens
Afrikaans (af) 24M Finnish (fi) 97M Norwegian (no) 112M
Arabic (ar) 184M French (fr) 858M Polish (pl) 282M
Belarusian (be) 34M Galician (gl) 58M Portuguese (pt) 326M
Bulgarian (bg) 71M Hebrew (he) 166M Romanian (ro) 85M
Catalan (ca) 236M Hindi (hi) 35M Russian (ru) 565M
Czech (cs) 143M Croatian (hr) 54M Slovak (sk) 39M
Danish (da) 65M Hungarian (hu) 129M Slovenian (sl) 42M
German (de) 1.0B Indonesian (id) 93M Serbian (sr) 96M
Greek (el) 81M Italian (it) 579M Swedish (sv) 364M
English (en) 2.7B Japanese (ja) 596M Tamil (ta) 26M
Spanish (es) 678M Korean (ko) 79M Turkish (tr) 71M
Estonian (et) 38M Lithuanian (It) 34M Ukrainian (uk) 260M
Basque (eu) 45M Latvian (Iv) 2IM Urdu (ur) 18M
Persian (fa) 95M Dutch (nl) 300M Vietnamese (vi) 172M

Table 1: Wikipedia sizes for selected languages.

otherwise broadly proceeded to introduce prepro-
cessing support and models for languages in de-
creasing order of the size of their Wikipedias and
support in Universal Dependencies, discussed be-
low. Table 1 lists the Wikipedias used in this work.

3.2 Universal Dependencies

Universal Dependencies (UD) is a community-
lead effort aiming to create cross-linguistically
consistent treebank annotations for many typo-
logically different languages (Nivre et al., 2016,
2020). In this study, we rely on UD both as
training data for components of the preprocess-
ing pipeline (Section 4.1) as well as for our eval-
uations. As of this writing, the latest release
of the UD treebanks?® is 2.7, which includes 183
treebanks covering 104 languages, thus matching
mBERT in terms of the raw number of covered
languages.

To maintain comparability with recent work on
UD parsing, we use the UD v2.3 treebanks,’ with
129 treebanks in 76 languages, in our compara-
tive experiments assessing the WikiBERT mod-
els. We further limit our evaluation to the sub-
set of UD v2.3 treebanks that have training, de-
velopment, and test sets, thus excluding e.g. the
17 parallel UD treebanks which only provide test
sets. We further exclude from evaluation treebanks
released without text (ar_nyuad, en_esl, fr_ftb,
ja_bcewj), the Swedish sign language treebank
(swl_ssle), and treebanks in languages for which

$https://universaldependencies.org/
‘http://hdl.handle.net/11234/1-2895

we have not trained dedicated models (mr_ufal,
mt_mudt, te_mtg, and ug_udt). Table 2 lists the
treebanks applied in our evaluation. We note
that there is very substantial variance between
treebanks in the amount of training data avail-
able, ranging from little over 3000 tokens for the
Lithuanian HSE treebank to more than a million
for the Czech PDT.

4 Methods

We next briefly introduce the primary steps of the
preprocessing pipeline for creating pre-training
examples from Wikipedia source as well as the
tools used for text processing, model pre-training,
and evaluation. We refer to our published pipeline
and its documentation for full processing details.

4.1 Preprocessing pipeline

In order to create high quality pre-training data
from raw Wikipedia dumps in the format required
by BERT model training, we introduce a pipeline
that performs the following primary steps:

Data and model download The full Wikipedia
database backup dump is downloaded from a mir-
ror site!® and a UDPipe model for the language
from the LINDAT/CLARIN repository.'!

Plain text extraction WikiExtractor!? is used to
extract plain text with document boundaries from
the Wikipedia XML dump.

Yhttps://dumps.wikimedia.org/

"nttp://hdl.handle.net/11234/1-3131

Phttps://github.com/attardi/
wikiextractor



Language (code) Treebank Tokens Language (code) Treebank Tokens
Afrikaans (af) AfriBooms 33894 Indonesian (id) GSD 97531
Arabic (ar) PADT 223881 Italian (it) ISDT 276019
Belarusian (be) HSE 5217 Italian (it) ParTUT 48934
Bulgarian (bg) BTB 124336 Italian (it) PoSTWITA 99441
Catalan (ca) AnCora 417587 Japanese (ja) GSD 160419
Czech (cs) CAC 472609 Korean (ko) GSD 56687
Czech (cs) CLTT 26742 Korean (ko) Kaist 296446
Czech (cs) FicTree 133637 Lithuanian (It) HSE 3210
Czech (cs) PDT 1173282 Latvian (lv) LVTB 113405
Danish (da) DDT 80378 Dutch (nl) Alpino 186046
German (de) GSD 263804 Dutch (nl) LassySmall 75134
Greek (el) GDT 42326 Norwegian (no)  Bokmaal 243887
English (en) EWT 204585 Norwegian (no)  Nynorsk 245330
English (en) GUM 53686 Polish (pl) LFG 104750
English (en) LinES 50091 Polish (pl). SZ 62501
English (en) ParTUT 43518 Portuguese (pt)  Bosque 206744
Spanish (es) AnCora 444617 Portuguese (pt) GSD 255755
Spanish (es) GSD 382436 Romanian (ro) Nonstandard | 155498
Estonian (et) EDT 341122 Romanian (ro) RRT 185113
Basque (eu) BDT 72974 Russian (ru) GSD 75964
Persian (fa) Seraji 121064 Russian (ru) SynTagRus | 870474
Finnish (fi) FTB 127602 Slovak (sk) SNK 80575
Finnish (fi) TDT 162621 Slovenian (sl) SSJ 112530
French (fr) GSD 354699 Serbian (sr) SET 65764
French (fr) ParTUT 24123 Swedish (sv) LinES 48320
French (fr) Sequoia 50536 Swedish (sv) Talbanken 66645
French (fr) Spoken 14952 Tamil (ta) TTB 6329
Galician (gl) CTG 79327 Turkish (tr) IMST 37918
Hebrew (he) HTB 137721 Ukrainian (uk) IU 88043
Hindi (hi) HDTB 281057 Urdu (ur) UDTB 108690
Croatian (hr) SET 154055 Vietnamese (vi) VTB 20285
Hungarian (hu)  Szeged 20166

Table 2: UD v2.3 training data sizes for selected treebanks.

Segmentation and tokenization UDPipe is
used with the downloaded model to segment sen-
tences and tokenize the plain text, producing text
with document, sentence, and word boundaries.

Document filtering A set of heuristic rules and
statistical language detection!? are applied to op-
tionally filter documents based on configurable
criteria.'#

Sampling and basic tokenization A sample of
sentences is tokenized using BERT basic tokeniza-

Bhttps://github.com/shuyo/
language-detection

4We note that there are Wikipedia pages whose content is
mostly in a language different from that of the Wikipedia.

tion!> to produce examples for vocabulary gener-
ation that match BERT tokenization criteria.

Vocabulary generation A subword vocabulary
is generated using the SentencePiece'® (Kudo and
Richardson, 2018) implementation of byte-pair
encoding (Gage, 1994; Sennrich et al., 2015). Af-
ter generation the vocabulary is converted to the
BERT WordPiece format (a different but largely
equivalent representation).

SBERT basic tokenization preserves alphanumeric se-
quences but separates e.g. all punctuation characters into in-
dividual tokens.

Yhttps://github.com/google/
sentencepiece



Subword Accuracy Subword Accuracy
Language (code) | mBERT WikiBERT Language (code) | mBERT WikiBERT
Afrikaans (af) 28.69 43.22 Indonesian (id) 30.72 52.47
Arabic (ar) 20.17 29.96 Italian (it) 29.48 37.98
Belarusian (be) 18.15 36.39 Japanese (ja) 49.25 45.19
Bulgarian (bg) 21.26 39.98 Korean (ko) 17.59 30.61
Catalan (ca) 40.29 56.63 Lithuanian (It) 15.11 29.83
Czech (cs) 22.41 39.77 Latvian (Iv) 15.59 29.99
Danish (da) 25.06 40.86 Dutch (nl) 29.08 47.54
German (de) 33.85 46.93 Norwegian (no) 22.73 34.15
Greek (el) 21.42 45.42 Polish (pl) 17.64 33.30
English (en) 37.39 46.64 Portuguese (pt) 32.55 43.85
Spanish (es) 40.20 52.05 Romanian (ro) 21.19 33.07
Estonian (et) 14.00 31.26 Russian (ru) 27.16 46.86
Basque (eu) 15.15 30.99 Slovak (sk) 16.52 29.08
Persian (fa) 21.52 45.20 Slovenian (sl) 21.21 35.24
Finnish (fi) 12.89 27.67 Serbian (sr) 25.80 30.70
French (fr) 41.30 52.08 Swedish (sv) 22.11 37.11
Galician (gl) 33.23 36.81 Tamil (ta) 14.36 31.85
Hebrew (he) 20.96 21.83 Turkish (tr) 12.56 29.16
Hindi (hi) 19.97 47.23 Ukrainian (uk) 19.15 31.78
Croatian (hr) 23.03 39.99 Urdu (ur) 20.83 39.70
Hungarian (hu) 18.89 38.99 Vietnamese (vi) 17.96 47.35

Table 3: Results for the cloze test in terms of subword prediction accuracy (percentages)

Example generation Masked language model-
ing and next sentence prediction examples using
the full BERT tokenization specified by the gen-
erated vocabulary are created in the TensorFlow
TFRecord format using BERT tools.

The created vocabulary and pre-training examples
can be used directly with the original BERT imple-
mentation to train new language-specific models.

4.2 UDPipe

UDPipe (Straka et al., 2016) is a parser capable of
producing segmentation, part-of-speech and mor-
phological tags, lemmas and dependency trees.
In this work we use UDPipe for sentence seg-
mentation and tokenization in the preprocessing
pipeline. The segmentation component in UDPipe
is a character-level bidirectional GRU network si-
multaneously predicting the end-of-token and end-
of-sentence markers.

4.3 Pre-training

We aimed to largely mirror the original BERT pro-
cess in our selection of parameters and settings
for the pre-training process to create the Wiki-
BERT models, with some adjustments made to ac-

count for differences in computational resources.
Specifically, while the original BERT models were
trained on TPUs, we trained on Nvidia Volta V100
GPUs with 32GB memory. We followed the orig-
inal BERT processing in training for a total of
1M steps in two stages, the first 900K steps with
a maximum sequence length of 128, and the last
100K steps with a maximum of 512. Due to mem-
ory limitations, each model was trained on 4 GPUs
using a batch size of 140 during the sequence
length 128 phase, and 8 GPUs with a batch size
of 20 during the sequence length 512 phase.

4.4 Cloze test

In order to evaluate the BERT models with respect
to their original training objective, we employ a
cloze test, where words are randomly masked and
predicted back. We mask a random 15% of words
in each sentence, and, in case a word is composed
of several subword (WordPiece) tokens, all sub-
word tokens are masked for an easier and more
meaningful evaluation (cf. full-word masking in
BERT pre-training). All masked positions are pre-
dicted at once in the same manner as done in the
BERT pre-training (i.e. without iterative predic-



Average LAS Average LAS
Language (code) | mBERT WikiBERT Language (code) | mBERT WikiBERT
Afrikaans (af) 87.85 87.33 Indonesian (id) 80.40 80.12
Arabic (ar) 83.81 85.47 Italian (it) 89.64 89.77
Belarusian (be) 81.77 79.81 Japanese (ja) 92.78 92.92
Bulgarian (bg) 92.30 92.51 Korean (ko) 86.19 87.28
Catalan (ca) 92.08 92.06 Lithuanian (It) 58.68 58.40
Czech (cs) 90.45 90.69 Latvian (Iv) 84.29 84.46
Danish (da) 85.78 85.84 Dutch (nl) 90.26 91.02
German (de) 83.16 84.13 Norwegian (no) 91.54 91.94
Greek (el) 91.63 92.35 Polish (pl) 94.45 95.58
English (en) 88.09 88.05 Portuguese (pt) 91.91 92.21
Spanish (es) 90.42 90.12 Romanian (ro) 86.83 86.52
Estonian (et) 85.86 87.43 Russian (ru) 90.35 91.13
Basque (eu) 82.99 83.70 Slovak (sk) 91.64 91.73
Persian (fa) 86.60 88.60 Slovenian (sl) 92.83 93.37
Finnish (fi) 87.64 90.81 Serbian (sr) 92.30 91.79
French (fr) 89.22 88.77 Swedish (sv) 86.42 87.12
Galician (gl) 83.05 82.61 Tamil (ta) 70.14 69.63
Hebrew (he) 88.77 90.17 Turkish (tr) 69.33 71.25
Hindi (hi) 91.59 91.86 Ukrainian (uk) 88.57 90.41
Croatian (hr) 89.46 89.40 Urdu (ur) 82.66 82.15
Hungarian (hu) 83.99 86.21 Vietnamese (vi) 66.89 68.87

Table 4: Average LAS results for UDify for Universal Dependencies treebanks in each language.

tion of one position per time step). As a source
of sentences, we use the first 1000 sentences of
training sections of the treebanks, limited to sen-
tences of 5-50 tokens in length. We note that the
treebanks are not entirely non-overlapping with
Wikipedia: 16 out of the 63 treebanks draw at least
part of their texts from Wikipedia. However, as all
of the compared models share this source of pre-
training data, we do not expect this overlap to bias
the comparison.

4.5 UDify

To assess the performance of the models in a
downstream task, we apply the UDify parser
(Kondratyuk and Straka, 2019), initialized with
one of the models and trained on Universal De-
pendencies data. UDify is a state-of-the-art model
and can predict UD part-of-speech tags, morpho-
logical features, lemmas, and dependency trees.
UDify implements a multi-task learning objective
using task-specific prediction layers on top of a
pre-trained BERT encoder. All prediction lay-
ers are trained simultaneously, while also fine-
tuning the pre-trained encoder weights. In the fol-
lowing evaluation, we focus on the parsing per-

formance using the standard Labeled Attachment
Score (LAS) metric.

5 Results

We next present the results of the intrinsic cloze
test evaluation and the extrinsic evaluation with
syntactic analysis as a downstream task.

5.1 Cloze evaluation results

The cloze evaluation results are shown in Ta-
ble 3, where we measure subword-level prediction
accuracy, i.e. the proportion of cases where the
model assigns the highest probability to the orig-
inal subword. We find that the WikiBERT mod-
els outperform mBERT for all languages except
for Japanese,'” averaging more than 10% points
higher accuracy. While this is an encouraging re-
sult regarding the quality of the newly introduced
models, the evaluation is arguably biased in favour
of monolingual models, as their candidate space
(the vocabulary) is limited to only include options
in the correct language. More broadly, success at

7 This result may suggest some issues specific to Japanese
either in the preprocessing pipeline or the applied UDify
model, but we have yet to identify any clear explanation for
the exception.



Figure 1: Average relative change in LAS when replacing mBERT with a WikiBERT model for UDify
initialization plotted against the WikiBERT pre-training data size in tokens. Coloring indicates language
grouping by genera (Baltic: white, Finnic: light blue, Germanic: yellow, Indic: orange, Romance: red,

Semitic: green, Slavic: blue, other: black).

intrinsic evaluations such as this does not guar-
antee practical applicability (or vice versa), and
models should also be assessed at real-world tasks
to gain a more complete picture of their value (see
e.g. Chiu et al., 2016).

5.2 UD parsing results

Table 4 summarizes the results of the UD parsing
evaluation. Given the large size of both train sets
(See Table 2) and test sets for most of the lan-
guages, the evaluation results are stable, and we
have found that repetitions of the training process
often result in less than 0.1% point differences be-
tween runs. To conserve computational resources,
we have thus here chosen to run a single experi-
ment per treebank (a typical setting for UD evalu-
ation).

We find a complex, mixed picture where
mBERT and WikiBERT models each appear
clearly superior for different languages, for ex-
ample, mBERT for Belarusian and WikiBERT for
Finnish. On average across all languages, UDify
with WikiBERT models slightly edges out UDify

with mBERT, with an 86.1% average for mBERT
and 86.6% for WikiBERT (an approximately 4%
relative decrease in LAS error). However, such av-
eraging hides more than it reveals, and it is more
interesting to consider the various potential im-
pacts on performance from pre-training data size,
potential support from close relatives in the same
language family, and other similar factors. The
various UD treebanks represent very different lev-
els of challenge with LAS results ranging from
below 60% to above 95%, and to reduce the im-
pact of the properties of the treebanks on the com-
parison, in the following we focus on the relative
change in performance when initializing UDify
with a WikiBERT model compared to the baseline
approach using mBERT.

Figure 1 shows the average relative change in
performance over all treebanks for a language
when replacing mBERT with the relevant Wiki-
BERT model for UDify, plotted against the num-
ber of tokens in Wikipedia for the language. While
the data is very noisy due to a number of fac-
tors, we find some indication of a “sweet spot”



where training a dedicated monolingual model
tends to show most benefit over using the multi-
lingual model when at least approximately 100M
tokens but fewer than 1B tokens of pre-training
data are available. We also briefly note some other
properties in this data:

e For English, a language in the large Germanic
family and the one with the largest amount
of Wikipedia pre-training data, mBERT and
WikiBERT results are effectively identical.

e The greatest loss when moving from mBERT
to a WikiBERT model is seen for Belaru-
sian, a slavic language closely related to
Russian, for which considerably more pre-
training data is available.

o The greatest gain when moving from mBERT
to a WikiBERT model is seen for Finnish,
a Finnic language with few closely related,
widely spoken languages, which has a com-
paratively large Wikipedia.

Observations such as these may suggest fruitful
avenues for further research into the conditions
under which mono- and multilingual language
model training is expected to be most successful.
Based on these results and the findings of stud-
ies training models for small numbers of closely
related languages (see Section 2), we anticipate
that multilingual training may most readily benefit
lower-resourced languages trained together with a
closely related high-resource language in a bilin-
gual setting.

6 Discussion and conclusions

In this paper, we have introduced a simple,
fully automatic pipeline for creating monolingual
BERT models from Wikipedia data, applied the
pipeline to introduce 42 new language-specific
models, most covering languages that previously
lacked a dedicated deep neural language model.
We evaluated the WikiBERT models intrinsically
using cloze evaluation, finding that they outper-
form the multilingual mBERT model for all but
one language. An extrinsic evaluation using a de-
pendency parsing task with Universal Dependen-
cies data and the UDify neural parser found a more
nuanced picture of the comparative merits of the
monolingual and multilingual models: while we
found that a WikiBERT model will provide bet-
ter performance than mBERT on average and in

multiple cases provides a more than 10% rela-
tive decrease in LAS error compared to the mul-
tilingual model, the WikiBERT models showed
lower performance than mBERT for multiple lan-
guages. Viewing relative change in performance
against pre-training data size, we found indica-
tions that monolingual models may most bene-
fit languages that have no closely related high-
resource languages and for which comparatively
large pre-training corpora can be assembled.

The availability of the WikiBERT collection of
models opens up a broad range of potential av-
enues for research into the strengths, weaknesses
and challenges in both mono- and multilingual
language modeling that we hope to pursue in fu-
ture work. We also hope to encourage both mono-
lingual applications as well as exploration of these
questions by others by making the models freely
available under open licenses from https://
github.com/turkunlp/wikibert .
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Abstract

This paper presents EstBERT, a large pre-
trained transformer-based language-specific
BERT model for Estonian. Recent work has
evaluated multilingual BERT models on Es-
tonian tasks and found them to outperform
the baselines. Still, based on existing studies
on other languages, a language-specific BERT
model is expected to improve over the multi-
lingual ones. We first describe the EstBERT
pretraining process and then present the mod-
els’ results based on the finetuned EstBERT
for multiple NLP tasks, including POS and
morphological tagging, dependency parsing,
named entity recognition and text classifica-
tion. The evaluation results show that the mod-
els based on EstBERT outperform multilin-
gual BERT models on five tasks out of seven,
providing further evidence towards a view that
training language-specific BERT models are
still useful, even when multilingual models are
available. !

1 Introduction

Pretrained language models, such as BERT (Devlin
etal.,2019) or ELMo (Peters et al., 2018), have become
the essential building block for many NLP systems.
These models are trained on large amounts of unanno-
tated textual data, enabling them to capture the general
regularities in the language and thus can be used as a
basis for training the subsequent models for more spe-
cific NLP tasks. Bootstrapping NLP systems with pre-
training is particularly relevant and holds the greatest
promise for improvements in the setting of limited re-
sources, either when working with tasks of limited an-
notated training data or less-resourced languages like
Estonian.

Since the first publication and release of the large
pretrained language models on English, considerable
effort has been made to develop support for other lan-
guages. In this regard, multilingual BERT models, si-
multaneously trained on the text of many different lan-
guages, have been published, several of which also in-

IThe model is available via HuggingFace Transformers
library: https://huggingface.co/tartuNLP/EstBERT

clude the Estonian language (Devlin et al., 2019; Con-
neau et al., 2019; Sanh et al., 2019; Conneau and Lam-
ple, 2019). These multilingual models’ performance
was recently evaluated on several Estonian NLP tasks,
including POS and morphological tagging, named en-
tity recognition, and text classification (Kittask et al.,
2020). The overall conclusions drawn from these ex-
periments are in line with previously reported results
on other languages, i.e., for many or even most tasks,
multilingual BERT models help improve performance
over baselines that do not use language model pretrain-
ing.

Besides multilingual models, language-specific
BERT models have been trained for an increasing
number of languages, including for instance Camem-
BERT (Martin et al., 2020) and FlauBERT (Le et al.,
2020) for French, FinBERT for Finnish (Virtanen et al.,
2019), RobBERT (Delobelle et al., 2020) and BERTJe
(de Vries et al., 2019) for Dutch, Chinese BERT (Cui
et al., 2019), BETO for Spanish (Caiiete et al., 2020),
RuBERT for Russian (Kuratov and Arkhipov, 2019)
and others. For a recent overview about these efforts
refer to Nozza et al. (2020). Aggregating the results
over different language-specific models and compar-
ing them to those obtained with multilingual models
shows that depending on the task, the average improve-
ment of the language-specific BERT over the mul-
tilingual BERT varies from 0.70 accuracy points in
paraphrase identification up to 6.37 in sentiment clas-
sification (Nozza et al., 2020). The overall conclu-
sion one can draw from these results is that while
existing multilingual BERT models can bring along
improvements over language-specific baselines, using
language-specific BERT models can further consider-
ably improve the performance of various NLP tasks.

Following the line of reasoning presented above, we
set forth to train EstBERT, a language-specific BERT
model for Estonian. In the following sections, we first
give details about the data used for BERT pretrain-
ing and then describe the pretraining process. Finally,
we will provide evaluation results on the same tasks
as presented by Kittask et al. (2020) on multilingual
BERT models, which include POS and morphological
tagging, named entity recognition and text classifica-
tion. Additionally, we also train a dependency parser
based on the spaCy system. Compared to multilingual
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models, the EstBERT model achieves better results on
five tasks out of seven, providing further evidence for
the usefulness of pretraining language-specific BERT
models. Additionally, we also compare with the Esto-
nian WikiBERT, a recently published Estonian-specific
BERT model trained on a relatively small Wikipedia
data (Pyysalo et al., 2020). Compared to the Estonian
WikiBERT model, the EstBERT achieves better results
on six tasks out of seven, demonstrating the positive
effect of the amount of pretraining data on the general-
isability of the model.

2 Data Preparation

The first step for training the EstBERT model involves
preparing a suitable unlabeled text corpus. This section
describes both the steps we took to clean and filter the
data and the process of generating the vocabulary and
the pretraining examples.

2.1 Data Preprocessing

For training the EstBERT model, we used the Esto-
nian National Corpus 2017 (Kallas and Koppel, 2018),?
which was the largest Estonian language corpus avail-
able at the time. It consists of four sub-corpora: the Es-
tonian Reference Corpus 1990-2008, the Estonian Web
Corpus 2013, the Estonian Web Corpus 2017, and the
Estonian Wikipedia Corpus 2017. The Estonian Ref-
erence corpus (ca 242M words) consists of a selection
of electronic textual material, about 75% of the corpus
contains newspaper texts, the rest 25% contains fiction,
science and legislation texts. The Estonian Web Cor-
pora 2013 and 2017 make up the largest part of the
material and they contain texts collected from the In-
ternet. The Estonian Wikipedia Corpus 2017 is the Es-
tonian Wikipedia dump downloaded in 2017 and con-
tains roughly 38M words. The top row of the Table 1
shows the initial statistics of the corpus.

We applied different cleaning and filtering tech-
niques to preprocess the data. First, we used the cor-
pus processing methods from EstNLTK (Laur et al.,
2020), which is an open-source tool for Estonian natu-
ral language processing. Using the EstNLTK, all XM-
L/HTML tags were removed from the text, also all
documents with a language tag other than Estonian
were removed. Additional non-Estonian documents
were further filtered out using the language-detection
library.®> Next, all duplicate documents were removed.
For that, we used hashing—all documents were lower-
cased, and then the hashed value of each document was
subsequently stored into a set. Only those documents
whose hash value did not yet exist in the set (i.e., the
first document with each hash value) were retained. We
also used the hand-written heuristics,* developed for
preprocessing the data for training the FinBert model

Zhttps://www.sketchengine.eu/estonian-national-corpus/
3https://github.com/shuyo/language-detection
“https://github.com/TurkuNLP/deepfin-tools

Documents Sentences Words
Initial 3.9M 87.6M 1340M
After cleanup 3.3M 75.TM 1154M

Table 1: Statistics of the corpus before and after the
cleanup.

(Virtanen et al., 2019), to filter out documents with too
few words, too many stopwords or punctuation marks,
for instance. We applied the same thresholds as were
used for Finnish BERT. Finally, the corpus was true-
cased by lemmatizing a copy of the corpus with Es-
tNLTK tools and using the lemma’s casing informa-
tion to decide whether the word in the original corpus
should be upper- or lowercase. The statistics of the cor-
pus after the preprocessing and cleaning steps are in the
bottom row of Table 1.

2.2 Vocabulary and Pretraining Example
Generation

Originally, BERT uses the WordPiece tokeniser, which
is not available open-source. Instead, we used the BPE
tokeniser available in the open-source sentencepiece’
library, which is the closest to the WordPiece algo-
rithm, to construct a vocabulary of 50K subword to-
kens. Then, we used BERT tools® to create the pretrain-
ing examples for the BERT model in the TFRecord for-
mat. In order to enable parallel training on four GPUs,
the data was split into four shards. Separate pretraining
examples with sequences of length 128 and 512 were
created, masking 15% of the input words in both cases.
Thus, 20 and 77 words in maximum were masked in
sequences of both lengths, respectively.

3 Evaluation Tasks

Before describing the EstBERT model pretraining pro-
cess itself, we first describe the tasks used to both val-
idate and evaluate our model. These tasks include the
POS and morphological tagging, named entity recog-
nition, and text classification. In the following sub-
section, we describe the available Estonian datasets for
these tasks.

3.1 Part of Speech and Morphological Tagging

For part of speech (POS) and morphological tagging,
we use the Estonian EDT treebank from the Univer-
sal Dependencies (UD) collection that contains anno-
tations of lemmas, parts of speech, universal morpho-
logical features, dependency heads, and universal de-
pendency labels. We use the UD version 2.5 to enable
comparison with the experimental results of the multi-
lingual BERT models reported by Kittask et al. (2020).
We train models to predict both universal POS (UPOS)
and language-specific POS (XPOS) tags as well as

Shttps://github.com/google/sentencepiece
Shttps://github.com/google-research/bert
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morphological features. The pre-defined train/dev/test
splits are used for training and evaluation. Table 2
shows the statistics of the treebank splits. The accu-
racy of the POS and morphological tagging tasks is
evaluated with the con1118_ud_eval script from the
CoNLL 2018 Shared Task.

Train Dev Test
Sentences 31012 3128 6348
Tokens 344646 42722 48491

Table 2: Statistics of the UDv2.5 Estonian treebank.

3.2 Named Entity Recognition

Estonian named entity recognition (NER) corpus
(Tkachenko et al., 2013) annotations cover three types
of named entities: locations, organizations, and per-
sons. It contains 572 news stories published in local
online newspapers Postimees and Delfi, covering lo-
cal and international news on various topics. Table 3
displays statistics of the training, development and test
splits. The performance of the NER models is evalu-
ated with the conlleval script from the CoNLL 2000
shared task.

Tokens PER LOC ORG Total
Train 155981 6174 4749 4784 15707
Dev 32890 1115 918 742 2775
Test 28370 1201 644 619 2464

Table 3: Statistics of the Estonian NER corpus.

3.3 Sentiment and Rubric Classification

Estonian Valence corpus (Pajupuu et al., 2016) consists
of 4085 news extracts from Postimees Daily. All docu-
ments in the corpus are labeled with both sentiment and
rubric classes. There are nine rubrics: Opinion, Esto-
nia, Life, Comments-Life, Comments-Estonia, Crime,
Culture, Sports, and Abroad. The four sentiment la-
bels include Positive, Negative, Neutral, and Ambigu-
ous. We split the data into 70/10/20 training, develop-
ment and test sets, stratified over both rubric and senti-
ment analysis. Table 4 and Table 5 show the statistics
about the sentiment and rubric view of the classification
dataset respectively.

4 Pretraining EstBERT

The EstBERT model was pretrained on the architecture
identical to the BERTg,s model with 12 transformer
blocks with 768 hidden units each and 110M trainable
parameters. It was pretrained on the Masked Language
Modeling (MLM) and the Next Sentence Prediction
(NSP) tasks as described by Devlin et al. (2019). In
MLM, the probability of correctly predicting the ran-
domly masked tokens is maximised. Because in the

Train Dev Test Total
Positive 612 87 175 874
Negative 1347 191 385 1923
Neutral 505 74 142 721
Ambiguous 385 55 110 550
Total 2849 407 812 4068

Table 4: Sentiment label statistics of the Estonian Va-
lence corpus.

Train Dev Test Total
Opinion 676 9% 192 964
Estonia 289 41 83 413
Life 364 52 101 517
Comments-Life 354 50 102 506
Comments-Estonia 351 50 100 501
Crime 146 21 42 209
Culture 182 27 51 260
Sports 269 39 77 385
Abroad 218 31 64 313
Total 2849 407 812 4068

Table 5: Rubric label statistics of the Estonian Valence
corpus.

transformer architecture, the model can simultaneously
see both the left and the right context of a masked
word, optimizing the MLM gives the model a bidirec-
tional understanding of a sentence, as opposed to only
the left or right context provided by recurrent language
models. The NSP involves optimizing a binary clas-
sification task to predict whether the two sequences in
the input follow each other in the original text or not,
where half of the time, the second sequence is the cor-
rect next sentence and the other half of the time the two
sequences are unrelated. The models were trained on
four NVIDIA Tesla V100 GPUs across two nodes of
the High-performance Computing Center at the Uni-
versity of Tartu (University of Tartu, 2018).

The model was first trained with the sequence length
of 128. Then we evaluated the checkpoints generated
during pretraining on the tasks described in section 3
to choose the final model with that sequence length.
Finally, the chosen model was used as a starting point
for training the longer model with 512 sequence length.
Thus, as a result of pretraining, two EstBERT models,
one with maximum sequence length 128 and the other
with maximum sequence length 512, were obtained.
The following subsections describe these three steps in
more detail.

4.1 Pretraining with Sequence Length 128

The model with the sequence length of 128 was pre-
trained for two phases, both for 900K steps. Although
the number of training steps was chosen following Vir-
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(a) Universal POS tags

(b) Rubric Classification

Figure 1: The validation performance on POS tagging and text classification tasks after every SOK checkpoints.

train_batch_size 32
max_seq_length 128
max_predictions_per_seq 20

num-train_steps 900000
num-warmup_steps 9000
learning_rate le-4
save_checkpoints_step 50000

Table 6: Hyperparameters used in the first two pretrain-
ing phases with the sequence length 128.

tanen et al. (2019), coincidentally this (900K steps)
was the maximum number of steps we could fit in the
given GPU time limit of 8 days. Therefore, the model
was trained in two phases, each having 900K steps. A
checkpoint was saved to the disk after every S0K steps.
While the first phase of pretraining started from scratch
with randomly initialised parameters, the second phase
of training was initialised from the first phase’s last
checkpoint. Since the GPU memory availability was
a major issue, the batch size was kept at 32 to avoid the
tensors going beyond the allowed GPU memory size.
The BERTg,s uses Adam optimiser with weight de-
cay. For EstBERT, the same optimiser was used with
warmup over the first 1% of steps (9000) to a peak
learning rate of 1e-4. The relevant hyperparameters are
shown in Table 6. The pretraining process took around
192 hours for each phase.

4.2 Pretraining Validation

During pretraining, a checkpoint was saved after every
50K steps for later evaluation. To monitor the pretrain-
ing process, we evaluated the performance of MLM,
NSP, and the evaluation tasks described in section 3 on
all these checkpoints.

For POS and morphological tagging, and named en-
tity recognition, we finetuned EstBERT using scripts
from HuggingFace transformers library.” A single ran-
domly initialised fully connected classifier layer was
trained on top of the token representations of the last
hidden layer of the EstBERT model. All hyperparam-

7https://github.com/huggingface/transformers/blob/
master/examples/token-classification/run_ner.py

eters were kept at their default values, which involves
training for three epochs, using the learning rate of Se-
5 and batch size of 8. For the rubric and sentiment
classification tasks, we adapted the classifier training
scripts available in google’s BERT repository.® The in-
put to the single fully-connected classifier layer is the
last hidden representation of the first token [CLS] in
the input sequence. Here again, the classifier layer was
initialised randomly and the default values for hyper-
parameters were used: training for three epochs with
the learning rate 5e-5 and batch size 32. In all tasks,
both the task-specific classification layer as well as the
EstBERT parameters were finetuned.

The validation results of the masked language
model, next sentence prediction accuracy, and all the
evaluation tasks for all the eighteen checkpoints from
stage one and other eighteen models from stage two
were compared to pick the best model. The exam-
ples of validation curves for the UPOS tagging and
the rubric classification tasks are shown in Figure 1.
Although the checkpoint validation results from both
phases showed more or less steady improvement with
the increase of the number of steps trained, we ob-
served that the checkpoint at 750K steps from phase
two performs slightly better on all tasks than the rest of
the checkpoints. Thus, this checkpoint was chosen as a
final model with sequence length 128.

train_batch_size 16
max_seq_length 512
max_predictions_per_seq 77

num_train_steps 600000
num_warmup_steps 6000
learning_rate le-4
save_checkpoints_step 50000

Table 7: Hyperparameters used to pretrain the Est-
BERT model with the sequence length 512.

8https://github.com/google-research/bert/blob/master/
run_classifier.py/
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Model UPOS XPOS Morph UPOS XPOS Morph
Seq =128 Seq =512
EstBERT 97.89 9840 9693 97.84 9843  96.80
WikiBERT-et 97.78  98.36  96.71 97.76  98.35  96.67
mBERT 9742 98.06 9624 9743 98.13  96.13
XLM-RoBERTa 97.78 9836 9653  97.80 98.40  96.69

Table 8: POS and morphological tagging accuracy on the Estonian UD test set. The highest scores in each column
are in bold. The highest overall score of each task is underlined.

4.3 Pretraining with Sequence Length 512

The starting point for training the model with a se-
quence length of 512 was the final model chosen for
the sequence length 128. The longer model was trained
further up to 600K steps. The batch size was reduced to
16 as the size of the tensors would be larger for the se-
quence length 512 compared to 128. The hyperparame-
ters used to train the longer model are shown in Table 7.
During training, checkpoints were again saved after ev-
ery S0K steps, and these were evaluated on all evalua-
tion tasks as previously explained in Section 4.2. Based
on these evaluations, the last checkpoint obtained after
the 600K steps was chosen as the final model with 512
sequence length.

5 Results

The next subsections present the results obtained with
the final EstBERT models with both sequence lengths
on the tasks described in section 3. We follow the same
setup of Kittask et al. (2020) to enable direct compar-
ison with the multilingual models. Some additional
steps were taken to prepare the Estonian Valence cor-
pus. First, all duplicate items, 17 in total, were re-
moved. Also, all items with the Ambiguous label were
removed as retaining them has been shown to lower the
the classification accuracy (Pajupuu et al., 2016). The
same preprocessing was also applied in evaluating the
multilingual BERT models for Estonian (Kittask et al.,
2020).

For finetuning, we used the same scripts from the
HuggingFace transformers repository that were used
for the pretraining validation in section 4.2. The same
scripts were also used to evaluate the multilingual mod-
els by Kittask et al. (2020). For each task, the learning
rate of the AdamW optimiser and the batch size was
tuned on the development set. The learning rate grid
values were (5e-5, 3e-5, le-5, 5e-6, 3e-6) and the batch
size grid values were (8, 16). The best model was found
on the development set by using early stopping with the
patience of 10 epochs.

We compare the results of EstBERT with the mul-
tilingual BERT models’ results from Kittask et al.
(2020) and the WikiBERT model trained on the Esto-
nian Wikipedia (Pyysalo et al., 2020). WikiBERT-et
model was finetuned using the same setup described
above.

Model Rubr. Sent. Rubr. Sent.
Seq =128 Seq =512
EstBERT 81.70 7436 80.96 74.50
WikiBERT-et 7272 68.09 71.13 69.37
mBERT 75.67 7023 7494 69.52
XLM-RoBERTa 80.34 74.50 78.62 76.07

Table 9: Rubric (Rubr.) and sentiment (Sent.) classi-
fication accuracy. The highest scores in each column
are in bold. The highest overall score of each task is
underlined.

5.1 POS and Morphological Tagging

The POS and morphological tagging results are sum-
marised in Table 8 that shows the accuracy for uni-
versal POS tags (UPOS), language-specific POS tags
(XPOS), and morphological features. The language-
specific EstBERT outperforms all other models al-
though the difference with the XLM-RoBERTa—
the best-performing multilingual model—and the
WikiBERT-et are quite small.

Similar to multilingual results, using longer se-
quence length on this task with the EstBERT model
does not seem beneficial as the accuracy slightly in-
creases only for XPOS tags but not for others. Over-
all, as the performances on these tasks are already
very high, the absolute performance gains cannot be
large. EstBERT obtains consistent improvements over
mBERT, with the relative error reduction with both
models on all tasks falling between 16-18%. The
relative error reduction of the EstBERT compared to
XLM-RoBERTa is smaller, in the range of 2-5%. The
highest reduction of error of EstBERT compared to
XLM-RoBERTa can be observed on the morphologi-
cal tagging task with the shorter model where the rela-
tive error reduction is 12%. The WikiBERT-et model
achieves almost identical results to XLM-RoBERTa
with both sequence lengths.

5.2 Rubric and Sentiment Classification

The rubric and sentiment classification results are
shown in Table 9. EstBERT outperforms mBERT and
WikiBERT-et on both tasks by a large margin, but
XLM-RoBERTa exceeds EstBERT on sentiment clas-
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Model Precicion Recall F1-Score Precision Recall F1-Score
Seq =128 Seq =512

EstBERT 89.10 91.15 90.11 88.35 89.74 89.04

WikiBERT-et 89.86 90.83 90.34 88.31 90.96 89.61

mBERT 85.88 87.09 86.51 88.47 88.28 88.37

XLM-RoBERTa 87.55 91.19 89.34 87.50 90.76 89.10

Table 10: NER tagging results. Upper section shows the comparison between different models. The highest scores
in each column are in bold. The highest overall score of each measure is underlined.

Entit EstBERT XLM-RoBERTa WikiBERT-et

y Prec Rec F1 Prec Rec F1 Prec Rec F1
PER 94.80 95.77 9528 96.42 94.45 9543 94.87 9445 94.66
ORG 78.38 82.64 80.45 7548 82.12 78.66 82.25 81.61 81.92
LOC 89.94 91.38 90.66 86.06 93.99 §89.85 88.89 92,99 90.89

Table 11: The entity-based scores for the EstBERT, XLM-RoBERTa and the WikiBERT-et models. The best scores

are in bold.

sification. The difference between the two accuracy
scores is relatively small when the model with se-
quence length 128 is used, but it increases when the
longer sequence length is used.

Like XLM-RoBERTa, the EstBERT model with a
shorter sequence length is somewhat better on rubric
classification, and the opposite is true for sentiment
classification. Overall, the differences between the
EstBERT models’ performances with both sequence
lengths are again relatively small.

5.3 Named Entity Recognition

Table 10 shows the entity-based precision, recall,
and F-score of the named entity recognition task.
WikiBERT-et model is the best model in this task, ob-
taining the highest F1-score with both the short and
long models and the overall highest Fl-score with
the short model. XLM-RoBERTa achieves the high-
est recall in the short model category but remains be-
low the EstBERT in terms of the F1-score. EstBERT,
WikiBERT-et and XLM-RoBERTa all benefit from us-
ing the smaller sequence length rather than longer,
while mBERT shows the opposite behavior.

Table 11 shows the fine-grained scores of each entity
type for both the EstBERT, XLM-RoBERTa and the
WikiBERT-et shorter model. In alignment with the pre-
vious results in Estonian NER (Tkachenko et al., 2013),
the prediction of the person entities is the most accurate
while the organisation names are the most difficult to
predict. The WikiBERT-et is the best on the two most
difficult entities ORG and LOC, while the EstBERT
model is better than XLM-RoBERTa on these two enti-
ties. The WikiBERT-et is notably the best on the most
challenging organisation entity, improving the preci-
sion over the EstBERT model for almost 4% and over
the XLM-RoBERTa for almost 7%, with a considerably
smaller loss in recall. One reason for the superiority of

the WikiBERT-et model might lie in the fact that the
Wikipedia dataset used to train the WikiBERT-et model
probably contains a much higher proportion of organ-
isation names. Although the datasets used to train the
other two models also contain the Estonian Wikipedia
dataset, it has been diluted in other languages (in case
of XLM-RoBERTa) or genres (in case of EstBERT).
However, this is just a hypothesis at the moment that
has to be studied more in further work.

5.4 Dependency Parsing

Additionally, we also evaluated both the EstBERT,
WikiBERT-et and the XLM-RoBERTa models on the
Estonian dependency parsing task. The data used in
these experiments is the Estonian UDv2.5 described
in section 3.1. We trained the parser available in the
spaCy Nightly version® that also supports transform-
ers. The models were trained with a batch size of 32
and for a maximum of 20K steps, stopping early when
the development set performance did not improve for
1600 steps. The parser was trained jointly with a tag-
ger component that predicted the concatenation of POS
tags and morphological features. During training, the
model was supplied with the gold sentence and token
segmentations. During evaluation, the sentence seg-
mentation and tokenisation was done with the out-of-
the-box spaCy tokeniser.

The dependency parsing results are in Table 12. In
addition to the transformer-based EstBERT and XLM-
RoBERTa models, the right-most section also displays
the Stanza parser (Qi et al., 2020), trained on the same
Estonian UDv2.5 corpus, obtained from the Stanza web
page.! We add a non-transformer based baseline for
this task because dependency parsing was not evaluated

https://pypi.org/project/spacy-nightly/
10https://stanfordnlp.github.io/stanza/models.html
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Model EstBERT XLM-RoBERTa WikiBERT-et Stanza

DepRel Support Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1
UAS 86.07 87.34 86.70 88.02 89.32 88.66 8597 87.24 86.60 86.69 86.68 86.69
LAS 83.32 84.56 8394 85.60 86.87 86.23 83.06 84.29 83.67 83.63 83.63 83.63
nmod 4328 81.40 85.65 83.47 83.73 88.49 86.05 80.86 8542 83.08 82.53 84.27 83.39
obl 4198 80.99 79.78 80.38 83.65 82.66 83.15 80.81 79.47 80.13 79.61 77.78 78.68
advmod 3938 78.01 79.02 78.52 80.43 80.45 80.44 78.08 7796 78.02 7893 78.11 78.52
root 3214 90.82 89.61 90.21 91.88 9191 9190 90.32 89.73 90.03 90.18 87.46 88.80
nsubj 2682 92.05 93.25 92.65 93.54 9452 94.03 90.40 92.69 91.53 90.67 89.90 90.28
conj 2476 76.90 78.51 77.70 81.72 8344 82.57 7828 7831 7830 7641 78.76 77.57
obj 2437 8691 88.80 87.84 88.62 90.73 89.66 86.36 87.57 86.96 83.51 84.78 84.14
amod 2411 80.02 84.20 82.05 8290 86.64 84.73 80.12 8391 8197 91.93 89.26 90.57
cc 2029 91.26 90.09 90.67 92.57 9147 92.02 90.75 89.50 90.12 89.97 88.42 89.19
aux 1372 9536 95.85 95.60 9543 95.99 9571 9479 9548 95.13 89.93 95.04 9242
mark 1277 90.14 90.92 90.53 92.75 93.19 9297 8925 89.74 89.50 88.35 89.12 88.73
cop 1202 84.75 87.35 86.03 8548 87.69 86.57 8429 87.02 8563 8143 86.11 83.70
acl 1063 8498 85.14 85.06 86.88 87.86 87.37 86.67 85.04 8585 8636 8043 83.29
nsubj:cop 1054 79.98 82.64 81.29 81.16 85.01 83.04 79.34 82.73 81.00 77.78 79.70 78.73
case 908 92.42 92.62 92.52 93.52 93.72 93.62 9132 9273 92.02 89.13 91.19 90.15
advcl 857 67.18 6593 66.55 73.46 71.06 72.24 66.55 6639 6647 67.12 6336 65.19
det 808 83.88 85.02 8445 87.89 87.13 87.51 8295 84.28 83.61 80.80 82.80 81.78
parataxis 725 5296 49.38 S51.11 57.50 50.76 53.92 5559 48.69 5191 6545 59.31 62.23
xcomp 641 8521 87.21 86.20 88.06 88.61 88.3¢4 84.11 86.74 8541 83.78 83.00 83.39
flat 633 81.44 8594 83.63 86.64 91.15 88.84 80.09 8641 83.13 88.60 92.10 90.32
nummod 555 62.88 77.84 69.57 62.00 80.54 70.06 63.12 78.02 69.78 85.53 85.23 85.38
compound:prt 481 86.10 92.72 89.29 8820 94.80 91.38 8599 93.14 89.42 8552 89.60 87.51
appos 376 69.07 7128 70.16 7445 80.59 77.39 6455 73.14 68.58 69.47 72.61 71.00
ccomp 344 82.56 82.56 82.56 87.03 87.79 87.41 80.44 84.88 82.60 81.87 78.78 80.30
acl:relcl 315 80.67 8349 82.06 79.00 80.00 79.50 79.30 79.05 79.17 61.32 82.54 70.37
csubj:cop 121 8047 85.12 82,73 7574 85.12 80.16 79.23 85.12 82.07 72.79 8843 79.85
csubj 108 81.51 89.81 8546 80.83 89.81 85.09 8426 8426 8426 8491 83.33 84.11
discourse 47 37.14 5532 4444 3692 51.06 42.86 3433 4894 40.35 81.25 5532 65.82
orphan 44 20.83 11.36 14.71 3793 25.00 30.14 20.00 18.18 19.05 45.00 2045 28.12
compound 43 88.10 86.05 87.06 83.33 8140 8235 92.11 8140 86.42 88.64 90.70 89.66
cc:preconj 39 66.67 71.79 69.14 67.57 64.10 6579 62.79 69.23 6585 70.27 66.67 68.42
flat:foreign 37 76.19 4324 55.17 87.50 56.76 68.85 43.75 1892 2642 6538 45.95 53.97
fixed 31 6471 7097 67.69 6486 7742 70.59 5750 74.19 64.79 75.86 70.97 73.33
vocative 9 2222 2222 2222 2857 2222 2500 556 11.11 741 30.77 4444 36.36
goeswith 8 100.00 12.50 22.22 25.00 12.50 16.67 33.33 25.00 2857 0.00 0.00 0.00
dep 5 000 000 000 000 000 000 000 000 000 000 0.00 0.00
list 1 000 000 000 000 000 0.00 000 0.00 0.00 0.00 0.00 0.00

Table 12: Dependency parsing results. The best scores over all models are in bold. The best scores comparing the
EstBERT, WikiBERT-et and the Stanza models are underlined.

by Kittask et al. (2020). Overall, the XLM-RoBERTa
model performs the best, both in terms of the UAS and
LAS metrics and the individual dependency relations.
This is especially true for dependency relations with
larger support in the test set. Although in terms of the
UAS and LAS, the EstBERT, WikiBERT-et and Stanza
models seem to perform similarly, a closer look into the
scores of the individual dependency relations reveals
that in most cases, especially with relations of larger
support, the EsStBERT model performs the best. There
are few dependency relations where the Stanza sys-
tem’s predictions are considerably more accurate than
the BERT-based models, the most notable of them be-
ing the adjectival modifier (amod) and the numerical
modifier (nummod). Further analyses are needed to
gain more insight into these results.

6 Discussion

This objective of this paper was to describe the process
of pretraining the language-specific BERT model for
Estonian and to compare its performance with the mul-
tilingual BERT models as well as with the smaller Es-
tonian WikiBERT model on several NLP tasks. Over-
all, the pretrained EstBERT was better than the best
multilingual XLM-RoBERTa model on five tasks out
of seven: UPOS, XPOS, and morphological tagging,
rubric classification, and NER. Only in the sentiment
classification and dependency parsing tasks, the XLM-
RoBERTa was better. Compared to WikiBERT-et, the
EstBERT model was better on six tasks out of seven—
the WikiBERT-et model was superior only in the NER
task, predicting ORG entities considerably better than
any other model. We did not observe any consistent
difference between the models of different sequence
lengths, although the model with the sequence length
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512 was trained longer. It is possible that the shorter
model was already trained long enough, and the sub-
sequent training of the longer model did not add any
effect in that respect, aside from the fact that it can ac-
cept longer input sequences.

One crucial aspect of this work was obtaining a
large-enough corpus for pretraining the model. We
used the Estonian National Corpus 2017, which was the
largest corpus available at the time. A newer and larger
version of this corpus—the Estonian National Corpus
2019 (Kallas and Koppel, 2019)—has become avail-
able meanwhile. There are also few other resources,
such as the Estonian part of the CoNLL 2017 raw data
(Ginter et al., 2017) and the Oscar Crawl, which prob-
ably partially overlap with each other and with the Es-
tonian National Corpus. Still, these corpora would po-
tentially provide additional data that was currently not
used.

Another challenge was related to finding annotated
datasets for downstream tasks. While the Estonian
UD dataset provides annotations to the common de-
pendency parsing pipeline tasks, datasets for other, es-
pecially semantic NLP tasks, are scarce. We adopted
the Estonian Valence corpus for two-way text classi-
fication. However, the labels of this corpus are semi-
automatically derived from user ratings, and thus the
quality of these annotations cannot be guaranteed. An
Estonian coreference dataset with some simple base-
line results in nominal coreference resolution has re-
cently become available (Barbu et al., 2020), which
gives further opportunities to test out the EstBERT
model in future work.

When preprocessing the data and pretraining the
model, we mostly followed the process of training the
FinBERT model for Finnish (Virtanen et al., 2019). We
also decided to truecase our corpus to reduce the num-
ber of capitalised words in the vocabulary. The Est-
BERT model itself was also pretrained on the truecased
corpus. However, when training the task-based mod-
els for evaluation, the EstBERT was finetuned on the
cased datasets. Thus, truecasing the datasets before
finetuning might have a positive effect on the results.
In order to verify this, the EstBERT-based task-specific
models should be finetuned using the truecased anno-
tated datasets as input, and compared with the results
reported in this paper.

Although we did see some improvements with Es-
tBERT compared to XLM-RoBERTa on the smaller
model for the NER task, the differences in scores were
generally relatively small. However, we have observed
that the annotations of this NER dataset are occa-
sionally erroneous, containing, for instance, label se-
quences (I-PER, I-PER) instead of (B-PER, I-PER).
We have also observed unlabelled entities in the text.
Thus, the small variations in the systems’ results might
not be informative about the systems themselves but
can instead stem from the noise in the data. Although
these annotation errors have been noticeable enough,

the magnitude of these errors has not been quantified.
The differences between the EstBERT and the
XLM-RoBERTa model were, in most cases, relatively
small. In previous experiments with several multilin-
gual BERT models on the same Estonian tasks (Kittask
et al., 2020), the XLM-RoBERTa proved to be the best
multilingual model. This suggests that one option to
obtain an even better Estonian language-specific model
would be to train an Estonian-specific RoOBERTa by ini-
tializing the model with the parameters of the XLM-
RoBERTa. Considering that the multilingual RoBERTa
already performs very well on Estonian tasks, finetun-
ing it with more Estonian data would hopefully bias it
even more to the Estonian language while also main-
taining the gains obtained from multilingualism.

7 Conclusion

We presented EstBERT, the largest BERT model pre-
trained specifically on the Estonian language. While
several existing multilingual BERT models include
Estonian, the only language-specific Estonian BERT
model available until now has been trained on the rel-
atively small Wikipedia data. In order to pretrain the
EstBERT model, we used the largest Estonian text cor-
pus available at the time. The EstBERT model was
put to the test by finetuning it for several tasks, includ-
ing POS and morphological annotations, dependency
parsing, named entity recognition, and text classifica-
tion. On five tasks out of seven, the classifiers based on
EstBERT achieved better performance than the mod-
els based on multilingual BERT models, although in
several cases, the gap with the best-performing mul-
tilingual XLM-RoBERTa was relatively small. These
results suggest that training a RoOBERTa model for Es-
tonian, initialised with the multilingual model’s param-
eters, might be beneficial. On six tasks out of seven,
the models based on EstBERT achieved better results
than the Estonian BERT model trained on Wikipedia,
suggesting that using more textual data for pretraining
leads to a more generalisable model.
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Abstract

In this work, we show the process of build-
ing a large-scale training set from digi-
tal and digitized collections at a national
library. The resulting Bidirectional En-
coder Representations from Transformers
(BERT)-based language model for Nor-
wegian outperforms multilingual BERT
(mBERT) models in several token and se-
quence classification tasks for both Nor-
wegian Bokmal and Norwegian Nynorsk.
Our model also improves the mBERT per-
formance for other languages present in
the corpus such as English, Swedish, and
Danish. For languages not included in the
corpus, the weights degrade moderately
while keeping strong multilingual prop-
erties. Therefore, we show that build-
ing high-quality models within a mem-
ory institution using somewhat noisy op-
tical character recognition (OCR) content
is feasible, and we hope to pave the way
for other memory institutions to follow.

1 Introduction

Modern natural language processing (NLP) mod-
els pose a challenge due to the massive size of
the training data they require to perform well.
For resource-rich languages such as Chinese, En-
glish, French, and Spanish, collections of texts
from open sources such as Wikipedia (2021a),
variations of Common Crawl data (2021), and
other open-source corpora such as the BooksCor-
pus (Zhu et al., 2015) are generally used. When
researchers at Google released their Bidirec-
tional Encoder Representations from Transform-
ers (BERT) model, they trained it on a huge corpus
of 16GB of uncompressed text (3,300M words)

(Devlin et al., 2019). Later research has shown
that the corpus size might have even been too
small, and when Facebook released its Robustly
Optimized BERT (RoBERTa), it showed a consid-
erable gain in performance by increasing the cor-
pus to 160GB (Liu et al., 2019).

Norwegian is spoken by just 5 million peo-
ple worldwide. The reference publication Ethno-
logue lists the 200 most commonly spoken na-
tive languages, and it places Norwegian as num-
ber 171. The Norwegian language has two differ-
ent varieties, both equally recognized as written
languages: Bokmal and Nynorsk. The number of
Wikipedia pages written in a certain language is
often used to measure its prevalence, and in this
regard, Norwegian Bokmal ranges as number 23
and Nynorsk as number 55. However, there exist
more than 100 times as many English Wikipedia
pages as there are Norwegian Wikipedia pages
(2021b). When it comes to building large text cor-
pora, Norwegian is considered a minor language,
with scarce textual resources. So far, it has been
hard to train well-performing transformer-based
models for such languages.

As a governmental entity, the National Library
of Norway (NLN) established in 2006 a mass digi-
tization program for its collections. The Language
Bank, an organizational unit within the NLN, pro-
vides text collections and curated corpora to the
scholarly community (Sprakbanken, 2021). Due
to copyright restrictions, the publicly available
Norwegian corpus consists mainly of Wikipedia
pages and online newspapers, and it is around SGB
(818M words) in size (see Table 1). However, in
this study, by adding multiple sources only acces-
sible from the NLN, we were able to increase that
size up to 109GB (18,438M words) of raw, dedu-
plicated text. While such initiatives may produce

20



textual data that can be used for the large-scale
pre-training of transformer-based models, relying
on text derived from optical character recognition
(OCR)-based pipelines introduces new challenges
related to the format, scale, and quality of the nec-
essary data. On these grounds, this work describes
the effort to build a pre-training corpus and to use
it to train a BERT-based language model for Nor-
wegian.

1.1 Previous Work

Before the advent of transformer-based models,
non-contextual word and document embeddings
were the most prominent technology used to ap-
proach general NLP tasks. In the Nordic region,
the Language Technology Group at the Univer-
sity of Oslo, as part of the joint Nordic Lan-
guage Processing Laboratory, collected a series of
monolingual resources for many languages, with a
special emphasis on Norwegian (Kutuzov et al.,
2017). Based on these resources, they trained
and released collections of dense vectors using
word2vec and fastText (both with continuous skip-
gram and continuous bag-of-words architectures)
Mikolov et al. 2013; Bojanowski et al. 2017, and
even using an Embeddings from Language Mod-
els (ELMo)-based model with contextual capabil-
ities (Peters et al., 2018). Shortly thereafter, De-
vlin et al. (2019) introduced the foundational work
on the monolingual English BERT model, which
would later be extended to support 104 different
languages including Norwegian Bokmaél and Nor-
wegian Nynorsk, Swedish, and Danish. The main
data source used was Wikipedia (2021a). In terms
of Norwegian, this amounted to around 0.9GB of
uncompressed text (140M words) for Bokmal and
0.2GB (32M words) for Nynorsk (2021b). While
it is generally agreed that language models ac-
quire better language capabilities by pre-training
with multiple languages (Pires et al., 2019; Wu
and Dredze, 2020), there is a strong indication
that this amount of data might have been insuffi-
cient for the multilingual BERT (mBERT) model
to learn high-quality representations of Norwegian
at a level comparable to, for instance, monolingual
English models (Pires et al., 2019).

In the area of monolingual models, the Danish
company BotXO trained BERT-based models for a
few of the Nordic languages using corpora of var-
ious sizes. Their repository (BotXO Ltd., 2021)
lists models trained mainly on Common Crawl

data for Norwegian (5GB), Danish (9.5GB), and
Swedish (24.7GB). Unfortunately, we were unable
to make the Norwegian models work, as they seem
to be no longer updated. Similarly, the KBLab
at the National Library of Sweden trained and re-
leased a BERT-based model and an A Lite BERT
(ALBERT) model, both trained on approximately
20GB of raw text from a variety of sources such
as books, news articles, government publications,
Swedish Wikipedia, and internet forums (Malm-
sten et al., 2020). They claimed significantly bet-
ter performance than both the mBERT and the
Swedish model by BotXO for the tasks they eval-
uated.

At the same of the release of our model, the
Language Technology Group at the University of
Oslo released a monolingual BERT-based model
for Norwegian named NorBERT. It was trained
on around 5GB of data from Wikipedia and the
Norsk aviskorpus (2019). We were unable to get
sensible results when finetuning version 1.0 of
their model. However, they released a second
version shortly thereafter (1.1) fixing some errors
(Language Technology Group at the University of
Oslo, 2021a). We have therefore included the eval-
uation results of this second version of the model
in our benchmarking. They have also evaluated
their and our model themselves (Kutuzov et al.,
2021) with consistent results.

2 Building a Colossal Norwegian Corpus

As the main Norwegian memory institution, the
NLN has the obligation to preserve and give ac-
cess to all published information in Norway. A
large amount of the traditional collection is now
available in digital format. As part of the cur-
rent legal deposit, many born-digital documents
are also available as digital documents in the col-
lection. The texts in the NLN collection span hun-
dreds of years and exhibit varied uses of texts in
society. All kinds of historical written materials
can be found in the collections, although we found
that the most relevant resources for building an ap-
propriate corpus for NLP were books, magazines,
journals, and newspapers (see Table 1). As a con-
sequence, the resulting corpus reflects the varia-
tion in the use of the Norwegian written language,
both historically and socially.

Texts in the NLN have been subject to a large
digitization operation in which digital copies were
created for long-term preservation. The NLN em-
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Figure 1: The general corpus-building process.

ploys METS/ALTO! as the preferred format for
storing digital copies. As the digitized part of
the collection conforms to standard preservation
library practices, the format in which the texts are
stored is not suitable for direct text processing;
thus, they needed to be pre-processed and manip-
ulated for use as plain text. One major challenge
was the variation in the OCR quality, which varied
both over time and between the types of materials
digitized. This limited the number of usable re-
sources and introduced some artifacts that affected
the correctness of the textual data.

The basic inclusion criterion for our corpus was
that as long as it was possible for a human to infer
the meaning from the text, it should be included.
However, the amount of text involved in build-
ing the model meant that this needed to be deter-
mined automatically. The METS/ALTO files con-
tain information from the OCR process regarding
the confidence of every word (from O for no con-
fidence to 1 for certainty), so we used this assess-
ment to calculate the average confidence for para-
graphs and pages. Setting the minimum paragraph
confidence to 0.8 and the minimum page confi-
dence to 0.9 allowed us to filter out a significant
part of the text with the lowest quality. We also
noticed that in the period of digitization from the
beginning of 2006 until the end of 2008, the qual-
ity of the OCR was low and the estimated confi-
dence values were too optimistic. We ended up
excluding all text scanned in this period.

To further filter out erroneous textual informa-
tion, we calculated the number of words in the
documents and averaged the number of words per
paragraph. Establishing a threshold of at least 20
words per document and an average of 6 words
per paragraph, we could filter out text sources that
had little value for training, such as cartoons and
picture books. We estimated the language compo-
sition using various methods, including metadata

'"Metadata Encoding and Transmission Schema and An-
alyzed Layout and Text Object (Library of Congress, 2020,
2016)

tags in the collection and counting the frequency
of words of certain types (e.g., personal pronouns).
Our estimate is that 83% of the text is in Norwe-
gian Bokmal and 12% is in Nynorsk. Close to 4%
of the texts are written in English, and the 1% left
is a mixture of Sami, Danish, Swedish, and a few
traces from other languages.

The aforementioned process was carefully or-
chestrated, with data moving from preservation
storage, through error correction and quality as-
sessment, and ending up as text in the corpus. As
shown in Figure 1, after filtering, OCR-scanned
documents were added to the other digital sources.
After this step, the data went through the cleaning
process, in which we ensured the consistency of
the text encoding and special characters used. In
the deduplication stage, all duplicated paragraphs
in the entire collection were removed. Finally,
we drew out two pre-training-sets: one with a se-
quence length of 128 tokens, and one with a se-
quence length of 512 tokens.

3 Pre-training a Norwegian BERT model

In order to build our own pre-trained language
model for Norwegian, we decided to use the origi-
nal BERT architecture pre-trained with a masked-
language model (MLM) objective, as published by
Devlin et al. (2019). We evaluated the effect of
changes in hyperparameters in terms of MLM per-
formance and of the fine-tuning of the pre-trained
models on various downstream tasks. All pre-
training work was run on a v3-8 TPU (128GB)
provided by the TPU Research Cloud, while the
evaluation was done on in-house machines with a
single NVIDIA Quadro RTX6000 (24GB).

Our goal was to build a solid model that would
perform well on all types of Norwegian language
tasks, ranging from old to modern text, and in-
cluding texts that might be mixed with foreign
languages like English. We therefore chose to
initiate the model from the pre-trained mBERT
weights (TensorFlow Hub, 2021). The mBERT
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Sources Period Words (Millions) Text (GB)
Books (OCR) 1814-2020 11,820 69.0
Newspaper Scans (OCR) 2015-2020 3,350 20.0
Parliament Documents® (OCR) 1814-2014 809 5.1
Common Crawl OSCAR 1991-2020 799 4.9
Online Bokmal Newspapers 1998-2019 678 4.0
Periodicals (OCR) 2010-2020 317 1.9
Newspaper Microfilms (OCR) 1961, 1971, 1981, 1998-2007 292 1.8
Bokmal Wikipedia 2001-2019 140 0.9
Public Reports® (OCR) 1814-2020 91 0.6
Legal Collections® 1814-2004 63 0.4
Online Nynorsk Newspapers 1998-2019 47 0.3
Nynorsk Wikipedia 2001-2019 32 0.2
Total (After Deduplication) 18,438 109.1

%Stortingsforhandlingene. *Evalueringsrapporter. “Lovdata CD/DVD.

Table 1: The composition of the Colossal Norwegian Corpus.

model was trained on 104 languages, including
both Norwegian varieties (Bokmal and Nynorsk).
The model uses a 119,547-token vocabulary, and
its pre-trained weights might also benefit from
cross-lingual transfer. Our assumption is that us-
ing the mBERT weights for Norwegian should re-
sult in a better-performing model in comparison
to starting with random weights. It might also
keep some of its multilingual abilities, making it
more robust when dealing with new words and
texts containing fragments of other languages (Wu
and Dredze, 2020).

3.1 Improving the Model Beyond mBERT

All subsequent training runs followed the findings
by You et al. (2019), who showed that the pre-
training of a BERT model could be improved by
increasing the batch size but that, at the same time,
an increase in the learning rate could lead to insta-
bility, especially when using the adaptive moment
estimation (Adam) optimizer. When training on
large batch sizes, You et al. suggested using their
layer-wise adaptive moments base (LAMB) opti-
mizer instead. We confirmed these results on our
dataset when pre-training for 100,000 steps on a
batch size of 2,048 sequences, which is very close
to the optimum size for our v3-8 TPU (128GB)
setup (see Figure 2).

The basic pre-training strategy was to use the
largest possible batch size on our TPU and to in-
crease the learning rate as long as it showed sta-
bility. An evaluation of the learning rate was done
for 100,000 steps, but because we used decay, we

-Adam - Lamb
0.60
Mwwww‘:::::fffw

. 055 e e
%) N g
e e
g 0.50 / 1
3 7/
S 045 ’/,r

040 !

20000 40000 60000 80000
Training Steps

Figure 2: Comparison of Adam and LAMB opti-
mizers (learning rate: 4e-4; batch size: 2,048).

expected the stability to be maintained even after
this point. Devlin et al. (2019) trained for 128-
length sequences for approximately 90% of the
training examples, then trained for 512-length se-
quences for 10% . Due to memory limits on our
TPUs, we needed to reduce the batch size (by a
factor of approximately 7) for the 512 sequences in
the pre-training data; we also increased the num-
ber of pre-training steps for the long sequences to
resemble the same distribution of short and long
sequences that were used in training the BERT
model. To investigate the effect of this, we ex-
perimented with two different setups in our model
(version A and version B). Both were initialized
from the same mBERT weights and trained identi-
cally for the first 1,750,000 steps. In the last steps,
version A followed the training schedule used in
the BERT model where roughly 10% of the to-
tal training time was used on long sequences (step
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3a) and then an additional step (3b) on shorter se-
quences. Version B reduced the training on short
sequences and instead trained almost 30% of the
time on long sequences. The setup was chosen for
making the total training time roughly the same for
both models (see Table 2).

4 Evaluation

While pre-trained language models also can be
used for direct MLM-predition and feature extrac-
tions, the most common use is to fine-tune it on
a specific task. The base procedure for fine-tuning
was described by Vaswani et al. (2017), and it con-
sists of training for a small number of epochs (typ-
ically 4), with a warmup of around 10% of the
training steps; subsequently, a linear decay to zero
is used. Devlin et al. (2019) based their work on
the same procedure and selected the best learning
rate among Se-5, 3e-5, and 2e-5, according to the
performance of the model on the validation set.
The optimal learning rate and number of epochs
mainly depend on the size of and variance in the
training corpus, but they can also be affected by
the properties of the pre-trained model. To get
optimal performance out of a pre-trained model,
the hyperparameters in the fine-tuning should be
adapted. However, in this work, we are not pri-
marily interested in optimization but in a compar-
ison of the performance of our models against the
mBERT model.

4.1 Token Classification

A common way to evaluate language models is
by fine-tuning the models on token classification
tasks such as named-entity recognition (NER) and
part-of-speech (POS) tagging. For Norwegian, the
Norwegian Dependency Treebank (NDT, Solberg
et al., 2014) by the Sprakbanken at the NLN and
the Language Technology Group at the Univer-
sity of Oslo provide text that has been manually
annotated with morphological features, syntactic
functions, and hierarchical structures. The mor-
phological annotation mainly follows the Oslo-
Bergen tagger (Johannessen et al., 2012), and
with a few exceptions, the syntactic analysis fol-
lows the Norwegian Reference Grammar (Faar-
lund et al., 1997). With the help of Schibsted Me-
dia Group, the same group recently published Nor-
wegian Named Entities (NorNE) (Jgrgensen et al.,
2020), an extension of NDT that includes named-
entity annotations for more than 300,000 tokens.

Moreover, with the goal of testing being the re-
taining or vanishing of the multilingual abilities
of our model, we also considered NER datasets
in both languages included in our corpus and in
languages of which there is little to no evidence
in our corpus. Specifically, we used CoNLL-2003
for English (Tjong Kim Sang and De Meulder,
2003), Webbnyheter 2012 for Swedish (Gothen-
burg University Sprakbanken, 2012), DaNE for
Danish (Hvingelby et al., 2020), CoNLL-2002 for
Spanish (Tjong Kim Sang, 2002), and FINER for
Finnish (Ruokolainen et al., 2019). While the
number and specificity of the tag sets vary across
datasets, rendering the comparison between lan-
guages useless, we could still compare the perfor-
mance of our model against that of English-only
and multilingual BERT models. We decided to
leave out NER datasets built using automated or
semi-automated annotations processes.

4.2 Sequence Classification

For sequence classification, we chose another
commonly used task: sentiment classification. We
used a version of the Norwegian Review Corpus
(NoReC) (@vrelid et al., 2020), a fine-grained sen-
timent dataset (Language Technology Group at the
University of Oslo, 2021b) for Norwegian created
by the Nordic Language Processing Laboratory.
The fine-grained annotations in NoReC ;. were
aggregated, and sentences with conflicting senti-
ments or no sentiment were removed. Moreover,
we defined a second sequence-classification task
to capture the idiosyncrasies and nuances of the
Norwegian language. In this case, we generated
a balanced corpus of 6,000 text speeches that had
been spoken at the Norwegian Parliament (Stort-
ing) between 1998 and 2016 by members of the
two major parties, Fremskrittspartiet and Sosial-
istisk Venstreparti (Lapponi et al., 2018). The
dataset is annotated with the party the speaker was
associated with at the time, and the source data
was made publicly available by the Norwegian
parliament. The classification task is to determine
the political affiliation of the transcribed speech
segment.

5 Results

To evaluate the performance of our model, we
searched for the optimal set of fine-tuning hyper-
parameters for each downstream task by running
a small grid search (see Table 3) on the mBERT
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Version A Version B

Warmup Step1 Step 2 Step3a  Step 3b Step 3

Steps 50k 700k M 1.2M 1.2M M
Batch Size 2760 2760 384 384 2760 384
Examples 138M  1,938M  384M 460M  3,312M 768M
Sequence Length 128 128 512 512 128 512
Learning Rate 0 — 4e-4 4e-4 4e-4 4e4 —2e-4 2e4—-0 4e4—-0

Table 2: Training schedule for our models.

model. The search space was the same for all tasks
and included learning rates ranging from 2e-5 to
Se-5, with the number of training epochs being 3
or 4. We did the same for the warmup ratio and
weight decay. The performance was generally best
using a warmup ratio of 0.1 and weight decay of
0, so we applied this universally to limit the grid
complexity.

For the token classification tasks, we selected
the best-performing hyperparameters based on the
segeval (2018) F1 micro score on the validation
set for Bokmal after fine-tuning an mBERT model.
For sequence classification, we used the F1 macro
score.

NER POS Sentiment Political
Learning Rate 2e-5 3e-5 3e-5 2e-5
Number of Epochs 3 3 3 3

Table 3: Optimal fine-tuning hyperparameters for
the mBERT model using the validation datasets.

We then used the optimal fine-tuning param-
eters from the mBERT model for the validation
dataset on our model and on the NorBERT model.
Last, we compared all the models based on their
results in relation to the test dataset.

Version B of our model—the version with the
extended training-sequence length—performed
slightly better on all four tasks than did version A.
To simplify the results presented here, we there-
fore report only the results from version B, which
we are naming NB-BERT.

As can be seen in the Table 4, the NB-BERT
model performed significantly better than did the
mBERT model for both Bokmal and Nynorsk,
and on both token and sequence classification.
The improvement was the smallest for the POS
dataset, with an improvement from 98.3 to 98.8
for Bokmal and from 98.0 to 98.8 for Nynorsk.
However, POS datasets such as this always con-

tain some ambiguity, and it is hard to tell how
much more improvement is possible there. In ad-
dition, the NER task improved from 83.8 to 91.2
for Bokmal and from 85.6 to 88.9 for Nynorsk.
The sequence classification improved from 69.7
to 86.4 in terms of sentiment classification and
from 78.4 to 81.8 for political classification. We
also tested the release 1.1 of the NorBERT model
that is uploaded to Hugging Face (Language Tech-
nology Group at the University of Oslo, 2021a).
The performance of this model lays in between
that of NB-BERT and mBERT for Bokmal and
Nynorsk, but it generally performs worse on all
non-Norwegian tasks.

As shown in Table 5, our model was able
to outperform the English-only and multilingual
BERT for both Norwegian Bokmal and Nynorsk,
as well as for Swedish and Danish, which are lan-
guages with a shared tradition with Norwegian.
For English, our results are also marginally better
than those obtained using the English-only BERT
model. For Spanish and Finnish, for which there
is no close relationship with Norwegian nor doc-
umented occurrences of text in such languages in
our corpus, the mBERT model outperformed both
the English-only BERT and our model, suggesting
that our model is deteriorating for the languages
not included in the corpus.

6 Discussion

The majority of the training corpora used today for
training transformer models are built using mainly
open web sources. A major motivation for this
project was to investigate whether the digital col-
lections at the NLN could be used to create a
suitable corpus to train state-of-the-art transformer
language models. The texts available through the
library are heterogeneous in nature, including car-
toons, novels, news articles, poetry, and govern-
ment documents published over time and in dif-
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NER POS Sentiment  Political

Bokmal Nynorsk Bokmal Nynorsk Bokmal & Nynorsk Bokmal

mBERT 83.8 85.6 98.3 98.0 69.7 78.4
NorBERT 89.9 86.1 98.5 98.4 81.7 78.2
NB-BERT (ours) 91.2 88.9 98.8 98.8 86.4 81.8

Table 4: Evaluation results from the test dataset (version B of the model; F1 micro in token classifications
and F1 macro in sequence classifications; best scores in bold).

Bokmal Nynorsk English Swedish Danish Spanish Finnish
English BERT 75.1 77.8 91.3 82.5 73.9 81.8 82.9
mBERT 83.8 85.6 90.8 85.3 83.4 87.6 88.7
NorBERT 89.9 86.1 87.8 83.4 80.7 79.3 81.5
NB-BERT (ours) 91.2 88.9 91.3 85.9 85.1 85.8 85.8

Table 5: Evaluation results (F1 micro) of different monolingual NER datasets using the English-only
BERT, mBERT, NorBERT, and our model (best scores in bold).

ferent contexts. As our results suggest, this seems
to be a strength rather than a weakness, in that it
enables us to build high-performance transformer
models for small languages, such as Norwegian.
Consequently, our Norwegian corpus is not only
richer in diversity but also significantly larger in
size than is any other Norwegian corpus, and it
even rivals the size of previous work on a major
language such as English. The Norwegian part of
the mBERT model consists of around 1GB of text
(Wu and Dredze, 2020), while the English-only
BERT model was trained on 16GB of text (Devlin
et al., 2019) mainly based on English Wikipedia
and Open Book Corpus. When Facebook devel-
oped the first version of its RoBERTa, it added
Common Crawl data and Open WebText to the
BERT corpus and ended up with 160GB of text
(Liu et al., 2019). Our clean corpus of Norwegian-
only text is 109GB in size.

For the target languages Norwegian Bokmal
and Norwegian Nynorsk, the model performs sig-
nificantly better than does the mBERT model on
both token classifications (POS and NER) as well
as on the two sequence classification tasks. In the
Bokmal NER task, the level of improvement was
+7.4 F1 points. Because none of the datasets have
been benchmarked against human performance, it
is hard to measure how close this is to the theoret-
ical maximum.

The results show that our corpus is a valid train-
ing source, and this is by no means surprising.
All research points to the possibility of improving
transformer models’ performance by training them

on larger text corpora. However, the novelty of
our results lies in that we were able to increase the
performance on our domain-specific tasks while
maintaining a lot of the multilingual properties of
the mBERT model. This was unexpected because
English only comprised around 4% of the train-
ing set. Still, we were able to improve the En-
glish capabilities of the model up to the level of the
monolingual English model. Part of the reason for
this might be that we applied some training tech-
niques that were not available when the English-
only model was trained and released, most notably
the use of larger batch sizes and the LAMB opti-
mizer.

We were also able to significantly improve the
scores for Swedish and Danish, though it is hard to
pinpoint how much of this was caused by the close
linguistic similarities between the languages and
how much by the fact that they were represented
in the corpus to some degree.

It should not be surprising that the capabilities
of the model in relation to languages that were not
included in the training corpus (i.e., Spanish and
Finnish) did deteriorate. However, the drop in per-
formance was not radical, and the results above in-
dicate that we might have been able to prevent this
by adding just a small portion of these languages
to the large corpus.

Overall, our results suggest that collections
such as the digital collection at the NLN, even
if they contain occational OCR-errors, may con-
tribute significantly toward the creation of well-
performing language models by providing large
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training corpora. As discussed earlier, there are
OCR errors in the included materials. An exhaus-
tive removal of all OCR artifacts would either have
required us to do a major reduction of the size of
the corpus, or to invest an unmanageable amount
of manual work. We have not seen any indica-
tion that the OCR errors negatively impacted the
performance. We might speculate that the model
has learned to distinguish OCR errors from ordi-
nary text, indicating that quantity is more impor-
tant than quality when building such corpora. All
in all, size matters.

7 Conclusion and Future Work

In this work, we have investigated the feasibil-
ity of building a large Norwegian-only corpus for
the training of well-performing transformer-based
language models. We relied on the collections of
the NLN, and our model outperformed the existing
multilingual alternatives. In the process, while the
corpus produced might lack the cleanness of other
textual resources, we proved that using somewhat
noisy but available sources is an effective way to
grow the ecosystem of resources for languages
with fewer resources and for which enough open
text in a digital format simply does not exist. As
part of an effort to democratize the use of technol-
ogy and digital resources at the NLN, we are re-
leasing our trained BERT-based model (National
Library of Norway Al Lab, 2021a) and will be re-
leasing other models based on the same corpus in
the future. Moreover, we are also releasing the set
of tools and code we used so that others seeking
similar results can easily reuse them (National Li-
brary of Norway Al Lab, 2021b).

Although our work may indicate that OCR er-
rors in corpora have little to no impact on the qual-
ity of the resulting transformer model, this has not
been explicitly proven in the current study. More
systematic studies are needed to investigate the
real effect of OCR noise and artifacts.

Another important aspect is that, to benefit
from the pre-trained mBERT weights, we used a
119,547-token multilingual vocabulary, of which
only a small fraction pertained to Norwegian. A
natural follow up would be to investigate the per-
formance gains of using only a tailored Norwegian
vocabulary.

The decision to use a BERT-based architec-
ture as our target was guided by its simplicity to
train and benchmark. However, newer and better-

performing models have been released since the
original BERT work a few years ago. The cur-
rent corpus could be used for training such models
as well studying the differences between architec-
tural styles and training objectives. While it is al-
ready large in size, there is still potential to grow
our 109GB corpus to the limits of the extant Nor-
wegian holdings at the NLN, which presents itself
as an opportunity to release even larger models.
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Abstract

We present the ongoing NorLLM initiative
to support the creation and use of very
large contextualised language models for
Norwegian (and in principle other Nordic
languages), including a ready-to-use soft-
ware environment, as well as an experi-
ence report for data preparation and train-
ing. This paper introduces the first large-
scale monolingual language models for
Norwegian, based on both the ELMo and
BERT frameworks. In addition to detail-
ing the training process, we present con-
trastive benchmark results on a suite of
NLP tasks for Norwegian.

For additional background and access to
the data, models, and software, please see:

http://norlm.nlpl.eu

1 Introduction

In this work, we present NorLM, an ongoing com-
munity initiative and emerging collection of large-
scale contextualised language models for Norwe-
gian. We here