


NoDaLiDa 2021

23rd Nordic Conference on Computational Linguistics
(NoDaLiDa)

Proceedings of the Conference

May 31–2 June, 2021
Reykjavik, Iceland

Online

ii



©2021 Linköping University Electronic Press

Front-cover photo of the ongoing volcanic
eruption in Geldingadalir, near Reykjavík
by Kristinn Ingvarsson, University of Iceland.

Published by
Linköping University Electronic Press, Sweden
Linköping Electronic Conference Proceedings, No. 178
NEALT Proceedings Series, No. 45
Indexed in the ACL anthology

ISBN: 978-91-7929-614-8
ISSN: 1650-3686
eISSN: 1650-3740



Sponsors

iv



Message from the General Chair

Welcome to the 23rd Nordic Conference on Computational Linguistics (NoDaLiDa 2021)!

I am a great fan of the NoDaLiDa conference, as a friendly, medium sized conference that offers the
opportunity for scientific and social interaction with colleagues from neighbouring countries. When I
agreed to serve as the general chair for this years NoDaLiDa I was still relatively optimistic that we could
all meet in beautiful Reykjavik, Iceland to enjoy two days of scientific talks, posters and socialising in
early June. Unfortunately that turned out to not be possible due to the COVID-19 pandemic. Instead, we
are for the first time offering NoDaLiDa as a fully virtual event, free of charge. Even so, I am confident
that this years conference will offer the same high-quality program as in previous years and hopefully it
can also constitute a meeting place, albeit a digital one, for Northern European NLP researchers in these
unusual times.

As in previous editions, the conference features three different types of papers (long, short and demo
papers). We received 91 legal submissions, which represents an increase compared to the previous edition
of the conference. In total, we accepted 54 papers, which will be presented as 30 oral presentations, 22
posters and 2 demos at the conference. Each paper was reviewed by three experts. We are extremely
grateful to the Programme Committee members for their detailed and helpful reviews. Overall, there are
8 oral sessions with talks and two poster sessions organised into themes over the two days, as well as two
exciting keynote talks.

I would further like to thank our two great keynote speakers for sharing their work with us: Lucia Specia
from Imperial College London will talk about “Disagreement in human evaluation: blame the task not
the annotators”. Adina Williams from Facebook AI Research (FAIR) will talk about “For Matters Word
Order Little MLM”. Two exciting talks that complement each other well!

As in previous years, the conference will be preceded by three workshops: Translatology in the Digital
Age, NLP for Computer-Assisted Language Learning and Sustainable language representations. I want
to thank the workshop organisers for complementing the main program and offering opportunities for
in-depth scientific interaction on these diverse and exciting topics.

I would like to thank the entire group of people that made NoDaLiDa 2021 possible. First of all, I would
like to thank Beata Megyesi for inviting me to take up this exciting (and at times daunting) role and
all her valuable input regarding NEALT and previous editions of NoDaLiDa. I am further indebted to
Barbara Plank for her encouragement, for the sharing all the great resources from the last NoDaLiDa and
willingly answering questions on all aspects of the conference organisation. I want to thank the program
chair committee Jurgita Kapočiūtė-Dzikienė, Mark Fishel, Jón Gudnason, Barbara Plank, Yves Scherrer
and Sara Stymne, for working hard on putting the program together. I am particularly grateful to Jurgita
Kapočiūtė-Dzikienė, Jón Gudnason, Yves Scherrer and Sara Stymne for their great effort in leading the
reviewing process and shepherding papers from submission to a final decision. I could not have done this
without you! Special thanks go to the workshop chairs, Hans Moen and Ildikó Pilán, who have done an
invaluable job with leading the workshop selection and organisation. A big thanks also to Johannes Bjerva
for his work as social media chair and Simon Dobnik for leading the publication efforts that led to this
volume, as well as the coordination of the workshop proceedings. Thank you! Finally, my ultimate thanks
goes to the local organisation committee and team. Thank you, Hráfn Lóftsson, Anton Karl Ingason and
Steinþór Steingrímsson. They are the ones who did all the heavy lifting in the switch to a virtual event
and did a truly amazing job!
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NoDaLiDa 2021 has received financial support from our generous sponsors, which we would also like
to thank here: Lingsoft, Tilde, Mideind and Grammatek. Above all, their support made it possible for
us to offer this NoDaLiDa free of charge. I hope that this will open the conference up to an even larger
audience of NLP researchers in Northern Europe.

Once again, welcome and I hope you will enjoy the conference!

Lilja Øvrelid

Oslo

May, 2021

Message from the Local Organisers

We were very much looking forward meeting you at the beginning of summer in Reykjavik, Iceland,
but due to the COVID-19 pandemic we had to move the conference completely online. This has been a
challenge for us, given the fact that NoDaLiDa has never been run online before. We looked at various
possible implementations, but at the end we selected a combination of Zoom, YouTube, Gather.town
and Trello! Hopefully, we have risen to the challenge and we hope that you will enjoy interesting talks,
posters, demos and workshops during theses three days of NoDaLiDa 2021.

Welcome to NoDaLiDa 2021 online!
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Invited Talks

Lucia Specia: Disagreement in human evaluation: blame the task not the annotators.
It is well known that human evaluators are prone to disagreement and that this is a problem for reliability
and reproducibility of evaluation experiments. The reasons for disagreement can fall into two broad
categories: (1) human evaluator, including under-trained, under-incentivised, lacking expertise, or ill-
intended individuals, e.g., cheaters; and (2) task, including ill-definition, poor guidelines, sub-optimal
setup, or inherent complexity or subjectivity. While in an ideal evaluation experiment many of these
elements will be controlled for, in this talk I will argue that task complexity and subjectivity are much
harder issues and that in some cases agreement cannot and should not be expected. I will cover several
evaluation experiments on tasks with variable degrees of complexity and subjectivity, discuss their levels
of disagreement along with other issues. I hope this will lead to an open discussion on possible strategies
and directions to address this problem.

Adina Williams: For Matters Word Order Little MLM.
One possible explanation for the impressive performance of masked language models (MLMs) is that they
can learn to represent the syntactic structures prevalent in classical NLP pipelines. Were this correct, we
would expect that fine-tuning such models on tasks requiring syntactic structure would lead them to be
sensitive to word order at inference time. To address this question, we permute example word order at sev-
eral steps in the pipeline—during fine-tuning, evaluation, and/or pre-training—and measure the results.
We find that permuting word order during fine-tuning has remarkably little effect on downstream per-
formance for several purportedly syntax sensitive NLU tasks (including NLI). Next, we pre-train MLMs
on examples with randomly shuffled word order, and find that these models still achieve high accuracy
(even after unpermuted fine-tuning) on many downstream tasks—including tasks specifically designed to
be challenging for models that ignore word order. Our results show that the success of MLM pre-training
is largely due to distributional information not any knowledge of word order per se, and underscores the
importance of curating challenging evaluation datasets that require deeper syntactic knowledge.
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WikiBERT Models: Deep Transfer Learning for Many Languages

Sampo Pyysalo, Jenna Kanerva, Antti Virtanen, Filip Ginter
TurkuNLP group,

Department of Computing,
Faculty of Technology

University of Turku, Finland
first.last@utu.fi

Abstract

Deep neural language models such as
BERT have enabled substantial advances
in natural language processing. However,
due to the effort and computational cost
involved in their pre-training, such mod-
els are typically introduced only for high-
resource languages. In this paper, we in-
troduce a simple, fully automated pipeline
for creating language-specific BERT mod-
els from Wikipedia data and introduce 42
new monolingual models, most for lan-
guages up to now lacking such resources.
We show that the newly introduced Wiki-
BERT models outperform multilingual
BERT (mBERT) in cloze tests for nearly
all languages, and that parsing using Wiki-
BERT models outperforms mBERT on av-
erage, with substantially improved perfor-
mance for some languages, but decreases
for others. All of the resources introduced
in this work are available under open li-
censes from https://github.com/
turkunlp/wikibert .

1 Introduction

Transfer learning using language models pre-
trained on large unannotated corpora has allowed
for substantial recent advances at a broad range of
natural language processing (NLP) tasks. By con-
trast to earlier distributional semantics approaches
such as random indexing (Kanerva et al., 2000)
and context-independent neural approaches such
as word2vec (Mikolov et al., 2013) and GloVe
(Pennington et al., 2014), models such as ULMFiT
(Howard and Ruder, 2018), ELMo (Peters et al.,
2018), GPT (Radford et al., 2018) and BERT (De-
vlin et al., 2019) create contextualized representa-
tions of meaning, capable of providing both con-
textualized word embeddings as well as embed-

dings for text segments longer than words. Re-
cent pre-trained neural language models have been
rapidly advancing the state of the art in a range
of natural language understanding and NLP tasks
(Wang et al., 2018, 2019; Straková et al., 2019;
Kondratyuk and Straka, 2019).

The transformer architecture (Vaswani et al.,
2017) and the BERT language model of De-
vlin et al. (2019) have been particularly influen-
tial, with transformer-based models in general and
BERT in particular fuelling a broad range of ad-
vances and serving as the basis of many recent
studies of neural language models (e.g. Lan et al.,
2019; Liu et al., 2019; Sanh et al., 2019). As is the
case for most studies on new deep neural language
models, the original study introducing BERT ad-
dressed only English. The authors later released
a Chinese model as well as a multilingual model,
mBERT, trained on text from 104 languages, but
opted not to introduce models specifically target-
ing other languages. While mBERT is a powerful
multilingual model with remarkable cross-lingual
capabilities (Pires et al., 2019), it remains a com-
promise in that the 104 languages share the model
capacity dedicated to one language in monolingual
models, and it consequently suffers from degra-
dation of performance in language-specific tasks
(Conneau et al., 2020).

Here, we take steps towards closing various
parts of the gap between languages with dedicated
deep neural models, ones that share capacity with
others in a massively multilingual model, and ones
that lack any representation at all. We introduce
a fully automated pipeline for creating language-
specific BERT models from Wikipedia data and
apply this pipeline to create 42 new such models.

2 Related work

Considerable recent effort by various groups has
focused on introducing dedicated BERT mod-
els covering single languages or a small num-

1



ber of (often closely related) languages. Dedi-
cated monolingual models include e.g. BERTje1

(de Vries et al., 2019) for Dutch, CamemBERT2

(Martin et al., 2020) for French, FinBERT3 (Vir-
tanen et al., 2019) for Finnish, RuBERT4 (Kura-
tov and Arkhipov, 2019) for Russian, and Roma-
nian BERT (Dumitrescu et al., 2020); more fo-
cused multilingual models include e.g. the bilin-
gual Finnish-English model of Chang et al. (2020)
and the trilingual Finnish-Estonian-English and
Croatian-Slovenian-English models of Ulčar and
Robnik-Šikonja (2020).

Many of these studies have demonstrated the
newly introduced models to allow for substantial
improvements over mBERT in various language-
specific downstream task evaluations, thus sup-
porting the continued value of creating monolin-
gual and focused multilingual models. However,
these efforts still cover only a fairly limited num-
ber of languages, and do not offer a straightfor-
ward way to substantially extend that coverage.
The studies further differ considerably in aspects
such as data collection, text cleaning and prepro-
cessing, pre-training parameter setting and other
details of the pre-training process, making it dif-
ficult to meaningfully compare the models to ad-
dress questions such as which languages benefit
most from mono/multilingual pre-training? We
are not aware of previous efforts to automate the
creation of large numbers of monolingual deep
neural language models from comparable, pub-
licly available sources nor efforts to create broad-
coverage collections of such models.

In a line of study in some senses orthogonal
to our work, a number of massively multilingual
models improving on mBERT in terms of model
architecture, training dataset, objectives, and pro-
cess or other aspects have been introduced (e.g.
Conneau et al., 2020; Xue et al., 2020). While
it is certainly an interesting question to ask what
the tradeoffs between monolingual and massively
multilingual pre-training are for models other than
BERT, it is not feasible for us to replicate the
training processes for other models, and we have
here chosen to focus on BERT-based models and
Wikipedia due to their prominence and status as
benchmarks.

1https://github.com/wietsedv/bertje
2https://camembert-model.fr/
3https://turkunlp.org/FinBERT/
4https://github.com/deepmipt/

deeppavlov/

3 Data

We next introduce the two primary datasets used in
this study: Wikipedia, used as the source of unan-
notated texts for model pre-training, and Univer-
sal Dependencies annotated corpora, used to train
preprocessing methods as well as in model evalu-
ation.

3.1 Wikipedia
Wikipedia is a collaboratively created online en-
cyclopedia that is available in a large number of
languages under open data licenses. The English
Wikipedia was the main source of text for pre-
training the original English BERT models, ac-
counting for three-fourths of its pre-training data.5

The mBERT models were likewise trained exclu-
sively on Wikipedia data. In this work, we chose
to focus on the Wikipedias in various languages
as the only source of pre-training data, thus assur-
ing that our approach can be directly applied to a
broad selection of languages and providing direct
comparability with existing models, in particular
mBERT.

As of this writing, the List of Wikipedias6 iden-
tifies Wikipedias in 309 languages. Their sizes
vary widely: while the largest of the set, the En-
glish Wikipedia, contains over six million articles,
the smaller half of Wikipedias (155 languages)
put together only total approximately 400,000 ar-
ticles. As the BERT base model has over 100
million parameters and BERT models are fre-
quently trained on billions of words of unanno-
tated text, it seems safe to estimate that attempt-
ing to train BERT with the data from one of the
smaller wikipedias7 would likely not produce a
very successful model. It is nevertheless not well
established how much unannotated text is required
to pre-train a language-specific model, and how
much the domain and quality of the pre-training
data affect the model performance.

In order to focus computational resources on
models with practical value, we opted to exclude
“dead” languages that are not in everyday spoken
use by any community from our efforts. We have

5The remaining quarter of BERT pre-training data was
drawn from the BooksCorpus (Zhu et al., 2015), a unique
(and now unavailable) resource for which analogous re-
sources in other languages cannot be readily created.

6https://en.wikipedia.org/wiki/List_
of_Wikipedias

7For example, Old Church Slavonic, ranked 272nd among
wikipedias by size, has fewer than 1000 articles and under
50,000 tokens.
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Language (code) Tokens
Afrikaans (af) 24M
Arabic (ar) 184M
Belarusian (be) 34M
Bulgarian (bg) 71M
Catalan (ca) 236M
Czech (cs) 143M
Danish (da) 65M
German (de) 1.0B
Greek (el) 81M
English (en) 2.7B
Spanish (es) 678M
Estonian (et) 38M
Basque (eu) 45M
Persian (fa) 95M

Language (code) Tokens
Finnish (fi) 97M
French (fr) 858M
Galician (gl) 58M
Hebrew (he) 166M
Hindi (hi) 35M
Croatian (hr) 54M
Hungarian (hu) 129M
Indonesian (id) 93M
Italian (it) 579M
Japanese (ja) 596M
Korean (ko) 79M
Lithuanian (lt) 34M
Latvian (lv) 21M
Dutch (nl) 300M

Language (code) Tokens
Norwegian (no) 112M
Polish (pl) 282M
Portuguese (pt) 326M
Romanian (ro) 85M
Russian (ru) 565M
Slovak (sk) 39M
Slovenian (sl) 42M
Serbian (sr) 96M
Swedish (sv) 364M
Tamil (ta) 26M
Turkish (tr) 71M
Ukrainian (uk) 260M
Urdu (ur) 18M
Vietnamese (vi) 172M

Table 1: Wikipedia sizes for selected languages.

otherwise broadly proceeded to introduce prepro-
cessing support and models for languages in de-
creasing order of the size of their Wikipedias and
support in Universal Dependencies, discussed be-
low. Table 1 lists the Wikipedias used in this work.

3.2 Universal Dependencies

Universal Dependencies (UD) is a community-
lead effort aiming to create cross-linguistically
consistent treebank annotations for many typo-
logically different languages (Nivre et al., 2016,
2020). In this study, we rely on UD both as
training data for components of the preprocess-
ing pipeline (Section 4.1) as well as for our eval-
uations. As of this writing, the latest release
of the UD treebanks8 is 2.7, which includes 183
treebanks covering 104 languages, thus matching
mBERT in terms of the raw number of covered
languages.

To maintain comparability with recent work on
UD parsing, we use the UD v2.3 treebanks,9 with
129 treebanks in 76 languages, in our compara-
tive experiments assessing the WikiBERT mod-
els. We further limit our evaluation to the sub-
set of UD v2.3 treebanks that have training, de-
velopment, and test sets, thus excluding e.g. the
17 parallel UD treebanks which only provide test
sets. We further exclude from evaluation treebanks
released without text (ar nyuad, en esl, fr ftb,
ja bccwj), the Swedish sign language treebank
(swl sslc), and treebanks in languages for which

8https://universaldependencies.org/
9http://hdl.handle.net/11234/1-2895

we have not trained dedicated models (mr ufal,
mt mudt, te mtg, and ug udt). Table 2 lists the
treebanks applied in our evaluation. We note
that there is very substantial variance between
treebanks in the amount of training data avail-
able, ranging from little over 3000 tokens for the
Lithuanian HSE treebank to more than a million
for the Czech PDT.

4 Methods

We next briefly introduce the primary steps of the
preprocessing pipeline for creating pre-training
examples from Wikipedia source as well as the
tools used for text processing, model pre-training,
and evaluation. We refer to our published pipeline
and its documentation for full processing details.

4.1 Preprocessing pipeline
In order to create high quality pre-training data
from raw Wikipedia dumps in the format required
by BERT model training, we introduce a pipeline
that performs the following primary steps:

Data and model download The full Wikipedia
database backup dump is downloaded from a mir-
ror site10 and a UDPipe model for the language
from the LINDAT/CLARIN repository.11

Plain text extraction WikiExtractor12 is used to
extract plain text with document boundaries from
the Wikipedia XML dump.

10https://dumps.wikimedia.org/
11http://hdl.handle.net/11234/1-3131
12https://github.com/attardi/

wikiextractor
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Language (code) Treebank Tokens
Afrikaans (af) AfriBooms 33894
Arabic (ar) PADT 223881
Belarusian (be) HSE 5217
Bulgarian (bg) BTB 124336
Catalan (ca) AnCora 417587
Czech (cs) CAC 472609
Czech (cs) CLTT 26742
Czech (cs) FicTree 133637
Czech (cs) PDT 1173282
Danish (da) DDT 80378
German (de) GSD 263804
Greek (el) GDT 42326
English (en) EWT 204585
English (en) GUM 53686
English (en) LinES 50091
English (en) ParTUT 43518
Spanish (es) AnCora 444617
Spanish (es) GSD 382436
Estonian (et) EDT 341122
Basque (eu) BDT 72974
Persian (fa) Seraji 121064
Finnish (fi) FTB 127602
Finnish (fi) TDT 162621
French (fr) GSD 354699
French (fr) ParTUT 24123
French (fr) Sequoia 50536
French (fr) Spoken 14952
Galician (gl) CTG 79327
Hebrew (he) HTB 137721
Hindi (hi) HDTB 281057
Croatian (hr) SET 154055
Hungarian (hu) Szeged 20166

Language (code) Treebank Tokens
Indonesian (id) GSD 97531
Italian (it) ISDT 276019
Italian (it) ParTUT 48934
Italian (it) PoSTWITA 99441
Japanese (ja) GSD 160419
Korean (ko) GSD 56687
Korean (ko) Kaist 296446
Lithuanian (lt) HSE 3210
Latvian (lv) LVTB 113405
Dutch (nl) Alpino 186046
Dutch (nl) LassySmall 75134
Norwegian (no) Bokmaal 243887
Norwegian (no) Nynorsk 245330
Polish (pl) LFG 104750
Polish (pl). SZ 62501
Portuguese (pt) Bosque 206744
Portuguese (pt) GSD 255755
Romanian (ro) Nonstandard 155498
Romanian (ro) RRT 185113
Russian (ru) GSD 75964
Russian (ru) SynTagRus 870474
Slovak (sk) SNK 80575
Slovenian (sl) SSJ 112530
Serbian (sr) SET 65764
Swedish (sv) LinES 48320
Swedish (sv) Talbanken 66645
Tamil (ta) TTB 6329
Turkish (tr) IMST 37918
Ukrainian (uk) IU 88043
Urdu (ur) UDTB 108690
Vietnamese (vi) VTB 20285

Table 2: UD v2.3 training data sizes for selected treebanks.

Segmentation and tokenization UDPipe is
used with the downloaded model to segment sen-
tences and tokenize the plain text, producing text
with document, sentence, and word boundaries.

Document filtering A set of heuristic rules and
statistical language detection13 are applied to op-
tionally filter documents based on configurable
criteria.14

Sampling and basic tokenization A sample of
sentences is tokenized using BERT basic tokeniza-

13https://github.com/shuyo/
language-detection

14We note that there are Wikipedia pages whose content is
mostly in a language different from that of the Wikipedia.

tion15 to produce examples for vocabulary gener-
ation that match BERT tokenization criteria.

Vocabulary generation A subword vocabulary
is generated using the SentencePiece16 (Kudo and
Richardson, 2018) implementation of byte-pair
encoding (Gage, 1994; Sennrich et al., 2015). Af-
ter generation the vocabulary is converted to the
BERT WordPiece format (a different but largely
equivalent representation).

15BERT basic tokenization preserves alphanumeric se-
quences but separates e.g. all punctuation characters into in-
dividual tokens.

16https://github.com/google/
sentencepiece
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Subword Accuracy
Language (code) mBERT WikiBERT
Afrikaans (af) 28.69 43.22
Arabic (ar) 20.17 29.96
Belarusian (be) 18.15 36.39
Bulgarian (bg) 21.26 39.98
Catalan (ca) 40.29 56.63
Czech (cs) 22.41 39.77
Danish (da) 25.06 40.86
German (de) 33.85 46.93
Greek (el) 21.42 45.42
English (en) 37.39 46.64
Spanish (es) 40.20 52.05
Estonian (et) 14.00 31.26
Basque (eu) 15.15 30.99
Persian (fa) 21.52 45.20
Finnish (fi) 12.89 27.67
French (fr) 41.30 52.08
Galician (gl) 33.23 36.81
Hebrew (he) 20.96 21.83
Hindi (hi) 19.97 47.23
Croatian (hr) 23.03 39.99
Hungarian (hu) 18.89 38.99

Subword Accuracy
Language (code) mBERT WikiBERT
Indonesian (id) 30.72 52.47
Italian (it) 29.48 37.98
Japanese (ja) 49.25 45.19
Korean (ko) 17.59 30.61
Lithuanian (lt) 15.11 29.83
Latvian (lv) 15.59 29.99
Dutch (nl) 29.08 47.54
Norwegian (no) 22.73 34.15
Polish (pl) 17.64 33.30
Portuguese (pt) 32.55 43.85
Romanian (ro) 21.19 33.07
Russian (ru) 27.16 46.86
Slovak (sk) 16.52 29.08
Slovenian (sl) 21.21 35.24
Serbian (sr) 25.80 30.70
Swedish (sv) 22.11 37.11
Tamil (ta) 14.36 31.85
Turkish (tr) 12.56 29.16
Ukrainian (uk) 19.15 31.78
Urdu (ur) 20.83 39.70
Vietnamese (vi) 17.96 47.35

Table 3: Results for the cloze test in terms of subword prediction accuracy (percentages)

Example generation Masked language model-
ing and next sentence prediction examples using
the full BERT tokenization specified by the gen-
erated vocabulary are created in the TensorFlow
TFRecord format using BERT tools.

The created vocabulary and pre-training examples
can be used directly with the original BERT imple-
mentation to train new language-specific models.

4.2 UDPipe

UDPipe (Straka et al., 2016) is a parser capable of
producing segmentation, part-of-speech and mor-
phological tags, lemmas and dependency trees.
In this work we use UDPipe for sentence seg-
mentation and tokenization in the preprocessing
pipeline. The segmentation component in UDPipe
is a character-level bidirectional GRU network si-
multaneously predicting the end-of-token and end-
of-sentence markers.

4.3 Pre-training

We aimed to largely mirror the original BERT pro-
cess in our selection of parameters and settings
for the pre-training process to create the Wiki-
BERT models, with some adjustments made to ac-

count for differences in computational resources.
Specifically, while the original BERT models were
trained on TPUs, we trained on Nvidia Volta V100
GPUs with 32GB memory. We followed the orig-
inal BERT processing in training for a total of
1M steps in two stages, the first 900K steps with
a maximum sequence length of 128, and the last
100K steps with a maximum of 512. Due to mem-
ory limitations, each model was trained on 4 GPUs
using a batch size of 140 during the sequence
length 128 phase, and 8 GPUs with a batch size
of 20 during the sequence length 512 phase.

4.4 Cloze test

In order to evaluate the BERT models with respect
to their original training objective, we employ a
cloze test, where words are randomly masked and
predicted back. We mask a random 15% of words
in each sentence, and, in case a word is composed
of several subword (WordPiece) tokens, all sub-
word tokens are masked for an easier and more
meaningful evaluation (cf. full-word masking in
BERT pre-training). All masked positions are pre-
dicted at once in the same manner as done in the
BERT pre-training (i.e. without iterative predic-
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Average LAS
Language (code) mBERT WikiBERT
Afrikaans (af) 87.85 87.33
Arabic (ar) 83.81 85.47
Belarusian (be) 81.77 79.81
Bulgarian (bg) 92.30 92.51
Catalan (ca) 92.08 92.06
Czech (cs) 90.45 90.69
Danish (da) 85.78 85.84
German (de) 83.16 84.13
Greek (el) 91.63 92.35
English (en) 88.09 88.05
Spanish (es) 90.42 90.12
Estonian (et) 85.86 87.43
Basque (eu) 82.99 83.70
Persian (fa) 86.60 88.60
Finnish (fi) 87.64 90.81
French (fr) 89.22 88.77
Galician (gl) 83.05 82.61
Hebrew (he) 88.77 90.17
Hindi (hi) 91.59 91.86
Croatian (hr) 89.46 89.40
Hungarian (hu) 83.99 86.21

Average LAS
Language (code) mBERT WikiBERT
Indonesian (id) 80.40 80.12
Italian (it) 89.64 89.77
Japanese (ja) 92.78 92.92
Korean (ko) 86.19 87.28
Lithuanian (lt) 58.68 58.40
Latvian (lv) 84.29 84.46
Dutch (nl) 90.26 91.02
Norwegian (no) 91.54 91.94
Polish (pl) 94.45 95.58
Portuguese (pt) 91.91 92.21
Romanian (ro) 86.83 86.52
Russian (ru) 90.35 91.13
Slovak (sk) 91.64 91.73
Slovenian (sl) 92.83 93.37
Serbian (sr) 92.30 91.79
Swedish (sv) 86.42 87.12
Tamil (ta) 70.14 69.63
Turkish (tr) 69.33 71.25
Ukrainian (uk) 88.57 90.41
Urdu (ur) 82.66 82.15
Vietnamese (vi) 66.89 68.87

Table 4: Average LAS results for UDify for Universal Dependencies treebanks in each language.

tion of one position per time step). As a source
of sentences, we use the first 1000 sentences of
training sections of the treebanks, limited to sen-
tences of 5–50 tokens in length. We note that the
treebanks are not entirely non-overlapping with
Wikipedia: 16 out of the 63 treebanks draw at least
part of their texts from Wikipedia. However, as all
of the compared models share this source of pre-
training data, we do not expect this overlap to bias
the comparison.

4.5 UDify

To assess the performance of the models in a
downstream task, we apply the UDify parser
(Kondratyuk and Straka, 2019), initialized with
one of the models and trained on Universal De-
pendencies data. UDify is a state-of-the-art model
and can predict UD part-of-speech tags, morpho-
logical features, lemmas, and dependency trees.
UDify implements a multi-task learning objective
using task-specific prediction layers on top of a
pre-trained BERT encoder. All prediction lay-
ers are trained simultaneously, while also fine-
tuning the pre-trained encoder weights. In the fol-
lowing evaluation, we focus on the parsing per-

formance using the standard Labeled Attachment
Score (LAS) metric.

5 Results

We next present the results of the intrinsic cloze
test evaluation and the extrinsic evaluation with
syntactic analysis as a downstream task.

5.1 Cloze evaluation results
The cloze evaluation results are shown in Ta-
ble 3, where we measure subword-level prediction
accuracy, i.e. the proportion of cases where the
model assigns the highest probability to the orig-
inal subword. We find that the WikiBERT mod-
els outperform mBERT for all languages except
for Japanese,17 averaging more than 10% points
higher accuracy. While this is an encouraging re-
sult regarding the quality of the newly introduced
models, the evaluation is arguably biased in favour
of monolingual models, as their candidate space
(the vocabulary) is limited to only include options
in the correct language. More broadly, success at

17This result may suggest some issues specific to Japanese
either in the preprocessing pipeline or the applied UDify
model, but we have yet to identify any clear explanation for
the exception.
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Figure 1: Average relative change in LAS when replacing mBERT with a WikiBERT model for UDify
initialization plotted against the WikiBERT pre-training data size in tokens. Coloring indicates language
grouping by genera (Baltic: white, Finnic: light blue, Germanic: yellow, Indic: orange, Romance: red,
Semitic: green, Slavic: blue, other: black).

intrinsic evaluations such as this does not guar-
antee practical applicability (or vice versa), and
models should also be assessed at real-world tasks
to gain a more complete picture of their value (see
e.g. Chiu et al., 2016).

5.2 UD parsing results

Table 4 summarizes the results of the UD parsing
evaluation. Given the large size of both train sets
(See Table 2) and test sets for most of the lan-
guages, the evaluation results are stable, and we
have found that repetitions of the training process
often result in less than 0.1% point differences be-
tween runs. To conserve computational resources,
we have thus here chosen to run a single experi-
ment per treebank (a typical setting for UD evalu-
ation).

We find a complex, mixed picture where
mBERT and WikiBERT models each appear
clearly superior for different languages, for ex-
ample, mBERT for Belarusian and WikiBERT for
Finnish. On average across all languages, UDify
with WikiBERT models slightly edges out UDify

with mBERT, with an 86.1% average for mBERT
and 86.6% for WikiBERT (an approximately 4%
relative decrease in LAS error). However, such av-
eraging hides more than it reveals, and it is more
interesting to consider the various potential im-
pacts on performance from pre-training data size,
potential support from close relatives in the same
language family, and other similar factors. The
various UD treebanks represent very different lev-
els of challenge with LAS results ranging from
below 60% to above 95%, and to reduce the im-
pact of the properties of the treebanks on the com-
parison, in the following we focus on the relative
change in performance when initializing UDify
with a WikiBERT model compared to the baseline
approach using mBERT.

Figure 1 shows the average relative change in
performance over all treebanks for a language
when replacing mBERT with the relevant Wiki-
BERT model for UDify, plotted against the num-
ber of tokens in Wikipedia for the language. While
the data is very noisy due to a number of fac-
tors, we find some indication of a “sweet spot”
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where training a dedicated monolingual model
tends to show most benefit over using the multi-
lingual model when at least approximately 100M
tokens but fewer than 1B tokens of pre-training
data are available. We also briefly note some other
properties in this data:

• For English, a language in the large Germanic
family and the one with the largest amount
of Wikipedia pre-training data, mBERT and
WikiBERT results are effectively identical.

• The greatest loss when moving from mBERT
to a WikiBERT model is seen for Belaru-
sian, a slavic language closely related to
Russian, for which considerably more pre-
training data is available.

• The greatest gain when moving from mBERT
to a WikiBERT model is seen for Finnish,
a Finnic language with few closely related,
widely spoken languages, which has a com-
paratively large Wikipedia.

Observations such as these may suggest fruitful
avenues for further research into the conditions
under which mono- and multilingual language
model training is expected to be most successful.
Based on these results and the findings of stud-
ies training models for small numbers of closely
related languages (see Section 2), we anticipate
that multilingual training may most readily benefit
lower-resourced languages trained together with a
closely related high-resource language in a bilin-
gual setting.

6 Discussion and conclusions

In this paper, we have introduced a simple,
fully automatic pipeline for creating monolingual
BERT models from Wikipedia data, applied the
pipeline to introduce 42 new language-specific
models, most covering languages that previously
lacked a dedicated deep neural language model.
We evaluated the WikiBERT models intrinsically
using cloze evaluation, finding that they outper-
form the multilingual mBERT model for all but
one language. An extrinsic evaluation using a de-
pendency parsing task with Universal Dependen-
cies data and the UDify neural parser found a more
nuanced picture of the comparative merits of the
monolingual and multilingual models: while we
found that a WikiBERT model will provide bet-
ter performance than mBERT on average and in

multiple cases provides a more than 10% rela-
tive decrease in LAS error compared to the mul-
tilingual model, the WikiBERT models showed
lower performance than mBERT for multiple lan-
guages. Viewing relative change in performance
against pre-training data size, we found indica-
tions that monolingual models may most bene-
fit languages that have no closely related high-
resource languages and for which comparatively
large pre-training corpora can be assembled.

The availability of the WikiBERT collection of
models opens up a broad range of potential av-
enues for research into the strengths, weaknesses
and challenges in both mono- and multilingual
language modeling that we hope to pursue in fu-
ture work. We also hope to encourage both mono-
lingual applications as well as exploration of these
questions by others by making the models freely
available under open licenses from https://
github.com/turkunlp/wikibert .
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Suárez, Yoann Dupont, Laurent Romary, Éric Ville-
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Abstract

This paper presents EstBERT, a large pre-
trained transformer-based language-specific
BERT model for Estonian. Recent work has
evaluated multilingual BERT models on Es-
tonian tasks and found them to outperform
the baselines. Still, based on existing studies
on other languages, a language-specific BERT
model is expected to improve over the multi-
lingual ones. We first describe the EstBERT
pretraining process and then present the mod-
els’ results based on the finetuned EstBERT
for multiple NLP tasks, including POS and
morphological tagging, dependency parsing,
named entity recognition and text classifica-
tion. The evaluation results show that the mod-
els based on EstBERT outperform multilin-
gual BERT models on five tasks out of seven,
providing further evidence towards a view that
training language-specific BERT models are
still useful, even when multilingual models are
available.1

1 Introduction
Pretrained language models, such as BERT (Devlin
et al., 2019) or ELMo (Peters et al., 2018), have become
the essential building block for many NLP systems.
These models are trained on large amounts of unanno-
tated textual data, enabling them to capture the general
regularities in the language and thus can be used as a
basis for training the subsequent models for more spe-
cific NLP tasks. Bootstrapping NLP systems with pre-
training is particularly relevant and holds the greatest
promise for improvements in the setting of limited re-
sources, either when working with tasks of limited an-
notated training data or less-resourced languages like
Estonian.

Since the first publication and release of the large
pretrained language models on English, considerable
effort has been made to develop support for other lan-
guages. In this regard, multilingual BERT models, si-
multaneously trained on the text of many different lan-
guages, have been published, several of which also in-

1The model is available via HuggingFace Transformers
library: https://huggingface.co/tartuNLP/EstBERT

clude the Estonian language (Devlin et al., 2019; Con-
neau et al., 2019; Sanh et al., 2019; Conneau and Lam-
ple, 2019). These multilingual models’ performance
was recently evaluated on several Estonian NLP tasks,
including POS and morphological tagging, named en-
tity recognition, and text classification (Kittask et al.,
2020). The overall conclusions drawn from these ex-
periments are in line with previously reported results
on other languages, i.e., for many or even most tasks,
multilingual BERT models help improve performance
over baselines that do not use language model pretrain-
ing.

Besides multilingual models, language-specific
BERT models have been trained for an increasing
number of languages, including for instance Camem-
BERT (Martin et al., 2020) and FlauBERT (Le et al.,
2020) for French, FinBERT for Finnish (Virtanen et al.,
2019), RobBERT (Delobelle et al., 2020) and BERTJe
(de Vries et al., 2019) for Dutch, Chinese BERT (Cui
et al., 2019), BETO for Spanish (Cañete et al., 2020),
RuBERT for Russian (Kuratov and Arkhipov, 2019)
and others. For a recent overview about these efforts
refer to Nozza et al. (2020). Aggregating the results
over different language-specific models and compar-
ing them to those obtained with multilingual models
shows that depending on the task, the average improve-
ment of the language-specific BERT over the mul-
tilingual BERT varies from 0.70 accuracy points in
paraphrase identification up to 6.37 in sentiment clas-
sification (Nozza et al., 2020). The overall conclu-
sion one can draw from these results is that while
existing multilingual BERT models can bring along
improvements over language-specific baselines, using
language-specific BERT models can further consider-
ably improve the performance of various NLP tasks.

Following the line of reasoning presented above, we
set forth to train EstBERT, a language-specific BERT
model for Estonian. In the following sections, we first
give details about the data used for BERT pretrain-
ing and then describe the pretraining process. Finally,
we will provide evaluation results on the same tasks
as presented by Kittask et al. (2020) on multilingual
BERT models, which include POS and morphological
tagging, named entity recognition and text classifica-
tion. Additionally, we also train a dependency parser
based on the spaCy system. Compared to multilingual
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models, the EstBERT model achieves better results on
five tasks out of seven, providing further evidence for
the usefulness of pretraining language-specific BERT
models. Additionally, we also compare with the Esto-
nian WikiBERT, a recently published Estonian-specific
BERT model trained on a relatively small Wikipedia
data (Pyysalo et al., 2020). Compared to the Estonian
WikiBERT model, the EstBERT achieves better results
on six tasks out of seven, demonstrating the positive
effect of the amount of pretraining data on the general-
isability of the model.

2 Data Preparation

The first step for training the EstBERT model involves
preparing a suitable unlabeled text corpus. This section
describes both the steps we took to clean and filter the
data and the process of generating the vocabulary and
the pretraining examples.

2.1 Data Preprocessing

For training the EstBERT model, we used the Esto-
nian National Corpus 2017 (Kallas and Koppel, 2018),2

which was the largest Estonian language corpus avail-
able at the time. It consists of four sub-corpora: the Es-
tonian Reference Corpus 1990-2008, the Estonian Web
Corpus 2013, the Estonian Web Corpus 2017, and the
Estonian Wikipedia Corpus 2017. The Estonian Ref-
erence corpus (ca 242M words) consists of a selection
of electronic textual material, about 75% of the corpus
contains newspaper texts, the rest 25% contains fiction,
science and legislation texts. The Estonian Web Cor-
pora 2013 and 2017 make up the largest part of the
material and they contain texts collected from the In-
ternet. The Estonian Wikipedia Corpus 2017 is the Es-
tonian Wikipedia dump downloaded in 2017 and con-
tains roughly 38M words. The top row of the Table 1
shows the initial statistics of the corpus.

We applied different cleaning and filtering tech-
niques to preprocess the data. First, we used the cor-
pus processing methods from EstNLTK (Laur et al.,
2020), which is an open-source tool for Estonian natu-
ral language processing. Using the EstNLTK, all XM-
L/HTML tags were removed from the text, also all
documents with a language tag other than Estonian
were removed. Additional non-Estonian documents
were further filtered out using the language-detection
library.3 Next, all duplicate documents were removed.
For that, we used hashing—all documents were lower-
cased, and then the hashed value of each document was
subsequently stored into a set. Only those documents
whose hash value did not yet exist in the set (i.e., the
first document with each hash value) were retained. We
also used the hand-written heuristics,4 developed for
preprocessing the data for training the FinBert model

2https://www.sketchengine.eu/estonian-national-corpus/
3https://github.com/shuyo/language-detection
4https://github.com/TurkuNLP/deepfin-tools

Documents Sentences Words

Initial 3.9M 87.6M 1340M
After cleanup 3.3M 75.7M 1154M

Table 1: Statistics of the corpus before and after the
cleanup.

(Virtanen et al., 2019), to filter out documents with too
few words, too many stopwords or punctuation marks,
for instance. We applied the same thresholds as were
used for Finnish BERT. Finally, the corpus was true-
cased by lemmatizing a copy of the corpus with Es-
tNLTK tools and using the lemma’s casing informa-
tion to decide whether the word in the original corpus
should be upper- or lowercase. The statistics of the cor-
pus after the preprocessing and cleaning steps are in the
bottom row of Table 1.

2.2 Vocabulary and Pretraining Example
Generation

Originally, BERT uses the WordPiece tokeniser, which
is not available open-source. Instead, we used the BPE
tokeniser available in the open-source sentencepiece5

library, which is the closest to the WordPiece algo-
rithm, to construct a vocabulary of 50K subword to-
kens. Then, we used BERT tools6 to create the pretrain-
ing examples for the BERT model in the TFRecord for-
mat. In order to enable parallel training on four GPUs,
the data was split into four shards. Separate pretraining
examples with sequences of length 128 and 512 were
created, masking 15% of the input words in both cases.
Thus, 20 and 77 words in maximum were masked in
sequences of both lengths, respectively.

3 Evaluation Tasks
Before describing the EstBERT model pretraining pro-
cess itself, we first describe the tasks used to both val-
idate and evaluate our model. These tasks include the
POS and morphological tagging, named entity recog-
nition, and text classification. In the following sub-
section, we describe the available Estonian datasets for
these tasks.

3.1 Part of Speech and Morphological Tagging
For part of speech (POS) and morphological tagging,
we use the Estonian EDT treebank from the Univer-
sal Dependencies (UD) collection that contains anno-
tations of lemmas, parts of speech, universal morpho-
logical features, dependency heads, and universal de-
pendency labels. We use the UD version 2.5 to enable
comparison with the experimental results of the multi-
lingual BERT models reported by Kittask et al. (2020).
We train models to predict both universal POS (UPOS)
and language-specific POS (XPOS) tags as well as

5https://github.com/google/sentencepiece
6https://github.com/google-research/bert
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morphological features. The pre-defined train/dev/test
splits are used for training and evaluation. Table 2
shows the statistics of the treebank splits. The accu-
racy of the POS and morphological tagging tasks is
evaluated with the conll18 ud eval script from the
CoNLL 2018 Shared Task.

Train Dev Test

Sentences 31012 3128 6348
Tokens 344646 42722 48491

Table 2: Statistics of the UDv2.5 Estonian treebank.

3.2 Named Entity Recognition
Estonian named entity recognition (NER) corpus
(Tkachenko et al., 2013) annotations cover three types
of named entities: locations, organizations, and per-
sons. It contains 572 news stories published in local
online newspapers Postimees and Delfi, covering lo-
cal and international news on various topics. Table 3
displays statistics of the training, development and test
splits. The performance of the NER models is evalu-
ated with the conlleval script from the CoNLL 2000
shared task.

Tokens PER LOC ORG Total

Train 155981 6174 4749 4784 15707
Dev 32890 1115 918 742 2775
Test 28370 1201 644 619 2464

Table 3: Statistics of the Estonian NER corpus.

3.3 Sentiment and Rubric Classification
Estonian Valence corpus (Pajupuu et al., 2016) consists
of 4085 news extracts from Postimees Daily. All docu-
ments in the corpus are labeled with both sentiment and
rubric classes. There are nine rubrics: Opinion, Esto-
nia, Life, Comments-Life, Comments-Estonia, Crime,
Culture, Sports, and Abroad. The four sentiment la-
bels include Positive, Negative, Neutral, and Ambigu-
ous. We split the data into 70/10/20 training, develop-
ment and test sets, stratified over both rubric and senti-
ment analysis. Table 4 and Table 5 show the statistics
about the sentiment and rubric view of the classification
dataset respectively.

4 Pretraining EstBERT
The EstBERT model was pretrained on the architecture
identical to the BERTBase model with 12 transformer
blocks with 768 hidden units each and 110M trainable
parameters. It was pretrained on the Masked Language
Modeling (MLM) and the Next Sentence Prediction
(NSP) tasks as described by Devlin et al. (2019). In
MLM, the probability of correctly predicting the ran-
domly masked tokens is maximised. Because in the

Train Dev Test Total

Positive 612 87 175 874
Negative 1347 191 385 1923
Neutral 505 74 142 721
Ambiguous 385 55 110 550

Total 2849 407 812 4068

Table 4: Sentiment label statistics of the Estonian Va-
lence corpus.

Train Dev Test Total

Opinion 676 96 192 964
Estonia 289 41 83 413
Life 364 52 101 517
Comments-Life 354 50 102 506
Comments-Estonia 351 50 100 501
Crime 146 21 42 209
Culture 182 27 51 260
Sports 269 39 77 385
Abroad 218 31 64 313

Total 2849 407 812 4068

Table 5: Rubric label statistics of the Estonian Valence
corpus.

transformer architecture, the model can simultaneously
see both the left and the right context of a masked
word, optimizing the MLM gives the model a bidirec-
tional understanding of a sentence, as opposed to only
the left or right context provided by recurrent language
models. The NSP involves optimizing a binary clas-
sification task to predict whether the two sequences in
the input follow each other in the original text or not,
where half of the time, the second sequence is the cor-
rect next sentence and the other half of the time the two
sequences are unrelated. The models were trained on
four NVIDIA Tesla V100 GPUs across two nodes of
the High-performance Computing Center at the Uni-
versity of Tartu (University of Tartu, 2018).

The model was first trained with the sequence length
of 128. Then we evaluated the checkpoints generated
during pretraining on the tasks described in section 3
to choose the final model with that sequence length.
Finally, the chosen model was used as a starting point
for training the longer model with 512 sequence length.
Thus, as a result of pretraining, two EstBERT models,
one with maximum sequence length 128 and the other
with maximum sequence length 512, were obtained.
The following subsections describe these three steps in
more detail.

4.1 Pretraining with Sequence Length 128

The model with the sequence length of 128 was pre-
trained for two phases, both for 900K steps. Although
the number of training steps was chosen following Vir-
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(a) Universal POS tags (b) Rubric Classification

Figure 1: The validation performance on POS tagging and text classification tasks after every 50K checkpoints.

train batch size 32
max seq length 128
max predictions per seq 20
num train steps 900000
num warmup steps 9000
learning rate 1e-4
save checkpoints step 50000

Table 6: Hyperparameters used in the first two pretrain-
ing phases with the sequence length 128.

tanen et al. (2019), coincidentally this (900K steps)
was the maximum number of steps we could fit in the
given GPU time limit of 8 days. Therefore, the model
was trained in two phases, each having 900K steps. A
checkpoint was saved to the disk after every 50K steps.
While the first phase of pretraining started from scratch
with randomly initialised parameters, the second phase
of training was initialised from the first phase’s last
checkpoint. Since the GPU memory availability was
a major issue, the batch size was kept at 32 to avoid the
tensors going beyond the allowed GPU memory size.
The BERTBase uses Adam optimiser with weight de-
cay. For EstBERT, the same optimiser was used with
warmup over the first 1% of steps (9000) to a peak
learning rate of 1e-4. The relevant hyperparameters are
shown in Table 6. The pretraining process took around
192 hours for each phase.

4.2 Pretraining Validation
During pretraining, a checkpoint was saved after every
50K steps for later evaluation. To monitor the pretrain-
ing process, we evaluated the performance of MLM,
NSP, and the evaluation tasks described in section 3 on
all these checkpoints.

For POS and morphological tagging, and named en-
tity recognition, we finetuned EstBERT using scripts
from HuggingFace transformers library.7 A single ran-
domly initialised fully connected classifier layer was
trained on top of the token representations of the last
hidden layer of the EstBERT model. All hyperparam-

7https://github.com/huggingface/transformers/blob/
master/examples/token-classification/run ner.py

eters were kept at their default values, which involves
training for three epochs, using the learning rate of 5e-
5 and batch size of 8. For the rubric and sentiment
classification tasks, we adapted the classifier training
scripts available in google’s BERT repository.8 The in-
put to the single fully-connected classifier layer is the
last hidden representation of the first token [CLS] in
the input sequence. Here again, the classifier layer was
initialised randomly and the default values for hyper-
parameters were used: training for three epochs with
the learning rate 5e-5 and batch size 32. In all tasks,
both the task-specific classification layer as well as the
EstBERT parameters were finetuned.

The validation results of the masked language
model, next sentence prediction accuracy, and all the
evaluation tasks for all the eighteen checkpoints from
stage one and other eighteen models from stage two
were compared to pick the best model. The exam-
ples of validation curves for the UPOS tagging and
the rubric classification tasks are shown in Figure 1.
Although the checkpoint validation results from both
phases showed more or less steady improvement with
the increase of the number of steps trained, we ob-
served that the checkpoint at 750K steps from phase
two performs slightly better on all tasks than the rest of
the checkpoints. Thus, this checkpoint was chosen as a
final model with sequence length 128.

train batch size 16
max seq length 512
max predictions per seq 77
num train steps 600000
num warmup steps 6000
learning rate 1e-4
save checkpoints step 50000

Table 7: Hyperparameters used to pretrain the Est-
BERT model with the sequence length 512.

8https://github.com/google-research/bert/blob/master/
run classifier.py/
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Model UPOS XPOS Morph UPOS XPOS Morph
Seq = 128 Seq = 512

EstBERT 97.89 98.40 96.93 97.84 98.43 96.80

WikiBERT-et 97.78 98.36 96.71 97.76 98.35 96.67
mBERT 97.42 98.06 96.24 97.43 98.13 96.13
XLM-RoBERTa 97.78 98.36 96.53 97.80 98.40 96.69

Table 8: POS and morphological tagging accuracy on the Estonian UD test set. The highest scores in each column
are in bold. The highest overall score of each task is underlined.

4.3 Pretraining with Sequence Length 512
The starting point for training the model with a se-
quence length of 512 was the final model chosen for
the sequence length 128. The longer model was trained
further up to 600K steps. The batch size was reduced to
16 as the size of the tensors would be larger for the se-
quence length 512 compared to 128. The hyperparame-
ters used to train the longer model are shown in Table 7.
During training, checkpoints were again saved after ev-
ery 50K steps, and these were evaluated on all evalua-
tion tasks as previously explained in Section 4.2. Based
on these evaluations, the last checkpoint obtained after
the 600K steps was chosen as the final model with 512
sequence length.

5 Results
The next subsections present the results obtained with
the final EstBERT models with both sequence lengths
on the tasks described in section 3. We follow the same
setup of Kittask et al. (2020) to enable direct compar-
ison with the multilingual models. Some additional
steps were taken to prepare the Estonian Valence cor-
pus. First, all duplicate items, 17 in total, were re-
moved. Also, all items with the Ambiguous label were
removed as retaining them has been shown to lower the
the classification accuracy (Pajupuu et al., 2016). The
same preprocessing was also applied in evaluating the
multilingual BERT models for Estonian (Kittask et al.,
2020).

For finetuning, we used the same scripts from the
HuggingFace transformers repository that were used
for the pretraining validation in section 4.2. The same
scripts were also used to evaluate the multilingual mod-
els by Kittask et al. (2020). For each task, the learning
rate of the AdamW optimiser and the batch size was
tuned on the development set. The learning rate grid
values were (5e-5, 3e-5, 1e-5, 5e-6, 3e-6) and the batch
size grid values were (8, 16). The best model was found
on the development set by using early stopping with the
patience of 10 epochs.

We compare the results of EstBERT with the mul-
tilingual BERT models’ results from Kittask et al.
(2020) and the WikiBERT model trained on the Esto-
nian Wikipedia (Pyysalo et al., 2020). WikiBERT-et
model was finetuned using the same setup described
above.

Model Rubr. Sent. Rubr. Sent.
Seq = 128 Seq = 512

EstBERT 81.70 74.36 80.96 74.50

WikiBERT-et 72.72 68.09 71.13 69.37
mBERT 75.67 70.23 74.94 69.52
XLM-RoBERTa 80.34 74.50 78.62 76.07

Table 9: Rubric (Rubr.) and sentiment (Sent.) classi-
fication accuracy. The highest scores in each column
are in bold. The highest overall score of each task is
underlined.

5.1 POS and Morphological Tagging

The POS and morphological tagging results are sum-
marised in Table 8 that shows the accuracy for uni-
versal POS tags (UPOS), language-specific POS tags
(XPOS), and morphological features. The language-
specific EstBERT outperforms all other models al-
though the difference with the XLM-RoBERTa—
the best-performing multilingual model—and the
WikiBERT-et are quite small.

Similar to multilingual results, using longer se-
quence length on this task with the EstBERT model
does not seem beneficial as the accuracy slightly in-
creases only for XPOS tags but not for others. Over-
all, as the performances on these tasks are already
very high, the absolute performance gains cannot be
large. EstBERT obtains consistent improvements over
mBERT, with the relative error reduction with both
models on all tasks falling between 16-18%. The
relative error reduction of the EstBERT compared to
XLM-RoBERTa is smaller, in the range of 2-5%. The
highest reduction of error of EstBERT compared to
XLM-RoBERTa can be observed on the morphologi-
cal tagging task with the shorter model where the rela-
tive error reduction is 12%. The WikiBERT-et model
achieves almost identical results to XLM-RoBERTa
with both sequence lengths.

5.2 Rubric and Sentiment Classification

The rubric and sentiment classification results are
shown in Table 9. EstBERT outperforms mBERT and
WikiBERT-et on both tasks by a large margin, but
XLM-RoBERTa exceeds EstBERT on sentiment clas-
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Model Precicion Recall F1-Score Precision Recall F1-Score
Seq = 128 Seq = 512

EstBERT 89.10 91.15 90.11 88.35 89.74 89.04

WikiBERT-et 89.86 90.83 90.34 88.31 90.96 89.61
mBERT 85.88 87.09 86.51 88.47 88.28 88.37
XLM-RoBERTa 87.55 91.19 89.34 87.50 90.76 89.10

Table 10: NER tagging results. Upper section shows the comparison between different models. The highest scores
in each column are in bold. The highest overall score of each measure is underlined.

Entity EstBERT XLM-RoBERTa WikiBERT-et
Prec Rec F1 Prec Rec F1 Prec Rec F1

PER 94.80 95.77 95.28 96.42 94.45 95.43 94.87 94.45 94.66
ORG 78.38 82.64 80.45 75.48 82.12 78.66 82.25 81.61 81.92
LOC 89.94 91.38 90.66 86.06 93.99 89.85 88.89 92.99 90.89

Table 11: The entity-based scores for the EstBERT, XLM-RoBERTa and the WikiBERT-et models. The best scores
are in bold.

sification. The difference between the two accuracy
scores is relatively small when the model with se-
quence length 128 is used, but it increases when the
longer sequence length is used.

Like XLM-RoBERTa, the EstBERT model with a
shorter sequence length is somewhat better on rubric
classification, and the opposite is true for sentiment
classification. Overall, the differences between the
EstBERT models’ performances with both sequence
lengths are again relatively small.

5.3 Named Entity Recognition
Table 10 shows the entity-based precision, recall,
and F-score of the named entity recognition task.
WikiBERT-et model is the best model in this task, ob-
taining the highest F1-score with both the short and
long models and the overall highest F1-score with
the short model. XLM-RoBERTa achieves the high-
est recall in the short model category but remains be-
low the EstBERT in terms of the F1-score. EstBERT,
WikiBERT-et and XLM-RoBERTa all benefit from us-
ing the smaller sequence length rather than longer,
while mBERT shows the opposite behavior.

Table 11 shows the fine-grained scores of each entity
type for both the EstBERT, XLM-RoBERTa and the
WikiBERT-et shorter model. In alignment with the pre-
vious results in Estonian NER (Tkachenko et al., 2013),
the prediction of the person entities is the most accurate
while the organisation names are the most difficult to
predict. The WikiBERT-et is the best on the two most
difficult entities ORG and LOC, while the EstBERT
model is better than XLM-RoBERTa on these two enti-
ties. The WikiBERT-et is notably the best on the most
challenging organisation entity, improving the preci-
sion over the EstBERT model for almost 4% and over
the XLM-RoBERTa for almost 7%, with a considerably
smaller loss in recall. One reason for the superiority of

the WikiBERT-et model might lie in the fact that the
Wikipedia dataset used to train the WikiBERT-et model
probably contains a much higher proportion of organ-
isation names. Although the datasets used to train the
other two models also contain the Estonian Wikipedia
dataset, it has been diluted in other languages (in case
of XLM-RoBERTa) or genres (in case of EstBERT).
However, this is just a hypothesis at the moment that
has to be studied more in further work.

5.4 Dependency Parsing

Additionally, we also evaluated both the EstBERT,
WikiBERT-et and the XLM-RoBERTa models on the
Estonian dependency parsing task. The data used in
these experiments is the Estonian UDv2.5 described
in section 3.1. We trained the parser available in the
spaCy Nightly version9 that also supports transform-
ers. The models were trained with a batch size of 32
and for a maximum of 20K steps, stopping early when
the development set performance did not improve for
1600 steps. The parser was trained jointly with a tag-
ger component that predicted the concatenation of POS
tags and morphological features. During training, the
model was supplied with the gold sentence and token
segmentations. During evaluation, the sentence seg-
mentation and tokenisation was done with the out-of-
the-box spaCy tokeniser.

The dependency parsing results are in Table 12. In
addition to the transformer-based EstBERT and XLM-
RoBERTa models, the right-most section also displays
the Stanza parser (Qi et al., 2020), trained on the same
Estonian UDv2.5 corpus, obtained from the Stanza web
page.10 We add a non-transformer based baseline for
this task because dependency parsing was not evaluated

9https://pypi.org/project/spacy-nightly/
10https://stanfordnlp.github.io/stanza/models.html
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Model EstBERT XLM-RoBERTa WikiBERT-et Stanza
DepRel Support Prec Rec F1 Prec Rec F1 Prec Rec F1 Prec Rec F1

UAS 86.07 87.34 86.70 88.02 89.32 88.66 85.97 87.24 86.60 86.69 86.68 86.69
LAS 83.32 84.56 83.94 85.60 86.87 86.23 83.06 84.29 83.67 83.63 83.63 83.63

nmod 4328 81.40 85.65 83.47 83.73 88.49 86.05 80.86 85.42 83.08 82.53 84.27 83.39
obl 4198 80.99 79.78 80.38 83.65 82.66 83.15 80.81 79.47 80.13 79.61 77.78 78.68
advmod 3938 78.01 79.02 78.52 80.43 80.45 80.44 78.08 77.96 78.02 78.93 78.11 78.52
root 3214 90.82 89.61 90.21 91.88 91.91 91.90 90.32 89.73 90.03 90.18 87.46 88.80
nsubj 2682 92.05 93.25 92.65 93.54 94.52 94.03 90.40 92.69 91.53 90.67 89.90 90.28
conj 2476 76.90 78.51 77.70 81.72 83.44 82.57 78.28 78.31 78.30 76.41 78.76 77.57
obj 2437 86.91 88.80 87.84 88.62 90.73 89.66 86.36 87.57 86.96 83.51 84.78 84.14
amod 2411 80.02 84.20 82.05 82.90 86.64 84.73 80.12 83.91 81.97 91.93 89.26 90.57
cc 2029 91.26 90.09 90.67 92.57 91.47 92.02 90.75 89.50 90.12 89.97 88.42 89.19
aux 1372 95.36 95.85 95.60 95.43 95.99 95.71 94.79 95.48 95.13 89.93 95.04 92.42
mark 1277 90.14 90.92 90.53 92.75 93.19 92.97 89.25 89.74 89.50 88.35 89.12 88.73
cop 1202 84.75 87.35 86.03 85.48 87.69 86.57 84.29 87.02 85.63 81.43 86.11 83.70
acl 1063 84.98 85.14 85.06 86.88 87.86 87.37 86.67 85.04 85.85 86.36 80.43 83.29
nsubj:cop 1054 79.98 82.64 81.29 81.16 85.01 83.04 79.34 82.73 81.00 77.78 79.70 78.73
case 908 92.42 92.62 92.52 93.52 93.72 93.62 91.32 92.73 92.02 89.13 91.19 90.15
advcl 857 67.18 65.93 66.55 73.46 71.06 72.24 66.55 66.39 66.47 67.12 63.36 65.19
det 808 83.88 85.02 84.45 87.89 87.13 87.51 82.95 84.28 83.61 80.80 82.80 81.78
parataxis 725 52.96 49.38 51.11 57.50 50.76 53.92 55.59 48.69 51.91 65.45 59.31 62.23
xcomp 641 85.21 87.21 86.20 88.06 88.61 88.34 84.11 86.74 85.41 83.78 83.00 83.39
flat 633 81.44 85.94 83.63 86.64 91.15 88.84 80.09 86.41 83.13 88.60 92.10 90.32
nummod 555 62.88 77.84 69.57 62.00 80.54 70.06 63.12 78.02 69.78 85.53 85.23 85.38
compound:prt 481 86.10 92.72 89.29 88.20 94.80 91.38 85.99 93.14 89.42 85.52 89.60 87.51
appos 376 69.07 71.28 70.16 74.45 80.59 77.39 64.55 73.14 68.58 69.47 72.61 71.00
ccomp 344 82.56 82.56 82.56 87.03 87.79 87.41 80.44 84.88 82.60 81.87 78.78 80.30
acl:relcl 315 80.67 83.49 82.06 79.00 80.00 79.50 79.30 79.05 79.17 61.32 82.54 70.37
csubj:cop 121 80.47 85.12 82.73 75.74 85.12 80.16 79.23 85.12 82.07 72.79 88.43 79.85
csubj 108 81.51 89.81 85.46 80.83 89.81 85.09 84.26 84.26 84.26 84.91 83.33 84.11
discourse 47 37.14 55.32 44.44 36.92 51.06 42.86 34.33 48.94 40.35 81.25 55.32 65.82
orphan 44 20.83 11.36 14.71 37.93 25.00 30.14 20.00 18.18 19.05 45.00 20.45 28.12
compound 43 88.10 86.05 87.06 83.33 81.40 82.35 92.11 81.40 86.42 88.64 90.70 89.66
cc:preconj 39 66.67 71.79 69.14 67.57 64.10 65.79 62.79 69.23 65.85 70.27 66.67 68.42
flat:foreign 37 76.19 43.24 55.17 87.50 56.76 68.85 43.75 18.92 26.42 65.38 45.95 53.97
fixed 31 64.71 70.97 67.69 64.86 77.42 70.59 57.50 74.19 64.79 75.86 70.97 73.33
vocative 9 22.22 22.22 22.22 28.57 22.22 25.00 5.56 11.11 7.41 30.77 44.44 36.36
goeswith 8 100.00 12.50 22.22 25.00 12.50 16.67 33.33 25.00 28.57 0.00 0.00 0.00
dep 5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
list 1 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Table 12: Dependency parsing results. The best scores over all models are in bold. The best scores comparing the
EstBERT, WikiBERT-et and the Stanza models are underlined.

by Kittask et al. (2020). Overall, the XLM-RoBERTa
model performs the best, both in terms of the UAS and
LAS metrics and the individual dependency relations.
This is especially true for dependency relations with
larger support in the test set. Although in terms of the
UAS and LAS, the EstBERT, WikiBERT-et and Stanza
models seem to perform similarly, a closer look into the
scores of the individual dependency relations reveals
that in most cases, especially with relations of larger
support, the EstBERT model performs the best. There
are few dependency relations where the Stanza sys-
tem’s predictions are considerably more accurate than
the BERT-based models, the most notable of them be-
ing the adjectival modifier (amod) and the numerical
modifier (nummod). Further analyses are needed to
gain more insight into these results.

6 Discussion

This objective of this paper was to describe the process
of pretraining the language-specific BERT model for
Estonian and to compare its performance with the mul-
tilingual BERT models as well as with the smaller Es-
tonian WikiBERT model on several NLP tasks. Over-
all, the pretrained EstBERT was better than the best
multilingual XLM-RoBERTa model on five tasks out
of seven: UPOS, XPOS, and morphological tagging,
rubric classification, and NER. Only in the sentiment
classification and dependency parsing tasks, the XLM-
RoBERTa was better. Compared to WikiBERT-et, the
EstBERT model was better on six tasks out of seven—
the WikiBERT-et model was superior only in the NER
task, predicting ORG entities considerably better than
any other model. We did not observe any consistent
difference between the models of different sequence
lengths, although the model with the sequence length
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512 was trained longer. It is possible that the shorter
model was already trained long enough, and the sub-
sequent training of the longer model did not add any
effect in that respect, aside from the fact that it can ac-
cept longer input sequences.

One crucial aspect of this work was obtaining a
large-enough corpus for pretraining the model. We
used the Estonian National Corpus 2017, which was the
largest corpus available at the time. A newer and larger
version of this corpus—the Estonian National Corpus
2019 (Kallas and Koppel, 2019)—has become avail-
able meanwhile. There are also few other resources,
such as the Estonian part of the CoNLL 2017 raw data
(Ginter et al., 2017) and the Oscar Crawl, which prob-
ably partially overlap with each other and with the Es-
tonian National Corpus. Still, these corpora would po-
tentially provide additional data that was currently not
used.

Another challenge was related to finding annotated
datasets for downstream tasks. While the Estonian
UD dataset provides annotations to the common de-
pendency parsing pipeline tasks, datasets for other, es-
pecially semantic NLP tasks, are scarce. We adopted
the Estonian Valence corpus for two-way text classi-
fication. However, the labels of this corpus are semi-
automatically derived from user ratings, and thus the
quality of these annotations cannot be guaranteed. An
Estonian coreference dataset with some simple base-
line results in nominal coreference resolution has re-
cently become available (Barbu et al., 2020), which
gives further opportunities to test out the EstBERT
model in future work.

When preprocessing the data and pretraining the
model, we mostly followed the process of training the
FinBERT model for Finnish (Virtanen et al., 2019). We
also decided to truecase our corpus to reduce the num-
ber of capitalised words in the vocabulary. The Est-
BERT model itself was also pretrained on the truecased
corpus. However, when training the task-based mod-
els for evaluation, the EstBERT was finetuned on the
cased datasets. Thus, truecasing the datasets before
finetuning might have a positive effect on the results.
In order to verify this, the EstBERT-based task-specific
models should be finetuned using the truecased anno-
tated datasets as input, and compared with the results
reported in this paper.

Although we did see some improvements with Es-
tBERT compared to XLM-RoBERTa on the smaller
model for the NER task, the differences in scores were
generally relatively small. However, we have observed
that the annotations of this NER dataset are occa-
sionally erroneous, containing, for instance, label se-
quences (I-PER, I-PER) instead of (B-PER, I-PER).
We have also observed unlabelled entities in the text.
Thus, the small variations in the systems’ results might
not be informative about the systems themselves but
can instead stem from the noise in the data. Although
these annotation errors have been noticeable enough,

the magnitude of these errors has not been quantified.
The differences between the EstBERT and the

XLM-RoBERTa model were, in most cases, relatively
small. In previous experiments with several multilin-
gual BERT models on the same Estonian tasks (Kittask
et al., 2020), the XLM-RoBERTa proved to be the best
multilingual model. This suggests that one option to
obtain an even better Estonian language-specific model
would be to train an Estonian-specific RoBERTa by ini-
tializing the model with the parameters of the XLM-
RoBERTa. Considering that the multilingual RoBERTa
already performs very well on Estonian tasks, finetun-
ing it with more Estonian data would hopefully bias it
even more to the Estonian language while also main-
taining the gains obtained from multilingualism.

7 Conclusion

We presented EstBERT, the largest BERT model pre-
trained specifically on the Estonian language. While
several existing multilingual BERT models include
Estonian, the only language-specific Estonian BERT
model available until now has been trained on the rel-
atively small Wikipedia data. In order to pretrain the
EstBERT model, we used the largest Estonian text cor-
pus available at the time. The EstBERT model was
put to the test by finetuning it for several tasks, includ-
ing POS and morphological annotations, dependency
parsing, named entity recognition, and text classifica-
tion. On five tasks out of seven, the classifiers based on
EstBERT achieved better performance than the mod-
els based on multilingual BERT models, although in
several cases, the gap with the best-performing mul-
tilingual XLM-RoBERTa was relatively small. These
results suggest that training a RoBERTa model for Es-
tonian, initialised with the multilingual model’s param-
eters, might be beneficial. On six tasks out of seven,
the models based on EstBERT achieved better results
than the Estonian BERT model trained on Wikipedia,
suggesting that using more textual data for pretraining
leads to a more generalisable model.
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Abstract

In this work, we show the process of build-
ing a large-scale training set from digi-
tal and digitized collections at a national
library. The resulting Bidirectional En-
coder Representations from Transformers
(BERT)-based language model for Nor-
wegian outperforms multilingual BERT
(mBERT) models in several token and se-
quence classification tasks for both Nor-
wegian Bokmål and Norwegian Nynorsk.
Our model also improves the mBERT per-
formance for other languages present in
the corpus such as English, Swedish, and
Danish. For languages not included in the
corpus, the weights degrade moderately
while keeping strong multilingual prop-
erties. Therefore, we show that build-
ing high-quality models within a mem-
ory institution using somewhat noisy op-
tical character recognition (OCR) content
is feasible, and we hope to pave the way
for other memory institutions to follow.

1 Introduction

Modern natural language processing (NLP) mod-
els pose a challenge due to the massive size of
the training data they require to perform well.
For resource-rich languages such as Chinese, En-
glish, French, and Spanish, collections of texts
from open sources such as Wikipedia (2021a),
variations of Common Crawl data (2021), and
other open-source corpora such as the BooksCor-
pus (Zhu et al., 2015) are generally used. When
researchers at Google released their Bidirec-
tional Encoder Representations from Transform-
ers (BERT) model, they trained it on a huge corpus
of 16GB of uncompressed text (3,300M words)

(Devlin et al., 2019). Later research has shown
that the corpus size might have even been too
small, and when Facebook released its Robustly
Optimized BERT (RoBERTa), it showed a consid-
erable gain in performance by increasing the cor-
pus to 160GB (Liu et al., 2019).

Norwegian is spoken by just 5 million peo-
ple worldwide. The reference publication Ethno-
logue lists the 200 most commonly spoken na-
tive languages, and it places Norwegian as num-
ber 171. The Norwegian language has two differ-
ent varieties, both equally recognized as written
languages: Bokmål and Nynorsk. The number of
Wikipedia pages written in a certain language is
often used to measure its prevalence, and in this
regard, Norwegian Bokmål ranges as number 23
and Nynorsk as number 55. However, there exist
more than 100 times as many English Wikipedia
pages as there are Norwegian Wikipedia pages
(2021b). When it comes to building large text cor-
pora, Norwegian is considered a minor language,
with scarce textual resources. So far, it has been
hard to train well-performing transformer-based
models for such languages.

As a governmental entity, the National Library
of Norway (NLN) established in 2006 a mass digi-
tization program for its collections. The Language
Bank, an organizational unit within the NLN, pro-
vides text collections and curated corpora to the
scholarly community (Språkbanken, 2021). Due
to copyright restrictions, the publicly available
Norwegian corpus consists mainly of Wikipedia
pages and online newspapers, and it is around 5GB
(818M words) in size (see Table 1). However, in
this study, by adding multiple sources only acces-
sible from the NLN, we were able to increase that
size up to 109GB (18,438M words) of raw, dedu-
plicated text. While such initiatives may produce
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textual data that can be used for the large-scale
pre-training of transformer-based models, relying
on text derived from optical character recognition
(OCR)–based pipelines introduces new challenges
related to the format, scale, and quality of the nec-
essary data. On these grounds, this work describes
the effort to build a pre-training corpus and to use
it to train a BERT-based language model for Nor-
wegian.

1.1 Previous Work

Before the advent of transformer-based models,
non-contextual word and document embeddings
were the most prominent technology used to ap-
proach general NLP tasks. In the Nordic region,
the Language Technology Group at the Univer-
sity of Oslo, as part of the joint Nordic Lan-
guage Processing Laboratory, collected a series of
monolingual resources for many languages, with a
special emphasis on Norwegian (Kutuzov et al.,
2017). Based on these resources, they trained
and released collections of dense vectors using
word2vec and fastText (both with continuous skip-
gram and continuous bag-of-words architectures)
Mikolov et al. 2013; Bojanowski et al. 2017, and
even using an Embeddings from Language Mod-
els (ELMo)–based model with contextual capabil-
ities (Peters et al., 2018). Shortly thereafter, De-
vlin et al. (2019) introduced the foundational work
on the monolingual English BERT model, which
would later be extended to support 104 different
languages including Norwegian Bokmål and Nor-
wegian Nynorsk, Swedish, and Danish. The main
data source used was Wikipedia (2021a). In terms
of Norwegian, this amounted to around 0.9GB of
uncompressed text (140M words) for Bokmål and
0.2GB (32M words) for Nynorsk (2021b). While
it is generally agreed that language models ac-
quire better language capabilities by pre-training
with multiple languages (Pires et al., 2019; Wu
and Dredze, 2020), there is a strong indication
that this amount of data might have been insuffi-
cient for the multilingual BERT (mBERT) model
to learn high-quality representations of Norwegian
at a level comparable to, for instance, monolingual
English models (Pires et al., 2019).

In the area of monolingual models, the Danish
company BotXO trained BERT-based models for a
few of the Nordic languages using corpora of var-
ious sizes. Their repository (BotXO Ltd., 2021)
lists models trained mainly on Common Crawl

data for Norwegian (5GB), Danish (9.5GB), and
Swedish (24.7GB). Unfortunately, we were unable
to make the Norwegian models work, as they seem
to be no longer updated. Similarly, the KBLab
at the National Library of Sweden trained and re-
leased a BERT-based model and an A Lite BERT
(ALBERT) model, both trained on approximately
20GB of raw text from a variety of sources such
as books, news articles, government publications,
Swedish Wikipedia, and internet forums (Malm-
sten et al., 2020). They claimed significantly bet-
ter performance than both the mBERT and the
Swedish model by BotXO for the tasks they eval-
uated.

At the same of the release of our model, the
Language Technology Group at the University of
Oslo released a monolingual BERT-based model
for Norwegian named NorBERT. It was trained
on around 5GB of data from Wikipedia and the
Norsk aviskorpus (2019). We were unable to get
sensible results when finetuning version 1.0 of
their model. However, they released a second
version shortly thereafter (1.1) fixing some errors
(Language Technology Group at the University of
Oslo, 2021a). We have therefore included the eval-
uation results of this second version of the model
in our benchmarking. They have also evaluated
their and our model themselves (Kutuzov et al.,
2021) with consistent results.

2 Building a Colossal Norwegian Corpus

As the main Norwegian memory institution, the
NLN has the obligation to preserve and give ac-
cess to all published information in Norway. A
large amount of the traditional collection is now
available in digital format. As part of the cur-
rent legal deposit, many born-digital documents
are also available as digital documents in the col-
lection. The texts in the NLN collection span hun-
dreds of years and exhibit varied uses of texts in
society. All kinds of historical written materials
can be found in the collections, although we found
that the most relevant resources for building an ap-
propriate corpus for NLP were books, magazines,
journals, and newspapers (see Table 1). As a con-
sequence, the resulting corpus reflects the varia-
tion in the use of the Norwegian written language,
both historically and socially.

Texts in the NLN have been subject to a large
digitization operation in which digital copies were
created for long-term preservation. The NLN em-
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Figure 1: The general corpus-building process.

ploys METS/ALTO1 as the preferred format for
storing digital copies. As the digitized part of
the collection conforms to standard preservation
library practices, the format in which the texts are
stored is not suitable for direct text processing;
thus, they needed to be pre-processed and manip-
ulated for use as plain text. One major challenge
was the variation in the OCR quality, which varied
both over time and between the types of materials
digitized. This limited the number of usable re-
sources and introduced some artifacts that affected
the correctness of the textual data.

The basic inclusion criterion for our corpus was
that as long as it was possible for a human to infer
the meaning from the text, it should be included.
However, the amount of text involved in build-
ing the model meant that this needed to be deter-
mined automatically. The METS/ALTO files con-
tain information from the OCR process regarding
the confidence of every word (from 0 for no con-
fidence to 1 for certainty), so we used this assess-
ment to calculate the average confidence for para-
graphs and pages. Setting the minimum paragraph
confidence to 0.8 and the minimum page confi-
dence to 0.9 allowed us to filter out a significant
part of the text with the lowest quality. We also
noticed that in the period of digitization from the
beginning of 2006 until the end of 2008, the qual-
ity of the OCR was low and the estimated confi-
dence values were too optimistic. We ended up
excluding all text scanned in this period.

To further filter out erroneous textual informa-
tion, we calculated the number of words in the
documents and averaged the number of words per
paragraph. Establishing a threshold of at least 20
words per document and an average of 6 words
per paragraph, we could filter out text sources that
had little value for training, such as cartoons and
picture books. We estimated the language compo-
sition using various methods, including metadata

1Metadata Encoding and Transmission Schema and An-
alyzed Layout and Text Object (Library of Congress, 2020,
2016)

tags in the collection and counting the frequency
of words of certain types (e.g., personal pronouns).
Our estimate is that 83% of the text is in Norwe-
gian Bokmål and 12% is in Nynorsk. Close to 4%
of the texts are written in English, and the 1% left
is a mixture of Sami, Danish, Swedish, and a few
traces from other languages.

The aforementioned process was carefully or-
chestrated, with data moving from preservation
storage, through error correction and quality as-
sessment, and ending up as text in the corpus. As
shown in Figure 1, after filtering, OCR-scanned
documents were added to the other digital sources.
After this step, the data went through the cleaning
process, in which we ensured the consistency of
the text encoding and special characters used. In
the deduplication stage, all duplicated paragraphs
in the entire collection were removed. Finally,
we drew out two pre-training-sets: one with a se-
quence length of 128 tokens, and one with a se-
quence length of 512 tokens.

3 Pre-training a Norwegian BERT model

In order to build our own pre-trained language
model for Norwegian, we decided to use the origi-
nal BERT architecture pre-trained with a masked-
language model (MLM) objective, as published by
Devlin et al. (2019). We evaluated the effect of
changes in hyperparameters in terms of MLM per-
formance and of the fine-tuning of the pre-trained
models on various downstream tasks. All pre-
training work was run on a v3-8 TPU (128GB)
provided by the TPU Research Cloud, while the
evaluation was done on in-house machines with a
single NVIDIA Quadro RTX6000 (24GB).

Our goal was to build a solid model that would
perform well on all types of Norwegian language
tasks, ranging from old to modern text, and in-
cluding texts that might be mixed with foreign
languages like English. We therefore chose to
initiate the model from the pre-trained mBERT
weights (TensorFlow Hub, 2021). The mBERT
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Sources Period Words (Millions) Text (GB)
Books (OCR) 1814–2020 11,820 69.0
Newspaper Scans (OCR) 2015–2020 3,350 20.0
Parliament Documentsa (OCR) 1814–2014 809 5.1
Common Crawl OSCAR 1991–2020 799 4.9
Online Bokmål Newspapers 1998–2019 678 4.0
Periodicals (OCR) 2010–2020 317 1.9
Newspaper Microfilms (OCR) 1961, 1971, 1981, 1998–2007 292 1.8
Bokmål Wikipedia 2001–2019 140 0.9
Public Reportsb (OCR) 1814–2020 91 0.6
Legal Collectionsc 1814–2004 63 0.4
Online Nynorsk Newspapers 1998–2019 47 0.3
Nynorsk Wikipedia 2001–2019 32 0.2
Total (After Deduplication) 18,438 109.1
aStortingsforhandlingene. bEvalueringsrapporter. cLovdata CD/DVD.

Table 1: The composition of the Colossal Norwegian Corpus.

model was trained on 104 languages, including
both Norwegian varieties (Bokmål and Nynorsk).
The model uses a 119,547-token vocabulary, and
its pre-trained weights might also benefit from
cross-lingual transfer. Our assumption is that us-
ing the mBERT weights for Norwegian should re-
sult in a better-performing model in comparison
to starting with random weights. It might also
keep some of its multilingual abilities, making it
more robust when dealing with new words and
texts containing fragments of other languages (Wu
and Dredze, 2020).

3.1 Improving the Model Beyond mBERT

All subsequent training runs followed the findings
by You et al. (2019), who showed that the pre-
training of a BERT model could be improved by
increasing the batch size but that, at the same time,
an increase in the learning rate could lead to insta-
bility, especially when using the adaptive moment
estimation (Adam) optimizer. When training on
large batch sizes, You et al. suggested using their
layer-wise adaptive moments base (LAMB) opti-
mizer instead. We confirmed these results on our
dataset when pre-training for 100,000 steps on a
batch size of 2,048 sequences, which is very close
to the optimum size for our v3-8 TPU (128GB)
setup (see Figure 2).

The basic pre-training strategy was to use the
largest possible batch size on our TPU and to in-
crease the learning rate as long as it showed sta-
bility. An evaluation of the learning rate was done
for 100,000 steps, but because we used decay, we
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Figure 2: Comparison of Adam and LAMB opti-
mizers (learning rate: 4e-4; batch size: 2,048).

expected the stability to be maintained even after
this point. Devlin et al. (2019) trained for 128-
length sequences for approximately 90% of the
training examples, then trained for 512-length se-
quences for 10% . Due to memory limits on our
TPUs, we needed to reduce the batch size (by a
factor of approximately 7) for the 512 sequences in
the pre-training data; we also increased the num-
ber of pre-training steps for the long sequences to
resemble the same distribution of short and long
sequences that were used in training the BERT
model. To investigate the effect of this, we ex-
perimented with two different setups in our model
(version A and version B). Both were initialized
from the same mBERT weights and trained identi-
cally for the first 1,750,000 steps. In the last steps,
version A followed the training schedule used in
the BERT model where roughly 10% of the to-
tal training time was used on long sequences (step
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3a) and then an additional step (3b) on shorter se-
quences. Version B reduced the training on short
sequences and instead trained almost 30% of the
time on long sequences. The setup was chosen for
making the total training time roughly the same for
both models (see Table 2).

4 Evaluation

While pre-trained language models also can be
used for direct MLM-predition and feature extrac-
tions, the most common use is to fine-tune it on
a specific task. The base procedure for fine-tuning
was described by Vaswani et al. (2017), and it con-
sists of training for a small number of epochs (typ-
ically 4), with a warmup of around 10% of the
training steps; subsequently, a linear decay to zero
is used. Devlin et al. (2019) based their work on
the same procedure and selected the best learning
rate among 5e-5, 3e-5, and 2e-5, according to the
performance of the model on the validation set.
The optimal learning rate and number of epochs
mainly depend on the size of and variance in the
training corpus, but they can also be affected by
the properties of the pre-trained model. To get
optimal performance out of a pre-trained model,
the hyperparameters in the fine-tuning should be
adapted. However, in this work, we are not pri-
marily interested in optimization but in a compar-
ison of the performance of our models against the
mBERT model.

4.1 Token Classification

A common way to evaluate language models is
by fine-tuning the models on token classification
tasks such as named-entity recognition (NER) and
part-of-speech (POS) tagging. For Norwegian, the
Norwegian Dependency Treebank (NDT, Solberg
et al., 2014) by the Språkbanken at the NLN and
the Language Technology Group at the Univer-
sity of Oslo provide text that has been manually
annotated with morphological features, syntactic
functions, and hierarchical structures. The mor-
phological annotation mainly follows the Oslo-
Bergen tagger (Johannessen et al., 2012), and
with a few exceptions, the syntactic analysis fol-
lows the Norwegian Reference Grammar (Faar-
lund et al., 1997). With the help of Schibsted Me-
dia Group, the same group recently published Nor-
wegian Named Entities (NorNE) (Jørgensen et al.,
2020), an extension of NDT that includes named-
entity annotations for more than 300,000 tokens.

Moreover, with the goal of testing being the re-
taining or vanishing of the multilingual abilities
of our model, we also considered NER datasets
in both languages included in our corpus and in
languages of which there is little to no evidence
in our corpus. Specifically, we used CoNLL-2003
for English (Tjong Kim Sang and De Meulder,
2003), Webbnyheter 2012 for Swedish (Gothen-
burg University Språkbanken, 2012), DaNE for
Danish (Hvingelby et al., 2020), CoNLL-2002 for
Spanish (Tjong Kim Sang, 2002), and FiNER for
Finnish (Ruokolainen et al., 2019). While the
number and specificity of the tag sets vary across
datasets, rendering the comparison between lan-
guages useless, we could still compare the perfor-
mance of our model against that of English-only
and multilingual BERT models. We decided to
leave out NER datasets built using automated or
semi-automated annotations processes.

4.2 Sequence Classification

For sequence classification, we chose another
commonly used task: sentiment classification. We
used a version of the Norwegian Review Corpus
(NoReC) (Øvrelid et al., 2020), a fine-grained sen-
timent dataset (Language Technology Group at the
University of Oslo, 2021b) for Norwegian created
by the Nordic Language Processing Laboratory.
The fine-grained annotations in NoReCfine were
aggregated, and sentences with conflicting senti-
ments or no sentiment were removed. Moreover,
we defined a second sequence-classification task
to capture the idiosyncrasies and nuances of the
Norwegian language. In this case, we generated
a balanced corpus of 6,000 text speeches that had
been spoken at the Norwegian Parliament (Stort-
ing) between 1998 and 2016 by members of the
two major parties, Fremskrittspartiet and Sosial-
istisk Venstreparti (Lapponi et al., 2018). The
dataset is annotated with the party the speaker was
associated with at the time, and the source data
was made publicly available by the Norwegian
parliament. The classification task is to determine
the political affiliation of the transcribed speech
segment.

5 Results

To evaluate the performance of our model, we
searched for the optimal set of fine-tuning hyper-
parameters for each downstream task by running
a small grid search (see Table 3) on the mBERT
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Version A Version B
Warmup Step 1 Step 2 Step 3a Step 3b Step 3

Steps 50k 700k 1M 1.2M 1.2M 2M
Batch Size 2760 2760 384 384 2760 384
Examples 138M 1,938M 384M 460M 3,312M 768M
Sequence Length 128 128 512 512 128 512
Learning Rate 0! 4e-4 4e-4 4e-4 4e-4! 2e-4 2e-4! 0 4e-4! 0

Table 2: Training schedule for our models.

model. The search space was the same for all tasks
and included learning rates ranging from 2e-5 to
5e-5, with the number of training epochs being 3
or 4. We did the same for the warmup ratio and
weight decay. The performance was generally best
using a warmup ratio of 0.1 and weight decay of
0, so we applied this universally to limit the grid
complexity.

For the token classification tasks, we selected
the best-performing hyperparameters based on the
seqeval (2018) F1 micro score on the validation
set for Bokmål after fine-tuning an mBERT model.
For sequence classification, we used the F1 macro
score.

NER POS Sentiment Political
Learning Rate 2e-5 3e-5 3e-5 2e-5
Number of Epochs 3 3 3 3

Table 3: Optimal fine-tuning hyperparameters for
the mBERT model using the validation datasets.

We then used the optimal fine-tuning param-
eters from the mBERT model for the validation
dataset on our model and on the NorBERT model.
Last, we compared all the models based on their
results in relation to the test dataset.

Version B of our model—the version with the
extended training-sequence length—performed
slightly better on all four tasks than did version A.
To simplify the results presented here, we there-
fore report only the results from version B, which
we are naming NB-BERT.

As can be seen in the Table 4, the NB-BERT
model performed significantly better than did the
mBERT model for both Bokmål and Nynorsk,
and on both token and sequence classification.
The improvement was the smallest for the POS
dataset, with an improvement from 98.3 to 98.8
for Bokmål and from 98.0 to 98.8 for Nynorsk.
However, POS datasets such as this always con-

tain some ambiguity, and it is hard to tell how
much more improvement is possible there. In ad-
dition, the NER task improved from 83.8 to 91.2
for Bokmål and from 85.6 to 88.9 for Nynorsk.
The sequence classification improved from 69.7
to 86.4 in terms of sentiment classification and
from 78.4 to 81.8 for political classification. We
also tested the release 1.1 of the NorBERT model
that is uploaded to Hugging Face (Language Tech-
nology Group at the University of Oslo, 2021a).
The performance of this model lays in between
that of NB-BERT and mBERT for Bokmål and
Nynorsk, but it generally performs worse on all
non-Norwegian tasks.

As shown in Table 5, our model was able
to outperform the English-only and multilingual
BERT for both Norwegian Bokmål and Nynorsk,
as well as for Swedish and Danish, which are lan-
guages with a shared tradition with Norwegian.
For English, our results are also marginally better
than those obtained using the English-only BERT
model. For Spanish and Finnish, for which there
is no close relationship with Norwegian nor doc-
umented occurrences of text in such languages in
our corpus, the mBERT model outperformed both
the English-only BERT and our model, suggesting
that our model is deteriorating for the languages
not included in the corpus.

6 Discussion

The majority of the training corpora used today for
training transformer models are built using mainly
open web sources. A major motivation for this
project was to investigate whether the digital col-
lections at the NLN could be used to create a
suitable corpus to train state-of-the-art transformer
language models. The texts available through the
library are heterogeneous in nature, including car-
toons, novels, news articles, poetry, and govern-
ment documents published over time and in dif-
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NER POS Sentiment Political
Bokmål Nynorsk Bokmål Nynorsk Bokmål & Nynorsk Bokmål

mBERT 83.8 85.6 98.3 98.0 69.7 78.4
NorBERT 89.9 86.1 98.5 98.4 81.7 78.2
NB-BERT (ours) 91.2 88.9 98.8 98.8 86.4 81.8

Table 4: Evaluation results from the test dataset (version B of the model; F1 micro in token classifications
and F1 macro in sequence classifications; best scores in bold).

Bokmål Nynorsk English Swedish Danish Spanish Finnish
English BERT 75.1 77.8 91.3 82.5 73.9 81.8 82.9
mBERT 83.8 85.6 90.8 85.3 83.4 87.6 88.7
NorBERT 89.9 86.1 87.8 83.4 80.7 79.3 81.5
NB-BERT (ours) 91.2 88.9 91.3 85.9 85.1 85.8 85.8

Table 5: Evaluation results (F1 micro) of different monolingual NER datasets using the English-only
BERT, mBERT, NorBERT, and our model (best scores in bold).

ferent contexts. As our results suggest, this seems
to be a strength rather than a weakness, in that it
enables us to build high-performance transformer
models for small languages, such as Norwegian.
Consequently, our Norwegian corpus is not only
richer in diversity but also significantly larger in
size than is any other Norwegian corpus, and it
even rivals the size of previous work on a major
language such as English. The Norwegian part of
the mBERT model consists of around 1GB of text
(Wu and Dredze, 2020), while the English-only
BERT model was trained on 16GB of text (Devlin
et al., 2019) mainly based on English Wikipedia
and Open Book Corpus. When Facebook devel-
oped the first version of its RoBERTa, it added
Common Crawl data and Open WebText to the
BERT corpus and ended up with 160GB of text
(Liu et al., 2019). Our clean corpus of Norwegian-
only text is 109GB in size.

For the target languages Norwegian Bokmål
and Norwegian Nynorsk, the model performs sig-
nificantly better than does the mBERT model on
both token classifications (POS and NER) as well
as on the two sequence classification tasks. In the
Bokmål NER task, the level of improvement was
+7.4 F1 points. Because none of the datasets have
been benchmarked against human performance, it
is hard to measure how close this is to the theoret-
ical maximum.

The results show that our corpus is a valid train-
ing source, and this is by no means surprising.
All research points to the possibility of improving
transformer models’ performance by training them

on larger text corpora. However, the novelty of
our results lies in that we were able to increase the
performance on our domain-specific tasks while
maintaining a lot of the multilingual properties of
the mBERT model. This was unexpected because
English only comprised around 4% of the train-
ing set. Still, we were able to improve the En-
glish capabilities of the model up to the level of the
monolingual English model. Part of the reason for
this might be that we applied some training tech-
niques that were not available when the English-
only model was trained and released, most notably
the use of larger batch sizes and the LAMB opti-
mizer.

We were also able to significantly improve the
scores for Swedish and Danish, though it is hard to
pinpoint how much of this was caused by the close
linguistic similarities between the languages and
how much by the fact that they were represented
in the corpus to some degree.

It should not be surprising that the capabilities
of the model in relation to languages that were not
included in the training corpus (i.e., Spanish and
Finnish) did deteriorate. However, the drop in per-
formance was not radical, and the results above in-
dicate that we might have been able to prevent this
by adding just a small portion of these languages
to the large corpus.

Overall, our results suggest that collections
such as the digital collection at the NLN, even
if they contain occational OCR-errors, may con-
tribute significantly toward the creation of well-
performing language models by providing large
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training corpora. As discussed earlier, there are
OCR errors in the included materials. An exhaus-
tive removal of all OCR artifacts would either have
required us to do a major reduction of the size of
the corpus, or to invest an unmanageable amount
of manual work. We have not seen any indica-
tion that the OCR errors negatively impacted the
performance. We might speculate that the model
has learned to distinguish OCR errors from ordi-
nary text, indicating that quantity is more impor-
tant than quality when building such corpora. All
in all, size matters.

7 Conclusion and Future Work

In this work, we have investigated the feasibil-
ity of building a large Norwegian-only corpus for
the training of well-performing transformer-based
language models. We relied on the collections of
the NLN, and our model outperformed the existing
multilingual alternatives. In the process, while the
corpus produced might lack the cleanness of other
textual resources, we proved that using somewhat
noisy but available sources is an effective way to
grow the ecosystem of resources for languages
with fewer resources and for which enough open
text in a digital format simply does not exist. As
part of an effort to democratize the use of technol-
ogy and digital resources at the NLN, we are re-
leasing our trained BERT-based model (National
Library of Norway AI Lab, 2021a) and will be re-
leasing other models based on the same corpus in
the future. Moreover, we are also releasing the set
of tools and code we used so that others seeking
similar results can easily reuse them (National Li-
brary of Norway AI Lab, 2021b).

Although our work may indicate that OCR er-
rors in corpora have little to no impact on the qual-
ity of the resulting transformer model, this has not
been explicitly proven in the current study. More
systematic studies are needed to investigate the
real effect of OCR noise and artifacts.

Another important aspect is that, to benefit
from the pre-trained mBERT weights, we used a
119,547-token multilingual vocabulary, of which
only a small fraction pertained to Norwegian. A
natural follow up would be to investigate the per-
formance gains of using only a tailored Norwegian
vocabulary.

The decision to use a BERT-based architec-
ture as our target was guided by its simplicity to
train and benchmark. However, newer and better-

performing models have been released since the
original BERT work a few years ago. The cur-
rent corpus could be used for training such models
as well studying the differences between architec-
tural styles and training objectives. While it is al-
ready large in size, there is still potential to grow
our 109GB corpus to the limits of the extant Nor-
wegian holdings at the NLN, which presents itself
as an opportunity to release even larger models.

Funding

This research was supported by Cloud TPUs from
Google’s TPU Research Cloud (TRC).

Acknowledgment

We would like to thank KBLab at the National Li-
brary of Sweden (Kungliga biblioteket) for its pio-
neering work on BERT in memory institutions and
for the valuable and inspiring discussions. We also
appreciate the feedback from and discussions with
Andre Kaasen of the Language Bank at the Na-
tional Library of Norway.

References
Piotr Bojanowski, Edouard Grave, Armand Joulin, and

Tomas Mikolov. 2017. Enriching word vectors with
subword information. Transactions of the Associa-
tion for Computational Linguistics, 5:135–146.

BotXO Ltd. 2021. https://github.com/
botxo/nordic_bert Pre-trained nordic models
for bert. [Online; accessed 5-February-2021].

Common Crawl Foundation. 2021. https://
commoncrawl.org/ Common crawl. [Online;
accessed 5-February-2021].

Jacob Devlin, Ming-Wei Chang, Ken-
ton Lee, and Kristina Toutanova. 2019.
https://doi.org/10.18653/v1/N19-1423 BERT:
Pre-training of deep bidirectional transformers for
language understanding. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, Volume 1 (Long
and Short Papers), pages 4171–4186, Minneapo-
lis, Minnesota. Association for Computational
Linguistics.

Jan Terje Faarlund, Svein Lie, and Kjell Ivar Vannebo.
1997. Norsk referansegrammatikk. Universitetsfor-
laget.

Gothenburg University Språkbanken. 2012. Swedish
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Abstract

We present the ongoing NorLM initiative
to support the creation and use of very
large contextualised language models for
Norwegian (and in principle other Nordic
languages), including a ready-to-use soft-
ware environment, as well as an experi-
ence report for data preparation and train-
ing. This paper introduces the first large-
scale monolingual language models for
Norwegian, based on both the ELMo and
BERT frameworks. In addition to detail-
ing the training process, we present con-
trastive benchmark results on a suite of
NLP tasks for Norwegian.

For additional background and access to
the data, models, and software, please see:

http://norlm.nlpl.eu

1 Introduction

In this work, we present NorLM, an ongoing com-
munity initiative and emerging collection of large-
scale contextualised language models for Norwe-
gian. We here introduce the NorELMo and Nor-
BERT models, that have been trained on around
two billion tokens of running Norwegian text. We
describe the training procedure and compare these
models with the multilingual mBERT model (De-
vlin et al., 2019), as well as an additional Nor-
wegian BERT model developed contemporane-
ously, with some interesting differences in train-
ing data and setup. We report results over a num-
ber of Norwegian benchmark datasets, addressing
a broad range of diverse NLP tasks: part-of-speech
tagging, negation resolution, sentence-level and
fine-grained sentiment analysis and named entity
recognition (NER).

All the models are publicly available for down-
load from the Nordic Language Processing Lab-

oratory (NLPL) Vectors Repository1 with a CC
BY 4.0 license. They are also accessible locally,
together with the training and supporting soft-
ware, on the two national superclusters Puhti and
Saga, in Finland and Norway, respectively, which
are available to university NLP research groups
in Northern Europe through the Nordic Language
Processing Laboratory (NLPL).2 The NorBERT
model is in addition served via the Huggingface
Transformers model hub.3

NorLM is a joint effort of the projects EOSC-
Nordic (European Open Science Cloud) and
SANT (Sentiment Analysis for Norwegian), co-
ordinated by the Language Technology Group
(LTG) at the University of Oslo. The goal of
this work is to provide these models and support-
ing tools for researchers and developers in Natu-
ral Language Processing (NLP) for the Norwegian
language. We do so in the hope of facilitating sci-
entific experimentation with and practical applica-
tions of state-of-the-art NLP architectures, as well
as to enable others to develop their own large-scale
models, for example for domain- or application-
specific tasks, language variants, or even other lan-
guages than Norwegian. Under the auspices of the
NLPL use case in EOSC-Nordic, we are also co-
ordinating with colleagues in Denmark, Finland,
and Sweden on a collection of large contextualised
language models for the Nordic languages, includ-
ing language variants or related groups of lan-
guages, as linguistically or technologically appro-
priate.

2 Background

Bokmål and Nynorsk There are two official
standards for written Norwegian; Bokmål, the
main variety, and Nynorsk, used by 10–15% of

1http://vectors.nlpl.eu/repository
2http://www.nlpl.eu
3https://huggingface.co/ltgoslo/

norbert
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the Norwegian population. Norwegian language
legislation specifies that minimally 25% of the
written public service information should be in
Nynorsk. While the two varieties are closely re-
lated, there can also be relatively large differ-
ences lexically (though often with a large degree
of overlap on the character-level still). Several
previous studies have indicated that joint model-
ing of Bokmål and Nynorsk works well for many
NLP tasks, like tagging and parsing (Velldal et al.,
2017) and NER (Jørgensen et al., 2020). The con-
textualised language models presented in this pa-
per are therefore trained jointly on both varieties,
but with the minority variant Nynorsk represented
by comparatively less data than Bokmål (reflecting
the natural usage).

Datasets For all our models presented below, we
used the following training corpora:

1. Norsk Aviskorpus (NAK), a collection of
Norwegian news texts4 (both Bokmål and
Nynorsk) from 1998 to 2019; 1.7 billion
words;

2. Bokmål Wikipedia dump from September
2020; 160 million words;

3. Nynorsk Wikipedia dump from September
2020; 40 million words.

The corpora contain ordered sentences (which
is important for BERT-like models, because one
of their training tasks is next sentence prediction).
In total, our training corpus comprises about two
billion (1,907,072,909) word tokens in 203 million
(202,802,665) sentences.

We conducted the following pre-processing
steps:

1. Wikipedia texts were extracted from the
dumps using the segment wiki script
from the Gensim project (Řehůřek and Sojka,
2010).

2. For the news texts from Norwegian Aviskor-
pus, we performed de-tokenization and con-
version to UTF-8 encoding, where required.

3. The resulting corpus was sentence-
segmented using Stanza (Qi et al., 2020).
We left blank lines between documents (and

4https://www.nb.no/sprakbanken/
ressurskatalog/oai-nb-no-sbr-4/

sections in the case of Wikipedia) so that the
‘next sentence prediction’ task of BERT does
not span between documents.

3 Prerequisites: software and computing

Developing very large contextualised language
models is no small challenge, both in terms of en-
gineering sophistication and computing demands.
Training ELMo- and in particular BERT-like mod-
els presupposes access to specialised hardware –
graphical processing units (GPUs) – over extended
periods of time. Compared to the original work at
Google or to our sister initiative at the National
Library of Norway (see below), our two billion
tokens in Norwegian training data can be charac-
terised as moderate in size.

Nevertheless, training a single NorBERT model
requires close to one full year of GPU utilisa-
tion, which through parallelization over multiple
compute nodes, each featuring four GPUs, could
be completed in about three weeks of wall clock
time. At this scale, premium software efficiency
and effective parallelization are prerequisites, not
only to allow repeated incremental training and
evaluation cycles to complete in practical inter-
vals, but equally so for cost-efficient utilisation
of scarce, shared computing resources and, ulti-
mately, a shred of environmental sustainability.

To prepare the NorLM software environment,
we have teamed up with support staff at the Nor-
wegian national e-infrastructure provider, Uninett
Sigma2, and developed a fully automated and
modularised installation procedure using the Easy-
Build framework (https://easybuild.io).
All necessary tools are compiled from source with
the right set of hardware-specific optimizations
and platform-specific optimised libraries for ba-
sic linear algebra (‘math kernels’) and communi-
cation across multiple compute nodes.

This approach to software provisioning makes it
possible to (largely) automatically create fully par-
allel training and experimentation environments
on multiple computing infrastructures – in our
work to date two national HPC superclusters, in
Norway and Finland, but in principle just as much
any suitable local GPU cluster. In our view, mak-
ing available both a ready-to-run software environ-
ment on Nordic national e-infrastructures, where
university research groups typically can gain no-
cost access, coupled with the recipe for recreat-
ing the environment on other HPC systems, may
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contribute to ‘democratising’ large-scale NLP re-
search; if nothing else, it eliminates dependency
on commercial cloud computing services.

4 Related work

Large-scale deep learning language models (LM)
are important components of current NLP sys-
tems. They are often based on BERT (Bidirec-
tional Encoder Representations from Transform-
ers) (Devlin et al., 2019) and other contextualised
architectures. A number of language-specific ini-
tiatives have in recent years released monolin-
gual versions of these models for a number of
languages (Fares et al., 2017; Kutuzov and Kuz-
menko, 2017; Virtanen et al., 2019; de Vries et al.,
2019; Ulčar and Robnik-Šikonja, 2020; Kout-
sikakis et al., 2020; Nguyen and Nguyen, 2020;
Farahani et al., 2020; Malmsten et al., 2020). For
our purposes, the most important such previous
training effort is that of Virtanen et al. (2019) on
creating a BERT model for Finnish – FinBERT5 –
as our training setup for creating NorBERT builds
heavily on this; see Section 6 for more details.

Many low-resource languages do not have ded-
icated monolingual large-scale language models,
and instead resort to using a multilingual model,
such as Google’s multilingual BERT model –
mBERT – which was trained on data that also in-
cluded Norwegian. Up until the release of the
models described in the current paper, mBERT
was the only BERT-instance that could be used for
Norwegian.6

Another widely used architecture for contextu-
alised LMs is Embeddings From Language Mod-
els or ELMo (Peters et al., 2018). The ElmoFor-
ManyLangs initiative (Che et al., 2018) trained
and released monolingual ELMo models for a
wide range of different languages, including Nor-
wegian (with separate models for Bokmål and
Nynorsk). However, these models were trained
on very modestly sized corpora of 20 million
words for each language (randomly sampled from
Wikipedia dumps and Common Crawl data).

In a parallel effort to that of the current paper,
the AI Lab of the National Library of Norway,
through their Norwegian Transformer Model (No-

5https://github.com/TurkuNLP/FinBERT
6A BERT model trained on Norwegian data was published

at https://github.com/botxo/nordic_bert in
the beginning of 2020. However, the vocabulary of this model
seems to be broken, and to the best of our knowledge nobody
has achieved any meaningful results with it.

TraM) project, has released a Norwegian BERT
(Base, cased) model dubbed NB-BERT (Kummer-
vold et al., 2021).7 The model is trained on the
Colossal Norwegian Corpus, reported to comprise
close to 18,5 billion words (109.1 GB of text).

In raw numbers, this is about ten times more
than the corpus we use for training the NorLM
models. However, the vast majority of this is from
OCR’ed historical sources, which is bound to in-
troduce at least some noise. In Section 7 below, we
demonstrate that in some NLP tasks, a language
model trained on less (but arguably cleaner) data
can outperform a model trained on larger but noisy
corpora.

5 NorELMo

NorELMo is a set of bidirectional recurrent ELMo
language models trained from scratch on the Nor-
wegian corpus described in Section 1. They can
be used as a source of contextualised token rep-
resentations for various Norwegian natural lan-
guage processing tasks. As we show below, in
many cases, they present a viable alternative to
Transformer-based models like BERT. Their per-
formance is often only marginally lower, while the
compute time required to adapt the model to the
task at hand can be an order of magnitude less on
identical hardware.

Currently we present two models, with more
following in the future:

1. NorELMo30: 30,000 most frequent words in
the vocabulary

2. NorELMo100: 100,000 most frequent words
in the vocabulary

Note that independent of the vocabulary size,
both NorELMo30 and NorELMo100 can process
arbitrary word tokens, due to the ELMo archi-
tecture (where the first CNN layer converts in-
put strings to non-contextual word embeddings).
Thus, the size of the vocabulary controls only the
number of words used as targets for the language
modelling task in the course of training. Suppos-
edly, the model with a larger vocabulary is more
effective in treating less frequent words at the cost
of being less effective with more frequent words.

Each model was trained for 3 epochs with batch
size 192. We employed a version of the original

7https://github.com/NBAiLab/notram
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ELMo training code from Peters et al. (2018) up-
dated to work better with the recent TensorFlow
versions. All the hyperparameters were left at their
default values, except the LSTM dimensionality
reduced to 2,048 from the default 4,096 (in our
experience, this rarely influences performance).
Training of each model took about 100 hours on
four NVIDIA P100 GPUs.

These are the first ELMo models for Norwe-
gian trained on a large corpus. As has already
been mentioned, the Norwegian ELMo models
from the ElmoForManyLangs project (Che et al.,
2018) were trained on very small corpora sam-
ples and seriously under-perform on semantic-
related NLP tasks, although they can yield impres-
sive results on POS tagging and syntactic pars-
ing (Zeman et al., 2018). In addition, they were
trained with custom code modifications and can
be used only with the custom ElmoForManyLangs
library. On the other hand, our NorELMo models
are fully compatible both with the original ELMo
implementation by Peters et al. (2018) and with
the more modern simple elmo Python library pro-
vided by us.8

The vocabularies are published together with
the models. For different tasks, different mod-
els can be better, as we show below. The pub-
lished packages contain both TensorFlow check-
points (for possible fine-tuning, if need be) and
model files in the standard Hierarchical Data For-
mat (HDF5) for easier inference usage. In addi-
tion, we have setup ELMoViz, a demo web service
to explore Norwegian ELMo models.9

6 NorBERT

Our NorBERT model is trained from scratch for
Norwegian, and can be used in exactly the same
way as any other BERT-like model. The NorBERT
training setup heavily builds on prior work on Fin-
BERT conducted at the University of Turku (Vir-
tanen et al., 2019).

NorBERT features a custom WordPiece vocab-
ulary which is case-sensitive and includes ac-
cented characters. It has much better coverage
of Norwegian words than the mBERT model or
NB-BERT (which uses the same vocabulary as
mBERT). This is clearly seen on the example of
the tokenization performed by both for the Norwe-

8https://pypi.org/project/simple-elmo/
9http://vectors.nlpl.eu/explore/

embeddings/en/contextual/

gian sentence ‘Denne gjengen håper at de sammen
skal bidra til å gi kvinnefotballen i Kristiansand et
lenge etterlengtet løft’

• mBERT/NB-BERT: ‘Denne g ##jeng ##en
h ##å ##per at de sammen skal bid ##ra til
å gi k ##vinne ##fo ##t ##ball ##en i Kris-
tiansand et lenge etter ##len ##gte ##t l ##ø
##ft’

• NorBERT: ‘Denne gjengen håper at de sam-
men skal bidra til å gi kvinne ##fotball ##en
i Kristiansand et lenge etterl ##engt ##et løft’

NorBERT tokenization splits the sentence into
pieces which much better reflect the real Nor-
wegian words and morphemes (cf. ‘k vinne fo
t ball en’ versus ‘kvinne fotball en’). We be-
lieve this to be extremely important for more
linguistically-oriented studies, where it is critical
to deal with words, not with arbitrarily fragmented
pieces (even if they are well-performing in practi-
cal tasks).

The vocabulary for the model is of size 30,000.
It is much less than the 120,000 of mBERT, but it
is compensated by these entities being almost ex-
clusively Norwegian. The vocabulary was gener-
ated from raw text, without, e.g., separating punc-
tuation from word tokens. This means one can
feed raw text into NorBERT.

For the vocabulary generation, we used the Sen-
tencePiece algorithm (Kudo, 2018) and Tokeniz-
ers library.10 The resulting Tokenizers model was
converted to the standard BERT WordPiece for-
mat. The final vocabulary contains several thou-
sand unused wordpiece slots which can be filled
in with task-specific lexical entries for further fine-
tuning by future NorBERT users.

6.1 Training technicalities
NorBERT corresponds in its configuration to the
Google’s Bert-Base Cased for English, with 12
layers and hidden size 768 (Devlin et al., 2019).
We used the standard masked language model-
ing and next sentence prediction losses with the
LAMB optimizer (You et al., 2020). The model
was trained on the Norwegian academic HPC sys-
tem called Saga. Most of the time the training pro-
cess was distributed across 4 compute nodes and
16 NVIDIA P100 GPUs. Overall, it took approxi-
mately 3 weeks (more than 500 hours).

10https://github.com/huggingface/
tokenizers
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Figure 1: NorBERT loss plots at the Phase 1 (left) and Phase 2 (right).

Similar to Virtanen et al. (2019), we employed
the BERT implementation by NVIDIA11, which
allows fast multi-node and multi-GPU training.

We made minor changes to this code, mostly
to adapt it to the newer TensorFlow versions. All
these patches and the utilities we used at the pre-
processing, training and evaluation stages are pub-
lished in our GitHub repository.12 Instructions to
reproduce the training setup with the EasyBuild
software build and installation framework are also
available.13

6.2 Training workflow
Phase 1 (training with maximum sequence length
of 128) was done with batch size 48 and global
batch size 48*16=768. Since one global batch
contains 768 sentences, approximately 265,000
training steps constitute 1 epoch (one pass over the
whole corpus). We have done 3 epochs: 795,000
training steps.

Phase 2 (training with maximum sequence
length of 512) was done with batch size 8 and
global batch size 8*16=128. We aimed at mimick-
ing the original BERT in that at Phase 2 the model
should see about 1/9 of the number of sentences
seen during Phase 1. Thus, we needed about 68
million sentences, which at the global batch size
of 128 boils down to 531,000 training steps more.

The loss plots are shown in Figure 1 (the train-
ing was on pause on December 25 and 26, since
we were solving problems with mixed precision

11https://github.com/NVIDIA/
DeepLearningExamples/tree/master/
TensorFlow/LanguageModeling/BERT, version
20.06.08

12https://github.com/ltgoslo/NorBERT
13http://wiki.nlpl.eu/index.php/Eosc/

pretraining/nvidia

Task Train Dev Test

POS Bokmål 15,696 2,409 1,939
POS Nynorsk 14,174 1,890 1,511
NER Bokmål 15,696 2,409 1,939
NER Nynorsk 14,174 1,890 1,511
Sentence-level SA 2,675 516 417
Fine-grained SA 8,543 1,531 1,272
Negation 8,543 1,531 1,272

Table 1: Number of sentences in the training, de-
velopment, and test splits in the datasets used for
the evaluation tasks.

training). Full logs are available at the GitHub
repository.

7 Evaluation

This section presents benchmark results across a
range of different tasks. We compare NorELMO
and NorBERT to both mBERT and to the recently
released NB-BERT model described in Section 4.
Where applicable, we show separate evaluation re-
sults for Bokmål and Nynorsk. Below we first pro-
vide an overview of the different tasks and the cor-
responding classifiers that we train, before turning
to discuss the results.

7.1 Task descriptions
We start by briefly describing each task and asso-
ciated dataset, in addition to the architectures we
use. The sentence counts for the different datasets
and their train, dev. and test splits are provided in
Table 1.

Part-of-speech tagging The Norwegian Depen-
dency Treebank (NDT) (Solberg et al., 2014) in-
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cludes annotation of POS tags for both Bokmål
and Nynorsk. NDT has also been converted to
the Universal Dependencies format (Øvrelid and
Hohle, 2016; Velldal et al., 2017) and this is the
version we are using here (for UD 2.7) for predict-
ing UPOS tags.

We use a typical sequence labelling approach
with the BERT models, adding a linear layer af-
ter the final token representations and taking the
softmax to get token predictions. We fine-tune all
parameters for 20 epochs, using a learning rate
of 2e-5, a training batch size of 8, max length
of 256, and keep the best model on the devel-
opment set. ELMo models were not fine-tuned,
following the recommendations from Peters et al.
(2019). Instead we trained a simple neural classi-
fier (a feed forward network with one hidden layer
of size 128, ReLU non-linear activation function
and dropout), using ELMo token embeddings as
features. The random seed has been kept fixed all
the time. Models are evaluated on accuracy.

Named entity recognition The NorNE14

dataset annotates the UD-version of NDT with a
rich set of entity types (Jørgensen et al., 2020).
The evaluation metrics here is ‘strict’ micro F1,
requiring both the correct entity type and exact
match of boundary surface string. We predict 8
entity types: Person (PER), Organisation (ORG),
Location (LOC), Geo-political entity, with a
locative sense (GPE-LOC), Geo-political entity,
with an organisation sense (GPE-ORG), Product
(PROD), Event (EVT), Nominals derived from
names (DRV). The evaluation is done using the
code for the SemEval’13 Task 915.

We cast the named entity recognition problem
as a sequence labelling task, using a BIO label en-
coding. For the BERT-based models, we solve it
by fine-tuning the pre-trained model on the NorNE
dataset for 20 epochs with early stopping and
batch size 32. The resulting model is applied to
the test set.

For ELMo models, we infer contextualised to-
ken embeddings (averaged representations across
all 3 layers) for all words. Then, these token
embeddings are fed to a neural classifier with
dropout, identical to the one we used for POS tag-
ging earlier. This classifier is also trained for 20
epochs with early stopping and batch size 32.

14https://github.com/ltgoslo/norne
15https://github.com/davidsbatista/

NER-Evaluation

Fine-grained sentiment analysis NoReCfine is
a dataset16 comprising a subset of the Norwegian
Review Corpus (NoReC; Velldal et al., 2018) an-
notated for sentiment holders, targets, expressions,
and polarity, as well as the relationships between
them (Øvrelid et al., 2020). We here cast the prob-
lem as a graph prediction task and train a graph
parser (Dozat and Manning, 2018; Kurtz et al.,
2020) to predict sentiment graphs. The parser cre-
ates token-level representations which is the con-
catenation of a word embedding, POS tag embed-
ding, lemma embedding, and character embedding
created by a character-based LSTM. We further
augment these representations with contextualised
embeddings from each model. Models are trained
for 100 epochs, keeping the best model on de-
velopment F1. For span extraction (holders, tar-
gets, expressions), we evaluate token-level F1, and
the common Targeted F1 metric, which requires
correctly extracting a target (strict) and its polar-
ity. We also evaluate Labelled and Unlabelled F1,
which correspond to Labelled and Unlabelled At-
tachment in dependency parsing. Finally, we eval-
uate on Sentiment Graph F1 (SF1) and Non-polar
Sentiment Graph F1 (NSF1. SF1 requires predict-
ing all elements (holder, target, expression, polar-
ity) and their relationships (NSF1 removes the po-
larity). A true positive is defined as an exact match
at graph-level, weighting the overlap in predicted
and gold spans for each element, averaged across
all three spans. For precision we weight the num-
ber of correctly predicted tokens divided by the to-
tal number of predicted tokens (for recall, we di-
vide instead by the number of gold tokens). We
allow for empty holders and targets.

Sentence-level binary sentiment classification
We further evaluate on the task of sentence-level
binary (positive or negative) polarity classifica-
tion, using labels that we derive from NoReCfine
described above. We create the dataset for
this by aggregating the fine-grained annotations
to the sentence-level, removing sentences with
mixed or no sentiment. The resulting dataset,
NoReCsentence, is made publicly available.17 For
the BERT models, we use the [CLS] embedding
of the last layer as a representation for the sentence
and pass this to a softmax layer for classification.
We fine-tune the models in the same way as for

16https://github.com/ltgoslo/norec_fine
17https://github.com/ltgoslo/norec_

sentence
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POS

Model BM NN Time

Stanza (Qi et al., 2020) 98.3 97.9 –
NorELMo30 98.1 97.4 8
NorELMo100 98.0 97.4 8
mBERT 98.0 97.9 245
NB-BERT 98.7 98.3 244
NorBERT 98.5 98.0 238

Table 2: Evaluation scores of the NorLM models
on the POS tagging of Bokmål (BM) and Nynorsk
(NN) test sets in comparison with other large pre-
trained models for Norwegian. Running times in
minutes are given for Bokmål.

the POS tagging task, training the models for 20
epochs and keeping the model that performs best
on the development data. For ELMo models, we
used a BiLSTM with global max pooling, taking
ELMo token embeddings from the top layer as an
input. The evaluation metric is macro F1.

Negation detection Finally, the NoReCfine
dataset has recently been annotated with nega-
tion cues and their corresponding in-sentence
scopes (Mæhlum et al., 2021). The resulting
dataset is dubbed NoReCneg.18 We use the same
graph-based modeling approach as described for
fine-grained sentiment above. We evaluate on the
same metrics as in the *SEM 2012 shared task
(Morante and Blanco, 2012): cue-level F1 (CUE),
scope token F1 over individual tokens (ST), and
the combined full negation F1 (FN).

7.2 Results

We present the results for the various benchmark-
ing tasks below.

POS tagging As can be seen from Table 2, Nor-
BERT outperforms mBERT on both tasks: on POS
tagging for Bokmål by 5 percentage points and 1
percentage point for Nynorsk. NorBERT is almost
on par with NB-BERT on POS tagging. NorELMo
models are outperformed by NB-BERT and Nor-
BERT, but are on par with mBERT in POS tag-
ging. Note that their adaptation to the tasks (ex-
tracting token embeddings and learning a classi-
fier) takes 30x less time than with the BERT mod-
els.

18https://github.com/ltgoslo/norec_neg

Model Bokmål Nynorsk Time

NorELMo30 79.9 75.6 2
NorELMo100 81.3 75.1 2
mBERT 78.8 81.7 14
NB-BERT 90.2 88.6 11
NorBERT 85.5 82.8 9

Table 3: NER evaluation scores (micro F1) of the
NorLM models on the NorNE test set in compar-
ison with other large pre-trained models for Nor-
wegian. Running time is given in minutes for the
Bokmål part (on 1 NVIDIA P100 GPU).

See Figure 2 for the examples of training dy-
namics of the Nynorsk model.

Named entity recognition Table 3 shows the
performance on the NER task. NB-BERT is the
best on both Bokmål and Nynorsk, closely fol-
lowed by NorBERT. Unsurprisingly, mBERT falls
behind all the models trained for Norwegian, when
evaluated on Bokmål data. With Nynorsk, it man-
ages to outperform NorELMo. Bokmål is pre-
sumably dominant in the training corpora of both.
However, in the course of fine-tuning, mBERT
seems to be able to adapt to the specifics of
Nynorsk. Since our ELMo setup did not include
the fine-tuning step, the NorELMo models’ adap-
tation abilities were limited by what can be learned
from contextualised token embeddings produced
by a frozen model. Still, when used on the
data more similar to the training corpus (Bokmål),
ELMo achieves competitive results even without
any fine-tuning.

In terms of computational efficiency, the adap-
tation of ELMo models to this task requires 6x
less time than mBERT or NB-BERT and 4x less
time than NorBERT. Note also that the NorBERT
model takes less time to fine-tune than the NB-
BERT model (although the number of epochs
was exactly the same), because of a smaller vo-
cabulary, and thus less parameters in the model.
Again, in this case an NLP practitioner has a rich
spectrum of tools to choose from, depending on
whether speed or performance on the downstream
task is prioritised.

Fine-grained sentiment analysis Table 4 shows
that NorBERT outperforms mBERT on all metrics
and NB-BERT on all but SF1, although the differ-
ences between NorBERT and NB-BERT are gen-
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Spans Targeted Parsing Graph Sent. Graph

Model Holder F1 Target F1 Exp. F1 F1 UF1 LF1 NSF1 SF1 Time

Extraction [1] 42.4 31.3 31.3 – – – – – –
NorELMo30 55.1 55.3 57.2 37.9 49.0 41.2 40.9 34.5 446
NorELMo100 58.8 55.8 56.8 37.1 49.7 41.2 41.5 34.2 434
mBERT 57.1 55.2 56.3 34.8 48.7 38.3 40.5 31.7 444
NB-BERT 61.3 56.1 57.9 36.0 49.7 41.9 40.7 34.8 404
NorBERT 63.0 56.4 58.1 36.9 50.5 42.2 41.0 34.8 438

Table 4: Average score of NorLM models on fine-grained sentiment (5 runs with set random seeds).
Bold denotes the best result on each metric. [1] Span extraction baseline from Øvrelid et al. (2020),
which uses a BiLSTM CRF with pretrained fastText embeddings.

Model F1

NorELMo30 75.0
NorELMo100 75.0
mBERT 67.7
NB-BERT 83.9
NorBERT 77.1

Table 5: F1 scores for the different LMs models
on the binary sentiment classification test set.

Model CUE ST FN Time

NorELMo30 91.7 80.6 63.8 428
NorELMo100 92.2 81.3 65.5 407
mBERT 92.8 84.0 65.9 353
NB-BERT 92.4 83.1 63.5 342
NorBERT 92.1 83.6 65.5 426

Table 6: Results of our negation parser, augment-
ing the features with token representations from
each language model. The results are averaged
over 5 runs.

erally small.
On this task the NorELMo models generally

outperform mBERT as well. However, unlike in
the previous tasks, the running times here are sim-
ilar for BERT and ELMo models, since no fine-
tuning was applied (the same is true for negation
detection). We furthermore compare with the pre-
vious best model (Øvrelid et al., 2020), a span ex-
traction model which uses a single-layer Bidirec-
tional LSTM with Conditional Random Field in-
ference, and an embedding layer initialized with
fastText vectors trained on the NoWaC corpus. All
approaches using language models outperform the

previous baseline by a large margin on the span ex-
traction tasks.19 NorBERT, in particular, achieves
improvements of 20.6 percentage points on Holder
F1 (24.9 and 25.8 on Target and Exp. F1, respec-
tively).

Binary sentiment classification Table 5 shows
that NorBERT outperforms mBERT by 9.4 per-
centage points on sentiment analysis. However,
it seems that in binary sentiment classification the
sheer amount of training data starts to show its
benefits, and NB-BERT outperforms NorBERT by
6.8 points. NorELMo models outperform mBERT
by 7.3 points.

Figure 2 shows the training dynamics of the
models.

Negation detection From Table 6 we can see
that mBERT gives the best overall results, fol-
lowed by NorBERT and NorELMo100. NB-BERT
and NorELMo30 perform worse than the others on
Scope token F1 (ST) and full negation F1 (FN),
while all models perform similarly at cue-level F1

(CUE). We hypothesise that the structural similar-
ity of negation across many of the pretraining lan-
guages gives mBERT an advantage, but it is still
surprising that it outperforms NB-BERT and Nor-
BERT.

8 Future plans

In the future, separate Bokmål and Nynorsk BERT
models are planned, and we further expect to
train and evaluate models with a higher number of
epochs over the training corpus. While we plan to
develop additional monolingual Norwegian mod-
els based on other contextualised LM architectures

19Øvrelid et al. (2020) only perform span extraction.
Therefore, it is not possible to compare the other metrics.
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Figure 2: Per-epoch performance on training and development data for two of the tasks. Left: accuracy
for POS tagging (Norwegian Nynorsk). Right: F1 for binary sentiment classification.

beyond BERT and ELMo, we would also be in-
terested to explore the usefulness of multilingual
models restricted to Scandinavian languages. Fur-
ther streamlining of the benchmarking process, in
terms of both data access and computation of met-
rics, is something we also want to address in future
work.

In addition, the ready availability of a highly
optimised software stack on multiple HPC sys-
tems (published as part of NorLM) may contribute
to other researchers developing very large con-
textualised language models for additional lan-
guages or language variants, e.g. domain- or
application-specific sub-corpora. We hope that
more pre-trained NLP models for Norwegian from
both academy and industry will be openly re-
leased, making it possible to study the interplay
between training corpora sizes, hyperparameters,
pre-preprocessing decisions and performance in
different tasks. At the same time, given the re-
source demands and sustainability issues related to
training such models, we believe it will be impor-
tant to coordinate efforts and we hope to collabo-
rate closely with other players moving forward.

9 Summary

This paper has described the first outcomes of
NorLM, an initiative coordinated by the Language
Technology Group at the University of Oslo seek-
ing to provide Norwegian (and Nordic) large-
scale contextualised language models, while si-
multaneously focusing on maintaining a re-usable
software environment for model development on
national and Nordic HPC infrastructure. We
have here described the training and testing of

NorELMo and NorBERT – the first large-scale
monolingual LMs for Norwegian. We have bench-
marked the models across a wide array of Norwe-
gian NLP tasks, also comparing to the multilin-
gual mBERT model and another large-scale LM
for Norwegian developed in parallel work, NB-
BERT, trained on large amounts of text from his-
torical sources. The results show that while the
monolingual models tend to yield better results,
which particular model ranks first varies across
tasks. This underscores the importance of building
an ecosystem of diversified models, accompanied
by systematic benchmarking.
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Abstract
An effective method to improve extremely
low-resource neural machine translation is
multilingual training, which can be im-
proved by leveraging monolingual data to
create synthetic bilingual corpora using
the back-translation method. This work
focuses on closely related languages from
the Uralic language family: from Estonian
and Finnish geographical regions. We find
that multilingual learning and synthetic
corpora increase the translation quality in
every language pair for which we have
data. We show that transfer learning
and fine-tuning are very effective for do-
ing low-resource machine translation and
achieve the best results. We collected new
parallel data for Võro, North and South
Saami and present first results of neural
machine translation for these languages.

1 Introduction

Neural machine translation (NMT, Vaswani et al.,
2017) shows great results in terms of output flu-
ency and overall translation quality, however it re-
lies on large parallel corpora for training the mod-
els. Low-resource NMT techniques like back-
translation (Sennrich et al., 2016), multilingual
knowledge transfer (Johnson et al., 2017; Ngo
et al., 2020) and unsupervised NMT (Lample
et al., 2018) rely on using parallel corpora for other
languages and/or large quantities of monolingual
data for the language(s) of interest.

Here we put these techniques to the test in an
extremely low-resource setting, working on NMT
systems for Võro-Estonian. While Estonian has
plentiful parallel, monolingual and annotated cor-
pora (Tiedemann, 2016; Nivre et al., 2020, etc),
Võro with its 87 000 speakers and no normalized
orthography only has slightly over 162 000 mono-
lingual sentences with much less parallel data.

Here we resort to the help of languages closely
related to Võro and Estonian: the resource-rich
Finnish and two more extremely low-resource
North and South Saami. We combine multilingual
transfer learning, back-translation and then eval-
uate several combinations of these techniques on
NMT for the five chosen Uralic languages.

Our contributions in this paper are as follows:

• experimental results for combinations of
techniques for low-resource NMT with appli-
cation to closely related resource-poor Uralic
languages

• first developed NMT systems for Võro, North
and South Saami languages with a free online
demo1

• additional data collected for Võro, North and
South Saami

Next we review related work in Section 2, de-
scribe our experimental setup in Section 3, then
proceed with results in Section 4 and conclude the
paper in Section 5.

2 Related work

This section describes prior work in machine
translation (MT) with neural networks for low-
resource related languages. Our work on neu-
ral machine translation relies on (Vaswani et al.,
2017), who introduce transformer, an encoder-
decoder type of solution for MT based on self-
attention.

2.1 Low-resource NMT
There has been a lot of research into low-resource
MT, for example, phrase-based unsupervised and
semi-supervised MT (Lample et al., 2018; Artetxe
et al., 2018), but they relied on lexicons or large
quantities of monolingual data. Their work is

1https://soome-ugri.neurotolge.ee/

41



not easily applicable for our experiments because
the amount of monolingual data is not sufficient,
having less than 100K sentences for most of
the languages in our data sets. The authors in
(Hämäläinen and Alnajjar, 2019) used a template
based approach to generate more parallel data for
related languages, which made NMT models vi-
able for training.

Another way of doing multilingual NMT is via
zero-shot translations for very low resource lan-
guage pairs. In our case, we have data for ten
translation directions and zero parallel data for the
rest of the ten directions. In (Gu et al., 2018) the
authors showed that zero-shot translations achieve
better results than the pivoting approach - piv-
oting means that when we have a language pair
with sufficient data, then Võro to Finnish trans-
lation, which has zero data, would use the Es-
tonian language to pivot - Võro to Estonian to
Finnish translation. We want to avoid pivoting
because Võro to North Saami would require two
pivots or three translations in total, resulting in
serious error propagation. Additionally, the au-
thors use shared source embeddings and source
RNN encoders; we used transformers with shared
vocabulary, encoders and decoders. In (Rikters
et al., 2018) the authors showed that multilingual
training with transformers is optimal for multi-
lingual Estonian-English-Russian system, but re-
ported that high-resource pairs see a performance
degradation and lower-resourced pairs see a per-
formance increase.

2.2 Back-translation for low-resource MT

Every sentence is essential for neural machine
translation in a low-resource machine translation
environment. One popular way to leverage mono-
lingual data is by creating a synthetic corpus via a
method called back-translation (BT). Traditional
BT (Sennrich et al., 2016) is easy to use and
requires training a target-to-source MT system
to generate translations of the monolingual data,
which are used as training data for the source-to-
target MT model. This means that traditional BT
requires two NMT models, where one generates
synthetic data for the other. The idea behind BT
is that the monolingual human data on the target
side improves the quality of the decoder to gener-
ate better output for the language and the synthetic
source helps as a data augmentation tactic.

Closely related to back-translation is a method

called forward-translation (FT), where the model
creates synthetic parallel data for itself - the source
sentence is translated into the target language, and
together, a bitext sample is created. In other
words, forward-translation is called self-training.
The authors in (Popović et al., 2020) used both BT
and FT for closely related languages. They used a
multilingual encoder (English and German) and a
multilingual decoder (Serbian and Croatian) and
achieved better results compared to single direc-
tional baselines in their experiments.

Our work is about a single multilingual sys-
tem that enables the model to generate synthetic
data for itself - both back-translation and forward-
translation is used. The generated synthetic data
is added to available parallel corpora as training
data.

2.3 Transfer learning and fine-tuning

The authors in (Kocmi and Bojar, 2018) did
trivial transfer learning for low resource NMT
- in detail, they used a high resource language
pair like English-Finnish to train a parent model.
They continued training on a lower resource
child model English-Estonian and showed that this
improved translation quality significantly, 19.74
BLEU score compared to 17.03 when using only
English to Estonian data. Additionally, they
showed that “unrelated” languages might work
even better, where the best English-Estonian re-
sults were achieved by using an English-Czech as
a parent, which achieved a 20.41 BLEU score on
the same test set. Their work shows that transfer
learning is a very viable option for low-resource
NMT. The only drawback is that their work still re-
lies on some amount of data and a common source
or target language to either share the encoder or
decoder weights. In our case, there are language
pairs, which have 0 available sentences like Võro
to North Saami. Additionally, their work would
require 20 such models to be trained.

The authors in (Currey and Heafield, 2019;
Zhang et al., 2020) show that using multilin-
gual back-translation for fine-tuning a multilingual
model is beneficial for translation quality. Addi-
tionally, (Zhang et al., 2020) shows that their ran-
dom online back-translation lowers the chance of
the model doing off-target translations, which in
our case is also a problem since the model never
sees some language pairs. We build upon this
work by doing two iterations of fine-tuning on a
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synthetic back-translation corpora, where we uni-
formly at random assign the target language into
which to translate.

The difference between transfer learning and
fine-tuning is small. We refer to transfer learning
when the MT model is trained on some languages
that the model has never seen before, e.g., when
using ET-FI model weights to initialize the ET-
VRO model. We refer to fine-tuning when we con-
tinue training a multilingual model on data, which
the model has seen before, e.g., when using the
multilingual model to fine-tune on ET-VRO data
only.

2.4 Source factors for multilingual zero-shot
NMT

We rely on the work of (Sennrich and Haddow,
2016) for zero-shot translations in our multilingual
models; in that article, the authors use morpho-
logical features like POS tags to enrich source-
side representations. We use source-side factors
to give the transformer model information about
the intended target language, so the model knows
which language the output should be in. The
authors in (Tars and Fishel, 2018) used source-
factors to give domain and target language infor-
mation for the model. Using source factors is sim-
ilar to using a single token on the input sentence
to distinguish between closely related languages
and dialects (Lakew et al., 2018; Costa-jussà et al.,
2018), where authors show an improvement over
a single baseline model when training a model for
similar languages.

3 Experimental setup

3.1 Data sets
3.1.1 Preprocessing
The data for the experiments originated from
many different sources. Subsequently, the main
issue with the parallel data collected was the dif-
ferences in file formats, which took a long time
to solve in order to create a unified data set. The
biggest problem with parallel data was that there
were a lot of repeated sentence pairs in the data,
which required a uniqueness check and reduced
the number of sentence pairs for the Finnish-North
Saami (FI-SME) language pair by about 75 per-
cent, as seen in Table 1.

Preprocessing monolingual data was also a long
process as there were no conclusive ready-made
sets available for languages like Võro, North

Saami and South Saami. As described in Table 2,
in the first set, the data consisted mostly of news
corpuses, fiction and Wikipedia texts. The data
files were in different formats, as was the case
with parallel data. Estonian and Võro required ex-
tracting sentences from texts and removing empty
lines. The Võro, North Saami and South Saami
data in the second set was gathered manually from
news articles and various PDF style documents
(fiction, scientific texts, official documents) avail-
able. The paragraphs of text then needed to be di-
vided into sentences and joined into one TXT type
file for compatibility. Additional preprocessing in-
cluded fixing some minor alignment issues.

3.1.2 Validation and test data
Validation and test sets consisted of sentences
from all the five language pairs mentioned in Ta-
ble 1. The number of sentences for each language
pair was chosen proportionally to the amount of
training data the pair had. In total, there were
1862 test sentences and 939 validation sentences.
There is no official test set available for these lan-
guage pairs collectively, and as parallel data was
scarce, the validation and test sets were sentences
that were randomly held-out of the training data.

3.1.3 Parallel data
Table 1 also highlights the fact that Estonian-
Finnish (ET-FI) acted as the high-resource lan-
guage pair in the experiments, with 2.6 million
sentence pairs available. Other language pairs
formed a small fraction of the whole parallel data
set, with about 1 percent. The lowest amount of
data was discovered for Finnish-South Saami (FI-
SMA) language pair, with under 3000 sentence
pairs.

3.1.4 Monolingual data
As expected, Estonian and Finnish had the most
monolingual data available. Although finding data
sets for the low-resource languages proved to be
more difficult, there was more of it available than
parallel data for their respective language pairs
used in this work. The two sets of monolingual
data described in Table 2 were collected sepa-
rately. Experiments with the first set were al-
ready performed prior to gathering the second set,
which is why the amounts of two sets are off-
balance. For the sake of the models learning more
about low-resource languages, we used the down-
sampling technique, reducing the amount of Esto-
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Language pair Before cleaning After cleaning Eliminated
et-fi (Tiedemann, 2016) 3 566 826 2 646 922 919 904
et-vro 2 30 816 30 502 314
fi-sme 3 109 852 35 426 74 426
fi-sma 3 3098 2895 203
sme-sma 3 23 746 21 557 2189
Overall 3 734 338 2 737 302 997 036

Table 1: Parallel data sets (in sentence pairs). et - Estonian, fi - Finnish, vro - Võro, sme - North Saami,
sma - South Saami.

nian and Finnish monolingual data to level them
with the amount of low-resource language mono-
lingual data in use. That made Võro (VRO) the
most prominent language in the data set, as shown
in Table 2. The amount of data for North and
South Saami was still quite low, but it was an im-
provement over the parallel data set numbers.

3.2 Models and parameters

3.2.1 General settings

In our experiments we use the Sockeye framework
described by (Hieber et al., 2017), which has im-
plemented source-side factors where we give the
target language token as an input feature for the
transformer model. During training, the vocabu-
lary that was created included all of the languages.
Specifications of the training process included set-
ting the batch size to 6000 words and checkpoint
interval to 2000. All the models in the experiments
trained until 32 consecutive unimproved check-
points were reached. The unimproved metric was
perplexity. All of the experiments use the standard
transformer parameters (6 encoder and 6 decoder
layers with 8 attention heads and size 512). Prior
to training, all of the data used to develop the mod-
els was tokenized by a SentencePiece (Kudo and
Richardson, 2018) tokenization model, which fol-
lows the byte-pair encoding algorithm. The tok-
enization model was previously trained on all of
the training data.

2https://doi.org/10.15155/
1-00-0000-0000-0000-001A0L

3https://giellalt.uit.no/tm/
TranslationMemory.html

4https://www.cl.ut.ee/korpused/
segakorpus/epl/

5https://doi.org/10.15155/
1-00-0000-0000-0000-00186L

6https://github.com/maalitars/
FinnoUgricData

7http://hdl.handle.net/11509/102

3.2.2 Multilingual baseline
One of the fundamental experiments of this work
was developing the multilingual baseline model,
which had five source languages and five target
languages. This means that this model could pro-
duce translations in 20 different directions. For
this, each pair of parallel data seen in Table 1
was copied and the source-target direction was
switched. The turned-around parallel data set was
then added to the original data set and the multilin-
gual baseline model was trained on all of the com-
bined parallel data. The data set was tokenized by
a tokenization model, which was trained on all the
training data from the parallel data set, meaning
text patterns were generalized over five languages.

3.2.3 Back-translation experiments
Synthetic parallel data via back-translation was
produced in two iterations and additional models
were also trained in two iterations. The mono-
lingual data was translated into every other lan-
guage in equal measures. For example, 1/4 of
the 100 000 sentences in Estonian were translated
into Finnish, 1/4 into Võro, 1/4 into North Saami
and 1/4 into South Saami. The paired-up synthetic
translations and monolingual data made up the ad-
ditional parallel data corpus.

Combining the new synthetic parallel data cor-
pus and the original, human-translated corpus,
gives the models more parallel data to learn on
during training. The methodology of both back-
translation data experiment iterations was the
same, but there were some important aspects that
were different:

First iteration

• Monolingual data used: first monolingual
data set

• The first batch of synthetic data was produced
with the multilingual baseline model. The
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Language First set Second set All
et 4 100 000 25 000 125 000
fi (Goldhahn et al., 2012) 100 000 25 000 125 000
vro 5,6 162 807 5290 168 097
sme (Goldhahn et al., 2012; Tiedemann, 2012), 6 33 964 6057 40 021
sma6,7 (Tiedemann, 2012), 55 088 5377 60 465

Table 2: Monolingual data sets after preliminary cleaning (in sentences). et - Estonian, fi - Finnish, vro -
Võro, sme - North Saami, sma - South Saami.

Model et-fi fi-et et-vro vro-et fi-sme sme-fi fi-sma sma-fi sme-sma sma-sme BLEUlow

Baselines 32.0 29.4 14.6 17.5 28.0 28.7 4.6 6.3 8.3 9.1 14.6
Multilingual (ML) 30.9 29.5 23.8 29.6 31.3 34.7 9.4 9.4 19.8 19.8 22.2
+ BT1 32.4 29.9 25.2 29.4 32.3 36.1 10.8 9.9 20.3 20.0 23.0
+ BT1(*) 30.1 29.1 24.5 30.3 32.3 36.2 11.1 10.5 21.4 20.0 23.3
+ BT1 + FT1 31.3 30.1 25.2 31.5 31.3 35.7 8.9 10.0 18.7 20.4 22.7
+ BT1 + FT1(*) 30.9 28.8 25.8 30.4 31.5 35.7 8.9 10.1 19.4 20.1 22.7
+ BT2 31.5 30.2 26.0 31.0 32.3 36.6 11.3 10.9 20.3 21.0 23.7
+ BT1 + BT2(*) 31.3 29.6 26.2 31.3 31.4 36.4 12.4 10.6 21.6 20.7 23.8
+ BT1 + BT2(**) 30.4 29.7 25.1 31.6 31.7 37.5 11.4 10.3 21.3 20.9 23.7
+ BT1&2 + FT1&2(*) 30.2 29.4 25.1 31.7 31.5 36.8 9.5 9.7 20.4 20.6 23.2
BT1 21.1 21.6 20.5 24.9 24.0 27.4 8.5 7.3 15.9 14.5 17.9
BT1(*) 8.4 8.6 18.7 19.9 11.8 13.4 6.9 5.3 12.9 9.2 12.3

Table 3: BLEU scores. (*) - trained without pre-trained weights, (**) - trained on + BT1(*) weights.
BT - back-translation data set, FT - forward-translation data set, BLEUlow - average BLEU score on
low-resource language pairs (excluding ET-FI and FI-ET), bold - best BLEU score for a language pair.

synthetic data was then added to the original
parallel data and the training process was re-
peated, which produced a new model.

Second iteration

• Monolingual data used in this iteration con-
sisted of 1) shuffled first monolingual data
set, 2) second monolingual data set.

• Monolingual data was translated by the
newest model that had been trained on par-
allel data and synthetic data from the first it-
eration of back-translation (+BT1 in Table 3).
Subsequently, a new model was trained using
original parallel data plus the two batches of
synthetic data produced.

Additional experiments included having differ-
ent combinations of back-translation/forward-
translation data and differences in initialized
weights, with the best of them presented in Table
3.

3.2.4 Transfer learning experiments
We performed an experiment fine-tuning the mul-
tilingual baseline model on ET-VRO parallel data

and a transfer learning experiment, initializing ET-
VRO model with ET-FI baseline model weights.
Then we compared the results of these two experi-
ments to each other and to the ET-VRO baseline
model. The ET-VRO data was the same paral-
lel data that was used for training the multilingual
baseline model (ML).

4 Results

4.1 Quantitative analysis

Quantitative results were determined by compar-
ing BLEU scores (Papineni et al., 2002), using the
SacreBLEU implementation (Post, 2018) of calcu-
lating the score on detokenized sentences8. Mul-
tiple experiments were assessed and the best ex-
periments are explained in Table 3. Additional
analysis was done with the CHRF metric, which
compares sentences on a character-level (Popović,
2015). We used the SacreBLEU implementation
(Post, 2018) of the CHRF metric9 and the results
can be seen in the Appendix in Table 7.

4.1.1 BLEU
Multilingual baseline. All of the low-resource
language pairs experienced a positive gain over
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baseline model results in comparison to the mul-
tilingual baseline model (ML) experiment. An av-
erage gain of 7.6 BLEU was achieved on the low-
resource language pairs with VRO-ET and SME-
SMA exceeding this average gain by an addi-
tional 4 BLEU points. Noticeably, FI-SMA made
the smallest improvement, perhaps the main rea-
son for this lies in FI-SMA having significantly
less parallel data than other low-resource language
pairs.

Back-translation experiments. Experiments
with data from back-translation iterations further
improved the BLEU score for low-resource lan-
guage pairs compared to the multilingual base-
line model. None of the models showed uniform
improvements across all of the low-resource lan-
guage pairs, however we can highlight one model
with the highest average gain over baseline results,
improving by +9.2 BLEU points. This model was
trained on parallel data plus two batches of back-
translation data but without any initialized weights
(+ BT1 + BT2(*) in Table 3).

While the pre-trained weights did not seem
to help produce the best models with parallel
and back-translation data, the experiments with
only back-translation data show that initializing
a model with useful pre-trained weights can still
be very helpful in the case of related tasks. This
is illustrated by models BT1 and BT1(*) with 7.1
BLEU points between them.

Experiments with added forward-translations
did not appear to improve the results except for
the VRO-ET language pair.

Transfer learning experiments. Transfer
learning and fine-tuning a model for a particu-
lar language pair results in further improvements
over the best back-translation model results. In
this part, we performed two experiments. In the
transfer learning experiment, we trained an ET-FI
baseline model until convergence; then the train-
ing data was changed to the ET-VRO data set,
which was used for training until convergence. In
the second experiment, we fine-tuned the multilin-
gual baseline model with the ET-VRO language
direction data only. Comparing BLEU results in
Table 5, it is clear that doing transfer learning for

8SacreBLEU signature: BLEU+case.mixed+lang.LANG-
LANG+numrefs.1+smooth.exp+test.SET+tok.13a+
version.1.4.14 where LANG in {et,fi,vro,sme,sma}

9SacreBLEU signature: chrF2+lang.LANG-
LANG+numchars.6+numrefs.1+space.false+test.SET+
version.1.5.1 where LANG in {et,fi,vro,sme,sma}

low-resource NMT is very beneficial - a 12 BLEU
point increase is achieved by doing trivial transfer
learning, and even better gains are seen in the mul-
tilingual fine-tuning experiment with a 13 point
BLEU score increase.

Thus, the best results were achieved in the
transfer learning and the fine-tuning experiment.
Transfer learning alone, however, has a down-
side. Compared to multilingual models, which can
translate in 20 different directions, in case of trans-
fer learning, to achieve the same functionality, 20
separate models would have to be trained, which
takes up a lot more resources.

4.1.2 CHRF

For the low-resource language pairs, the CHRF
score metric mostly agreed with the BLEU score
metric on which model gives the best results
for each language pair, except for SMA-FI and
SMA-SME. This can be seen in the Appendix
in Table 7. With the CHRF score, however, it is
much clearer that the model + BT1 + BT2(*) is
the best one out of all the experiments done with
back-translations, because both BLEUlow and
CHRFlow had the best scores on test data with
this model and six out of the eight low-resource
language pairs achieved the highest CHRF scores.
In Table 5, for transfer learning and fine-tuning
experiments, the BLEU and CHRF scores moved
in the same direction, transfer learning and
fine-tuning improving results substantially.

Overall, we can see the same patterns, both
in the BLEU and the CHRF score analysis: the
multilingual model concept helps get better trans-
lation quality for low-resource languages com-
pared to baseline results; adding more and more
back-translated data to the training data increases
the scores; adding forward-translations, however,
mostly lowers the scores. Another noticeable
thing shown by both of the scores, is that back-
translation on its own, when looking at the models
BT1 and BT1(*), does not achieve good (and com-
parable) results. One possible reason for this is the
data domain mismatch between test data (parallel
data hold-out) and monolingual data. A balanced
test set for these languages could provide a bet-
ter overview of the results and give more accurate
info on the quality of the models.
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a) Source Uue nime väljamõtlemisel oli tähtis, et oleks selge side kohaliku
kogukonnaga ja et nimi aitaks jutustada ettevõtte lugu.

Baseline Vahtsõ opimatõrjaali saamisõs oll tähtsä, et tähtsä olõs ka selge
sõnumiga tõsitsit luulõtuisi.

ML Vahtsõ nime vällämõtlemisel oll tähtsä, et olõsi selge side
paigapäälitse kogokunnaga ja et nimi avitas kõnõlda ettevõtte
lugu.

+BT1+BT2(*) Vahtsõ nime vällämõtõldõn oll’ tähtsä, et olõs selge side
paigapäälidse kogokunnaga ja et nimi avitas kõnõlda ettevõttõ
lugu.

Reference Vahtsõ nime vällämärkmise man oll’ tähtsä, et olõs selge köüdüs
paikligu kogokunnaga ja et nimi avitanuq jutustaq ettevõtmisõ
luku.

English On coming up with a new name, it was important that there was
a clear reference to the local community and that the name would
help tell the story of the business.

b) Source Parhilla ommaq jutuq hindamiskogo käen, kokkovõtõq ja pre-
emiäsaajaq trükitäseq ärq järgmädsen Uman Lehen.

Baseline Praegu on instruktsioone, ka kokkuvõtted, selliste sündmuste ja
aegajalt ”sisse lülitada” kaugemate Leivalentsemad.

ML Praegu on jutud hindamiskogu käes, kokkuvõtted ja preemiasaa-
jad trükivad järgmise Uman Leheni.

+BT1&2+FT1&2(*) Praegu on jutud hindamiskogu käes , kokkuvõtted ja preemiasaa-
jad trükivad ära järgmises Uman Lehes .

Reference Praegu on jutud hindamiskomisjoni käes, kokkuvõte ja preemi-
asaajad trükitakse ära järgmises Uma Lehes.

English At the moment the stories are with the judging committee, the
summary and the winners will be printed in the next Uma Leht.

c) Source Nuoria on tullut tilalle aika lailla, ehkä ottaa eräs nuori
kyläelämän vetämisen haltuunsa.

Baseline Nuorat leat boahtán sadjái áigi, soadi, kántorin jos čadahat gilvun.
ML Nuorat leat boahtán sadjái áiggi ládje, soaitá váldit ovtta nuorra

gilieallima jodiheami.
+BT1 Nuorat leat boahtán sadjái áige ládje, soaitá váldit ovtta nuorra

gilieallima jodiheami háldui.
Reference Nuorat lea boahtán lasi oalleláhkái, gánske muhtun nuorra váldá

gilieallima geassima iežas háldui.
English There are quite a bit more younger people now, maybe one of

them will take over the role of leading the village life.

Table 4: Example translations from a) ET-VRO, b) VRO-ET and c) FI-SME.
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Model BLEU CHRF
ET-VRO baseline 14.6 0.393
ET-VRO on ET-FI weights 26.5 0.540
ML fine-tuned on ET-VRO 27.6 0.563

Table 5: BLEU and CHRF scores for transfer
learning and fine-tuning experiments.

4.2 Qualitative analysis

Table 4 compares some sentence translations for
ET-VRO, VRO-ET and FI-SME language pairs.
It is clear that baseline models produced subpar
translations, rendering them non-sensical. The
multilingual baseline model improved the trans-
lations significantly, although still making some
detrimental mistakes, like choosing the wrong
word, so the meaning is lost, or deciding not to
translate some parts of the sentence. Adding back-
translation data to the models fixed some of these
mistakes and made some important changes in un-
derstanding the meaning of a sentence, but the best
back-translation models still left in some gram-
matical errors, such as wrong verb forms, gram-
matical cases and tenses.

In the first example, translating in the ET-VRO
direction, the best model chooses a direct trans-
lation of “väljamõtlemisel” to “vällämõtõldõn”.
In addition, all of the models omit the “q” end-
ings of the words “avitanuq” and “jutustaq” or
“kõnõldaq”. This symbol usually signifies plural-
ity and, in a lot of cases upon translating in the
ET-VRO direction, the models chose not to add
the “q”, although it would have been correct. The
problem could lie in the data, where the “q” end-
ings are also not always added, which in turn could
confuse the models.

The second example illustrates a VRO-ET di-
rection translation, which presents some bigger
flaws. For example, handling names is difficult
even for the best model, with “Uman Lehen” be-
ing translated incorrectly to “Uman Lehes”. The
grammatical case of the word “Lehen” was cor-
rectly changed to have an “s” ending, but the
case of the word “Uman” was not changed. In
addition, “trükitäseq” is translated to the wrong
verb form “-vad”, but it should be replaced with
the impersonal form “-takse”. Continuing with
the problems caused by the “q” ending, here
the word “kokkovõtõq” is translated to plurality
“kokkuvõtted”, but in this particular case, it should
be translated to the singular form “kokkuvõte”.

The third example shows the FI-SME language
pair translations. Here the meaning of the sentence
is understandable, but the word-pair “áige ládje” is
a direct translation from the Finnish phrase “aika
lailla”, which means “quite a bit” in English, but
“áige ládje” does not hold the same meaning.

Additional examples can be seen in the Ap-
pendix in Table 6. In these examples, there is
another flaw presented, which might be unique to
multilingual models, where some words in a sen-
tence are translated into the wrong language, al-
though they might have the correct meaning. This
is illustrated very well in the third ET-VRO trans-
lation example in Table 6. All models, except the
baseline, choose to translate the word “ametlikult”
into the Finnish word “virallisesti”, instead of try-
ing to find a word for it in Võro language.

4.3 Discussion

The results show that synthetic data helps to learn
a better model; however, the model which has
continued training on only back-translation data
sees performance degradation. This is most likely
caused by the test sets’ domain mismatch problem
and is alleviated by merging the parallel and syn-
thetic data into one big corpus. This shows that
a new separate test set should be created for this
problem, but it is very hard to do as there are very
few speakers. We have started to gather a multi-
lingual five-way test corpus.

We think that this work can be further im-
proved by doing better multilingual fine-tuning,
shown by promising multilingual fine-tuning ex-
periments, where the best result was 27.6 BLEU
points compared to the best multilingual model,
which achieved 26.2 BLEU points. The research
question remains, how well would fine-tuning
work for a completely synthetic parallel corpus
like VRO-SMA. We did not explore this yet due
to not having enough resources. Also, it is un-
known what effect this single language pair fine-
tuning would have on other languages.

5 Conclusions and future work

Multilingual neural machine translation with
shared encoders and decoders work very well for
very low resource language translation. Using
back-translation for low resource MT is vital for
best results, further improved by transfer learning
and fine-tuning.

In the future, we hope to work with more Uralic
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languages and add an unrelated high-resource lan-
guage, for example German. Secondly, we want
to do better multilingual fine-tuning since the best
ET-VRO score of 27.6 was reached by multilin-
gual fine-tuning, compared to 26.2 for multilin-
gual training. Finally, we hope to find more paral-
lel and monolingual data.
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Appendix
A
Source Ja ühe hea külje leiab siidritegija uue nime juures veel.
Baseline Ja üte hää ütest põlvõst inemiisist lõpõ nime man vahtsõ nime man.
ML Ja üte hää küle om siidritegijä vahtsõ nime man viil.
+BT1+FT1(*) Ja üte hää küle löüd siidritegijä vahtsõ nime man viil.
+BT1+BT2(*) Ja üte hää küle lövvüs siidritegijä vahtsõ nime man viil.
Reference Ja üte hää küle löüd siidritegijä vahtsõ nime man viil.

Source Samas tegutsevad kotkad kultuurmaastikul, mis tähendab, et ka inimesel on tähtis roll selles, et neil hästi läheks.
Baseline Samal aol om mi kotustõ perändüskultuurmaastikkõ, miä tähendäs, et inemisel tähtsä om tähtsä, et näil olõ-i tähtsä.
ML Saman omma’ kotka’ kultuurmaastikul, miä tähendäs, et ka inemisel om tähtsä roll tan, et näil häste lääsi.
+BT1+FT1(*) Samal aol omma kotka kultuurmaastikul, miä tähendäs, et ka inemisel om tähtsä roll tuun, et näil häste lääsi.
+BT1+BT2(*) Saman toimõndasõq kotkaq kultuurmaastikul, miä tähendäs, et ka inemisel om tähtsä roll tuun, et näil häste lääsiq.
Reference Saman toimõndasõq kotkaq kultuurmaastikul, miä tähendäs, et ka inemisel om tähtsä roll tuu man, et näil häste lännüq.

Source Leevakul elab ametlikult pea 300 inimest.
Baseline Leevälapjo eläs tähtsä pää inemist.
ML Leväkul eläs virallisesti pää 300 inemist.
+BT1+FT1(*) Leevakul eläs virallisesti pää 300 inemist.
+BT1+BT2(*) Leevakul eläs virallisesti pia 300 inemist.
Reference Leevakul eläs kirjo perrä pia 300 inemist.

B
Source A edesi ei näeq tükk aigo tii pääl üttegi võrokiilset silti.
Baseline Aga edasi ei näinud tükk aega, tee ühtegi saaklooma ära.
ML Aga edasi ei näe tükk aega tee peal ühtegi võrukeelset ikka.
+BT1+FT1 Aga edasi ei näe tükk aega tee peal ühtegi võrukeelset silti.
+BT1&2+FT1&2(*) Aga edasi ei näe tükk aega teel ühtegi võrukeelset silti.
Reference Aga edasi ei näe tee peal tükk aega ühtegi võrukeelset silti.

Source Ütelt puult tulõ hoita vannu mõtsu, et nä saanu ummi pessi kohegi ehitä.
Baseline Ühis poolt tuleb hoida vanade metsade, et nad saanud märkimisväärset kuhugi ehitanud.
ML Ühel pool tuleb hoida vana metsa, et nad saaksid oma pesu ehitada.
+BT1+FT1 Ühel pool tuleb hoida vana metsa, et nad saaksid oma pessi kuhugi ehitada.
+BT1&2+FT1&2(*) ühelt poolt tuleb hoida vanu metsasid, et nad saaksid oma pessi kuhugi ehitada.
Reference Ühelt poolt tuleb hoida vanu metsi, et nad saaks oma pesasid kuhugi ehitada.

Source Nii om võimalus telefon võita ka Uma Lehe teljäl.
Baseline Nii on võimalus telefongu ka Uma Pidoga mitmeti seotud.
ML Nii on võimalus telefon võita ka Uma Lehe telgis.
+BT1+FT1 Nii on võimalus telefon võita ka Uma Lehe telgil.
+BT1&2+FT1&2(*) Nii on võimalus telefon võita ka Uma Lehe telgil .
Reference Nii on võimalus telefon võita ka Uma Lehe tellijal.

C
Source Uutta nimeä keksiessä oli tärkeää, että olisi selkeä yhteys paikalliseen yhteisöön ja että nimi auttaisi kertomaan yrityksen tarinan.
Baseline M uhccin muitalin lei dehálaš, ahte livččii čielga oktavuohta báikkálaš servodahkii ja ahte namma veahkehivččii muitalit lihkastagaide.
ML Odda namma lei dehálaš, ahte livččii čielga oktavuohta báikkálaš servošii ja ahte namma veahkehivččii muitalit fitnodaga máidnasiid.
+BT1 Odda nama huksemis lei dehálaš, ahte livččii čielga oktavuohta báikkálaš servodahkii ja ahte namma veahkehivččii muitalit fitnodaga máidnasa.
Reference Odda nama hutkkadettiin lea dehálaš, ahte livčče čielga oktavuohta báikkálaš servvodahkii ja ahte namma veahkehivčče muitalit fitnodaga muitalusa.

Source Kansa kokoontuu entiseen koulutaloon, jossa on myös kirjasto.
Baseline Riikkabeaivevahku čoahkkana ságadoalliriikkas, mas leat maid girjerájus.
ML Álbmoga čoahkkana ovddeš skuvllas, mas lea maid girjerádju.
+BT1 Álbmot čoahkkana ovddeš skuvladássái, mas lea maid girjerádju.
Reference Álbmot čoahkkana boares skuvlavistái, mas lea maiddái girjerádju.

Source Sosiaalisessa mediassa pitivät ihmiset eniten tehtävästä “Puhu tai postaa yksi vitsi tai tarina võron kielellä”.
Baseline Sosiála medias atne olbmot eanemus barggus “ Ominayak oktavuodaváldimiid dehe máidnumaõjjstõõllâmǩerjj lea oaivvilduvvon.
ML Sosiála medias doalai olbmuid eanemus bargguin ”Puhu dahje poasta okta nja dahje máidnasa gillii.
+BT1 Sosiála medias dolle olbmot eanemusat bargguin “Puhu dahje poasta okta njaš dahje máidnasa vuonagillii”.
Reference Sosiála medias liikojedje olbmot maiddái bargobihtás “Muital dahje postte ovtta cukcasa dahje máidnasa võro gillii.”

Table 6: Translation examples. A: Estonian-Võro, B: Võro-Estonian, C: Finnish-North Saami. blue -
incorrect word, violet - incorrect form/case/tense or partially incorrect.
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Model et-fi fi-et et-vro vro-et fi-sme sme-fi fi-sma sma-fi sme-sma sma-sme CHRFlow

Baselines 0.602 0.573 0.353 0.390 0.577 0.577 0.282 0.274 0.330 0.301 0.385
Multilingual (ML) 0.595 0.578 0.510 0.540 0.631 0.650 0.376 0.348 0.546 0.525 0.516
+ BT1 0.600 0.583 0.531 0.551 0.639 0.659 0.408 0.348 0.557 0.531 0.528
+ BT1(*) 0.592 0.575 0.526 0.556 0.639 0.659 0.420 0.349 0.566 0.532 0.531
+ BT1 + FT1 0.595 0.584 0.526 0.558 0.634 0.654 0.369 0.353 0.544 0.533 0.525
+ BT1 + FT1(*) 0.596 0.575 0.537 0.558 0.636 0.656 0.392 0.349 0.551 0.531 0.525
+ BT2 0.598 0.585 0.535 0.560 0.640 0.663 0.418 0.358 0.563 0.537 0.534
+ BT1 + BT2(*) 0.595 0.583 0.539 0.565 0.636 0.663 0.436 0.364 0.569 0.539 0.539
+ BT1 + BT2(**) 0.594 0.579 0.530 0.563 0.640 0.665 0.423 0.354 0.567 0.536 0.535
+ BT1&2 + FT1&2(*) 0.592 0.578 0.530 0.565 0.634 0.662 0.399 0.350 0.564 0.539 0.530
BT1 0.526 0.515 0.480 0.523 0.582 0.607 0.371 0.296 0.524 0.488 0.484
BT1(*) 0.349 0.356 0.455 0.473 0.459 0.443 0.348 0.253 0.488 0.402 0.415

Table 7: CHRF scores. (*) - trained without pre-trained weights, (**) - trained on + BT1(*) weights.
BT - back-translation data set, FT - forward-translation data set, CHRFlow - average CHRF score on
low-resource language pairs (excluding ET-FI and FI-ET), bold - best CHRF score for a language pair.
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Abstract

The present paper deals with a compu-
tational analysis of translationese in pro-
fessional and student English-to-German
translations belonging to different registers.
Building upon an information-theoretical
approach, we test translation conformity
to source and target language in terms of
a neural language model’s perplexity over
Part of Speech (PoS) sequences. Our pri-
mary focus is on register diversification vs.
convergence, reflected in the use of con-
structions with a higher vs. lower perplex-
ity score. Our results show that, against
our expectations, professional translations
elicit higher perplexity scores from the tar-
get language model than students’ trans-
lations. An analysis of the distribution of
PoS patterns across registers shows that
this apparent paradox is the effect of higher
stylistic diversification and register sensitiv-
ity in professional translations. Our results
contribute to the understanding of human
translationese and shed light on the varia-
tion in texts generated by different transla-
tors, which is valuable for translation stud-
ies, multilingual language processing, and
machine translation.

1 Introduction

Translationese is a set of linguistic patterns that tell
translations apart from texts originally written in
the same language and that make translations stylis-
tically more similar to each other than original texts
tend to be. While translationese was extensively
discussed in the area of corpus-based translation

*Both authors contributed equally.
This work is licensed under a Creative Commons Attri-
bution 4.0 International Licence. Licence details: http:
//creativecommons.org/licenses/by/4.0/.

studies and machine translation (MT) (Zhang and
Toral, 2019; Graham et al., 2020, among others),
there are relatively few computational studies that
focus on the varying amount of translationese char-
acterizing different kinds of written translation (see
Section 2.2 below). This study focuses on the re-
lation between translators’ level of expertise and
translationese throughout different registers. If we
can connect translationese at least partly to the
translator’s experience, we can expect to find dif-
ferent degrees of translationese between student
and professional translations. As translationese
is probabilistic in nature (Toury, 2004), we use
a framework that enables a probabilistic design
of language use in the form of a language model.
We model language conventions in terms of gram-
matical structures represented by PoS sequences
through Long Short-Term Memory (LSTM), a re-
current neural network architecture, using mono-
lingual corpora of non-translations in both source
and target language as a training set. We then test
how students’ and professionals’ translations con-
form to linguistic conventions using our models’
perplexity scores. Through this approach, we aim
at testing two related hypotheses:

Hypothesis 1 Overall, we can expect profes-
sional translators to be more efficient at reproduc-
ing the patterns of their target language. If this is
the case, we would expect professional translations
to elicit lower perplexity scores from the target lan-
guage model than from the model of the source
language.

Hypothesis 2 On the other hand, it is possible
that students converge more on standard patterns:
due to their lack of expertise, they might have lower
register sensitivity, and thus they could be less bold
and more repetitive in their use of grammatical
constructions. A higher value of perplexity for a
register means a less usual (hence, more perplex-
ing) order of PoS with respect to a reference corpus,
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and hence a more distinct register. So a higher level
of convergence would result in more homogeneous
surprisal values across registers.

We then compare the results of our perplexity
measures with the distribution of different PoS pat-
terns across registers to qualitatively analyze trans-
lation divergence in the data.

We organized the remainder of the paper as fol-
lows: Section 2 introduces the main concepts we
are developing our research on and provides an
overview of the related work, Section 3 includes
details on the data and methods used in the analyses.
We show the results of the analyses in Section 4
and 5, interpret them, and conclude in Section 6.

2 Main Concepts and Related Work

2.1 Distinctive features of translations

As we mentioned above, translationese is related
to a set of distinctive linguistic features that make
translations differ from non-translations (Geller-
stam, 1986; Baker, 1996; Toury, 1995). Transla-
tionese appears to be a ubiquitous phenomenon,
and happens in different forms both in human
and machine translations (Graham et al., 2020;
Zhang and Toral, 2019; Bizzoni et al., 2020). Au-
tomatic classifications of texts into translations
and non-translations usually operationalize trans-
lationese as a combination of lexico-grammatical
and textual features of different kinds (Baroni and
Bernardini, 2006; Laippala et al., 2015; Volansky
et al., 2015; Rabinovich et al., 2017). The num-
ber of such features, as well as their designation,
varies across translation studies. The following
macro-categories are relevant for our study: shin-
ing through – translations reproducing patterns
typical of the source language instead of follow-
ing the target language conventions (Teich, 2003)1;
normalization – translations conforming to pat-
terns and practices which are typical of the target
language (Baker, 1996), and convergence – the
tendency of translated language to be more homo-
geneous in terms of the distribution of language
patterns (Laviosa, 2002). In our definition of con-
vergence, we follow the study by Kruger and van
Rooy (2012) who analyze it across registers and
conceptualize it as a form of register insensitiv-
ity. The main idea is that translations show less
variation, which reduces the distinctness of vari-

1Shining through is related to the law of interference, ac-
cording to which phenomena of the make-up of the source
text tend to get transferred to the target text (Toury, 1995).

ous registers. While in this sense, there might be
no “perfect” translation (no translation completely
indistinguishable from comparable originals), we
are interested in the degree to which professional
and non-professional translators are sensitive to
register.

We can observe translationese at the lexical level,
i.e., displaying less lexical and semantic diversity
than the original (Baroni and Bernardini, 2006;
Bizzoni and Teich, 2019), and at the grammatical
level, i.e., using more typical syntactic construc-
tion instead of unusual ones (Ilisei et al., 2010;
Volansky et al., 2015). In our analyses, we test
translation conformity with either the target or the
source language through language models’ perplex-
ity scores measured over PoS sequences which rep-
resent grammatical level.

2.2 Translationese and translation expertise

Computational analyses of professional and novice
translations are based on the assumption that
translations of different levels of expertise man-
ifest translationese to different degrees. Redel-
inghuys (2016) compare non-translated English
texts with translations by experienced and inexperi-
enced translators in terms of frequencies of features
like conjunctive markers, standardized type-token
ratio, and word length, performing a univariate
analysis for individual features. Kunilovskaya and
Lapshinova-Koltunski (2020) report on two sepa-
rated translationese effects and find a correlation
between the levels of expertise and types of the
detected effects. However, they ignore register dif-
ferences. Lapshinova-Koltunski (2020) shows in
her analyses of the same translation dataset we are
using in our work that there are register-specific
effects on the normalization and shining through
for professional and student translations. Her re-
sults are based on such measures as distribution
of content and grammatical words, nominal and
verbal categories, various types of pronouns a.o.,
however, and do not provide any significant dif-
ferences between student and professional transla-
tors. Corpas Pastor et al. (2008) and Ilisei (2012)
use supervised machine learning techniques to dis-
tinguish between non-translations in Spanish and
English-Spanish translations by professionals and
students, investigating the validity of the transla-
tion universal of convergence. However, their defi-
nition of convergence is different from ours – they
define this as the similarity between texts trans-
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lated by translators of different proficiency levels
and do not find significant differences between
student and professional translations in terms of
the features applied. We relate our analysis to the
study by Martı́nez and Teich (2017) who also ap-
ply a probabilistic approach to study differences
in the lexical choices by professional and student
translators related to source-dependent and target-
dependent translationese. Rubino et al. (2016) also
use surprisal measures based on lexical, PoS, and
syntactic patterns to analyze translationese in a
dataset containing human translations with differ-
ent levels of expertise, focusing on the automatic
separation of non-translations from translations.
This work addresses convergence as the proxim-
ity of two translation variants (professional and
student). Register awareness is one of the critical
elements of translation expertise (Olohan, 2015) —
for example, the mentioned study by Redelinghuys
(2016) show inexperienced translators to be more
repetitive when translating creative writing than
popular texts, which points to their practice in the
academic context of translator training. A recent
study by Popović (2020) explores differences be-
tween texts translated by professional translators,
crowd contributors, and translation students, show-
ing their impact on machine translation evaluation.
This study suggests that it is crucial for machine
translation evaluation to understand the factors in-
fluencing human translation variation, especially
when we compare human and machine translation
quality.

2.3 Register in translation

Our definition of register relies on variational lin-
guistics (Biber, 1995; Halliday, 1985). Variation
across registers is linked to the distribution of
linguistic patterns in different contexts: register
diversification represents distinctive distributions
of linguistic patterns, as compared to the use of
these patterns in other contexts (Biber et al., 1998,
13). Register variation has also been an object
of analysis in translations. Kruger and van Rooy
(2012) state that translationese is subject to the
influence of register and Neumann (2013) demon-
strates the degree to which translations get adapted
to the requirements of different registers in En-
glish and German. Her feature set inspired the
study by Evert and Neumann (2017) who detect
similarities between register and translationese fea-
tures. Lapshinova-Koltunski (2017) analyses the

interaction between register and translation method
(human vs. machine), also paying attention to the
differences between professional and novice trans-
lators. Lapshinova-Koltunski and Zampieri (2018)
automatically discriminate registers and transla-
tion methods using part of speech n-grams. They
show that it is harder to automatically differentiate
between translation methods than between regis-
ters. This means that register diversification pre-
vails over translation method diversification. This
also points to a convergence between translations,
which is of interest in our work. However, this con-
vergence is related to the translations produced with
different methods and not to the reduced distinction
of various registers in favor of a more neutral “mid-
dle” register, as defined by Kruger and van Rooy
(2012) and pursued in our work.

3 Research Design

3.1 Data
We use a dataset of English and German texts ex-
ported from two corpora. We derived English origi-
nals (EO), their translations into German by profes-
sionals (PT), as well as comparable German non-
translations (GO) from the CroCo corpus (Hansen-
Schirra et al., 2012). The non-professional trans-
lations (ST) for the same English sources as in
CroCo were produced by students of translation
and come from the corpus VARTRA (Lapshinova-
Koltunski, 2013)2. In this way, both professionals’
and students’ translations have the same sources
and represent translation variants of the same origi-
nal texts. Our dataset covers seven registers: politi-
cal essays (ESSAY), fiction (FICTION), manuals
(INSTR), popular-scientific articles (POPSCI), let-
ters to shareholders (SHARE), prepared political
speeches (SPEECH), and tourism leaflets (TOU).
The English sources and the comparable German
non-translated texts used for training our language
models cover the same registers. In Table 1, we
provide details on the size of the data under analy-
sis.

To ensure the comparability of the models’ re-
sults in the source and the target languages, we use
the Universal PoS tagset (Petrov et al., 2012). All
texts in the data were automatically tokenized, lem-
matized, and annotated with part of speech infor-

2We define professional translators as experts who have a
good degree of experience in translating, mostly specializing
in their areas, whereas students are trainees who have no or
little experience in translation. While the two groups inhabit a
continuum, we are happy with a binary division
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EO GO ST PT
ESSAY 35 238 36 162 16 295 35 865
FICTION 37 019 36 913 12 755 37 953
INSTR 35 668 36 562 20 816 35 342
POPSCI 35 668 36 321 23 369 33 880
SHARE 36 437 35 517 25 630 36 810
SPEECH 35 223 35 769 24 999 36 377
TOU 35 981 36 564 20 358 34 139
TOTAL 251 894 253 862 144 222 250 366

Table 1: Dataset size in tokens.

mation based on the Universal Dependency frame-
work (Straka and Straková, 2017). The accuracy
of automatic annotation of the respective models
for universal parts of speech is 90.5% for German
and 94.5% for English3. Naturally, our PoS taggers
can make mistakes, and it is conceivable that this
margin of error might bring them to label some un-
usual sequences of words with more conventional,
albeit erroneous, tags. Even if this anomaly were
to happen, we find that it could not account for the
differences we observe among our corpora since
it would affect all texts similarly, and it would at
worst slightly reduce their differences rather than
magnify them.

While the amount of data is small for neural net-
work training, it is essential to remember that since
we are using a universal tagset, its vocabulary size
is tiny: 15 parts of speech in total. This vocabulary
size keeps the complexity of the learning process
drastically lower than that of word sequence mod-
eling and it allows our network to model small data
well enough to display systematically lower per-
plexities when presented with unseen documents
from the corpus on which it was trained (see for
example Table 2).

3.2 Perplexity

We train two standard one-layered LSTM language
models (LM) of 50 cells 4 on the PoS sequences
of 80% of the whole English and German non-
translations respectively and measure their perplex-
ity on professional translations, student translations,
and originals. Even with small training data, our
language models display lower perplexities for un-
seen instances of the originals from which we sam-
pled the training set (see Table 2 in Section 4 below)

3See http://ufal.mff.cuni.cz/udpipe/
models#universal_dependencies_20_models
for details.

4We used Keras 2.0.9 (Chollet et al., 2015) running on
Tensorflow 1.10.0 (Abadi et al., 2016)

than for translations in the same language.
We try two training sets: in the first case, we

train LMs on the unweighted, randomly sampled
80% of the corpus. In the second case, we train
our language models on a representative sample
that respects the whole corpus’ genre percentages.
In this way, we try to prevent domain bias from
distorting our results in the test phase. In both
cases, we test our models on unseen PoS sequences
from originals or translations and analyze their av-
erage perplexity – a measure of how well a prob-
ability distribution predicts a sample as defined
in (1), where {w1, . . . , wT } is held out test data
that provides the empirical distribution q(·) in the
cross-entropy formula given in (2) and p(·) is the
language model (LM) estimated on a training set.

PP = 2H̃r where H̃r = − 1

T
log2 p(w1, . . . , wT ) (1)

H̃ = −
∑

x

q(x) log p(x) (2)

In this way, perplexity delivers a measure similar
to surprisal in Information Theory (Shannon, 1948),
according to which language items with high sur-
prisal/ low predictability convey more information
than items with low surprisal/ high predictability
in context. Our analyses use neural language mod-
els’ average perplexity for the PoS n-grams in all
the subcorpora under analysis. In terms of n-gram
language models, predictability in context means
p(unit|context), where context is the preceding con-
text of n-1 words. A higher value of perplexity
for a text means high surprisal/low predictability
and, hence, an order of PoS sequences unusual
for a reference corpus. We run perplexity-based
tests for the remaining 20% of the non-translations
and on both student and professional translations.
We expect that the relative perplexity of English-
trained and German-trained models (independently
from their baselines) can tell us something about
grammatical translationese.

We expect low perplexity values on the mono-
lingual data (e.g. German non-translations on Ger-
man non-translations) and high perplexity values
on cross-lingual data (e.g. German non-translations
on the English model). We also expect transla-
tions to fall between the source and the target lan-
guage. In this way, perplexity values for trans-
lated data should be higher than those of non-
translations within one language but lower than
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the cross-lingual values. We also expect perplex-
ity values for the professional translations to be
lower than for the student translations within one
language, but higher when tested cross-lingually
(Hypothesis 1).

In terms of register diversification in the trans-
lated data, the essential idea is that an LM trained
on a diverse set of registers5 will find, on average,
a converging translation less perplexing, since it
contains grammatical structures typical of what we
could call “general language”. Thus we expect
higher perplexity values for registers characterized
by a distinctive or creative use of language – i.e., fic-
tion – and lower values for more conventionalized
registers – such as instruction manuals. Conver-
gence will result in the homogeneity of perplexity
values across different registers. Here, we expect
a higher homogeneity, and hence convergence, for
students than professionals (Hypothesis 2).

3.3 Pattern analysis

In the last step, we compare our perplexity results
with the distributions of PoS n-grams across reg-
isters and corpora. Distributions of different PoS
n-grams should show whether professional and stu-
dent translators tend to be more repetitive or more
diverse in using typical structures while translat-
ing various target language registers. So, we run a
comprehensive examination of how many distinct
PoS patterns translators use in a given text portion.
Since our data contains the same source texts (and
thus the same source patterns), we can expect that
the more perplexing specific translations are, the
more diverse patterns they should be.

We analyze PoS pattern diversity – the number
of different PoS n-grams used in each register by
students and professionals, which shows how many
different PoS patterns translators use in a given por-
tion of text and determine whether professionals
are more diverse in translating registers than stu-
dents. If students have an accentuated tendency
to converge, they should show less diversity than
professionals, which is especially revealing given
that both professionals and students are translating
the same source text, starting from the same source-
structures. For all analyses, we have studied the
differences between our subcorpora with growing
n-grams, moving from bigrams up to heptagrams.
We ran them on the same amount of text for all

5we trained LMs on the texts of the target language corpus
that represent all registers.

subsets, thus down-sampling the professional and
the original corpora.

4 Perplexity Score Analyses

4.1 Hypothesis 1
We report the perplexity scores not controlling for
register in Table 2, which illustrates the results of
the model performance on all the four subcorpora
under analysis, as well as the results of the t-test
showing that the models’ differences in perplexity
are all statistically significant.

EO-LM GO-LM t-value p-value
EO 8.88 15.08 -11.6 <0.001
GO 11.12 5.93 23.5 <0.001
ST 12.51 11.12 3.2 0.001
PT 11.36 14.39 -10.1 <0.001

Table 2: Perplexity of the English-trained (EO-
LM) and the German-trained models (GO-LM) on
EO, GO, ST, and PT along with the results of t-test
(t and p-value).

As stated in Section 3.2, we expect lower per-
plexity values for the tests within the monolingual
data samples than for the cross-lingual data sam-
ples. Our English model is more surprised seeing
other English PoS n-grams than German seeing
other German PoS n-grams (8.88 vs. 5.93), which
might derive from a more significant variation of
morpho-syntactic patterns in the English data. A
sanity check on the n-gram distribution shows that
in our data, English has more diversity than Ger-
man in terms of language patterns: for the vast
majority of n-grams selections, English appears to
have a higher number of different structures than
German, which could be justified by the analyti-
cal character of English if compared to German:
English uses more prepositions and auxiliaries to
build up various constructions, whereas German ex-
presses the same meaning through morphological
strategies (endings, suffixes) that are not captured
by the PoS n-grams. It is interesting to see that
English and German are not equally surprised by
each other: the English model is less surprised to
see German n-grams (11.12) than is the German
model when seeing English n-grams (15.08) 6. Tak-
ing the language status of English, this might be,
on the one hand, surprising as English has much in-
fluence on the German language, which takes over

6The differences between the these distributions are statis-
tically significant.
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English structures (structural anglicisms). On the
other hand, we can explain this difference again
by the diversity of language patterns in the English
data: we can expect a system modelled on English
to be more used to structural change and, as such,
less surprised by the new structures it encounters
in German.

The English model is less perplexed by profes-
sional translations (11.36) than by non-professional
ones (12.51). In this way, professionals seem to
be closer to their source texts (interference). Stu-
dent translations elicit a higher perplexity score
(12.51), which indicates that they are even more
surprising for the English model than the compa-
rable German non-translations and translations by
professionals, which indicates over-normalization
– exaggerating the target language patterns as de-
fined in Section 2.1. The German model’s results
reveal an opposite tendency: professional transla-
tions seem to be more perplexing to the German
model than the student ones. The German model
seems to be highly surprised by the PoS sequences
in the professional translations. Interpreting this
result in terms of translationese, such a high level
of perplexity, not far from the perplexity reached
by English data, could indicate a degree of inter-
ference in professionals. This tendency is against
our expectations formulated in Hypothesis 1 in Sec-
tion 1.

4.2 Hypothesis 2

In the next step, we look into perplexity scores con-
trolling for register in order to analyze convergence.
We summarize our results in Table 3. We used a
mixed training set that included a balanced number
of sentences from each domain to maximize the
data’s representativity.

ST PT t-test p-value
FICTION 11.41 12.74 -5.6 <.001
ESSAY 10.54 13.73 -14.2 <.001
POPSCI 10.20 10.50 -1.6 <.001
INSTR 8.59 9.63 -5.2 <.001
SHARE 12.65 13.23 -0.5 0.5
SPEECH 10.08 9.83 1.2 0.2
TOU 10.22 12.34 -9.04 .001
ALL 11.12 14.39 -2.45 0.01

Table 3: Perplexity of the German-trained model
on ST and PT. We also report t-test and p value for
each pair of distributions. We bolded the statistics
that reject H0 at the 0.05 significance level.

As seen from the table, all registers translated by
professionals elicit higher scores than those trans-
lated by students, except for political speeches.
However, the scores for this register, as well as
those for letters to shareholders do not show a sta-
tistically significant difference between the two
groups of translators. We interpret the lower scores
of student translations as a reduced register distinc-
tion in favor of a more general language, which con-
firms our hypothesis that students are more repeti-
tive in the language constructions they use. One of
the reasons for this tendency could be that students
tend to employ specific transfer patterns when trans-
lating from English into German, resulting in the
frequent use of conventional structures and, conse-
quently, a higher convergence of their translations.
Another explanation could be that novice transla-
tors do not have enough knowledge about specific
registers and various aspects of technical communi-
cation. Therefore, they translate different registers
similarly, making them closer to the general lan-
guage in German. Because they tend to repeat the
same patterns for different registers, students seem
less perplexing than professionals. We verify these
assumptions in the experiments on pattern diver-
sity in Section 5. We also compare the perplexity
values across registers for both translation varieties.
Using the scores in Table 3, we rank the registers
for student and professional translations in Table 4.

We observe a very similar ranking for all regis-
ters in both translation variants. The only exception
seems ESSAY, which is more distinct in profes-
sional translations and more conventionalized in
student translations; one reason for this might be,
as we will detail later, the over-normalization of
other domains (i.e., FICTION) in student transla-
tions. The most conventionalized register in both
translation varieties is INSTR. It is also interest-
ing to see that the scores for registers translated
by students are less variable than those for regis-
ters translated by professionals, which indicates
register-related convergence in student translation.

5 Analysis of Pattern Diversity

Figure 1 illustrates the number of unique PoS n-
grams used in the different registers of our German
corpora by professionals (left graph) or students
(right graph) – on the x-axis – as compared to the
number of unique PoS n-grams used in the same
registers by comparable German originals – on the
y-axis.
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PT INSTR⇒ SPEECH⇒ POPSCI⇒ TOU⇒ FICTION⇒ SHARE⇒ ESSAY
ST INSTR⇒ SPEECH⇒ POPSCI⇒ TOU⇒ ESSAY⇒ FICTION⇒ SHARE

Table 4: Register ranking according to their perplexity scores.

Figure 1: Differences between PoS n-grams in GO and PT (left side) and in GO and ST (right side), going
from bigrams to heptagrams. For example, FICTION in GO has more than 30.000 different heptagrams,
while FICTION in Students has about 10.000; instead, SPEECH progresses similarly for both categories
through all ngrams, drawing a straighter line

We see from these graphs that professionals tend
to have register-specific variations that are substan-
tially similar to those of the equivalent originals,
while students appear to be less diverse than both
comparable originals and professionals, especially
in more “creative” registers such as FICTION or
ESSAY. Interestingly, the differences between pro-
fessional and student translators (Figure 2) appear
to be similar to those observed for ST and GO.

Figure 2: Differences between PoS patterns in the
PT and the ST registers, going from bigrams to
heptagrams, with heptagrams marking the end of
each line.

It seems, overall, that the reason for the lower
perplexity scores of the PoS-based language mod-
els for student translations is that students over-
normalize their outputs, reusing fewer but more
predictable structures. Professionals are more cre-
ative in their sentence structures: they are thus
more perplexing for a general German model, but

their behavior is, paradoxically, more similar to that
of original writers. We illustrate the differences in
language patterns discovered between student and
professional translators with examples (1) and (2).
For this, we pick exemplars for which students
turn to be more repetitive than professionals while
translating the same text. We illustrate the pat-
tern NOUN-ADP-DET-NOUN-DET-NOUN-ADP
in student translation in (1), whereas the ST version
in (2) displays an example of the VERB-ADP-DET-
NOUN-ADJ-PUNCT-SCONJ structure.

(1) a. Seine Initialen, SR <...> waren in den
Torbögen eingraviert und zogen sich
durch das [Gebäude wie die Graffiti-
malereien der Gangs in] den Straßen
der Stadt.

b. Und hier und da seine Initialen, SR
<...> in Torbögen eingeritzt, [wie
die Bandengraffiti] draussen auf der
Strasse

c. And his initials here and there, SR
<...> carved in archways [like the
gang graffiti in] the streets outside.

In (1-a), the student translator uses a complex nom-
inal structure and adds some information not avail-
able in the source. The translation by a professional
in (1-b) contains the same information as in the
source (1-c) and a more lexically dense structure
(Bandgraffiti vs. Graffitimalereien der Gangs).

(2) a. Der Schweiß [lief an unserem Körper
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herunter, sodass] unsere T-Shirts an
unsere Rücken klebten.

b. Der Schweiß [lief uns am Körper
runter, daß] uns die Hemden am
Rücken klebten.

c. The sweat [came down our bodies
and] plastered our shirts to our backs.

Both translation varieties in example (2) con-
vey the same information from the source sen-
tence. However, the translation by a professional
in (2-b) sounds more natural in German, whereas
the student translation in (2-a) is closer to the
source sentence. The direct object in the English
in (2-c) cannot be directly transferred into German
because of the restriction on semantic diversity
of subjects and objects in German. The profes-
sional translator changes the direct object into a
Dative+prepositional object, whereas the student
uses just a prepositional object.

6 Conclusion and Outlook

In this study, we analyzed translationese in profes-
sional and student translations using a perplexity-
based approach. We modelled the source and target
grammatical patterns with an LSTM architecture
and tested the conformity to the source and target
language conventions of the two translation vari-
eties through PoS perplexity. Despite the relative
scarcity of our data, the small vocabulary of univer-
sal PoS allowed our LSTMs to learn the short and
long-distance patterns well enough to display sig-
nificantly higher perplexities when confronted with
translations instead of original texts. Through this
method, we found that, surprisingly, professional
translators elicit higher perplexity scores from the
target language model than students, which is
against our first hypothesis. Nonetheless, in the
analysis of convergence, we tested the extent to
which professional and student translations of vari-
ous registers conform to the target language model.
We found more convergence in student than in pro-
fessional translations, confirming our second hy-
pothesis. We then tried to understand such results
by analyzing PoS n-gram patterns in both transla-
tion varieties and conducting a qualitative analysis
of translation divergence in the data. Overall, we
found that such higher perplexities are an artifact of
higher register variation in professional translations.
We are not observing interference, but rather pro-
fessionals’ essential ability to be more daring with
their language use. Student translators converge

more, displaying a lower register sensitivity and a
tendency to overuse the most general structures of
the target language, while professional translators
display more diversity and creativity in their struc-
tures, behaving in this way more similar to native
writers.

The qualitative analysis of the examples suggest
that the source of this diversity may originate from
the cross-lingual differences between the source
and the target languages: faced with a construction
that has no direct or obvious equivalent in the target
language, students might tend to choose less bril-
liant, more standard constructions across registers,
whereas professionals might attempt to recreate the
original domain’s diversity. At the same time, we
realize that our analyses may have some limita-
tions. For instance, due to the absence of metadata
in professional translations, we fail to control for
individual variation in the data. For students, we
know that the texts of various registers were some-
times translated by the same translators.

The results of our analyses provide an empirical
contribution to the understanding of human trans-
lation. They show evidence of variation between
texts generated by different translators in terms of
language patterns and shed more light on the phe-
nomenon of translationese. Studying variation in
human translations of the same source texts across
various registers is valuable for translation studies
and multilingual language processing, especially
for MT. As shown in Popović (2020), human trans-
lation variation plays a great role in MT evaluation.

In the future, we plan to deepen our understand-
ing of how students over-normalize by aligning
source and target texts, allowing for qualitative
analyses of their translating behavior. We also want
to explore whether other factors beyond the level of
expertise influence translation convergence. More-
over, we would like to connect these results with
the growing field of automatic translation quality
estimation. Finally, although it is hard to find appro-
priate datasets containing comparable texts in terms
of registers and different degrees of expertise, it
would be interesting to expand this work on the op-
posite translation direction (German-English) and
other language pairs to see if such tendencies are
universally valid. Multilinguality would introduce
more variance, and thus more factors to consider to
avoid the risk of overclaiming and misunderstand-
ing the complex phenomenon of translationese.
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Appendix A. Additional Figures

Figure 3: Perplexity of various registers of PT (red) and ST (green) for the English and German models,
as well as general EO (blue) and general GO (yellow).

Figure 4: Number of different patterns used by students and professionals per each category, with growing
n-gram length.
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Abstract

Being able to generate accurate word
alignments is useful for a variety of tasks.
While statistical word aligners can work
well, especially when parallel training
data are plentiful, multilingual embed-
ding models have recently been shown to
give good results in unsupervised scenar-
ios. We evaluate an ensemble method for
word alignment on four language pairs and
demonstrate that by combining multiple
tools, taking advantage of their different
approaches, substantial gains can be made.
This holds for settings ranging from very
low-resource to high-resource. Further-
more, we introduce a new gold alignment
test set for Icelandic and a new easy-to-use
tool for creating manual word alignments.

1 Introduction

Word alignment, the task of finding corresponding
words in a bilingual sentence pair (see Figure 1),
was a key component of statistical machine trans-
lation (SMT) systems. While word alignments
are not necessary for neural machine translation
(NMT), various MT methods incorporating word
alignment have been found to achieve significant
improvements in performance. Alkhouli et al.
(2018) and Liu et al. (2016) use alignments as a

Figure 1: A simple example of English-Icelandic
word alignments. Corresponding words are con-
nected by edges.

prior; Arthur et al. (2016) augment NMT systems
with discrete translation lexicons that encode low-
frequency words; Press and Smith (2018) infer a
correspondence between words in sentence pairs
before encoding/decoding and, as demonstrated
by Poncelas et al. (2019), back-translated data cre-
ated using SMT systems, requiring word align-
ments, can be valuable to augment NMT systems.
Word alignments have also been utilized to im-
prove automatic post-editing (Pal et al., 2017) as
well as to preserve markup in machine-translated
texts (Müller, 2017).

Various other subfields of NLP make use of
word alignments. Shi et al. (2021) show that by
simply pipelining word alignment with unsuper-
vised bitext mining, bilingual lexicon induction
(BLI) quality can be improved significantly. For
BLI, Artetxe et al. (2019) use an unsupervised MT
pipeline, also employing word alignments. Kurfalı
and Östling (2019) use word alignments to filter
noisy parallel corpora, and Paetzold et al. (2017)
include word alignment as a part of their pipeline
to align monolingual comparable documents.

There is a variety of word aligners available.
Giza++ (Och and Ney, 2003) and fast_align
(Dyer et al., 2013) are easy to use implementations
of the IBM models (Brown et al., 1993). Other
statistical aligners, such as eflomal (Östling and
Tiedemann, 2016), have also been shown to be fast
and give competitive results. SimAlign (Masoud
et al., 2020) takes advantage of the rising avail-
ability of contextualized embeddings and lever-
ages them by extracting alignments from similar-
ity matrices.

In this work, we present CombAlign, an ensem-
ble of these four tools (Giza++, fast_align, eflo-
mal, and SimAlign). As they are based on differ-
ent approaches, and all able to attain a fairly high
F1-score, it is reasonable to expect that combining
their results in a sensible way could give better re-
sults than using any one of the individual systems.
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Recently, the first reported results in SMT
and NMT for Icelandic were published (Jónsson
et al., 2020) within the context of an Icelandic na-
tional language technology programme (Nikulás-
dóttir et al., 2020). Icelandic is a morphologically
rich West Germanic language with relatively few
speakers, for which a substantial amount of lan-
guage resources has been made available in recent
years. However, no previous work has been con-
ducted on word alignments for Icelandic. While
testing our methods on four language pairs, we fo-
cus in particular on the effects of different align-
ment methods on the English-Icelandic (en-is) lan-
guage pair. For finding the best hyperparameters
for our ensemble, we thus do a grid search using
an en-is development set.

Our main contribution is showing that it is pos-
sible to obtain high-quality word alignments us-
ing a combination of selected tools, outperform-
ing all of the individual word alignment tools. We
show this for four language pairs, with more de-
tailed scrutiny of the results for one of them, en-is.
Furthermore, we:

• publish a new gold standard word alignment
reference set for en-is.

• make available a graphical tool, AlignMan,
for manually curating word alignments.1

• make the source code available for running
the alignment tools and extracting combined
alignments from them.2

2 Related Work

The most common statistical word alignment tools
are based on the IBM models (Brown et al.,
1993). These include fast_align (Dyer et al.,
2013), Giza++ (Och and Ney, 2003) and eflomal
(Östling and Tiedemann, 2016), all used in this
work. The five IBM models use lexical translation
probabilities and probability distributions with the
different models adding or emphasizing different
features to tackle weaknesses of the other models.
While fast_align builds on IBM model 2, Giza++
iterates on a number of the models in sequence,
as well as using an HMM model. eflomal uses a
Bayesian model with Markov Chain Monte Carlo
inference on the IBM models.

Several studies on word alignments in relation
to neural models have been published. Liu et al.

1https://github.com/steinst/AlignMan
2https://github.com/steinst/CombAlign

(2016) show that attention can be seen as a re-
ordering model as well as an alignment model,
and Ghader and Monz (2017) investigate the dif-
ferences between attention and alignment. Zenkel
et al. (2019) apply stochastic gradient descent to
directly optimize the attention activations towards
a given target word, resulting in accurate word
alignments, and Garg et al. (2019) extract discrete
alignments from the attention probabilities learnt
during regular NMT training and leverage them
to optimize towards translation and alignment ob-
jectives. Most of these systems require parallel
data for training, but SimAlign (Masoud et al.,
2020) takes advantage of the rising availability of
contextualized embeddings and leverages them by
extracting alignments from similarity matrices in-
duced from the embeddings, with no need for any
external data.

Ensemble methods are common in NLP and, in
many cases, have been shown to give more accu-
rate results than using just one single approach.
They have been used, for example, for classi-
fying patent applications (Benites et al., 2018),
for spellchecking (Stefanescu et al., 2011), POS-
tagging (Henrich et al., 2009) and sentiment anal-
ysis (Araque et al., 2017). For word alignments,
Tufiş et al. (2006) have previously used a union
of two different alignment approaches, each pro-
ducing distinct alignments. One of their align-
ers was an implementation of the IBM models,
and the other used translation lexicons and phrase
boundaries to detect alignments. Their combined
aligner outperformed both individual systems, and
its results produced approximately 10% fewer er-
rors than the better individual aligner.

3 Data

For evaluation, we use gold standard word align-
ments for four language pairs: Czech, German,
French and Icelandic, all paired with English (en-
cs, en-de, en-fr and en-is, respectively). For
the methods trained on parallel data, Giza++,
fast_align and eflomal, we use a subset of 512k
sentences from Europarl (Koehn, 2005), except in
the case of Icelandic as detailed in Section 3.1.
Further information on the test sets is given in Ta-
ble 1.

3.1 Icelandic Data

No gold standard word alignments have previ-
ously been made available for Icelandic. In order
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Lang. Gold Sent. Edges
Pair Standard Pairs
en-cs Mareček

(2008)
2,501 67,424

en-de Europarl3 508 10,534
en-fr Och and Ney

(2000)
447 17,438

en-is new 384 5,517

Table 1: Gold standard alignments used for evalu-
ation. The en-is gold standard contains further 220
sentence pairs that were used as a development set
for grid search.

Figure 2: A screenshot from AlignMan. The pro-
gram reads in text files with parallel sentences.
The user can edit the sentences, discard them or
create edges between words by moving the cursor
to select corresponding words and then saving the
alignment. It supports up to two users and can ex-
port a union or intersection of their alignments in
two different formats.

to test our approach and other alignment meth-
ods on Icelandic, we thus compiled development
and test sets. For that purpose, we created a sim-
ple graphical tool for performing manual word
alignment, AlignMan, which is available under an
Apache2 licence. A screen shot from AlignMan
can be seen in Figure 2.

Two annotators manually aligned 604 sen-
tences, a random sample from the ParIce en-is par-
allel corpus (Barkarson and Steingrímsson, 2019).
They then reviewed the other annotator’s work in
order to eliminate mistakes. The two annotations
were then combined. All 1-to-1 alignments that

3https://www-i6.informatik.
rwth-aachen.de/goldAlignment/

the annotators agreed upon were marked as ‘sure’
alignments and all other alignments made by ei-
ther one or both of the annotators were marked as
‘possible’ alignments. The set was then split in
two, with 220 sentences in a dev-set and 384 sen-
tences in a test-set. The gold alignments are avail-
able for download from the CLARIN repository4

where further information on the criteria for build-
ing the corpus is available.

When parallel data was required to train the
word aligners, sentence pairs from the ParIce cor-
pus were used.

4 Methodology

In order to find the best settings for each aligner,
we carry out a grid search. We run Giza++,
fast_align and eflomal using different setups. For
SimAlign, we use two different contextual embed-
ding models and run them with different hyper-
parameters. We are thus working with five differ-
ent aligners/alignment models. Finally, we pro-
ceed to find the best ensemble for different levels
of parallel data availability.

4.1 Experimental Setup

By default, Giza++ runs IBM models 1, 3 and 4 as
well as an HMM model, while fast_align is based
on IBM model 2. We use default settings for these
two aligners as well as for eflomal and compared
their results after processing their output with dif-
ferent heuristics. These aligners are not trained
on other word alignments, but rather on sentence-
aligned parallel texts. They use an expectation
maximization algorithm, iteratively learning from
the parallel sentences; starting by initializing the
model, then applying it to the data and setting the
most probable alignments. After filling in gaps
and collecting counts for particular word transla-
tions a new probability distribution is estimated.
These steps are iterated until convergence.

Because the aligners learn probabilities from
the data they run on, they should be better able to
induce lexical translation probabilities and prob-
ability distributions when the size of the data in-
creases, which in turn should lead to an increase
in quality. In order to study this effect, we ran
the aligners with varying numbers of sentences.
The data we use for the experiments is described
in Section 3.

4http://hdl.handle.net/20.500.12537/
103
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Giza++
All settings default
fast_align
Heuristics intersection, union,

gd, gdf, gdfa
eflomal
Heuristics intersection, union,

gd, gdf, gdfa
SimAlign
Models BERT, XLM-R
Tokenization Word, BPE
Heuristics Argmax, Itermax, Match
Distortion [0.02, 0.03, ..., 0.09, ..., 0.15]
Null extension [0.85, 0.90, 0.95, 0.96, 0.97,

0.98, 0.99, 1.0]

Table 2: Hyperparameters for the different align-
ers. Shown in bold are the ones giving the highest
F1-score.

Giza++ only outputs one set of alignments after
each run, but for fast_align and eflomal we output
alignments for both directions, source→target lan-
guage and target→source, and then generate align-
ments from these using different alignment heuris-
tics: intersection and union, as well as grow-diag
(gd), grow-diag-final (gdf) and grow-diag-final-
and (gdfa).

With SimAlign, we induce alignments from two
different contextualized embedding models, mul-
tilingual BERT (mBert) (Devlin et al., 2019), and
XLM-R (Conneau et al., 2020), and run experi-
ments both for whole words and byte-pair encod-
ings (BPE) (Sennrich et al., 2016). The align-
ments are obtained from similarity matrices us-
ing three different methods: Match, a graph-based
method that identifies matches in a bipartite graph;
Argmax, which aligns two words if the target word
is the most similar to the source word, or vice
versa; and Itermax, which applies Argmax iter-
atively and is thus better able to find alignment
edges when one word aligns with two or more
words in the other language. We did a grid search
on the en-is development set, calculating the best
scores using these methods and two other hyper-
parameters: distortion correction and null exten-
sions, which set a threshold for when to remove
edges and create null alignments. Different set-
tings in our grid search are shown in Table 2.

For each of the alignment tools, we selected
the hyperparameters giving the highest F1-score.

Then another grid search was carried out to find
how best to combine the results. For that we
had two parameters: combination of alignment
tools, with 3 to 5 aligners/alignment models in
each ensemble; and different parameters to join
the alignments: with unionall, which ac-
cepts all alignments of the systems in the sug-
gested ensemble, and different levels of intersec-
tion, from intersectmin2 that requires two
aligners to agree for an edge to be accepted,
to intersectmin5 where all aligners have to
agree on each edge.

Finally, in order to examine whether our ensem-
ble method is applicable to other language pairs,
we test it on three of the test sets used in Masoud
et al. (2020) and compare our results to theirs.

5 Experiments and Results

As described in Section 4.1, we identified the op-
timal settings and post-processing heuristics for
each tool using grid search on the dev-set (see Ta-
ble 2). We used these settings to obtain scores on
our test-set, as shown in Tables 3 and 4.

5.1 Individual Aligners

While we use the same setting for each tool
throughout, after having executed the grid search,
the results of the ensemble differs in relation to
how much data is being aligned. Relying at least in
part on lexical translation probabilities, fast_align
and Giza++ require a substantial amount of data
before they become fairly accurate, while eflo-
mal seems to be less susceptible to paucity of
data. Figure 3 shows how F1 increases for each
system when evaluated on the Icelandic test set,
when more parallel sentences are added for train-
ing. The aligners always learn from at least 384
test sentences, and up to an additional 3.6 mil-
lion sentences. Table 3 shows precision, recall,
F1-score and number of edges, i.e. individual
word alignments, produced by eflomal, Giza++,
and fast_align, when run with varying numbers of
sentence pairs. Rather accurate from the start, the
main advantage of training eflomal on more data is
to get higher recall and more edges, while Giza++
and fast_align always output a similar number of
edges, but both precision and recall rise when
more sentence pairs are added.

SimAlign does not need any parallel data to
learn from, and unlike the other aligners the re-
sults do not change when there is more data to
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eflomal Giza++ fast_align
intersect intersect

Samples Prec. Rec. F1 Edges Prec. Rec. F1 Edges Prec. Rec. F1 Edges
0 .85 .76 .80 3803 .62 .74 .67 5387 .73 .67 .70 4005
1000 .87 .81 .84 4003 .64 .74 .68 5247 .78 .71 .74 3979
2000 .87 .83 .85 4098 .64 .75 .69 5223 .80 .73 .76 3978
4000 .87 .85 .86 4229 .64 .74 .68 5143 .82 .75 .78 3978
8000 .87 .87 .87 4320 .65 .74 .69 5117 .83 .76 .80 3976
16000 .88 .89 .88 4432 .67 .77 .72 5089 .85 .78 .81 3998
32000 .88 .90 .89 4507 .70 .79 .74 5072 .87 .80 .83 4008
64000 .88 .92 .9 4561 .72 .82 .77 5051 .88 .82 .85 4034
128000 .88 .93 .91 4622 .75 .85 .80 5019 .89 .84 .87 4086
256000 .88 .93 .91 4654 .78 .87 .82 5000 .90 .85 .88 4139
512000 .88 .93 .91 4667 .81 .89 .85 4982 .90 .86 .88 4151
1024000 .88 .94 .91 4713 .83 .91 .86 4951 .91 .87 .89 4165
2048000 .88 .94 .90 4722 .84 .91 .87 4927 .91 .86 .89 4139
3600000 .88 .94 .91 4745 .85 .92 .88 4913 .91 .86 .89 4115

Table 3: Precision, recall, F1-scores and number of edges for each of the IBM model-based aligners,
with various numbers of parallel sentences added for training the aligners.

align. However, the tokenization used (BPE or
the original word forms) and how the alignments
are obtained from the similarity matrix, has a sub-
stantial effect on the resulting alignments, as seen
in Table 4. The table shows that ArgMax gives
a substantially higher precision than IterMax and
Match, but since IterMax has higher recall, the F1-
scores are quite close.

5.2 Ensembles

As can be seen in Table 3, eflomal does not need
much training data to reach high precision. Thus,
it should not be surprising that in low-resource
scenarios a combination of eflomal with the two

unsupervised SimAlign models gives the best re-
sults. When more data is available, the other two
IBM-model based aligners become more accurate,
and as a consequence, more useful in an ensemble.

We thus report on two different ensembles: En-
sembleSmall, comprised of three aligners which
is better in cases where there is scarce data, and
EnsembleLarge which uses all five aligners. Our
ensemble strategy is simple: for both ensembles
we only require a majority vote on each align-
ment. For EnsembleSmall we thus require 2 out
of 3 aligners to suggest an alignment candidate for
it to be accepted. EnsembleSmall uses the align-
ments produced by SimAlign’s IterMax, which
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fastalign

Figure 3: F1 for word alignments generated using different alignment tools as a function of the number
of sentence pairs used for training. F1 for SimAlign-mBERT is 0.86 and 0.90 for SimAlign-XLM-R.
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SimAlign
Model Tok. H. Pr. Rc. F1 Edg.
mBERT BPE AM .85 .84 .84 4468

IM .74 .91 .82 5717
M .66 .92 .77 6590

word AM .88 .84 .86 4145
IM .79 .90 .84 5111
M .75 .91 .82 5463

XLM-R BPE AM .88 .90 .89 4599
IM .78 .94 .86 5615
M .69 .96 .80 6618

word AM .92 .88 .90 4165
IM .85 .93 .89 4925
M .78 .94 .86 5473

Table 4: Precision, F1-measure and number of
edges for different setups of SimAlign. All these
settings use 0.09 for distortion. The heuristics are:
AM=ArgMax, IM=IterMax, M=Match.

has higher recall, an advantage when only one of
the aligners in the ensemble is allowed to miss
an alignment. EnsembleLarge requires 3 out of
5 aligners to agree and uses SimAlign’s ArgMax,
which has more precision. Figure 4 shows how the
F1-scores for the two ensembles rise with more
data, and how EnsembleLarge, being more re-
liant on data, needs only tens of thousands of sen-
tence pairs to outperform EnsembleSmall which
obtains higher F1-scores in very low-resource set-
tings. In contrast, EnsembleLarge, always having
higher precision as shown in Table 5, produces
fewer edges.

Our combination is based on a majority vote
and the ensemble obtaining the highest F1-score
is selected. Accordingly, it is possible to obtain
higher precision using other combinations in situ-
ations where precision is critical and recall is not
as important. This could be realised by setting a
higher requirement for agreement between align-
ers, raising the precision even further, but at the
price of retrieving fewer edges and thus a lower
F1-score. For higher recall, lowering the agree-
ment requirements works, although at the cost of
some precision. Table 5 shows the combinations
giving the best precision and F1-score, as well as
recall and number of edges suggested by the sys-
tem.

CombAlign
Samples Ensemble Prec. Rec. F1 Edges
0 EnsSm .92 .92 .92 4410

EnsLa .93 .81 .87 3743
1000 EnsSm .92 .93 .92 4458

EnsLa .94 .84 .89 3819
2000 EnsSm .91 .93 .92 4459

EnsLa .95 .85 .90 3852
4000 EnsSm .91 .93 .92 4506

EnsLa .95 .86 .90 3866
8000 EnsSm .91 .94 .92 4529

EnsLa .95 .87 .91 3933
16000 EnsSm .91 .94 .93 4569

EnsLa .96 .88 .92 3970
32000 EnsSm .91 .95 .93 4591

EnsLa .96 .90 .93 4025
64000 EnsSm .91 .95 .93 4624

EnsLa .96 .91 .93 4070
128000 EnsSm .91 .95 .93 4635

EnsLa .96 .92 .94 4147
256000 EnsSm .91 .95 .93 4656

EnsLa .96 .92 .94 4178
512000 EnsSm .91 .95 .93 4648

EnsLa .96 .93 .94 4220
1024000 EnsSm .91 .95 .93 4653

EnsLa .96 .94 .95 4249
2048000 EnsSm .90 .95 .93 4679

EnsLa .96 .94 .95 4266
3600000 EnsSm .90 .95 .93 4681

EnsLa .96 .94 .95 4265

Table 5: Precision, recall, F1-scores and number
of edges for different setups of the CombAlign en-
semble.

5.3 Utilizing the Word Alignments

As noted in Section 1, word alignments can be
used for many different purposes, sometimes us-
ing SMT systems as intermediaries. In order to
see whether our alignments are beneficial for SMT
systems, we trained three Moses models, keeping
all components of the training process the same,
except for word alignments. For training, we used
the data and filtering methods described in Jóns-
son et al. (2020).

Our baseline system uses the default Moses
settings, with Giza++ for word alignments. We
trained two other models, CombAlignF1: using
the settings giving the highest F1-score as detailed
in Section 5.2; and CombAlignRec: where we are
still using the five aligners in the ensemble, but are
more lenient and only require two or more of the
five aligners to be in agreement. We did this as
our highest scoring ensemble, CombAlignF1, gen-
erates 15% fewer edges than Giza++ and, for this
task, recall is likely to be important. By relaxing
the demands for agreement between the aligners,
we raise recall while still only generating a similar
number of edges between words as Giza++.
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Figure 4: F1 score for aligner ensembles. EnsembleSmall uses three alignment models and Ensemble-
Large uses all five alignment models, as described in Section 5.2.

We compared these three systems in the follow-
ing manner. First, we examined the phrase tables
generated during training. The baseline system
creates a phrase table with 3,496K lines, Comb-
AlignF1 has 1,319K lines and CombAlignRec has
1,774K lines. Manual inspection shows that the
removed lines are almost always faulty so this
pruning should not have negative effects on the
system. Second, we tested the systems, using the
three test sets from Jónsson et al. (2020), calcu-
lated the BLEU scores and manually inspected and
evaluated the differences in translation.

BLEU scores for CombAlignF1 were almost the
same as for the baseline system, with a difference
ranging from 0.01 to 0.11 for the three test sets.
CombAlignRec had slightly better scores, scoring
0.4 to 0.95 higher BLEU than the baseline system.

We then manually compared a random sample
of 450 translated sentences from the baseline sys-
tem and CombAlignRec. 46% of the outputs were
exactly the same; 14% had multiple faults for both
systems and were deemed equally bad; 17% of
the sentences were translated better by the base-
line system and 23% had better translations pro-
duced by CombAlignRec. We categorized the er-
rors made by the systems and while the sample
size is quite small, and there is no clear distinc-
tion between the systems, CombAlignRec seems
to be more likely to have errors when there are
multiple numerical tokens in the sentence to trans-
late, possibly because they may be treated like
rare words. Moreover, CombAlignRec seems less
likely to have words missing in the translated out-
put and it seems more likely to make a more ap-
propriate lexical choice, both in terms of content

words and verb inflections. A more thorough in-
vestigation is needed to understand why this is the
case.

5.4 Other Language Pairs

In order to show that the ensemble methods work
for other languages than Icelandic, we ran an ex-
periment on three test sets. Table 6 shows the re-
sults and a comparison to the previous best, as re-
ported on in Masoud et al. (2020).

In this experiment, we used two settings for
the IBM-model based alignment tools: only run-
ning on the test-set data, and running with ad-
ditional parallel data of 512K sentence pairs for
training each language pair. Although the results
for CombAlign always outperform the individual
aligners, the difference is not always as large as for
the en-is language pair. This may possibly be ex-
plained by the fact that the contextualized embed-
dings have more data on the other languages and
thus give better predictions than when predicting
Icelandic, or that the parallel training data is not
in the same domain as the test sets, while the Ice-
landic test sets contained sentence pairs sampled
from the parallel corpus (ParIce) used for training.

For the best-scoring ensembles, we used Sim-
Align’s Itermax when the statistical aligners used
parallel data as well as when no additional data
was used. This was due to Itermax giving the high-
est F1-score for these language pairs. This was not
true for Icelandic, possibly because the contextual
models were trained on less Icelandic data and so
have more ‘knowledge’ of these other languages
than it has of Icelandic.
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Method cs-en en-fr en-de
Train. data (K) 0 512 0 512 0 512
eflomal .79 .86 .82 .91 .61 .73
fast_align .66 .78 .73 .86 .52 .70
Giza++ .71 .81 .69 .89 .55 .73
SimAlign:
XLM-R .87 .93 .78
SimAlign:
BERT .87 .94 .81
Previous work .87 .94 .81
CombAlign .89 .91 .95 .95 .80 .83

Table 6: Word alignment F1-scores for cs-en, en-
fr and en-de language pairs, with or without using
training data.

6 Conclusion and future work

We have shown that using a very simple combi-
nation method for word alignment, it is possible
to increase the accuracy substantially, both in low-
and high-resource settings.

We evaluated on four language pairs, en-cs, en-
de, en-fr and for the first time en-is, for which we
manually created a new gold standard word align-
ment reference set. In order to do that we created
and published a graphical tool for manual word
alignments.

While our method uses minimal data process-
ing, some pre-processing like POS-tagging and
lemmatizing may raise the accuracy even further,
especially in the case of a morphologically rich
language like Icelandic. A comparison of typi-
cal misalignments per aligner is also likely to be
beneficial, as knowing these properties might help
in combining the aligners more effectively. The
mBERT and XLM-R models we employ through
SimAlign give good results, but there may still
be room for improvement, for instance by pre-
training these models on more Icelandic texts,
which are scarce in the multilingual training cor-
pus. It may also be worth considering to train a
bilingual word embedding model and use that for
alignment instead of, or in combination with, the
other contextualized embedding models.

In the paper, we reported on preliminary re-
sults from training an SMT system using our word
alignments. We plan to investigate whether the
slightly better SMT output will be more beneficial
for back-translations to augment NMT systems,
following Poncelas et al. (2019). We also plan to
compare BLI quality using the setup in (Artetxe

et al., 2019) and the same setup using our align-
ments. Furthermore, we intend to apply our align-
ments to training alignment-assisted NMT trans-
former models, by adding an alignment attention
layer as described in (Alkhouli et al., 2018).

Acknowledgements

This work is supported by the Language Technol-
ogy Programme for Icelandic 2019-2023, funded
by the Icelandic government, and by the ADAPT
Centre for Digital Content Technology which
is funded under the Science Foundation Ireland
(SFI) Research Centres Programme (Grant No.
13/RC/2106) and is co-funded under the European
Regional Development Fund.

References
Tamer Alkhouli, Gabriel Bretschner, and Hermann

Ney. 2018. On The Alignment Problem In Multi-
Head Attention-Based Neural Machine Translation.
In Proceedings of the Third Conference on Ma-
chine Translation: Research Papers, pages 177–
185, Brussels, Belgium.

Oscar Araque, Ignacio Corcuera-Platas, J. Fernando
Sánchez-Rada, and Carlos A. Iglesias. 2017. En-
hancing deep learning sentiment analysis with en-
semble techniques in social applications. Expert
Systems with Applications, 77:236 – 246.

Mikel Artetxe, Gorka Labaka, and Eneko Agirre. 2019.
Bilingual Lexicon Induction through Unsupervised
Machine Translation. In Proceedings of the 57th An-
nual Meeting of the Association for Computational
Linguistics, pages 5002–5007, Florence, Italy.

Philip Arthur, Graham Neubig, and Satoshi Nakamura.
2016. Incorporating Discrete Translation Lexicons
into Neural Machine Translation. In Proceedings of
the 2016 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1557–1567, Austin,
Texas.

Starkaður Barkarson and Steinþór Steingrímsson.
2019. Compiling and Filtering ParIce: An English-
Icelandic Parallel Corpus. In Proceedings of the
22nd Nordic Conference on Computational Linguis-
tics, pages 140–145, Turku, Finland.

Fernando Benites, Shervin Malmasi, and Marcos
Zampieri. 2018. Classifying Patent Applications
with Ensemble Methods. In Proceedings of the Aus-
tralasian Language Technology Association Work-
shop 2018, pages 89–92, Dunedin, New Zealand.

Peter F. Brown, Stephen A. Della Pietra, Vincent J.
Della Pietra, and Robert L. Mercer. 1993. The
Mathematics of Statistical Machine Translation: Pa-
rameter Estimation. Computational Linguistics,
19(2):263–311.

71



Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2020. Unsupervised
Cross-lingual Representation Learning at Scale. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 8440–
8451, Online.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota.

Chris Dyer, Victor Chahuneau, and Noah A. Smith.
2013. A Simple, Fast, and Effective Reparame-
terization of IBM Model 2. In Proceedings of the
2013 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 644–648, At-
lanta, Georgia.

Sarthak Garg, Stephan Peitz, Udhyakumar Nallasamy,
and Matthias Paulik. 2019. Jointly Learning to
Align and Translate with Transformer Models. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 4453–
4462, Hong Kong, China.

Hamidreza Ghader and Christof Monz. 2017. What
does Attention in Neural Machine Translation Pay
Attention to? In Proceedings of the Eighth In-
ternational Joint Conference on Natural Language
Processing (Volume 1: Long Papers), pages 30–39,
Taipei, Taiwan.

Verena Henrich, Timo Reuter, and Hrafn Loftsson.
2009. Combitagger: A system for developing com-
bined taggers. In Proceedings of the 22nd Interna-
tional FLAIRS Conference, pages 254–259, Sanibel
Island, Florida.

Haukur Páll Jónsson, Haukur Barri Símonarson,
Vésteinn Snæbjarnarson, Steinþór Steingrímsson,
and Hrafn Loftsson. 2020. Experimenting with
Different Machine Translation Models in Medium-
Resource Settings. In Proceedings of Text, Speech,
and Dialogue – 23rd International Conference, vol-
ume 12284 of Lecture Notes in Computer Science,
pages 95–103.

Philipp Koehn. 2005. Europarl: A Parallel Corpus for
Statistical Machine Translation. In Conference Pro-
ceedings: the tenth Machine Translation Summit,
pages 79–86, Phuket, Thailand.

Murathan Kurfalı and Robert Östling. 2019. Noisy Par-
allel Corpus Filtering through Projected Word Em-
beddings. In Proceedings of the Fourth Conference

on Machine Translation (Volume 3: Shared Task Pa-
pers, Day 2), pages 277–281, Florence, Italy.

Lemao Liu, Masao Utiyama, Andrew Finch, and Ei-
ichiro Sumita. 2016. Neural Machine Translation
with Supervised Attention. In Proceedings of COL-
ING 2016, the 26th International Conference on
Computational Linguistics: Technical Papers, Os-
aka, Japan.
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Abstract

It is now established that modern neu-
ral language models can be successfully
trained on multiple languages simultane-
ously without changes to the underlying
architecture. But what kind of knowledge
is really shared among languages within
these models? Does multilingual training
mostly lead to an alignment of the lexi-
cal representation spaces or does it also
enable the sharing of purely grammatical
knowledge? In this paper we dissect dif-
ferent forms of cross-lingual transfer and
look for its most determining factors, us-
ing a variety of models and probing tasks.
We find that exposing our LMs to a related
language does not always increase gram-
matical knowledge in the target language,
and that optimal conditions for lexical-
semantic transfer may not be optimal for
syntactic transfer.

1 Introduction

One of the most important NLP discoveries of
the past few years has been that a single neu-
ral network can be successfully trained to per-
form a given NLP task in multiple languages with-
out architectural changes compared to monolin-
gual models (Östling and Tiedemann, 2017; John-
son et al., 2017). Besides important practical ad-
vantages (fewer parameters and models to main-
tain), such multilingual Neural Networks (mNNs)
provide an easy but powerful way to transfer task-
specific knowledge from high- to low-resource
languages (Devlin et al., 2019; Conneau and Lam-
ple, 2019; Aharoni et al., 2019; Neubig and
Hu, 2018; Arivazhagan et al., 2019; Artetxe and
Schwenk, 2019; Chi et al., 2020). These suc-
cess stories have led to a need for understanding
how exactly cross-lingual transfer works within

these models. Figure 1 illustrates different possi-
ble characterizations of a trained mNN: While the
no-transfer scenario is rather easy to rule out, un-
derstanding which linguistic categories are shared,
and to what extent, is more challenging.

In this work, we focus on the transfer of syntac-
tic knowledge among languages and look for ev-
idence that mNNs induce a shared syntactic rep-
resentation space while not receiving any direct
cross-lingual supervision. To be clear, if we mea-
sure transfer among languages X and Y, every
training sentence for language modeling will be
either in language X or Y, while for machine trans-
lation every sentence pair will be either in lan-
guage pair (X, Z) or (Y, Z). Thus, the only pres-
sure to share linguistic representations is given by
the sharing of the hidden layer parameters (as well
as, possibly, some of the word embeddings).

No
Transfer

Shallow
Transfer

Deep
Transfer

Compression
of separate
language

understanding/
generation
systems

Compression of
(mostly)
separate

systems + some
"information

leakage"

A data-driven
interlingua/
universal
grammar
learner

Figure 1: Possible characterizations of a trained
mNN in terms of cross-lingual transfer levels.

Neural language models have been shown to
implicitly capture non-trivial structure-sensitive
phenomena like long-range number agreement
(Linzen et al., 2016; Gulordava et al., 2018; Mar-
vin and Linzen, 2018). However most of these
studies have been confined to monolingual mod-
els. We then investigate the following questions:

1. Does mNNs’ implicit syntactic knowledge of
L2 increase by exposure to a related L1?

2. Do mNNs induce a common representation
space with shared syntactic categories?
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Our research questions are reminiscent of well-
known questions in the fields of psycholinguistic
and second language acquisition, where work has
shown that both lexical and syntactic representa-
tions are shared in the mind of bilinguals (Hart-
suiker et al., 2004a; Vasilyeva et al., 2010). Tak-
ing inspiration from this body of work, we inves-
tigate what factors are needed for mNNs to suc-
cessfully transfer linguistic knowledge, including
vocabulary overlap, language relatedness, number
of training languages, training regime (joint vs se-
quential) and training objective (next word predic-
tion vs translation to a third language).

In contrast to the current mainstream focus on
BERT-like models (Rogers et al., 2020), we evalu-
ate more classical LSTM-based models trained for
next word prediction or translation over a mod-
erate number of languages (2 or 9). We choose
this setup because (i) it allows for more con-
trolled and easy-to-replicate experiments in terms
of both training data and model configuration and
(ii) LSTMs trained on a standard sequence pre-
diction objective are more cognitively plausible
and directly applicable to our main probing task,
namely agreement prediction. In this setup, we
find limited and rather inconsistent evidence for
the transfer of implicit grammatical knowledge
when semantic cues are removed (Gulordava et al.,
2018). While moderate PoS category transfer oc-
curs, truly language-agnostic syntactic categories
(such as noun or subject) do not seem to emerge in
our mNN representations. Finally, we find that op-
timal conditions for lexical-semantic transfer may
not be optimal for syntactic transfer.

2 Previous Work

Multilingual Machine Translation Early work
on multilingual NMT focused on building dedi-
cated architectures (Dong et al., 2015; Firat et al.,
2016; Johnson et al., 2017). Starting from (John-
son et al., 2017), m-NMT models are mostly built
with the same architecture as their monolingual
counterparts, by simply adding language identify-
ing tags to the training sentences. Using a small
set of English sentences and their Japanese and
Korean translations, Johnson et al. (2017) showed
that semantically equivalent sentences form well-
defined clusters in the high-dimensional space in-
duced by a NMT encoder trained on large-scale
proprietary datasets. Kudugunta et al. (2019) an-
alyze the similarity of encoder representations of

different languages within a massively m-NMT
model. They find that representation similarity
correlates strongly with linguistic similarity and
that encoder representations diverge based on the
target language. However they do not disentangle
the syntactic aspect from other types of transfer.

Multilingual Sentence Encoders A related line
of work focuses on mapping sentences from dif-
ferent languages into a common representation
space to be used as features in downstream tasks
where training data is only available in a differ-
ent language than the test language. Artetxe and
Schwenk (2019) use the encoder representations
produced by a massively multilingual NMT sys-
tem similar to (Johnson et al., 2017) to perform
cross-lingual textual entailment (XNLI) and docu-
ment classification. m-BERT (Devlin et al., 2019;
Devlin, 2018) and XLM (Conneau and Lample,
2019) are large-scale mNNs trained on a masked
LM (MLM) objective using mixed-language cor-
pora. This results in general-purpose contextu-
alized word representations that are multilingual
in nature, without requiring any parallel data.
m-BERT representations have been proved par-
ticularly successful for transferring dependency
parsers to low- (or zero-)resource languages (Wu
and Dredze, 2019; Kondratyuk and Straka, 2019;
Tran and Bisazza, 2019). On the task of cross-
lingual textual entailment (Conneau et al., 2018b),
XLM-based classifiers come surprisingly close to
systems that use fully-supervised MT as part of
their pipeline (to translate the training or test data).

Implicit Learning of Linguistic Structure
NNs trained for downstream tasks such as lan-
guage modeling, translation or textual entailment,
have been shown to implicitly encode a great
deal of linguistic structure such as morphologi-
cal features (Belinkov et al., 2017; Bisazza and
Tump, 2018; Bjerva and Augenstein, 2018), num-
ber agreement (Linzen et al., 2016; Gulordava
et al., 2018) and other structure-sensitive phenom-
ena (Marvin and Linzen, 2018). Studies such as
(Tenney et al., 2019b,a; Jawahar et al., 2019) have
extended these findings to BERT representations
showing positive results on a variety of syntactic
probing tasks. Extensive overviews of this body of
work are presented in (Belinkov and Glass, 2019)
and (Rogers et al., 2020).

Cross-lingual Transfer in Multilingual NNs
Recent studies (Wu and Dredze, 2019; Pires et al.,
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2019; Chi et al., 2020) have found evidence of
syntactic transfer in m-BERT using POS tag-
ging and dependency parsing experiments. On
the other hand, Libovický et al. (2019) find that
m-BERT representations capture cross-lingual se-
mantic equivalence sufficiently well to allow for
word-alignment and sentence retrieval, but fail at
the more difficult task of MT quality estimation.
While this massive Transformer-based (Vaswani
et al., 2017) architecture has received overwhelm-
ing attention in the past year, we believe that
smaller, better understood, and easier to replicate
model configurations can still play an important
role in the pursuit of NLP model explainability.
Moreover, the large number of m-BERT training
languages (ca. 100) added to the uneven language
data distribution and the highly shared subword
vocabulary, make it difficult to isolate transfer ef-
fects in any given language pair. Mueller et al.
(2020) recently tested a LSTM trained on five lan-
guages on a multilingual extension of the subject-
verb agreement set of Marvin and Linzen (2018).
They found signs of harmful interference rather
than positive transfer across languages. In Sec-
tion 4 we corroborate this rather surprising find-
ing by using a more favourable setup for transfer,
that is: (i) only two, related, training languages,
(ii) a simulated low-resource setup for the target
language, and (iii) eliminating vocabulary overlap
during training with language IDs.

Cross-lingual Transfer in the Bilingual Mind
Measuring the extent to which dual-language rep-
resentations are shared in the mind of bilingual
subjects is a long-standing problem in the field
of second language acquisition (Kellerman and
Sharwood Smith, 1986; Odlin, 1989; Jarvis and
Pavlenko, 2008; Kootstra et al., 2012). Among
others, Hartsuiker et al. (2004b) present evi-
dence of cross-lingual syntactic priming in bilin-
gual English-Spanish speakers, which are more
inclined to produce English passive sentences af-
ter having heard a Spanish passive sentence. Us-
ing neuroimaging techniques in a reading compre-
hension experiment with in German-English bilin-
guals, Tooley and Traxler (2010) report that the
processing of L1 and L2 sentences activates the
same brain areas, pointing to the shared nature of
syntactic processing in the bilingual mind. Taking
inspiration from this body of work, we investigate
what factors trigger cross-lingual transfer of syn-
tactic knowledge within mNNs.

Cross-Lingual Dependency Parsing Finally,
our work is also related to the productive field of
cross-lingual and multilingual dependency parsing
(Naseem et al., 2012; Zhang and Barzilay, 2015;
Täckström et al., 2012; Ammar et al., 2016, in-
ter alia), with the important difference that we
are interested in models that are not explicitly
trained to recognize syntactic structure but acquire
it indirectly while optimizing next word predic-
tion or translation objectives. Among others, Ah-
mad et al. (2019) have shown that the difficulty of
transferring a dependency parser cross-lingually
depends on typological differences between the
source and target languages, with word order dif-
ferences playing an important role. In this paper,
we mainly consider source-target languages that
are related, like French or Spanish (source) and
Italian (target), where we expect implicit syntactic
knowledge to be more easily transferable.

3 Probing Tasks

To answer our RQ1 (are mNNs capable of implic-
itly transferring syntactic knowledge between lan-
guages?) we choose the task of Number Agree-
ment. For our RQ2 (are mNNs able to induce a
common representation with shared syntactic cat-
egories?) we look at less complex syntactic tasks
such as PoS tag classification and Dependency
relation classification, and contrast them with a
lexical-semantic task (word translation retrieval).
We choose these tasks because they can be framed
as simple classification (or ranking) problems and
have a direct linguistic interpretation. We do not
consider parsing because it is a complex task with
a highly structured prediction space requiring ded-
icated model components. The probed models
are LSTM-based language models and translation
models, trained at the word-level. More details are
provided below.

3.1 Number Agreement

Number agreement describes the instance where a
phrase and its arguments or modifiers must agree
in their number feature. Number agreement can
occur between a subject-predicate pair (the sonsg
of my neighbors goessg), noun-quantifier pair
(manypl huge treespl), etc. Linzen et al. (2016)
first proposed the subject-verb agreement task to
assess the ability of a LSTM-based LM to capture
non-trivial language structure, by checking if the
correct verb form was assigned a higher probabil-
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ity than the wrong one, e.g. if prob(were|context)
> prob(was|context) in the sentence The boys,
who were lost in the forest were/was found. LM
performance was shown to be mostly affected by
the number of agreement attractors.

Probing Dataset We adopt the benchmark by
Gulordava et al. (2018), henceforth called G18,
which extends the evaluation of Linzen et al.
(2016) to more languages and more agreement
constructions, automatically harvested from cor-
pora using POS patterns. G18 also introduced two
conditions to test whether a model relies on se-
mantic cues or purely grammatical knowledge to
predict agreement:

1. Original : Sentences automatically extracted
from corpora;

2. Nonce : Nonsensical but grammatical sen-
tences created by randomly replacing all con-
tent words in the original sentence with ran-
dom words with same morphological class.

Thus, this is one of few existing tasks that allow
us to measure the transfer of grammatical knowl-
edge in isolation. Using the G18 benchmark, we
compare mNNs with monolingually trained mod-
els, in order to compare if the addition of a related
language improves the long-range agreement ac-
curacy of the monolingual model. We expect this
to happen for languages that have the same num-
ber agreement patterns, like French and Italian.

Probed Models Similar to G18, we train 2-layer
LSTMs with embedding and hidden layer size of
650, for 40 epochs, using a dataset of crawled
Wikipedia articles. These language models are
trained on next word prediction and do not re-
ceive any specific supervision for the syntactic
task. L1 is our helper language and L2 is the tar-
get language where we measure agreement accu-
racy. Fig. 2 shows our different training setups.
To simulate a low-resource setup and possibly in-
crease the chances of transfer, we train our bilin-
gual LMs on a shuffled mix of a larger L1 cor-
pus (L1large, 80M tokens) and a smaller L2 cor-
pus (L2small, 10M tokens). L2 is oversampled to
approximately match the amount of L1 sentences.
This bilingual model (LML1+L2small

) is compared
to a baseline monolingual LM trained on a small
L2 corpus (LML2small

). As upper bound, we also
show the results of a model trained on more L2

10M
Tokens

80M
Tokens

160M
Tokens

80M
Tokens

80M
Tokens

Small 
L2 

Large  
L2 

Bilingual L1 + oversampled L2 

Joint
Training 

Sequential
Training 

Figure 2: Monolingual and bilingual LM training
schemes used in our agreement experiments.

data (80M). This model performs closely to the re-
sults reported by G18 with a similar setup.

Most experiments in this paper are performed
by joint training, i.e. the model is trained on the
mixed language data since initialization. However
in Sect. 4.2 we also evaluate pre-training: i.e. the
LM is first trained on L1 data, then after conver-
gence, it continues training on L2 data (see Fig. 2).
A language tag is introduced at the beginning of
each sentence. The vocabulary for each language
consists of the 50k most frequent tokens, with
the remaining tokens replaced by the unknown
tag. The bilingual vocabulary is the union of the
language-specific vocabularies, resulting in a total
of 88k words in our main language pair (French-
Italian). In Sect. 4.2 we compare this setup (called
natural overlap) to a no-overlap setup where all
words are prepended with a language tag, result-
ing in a bilingual vocabulary of 100k words.

3.2 Cross-lingual Syntactic Category
Classification

To verify whether basic syntactic categories are
shared among different language representations
in mNNs, we inspect the activations of our trained
LMs when processing a held-out corpus. Specif-
ically we build linear classifiers to predict either
the PoS tag or the Dependency label (type of re-
lation to the head) of a word from its hidden layer
representation. This setup is similar to previous
work (Blevins et al., 2018; Tenney et al., 2019b),
however our diagnostic classifiers are trained on
L1 and tested on L2.1 If syntactic categories are
shared, we expect to see minor drops in classifica-
tion accuracy compared to a classifier trained and

1Another difference regards the dependency classifica-
tion: Blevins et al. (2018) uses constituency parsing and Ten-
ney et al. (2019b) predicts dependency arcs given word pairs.
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tested on L2. In other words, we ask whether, e.g.,
French and Italian adjectives or subjects are rec-
ognizable by the same NN activations.

Several studies such as (Bisazza and Tump,
2018; Hewitt and Liang, 2019; Pimentel et al.,
2020) have criticised diagnostic classifiers for
overestimating the ability of neural networks to
capture linguistic information. We partly address
these pitfalls by comparing classification accuracy
on top of our trained mNNs with that of their cor-
responding randomly initialized counterparts.

Probing Dataset We probe our models on man-
ually annotated coarse-grained PoS and Depen-
dency labels taken from Universal Dependency
Treebanks (Nivre et al., 2019). Specifically,
we use French-GSD (389k tokens), Italian-ISDT
(278k), Spanish-AnCora (548k), and German-
GSD (288k). UD sentences are fed to a trained
model’s encoder and the resulting last-layer acti-
vations are used to build the probing classifiers.

Probed Models We first apply the PoS and De-
pendency probing tasks to the Wikipedia-based
LMs described in Sect. 3.1. To study the effect of
training objective (next word prediction vs trans-
lation to a third language), in Sect. 5.2 we per-
form another set of controlled experiments using
the Europarl2 parallel corpus. Our dataset con-
sists of L1 → English parallel sentences, where
L1 is one of nine languages chosen from three
different families: French, Italian, Portuguese,
Spanish (Romance); German, Dutch, Swedish
and Danish (Germanic) and Finnish (Uralic),
with about 45.9M tokens for each language pair.
The NMT models implement a standard atten-
tional sequence-to-sequence architecture based on
4-layer bidirectional LSTMs (Bahdanau et al.,
2015) with embedding and hidden layer size of
1024. To maximize comparability between trans-
lation and language modeling objectives, the LMs
in these experiments are also 4-layer bidirectional
(BiLMs, à la Peters et al. (2018)) with the same
hidden layer size, trained on the source-side por-
tion of our Europarl dataset.

3.3 Word Translation Retrieval

To put syntactic transfer in contrast with other
types of transfer effects, we also experiment with
word translation retrieval (henceforth abbreviated
as WTR). This was used as a probing task for

2http://www.statmt.org/europarl/v7/

cross-lingual word embeddings in (Lample et al.,
2018; Conneau et al., 2018a) and involves calcu-
lating the distance (measured by cosine similarity)
between the embedding of a source language word
(e.g., bonjour) and that of its translation (e.g.,
buongiorno). Since the task is context indepen-
dent, only the word-type embeddings are probed.
We interpret precision in this task as a measure of
the alignment of two word embedding spaces, that
is lexical-semantic transfer.

Lexicon The bilingual lexicon from MUSE
(Lample et al., 2018) is used as gold standard for
this task. MUSE is available for several language
pairs and includes polysemous words (many-to-
many pairs). For each language pair, we use 1.5k
source and 200k target words.

4 Does Exposure to L1 Improve Implicit
Syntactic Knowledge on a Related L2?

To answer RQ1 we use the number agreement
task, which is explained in detail in Sect. 3.1. We
choose Italian (IT) and Russian (RU) from the G18
dataset as our target languages L2. As helper lan-
guages, L1, we choose French (FR) and Spanish
(ES) for L2 IT, and FR and Ukrainian (UK) for
L2 RU, which allows us to study the impact of
language relatedness. Accuracy is calculated as
follows: for each sentence in the L2 benchmark,
if the probability of the correct verb form is higher
than the incorrect form, the agreement is said to be
correct, and incorrect otherwise.

4.1 Main Results
Figure 3 shows the results. In this set of exper-
iments, the bilingual models are trained by joint
training using the union of the vocabularies in the
two languages (natural overlap). See also Sect.
3.1. As in (Gulordava et al., 2018), the frequency
baseline selects the most frequent word form (sin-
gular or plural) for each sentence.

Looking at the Original sentences, we see that
the bilingual models outperform the respective
small monolingual models in the closely related
pairs ES→IT (86.8 vs 79.8) and UK→RU (90.4
vs 88.2). However the addition of FR data results
in lower accuracies on both L2s. While this was
expected in the unrelated pair FR→RU, the large
drop in FR→IT is harder to explain.

When semantic cues are removed (Nonce sen-
tences), ES→IT is the only bilingual model to
outperform its monolingual counterpart (80.7 vs
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(a) Agreement accuracy on L2: Italian (b) Agreement accuracy on L2: Russian

Figure 3: Probing Wikipedia-based monolingual and bilingual LMs on the agreement benchmark of
Gulordava et al. (2018). Freq. is the Frequency baseline. Blue and black bars represent small and large
L2 models, respectively. Orange bars represent bilingual models.

79.4), while the accuracy drop in FR→IT gets
even larger (72.4 vs 79.4). This shows that expos-
ing the model to a related language L1 is not guar-
anteed to improve implicit syntactic knowledge of
L2, even when the rules of number agreement are
largely shared between L1 and L2. On the con-
trary, our experiments suggest that in some cases
L1 negatively interferes with the task in L2.

4.2 Effect of Training Regime and
Vocabulary Overlap on Agreement

Could transfer in FR→IT be hampered by some
of our experimental choices? To consolidate our
findings, we experiment with a different training
regime (pre-training) and a different vocabulary
construction method (no-overlap). As shown in
Table 1, both training regime and vocabulary over-
lap have a visible effect on the transfer of syn-
tactic knowledge between FR and IT. Pre-training
considerably reduces the negative interference ef-
fect observed in joint training, and even leads to a
higher accuracy on Original sentences in the no-
overlap setup (83.2 vs 79.8). Eliminating vocabu-
lary overlap (None) also leads to better agreement
scores in most cases. The best gain overall is ob-
tained by the jointly trained model with no overlap
(85.7 vs 79.8) in the Original sentences, whereas
no gain is observed in the Nonce sentences.

In summary, we find limited and inconsistent
evidence of transfer of purely grammatical knowl-
edge in our bilingual models. Also contrary to
our expectations, sharing more parameters (natu-

ral overlap) and mixing languages since the be-
ginning of training leads to more negative inter-
ference than positive transfer in the FR-IT pair.

Bilingual (FR+ITsmall)

ITsmall
Joint Training Pre-Training ITlargeNatural None Natural None

Original 79.8 74.8 85.7 79.8 83.2 86.6
Nonce 79.4 72.4 77.6 77.7 76.8 79.4

Table 1: Impact of training regime and vocabulary
overlap on agreement accuracy (FR→IT).

5 Do mNNs Induce Shared Syntactic
Categories?

Predicting long-range agreement is a rather com-
plex task: in principle, besides learning agreement
rules, the model has to discern several syntactic
categories such as number, PoS and dependen-
cies (e.g. distinguishing subject from other noun
phrases). In practice, previous work (Ravfogel
et al., 2018) showed that LSTMs sometimes resort
to shallow heuristics when predicting agreement.

In this section we therefore investigate whether
our mNNs induce at least basic syntactic cate-
gories that are shared across languages (RQ2).
We assume this is a necessary condition to en-
able transfer of purely grammatical knowledge,
like agreement in nonce sentences, and beyond.
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Figure 4: Semantic vs syntactic transfer in Wikipedia-based FR-IT bilingual LMs: (a) Word translation
retrieval precision (P@5) measures lexical-semantic transfer; (b) PoS accuracy and (c) Dependency ac-
curacy measure syntactic transfer. The classifiers are always tested on L2 (IT), and trained on either L2
or L1 (FR). If syntactic categories were perfectly shared across languages, we should observe no drop
between the blue and orange bars. Dashed red lines show majority baselines for both (b) and (c).

5.1 Effect of Training Regime and
Vocabulary Overlap on Syntactic
Category Transfer

In this section we examine the same FR-IT
Wikipedia-based LMs described in section 4.2.
Figure 4(a) shows that joint training yields bet-
ter alignment of the word embedding spaces com-
pared to the pre-training setup, which confirms the
findings by Ormazabal et al. (2019). Secondly,
eliminating vocabulary overlap does not necessar-
ily imply less alignment. Interestingly, work on
m-BERT/XLM models has also shown that vocab-
ulary overlap has a much smaller effect on transfer
than previously believed (Wu et al., 2019). An ex-
ception to this is the combination of pre-training
and disjoint vocabulary (dubbed P/D), which gives
near zero alignment of both lexical and syntactic
spaces. This suggests that sharing hidden layers is
not a sufficient ingredient to adapt a pre-trained
model on a new (even if related) language, and
that specific techniques should be used when joint
training is not a viable option (Wang et al., 2019;
Artetxe et al., 2019).

Moving to the transfer of syntactic categories
(Fig. 4(b) we find that all cross-lingually trained
PoS classifiers (except P/D) perform much better
than the majority baseline but notably worse than
the corresponding monolingually trained classi-
fiers. As for dependency classification (Fig. 4c),
accuracies are low overall and no cross-lingual

classifier outperforms the majority baseline. In
summary, some form of syntactic transfer indeed
occurs, but truly language-agnostic syntactic cate-
gories (such as noun or subject) have not emerged
in our mNN representations.

5.2 Training Objective, Number of Input
Languages, and Language Relatedness

We now study whether a different training objec-
tive, namely translation to a third language (En-
glish), leads to more syntactic transfer among in-
put languages. We also check whether number
of input languages and language relatedness play
a significant role in the sharing of syntactic cat-
egories. All models in this section are jointly
trained with natural vocabulary overlap on Eu-
roparl, and compared to their randomly initialized
equivalents following Zhang and Bowman (2018).
Dependency classification results are omitted as
they were always below the majority baseline.

Learning Objective As shown in Fig. 5(a,b),
the translation objective has a slightly negative im-
pact on the alignment of word embedding spaces
when all other factors are fixed. The translation
objective also leads to lower PoS accuracy (mono-
lingually probed), confirming previous results by
Zhang and Bowman (2018). However, translat-
ing to English does result in visibly better cross-
lingual transfer of PoS categories (mono/cross-
lingual drop of −27.7 for translation vs −37.2 for
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Figure 5: Semantic (word translation retrieval) vs syntactic (PoS classif.) transfer in Europarl-based
bidirect. mNNs. (a,b) Effect of training objective: next word prediction vs translation to English. (c,d)
Effect of number of input languages (2 vs 9) and language relatedness (FR-IT vs FR-DE) for the bidi-LM
objective. Horizontal lines (b,d) refer to the corresponding randomly initialized mNNs.

language modelling), showing that what are opti-
mal conditions for lexical-semantic may no be op-
timal for syntactic transfer.

Number of Source-side Languages For the re-
maining experiments we look at the (bidirectional)
LM objective. As shown in Fig. 5(c,d), moving
from 2 input languages to 9 results in lower WTR
precision but higher cross-lingual PoS accuracy.
This suggests that adding more languages does not
cause mNN representations to lose syntactic infor-
mation and actually leads to more sharing of syn-
tactic categories across languages. The generality
of this remark is however restrained by our find-
ings on language relatedness.

Language Relatedness Fig. 5(c,d) also shows
that moving from a very related pair of input lan-
guages (FR-IT) to a less related one (FR-DE) re-
sults in dramatically lower transfer of both lexical-
semantics and syntactic categories. To substanti-
ate this finding, we extend the analysis of our 9-
language LM to more training-test pairs (we se-
lect a subset of languages for which a sizeable
UD treebank exists). The results in Fig. 6 con-
firm that, for both lexical-semantics and syntax,
the related languages FR, IT and ES report con-
siderably higher values than those involving DE,
while the smallest drop (−6.45) is seen between
FR→FR and FR→IT. While we expected transfer
to depend on relatedness, we did not expect the ef-
fect to be so large given that DE is not completely

unrelated from the Romance languages.

6 Conclusions

We have presented an in-depth analysis of vari-
ous factors affecting cross-lingual syntactic trans-
fer within multilingually trained LSTM-based lan-
guage (and translation) models. Our main result
is a negative one: Transfer of purely grammatical
knowledge (specifically long-range agreement in
nonce sentences) is very limited in general – con-
firming recent findings by Mueller et al. (2020)
– and strongly dependent on the specific choice
of source-target languages. Namely, small gains
were only reported on ES→IT, while a consider-
able drop was reported on FR→IT and almost no
change was reported on UK→RU. When seman-
tic cues were not removed (original sentences),
transfer levels were overall higher with a peak of
+7% absolute in ES→IT, but FR→IT still suffered
a considerable loss (-5%). While ES is arguably
closer to IT than FR, we cannot yet find a convinc-
ing linguistic explanation for the large differences
observed. Our second set of experiments shows
that POS categories are shared to a moderate ex-
tent, but dependency categories are not shared at
all in our models. This suggests that syntactic
knowledge transfer within our multilingual mod-
els is rather shallow, and may explain the lack of
agreement transfer.

Our experiments with different training objec-
tives and number of input languages show that
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Figure 6: Pairwise semantic and syntactic transfer in the 9-language bidi-LM (a subset of languages is
shown). Non-applicable (monolingual) settings in (a) are greyed out. Diagonal values in (b) are scores
of monoling. L2→L2 classifiers, while remaining values are for cross-ling. L1→L2 ones.

what are optimal conditions for the alignment of
word embedding spaces (lexical-semantic trans-
fer) may not be optimal for syntactic transfer, and
vice versa. Language relatedness is by far the
most determining factor for both word embedding
alignment and POS transfer. And finally, scaling
from two languages to a mix of nine languages
from three different families results in better POS
transfer between related languages but consider-
ably worse between unrelated ones. Together with
the findings by Wu et al. (2019), our results sug-
gest that scaling to highly multilingual models
may improve syntactic transfer among the most
related languages by decreasing the per-language
capacity, but may also exacerbate the divergence
among less related ones. Thus modern multilin-
gual NNs appear still far from acquiring a true in-
terlingua.
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Abstract

In this work, we present our efforts to-
wards developing a robust speaker verifi-
cation system for children when the data
is limited. We propose a novel deep
learning -based speaker verification sys-
tem that combines long-short term mem-
ory cells with NetVLAD and additive mar-
gin softmax loss. First we investigated
these methods on a large corpus of adult
data and then applied the best configura-
tion for child speaker verification. For
children, the system trained on a large
corpus of adult speakers performed worse
than a system trained on a much smaller
corpus of children’s speech. This is due
to the acoustic mismatch between training
and testing data. To capture more acoustic
variability we trained a shared system with
mixed data from adults and children. The
shared system yields the best EER for chil-
dren with no degradation for adults. Thus,
the single system trained with mixed data
is applicable for speaker verification for
both adults and children.

Index Terms: additive margin softmax loss,
NetVLAD aggregation, recurrent neural network,
speaker verification for children.

1 Introduction

The use of speaker verification (SV) technology
for children has many beneficial application ar-
eas, such as child security and protection, en-
tertainment, games and education. For example,
in an interactive class the teacher could identify
each child, by continuing a previous lecture and
adapt its content with the child’s speech, and log
the child’s responses without a conventional login
process (Safavi et al., 2018, 2012).

The acoustic and linguistic characteristic of
children’s speech differ from adults’ speech (Lee
et al., 1999). The main differences are in pitch,
speaking rate and formant frequencies (Kumar
Kathania et al., 2020; Shahnawazuddin et al.,
2019). These acoustic differences together with
the lack of training data make SV more challeng-
ing. Little work has been reported in this area.
In (Shahnawazuddin et al., 2020) in-Domain and
out-of-Domain data augmentation are used to im-
prove a child SV system in a limited data sce-
nario. In (Safavi et al., 2012) vocal tract in-
formation is used for children’s SV. Explanation
for degraded recognizer scores through acoustic
changes resulting from voice disguise is presented
in (González Hautamäki et al., 2019).

In this work, we explore how recent advances in
(adult) SV could aid in child SV, as well. In partic-
ular, we combine adult and child SV into a single
task, by using a shared embedding space for adult
and child speakers. This allows us to leverage the
large resources available for adult speakers for the
low-resource child speaker verification task. In ap-
plications where both adult and child speakers can
be expected, it is also natural to use a single shared
system for both groups; we find that a shared sys-
tem can be used which benefits child SV without
degrading adult SV performance.

Contributions. We construct a neural SV sys-
tem, which leverages recent advancements in the
field. In particular, we find improvements from
using the additive-margin softmax loss and the
NetVLAD time aggregation methods. In contrast
to most recent literature, which uses convolutional
neural layers, we apply recurrent layers, moti-
vated by success in speaker diarization(Kaseva
et al., 2019). We compare our results to recent
high-performing systems of similar complexity.
Though we do not outperform the top results, the
comparison validates our approach. We then ap-
ply the proposed SV system to adult and child SV
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and find that using a shared embedding for both
adult and children improves child SV drastically
without affecting adult SV performance.

2 Related speaker verification work

In recent years, deep learning motivated ap-
proaches have shown significant progress in SV.
We consider three main reasons for their suc-
cess. Firstly, larger and more realistic speakers-
in-the-wild speaker recognition datasets have be-
come available to the public (Nagrani et al., 2017;
Chung et al., 2018; McLaren et al., 2016). Sec-
ondly, the loss functions used in the training of
neural networks have advanced. In general, the
main objective of the neural networks designed for
SV is to transform a given recording into a speaker
embedding which embodies the speaker character-
istics of the recording (Snyder et al., 2018, 2019;
Bredin, 2017; Li et al., 2017). In the most current
methods, the embeddings are learned in a speaker
identification process, were original softmax loss
is modified by adding a margin to the class deci-
sion boundaries (Liu et al., 2019; Xie et al., 2019;
Xiang et al., 2019) . This allows efficient train-
ing and reduces the intra-class variance of the cre-
ated embeddings (Wang et al., 2018a; Deng et al.,
2019; Liu et al., 2017). Finally, the neural net-
work architectures have developed. One of the
most prominent discoveries has been x-vectors,
speaker embeddings which are extracted from an
architecture based on time-delay neural networks
(TDNNs) (Snyder et al., 2018; Liu et al., 2019;
Xiang et al., 2019). X-vectors have been shown to
outperform i-vectors, which have enjoyed a state-
of-the-art status in SV for a long time (Dehak
et al., 2010). In some cases, i-vectors have also
been inferior to the SV systems which utilize con-
volutional neural networks (CNNs) (Chung et al.,
2018; Ravanelli and Bengio, 2018). Furthermore,
novel aggregation methods for neural networks
have been proposed. Whereas average pooling has
been used extensively before, the most recent ap-
proaches include statistics pooling, attentive statis-
tics pooling and NetVLAD (vector of locally ag-
gregated descriptors) (Okabe et al., 2018; Arand-
jelovic et al., 2016; Xie et al., 2019).

In addition, recurrent neural networks (RNNs)
with long-short term memory (LSTM) cells
(Hochreiter and Schmidhuber, 1997) have been
experimented with (Wan et al., 2018; Bredin,
2017; Heigold et al., 2016). Most importantly,

they have shown success in a related task, online
speaker diarization (Wang et al., 2018c; Zhang
et al., 2019; Wisniewksi et al., 2017). In this task,
LSTMs have been been able to create compact
speaker embeddings from very short segments.

Our approach has some similarities with Wan
et al. (Wan et al., 2018). As in their work, we
use LSTMs in sliding windows. However, un-
like them, we do not apply the generalized end-
to-end loss for neural network training. Instead,
we use the AM-softmax loss (Wang et al., 2018a).
Furthermore, unlike them, we combine LSTMs
with NetVLAD. Although NetVLAD layer has
been previously used for SV (Xie et al., 2019),
in that study, the layer was connected to a CNN.
NetVLAD has been originally designed for aggre-
gation of CNNs (Arandjelovic et al., 2016) and to
the best of our knowledge, we are the first to use it
with LSTMs in any application.

3 Proposed methods

In this section, we detail our SV system which
consists of three stages: splitting, embedding and
averaging, as illustrated in Fig. 1.

Framing

Feature extraction

Split
Frame-level processing

Aggregation

Embed

Mean + L2 normalization

Average

Figure 1: Schematic of our speaker embedding ex-
traction approach.

Split. First, the audio input is split into over-
lapping windows with short, roughly 2 seconds
or less, duration. Time-varying features are then
extracted from each frame, resulting in a set of
feature sequences x. The sequences consist of
30 Mel-Frequency Cepstral Coefficients (MFCC)
which are extracted every 10ms with 25ms frame
length. Every x is normalized with zero mean and
unit variance.

Embed. In the next step, each x is transformed
into a speaker embedding. This can be further di-
vided into two distinct steps: frame-level process-
ing and aggregation.
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x ∈ RT×30

Frame-level processing

BiLSTM (256)

BiLSTM (256)

BiLSTM (256)

Concatenation

h ∈ RT×1536

Figure 2: Frame-level processing. The numbers
refer to the number of hidden units in each layer.

h ∈ RT×1536

Aggregation

FC (512)

FC (512)

Average Pooling

FC (700)

L2 normalization

f ∈ R700

h ∈ RT×1536

Aggregation

FC (256)

NetVLAD (K)

FC (700)

L2 normalization

f ∈ R700

Figure 3: Two different aggregation approaches:
average pooling on the left and NetVLAD on the
right. FC refers to a fully connected layer and the
numbers to the output dimensionality.

In frame-level processing, each x is trans-
formed into higher level frame-features h. In our
approach, x is fed to a cascade of three bidirec-
tional LSTM layers with skip connections. Each
layer outputs the hidden states of both the forward
and backward LSTMs. These outputs are concate-
nated resulting in h as illustrated in Figure 2. The
structure of the cascade adheres to (Wisniewksi
et al., 2017). A more common choice for frame-
level processing blocks is to use convolutional lay-
ers.

In aggregation, the higher level features h are
compressed into a speaker embedding f . We com-
pare two aggregation approaches: average pool-
ing and NetVLAD. The aggregation components
are illustrated in Fig. 3. Note that the aggregation
component with average pooling has a slightly dif-
ferent configuration than its NetVLAD motivated
counterpart. This choice was based on balancing
the number of parameters in both neural networks.

We force the embeddings to be L2 normalized
in both components. As a result, cosine distance
is the most natural distance metric between dif-
ferent embeddings. A rectified linear unit activa-
tion is used in all of the fully connected (FC) lay-
ers. We also apply batch normalization (Ioffe and
Szegedy, 2015) after each layer except L2 normal-
ization layers. This means that the last two layers
of both components perform normalization. Al-
though this might seem strange, we discovered it
to be beneficial in the preliminary experiments.

The operation of the NetVLAD layer can be
summarized as follows. Let us denote the output
of the preceding FC layer as v ∈ RT×256. First,
v is transformed into V ∈ RK×256 according to a
formula (Arandjelovic et al., 2016)

V(k, d) =
T∑

t=1

ew
T
k vt+bk

∑K
k′=1 e

wT
k′vt+bk′

(vtd − ckd),

(1)
where c ∈ RK×256, w ∈ RK×256 and b ∈ RK

are learnable parameters. In this formulation, c
can be interpreted as a set of K cluster centers
which characterize the distribution of v (Xie et al.,
2019). More specifically, V consists of first order
statistics of residuals vd − ck in which each ele-
ment is weighted based on v and the cluster in-
dex k. The number of clusters K is given as an
input to the layer. After calculation of the resid-
uals, each row of V is first L2 normalized and
then concatenated resulting in Vf ∈ R256∗K . In
the literature, additional L2 normalization opera-
tion has been applied after flattening (Xie et al.,
2019; Arandjelovic et al., 2016). However, we
use batch normalization instead. We found this
normalization to perform generally better in the
preliminary experiments. The use of NetVLAD
in this study is motivated by its recent success in
SV when combined with CNNs (Xie et al., 2019).
Here, we show that NetVLAD is beneficial also
with LSTMs.

Average. In the final stage, we compute a single
embedding fc ∈ R700 for the recording by averag-
ing the created speaker embeddings and L2 nor-
malizing the average. When considering fc1 and
fc2 extracted from two different recordings, our
system performs SV by computing cosine distance
between the embeddings and by thresholding the
obtained value. Another popular method for com-
paring the embeddings is Probabilistic Discrimi-
nant Analysis (PLDA) (Ioffe, 2006; Snyder et al.,
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2018). PLDA could result in performance im-
provements (Liu et al., 2019), but also increase the
complexity of our system, and we do not apply it
in this work.

4 Experiments

Data. We use two training sets for adult speakers
which are both generated from Voxceleb2 (Chung
et al., 2018). In the first, abbreviated as V C2,
all recordings in Voxceleb2 are windowed into 2
second samples with 1 second overlap. The rea-
son for this choice is the training objective of our
neural networks that is to identify a speaker from
a given training set based on a 2 second segment
of speech. The duration was not selected arbitrar-
ily: we experimented also with setting it to 1 and
2.5 seconds. The former was too short for neural
networks to learn speaker characteristics properly
and the latter did not generally improve the perfor-
mance of the networks. V C2 consists of roughly
6.83 million training samples from 5994 speakers.

The second set, V C2C , is otherwise the same
as V C2 but excludes a portion of the samples
based on a heuristic cleaning algorithm. The mo-
tivation for this algorithm came from our listen-
ing tests which confirmed that Voxceleb2 included
wrongly labeled speaker identities in some cases.
The exclusions removed approximately 46k sam-
ples from V C2 but retained the number of speak-
ers, 5994. Given samples Si belonging to i-th
speaker in V C2, the cleaning algorithm operates
in four steps:

1. Create a speaker embedding f for each sam-
ple in Si.

2. Cluster the embeddings with spherical K-
means setting K = 2 into groups G1 and G2.

3. Calculate the average of silhouette coeffi-
cients φ of the clustering result. Further
details of these coefficients are given in
(Rousseeuw, 1987).

4. If |G1| > 0.6|G1 ∪G2| and φ > 0.3, exclude
all samples belonging toG2 from the training
set. Here, |Gi| refers to a number of elements
in group Gi.

In summary, the algorithm investigates whether
the recordings initially assigned to a single speaker
might contain also another speaker. The algorithm

removes samples from Si only if the speech mate-
rial portions of the clusters are not balanced and if
the clustering result has a high reliability. This re-
liability is measured using silhouette coefficients.
Speaker embedding extraction was performed us-
ing an initial neural network which has the same
average pooling based architecture as described
in the previous section, but was trained only with
4000 speakers from V C2.

We evaluate our models also using the cleaned
versions of Voxceleb1 verification test sets,
Voxceleb1-test (V Ct), Voxceleb1-H (V CH ) and
Voxceleb1-E (V CE) (Chung et al., 2018). The
recordings in these sets are framed to 2 second
duration segments with 1.5 seconds overlap. The
overlap duration was determined in the prelimi-
nary experiments.

We construct also our own verification set from
the development set of Voxceleb1. This set is used
for model evaluation during training. The set con-
sists of speech segments with a fixed 2 seconds du-
ration, and which each are extracted from a unique
session and speaker. The number of extracted seg-
ments is close to 20k and they belong to 1211
speakers. We form close to 150k segment pairs
where half of the pairs correspond to the same
speaker and the other half to different speakers.
We name this verification set as V C2sec. The set is
disjoint in speakers with V Ct but not with V CH

and V CE . However, we consider this evaluation
set to be valid since the pair compositions and seg-
ment durations of V C2sec differ significantly from
V CH and V CE .

For child speech experiments we used CSLU
kids (Khaldoun Shobaki, 2007) database for train-
ing. It has 1110 speakers of English language with
age range from 6 to 16 years and sampling rate 16
kHz. For testing the system we used PF-STAR
(Batliner et al., 2005) and the Finnish SpeechDat
(Rosti et al., 1998) datasets. PFSTAR has 134
speakers of English with age range from 4 to 14
years, originally sampled at 22,050 Hz. The down-
sampling at 16 kHz was performed for consistency
with the model. SpeechDat has 354 speakers of
Finnish with age range from 6 to 14 years, origi-
nally data sampled at 8 kHz. The up-sampling at
16 kHz was performed for consistency. For chil-
dren’s experiments we used the same speaker em-
bedding method as adults.

Training. In training, the output of the aggrega-
tion component is connected to a fully connected
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layer which is used for a speaker identification
task. Training has two stages: warm-up with the
softmax loss and fine-tuning with the AM-softmax
loss (Wang et al., 2018a). In the warm-up, the neu-
ral network is trained for 5 epochs, using Adam
optimizer with 0.01 learning rate. Batch size is
chosen as 512. We generally observed that the
performance of the neural networks on the V C2sec

would not improve after the fifth epoch when us-
ing the softmax loss.

In the fine-tuning, the softmax loss for i-th
training sample is reformulated as

Li = log
es(W

T
yi
f−m)

es(W
T
yi
f−m) +

∑5994
j=1,j 6=yi

esW
T
j f
, (2)

where yi is the label of i-th training sample, W ∈
R700×5994 a learnable weight matrix with all rows
L2 normalized and s and m a given scale and
margin. Equation 2 is known as the AM-softmax
loss (Wang et al., 2018a). We set m = 0.15 and
s = 0.25 based on our preliminary experiments.
W is initialized with the weights of the best neu-
ral network configuration found in the warm-up.

The main point of using the AM-softmax loss is
to decrease intra-class variance, which is generally
difficult with the softmax loss (Wang et al., 2018a;
Deng et al., 2019; Liu et al., 2017). In other words,
the higher the margin m is set, the more closer, in
terms of cosine distance, the speaker embeddings
belonging to the same class are forced. The cosine
distance metric arises from the L2 normalizations
of both f and the rows of W. The scale of s is
generally set to a some high value to ensure con-
vergence (Wang et al., 2018b). In recent years,
the AM-softmax loss and other similar methods
(Liu et al., 2017; Deng et al., 2019) have emerged
as state-of-the-art approaches in speaker verifica-
tion (Xie et al., 2019; Liu et al., 2019; Xiang et al.,
2019; Li et al., 2018).

The fine tuning is continued for 10 epochs with
otherwise the same setting as in warm-up. We
monitor the progress of the training by first com-
puting cosine distances between the embeddings
of each pair in V C2sec and then calculating equal
error rate (EER) on these distances after each
epoch. EER is a standard error metric in speaker
verification (Snyder et al., 2018; Chung et al.,
2018; Xie et al., 2019). Although the V C2sec con-
tains over 150k pairs, the evaluation on this set
is efficient during the training since it consists of
short, equal length segments which can be embed-

ded rapidly. We save the weights of the neural net-
work after each epoch, and choose the configura-
tion with the best EER value as our final model.

5 Results

First in section 5.1 we validate our SV approach
on adult speech. Then in section 5.2 we apply the
system with children.

5.1 Validation experiments with adults

In this section, we first investigate the effect of
the cleaning algorithm, aggregation and the AM-
softmax loss. Finally, we present a results com-
parison. We use EER as an evaluation metric in
all experiments.

Table 1: Effect of training set cleaning (EER %).
K = 30.

Aggregation Training set V Ct V CE V CH V C2sec

NetVLAD V C2 2.49 2.47 4.53 6.65
NetVLAD V C2C 2.18 2.45 4.45 6.66

Effect of dataset cleaning. In Table 1, we show
that small improvements can be achieved by re-
moving some training data with the cleaning al-
gorithm. This proves that the algorithm is reason-
able and also encourages discussion whether some
cleaning operation is needed for Voxceleb2. How-
ever, the improvements in V CE and V CH are mi-
nor and with V C2sec, the cleaning has not been
beneficial.

Table 2: Effect of K and aggregation (EER %).
The training set is V C2C .

Aggregation K V Ct V CE V CH V C2sec

Average pooling - 2.46 2.45 4.42 7.05
NetVLAD 8 2.41 2.40 4.35 6.92
NetVLAD 14 2.32 2.37 4.36 6.68
NetVLAD 30 2.18 2.45 4.45 6.66

Effect of aggregation approach. Table 2 in-
vestigates the performance of the two aggregation
approaches and the choice of K. The results show
that NetVLAD is the better approach. This is par-
ticularly clear with V C2sec. However, the best
scores with different test sets are all obtained with
different K values. This result highlights the im-
portance of using multiple different test sets for
model evaluation. Nevertheless, we can decide on
the best model based on the average over all EER
scores. In this case, the NetVLAD-based aggrega-
tion with K = 14 has the best performance.

90



Table 3: Effect of loss function (EER %). K = 30
and the training set is V C2C .

Aggregation Loss V Ct V CE V CH V C2sec

NetVLAD Softmax 3.25 3.30 5.90 8.40

NetVLAD AM-softmax 2.18 2.45 4.45 6.66

Effect of loss function. Table 3 illustrates that
the AM-softmax loss brings significant improve-
ments over the softmax loss. Similar results were
obtained with the average pooling aggregation.
However, we want to emphasize the results with
the NetVLAD aggregation since in (Xie et al.,
2019), the use of NetVLAD with the AM-softmax
loss has not resulted in notable performance im-
provements. Here, we demonstrate that the two
can be combined successfully. The results with
different K values were essentially the same.

Table 4: Results comparison (EER %).
System Scoring V Ct V CE V CH

Xie et al. (Xie et al., 2019) Cosine 3.22 3.13 5.06

Xiang et al. (Xiang et al., 2019) PLDA 2.69 2.76 4.73

Ours Cosine 2.32 2.37 4.36

Zhou et al. (Zhou et al., 2019) Unknown 2.23 2.18 3.61

Zeinali et al. (Zeinali et al., 2019) Cosine 1.42 1.35 2.48

Results comparison. In Table 4, we compare
our system to other high-performing speaker ver-
ification systems. The comparison of our system
with the first, x-vector based (Xiang et al., 2019)
system and the second, CNN-based (Xie et al.,
2019) system is straight-forward since all the sys-
tems are trained with the same dataset, Voxceleb2,
and because the number of parameters are close
to each other: 4.2 million in (Xiang et al., 2019),
7.7 million in (Xie et al., 2019) and 6.7 million
in our system. Zhou et al. (Zhou et al., 2019)
report better results than ours, but they use data
augmentation, and do not report the number of pa-
rameters used. The current state-of-the-art (single-
system) results by Zeinali et al. (Zeinali et al.,
2019) in the VoxCeleb Speaker Recognition Chal-
lenge 2019 leverage data augmentation and more
parameters. Our results do not outperform the best
published results, but the results still validate our
approach, as our results outperform the strong re-
sults from (Xie et al., 2019) and (Xiang et al.,
2019), which use similar parameter and data con-
straints.

5.2 Evaluation experiments with children

In the previous section, we presented the effect of
dataset cleaning, aggregation approach, and loss
function on adult speakers. In this section, we took
the best combination of all these for child speech
experiments. Details of databases used for the ex-
periments with children is given in section 4.

Table 5: Results on child speakers (EER %).
Training data PF-STAR Speechdat V CE V CH

Adults’ V C2C 2.58 10.68 2.37 4.36

Children’s CSLU 2.05 10.08 –

Adults’ + Children’s 1.12 8.82 2.34 4.39

Table 5 illustrates the performance on child
speakers in English and Finnish languages when
directly using the adults’ model. We also trained
a similar model on child speech and report the re-
sults in the same table. Based on these results it
can be noted that when the system is only trained
with adults the performance is lower compared to
the system trained only with children even though
the children have less training data. To capture
more acoustic variability of speakers we trained
a shared system with mixed data of both adults
and children and tested it with English and Finnish
children. The last result of table 5 illustrates that
the shared model outperforms both the adult-only
and the child-only models for both English and
Finnish languages. When compared to a recent pa-
per (Shahnawazuddin et al., 2020) for PF-STAR
verification set, our system gives a 50 % rela-
tive improvement. Furthermore, when we run the
adult test sets V CE and V CH again using the final
system trained with shared system with mixed of
adults’ and children’s data, we found out that the
performance remains the same. This means that
we can now use the same model for recognizing
both adults and children.

6 Conclusion

We have presented a speaker verification system
based on a shared neural embedding space for
adults and children. The neural network consists
of a cascade of LSTM layers and a NetVLAD ag-
gregation layer, and uses the AM-softmax loss in
training. We have demonstrated that the system
achieves promising results with adults and chil-
dren. Because the child data is limited, we trained
a shared system with mixed adult and child data to
capture more acoustic variability. The shared sys-
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tem gives a 54% and 43% relative improvement
for children compared to the separate children’s
and adult systems. For adults, the shared system
gives the same performance as compared to the
adult system. Finally, we can conclude that this
shared system can be now used for both children
and adults.
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Abstract

In this paper, we propose spectral modifi-
cation by sharpening formants and by re-
ducing the spectral tilt to recognize chil-
dren’s speech by automatic speech recog-
nition (ASR) systems developed using
adult speech. In this type of mismatched
condition, the ASR performance is de-
graded due to the acoustic and linguis-
tic mismatch in the attributes between
children and adult speakers. The pro-
posed method is used to improve the
speech intelligibility to enhance the chil-
dren’s speech recognition using an acous-
tic model trained on adult speech. In
the experiments, WSJCAM0 and PFSTAR
are used as databases for adults’ and chil-
dren’s speech, respectively. The proposed
technique gives a significant improvement
in the context of the DNN-HMM-based
ASR. Furthermore, we validate the robust-
ness of the technique by showing that it
performs well also in mismatched noise
conditions.

Index Terms: Children speech recognition, Spec-
tral sharpening, Spectral tilt, DNN.

1 Introduction

Recent advances in ASR have impacted many ap-
plications in various fields, such as education, en-
tertainment, home automation, and medical assis-
tance (Vajpai and Bora, 2016). These applications
can benefit children in their daily life, in playing
games, reading tutors (Mostow, 2012), and learn-
ing both native and foreign languages (Evanini and
Wang, 2013; Yeung and Alwan, 2019).

The task of speech parameterization for the
front-end aims at a compact representation that
captures the relevant information in the speech sig-
nal by using short-time feature vectors. The two

commonly used feature sets are Mel-frequency
cepstral coefficients (MFCC) (Davis and Mermel-
stein, 1980) and the perceptual linear prediction
cepstral coefficients (PLPCC) (Lee et al., 1999;
Huber et al., 1999). Speech of adults and children
have large acoustic and linguistic differences (Lee
et al., 1999; Narayanan and Potamianos, 2002;
Potaminaos and Narayanan, 2003; Gerosa et al.,
2009). Both the Mel-filterbank and PLP coeffi-
cients are better suited for adults as they provide
better resolution for low-frequency contents while
a greater degree of averaging happens in the high-
frequency range (Davis and Mermelstein, 1980;
Hermansky, 1990a).

In the case of children’s speech, more rele-
vant information is available in the high-frequency
range. Therefore, to enhance the system per-
formance, a better resolution needs to be used
for the high-frequency range. Previous studies
have also shown that formant sharpening is help-
ful for increasing speech intelligibility (Chennu-
pati et al., 2019; Zorila Tudor-Catalin and Yannis,
2012; Potaminaos and Narayanan, 2003; Kathania
et al., 2014). Motivated by these observations, we
suggest to modify the speech spectrum by formant
sharpening and spectral tilt reduction.

In (Potamianos and Narayanan, 2003; Katha-
nia et al., 2014, 2016) , it was shown that the
word error rate (WER) in recognition of chil-
dren’s speech is much higher than that of adult
speech and specifically under mismatched and
noisy conditions. The problems are due to higher
inter-speaker variance caused by the development
of the vocal tract, leading to different formant
locations and spectral distribution (Hermansky,
1990b), and due to the inaccuracy in pronunci-
ation and grammar caused by language acqui-
sition. Most importantly, the insufficient train-
ing data limits the performance because collect-
ing large speech databases of children’s speech is
hard. Adult speech corpora normally contain hun-
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dreds or thousands of hours of data, while most
publicly available corpora for children’s speech
have less than 100 hours of data (Panayotov et al.,
2015; Claus et al., 2013). Therefore, it is neces-
sary that ASR systems built for children are robust
for various mismatched conditions.

In this paper, a spectral sharpening and tilt re-
duction method is proposed to enhance the intelli-
gibility of children’s speech to boost the ASR sys-
tem performance under mismatched conditions.
Spectral sharpening and spectral tilt reduction
have been used in enhancement of speech intelli-
gibility in noise (Chennupati et al., 2019; Zorila
Tudor-Catalin and Yannis, 2012). In this study,
it is shown that the MFCC and PLPCC features
computed after the spectral modification (referred
to as SS-MFCC and SS-PLPCC) are found to out-
perform the conventional MFCC and PLPCC fea-
tures. This is demonstrated by both the spectral
analyses and experimental evaluations in this pa-
per. The robustness of the technique is further
validated by showing that it performs well in mis-
matched noise conditions also.

The remaining of this paper is presented as fol-
lows: In Section 2, the proposed spectral sharp-
ening and tilt reduction technique is discussed. In
Section 3, the speech corpora and ASR specifica-
tions are described. The results of the proposed
method are presented in Section 4. In Section 5,
the effects of noisy environment on the proposed
method are discussed. Finally, the paper is con-
cluded in Section 6.

2 The spectral modification method

The proposed spectral modification technique con-
sists of formant sharpening and spectral tilt re-
duction as described below and depicted in the
block diagram in Fig 1. From the spectral exam-
ples shown in Fig 2 and spectrograms shown in
Fig 3, we can observe that the proposed method
enhances formant peaks and the level of higher
frequencies.
2.1 Adaptive spectral sharpening

The formant information is important for recog-
nizing speech, and Adaptive Spectral Sharpen-
ing (ASS) is a method that emphasizes the for-
mant information (Zorila Tudor-Catalin and Yan-
nis, 2012). For sharpening of formants, an ap-
proach that was motivated in speech intelligibil-
ity is utilised (Zorila Tudor-Catalin and Yannis,
2012). In this method, the magnitude spectrum is

extracted using the SEEVOC method (Paul, 1981)
for the pre-emphasized voice speech frame. The
adaptive spectral sharpening at frame t is given by

Hs(ω, t) =

(
E(ω, t)

T (ω, t)

)β
, (1)

where E(ω,t) is the estimated spectral envelope
computed using the SEEVOC method and T(ω,t)
is the spectral tilt for frame t. Spectral tilt T(ω,t)
is computed using cepstrum and is given by

log T (ω) = C0 + 2C1 cos(ω). (2)

Here Cm is the mth cepstral coefficients and is
given by

Cm =
1

(N2 + 1)

N
2∑

k=0

E(ωk) cos(mωk). (3)

Formant sharpening is performed using Eq. (1)
by varying β. Typically, the value of β is higher
for low signal-to-noise ratio (SNR) values and
lower for high SNR values. In this study, we
have investigated the extent of spectral sharpen-
ing by varying the β parameter from 0.15 to 0.35.
Note that spectral sharpening is performed only
in voiced segments using probability of voicing
as defined in (Zorila Tudor-Catalin and Yannis,
2012).

2.2 Spectral tilt modification
Apart from spectral sharpening, we also perform
fixed spectral tilt modification (Hr(ω)) to boost
the region between 1 kHz and 4 kHz by 12 dB and
to reduce the level of frequencies below 500 Hz
(by 6 dB/octave). The resulting magnitude spec-
trum for a frame after the ASS and fixed spectrum
tilt modification is given by

Ê(ω) = E(ω)Hs(ω)Hr(ω) (4)

The modified magnitude spectrum (Ê(ω)) is
combined with the original phase spectrum for re-
constructing the signal using IDFT and Overlap-
and-Add (OLA) (Rabiner and Gold, 1975).

A schematic block diagram describing the steps
involved in the proposed method is shown in Fig
1. Fig 2 illustrates the effect of spectral modifica-
tion for a voiced child’s speech segment. Here the
blue curve is the spectrum of the original speech
segment and the red curve is the modified speech
spectrum. From the figure, it can be seen that
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Figure 1: Block diagram of the spectral modification method.
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Figure 2: Spectrum for a segment of child’s speech
(blue) and the corresponding spectrum after the
spectral modification (SM) (red).
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(b) Modified spectrogram with SM
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Figure 3: Spectrogram for a segment of child’s
speech shown in (a), and the corresponding spec-
trogram after spectral modification shown in (b).

formants are sharpened by the proposed method
(red curve). Specifically, it can be clearly seen
that formants are more prominent in the region
of 1 kHz to 4 kHz for the proposed method (red

curve), which is due to the spectral modification
as described in Section 2.2. Furthermore, illus-
trations of the spectrograms are shown in Fig 3.
Fig 3 (a) shows the child’s original spectrogram
before modifications and Fig 3 (b) shows the cor-
responding spectrogram after the proposed spec-
tral modification (SM) method. Again it can be
observed from Fig 3(b) that the spectrogram has a
larger high-frequency emphasis compared to spec-
trogram in Fig 3(a), due to spectral modification in
the proposed method.

3 Data and Experimental setup

This section describes the speech corpora (adult
and children), front-end speech features and spec-
ifications of ASR system.

3.1 Speech Corpora
Adult speech data used in this work was obtained
from WSJCAM0 (Robinson et al., 1995). Chil-
dren’s speech data was obtained from the PF-
STAR corpus (Batliner et al., 2005) to simulate
a mismatched ASR task. Both the WSJCAM0
and PF-STAR corpora are British English speech
databases. Details of both corpora are given in Ta-
ble 1

3.2 Front-end speech parameterization
The speech data was first pre-emphasized with a
first order FIR high-pass filter (with zero at z =
0.97). For frame-blocking, overlapping Hamming
windows with a length of 20 ms and an overlap
of 50% were used. 13-dimensional MFCCs were
extracted using 40 channels. The 13-dimensional
base MFCC features were then spliced in time tak-
ing a context size of 9 frames. Time-splicing re-
sulted in 117-dimensional features vectors. Lin-
ear discriminant analysis (LDA) and maximum-
likelihood linear transformation (MLLT) were
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Table 1: Speech corpora details for WSJCAM0
and PFSTAR used in ASR

Corpus WSJCAM0 PF-STAR

Language British English British English

Purpose Training Testing Training Testing

Speaker group Adult Adult Child Child

No. of speakers 92 20 122 60

Speaker age > 18 years > 18 years 4-14 years 4-13 years

No. of words 132,778 5,608 46974 5067

Duration (hrs.) 15.50 0.60 8.3 1.1

used to reduce the feature vector dimension from
117 to 40. The 13-dimensional base PLPCC fea-
tures were derived using 12th-order linear pre-
diction (LP) analysis. Cepstral mean and vari-
ance normalization (CMVN) as well as feature-
space maximum-likelihood linear regression (fM-
LLR) were performed next to enhance robust-
ness with respect to speaker-dependent variations.
The required fMLLR transformations for the train-
ing and test data were generated through speaker
adaptive training.

The MFCC and PLPCC features computed af-
ter the proposed spectral modification (i.e., spec-
tral sharpening and tilting) are referred to as SS-
MFCC and SS-PLPCC, respectively. ASR results
are given for the baseline features (MFCC and
PLPCC) and the proposed features (SS-MFCC
and SS-PLPCC) for all the experiments conducted
in this paper.

3.3 ASR system specifications

To build the ASR system on the adult speech data
from the WSJCAM0 speech corpus, the Kaldi
toolkit (Povey et al., 2011) was used. Context-
dependent hidden Markov models (HMM) were
used for modeling the cross-word triphones. Deci-
sion tree-based state tying was performed with the
maximum number of tied-states (senones) being
fixed at 2000. A deep neural network (DNN) was
used in acoustic modeling. Prior to learning pa-
rameters of the DNN-HMM-based ASR system,
the fMLLR-normalized feature vectors were time-
spliced once again considering a context size of 9
frames. The number of hidden layers in the DNN
was set to 5 with 1024 hidden nodes in each layer.
The nonlinearity in the hidden layers was modeled

using the tanh function. The initial learning rate
for training the DNN-HMM parameters was set at
0.005 which was reduced to 0.0005 in 15 epochs.
The minibatch size for neural net training was set
to 512.

For decoding the test set for adults, the MIT-
Lincoln 5k vocabulary Wall Street Journal bi-gram
language model (LM) was used. The perplexity of
this LM for the adult test set is 95.3 while there are
no out-of-vocabulary (OOV) words. Furthermore,
a lexicon consisting of 5850 words including pro-
nunciation variants was used. While decoding
the test set for children’s speech, a 1.5k domain-
specific bigram LM was used. This bigram LM
was trained on the transcripts of speech data in PF-
STAR after excluding those corresponding to the
test set of children’s speech. The domain-specific
LM has an OOV rate of 1.20% and perplexity of
95.8 for the test set of children’s speech. In to-
tal 1969 words used including pronunciation vari-
ations in lexicon for decoding the children’s test
set.

4 Results and discussion

The baseline WERs for children’s test set in the
DNN-HMM systems is 19.76% and 20.00% for
the MFCC and PLPCC acoustic features respec-
tively (see Table 2). In order to improve the recog-
nition performance, the spectral sharpening tech-
nique is applied to mitigate the spectral differences
between adults’ and children’s speech. The spec-
tral sharpening algorithm includes the tunable β
parameter according to Eq. (1), and this parameter
was varied from 0.15 to 0.35 to sharpen the spec-
tral peaks (formants). The WERs obtained with
varying sharpening parameter are shown in Figure
4. From the figure, it can be observed that the best
WER was obtained with β = 0.25. The remaining
experiments are carried out using this value of β.

The baseline WERs for children’s test set with
respect to the DNN-HMM-based ASR systems
trained using the MFCC and PLPCC features are
given in Table 2. The MFCC and PLPCC features
computed after the formant modification are de-
noted as SS-MFCC and SS-PLPCC, respectively
in Table 2. A notable reduction in WER can be
observed for both the features.

For further analysis, the children test data was
divided into three different test sets based on age
groups: 4 − 6 years, 7 − 9 years, and 10 − 13
years. Table 3 shows the results for baseline and
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Figure 4: WER results depicting the effect of spec-
tral modification (for varying the β parameter) on
recognition of children’s speech using an DNN-
HMM system trained using adult speech.

proposed features for three age groups. It can be
seen that the proposed approach improves the re-
sults in all the age groups for both of the proposed
features, SS-MFCC and SS-PLPCC. We have also
conducted significance test and notice that signed
pair comparison found significant difference be-
tween the two approaches at level p<0.01.

To further validate the effectiveness of the pro-
posed modification method, another DNN-HMM-
based ASR system was developed by pooling to-
gether speech data from training sets of both adults
and children. For children’s speech, the training
set derived from PF-STAR consisted of 8.3 hours
of speech by 122 speakers. The total number of
utterances in this training set was equal to 856
with a total of 46974 words. The training set of
adult speakers consisted of 15.5 hours of speech
from 92 speakers (both male and female). Fur-
ther, the training set comprised 132, 778 words
and the total number of utterances was 7852. The
developed ASR system exhibits a lower degree of
acoustic/linguistic mismatch due to the pooling of
children’s speech into training. As a result, the
baseline WERs for the developed system (given
in Table 2) are significantly lower when compared
to those obtained with respect to the ones trained
on adult speech only. Still, further reductions in
WERs are achieved when the spectral modifica-
tion technique is applied to enhance the speech in-
telligibility as shown in Table 2.

5 Experiments in Noisy conditions

To further validate the proposed technique, noise
robustness of the spectral modification technique
was studied. Four different noises (babble, white,
factory and volvo noise) extracted from NOISEX-
92 (Varga and Steeneken, 1993) were added to the

Table 2: WERs of the baseline and proposed
spectral modification method for children’s ASR.
The performance evaluation is done separately
using two ASR systems: a system trained with
only adult speech from WSJCAM0 and a system
trained by pooling also children’s speech.

WER in (%)

Training Testing DNN-HMM (Acoustic Model)

Data Data PLPCC SS-PLPCC MFCC SS-MFCC

Adult speech Children’s speech 20.00 19.38 19.76 18.23

Adult + children’s speech Children’s speech 12.89 12.43 12.26 11.70

Table 3: WERs for the age-wise grouped children
speech test sets with respect to adults data trained
ASR systems demonstrating the effect of the pro-
posed spectral modification.

Age wise WER (in %)
setup PLPCC SS-PLPCC MFCC SS-MFCC

4 - 6 72.36 70.18 70.48 68.18

7 - 9 20.11 17.24 19.38 16.20

10 - 13 12.35 11.72 11.78 10.53

test data under varying SNR levels. The noisy test
sets were then decoded using the acoustic models
trained with clean speech. WERs in the case of
adult/child mismatched testing are given in Table
4 for SNR values of 5 dB, 10 dB, and 15 dB. While
the MFCC features seem slightly more robust to
additive noise than the PLPCC features, the spec-
tral modification reduces WER clearly for both
of the acoustic features (denoted as SS-MFCC
and SS-PLPCC) at the three different SNR levels.
Hence, it can be concluded that the spectral sharp-
ening of formant peaks improves the ASR perfor-
mance also in various noisy conditions.

6 Conclusion

This work explores spectral modification (sharp-
ening of formants and reduction of spectral tilt)
to achieve robust recognition of children’s speech
under mismatched conditions. The explored spec-
tral modification technique is observed to enhance
ASR of children’s speech for both the MFCC and
PLPCC features. Also, ASR results are analyzed
for different age-groups and it was found that for
all the age-groups there exists an improvement
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Table 4: WERs of the proposed spectral modifi-
cation method for children’s speech test set under
varying additive noise conditions.

Noise SNR WER in (%)

Type (dB) PLPCC SS-PLPCC MFCC SS-MFCC

Babble

5dB 83.69 82.67 79.70 80.35

10dB 64.62 58.36 59.7 56.41

15dB 48.47 42.61 40.34 38.08

White

5dB 86.54 83.61 87.40 86.25

10dB 79.01 77.26 73.78 72.62

15dB 66.79 63.58 54.00 53.46

Factory

5dB 86.54 83.61 92.32 90.86

10dB 67.13 65.96 68.96 66.95

15dB 49.32 48.65 45.33 43.55

Volvo

5dB 34.71 26.22 26.12 24.70

10dB 29.16 24.58 23.10 22.03

15dB 25.61 22.89 21.64 20.75

with the proposed approach compared to baseline.
Further, improvements were also observed in mis-
match conditions caused by additive noise.
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Abstract

In this work, we present a method for con-
tent selection and document planning for
automated news and report generation from
structured statistical data such as that of-
fered by the European Union’s statistical
agency, Eurostat. The method is driven by
the data and is highly topic-independent
within the statistical dataset domain. As
our approach is not based on machine learn-
ing, it is suitable for introducing news au-
tomation to the wide variety of domains
where no training data is available. As such,
it is suitable as a low-cost (in terms of im-
plementation effort) baseline for document
structuring prior to introduction of domain-
specific knowledge.

1 Introduction

Automated generation of news texts from struc-
tured data – often referred to as ‘automated jour-
nalism’ (Graefe, 2016; Dörr, 2015; Caswell and
Dörr, 2018) or ‘news automation’ (Linden, 2017;
Sirén-Heikel et al., 2019; Dierickx, 2019) – is of
great interest to various news producers. It is seen
as a way of ‘providing efficiency, increasing output
and aiding in reallocating resources to pursue qual-
ity journalism’ (Sirén-Heikel et al., 2019, p. 47).
While data-to-text NLG systems are still far from
common especially among the smaller, regional
news industry players, at least among the larger
newsrooms the use of NLG approaches has clearly
been established (Fanta, 2017).

While secrecy in the industry makes it difficult
to establish the commercial reality as an outsider,
the limited available evidence indicates that com-
mercial automated journalism is mostly done using
rule-based methods despite a surge of academic in-
terest in increasingly complex neural methods for
NLG (e.g. Puduppully et al., 2019; Ferreira et al.,

2019): Interviews of news automation users indi-
cate that the employed methods are mostly based
on templates (Sirén-Heikel et al., 2019), as are the
few open source code repositories of real-world
news automation systems (Yleisradio, 2018). In-
deed, some NLG industry experts believe that es-
pecially end-to-end neural models do not match
customer needs at this time (Reiter, 2019).

Contributing factors include a lack of control
(Reiter, 2019); issues with hallucination of non-
grounded output (Nie et al., 2019; Dušek et al.,
2019; Reiter, 2018); the difficulty in surgically
correcting any issues identified in trained neural
models beyond additional training; as well as the
difficulty of establishing what the ‘worst case’ per-
formance of a neural model is.

In addition, we believe that that while neural
NLG methods are theoretically highly transferable,
the practical transferability of neural NLG solu-
tions to many news domains is limited by a lack
of training data. While newsrooms have extensive
archives of news text, these are rarely associated
with the matching data that is the ‘input’ for each
piece of news text (E.g., MacKová and Sido, 2020,
pp. 43–44, Kanerva et al., 2019, p. 247). At the
same time, the non-trainable methods for NLG,
too, suffer from difficulties in transferability and
reusability (Linden, 2017).

In this work, we investigate document planning
(selecting what content and in what order should
appear in the document) for structured, statistical
data-to-text NLG in the context of automated jour-
nalism targeting human journalists. We are not in
search of a perfect method, but rather something
that is relatively easy to implement as a subdomain-
independent baseline and which can then be en-
hanced with domain-specific processing later-on.
Such a method would make it easier to introduce
automated journalism solutions to completely new
subdomains within the larger statistical data do-
main.
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2 Structuring Hard News

When queried for insight into news structure, jour-
nalists and academics often recite the concept of
the “(inverted) news pyramid”, where the news
article is structured so that the order in which infor-
mation appears in the text reflects the journalist’s
belief about the importance of the piece of infor-
mation (Thomson et al., 2008). While the precise
origin of the structure is not clear (Pöttker, 2003),
it has become so prototypical that it is held self-
evident in the journalistic trade literature: “Every
journalist knows how to write a traditional news
text: start with the most important thing and con-
tinue until you have either said everything relevant
or the space reserved for the story runs out” (Su-
lopuisto, 2018, translated from Finnish).

A more rigorous analysis of the structures em-
ployed in ‘hard’ news is presented by White (1997),
who argues that hard news articles have an ‘orbital’
structure consisting of a nucleus which represents
the main point of the article and satellites that give
context and additional information about the nu-
cleus. White (1997) assigns the role of the nucleus
to the combination of the headline and the lead
paragraph of the article, and describes the subse-
quent paragraphs as the satellites. White (1997)
identifies five possible relations between a satel-
lite and the nucleus: elaboration, cause-and-effect,
justification, contextualization and apprisal. Thom-
son et al. (2008), in turn, identify that the satel-
lites can elaborate, reiterate, describe causes or
consequences, contextualize or provide additional
assessment. An important observation is that – as
indicated by ‘orbital’ – these satellites are relatively
freely reorderable without affecting readability or
meaning. Together, these two observations indicate
that a good document plan for hard news (1) prior-
izes more newsworthy items and (2) contains some
overarching theme (exemplified by the nucleus) so
that the text as a whole is coherent, i.e. the satellites
are in some way related to the nucleus.

The relations identified by White (1997) and
Thomson et al. (2008) are highly similar to those
identified in the more general Rhetorical Structure
Theory (RST) (Mann and Thompson, 1988), which
uses similar nucleus-satellite terminology. How-
ever, whereas White (1997) and Thomson et al.
(2008) analyze news text on the level of paragraphs,
RST can be applied on a more fine-grained level
to much shorter text spans. As RST shows that
similar relations can be applied on a sub-paragraph

level, we hypothesize that a reasonably approxi-
mation of a news article might be constructed by
applying White’s (1997) orbital theory also within
paragraphs, by considering the first sentence of the
paragraph a nucleus, and the others as satellites.

Importantly, we interpret the orbital theory of
news structuring to suggest that – as the satellites
are freely orderable – the actual type of relation is
not as important for document planning as knowing
that some relation exists between the satellite and
the nucleus. We hypothesize that while identifying
whether a specific (RST) relation exists between
two arbitrary pieces of information requires domain
knowledge, an approximation of whether two arbi-
trary pieces of information are related in some way
could be obtained by inspecting their similarity in
a domain-independent fashion.

That is, we expect that a piece of information
regarding the US health care funding in 2020 is
more likely to be related in some way to a piece of
information discussing the US health care funding
in 2020 than to another piece of information dis-
cussing the health care funding in Sweden in 1978.
If a heuristic or similarity measure identifying such
relations could be identified, it could be used to-
gether with some estimate of newsworthiness to
construct paragraph and document plans that seek
to maximize both the key aspects identified above:
newsworthiness and the relatedness of the content.

As noted in the introduction, there is a distinction
between the theoretical and the practical transfer-
ability of neural processing methods. We believe
that a good baseline document planning and con-
tent selection approach should avoid the need for
training data present in the many of recently pro-
posed document planning and content selection ap-
proaches. This rules out as unsuitable most recent
work that are based on learning from an aligned
corpus of data and human-written texts, such as
Angeli et al. (2010), Konstas and Lapata (2013),
Wiseman et al. (2017), Zhang et al. (2017), Li and
Wan (2018), Dou et al. (2018) and Puduppully et al.
(2019).

Outside of these trainable approaches, to our
knowledge, most other document planning ap-
proaches are based on ‘hand-engineered’ (Kon-
stas and Lapata, 2013), domain-specific methods.
A highly relevant survey of various document
planning methods is presented by Gkatzia (2016).
While these previous works are – to at least some
degree – domain-specific, they establish concepts
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and ideas that are highly relevant for our goal. Both
Hallett et al. (2006) and Gatt et al. (2009) describe
a core set of information, called ‘summary spine’
or ‘key events’, that they hold as more important
than the rest of the available information. They, as
well as Banaee et al. (2013), also employ a numeric
estimate of importance. Demir et al. (2010) iden-
tify that content already selected for inclusion in
the document plan affects how well suited so-far
unselected content is for inclusion. Sripada et al.
(2003) identify Gricean maxims (Grice, 1975) as
providing requirements for document planning and
content selection.

3 Context

Our work on document planning is done in the
context of a series of data-to-text NLG applications
producing short highlights of structured statistical
data. Importantly, the applications are intended to
be deployed in contexts where they must be able
to produce texts highlighting between 10 and 30
data points from datasets measured in 100.000s of
data points. The resulting texts are intended to both
alert journalists to potential news and to provide
them with a starting place from which to write the
final news text.

Our system, adapted from Leppänen et al.
(2017a), is based on a pipeline of components with
dedicated responsibilities similar to those described
by Reiter and Dale (2000) and Reiter (2007). For
this work, the relevant part of the architecture is the
Document Planner component. This component re-
ceives as input two sets of message data structures,
an example of which is shown in Table 1.1 The
messages are extracted automatically from tables
of statistical data obtained from Eurostat.

The core set contains messages that are known to
be highly relevant to the generation task. Unlike the
“summary spine’ of Hallett et al. (2006), the set is
unlinked and unordered, and not all members of the
set are guaranteed to be included in the document
plan. The expanded set, contains messages that can
be, but are not guaranteed to be, relevant for the
document. Expressed using the terminology from
Section 2, we assume that only messages in the
core set can be nuclei, while messages from either
set can be satellites.

These core and expanded sets are determined
automatically from user input. When requesting

1The concrete implementation details are somewhat more
complex. We omit details irrelevant for this work.

a new text, the user of the system must define a
dataset the text is to be generated from, for example
the consumer price data available from Eurostat.
This dataset is then divided into the core set and
the expanded set by the user when they select what
country the generated text should focus on. For
example, if the user were to select that the text
should discuss French consumer prices, the core
set would contain all data from the consumer price
dataset that pertains directly to France, while the
rest of the consumer price dataset (including data
pertaining to the UK, Finland, Croatia, etc.) would
be set as the expanded set.

We estimate each message’s ‘newsworthiness’
using the Interquartile Range based method de-
scribed by Leppänen et al. (2017b) with the values
scaled to have mean 0 and standard deviation 1
for the purposes of this computation. The result-
ing value is conceptually similar to ‘importance’
of Gatt et al. (2009) and ‘risk’ of Banaee et al.
(2013). The IQR based method compares each data
point in turn to a larger distribution, giving it higher
scores the further it is from the area between the
first and the third quartile of the larger distribution.
Values between the quartiles are given a minimal,
uniform, score that is dependent on the shape of the
distribution. In other words, higher IQR values in-
dicate that the value is more of an outlier compared
to the rest of related data in the dataset. As such, it
captures a degree of ‘unexpectedness’, which is an
important aspect of newsworthiness (Galtung and
Ruge, 1965).

We do not use the domain-specific parts of the
method described by Leppänen et al. (2017b). That
is, we make no value judgement of whether mes-
sages pertaining to French consumer prices are
more newsworthy than messages pertaining to
Croatian consumer prices, nor do we make judge-
ments of whether changes in the price of educa-
tion are more or less newsworthy than changes in
the price of alcohol and tobacco. However, we
do weight the scores so that messages with the
timestamp field being closer to present receive
higher weights, as recency is an important aspect
of newsworthiness. While we have described our
method for computing the newsworthiness
value in some detail, we emphasize that for
the rest of this article we only assume that the
newsworthiness values are non-negative and
that higher values indicate higher newsworthiness.

More crucially for the method described be-
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low, we specify that the value type fields
(which describe how the messages’ values
are to be interpreted) contain members of
a hierarchical taxonomy of data types rep-
resented as colon-separated hierarchies of la-
bels. For example, the value type field value
health:cost:hc2:mio eur would indicate
that the number in the value field is the amount
of money (cost), measured in millions of eu-
ros (mio eur), spent by some nation (as de-
fined by the location and location type
fields) on rehabilitative care (hc2) in some
time period (as defined by the timestamp and
timestamp type fields) and that this is part of
the larger health care topic (health). In our case,
these labels are automatically established from the
headers of the input data tables.

The goal of document structuring is to produce
a three-level tree-structure with ordered children.
The root node corresponds to the document as a
whole and the mid-level structures correspond to
paragraphs. The leaves are the messages selected
for inclusion in the document. While the messages
have not yet, at this stage, been associated with any
linguistic structures, they can be conceptualized as
being phrases or very short sentences. We are thus
concurrently determining both the content and the
structure the document.

We emphasize that our applications are em-
ployed in domains where they must be able to
select some 10-30 messages from a pool of po-
tential messages numbering in 100,000s. Given
infinite computational resources, it would be pref-
erential to construct all possible document plans
and then score them in some fashion. This, how-
ever, is infeasible given the size of the search space.
Previously, other authors have employed, for exam-
ple, stochastic searches with significantly smaller
search spaces (Mellish et al., 1998). Indeed, some
kind of a beam search approach could be very use-
ful in smartly searching a subset of the search space.
However, we have thus far been unable to identify a
document-level metric that adequately balances the
‘total amount of newsworthiness’ in a text with the
length of the text, a requirement for beam search.

4 Research Objective

Based on the above considerations, our main goal is
to identify a widely applicable method for content
selection and document planning that matches the
following requirements:

REQ1: The method needs to be highly performant

REQ2: The method should not be dependent on
domain knowledge

REQ3: The document should have a theme

REQ4: The document should have multiple para-
graphs but not be excessively long

REQ5: The paragraphs should have distinct
themes related to the document theme

REQ6: The paragraph themes should be newswor-
thy in their own right

REQ7: The paragraphs should not be excessively
long or short

REQ8: All messages should relate to the para-
graph theme

REQ9: All messages should be newsworthy

REQ10: Within each paragraph, the messages
should be presented in an order that pro-
duces a coherent narrative

Again, we emphasize that our goal is not to iden-
tify a method that is optimal for any specific sce-
nario, but rather to determine a baseline method
that is adequate for a broad spectrum of applica-
tions and sub-domains.

5 A Baseline Approach to Document
Planning

Optimally, we would wish to produce some sort
of a globally optimal document plan. However,
as discussed above, this would entail significant
computational costs and require a scoring function
applicable to the document as a whole. As such, we
propose a method for producing document plans
in a greedy, linear, and iterative fashion. At ev-
ery stage, decisions are made considering only a
limited local context, thus avoiding the need for
a method of determining the global quality of the
document plan, thus fulfilling REQ1 (‘The method
needs to be highly performant’).

The document’s overall theme, in our use case,
is selected by the user who initiates the generation
task. In initiating the task, the users selects both a
dataset and a focus location. The generation pro-
cess then derives the core messages and expanded
messages sets (the inputs to the Document Planner,
see Section 3) so that both sets discuss the dataset
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Field Description Example value
where What location the fact relates to Finland
where type What the type of the location is country
timestamp The time (or time range) the fact relates to 2020M05
timestamp type The type of the timestamp month
value A (usually) numeric value 0.01
value type Interpretation of value cphi:hicp2015:cp-hi02:rt01
newsworthiness An estimate of how newsworthy the message is 1

Table 1: An example of a message. The hypothetical message states that in the fifth month of 2020, in
Finland, the consumer price index, using the year 2015 as the start of the index, of alcoholic beverages
and tobacco changed by 0.01 points with respect to the value of the index during the previous month.

indicated by the user (i.e. messages from other
datasets are not generated) and that the core set con-
tains messages pertaining to the user’s indicated
focus location, while messages pertaining to all
other locations are in the expanded set. This fulfills
REQ3 (‘The document should have a theme’). This
step is also independent of the specific subdomain,
thus fulfilling REQ2 (‘The method should not be
dependent on domain knowledge’). This step thus
fulfills all the relevant requirements. Next, we’ll
describe how both the first and subsequent para-
graphs can be planned in a way consistent with the
requirements defined above.

5.1 Planning the First Paragraph

At the start of the document planning process, we
select the most newsworthy message from the core
messages set to act as the nucleus (n1) of the first
paragraph (p1). This nucleus establishes the theme
of the first paragraph as follows: We inspect the
value type field of this first nucleus n1, and
retrieve a prefix Prefix(n1). The prefix is the
least amount of colon-separated labels wherein the
total amount of prefixes in the core set is greater
than the minimal amount of paragraphs a docu-
ment can have, in our case two. In our case, as a
consequence of our label hierarchy, this is always
the first three colon-separated units. For the mes-
sage shown in Table 1, the prefix would thus be
cphi:hicp2015:cp-hi02, meaning that the
first paragraph’s theme would be the prices of al-
coholic beverages and tobacco. This fulfills REQ5,
‘the paragraphs should have distinct themes related
to the document theme’ for the first paragraph.

Next, the first paragraph is completed with satel-
lites from the union of the core messages and the
expanded messages sets. These satellites are ini-
tially filtered so that only messages that have the

same prefix as the nucleus ni are considered in
paragraph pi to fulfill REQ8 (‘All messages should
relate to the paragraph theme’). The satellites are
then selected in a linear, greedy, and iterative man-
ner to fulfill REQ1.

For selecting the k’th satellite to a partially con-
structed paragraph already containing k − 1 satel-
lites and one nucleus, we consider both the news-
worthiness of the available messages (REQ9), as
well as how well they would fit the already con-
structed segment (REQ8). Observing only the
newsworthiness would produce a highly incoherent
narrative, whereas focusing only on the narrative
risks leaving out highly important information.

Following the reasoning in Section 2, we as-
sume that two subsequent messages are more likely
to form a good narrative if they are similar. As
such, we need a method for weighing the message’s
newsworthiness by the similarity of the message
to the last message of the under-construction para-
graph, thus balancing the requirements of REQ8
and REQ9. In terms of the message objects de-
scribed in Table 1, it seems to us that the intu-
itive aspects of similarity are related to the de-
gree of similarity within the ‘meta’ fields such as
timestamp, location and value type.

For the timestamp and location fields, we
can state that two messages that have identical val-
ues in the fields are more similar that two messages
that are otherwise the same but have distinct values
for said fields. We call this the contextual similarity
of the messages, and the fields the contextual fields
(Fc), as these fields provide us access to the larger
context in which the value and value type
fields can be interpreted. Contextual similarity cap-
tures the notion that it is likely better to follow a
fact about French healthcare spending in 2020 with
another piece of information about France in 2020,
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rather than about Austria in 1990.
In more precise terms, we propose the following

weighing scheme for contextual similarity: The
similarity simc(A,B) of two messaged A and B
is the product of weights wf > 1 for each field f
among the contextual fields Fc, where both A and
B have the same value for the field:

simc(A,B) =
∏

{f∈Fc|A.f=B.f}
wf (1)

This value strictly increases as more fields are
shared between A and B. We explicitly define
the similarity to be zero if there are no fields f
where A and B share a value. If wf is a uniform
value for all fields f , this scheme is completely
domain-agnostic. Setting different weights wf for
each field f ∈ Fc allows for encoding some do-
main knowledge about which fields are the most
important for the text, thus providing a method
for producing more tailored texts at the cost of
slightly violating REQ2. In our case study, we set
wtimestamp = 1.1 and wlocation = 1.5.

The above consideration of similarity still ig-
nores valuable information available from the
value type field, which describes how the
value in the value field is to be interpreted.
Denoting health:cost:hc2:mio eur (the
cost of rehabilitative care in millions of eu-
ros) by T1, consider its similarity to T2 =
health:cost:hc2:eur hab, the cost of re-
habilitative care as euros per inhabitant, and T3

= health:cost:hc41:mio eur, the cost of
health care related imaging services in millions of
euros. Intuitively, T1 and T2 are thematically closer
than T1 and T3. We model this similarity between
two facts A and B simply as

simt(A,B) =
1

s(A,B)
(2)

where s(A,B) is the length – in colon-separated
units – of the unshared suffix between A and
B’s value type fields. That is, s(T1, T2) = 1
whereas s(T1, T3) = 2. We specify that simt(·, ·)
is zero for all pairs without any shared prefix.

Our formulation of simt(·, ·) was influenced
by the observation that in our context the mes-
sages’ value type values have a constant num-
ber of colon-separated segments. In cases where
the lengths of the value type values differ, an
alternative formulation of

sim ′t(A,B) =
2p(A,B)

`(A) + `(B)
(3)

where `(·) provides the length of the value type
value, and p(·, ·) is the length of shared prefix be-
tween A and B, both measured as colon-separated
units, might be preferable if also more complex.

When considering whether the k’th satellite ski
of paragraph pi should be a specific candidate
c ∈ C, where C is all so far unused messages,
we can combine the similarity metrics with the
newsworthiness of c into a general fitness value as
follows:

fit(c, x) = c.newsworthiness

× simc(c, x)

× simt(c, x)

× set penalty(c)

The set penalty(c) factor depends on whether
the message originates from the core messages set,
or the extended messages set. For messages origi-
nating from the core message set, the penalty is 1.
For messages originating from the extended mes-
sages set, the penalty is 1

dist+1 , where dist is the
distance from the previous core message.

The final score describing how good of an ad-
dition c would be as the kth satellite of the ith
paragraph ski is then obtained by taking the average
of fitnesses of c in relation to both the nucleus ni

and the previous satellite sk−1i by computing:

score(c, ni, s
k−1
i ) =

fit(c, ni) + fit(c, sk−1i )

2

This maximizes the newsworthiness of the para-
graph’s contents (fulfilling REQ9, ‘all messages
should be newsworthy’), while also enforcing re-
latedness to the theme of the paragraph (fulfilling
REQ8, ‘all messages should relate to the paragraph
theme’) by measuring against the nucleus and with
the inclusion of the set penalty. By continuously
measuring against the previously selected satellite,
the procedure also allows for interludes to e.g. dis-
cuss highly newsworthy information related to but
not strictly about the paragraph’s main topic, or
‘thematic drift’. It thus fulfills REQ10 (‘Within
each paragraph, the messages should be presented
in an order that produces a coherent narrative’)
while also paying attention to the pyramid model
of news (See Section 2).

Using score, the highest scoring candidate
ctop = argmaxc∈C score(c, ni, s

k−1
i ) is then

compared to both an absolute threshold tabs and
the newsworthiness of the nucleus ni multiplied
by relative threshold value trel . Provided that the
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maximal paragraph length has not been reached,
the top candidate message ctop is appended to the
paragraph pi as the k’th satellite ski in the document
plan provided that either score(ctop , ni, s

k−1
i ) ≥

tabs or score(ctop , ni, s
k−1
i ) ≥ trel ×

ni.newsworthiness .
These thresholds ensure that the paragraph does

not stray into minutiae, whether considered in ab-
solute terms or in relation to the nucleus of the
paragraph. In cases where the minimum paragraph
length has not been reached, the thresholds are ig-
nored and the top candidate is always appended.
This accounts for REQ7 (‘The paragraphs should
not be excessively long or short’).

The above considerations take into account sev-
eral free parameters, namely the maximal and min-
imal paragraph lengths as well as the threshold
values trel and tabs . In our case study, we selected
the minimal and maximal paragraph lengths as 2
and 5 messages empirically by trialing out various
values and observing the resulting texts. These
should, naturally, be based on the genre of text
and the target audience. For the threshold values
we selected 0.2 and 0.5, respectively, using the
same method as with the paragraph lengths above.
Both the thresholds and the minimal and maximal
paragraph lengths should be viewed as (manually)
tuneable hyperparameters.

5.2 Planning Subsequent Paragraphs
We then proceed to generate further paragraphs in
a manner highly similar to that used when planning
the first paragraph. The only distinction is that,
when selecting the nucleus ni for a subsequent
paragraph pi, we obtain the message from the core
messages set with a highest newsworthiness value
that has a prefix (theme) not yet discussed among
the previously planned paragraphs p1 - pi−1:

ni = argmax
c∈C

c.newsworthiness (4)

where

C =
{
c ∈ CoreMessages|Prefix(c) 6∈

{Prefix(nk)|k ∈ [1..i− 1]}
} (5)

This ensures that the different paragraphs are highly
newsworthy, thus fulfilling REQ6, while also ful-
filling REQ5 for having distinct themes for the
different paragraphs.

As when constructing the subsequent paragraphs,
the total length of the document also needs to

be considered. To fulfill REQ4 (‘The document
should have multiple paragraphs but not be exces-
sively long’), we employ a variation of the method
described in the previous section for ending indi-
vidual paragraphs. A maximal length (in our case,
3 paragraphs) ensures that the document is not al-
lowed to grow beyond reason, whereas a minimal
length (for us, 2 paragraphs) ensures that the docu-
ment is not unreasonably short. After the minimal
length has been reached (but not yet the maximal
length), a new paragraph is only started if the nu-
cleus of the potential paragraph has a newsworthi-
ness value that is at least 30 % of the newswor-
thiness value of the first nucleus of the document.
This, as with the satellites, ensures that the the
document does not stray into minutiae, balancing
REQs 4 and 6. the maximal and minimal lengths,
as well as the 30 % threshold, were determined
by manual fine-tuning and should be viewed as
tuneable hyperparameters.

6 Evaluation

The method described above was implemented in a
larger NLG application producing news alerts for
journalists from datasets provided by Eurostat. A
variation of the same application was also devel-
oped with a simplified document planner. In this
simplified planner, the planner always selects the
maximally newsworthy available message as the
message without any early stopping threshold. Nu-
clei are selected from the core messages set, while
satellites can be from either set. Contrasting our
proposed method with this simplified method en-
ables us to evaluate the importance of narrative
coherence in the generated texts. The larger ap-
plication is multilingual, but the evaluation was
conducted using English language texts.

Three experts were recruited from the Finnish
News Agency STT, a national European news
agency, to evaluate documents on the consumer
price indices in five different European nations.
For all nations, the judges were shown variants
produced by both our proposed method and the
simplified method. One of the selected countries
is the country the news agency is based in, with
the assumption that the judges would have high
amounts of world knowledge they would be able to
use in evaluating these texts. Another variant pair
describes a country that is both relatively small and
geographically remote (but still within EU), with
the assumption that the journalists are unlikely to
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Consumer Prices in Estonia

In June 2020, in Estonia, the monthly growth rate
of the harmonized consumer price index for the
category ’education’ was 30.8 points. It was 30.7
percentage points more than the EU average. In
July 2020, it was 0.4 percentage points less than
the EU average. It was -0.4 points. In May 2020,
the yearly growth rate of the harmonized consumer
price index for the category ’education’ was -20.5
points. It was 21.9 percentage points less than the
EU average.

In August 2020, the monthly growth rate of the
harmonized consumer price index for the category
’housing, water, electricity, gas and other fuels’ was
2.5 points. It was 2.3 percentage points more than
the EU average. In North Macedonia, it was 3 per-
centage points more than the EU average. It was 3.2
points. Estonia had the 3rd highest monthly growth
rate of the harmonized consumer price index for the
category ’housing, water, electricity, gas and other
fuels’ across the observed countries. In Sweden, the
monthly growth rate of the harmonized consumer
price index for the category ’housing, water, elec-
tricity, gas and other fuels’ was 3.1 points.

Figure 1: Example output regarding Eurostat statis-
tics on consumer prices. The text contains 12
messages, selected from among 207,210 messages
available during generation.

have much world knowledge about this country’s
consumer prices. The three other countries were
selected from among those bordering the first coun-
try, with the assumption that the journalists would
have some, but not much, world knowledge relat-
ing to these countries. The final output texts were
not inspected prior to selecting the countries.

All of the texts used in the evaluation were gen-
erated from a copy of the same underlying Eurostat
dataset, entitled ‘Harmonised index of consumer
prices - monthly data [ei cphi m]’2 downloaded
in September 2020. It contains country-level data
regarding the harmonized consumer prices indices,
and their change over time, for various EU nations
starting from January 1996. We preprocess the data
by adding monthly rankings (i.e. determine what
country had the greatest, the second greatest, etc.
value for a specific index category during any spe-
cific month) and comparisons to the EU average
values.

As the evaluation was focused on document plan-
ning and content selection, the larger system was
simplified in some respects, e.g., to not conduct

2Available for download and browsing from
http://appsso.eurostat.ec.europa.eu/
nui/show.do?dataset=ei_cphi_m

complex aggregation. This was done to minimize
the effect of later stages of the generation process
on the evaluation. As a result, the language in the
evaluated documents was relatively stilted, as ex-
emplified by Figure 1. The only manual alteration
was the addition of headings to indicate the texts’
intended themes.

The judges did not receive any direct compensa-
tion but their employer, the news agency, is a mem-
ber of the EU-wide EMBEDDIA research project
within which parts of this work was conducted.
The evaluations were conducted online. The judges
were first provided with some basic information on
the type of documents they were to read (i.e. that
the texts are intended to be news alerts for journal-
ists, rather than publication ready news texts), the
length of the task, etc. All instructions were in the
judges’ native language, in this case Finnish. The
judges were not told which texts were produced by
which variants nor how many variants were being
tested. Following this, the judges were shown the
documents one by one. For each document, the
judges were asked to indicate their agreement with
the following statements (translated from Finnish):

Q1: The text matches the heading

Q2: The text is coherent

Q3: The text lacks some pertinent information

Q4: The text contains unnecessary information

Q5: The text has a suitable length

For Q1–Q4, the judges indicated their agreement
on a 7-point Likert scale ranging from 1 (‘com-
pletely disagree’) to 7 (‘completely agree’). For
Q5, the answers were provided on 5-point scale
ranging from 1 (‘clearly too short’) to 3 (‘length is
suitable’) to 5 (‘clearly too long’). In addition, the
judges were able to provide textual feedback for
each individual text, as well as for the evaluation
task as a whole. The judges’ answers to Q1 – Q5,
are aggregated in Table 2.

The results indicate that the proposed method
statistically significantly increases the document’s
coherence (Q2, mean 4.33 vs. 1.60, median 5 vs 2),
the matching of the document’s content to the doc-
ument’s theme (Q1, mean 4.40 vs. 1.80, median
5 vs 2), and produces documents of more suitable
length (Q5, mean 2.93 vs. 4.07, median 3 vs 4, with
3 being best). The proposed method also seems
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Our method Baseline

Statement Median Mean SD. Median Mean SD. pMWU

Q1 (1–7, ↑) 5 4.40 1.64 2 1.80 0.41 < 0.001*
Q2 (1–7, ↑) 5 4.33 1.76 2 1.60 0.51 < 0.001*
Q3 (1–7, ↓) 4 4.47 1.81 6 5.80 1.42 0.049
Q4 (1–7, ↓) 5 5.13 1.55 6 6.33 0.62 0.024
Q5 (1–5, 3 best) 3 2.93 0.59 4 4.07 0.70 < 0.001*

Table 2: Results obtained during the evaluation. Parentheses indicate answer ranges and whether the
higher (↑), lower (↓) or middle values are to be interpreted as the best. The pMWU column contains the
(uncorrected) p-value of a two-sided Mann-Whitney U test. An asterisk indicates the p-value is statistically
significant also after applying a Bonferroni correction to account for multiple tests.

to result in less unnecessary information being in-
cluded in the document (Q4, mean 5.13 vs 6.33,
median 5 vs 6), and in the text missing less neces-
sary information (Q3, mean 4.47 vs 5.80, median 4
vs 6), but these effects are not statistically signifi-
cant after correcting for multiple comparisons with
the Bonferroni correction. We hypothesize this dif-
ference would become significant in a larger-scale
evaluation.

The free-form textual feedback provided by the
judges, as expected, indicates that the texts could
be further improved. For example, in the case of
the text shown in Figure 1, the judges called for
a sentence explicitly noting that North Macedonia
had the highest monthly growth rate. In addition,
they noted it might be better to produce distinct,
even shorter, texts as ‘news alerts’ while reserving
the evaluated texts for use as a starting point when
the journalist starts writing.

7 Conclusions

In this work, we have identified a need for, and
proposed, a widely applicable baseline document
planning method for generating journalistic texts
from statistical datasets. Our method is based on
observations on the similarities between the orbital
theory of news structure (White, 1997) and Rhetor-
ical Structure Theory (Mann and Thompson, 1988).
While our proposed method is likely to fall short
of the performance of subdomain-specific planning
methods, results indicate that it achieves adequate
performance while fulfilling a set of requirements
identified based on the larger application domain
of news generation.
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Abstract

This paper explores how to automatically
measure the quality of human-generated
summaries, based on a Norwegian corpus
of real estate condition reports and their
corresponding summaries. The proposed
approach proceeds in two steps. First, the
real estate reports and their associated sum-
maries are automatically labelled using a
set of heuristic rules gathered from human
experts and aggregated using weak super-
vision. The aggregated labels are then em-
ployed to learn a neural model that takes
a document and its summary as inputs
and outputs a score reflecting the predicted
quality of the summary. The neural model
maps the document and its summary to a
shared “summary content space” and com-
putes the cosine similarity between the two
document embeddings to predict the final
summary quality score. The best perfor-
mance is achieved by a CNN-based model
with an accuracy (measured against the ag-
gregated labels obtained via weak super-
vision) of 89.5%, compared to 72.6% for
the best unsupervised model. Manual in-
spection of examples indicate that the weak
supervision labels do capture important in-
dicators of summary quality, but the cor-
relation of those labels with human judge-
ments remains to be validated. Our models
of summary quality predict that approxi-
mately 30% of the real estate reports in the
corpus have a summary of poor quality.

1 Introduction

Many types of reports incorporate human-
generated summaries that seek to highlight the most
important pieces of information described in the

full document. This is notably the case for real
estate condition reports, which are long, technical
reports presenting the current condition (as it is
known to the seller) of a property for sale, includ-
ing the general state of each room, known damages
and defects, and key technical aspects such as the
heating, plumbing, electricity and roof. Despite
the rich amount of information contained in these
real estate reports, several surveys have shown that
many buyers of real estate do not read the full doc-
uments but rather concentrate on the summaries
(Sandberg, 2017). However, professionals regard
the quality of these summaries as varying greatly,
from good to very poor. Actors in the real estate
market have suggested that this information deficit
may play an important role in the reported 10% of
Norwegian real estate transactions ending in con-
flict (Huseiernes Landsforbund, 2017).

In this work we explore ways of automatically
measuring the quality of such summaries, using a
corpus of 96 534 real estate condition reports and
their corresponding summaries. Although there ex-
ists a substantial body of work on summary evalua-
tion (Lloret et al., 2018), previous work has largely
focused on automatically generated summaries, of-
ten by comparing those generated summaries to
reference summaries written by humans. The auto-
mated evaluation of human-generated summaries,
however, has received little attention so far.

This paper presents an approach to automatically
evaluate the quality of human-generated summaries
when no manually labelled data is available. In-
stead, we rely on a set of heuristic rules provided by
domain experts to automatically annotate a dataset
of summaries (each coupled to their full-length doc-
ument) with quality indicators. Those annotations
are subsequently aggregated into a single, unified
annotation layer using weak supervision (Ratner
et al., 2017, 2019), based on a generative model

112



that takes into account the varying coverage and
accuracy of the heuristic rules.

Although one could in theory directly use the la-
bels obtained through weak supervision as quality
indicators for the summaries, such an approach has
a number of limitations. Most importantly, heuris-
tic rules are only triggered under certain conditions,
and may therefore “abstain“ from providing a qual-
ity score on some summaries. For instance, we may
have a rule stating that, if the full report describes
a major defect or damage in the bathroom, then a
summary that fails to mention this defect should
be labelled as being of poor quality. This rule will
only label summaries that meet this specific condi-
tion, and abstain from generating a prediction in all
other cases. Some heuristic rules may also depend
on the availability of external data sources that are
not available at prediction time. For instance, one
can exploit the fact that an insurance claim has
been raised on the real estate as an indicator that
the summary may have omitted to mention some
important defects or damages. Needless to say, this
heuristic can only be applied on historical data, and
not on new summaries.

To address those shortcomings, we use the ag-
gregated labels obtained via weak supervision as a
stepping stone to train a neural model whose task
is to assess the quality of a summary in respect to
its full-length document. The neural model embeds
both the document and its summary into a dedi-
cated semantic space (referred to as the summary
content space) and computes the final quality score
using cosine similarity. As real estate condition re-
ports are often long documents (10 pages or more),
we conduct experiments with models based not
only on embeddings of entire documents, but also
on embeddings of sections, sentences and words.

The paper makes three contributions:

1. A framework to automatically (a) associate
summaries with quality indicators based on
expert-written rules, and (b) aggregate those
indicators using weak supervision.

2. A neural model that predicts the summary
quality by embedding both the document and
its corresponding summary into a common
summary content space, and then computing
the similarity between the two vectors. The
neural model is trained using the weakly su-
pervised labels as described above.

3. An evaluation of this approach on a large cor-
pus of Norwegian real estate condition reports
and their associated summaries.

As detailed in Section 4, this weak supervi-
sion approach is able to outperform unsupervised
methods based on Latent Semantic Analysis (Deer-
wester et al., 1990) or Doc2Vec embeddings (Le
and Mikolov, 2014) – by a large margin. Although
the approach is evaluated on a specific corpus of
real estate reports, the proposed methodology can
be applied to any type of summaries, provided hu-
man experts are able to specify heuristics to assess
the summary quality in the target domain.

2 Related Work

2.1 Summary evaluation
Summary evaluation has so far been mostly stud-
ied in relation to the task of automatic text sum-
marization, i.e., the automated generation of sum-
maries conditioned on the full document (Rush
et al., 2015; Cheng and Lapata, 2016; Gambhir and
Gupta, 2017; Cao et al., 2018; Fernandes et al.,
2019). However, few papers have investigated how
to evaluate the quality of human-generated sum-
maries such as the short summaries associated with
real estate condition reports.

Lloret et al. (2018) provide an overview of eval-
uation metrics for text summarization, focusing on
three quality criteria: readability, non-redundancy
and content coverage. Although readability and
non-redundancy are important criteria to evaluate
automatic text summarization systems, they are less
relevant for assessing human-generated summaries
written by professionals. The criteria of content
coverage is, however, relevant in both contexts, and
will be the main focus of this paper.

Metrics for summary evaluation can be divided
in three overarching groups (Cabrera-Diego and
Torres-Moreno, 2018; Ermakova et al., 2019):

1. Manual evaluation based on human judg-
ments, where participants fill questionnaires
to rate the summary quality according to a
number of criteria (Nenkova and Passonneau,
2004; Saggion et al., 2010).

2. Automatic evaluation from overlap-measures
with reference summaries written by human
experts (Lin, 2004; Conroy and Dang, 2008;
Giannakopoulos, 2013; Zhang et al., 2020).
One popular metric based on this idea is
ROUGE (Lin, 2004), which is computed from
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the proportion of n-grams that are observed
in both the generated output and the reference
summaries.

3. Automatic evaluation without reference sum-
maries, typically using measures of diver-
gence between the generated summary and the
source document (Torres-Moreno et al., 2010;
Louis and Nenkova, 2013; Cabrera-Diego and
Torres-Moreno, 2018).

The evaluation method proposed in this paper
fits into the last category, as we do not require
the availability of reference summaries. However,
contrary to divergence-based metrics, the summary
quality is estimated here on the basis of heuristic
rules provided by human experts.

2.2 Document similarity

The proposed approach is also related to models
of semantic similarity, as the purpose of our sum-
mary evaluation is to assess the extent to which the
criteria of content coverage is satisfied.

There is a vast body of existing work on how
to measure the semantic similarity between doc-
uments. This topic is also the focus of various
benchmarks, such as the Microsoft Research Para-
phrase (MSRP) corpus (Dolan et al., 2004) and the
Semantic Textual Similarity (STS) benchmark (Cer
et al., 2017), both expressed as pairs of short docu-
ments. The ACL Anthology Network (Radev et al.,
2009) is also used for measuring semantic simi-
larity between articles in Liu et al. (2017). Gong
et al. (2019) investigates how to measure similarity
between documents of varying sizes.

Document similarity can be computed from topic
models based on, e.g., Latent Dirichlet Alloca-
tion (Blei et al., 2003; Rus et al., 2013; Liu et al.,
2017), or through document embeddings (Le and
Mikolov, 2014; Lau and Baldwin, 2016; Liu et al.,
2017; Cer et al., 2017; Gong et al., 2019; Vrbanec
and Meštrović, 2020). Contextual word represen-
tations such as BERT, XLNet or GPT-3 (Devlin
et al., 2018; Yang et al., 2019; Brown et al., 2020),
can also be used to derive document embeddings
and have been shown to improve performance
on document similarity benchmarks (Reimers and
Gurevych, 2019; Li et al., 2020), notably on the
MSRP corpus and the STS benchmark.

Of particular relevance to this paper is the text
matching approach of Zhong et al. (2020) in which
the source document and potential summaries are

matched in a semantic space. Their approach is,
however, optimised for the problem of extracting
summaries, while our focus is on evaluating ex-
isting, human-generated summaries, using expert-
written rules as quality indicators.

2.3 Weak supervision

The key idea behind weak supervision is to label
data points using a combination of weak (noisy)
supervision signals instead of relying on a single
gold standard. Those supervision signals are typi-
cally expressed as labeling functions, which may
take the form of heuristic rules, lookups in exter-
nal knowledge bases, machine learning models, or
even annotations from crowd-workers. The result
of those labeling functions are then aggregated us-
ing a generative model that estimates the accuracy
(and possible correlations) of each function. Once
aggregated, the (probabilistic) labels can be em-
ployed to train any type of machine learning model
using supervised learning. One key benefit of weak
supervision frameworks lies in their ability to inject
expert knowledge to learn data-driven models in
situations when data is scarce or non-existent (Hu
et al., 2016; Wang and Poon, 2018).

Weak supervision makes it possible to leverage
external knowledge sources to automatically label
data points instead of relying exclusively on hand-
annotated data. An early application of this idea is
distant supervision (Mintz et al., 2009; Ritter et al.,
2013), where knowledge bases are used to auto-
matically label documents with specific categories.
One popular approach for weak supervision is the
Snorkel framework, which was first introduced by
Ratner et al. (2016), and later expanded by Ratner
et al. (2017) and Ratner et al. (2019).

Weak supervision frameworks have been applied
to a number of NLP tasks, from named entity recog-
nition to relation extraction and dialogue state track-
ing (Bach et al., 2019; Bringer et al., 2019; Han-
cock et al., 2019; Lison et al., 2020; Safranchik
et al., 2020). There is, however, little work with
weak supervision related to document similarity or
summary quality evaluation.

3 Approach

The approach adopted in this paper is divided in
two steps. We first define and apply a set of label-
ing functions to the dataset, allowing us to derive
binary (good/bad) quality indicators on the sum-
maries in relation to their full-length reports. Those
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quality indicators are then aggregated into a single,
probabilistic measure of summary quality using
weak supervision. The dataset and labeling func-
tions are described in Sections 3.1 and 3.2.

Then, using those aggregated labels as targets,
we learn a neural model that maps the reports and
summaries to a common summary content space.
The resulting embeddings should reflect only key
semantic information that is relevant for measuring
summary quality, so that it can be measured by the
cosine similarity in this space. The neural architec-
ture and associated document embedding methods
are defined in Sections 3.3 and 3.4.

Assessing the summary quality using a neural
model instead of relying directly on the quality indi-
cators derived from the labeling functions has two
major advantages. First, the neural model can gen-
eralise to all possible report/summary pairs, while
aggregated labels may be absent for some sum-
maries, as the rules are only triggered when spe-
cific conditions are met. Second, some labeling
functions depend on external resources that may be
unavailable at prediction time. For instance, one
labeling function relies on whether the buyer has
filed an insurance claim, which is a piece of infor-
mation that is only available for historical data, and
requires us to “peek into the future”.

3.1 Dataset

The corpus contains 96 534 real estate condition
reports, each containing the following parts:

i) Textual descriptions of various parts of the
real estate (e.g., rooms) along with a textual
assessment of their physical condition.

ii) Condition degrees (“tilstandsgrad” or TG) for
parts of the real estate, in the range 0–3, where
0 indicates perfect condition (for new build-
ings) and 3 a seriously deteriorated condition,
due to a major damage or defect.

iii) Metadata for the real estate and the condition
report – e.g., size, building year, the author of
the report, date of assessment, etc.

iv) The summary.

We consider (i) as constituting the full-length re-
port, denoted r, while the summary text (iv) will
be denoted s. The metadata (ii)–(iii) is used only
by the weak supervision model. The average report
length is 1287 words (standard deviation: ±627
words), while the average summary length is 183
words (standard deviation: ±138 words).

3.2 Labeling Functions
A collection of 22 labeling functions was specified
in cooperation with domain experts. Each func-
tion has two possible output values, depending on
whether it implies a bad summary, denoted by (−−−)
or a good summary, denoted by (+++). If the rule
condition is not met, the rule abstains from suggest-
ing an output (Ratner et al., 2017). The full list of
labeling functions is the following:

1. Summary shorter than 50 words. (−−−)
2. Summary longer than 400 words. (−−−)
3. TG3 for the bathroom, but no mention of the

bathroom in summary. (−−−)
4. TG3 for the kitchen, but no mention of the

kitchen in summary. (−−−)
5. TG3 for the roof, but no mention of the roof

in summary. (−−−)
6. TG2 or TG3 for the bathroom, with mention

of the bathroom in summary. (+++)
7. TG2 or TG3 for the kitchen, with mention of

the kitchen in summary. (+++)
8. TG2 or TG3 for the roof, with mention of the

roof in summary. (+++)
9. Correction of TG in the bathroom, but no men-

tion of the bathroom in summary. (−−−)
10. Correction of TG in the kitchen, but no men-

tion of the kitchen in summary. (−−−)
11. Correction of TG on the roof, but no mention

of the roof in summary. (−−−)
12. Summary with long words readability score

(LIKS) above 55. (−−−)
13. Summary with unique words readability score

(OVR) above 96. (−−−)
14. An insurance claim has been raised on the real

estate after the transaction. (−−−)
15. Written by an agent with insurance claims on

more than 7.5% of her reports. (−−−)
16. Written by an agent with LIKS-score higher

than 55 on more than 40% of her reports. (−−−)
17. Written by an agent with OVR-score higher

than 96 on more than 40% of her reports. (−−−)
18. Written by an agent with fewer than 10 reports

that year. (−−−)
19. Fewer than 20% of the words in the summary

are found in the report. (−−−)
20. Fewer than 3% of the words in the report are

found in the summary. (−−−)
21. More than 70% of the words in the summary

are also found in the report. (+++)
22. More than 20% of the words in the report are

also found in the summary. (+++)
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For a given summary, let y be the unknown true
label, with possible values −1 (bad) and 1 (good),
and let λ be the outputs of the labeling functions.
By applying these to the real estate condition re-
ports, a generative label model Pµ(y | λ) can be
estimated in a fully unsupervised fashion, as de-
scribed by Ratner et al. (2019). We then obtain
labels y+ = Pµ(y = 1 | λ) ∈ [0, 1], indicating the
probability that a given summary is good.

3.3 Summary Quality Model

LetR denote the set of all possible reports and sum-
maries, and let Z be the summary content space.
We define the summary quality model as a function
q(r, s) comparing two document embeddings:

q(r, s) = cos sim
(
h(r), h(s)

)
= cos sim(zr, zs),

where h : R → Z is a learned mapping from texts
(full reports or summaries) to vectors. The general
architecture is illustrated in Figure 1.

The training objective for h should be such that
a good (bad) summary should yield a high (low)
cosine similarity. We also want our models to re-
turn quality scores distributed over the entire cosine
domain [−1, 1], and we find that the standard cross-
entropy loss tends to push the values towards the
edges. Instead, we use a variation of the cosine
embedding loss function, given by

l
(
q(r, s), y

)

=

{
max

(
0, τgood − cos sim(zr, zs)

)
, y = 1

max
(
0, cos sim(zr, zs)− τbad

)
, y = −1,

where τgood and τbad are thresholds on the qual-
ity scores of good/bad summaries. A loss of zero
is obtained if good summaries have a quality score

higher than τgood or if bad summaries have a quality
score lower than τbad. The model will thereby not
perform better by pushing the quality of summaries
above τgood or below τbad, which encourages the
model to return scores on a larger part of the co-
sine domain [−1, 1]. We find experimentally that
τgood = 0.2 and τbad = −0.2 result in models with
an appropriate distribution of values.

The weak supervision labels y+ are expected
to be noisy. We follow Ratner et al. (2019) in
using a noise-aware version of our loss function
l
(
q(r, s), y

)
for training, which we define by

l∗
(
q(r, s), y+

)
= Ey∼Pµ(y|λ)

[
l
(
q(r, s), y

)]

= y+ · l
(
q(r, s), 1

)
+ (1− y+) · l

(
q(r, s),−1

)
.

(1)

Having defined the general model architecture
and its training procedure, we now detail various
solutions to express the mapping h.

3.4 Document embeddings
3.4.1 LSA and Doc2vec
We start with unsupervised baseline models, and
experiment with both Latent Semantic Analysis
(Deerwester et al., 1990) and Doc2vec (Le and
Mikolov, 2014), for their ability to easily embed
arbitrarily long documents. We train LSA and
Doc2vec on the training set (ignoring the qual-
ity labels, as those techniques are self-supervised).
These models can be described in Figure 1 by re-
moving the training and neural network compo-
nents, and by using LSA or Doc2vec for the em-
beddings. We use a dimensionality of 500 for LSA
and 100 for Doc2vec.

3.4.2 FFN-based models
Our first supervised model for h is a feed-forward
network. We first embed the reports and summaries
with LSA or Doc2vec (both of dimension 500) as
described above, and add a feed-forward transfor-
mation of those vectors which is optimised on the
basis of the embedding loss function. The network
weights are shared for both the full report r and the
summary s. The architecture becomes as illustrated
in Figure 1 by inserting LSA or Doc2vec into the
embedding component and a feed-forward network
into the neural-network component. We refer to the
resulting models as LSA+FFN and Doc2vec+FFN.

We employ the ReLu activation function in all
layers except the last, which is linear (i.e., has no
activation function). By using only a single feed-
forward layer, this model architecture becomes
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equivalent to a linear transformation of the LSA
or Doc2vec embeddings. We refer to the resulting
models as LSA+LinTrans and Doc2vec+LinTrans.

The hidden layers have 1000 units, and the final
layer 100 units. LSA+FFN and Doc2vec+FFN
respectively use two and three hidden layers.

3.4.3 LSTM-based models

The second model for the function h mapping re-
ports and summaries to the summary content space
is an LSTM network. LSTMs are commonly used
over word embeddings, but this approach is hard
to scale due to the length of real estate condition
reports. Instead, we split the reports into sections,
and summaries into sentences and use LSA or
Doc2vec to embed each, giving a sequence of vec-
tors for each report and summary, and train the
LSTM on these. A final, fully connected linear
layer is placed on the LSTM output. In Figure 1
the pre-processing component now includes the
splitting of sections/sentences, the embedding com-
ponent is LSA or Doc2vec, and the neural-network
component is the LSTM. We refer to the resulting
models as LSA+LSTM and Doc2vec+LSTM. We
use a single, unidirectional LSTM layer with a cell
dimensionality of 100, along with 100 units in the
final dense layer.

3.4.4 Convolutional models

The final model for h is a convolutional neural net-
work with word embeddings as inputs. Those word
embeddings are estimated either by Word2vec (di-
mension: 100) or a neural embedding layer (dimen-
sion: 500), both trained on the training set of the
corpus. We use 1D convolutions with window size
∈ {2, 3, 5, 7, 10} and a number of filters equivalent
to the word embedding dimension. We then apply a
maximum pooling to obtain a single output vector,
fed to a final, fully-connected linear layer.

One benefit of convolutional neural networks is
their scalability when processing long documents.
The convolutional model detects local text pat-
terns that are especially predictive for the sum-
mary quality, thereby providing a good mapping
to the summary content space. In Figure 1 the
pre-processing component now includes tokeni-
sation, the embedding component is the embed-
ding layer or Word2vec, and the neural-network
is the CNN. We refer to the resulting models as
EmbLayer+CNN and Word2vec+CNN.

No. Cov. Overlap Conflict Acc.
1 (−−−) 10.4 % 96.2 % 22.1 % 100 %
2 (−−−) 7.9 % 91.1 % 82.3 % 10.9 %
3 (−−−) 5.1 % 90.2 % 27.5 % 71.5 %
4 (−−−) 2.4 % 95.8 % 50.0 % 58.5 %
5 (−−−) 2.6 % 92.3 % 30.8 % 78.0 %
6 (+++) 36.9 % 76.4 % 46.1 % 74.9 %
7 (+++) 11.6 % 93.1 % 47.4 % 97.3 %
8 (+++) 25.1 % 83.7 % 46.2 % 82.0 %
9 (−−−) 7.6 % 84.2 % 22.4 % 73.5 %

10 (−−−) 5.1 % 90.2 % 45.1 % 60.8 %
11 (−−−) 8.1 % 82.7 % 34.6 % 72.9 %
12 (−−−) 11.8 % 92.4 % 42.4 % 73.4 %
13 (−−−) 10.7 % 93.5 % 26.2 % 100 %
14 (−−−) 1.8 % 83.3 % 55.6 % 47.9 %
15 (−−−) 1.6 % 93.8 % 43.8 % 71.5 %
16 (−−−) 10.8 % 88.9 % 48.1 % 57.9 %
17 (−−−) 10.0 % 91.0 % 37.0 % 100 %
18 (−−−) 5.4 % 85.2 % 48.1 % 58.9 %
19 (−−−) 3.4 % 76.5 % 14.7 % 83.4 %
20 (+++) 6.3 % 85.7 % 49.2 % 63.3 %
21 (−−−) 7.1 % 94.4 % 11.3 % 100 %
22 (+++) 6.2 % 91.9 % 48.4 % 100 %

Table 1: Analysis of the 22 labeling functions when
applied to the real estate condition report corpus.

4 Evaluation

4.1 Weak Supervision Labels

Table 1 shows for each labeling function its cov-
erage (as a percentage of the full corpus), the pro-
portion of overlaps with at least one other labeling
function, the proportion of conflicts with at least
one other labeling function, and its accuracy esti-
mated through the aggregated label model.

The weak supervision model abstains from la-
beling 15.9% of the summaries, giving us a labeled
dataset of Mlab = 81 195 samples. Figure 2 shows
a histogram of the resulting probabilistic labels,
y+m = Pµ(ym = 1 | λm) for m = 1, . . . ,Mlab,
where each y+m is the probability of summary m
being of high quality. We observe many summaries
for which y+m ≈ 0 or y+m > 0.7. The labels seem
otherwise quite evenly distributed on the probabil-
ity range [0, 1], and their average is 0.493, which
indicates that the dataset is well balanced and does
not require oversampling. We split the labeled
dataset of 81 195 samples in the ratio 8:1:1, yield-
ing a training set of 64 955 samples and validation
and test sets of 8 120 samples each.
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Figure 2: Histogram showing the distribution of
labels from the weak supervision model.

4.2 Model Performance
We evaluate our models against the weak supervi-
sion labels. The model performances on the test
set are given in Table 2, measured by the standard
classification scores accuracy and F1, and for the
supervised models also by the loss function given
in (1). We train the models using the Adam opti-
mizer with a learning rate of 1× 10−4, reduced by
a factor of 0.1 after one third of the epochs, and
again after two thirds. We also employ a dropout
of 0.2 in the hidden layers.

For the computation of accuracy and F1, the
probabilistic labels y+ and the quality measures
q(r, s) are converted to binary labels; the thresh-
old for y+ is 0.5, while for q(r, s) the threshold
is tuned on the validation set. We see that the su-
pervised models outperform the unsupervised ones
and that the model Word2vec+CNN achieves the
best performance both in terms of accuracy and F1.

It should be noted that the aggregated labels
obtained with weak supervision only constitute a
proxy for the ground truth. Although we expect
them to provide good indications of the overall
quality of the summaries in this domain, we cannot
be certain of how well they correlate with human
judgment, so our conclusions regarding the abil-
ity of various models to measure summary quality
must remain somewhat tentative.

Figure 3 illustrates the performance of four mod-
els by showing the distributions of quality mea-
sures for samples where the weak supervision label
model is confident about the label. Summaries
with y+ ≥ 0.9 are shown in green and those with
y+ ≤ 0.1 are shown in red. We observe that all
of these models are, to some degree, able to distin-
guish good summaries from bad ones. The unsu-
pervised LSA baseline does, however, have much
more overlap than the other models, which reflects
the poorer performance in Table 2. The distribu-
tions for the model LSA+LSTM is unexpected,

Model Loss Acc. F1

LSA - 0.726 0.755
Doc2vec - 0.684 0.686
LSA+LinTrans 0.095 0.863 0.876
Doc2vec+LinTrans 0.101 0.850 0.863
LSA+FFN 0.080 0.882 0.893
Doc2vec+FFN 0.079 0.885 0.897
LSA+LSTM 0.079 0.882 0.895
Doc2vec+LSTM 0.080 0.880 0.891
EmbLayer+CNN 0.088 0.888 0.898
Word2vec+CNN 0.085 0.895 0.905

Table 2: Model performances on the test set.

in that it pushes the quality measures just below
τbad = −0.2 or just above τgood = 0.2, instead
of distributing them on the complete quality range
[−1, 1]. This behavior effectively makes it a clas-
sifier rather than a model of quality measure. We
observe the same behavior for the Doc2vec+LSTM
model and FFN-based models. The LinTrans and
CNN-based models, on the other hand, yield a good
separation of good and bad summaries, while dis-
tributing them on a large portion of the quality
range, which is the behavior we seek.

Figure 4 illustrates the distribution of quality
measures assigned to all of the M = 96 534 sam-
ples in the corpus by the Word2vec+CNN model.
By comparing this histogram to the one in Figure 2,
we see that this model provides a more continuous
quality measure than the labels aggregated from
the labeling functions using weak supervision.

4.3 Summary Quality

When applied to the entire corpus of real estate con-
dition reports and summaries, including the ones
that the weak supervision model abstained from la-
beling, the Word2vec+CNN model finds that 35%
of the summaries have a quality score q(r, s) be-
low τbad = −0.2, our chosen threshold for being
of poor quality, while 33% are judged to be of
high quality (i.e., q(r, s) > τgood = 0.2), while
the remaining 31% are considered mediocre. The
LSA+LinTrans model find 28% of the summaries
to be of poor quality, and an average of the CNN
and LinTrans models gives a proportion of poor
summaries around 30%. If almost a third of the
summaries of real estate condition reports are in
fact of poor quality, this would bode ill for the real
estate buyers that do not read the full reports.

Three example summaries are included in Ap-
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Figure 3: Normalized histograms showing the distribution of quality measures q(r, s) for summaries from
the test set that the label model considers as good (shown as green) and bad (shown as red).

Figure 4: Normalized histogram of q(r, s) for the
entire corpus of summaries.

pendix A. Their predicted quality measures using
the weak supervision model, the LinTrans models
and the CNN models are given in Table 3. We see
that all models agree that the first summary is of
good quality, and that the second is relatively bad.
Since the first summary is quite thorough while the
second is excessively short and quite uninforma-
tive, this is in line with our expectations. The third
summary, however, is considered poor by the label
model but quite good by the neural models. As this
is also a quite thorough summary which captures
the essence of its corresponding report, it would
seem that the supervised models outperform in this
case the labels they were trained on. We observed
several such examples in the corpus, but without
data from human judgments, we cannot ascertain

Model Ex. 1 Ex. 2 Ex. 3
Pµ(y = 1 | λ) 0.92 0 0
LSA+LinTrans 0.24 −0.68 0.32
Doc2vec+LinTrans 0.46 −0.54 0.28
EmbLayer+CNN 0.67 −0.62 0.41
Word2vec+CNN 0.23 −0.68 0.61

Table 3: Quality scores for the three example sum-
maries given in the appendix.

to what extent the neural models are truly more
reliable than the weak supervision labels.

5 Conclusion

This paper describes a novel approach to automati-
cally assess the quality (focusing primarily on the
criteria of content coverage) of human-generated
summaries, using a corpus of real estate condition
reports as a concrete example. The approach relies
on the creation of document embeddings that are
appropriate for measuring summary quality. This
gives us a particular kind of semantic space (the
summary content space) where summary quality
can be measured by the cosine similarity between
the report and its summary.

Since we have no access to “ground truth” values
for the summary quality, we obtain indirect qual-
ity indicators based on a set of 22 heuristic rules
gathered from human experts. Those quality indi-
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cators are then aggregated into a single probability
(of a summary being of high quality) using weak
supervision. The aggregated probabilities are sub-
sequently employed as targets for training neural
models optimised for the task of predicting sum-
mary quality. Evaluation results show that the best
neural model, based on a convolutional architec-
ture, achieves an overall accuracy of 89.5% when
measuring the model output against the aggregated
labels, while the best unsupervised model (LSA)
only achieves an accuracy of 72.6%.

An important limitation of the proposed method
is the reliance on indirect indicators of summary
quality (as expressed by the heuristic rules) instead
of human judgments. A key research question for
future work is thus to examine the correlations be-
tween the quality measures derived from the label-
ing functions and human judgments. While the
heuristic rules do not capture all aspects that may
influence the overall quality of a summary, our
hypothesis (yet to be validated) is that they never-
theless correlate well with human judgments. An
additional benefit of these heuristic rules is their
explanatory power, making it possible to provide
concrete, human-readable suggestions on how to
improve a given summary.

Although not considered in this paper, the use of
document embeddings relying on contextual word
representations is another interesting research ques-
tion that we wish to investigate in future work.
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Gazpio, and Lucia Specia. 2017. SemEval-2017
task 1: Semantic textual similarity multilingual and
crosslingual focused evaluation. In Proceedings of
the 11th International Workshop on Semantic Evalu-
ation (SemEval-2017), pages 1–14. Association for
Computational Linguistics.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494, Berlin, Germany. As-
sociation for Computational Linguistics.

John M. Conroy and Hoa Trang Dang. 2008. Mind
the gap: Dangers of divorcing evaluations of sum-
mary content from linguistic quality. In Proceedings
of the 22nd International Conference on Computa-
tional Linguistics (COLING 2008), pages 145–152,
Manchester, UK. COLING 2008 Organizing Com-
mittee.

Scott Deerwester, Susan T. Dumais, George W. Fur-
nas, Thomas K. Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. arXiv preprint arXiv:1810.04805.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In Pro-
ceedings of the 20th International Conference on

120



Computational Linguistics, pages 350–356. Associ-
ation for Computational Linguistics.

Liana Ermakova, Jean Valère Cossu, and Josiane
Mothe. 2019. A survey on evaluation of summa-
rization methods. Information processing & man-
agement, 56(5):1794–1814.

Patrick Fernandes, Miltiadis Allamanis, and Marc
Brockschmidt. 2019. Structured neural summariza-
tion. In 7th International Conference on Learning
Representations, ICLR 2019, New Orleans, LA, USA,
May 6-9, 2019. OpenReview.net.

Mahak Gambhir and Vishal Gupta. 2017. Recent auto-
matic text summarization techniques: a survey. Arti-
ficial Intelligence Review, 47(1):1–66.

George Giannakopoulos. 2013. Multi-document multi-
lingual summarization and evaluation tracks in ACL
2013 MultiLing workshop. In Proceedings of the
MultiLing 2013 Workshop on Multilingual Multi-
document Summarization, pages 20–28, Sofia, Bul-
garia. Association for Computational Linguistics.

Hongyu Gong, Tarek Sakakini, Suma Bhat, and Jin-
jun Xiong. 2019. Document similarity for texts of
varying lengths via hidden topics. arXiv preprint
arXiv:1903.10675.

Braden Hancock, Antoine Bordes, Pierre-Emmanuel
Mazare, and Jason Weston. 2019. Learning from
dialogue after deployment: Feed yourself, chatbot!
In Proceedings of the 57th Annual Meeting of the
Association for Computational Linguistics, pages
3667–3684, Florence, Italy. Association for Compu-
tational Linguistics.

Zhiting Hu, Xuezhe Ma, Zhengzhong Liu, Eduard
Hovy, and Eric Xing. 2016. Harnessing deep neu-
ral networks with logic rules. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
2410–2420, Berlin, Germany. Association for Com-
putational Linguistics.

Huseiernes Landsforbund. 2017. Konfliktnivået ved
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Appendix A. Example Summaries

1. Enebolig fra 1978 som er holdt vedlike og har
god standard, tatt alder i betraktning. Den
er noe påkostet over tid ellers er det orig-
inalt. Det er valmtak med bordtak. Renner
og nedløp. Bindingsverkvegger som er isolert
med stående panel og murforblending. Vin-
duer med karm og ramme i tre med isoler-
glass. Massiv utgangsdør i teak. Det er leca
grunnmur og støpt dekke. Dreneringen er fra
byggetiden. Innvendig er det panel og plater i
himling, gulv har fliser, belegg, laminat, tep-
per og parkett. Baderom med fliser på gulv og
vegger med sanitær utstyr som er fra bygge-
tiden. Det er eget wc rom og dusjkabinett i
fyr-rom og wc med servant i vaskerom. Eik
kjøkkeninnredning med profiler på overskap
og underskap fra byggetiden. Sentralfyr for
olje og strøm som er ca 10 år. Oljetank under
terrasse. Elektrisk anlegg med skrusikringer.
Garasje fra 1986 den er oppført med støpt
dekke, leca ringmur, stående kledning. Valm-
tak med betongstein, renner og nedløp i plas-
tbelagt stål. Det er 2 stk leddporter. Det er
registrert vanlig elde og bruksslitasje på eien-
dommen.

2. Boligen ligger i et etablert boligområde, med
kort vei til skole, barnehage og forretning.
Det er gjort bemerkninger som bør utbedres,
som våtrom og oppgraderinger pga. normal
bruksslitasje. Forøvrig les rapport.

3. Bolig bygget i år 2005 med gjeldende
forskrifter fra byggeår. (Plan og bygn-
ingsloven fra 1985, revidert i 1997. Teknisk
forskrift -97.) Boligen og garasje fremstår
som normalt vedlikeholdt. Malte flater på
alle vegger og himlinger i oppholdsrom.
Keramiske fliser på gulv og vegger i bad.
Keramiske fliser på gulv i vaskerom. Vedovn
i stue med inndekning fra år 2010. Gruset
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område rundt boligen. Stor terrasse på opp-
side med støpte fundamenter. Garasje med
plass til to biler. Keramiske fliser på vegger
og gulv i bad. TG2 grunnet alder. Keramiske
fliser på gulv i vaskerom. Vegger platet med
malt tapet. TG2 grunnet alder. Adkomstdør
trenger justering. TG2 Platon grunnmurs-
plate. Manglende topp-list. Dette kan samle
fukt mot grunnmur. Løv og barnåler bak pla-
tonplate ble registrert ved befaring. Rensing
og festing av plate anbefales. TG3 Ett nedløp
i front av bolig ikke tilkoblet drensrør. TG2.
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Abstract

The current recipe for better model per-
formance within NLP is to increase model
size and training data. While it gives us
models with increasingly impressive re-
sults, it also makes it more difficult to
train and deploy state-of-the-art models
for NLP due to increasing computational
costs. Model compression is a field of re-
search that aims to alleviate this problem.
The field encompasses different methods
that aim to preserve the performance of
a model while decreasing the size of it.
One such method is knowledge distilla-
tion. In this article, we investigate the ef-
fect of knowledge distillation for named
entity recognition models in Swedish. We
show that while some sequence tagging
models benefit from knowledge distilla-
tion, not all models do. This prompts us
to ask questions about in which situations
and for which models knowledge distilla-
tion is beneficial. We also reason about the
effect of knowledge distillation on compu-
tational costs.

1 Introduction

Currently, most research that pushes the bound-
ary for state-of-the-art performance within natu-
ral language processing involves the increase of
number of model parameters as well as the com-
putations needed for training (Devlin et al., 2019;
Radford et al., 2019; Brown et al., 2020). The
trend seems to be that the larger the model, the
better the performance. As noted by Strubell et al.
(2019) these state-of-the-art models require signif-
icant computational resources during training as
well as deployment. While it certainly is a good
thing that state-of-the-art performance within NLP
is continuously improving, there is work to be

done on model efficiency. More efficient models
are needed both for the sake of the environment
and for the sake of equal research opportunities.
Here we define an “efficient model” based on both
performance and computational cost, such that a
model is more efficient if it has better performance
or lower computational cost, and vice versa.

Knowledge distillation (Hinton et al., 2015) is
one way to improve model efficiency during de-
ployment. There are several works on successful
application of knowledge distillation both for pre-
training tasks and for specific downstream tasks.
Adhikari et al. (2020) show that knowledge dis-
tillation can be used to improve deployment effi-
ciency of models for the downstream task of doc-
ument classification in English.

In this article we investigate the effect of knowl-
edge distillation on models for named entity
recognition (NER) in Swedish.1 The intention is
to shed some light on how well knowledge distilla-
tion performs for different sequence tagging mod-
els and in the Swedish language. Our main goal
is to contribute to better model efficiency within
NLP. Naturally, this entails that we also focus on
measuring the efficiency of each model investi-
gated. Hopefully, this work will facilitate the de-
velopment of more efficient models for both the
English and the Swedish language.

2 Related work

Our work focuses on the task of named entity
recognition, on model efficiency and on improv-
ing model efficiency. These topics are hardly new
to the NLP arena and we will use this section to
describe some of the previous work.

2.1 Named Entity Recognition
The most well-known NER task is probably the
CoNLL-2003 Task created by Tjong Kim Sang

1The code for the project is available at https://
github.com/lovhag/distilling-in-swedish.
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and De Meulder (2003). It tests a model on its ca-
pacity to recognize words as either names of per-
son (PER), location (LOC), organization (ORG),
miscellaneous (MISC) or not an entity (O).

Much work has been done on NER for English,
with several models trained on the data, as seen
in section 2.2. However, the same cannot be said
for other languages. Firstly, there is the issue of
obtaining an adequate training, development and
test dataset for NER. The largest Swedish dataset
which can be used for NER is built on the SUC 3.0
dataset (Ejerhed et al., 1992).

NER data resources have also been developed
in other North-Germanic languages and work on
this is ongoing. Recently, Hvingelby et al. (2020)
created a novel NER dataset for Danish. In the
same article, they provide an overview of the avail-
able NER datasets for similar languages, such as
Swedish and Norwegian. They also train a BERT
model for their Danish NER task and obtain an f1
score of 83.76.

2.2 Named Entity Recognition models

When Devlin et al. (2019) tested their BERT
model on the downstream task of NER they used
the CoNLL-2003 English data and obtained an f1
score of 92.4 with their base model.

One previous state of the art model for NER
before BERT, named “CCNN+WLSTM+CRF”, is
provided by Yang and Zhang (2018) and Ma and
Hovy (2016).2 It does not use hand-crafted fea-
tures or deep contextualized word embeddings.

2.3 Model efficiency

Research that focuses on model efficiency and en-
ergy consumption is seemingly on the rise. The
most noteworthy contribution within the field of
NLP is that of Strubell et al. (2019). In their work,
Strubell et al. claim that the NLP field would ben-
efit from reporting training time and sensitivity to
hyperparameters for developed models. Addition-
ally, Clark et al. (2020) argue that compute effi-
ciency should be taken in consideration together
with downstream performance for representation
learning methods. To this end, they report model
performance as a function of train FLOPS neces-
sary to reach that performance.

2According to http://nlpprogress.com/
english/named_entity_recognition.html.

2.4 Development of more efficient models

Several methods for making models within lan-
guage processing more efficient have been devel-
oped and research on this is ongoing. Seemingly,
the methods so far discovered can be categorized
into three different types: 1) conditional computa-
tion, 2) improving sample efficiency and 3) model
compression. Conditional computation is about
not using the full network when making infer-
ences, thus reducing the number of computations
needed (Shazeer et al., 2017; Fedus et al., 2021).
The goal of improving sample efficiency is quite
self-explanatory, and may be exemplified by the
recent work by (Clark et al., 2020) in which a more
effective method for training BERT is proposed.
Model compression is the focus of this article and
will be further explained in this section.

The objective of model compression is to
compress a large model with good performance
into a smaller model that still performs on par
with the larger model. A “smaller model” is a
model which in some way requires less compu-
tational power and/or memory. In general, this
means that you still need to do some training of
the larger model before you can compress it. As
such, model compression is beneficial when you
want to achieve energy efficiency at deployment.
Apart from knowledge distillation, pruning can
also be used to this end. For example, after the lot-
tery ticket hypothesis was presented for neural net-
works by Frankle and Carbin (2018), Chen et al.
(2020) presented corresponding work on iterative
pruning for BERT models.

Knowledge distillation (KD) is another model
compression technique that will be the main focus
of this article. The main idea behind the technique
is to distill the knowledge from a larger model, a
teacher, into a smaller model, a student, by provid-
ing the student with the predictions of the teacher
(Hinton et al., 2015).

KD can be implemented in different ways dur-
ing training of the student model. One implemen-
tation that was used by Adhikari et al. (2020) is to
train the student model to also imitate the predic-
tions of the teacher model through an additional
KD term in the loss signal. This KD loss term
measures how similar the predictions of the stu-
dent model y(s) are to those of the teacher model
y(t), denoted LKD(y

(s),y(t)). The standard loss
for the task, denoted Ltask(y

(s)), is still included
in the loss signal. Thus, the training loss during

125



KD can be described as below.

L = Ltask(y
(s)) + λLKD(y

(s),y(t)) (1)

Here, λ is a tunable hyperparameter used to tune
the balance between how much feedback the stu-
dent model should receive from the objective of
the task and how much feedback it should receive
from the teacher. With a non-zero λ, the student
model is partly trained to imitate the predictions
of the teacher model.

KD within the scope of natural language pro-
cessing can be used in either of two training sit-
uations; 1) during pre-training of a model that is
intended to be transferable on several downstream
tasks and 2) during fine-tuning of a model for a
specific downstream task.

Previous work on KD for language models in-
tended to be transferable is that of Sanh et al.
(2019) in which a distilled version of BERT (Dis-
tilBERT) was created. DistilBERT has 40% fewer
models parameters than BERT and is capable of
being fine-tuned to perform well on several down-
stream tasks without requiring as many computa-
tions as BERT.

Previous work on KD for a specific downstream
task includes that by Adhikari et al. (2020). In
their work Adhikari et al. found that generally any
model benefits from KD for document classifica-
tion. They also found that simpler models such
as logistic regression models benefit the most with
respect to relative improvement in f1 score.

There is also work on trying to understand why
models benefit from KD. The number of theoreti-
cal justifications are few, although some have been
found in the recent work by Rahbar et al. (2020).
On the other hand, there is more work in the area
of empirical explanations. Based on empirical ex-
periments, Yuan et al. (2020) claim that the ben-
efits of KD mainly come from the label smooth-
ing regularization provided by the soft targets of
the teacher model, such that even a “bad” teacher
can improve the performance of a student model
as long as it provides soft targets. Yuan et al.
also suggest that an increase in performance that is
comparable to that of KD can be obtained by using
“self-training” or a manually designed regulariza-
tion term, without the need of a teacher model.

3 Swedish NER dataset

We use the manual NER annotations based on
the SUC 3.0 dataset (Ejerhed et al., 1992) for our

SUC 3.0 CoNLL-2003
person PER
animal PER
myth PER
place LOC
institution ORG
product MISC
work MISC
event MISC
other MISC

Table 1: The mapping used to convert SUC 3.0
entity types to the same as those of the CoNLL-
2003 data.

Resource SUC 3.0
#tokens 1,166,593
#entity tokens 47,310
%entities 4.06

Table 2: Some general features of the SUC 3.0
NER dataset in Swedish. The number of entity
tokens measures the number of tokens that make
up the named entities. The percentage of entities is
the number of tokens that make up entities divided
by the total number of tokens in the dataset.

Swedish NER task. Before training, we reshape
the data to a more suitable format for our task.

Firstly, the manual annotations in the SUC 3.0
data contain annotations for the entities person,
animal, myth (for example “God”), place, institu-
tion, product, work, event and other. These entity
categories are not found in NER datasets for other
languages. In order to make better comparisons
to other languages, we map the entity types in the
dataset to the same types as those that can be found
in the CoNLL-2003 data, as described by Table 1.
We also represent the data in the IOB2 format
(Tjong Kim Sang and Veenstra, 1999) and split
it into 70%/10%/20% for the train/validation/test
data. The splits were made with random sampling
without regard to text source.

Tables 2 and 3 list some of the features of the re-
shaped dataset. From these tables, we can observe
that the Swedish dataset is about three times larger
than the CoNLL-2003 dataset, while the latter has
a higher density of entities. It is worth remark-
ing that while the English dataset was developed
for NER, the SUC dataset was originally compiled
for the purpose of part-of-speech tagging, with the
entity annotation added later. Additionally, we can
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Resource LOC MISC ORG PER #examples
SUC 3.0 train 6,705 4,551 6,005 16,030 51,971

dev 955 549 885 2,135 7,351
test 1,857 1,402 1,574 4,662 14,923
total 9,517 6,502 8,464 22,827 74,245

Table 3: The distribution of the named entities of the Swedish NER dataset.

observe from Table 3 that the Swedish dataset has
quite an unbalanced entity distribution.

4 Method

The goal of this work is contribute to better model
efficiency within NLP by investigating the effect
of KD on different NER models in Swedish. To
this end, we utilize the method for KD as pre-
sented in Section 4.1 and investigate the NER
models seen in Section 4.2. The efficiency of
our models is then measured as described in Sec-
tion 4.3.

4.1 Application-targeted KD
The general form of the KD objective was previ-
ously introduced in Equation (1). We let the KD
loss term LKD(x) for one batch be given by the
Kullback–Leibler divergence as shown in Equa-
tion (2), similarly to what was done by Adhikari
et al. (2020).

LKD(y
(s),y(t),w) = (2)

∑

n

∑

l:wn,l 6=“PAD′′

∑

k

y
(t)
n,l,k

N
(log

y
(t)
n,l,k

y
(s)
n,l,k

)

y(s) and y(t) are the respective label probabili-
ties of student and teacher model for each token in
each batch example. The sum indices n, l, k de-
note the batch index, token index and label index.
So 1 ≤ n ≤ 32, 1 ≤ l ≤ 128 and 1 ≤ k ≤ 9 in the
case of our work. N is the batch size and wn,l de-
notes the token at position l in the sequence with
index n in the batch.

The objective of the KL divergence is to mea-
sure the difference between the student model la-
bel probabilities and the teacher model label prob-
abilities. It is only zero if the probabilities are
identical. Neither the cross-entropy loss nor the
Kullback–Leibler divergence were evaluated for
padding tokens.

Another important variable for the KD is λ.
This was set by studying the sizes of the two
loss terms and making sure that they contributed

with feedback of roughly equal magnitude, as this
seemingly generated the best KD results.

Moreover, data augmentation has successfully
been used for improving the performance of KD
(Hinton et al., 2015). Results by Ba and Caru-
ana (2014a) indicate that the more data, the more
for the student model to learn on from the teacher
model. To this end, Adhikari et al. (2020) used
data augmentation during KD. However, we find
it meaningful to investigate the benefits of KD be-
fore the usage of data augmentation, and will not
use it in this work.

4.2 Models
All of the evaluated models and their parameters
are listed in Table 4. The models were chosen with
the objective of investigating the effect of KD for
simpler as well as more complex models on the
NER task, similarly to what was done by Adhikari
et al. (2020). However, we did not include quite as
simple models as those evaluated by Adhikari et
al., as our sequence tagging task of NER requires
a sequential model output.

Common for all models except for the Char-
CNNWordLSTM model is that their input is for-
matted by a Swedish BERT tokenizer with a vo-
cabulary size of 50,325. As such, each embed-
ding layer of the models expects word pieces as
input and covers a vocabulary of the same size as
BERT. Additionally, each training example is trun-
cated or padded to a sequence length of 128 word-
pieces and the label for an entity consisting of sev-
eral word pieces is given by the label generated
for the first wordpiece, similarly to the approach
by Devlin et al. (2019).

The BERT model was developed with support
from the Huggingface Transformers software by
Wolf et al. (2020). A linear classification layer
was added on top of the pre-trained Swedish base
BERT model by Malmsten et al. (2020) to create
a BERT model for NER in Swedish. This model
was fine-tuned for 3 epochs on the Swedish NER
data. A cross-entropy loss was used and all layers
of the model were fine-tuned during training. This
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Model name #parameters % in emb infer FLOPS % of BERT FLOPS infer time [s]
BERT 124,107,273 31.14 2.9e10 100 0.287
Window 6,445,065 99.94 8.8e5 3e-3 0.000254
Window-B 38,670,345 99.95 5.3e6 2e-2 0.000718
LSTM-128 6,708,105 96.03 6.9e7 2e-1 0.009278
LSTM-128-B 39,571,465 97.67 2.4e8 8e-1 0.011056
LSTM-256 13,940,489 92.42 2.7e8 9e-1 0.015666
LSTM-256-B 40,755,465 94.83 5.4e8 2 0.020334
LSTM-256-2-B 42,332,425 91.30 9.4e8 3 0.035662
LSTM-256-2-drop-B 42,332,425 91.30 9.4e8 3 0.037428
CharCNNWordLSTM 27,002,212 98.75 1.0e8 4e-1 0.009930

Table 4: The number of model parameters for all models investigated. We also indicate how many
percentages of the parameters are found in the word embedding layer. The infer FLOPS correspond to
one forward pass of an example. The infer time is the inference time of the model for one example.

model also served as the teacher during KD train-
ing of the other models in Table 4, such that y(t)

in Equation (2) is given by the predictions of this
model.

The Window model is a straightforward imple-
mentation of a window-based sequence labeling
model with a window size of 3. This window size
was found to be the best after some preliminary
tuning. Furthermore, the model has an initial em-
bedding layer with dimension (50325, 128) and a
final fully connected top layer which predicts for
the nine available labels.

The LSTM-128 model is a straightforward im-
plementation of an LSTM model with an initial
embedding layer with dimension (50325, 128), a
hidden bidirectional LSTM layer with size 128
and a final fully connected top layer for the labels.
The same applies for the LSTM-256 model, with
the exception that the LSTM layer of this model
has a size of 256 and that the embedding dimen-
sion is 256.

The LSTM-256-2 model has the same archi-
tecture as the LSTM-256 except for that it utilizes
two bidirectional LSTM layers instead of one.

The LSTM-256-2-drop model has the same ar-
chitecture as the LSTM-256-2 model except for
that it has a word dropout probability of 0.2 and
a dropout layer with a dropout probability of 0.2
on the output of the first LSTM layer. This model
was chosen to investigate the effect of KD on a
more regularized model.

The -B extension denotes that the same model
architecture is used, but with the pre-trained word
piece embedding layer of size 50325 × 768 from
the BERT model. For these -B models the em-

bedding layer is frozen during training. Conse-
quently, this increases the number of parameters
for the models, while it is somewhat mitigated by
the fact that the embedding layer does not need to
be tuned.

The CharCNNWordLSTM model was cho-
sen with the intention of investigating the effect
of KD on a state-of-the-art model for NER which
does not utilize deep contextual word representa-
tions. The architecture of this model is a Char-
CNN+WordLSTM structure, the same as that of
Yang and Zhang (2018) and Ma and Hovy (2016),
with the exception that we do not include the con-
ditional random field (CRF) layer in our Char-
CNNWordLSTM model. Similarly to the work by
Yang and Zhang (2018) and Ma and Hovy (2016)
we use pre-trained word embeddings in the model.
These are given by a Word2Vec model trained on a
Swedish corpus.3 The Swedish embeddings have
a word vocabulary of size 104,162 and an embed-
ding size of 256. To make the KD from BERT fea-
sible, the input data to the CharCNNWordLSTM
model was potentially truncated to less than 128
words, since the output of it needed to be of the
same shape as that of BERT which was given an
input of maximum 128 word pieces. Additionally,
this model is regularized with dropout and weight
decay during training. This model and the LSTM-
256-2-drop model are the only models with regu-
larization mechanisms, such as dropout.

Common for all models is that none of them
employ a final CRF layer. Models used for se-

3The corpus consists of approximately 10e9 words from
a mix of corpora distributed by Språkbanken, https://
spraakbanken.gu.se/resurser.
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quence tagging usually show an improvement in
performance if they have a final CRF layer which
takes regard to sequential dependencies in the pre-
dictions. We chose to not use a CRF layer with the
purpose of faster training and a simpler implemen-
tation of the KD.

All non-BERT models are trained and evaluated
both with and without KD on a GeForce GTX TI-
TAN X GPU. Every model was trained until it
showed no further increase in f1 score. The re-
sults reported for the models in Tables 5 and 6 are
the test scores for the model checkpoint with the
best f1 score on the validation data. The number
of epochs for the model in the table is then given
by the number of train epochs required to reach
this best checkpoint.

4.3 Method for measuring model efficiency

To evaluate the method of KD with respect to ef-
ficiency we measure the inference time, number
of parameters as well as training and inference
FLOPS required by each model investigated, as
seen in Tables 4 to 6.

We use the Python package thop to estimate
the number of FLOPS required for one forward-
pass of all models in Table 4 except for BERT.
These numbers are reported as “infer FLOPS” in
the table. The number of FLOPS are calculated
for the forward-pass of one data example with a
sequence length of 128. We choose a character
length of 15 for the forward-pass example in the
case of the CharCNNWordLSTM model which
also separates the characters of each word. We
do not include the FLOPS required by the embed-
ding layer in these calculations since we deem this
number to be negligible in comparison with the
FLOPS required by the other parts of the models.

To estimate the number of FLOPS required for
training we then use Equation (3).4 In the equa-
tion, ninfer denotes the number of FLOPS required
for one forward pass and nexamples denotes the
number of examples the model was trained on.
The number of training FLOPS is reported as
“FLOPS” in Tables 5 and 6.

nFLOPS = ninfer · 3 · nexamples (3)

To calculate the number of FLOPS required for
one forward pass in the BERT model, which is

4There is a blog post by OpenAI which explains a
method for calculating model training FLOPS, see https:
//openai.com/blog/ai-and-compute/.

a standard BERT-base model, we use the infor-
mation given by Clark et al. (2020). The pre-
train FLOPS required for BERT are then given
by estimating the training parameters of the BERT
training method as described by Malmsten et al.
(2020) and using Equation (3) with the forward
pass FLOPS previously obtained.

To calculate the inference time, denoted “infer
time” in Table 4, we use the same data example
as was used for calculating the number of infer
FLOPS for the models. We then make the model
predict for this example 100 times and estimate
the average of the inference time required for each
prediction iteration as the inference time of the
model. These time calculations were done on a
2.3 GHz Quad-Core Intel Core i7 CPU.

5 Results and Discussion

The model scores on the Swedish NER test data
are split into Tables 5 and 6. The results in the
former table are of the simpler models that were
not regularized, while the results in the latter are
of the models that were regularized.

We split the analysis of the results with respect
to our aspects of interest. Consequently, we start
off with a general analysis of the model results for
Swedish NER, after which we examine the effect
of KD on model scores and then study the effect
of KD on model efficiency.

5.1 General analysis of the Swedish NER
model results

Firstly, the BERT model has the highest f1 score
for the Swedish NER task. This also comes with
the highest computational cost and the longest in-
ference time, which is ten times longer than that of
the second most slow model. This is not surpris-
ing, as the current trend within NLP is that better
models require more resources.

Moreover, the f1 score of the BERT model is ap-
proximately two percentage units lower than that
of BERT on the English NER dataset. This could
be due to the difference between the datasets, dif-
ferent fine-tuning procedures, and/or to the differ-
ent pre-training processes of the BERT models.
Nonetheless, it is not entirely unexpected that the
models we investigate may perform worse for the
Swedish language than for the English.
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Model P R f1 epochs FLOPS
Window 0.667± 0.005 0.707± 0.007 0.686± 0.004 18± 5 2.4e12

KD 0.681± 0.006 0.705± 0.003 0.693± 0.004 18± 2 2.4e12
B 0.731± 0.000 0.721± 0.002 0.726± 0.001 24± 4 2.0e13
B-KD 0.726± 0.001 0.712± 0.002 0.719± 0.000 21± 2 1.8e13

LSTM-128 0.720± 0.004 0.717± 0.004 0.719± 0.003 60± 9 6.5e14
KD 0.758± 0.006 0.736± 0.005 0.747± 0.005 66± 11 7.1e14
B 0.802± 0.004 0.808± 0.005 0.805± 0.004 44± 23 1.7e15
B-KD 0.823± 0.003 0.822± 0.004 0.823± 0.003 60± 12 2.2e15

LSTM-256 0.743± 0.007 0.729± 0.008 0.735± 0.006 46± 24 1.9e15
KD 0.784± 0.005 0.747± 0.003 0.765± 0.003 66± 15 2.8e15
B 0.807± 0.010 0.815± 0.004 0.811± 0.006 54± 12 4.6e15
B-KD 0.829± 0.006 0.826± 0.002 0.828± 0.003 66± 21 5.5e15

LSTM-256-2
B 0.830± 0.007 0.831± 0.003 0.831± 0.005 61± 21 8.9e15
B-KD 0.849± 0.004 0.845± 0.004 0.847± 0.004 78± 15 1.1e16

Table 5: The scores on the test data for all of the evaluated models that are not regularized.

Model P R f1 epochs FLOPS
BERT 0.892 0.897 0.895 3 1.4e16 (9.1e19)
LSTM-256-2-drop-B 0.844± 0.006 0.832± 0.002 0.838± 0.002 39± 9 5.7e15

KD 0.847± 0.004 0.833± 0.006 0.840± 0.002 25± 10 3.6e15
CharCNNWordLSTM 0.843± 0.002 0.822± 0.004 0.836± 0.008 90± 11 1.4e15

KD 0.842± 0.005 0.824± 0.003 0.833± 0.003 97± 2 1.5e15

Table 6: The scores on the test data for all of the evaluated models implemented with regularization.
Models trained with knowledge distillation are marked with “KD”. “P” denotes precision and “R” recall.
Epochs, time and mean number of FLOPS required to reach best evaluation performance during training
are also displayed. FLOPS values in parentheses denote number of FLOPS required during pre-training.

5.2 The effect of KD on model scores

For the one-layer LSTM models without BERT
embeddings the f1 score increases with approx-
imately 3 units when using KD training. With
BERT embeddings, these models also benefit
some from KD. Seemingly, the LSTM models im-
prove primarily in precision when KD is applied.

Additionally, it appears as though the LSTM
models benefit more from KD than the simpler
Window model. The Window model without
BERT embeddings displays an increase in preci-
sion with KD, while the same model with BERT
embeddings even decreases in performance with
KD. This contradicts previous results on KD by
e.g. Adhikari et al. (2020), where it was found
that simpler models have the most to benefit from
KD. A potential reason for this could be that the
model architecture was not expressive enough to
benefit from KD.

Moreover, the LSTM-256-2-drop-B model per-

forms better than its counterpart LSTM-256-2-B
when no KD is applied. However, when KD is
applied, the LSTM-256-2-B-KD model surpasses
the LSTM-256-2-drop-B-KD model in f1 score as
it seemingly benefits more from KD.

The models Window-B, LSTM-256-2-drop-B
and CharCNNWordLSTM that do not clearly ben-
efit in f1 score from KD have in common that they
are either quite small or regularized. Revisiting
the idea of Yuan et al. (2020), one possible reason
for this is that KD provides regularization and that
a model that does not need regularization conse-
quently will not benefit in performance from KD.

5.3 The effect of KD on model efficiency

The three non-BERT models with the best
f1 scores in descending order are given by
the LSTM-256-2-B-KD, LSTM-256-2-drop-B-
KD and the CharCNNWordLSTM models. The
LSTM models are slightly better than the Char-
CNNWordLSTM model, although this comes with
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the price of requiring approximately 4 to 10
times more FLOPS for training and an infer-
ence time that is approximately 4 times longer.
The LSTM models also rely on the existence
of a pre-trained BERT model, which requires
approximately 9.1e19 FLOPS. While the Char-
CNNWordLSTM model also relies on pre-trained
word embeddings, these do not require as many
FLOPS.

The best non-BERT model is the LSTM-256-
2-B-KD with an f1 score of 0.847. It is ap-
proximately 5 units worse than the BERT model,
while it requires approximately the same num-
ber of training FLOPS (BERT pre-training not in-
cluded) and only 3% of the number of inference
FLOPS required by BERT. Clearly, it is more effi-
cient at deployment, while the question remains as
to whether it has a performance good enough for
deployment.

The second best non-BERT model is the LSTM-
256-2-drop-B-KD model. While it did not clearly
benefit in f1 score from KD, it seemingly bene-
fited with respect to the number of required train-
ing FLOPS, as the number of training FLOPS of
the model decreased with approximately 40%. In
every other case, the general model behavior with
KD applied is that both the number of training
FLOPS and the f1 score increase.

Clearly, every trained model that utilized and
benefited from KD is more performance efficient
than its non-distilled version when making infer-
ences for new data, as the model improves in f1
score while the number of computations for infer-
ence is the same as before KD. However, the cost
of training such a model is higher, mainly due to
the need of a trained teacher model. The ques-
tion is whether the gain in deployment efficiency
is worth the additional effort. One way to reason
about this is through basic arguments of when such
an “investment” would reach a break-even point,
similarly to how e.g. solar panels are judged based
on how many years they would need to be used to
repay the energy required to produce them. For
example, if we are to develop a model that we
know will be run several times during deployment,
the use of KD could enable the use of a smaller
model without loss of performance, thus reduc-
ing the computational cost required during deploy-
ment, weighting up for the extra cost of training it
with KD. One such model that has been developed
is DistilBERT (Sanh et al., 2019), which only last

month was downloaded 1,544,446 times from the
Huggingface model library.5

Apart from reasoning about model efficiency,
we can also reason about when an increase in f1
score is worth the associated computational cost.
Since the general trend is that we obtain better
models if we allow for an increase in computa-
tional cost, the question is how much we are will-
ing to pay for one unit of f1 score. In this case
we also have to take into account that the compu-
tational cost of one f1 score unit increases with f1
score, as it is harder to increase the performance
in the region of e.g. 0.9 than it is in the region
of 0.6. Ethayarajh and Jurafsky (2020) propose
a way to handle this by using an utility function
that takes regard to performance as well as prac-
tical concerns, such as model size and inference
latency. It may be appropriate to investigate the
effect of KD in the eye of such an utility function.

6 Conclusion and Future work

Our work indicates that different models may dif-
fer in whether they benefit from KD. Thus, we
cannot make the assumption that KD should ben-
efit the performance of every model. Adding to
the question of why some models seem to bene-
fit from KD, we may also ask ourselves in which
situations the soft targets of a teacher model may
benefit a student model.

We observe three different situations for which
it is worth to further investigate the effect of KD;
1) when the student model is in need of regular-
ization, 2) when we want more data for the student
model to train on and 3) when the data for train-
ing is of poor quality. The two latter situations
have not been covered in this work, while they
have been mentioned by other researchers (Ba and
Caruana, 2014b). The former situation has already
been observed by Hinton et al. (2015), and we
have found additional support for it in our work.
For this situation we may further investigate how
KD works in combination with existing regular-
ization techniques and whether it is a better such
technique.

From our work we can also conclude that KD
may provide us with more efficient models at de-
ployment, while the cost of training these models
is high due to the need of a trained teacher. This
prompts us to reason about when KD is worth the
effort, with regard to how we value an increase in

5For the uncased base version of DistilBERT.

131



f1 score in terms of computational costs. We also
reason about situations when KD may be a good
investment for models that will be used heavily
during deployment. To fully measure the benefits
of KD with respect to model efficiency we con-
clude that we need to investigate better tools for
judging these trade-offs and different deployment
situations.

Future work may also investigate other types of
KD, such as extracting more layers than the em-
bedding layer from the teacher model and provid-
ing teacher signals to more layers of the student
model. Potentially, these KD variations could fur-
ther improve the performance of a model without
requiring more computational costs.

Moreover, it still remains to investigate the ben-
efits of data augmentation for the student mod-
els during KD. The question is whether we could
attain even better KD results with this approach.
This could also be taken one step further to the re-
gion of completely unsupervised training on unla-
beled data, merely by providing the student model
with the labels generated by the teacher.

Lastly we can conclude that, unsurprisingly, KD
works for the Swedish language as well. One in-
teresting next step which may benefit the Swedish
industry would be to develop a Swedish Distil-
BERT.
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Abstract

We introduce a corpus with fine-grained
named entity annotation for Finnish, fol-
lowing the OntoNotes guidelines to create
a resource that is cross-lingually compat-
ible with existing resources for other lan-
guages. We combine and extend two NER
corpora recently introduced for Finnish
and revise their custom annotation scheme
through a combination of automatic and
manual processing steps. The resulting
corpus consists of nearly 500,000 tokens
annotated for over 50,000 mentions cat-
egorized into 18 name and numeric en-
tity types. We evaluate this resource and
demonstrate its compatibility with the En-
glish OntoNotes annotations by training
state-of-the-art mono-, bi-, and multilin-
gual deep learning models, finding both
that the corpus allows highly accurate tag-
ging at 93% F-score and that a comparable
level of performance can be achieved by a
bilingual Finnish-English NER model.1

1 Introduction

Named Entity Recognition (NER), the identifica-
tion and typing of text spans referring to enti-
ties such as people and organizations in text, is
a key task in natural language processing. State
of the art NER approaches apply supervised ma-
chine learning methods trained on corpora that
have been manually annotated for mentions of en-
tity names of interest. While extensive corpora
with fine-grained NER annotation have long been
available for high-resource languages such as En-
glish, NER for many lesser-resourced languages
has been limited by smaller, lower-coverage cor-
pora with comparatively coarse annotation.

1The corpus is available under an open license from
https://github.com/TurkuNLP/turku-one

A degree of language independence has long
been a central goal in NER research. One no-
table example are the CoNLL shared tasks on
Language-Independent Named Entity Recogni-
tion in 2002 and 2003 (Tjong Kim Sang, 2002;
Tjong Kim Sang and De Meulder, 2003). The
Spanish, Dutch, English and German datasets in-
troduced in these shared tasks were all annotated
for the same types of entity mentions – persons,
organizations, locations, and miscellaneous – and
the datasets still remain key benchmarks for eval-
uating NER methods today (e.g. (Devlin et al.,
2019)). Nevertheless, until recently most NER
methods aimed for language independence only in
that they supported training on corpora of more
than one language, resulting in multiple separate
monolingual models.

In recent years, advances in deep learning have
made it possible to create multilingual language
models that achieve competitive levels of perfor-
mance when trained and applied on texts repre-
senting more than one language (e.g. Kondratyuk
and Straka (2019)). One notable model is the mul-
tilingual version of the influential BERT model
(Devlin et al., 2019), mBERT, trained on more
than 100 languages. mBERT performs well on
zero-shot cross-lingual transfer experiments, in-
cluding NER experiments (Wu and Dredze, 2019).
Moon et al. (2019) propose an mBERT-based
model trained simultaneously on multiple lan-
guages. Training and validating on the OntoNotes
v5.0 corpus (see Section 2.3) and the CoNLL
datasets, they show that multilingual models out-
perform models trained on one single language
and have cross-lingual zero-shot ability. The zero-
shot cross-lingual transfer ability of mBERT also
spikes interest in the study of multilingual repre-
sentations, both on mBERT (Pires et al., 2019; K
et al., 2020), and on multilingual encoders in gen-
eral (Ravishankar et al., 2019; Zhao et al., 2020;
Choenni and Shutova, 2020).
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Corpus Language Tokens Entities Domain(s)
OntoNotes English 2.0M 162K News, magazines, conversation
FiNER Finnish 290K 29K Technology news, Wikipedia
Turku NER Finnish 200K 11K News, magazines, blogs, Wikipedia, speech, fiction, etc.

Table 1: Corpus features and statistics. OntoNotes token count only includes sections of the corpus
annotated for name mentions. Entity counts include also non-name types such as DATE.

In this paper, we aim to assess and realize the
potential benefits from cross- and multi-lingual
NER for Finnish, a lesser-resourced language that
currently lacks NER resources annotated compat-
ibly with larger similar resources in other lan-
guages. Recently, two NER corpora were intro-
duced for Finnish: FiNER (Ruokolainen et al.,
2019), focusing on the technology news domain,
and the Turku NER corpus (Luoma et al., 2020),
covering 10 different text domains. The two cor-
pora are both annotated in the same custom vari-
ant of the CoNLL’02 and ’03 scheme, making
them mutually compatible, but incompatible with
resources existing in other languages. This in-
compatibility has so far made it impossible to
directly evaluate the performance of cross- and
multi-lingually trained NER methods on manu-
ally annotated Finnish resources. To solve this in-
compatibility issue, we combine and extend these
two corpora and adjust the annotations to fol-
low the OntoNotes scheme. The resulting cor-
pus has close to 500,000 tokens annotated for over
50,000 mentions assigned to the 18 OntoNotes
name and numeric entity types. We show that
our OntoNotes Finnish NER corpus is compatible
with the English OntoNotes annotations through
training state-of-the-art bi- and multilingual NER
models on the combination of these two resources.

2 Data

In the following, we introduce the corpora used
in this study, additional text sources for the new
corpus, and the pre-trained models used in our ex-
periments. The properties and key statistics of the
corpora are presented in Table 1.

2.1 FiNER corpus

FiNER (Ruokolainen et al., 2019) is a Finnish
NER corpus consisting mainly of texts from the
Finnish technology news source Digitoday, with
an additional test set of Wikipedia documents used
to assess cross-domain performance of methods
trained on the FiNER training section.

FiNER is annotated for mentions of dates (type
DATE) and five entity types: person (PER), organi-
zation (ORG), location (LOC), product (PRO) and
event (EVENT). Of these, PER, ORG and LOC are
broadly compatible with the CoNLL types of the
same names. The original corpus includes a small
number of nested annotations (under 5% of the to-
tal) that were excluded in our work.

2.2 Turku NER corpus

The Turku NER corpus (Luoma et al., 2020) is a
Finnish NER corpus initially created on the basis
of the Universal Dependencies (Nivre et al., 2016)
representation of the manually annotated Turku
Dependency Treebank (TDT) (Haverinen et al.,
2014; Pyysalo et al., 2015), a multi-domain cor-
pus spanning ten different genres.

The Turku NER annotation follows the types
and annotation guidelines of the FiNER corpus.
An evaluation by Luoma et al. (2020) demon-
strated the compatibility of the two Finnish NER
corpora by showing that models trained on the
simple concatenation of the two corpora outper-
formed ones trained on either resource in isolation.

2.3 OntoNotes corpus

OntoNotes (Hovy et al., 2006; Weischedel et al.,
2013) is a large, multilingual (English, Chinese,
and Arabic), multi-genre corpus annotated with
several layers covering text structure as well as
shallow semantics. In this work, we focus exclu-
sively on the OntoNotes English language NER
annotation and refer to this part of the data simply
as OntoNotes for brevity. Specifically, we use the
NER annotations of the OntoNotes v5.0 release
(Weischedel et al., 2013), cast into CoNLL-like
format by Pradhan et al. (2013).2 Sections of the
corpus lacking NER annotation (such as the Old
and New Testament texts) are excluded.

The OntoNotes NER annotation uses a superset
of the ACE entity annotation representation (LDC,

2https://github.com/ontonotes/
conll-formatted-ontonotes-5.0
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Type Description Examples
PERSON People, including fictional Keijo Virtanen, Obama
NORP Nationalities or religious or political groups suomalainen, kristitty
FAC Buildings, airports, highways, bridges, etc. Turun linna, LHC
ORG Companies, agencies, institutions, etc. Nokia, EU
GPE Countries, cities, states Suomi, Venäjä
LOC Non-GPE locations, mountains, bodies of water Välimeri, Ararat
PRODUCT Objects, vehicles, foods, etc. (Not services.) Oltermanni, iPhone
EVENT Named hurricanes, wars, sports events, etc. toinen maailmansota, CES
WORK OF ART Titles of books, songs, etc. Raamattu, Kid A
LAW Named documents made into laws rikoslaki, Obamacare
LANGUAGE Any named language suomi, englanti, C++
DATE Absolute or relative dates or periods viime vuonna, 1995
TIME Times smaller than a day yö, viisi sekuntia
PERCENT Percentage, including “%” seitsemän prosenttia, 12%
MONEY Monetary values, including unit sata euroa, 500 dollaria
QUANTITY Measurements, as of weight or distance kilometri, 5,1 GHz
ORDINAL “first”, “second” ensimmäinen, 1.
CARDINAL Numerals that do not fall under another type yksi, kaksi, 10

Table 2: OntoNotes name annotation types. Adapted from Weischedel et al. (2013).

Model Language(s) Vocab. size Reference
BERT (original) English 30K Devlin et al. (2019)
FinBERT Finnish 50K Virtanen et al. (2019)
mBERT 104 languages 120K Devlin et al. (2019)
biBERT Finnish and English 80K Chang et al. (2020)

Table 3: Pre-trained models. Cased base variants of all models are used.

2008), applying the 18 types summarized in Ta-
ble 2. We note that while OntoNotes PERSON,
EVENT and DATE largely correspond one-to-one
to types annotated in the Finnish NER corpora, the
great majority of the types either require a more
complex mapping or need to be annotated without
support from existing data to create OntoNotes an-
notation for Finnish.

2.4 Additional texts

During annotation, we noted that the FiNER and
Turku NER corpora contained relatively few men-
tions of laws, which could potentially lead to
methods trained on the combined revised corpus
performing poorly on the recognition of LAW en-
tity mentions. To address this issue, we aug-
mented the combined texts of the two corpora with
a random selection of 60 current acts and decrees
of Finnish Acts of Parliament,3 totaling approxi-
mately 24K tokens.

3Available from https://finlex.fi/fi/laki/
ajantasa/

2.5 Pre-trained models

We perform NER tagging experiments by fine-
tuning monolingual and multilingual BERT mod-
els. Specifically, for monolingual models, we
tested English and Finnish (FinBERT) models,
and for multilingual models, we tested the mBERT
model trained on 104 languages, and a bilin-
gual model trained on only English and Finnish
(biBERT). Devlin et al. (2019) trained the origi-
nal English BERT on the BooksCorpus (Zhu et al.,
2015) and English Wikipedia. FinBERT is trained
on an internet crawl, news, as well as online forum
discussions (Virtanen et al., 2019). The bilingual
BERT is trained on English Wikipedia and a re-
constructed BooksCorpus, as well as the data used
to train FinBERT (Chang et al., 2020). The multi-
lingual BERT is trained on the Wikipedia dump
for languages with the largest Wikipedias. The
pre-trained models and their key statistics are sum-
marized in Table 3.

We note that while a number of variations and
improvements to the pre-training of transformer-
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Figure 1: Example annotations

based deep language models have been proposed
since the introduction of BERT (e.g. Conneau
et al. (2019); Xue et al. (2020)), BERT remains
by far the most popular choice for training mono-
lingual deep language models and an important
benchmark for evaluating methods for tasks such
as NER. As the focus of our evaluation is more
on assessing the quality and compatibility of cor-
pora through the application of comparable mod-
els rather than optimizing absolute performance,
we have here opted to use exclusively BERT mod-
els. For the same reason, we only consider BERT
base models instead of a mix of base and large
models.

3 Annotation

We next summarize the primary steps performed
to revise and extend the annotation of the two
source corpora to conform with the OntoNotes
NER guidelines (Weischedel et al., 2013). Fig-
ure 1 shows visualizations of the annotation for
selected sentences.

Trivial mappings Of the mentions annotated in
the existing Finnish NER corpora, effectively all
annotations with the type PER are valid OntoNotes
PERSON annotations. Similarly, most EVENT and
DATE annotations were valid as-is as OntoNotes
annotations of the same names. These annota-
tions were carried over into the initial revised data,
changing only the type name when required.

Conditional mappings By contrast to the types
allowing trivial mapping from existing to revised
annotation, LOC, ORG and PRO required more
complex mapping rules. For example, the ex-
isting annotations mark both geo-political enti-
ties (GPEs) and other locations with the type
LOC without distinguishing between the two. To
create OntoNotes-compatible annotation, source
LOC annotations were mapped to either LOC or
GPE annotations on the basis of the annotated

text using manually created rules. For exam-
ple, Suomi/LOC (“Finland”) was mapped to
Suomi/GPE and Välimeri/LOC (“Mediter-
ranean”) to Välimeri/LOC. Similar rules were
implemented to distinguish e.g. FAC from ORG
and LOC as well as WORK OF ART and LAW from
PRO.

Dictionary-based tagging Not all mentions in
scope of the OntoNotes annotation guidelines are
in scope of the FiNER annotation guidelines ap-
plied to mark the previously introduced Finnish
NER corpora. In addition to most OntoNotes
numeric types (see below), in particular nation-
alities, religious and political groups (NORP in
OntoNotes) and languages (LANGUAGE) were
not annotated in the source corpora. To cre-
ate initial OntoNotes annotation for these semi-
closed categories of mentions, we performed
dictionary-based tagging using lists compiled
from sources such as Wikipedia and manually
translated OntoNotes English terms tagged with
the relevant types.4

Numeric types To annotate OntoNotes numeric
types (CARDINAL, ORDINAL, etc.) in the Turku
NER corpus section of the data, we mapped the
manual part-of-speech and feature annotation of
the source corpus (TDT) to initial annotations that
were then manually revised to identify the more
specific types such as PERCENT, QUANTITY and
MONEY based on context. For the FiNER texts, an-
notation for these types followed a similar process
with the exception that automatic part-of-speech
and feature annotation created by the Turku neural
parser (Kanerva et al., 2018) was used as a start-
ing point as no manual syntactic annotation was
available for the texts.

Fine-grained tokenization The FiNER annota-
tion guidelines specify that annotated name men-

4The accuracy of this initial dictionary-based tagging step
was not evaluated separately.
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Language Model Train data Development data Test data
Finnish FinBERT Finnish Finnish Finnish
Finnish mBERT Combined (Fi+En) Finnish Finnish
Finnish biBERT Combined (Fi+En) Finnish Finnish
English BERT English English English
English mBERT Combined (Fi+En) English English
English biBERT Combined (Fi+En) English English

Table 4: Combinations of models, training and evaluation data included in the experiments.

tions must start and end on the boundaries of syn-
tactic words. As hyphenated compound words that
include names as part, such as Suomi-fani (“fan of
Finland”), are comparatively common in Finnish,
the FiNER guidelines have a somewhat complex
set of rules for the annotation of such compound
words (we refer to Ruokolainen et al. (2019) and
the relevant guidelines for details). In the revised
corpus, we chose to apply a fine-grained tokeniza-
tion where punctuation characters (including hy-
phens) are separate tokens, eliminating most of
the issues with names as part of hyphenated com-
pounds. To map FiNER-style annotation to the
fine-grained version, we wrote a custom tool using
regular expressions and manually compiled white-
and blacklists of suffixes that can and cannot be
dropped from name mention spans.5

Semi-automatic and manual revision After
initial automatic revisions, a series of semi-
automatic and manual revision rounds were per-
formed using the BRAT annotation tool (Stene-
torp et al., 2012). In particular, the consistency
of mention annotation and typing was checked us-
ing the search functionality of the tool6 and all
cases where a string was inconsistently marked
or typed were revisited and manually corrected
when in error. Additionally, the automatically cre-
ated pre-annotation for the newly added text (Sec-
tion 2.4) was revised and corrected in a full, man-
ual annotation pass. All manual revisions of the
data were performed by a single annotator famil-
iar with the corpora as well as the FiNER and
OntoNotes guidelines. While the single-annotator
setting regrettably precludes us from reporting
inter-annotator agreement, our monolingual and
cross-lingual results below suggest that the con-
sistency of the annotation has not decreased from
that of the source corpora.

5The implementation is available from https://
github.com/spyysalo/finer-postprocessing

6search.py -cm and -ct options.

4 Methods

We next present the applied NER method and de-
tail the experimental setup.

4.1 NER method

We use the BERT-based named entity tagger in-
troduced by Luoma and Pyysalo (2020). In brief,
the method is based on adding a simple time-
distributed dense layer on top of BERT to pre-
dict IOB2 named entity tags in a locally greedy
manner. The model is both trained and applied
with examples consisting of sentences catenated
with their context sentences, resulting in multi-
ple predictions for each token (appearing in both
“focus” and context sentences). These predictions
are then summarized using majority voting. For
brevity, we refer to Luoma and Pyysalo (2020) for
further details.7 Here, we do not use the wrap-
ping of data in documentwise manner as in (Lu-
oma and Pyysalo, 2020), but in bilingual experi-
ments the Finnish and English data are separated
with a document boundary token (-DOCSTART-)
to avoid constructing examples where one input
would contain sentences in two languages.

4.2 Experimental setup

The corpora are divided into training, development
and test subsets following the subdivisions defined
by Pradhan et al. (2013) for OntoNotes, Ruoko-
lainen et al. (2019) for FiNER, and Luoma et al.
(2020) for the Turku NER corpus. The newly an-
notated Finnish law texts are divided chronologi-
cally on the document level, placing the earliest-
published 48 documents (80%) into training, the
latest 6 (10%) into test, and the remaining 6 (10%)
into development data. For bilingual experiments,
combined training, development and test sets are
created by concatenating the corresponding files

7The implementation is available from https://
github.com/jouniluoma/bert-ner-cmv
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Type Train Dev Test
ORG 11597 866 2345
PRODUCT 5278 246 1237
DATE 4937 412 889
CARDINAL 4668 439 866
PERSON 4635 488 737
GPE 4127 501 674
ORDINAL 1274 107 190
NORP 1252 115 192
MONEY 909 47 169
LAW 749 154 86
LOC 776 54 120
QUANTITY 611 25 145
PERCENT 642 22 101
TIME 455 35 74
EVENT 326 32 37
WORK OF ART 305 56 30
LANGUAGE 219 34 28
FAC 173 20 30

Table 5: Corpus annotation statistics

in each corpus, separating the data for the two lan-
guages with a document boundary token.

The hyperparameters are selected based on a
grid search following the setup in Luoma and
Pyysalo (2020) with the exception that batch size
2 is omitted. The reason for this is that the large
combined dataset with a small batch size is too
time-consuming on the computational resources
available. The parameter selection grid is there-
fore the following:

• Learning rate: 2e-5, 3e-5, 5e-5
• Batch size: 4, 8, 16
• Epochs: 1, 2, 3, 4

The size of the OntoNotes training set is consid-
erably larger than e.g. that of the previously intro-
duced Finnish corpora, and due to resource lim-
itations (especially GPU computation time), we
set the BERT maximum sequence length to 128
WordPiece tokens for all of our experiments.

Parameter selection is performed by evaluating
on the development subsets of the corpora. The
test sets are held out during preliminary experi-
ments and parameter selection, and are only used
to evaluate performance in the final experiments.
All of the experiments are repeated 5 times, both
for hyperparameter selection and the final test re-
sults. The reported results are means and standard
deviations calculated from these repetitions. The

Lang. Prec. Rec. F-score
Finnish 92.58 (0.18) 93.41 (0.13) 92.99 (0.14)
English 87.92 (0.20) 89.57 (0.25) 88.74 (0.22)

Table 6: Monolingual NER evaluation results
(percentages; standard deviation in parentheses)

hyperparameters for different final models are se-
lected based on their performance on the target
language development set as shown in Table 4.

For testing the zero-shot cross-lingual perfor-
mance on Finnish, we train the mBERT and
biBERT models only on the English OntoNotes
data and evaluate performance on the Finnish test
set. The hyperparameters providing the best re-
sults on the English OntoNotes data are used in
these experiments, thus reflecting a setting where
no annotated Finnish data is available.

5 Results

We next present summary statistics of the newly
introduced corpus and then present the results of
the machine learning experiments.

5.1 Corpus statistics

Table 5 summarizes the statistics of the new an-
notation. The combined, extended corpus with
the revised OntoNotes-like annotation contains in
total nearly 500,000 tokens of text annotated for
approximately 55,000 mentions of names and nu-
meric types. While the corpus represents a sub-
stantial increase in size and number of annota-
tions over either of the two previously released
Finnish NER corpora, the name-annotated sub-
set of the English OntoNotes corpus remains four
times larger in terms of token count and over three
times larger in terms of the number of annotated
entities (Table 1), motivating our exploration of
training bilingual models with combined Finnish
and English data.

5.2 Monolingual results

Table 6 summarizes the results of monolingual
training and evaluation for the FinBERT model on
the newly introduced Finnish NER corpus, with
results for the original English BERT model on the
English OntoNotes results for reference.

For English OntoNotes, the applied method
achieves an F-score of 88.74%, comparable to
results for similar implementations reported in
the literature: for example, Li et al. (2020) re-
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Language Model Prec. Rec. F-score
Finnish mBERT 89.81 (0.20) 90.76 (0.22) 90.28 (0.17)
Finnish biBERT 92.47 (0.22) 93.13 (0.11) 92.80 (0.16)
English mBERT 88.15 (0.20) 89.62 (0.14) 88.88 (0.16)
English biBERT 88.57 (0.06) 90.03 (0.11) 89.29 (0.07)

Table 7: Bilingual NER model evaluation results (percentages; standard deviation in parentheses)

Monolingual Bilingual
Type Prec. Rec. F-score Prec. Rec. F-score
PERSON 94.12 97.15 95.60 94.92 96.20 95.55
NORP 94.63 96.15 95.36 97.47 96.15 96.80
FAC 67.83 40.00 50.23 70.10 47.33 56.40
ORG 94.14 94.06 94.10 93.97 93.61 93.79
GPE 95.33 97.36 96.33 94.87 97.06 95.95
LOC 87.12 86.50 86.78 86.11 83.67 84.82
PRODUCT 87.53 88.08 87.81 87.11 88.34 87.72
EVENT 72.17 79.46 75.59 69.46 77.84 73.36
WORK OF ART 75.00 77.33 75.97 67.52 79.33 72.84
LAW 90.83 96.74 93.69 91.67 94.65 93.13
LANGUAGE 93.05 95.00 94.01 94.95 93.57 94.25
DATE 94.70 94.78 94.74 94.98 95.32 95.15
TIME 81.70 84.32 82.98 78.01 81.35 79.64
PERCENT 95.60 98.61 97.08 100.00 100.00 100.00
MONEY 95.36 94.79 95.08 95.80 91.60 93.65
QUANTITY 87.18 90.90 89.00 86.61 90.07 88.30
ORDINAL 90.33 91.37 90.84 89.56 90.21 89.88
CARDINAL 94.01 95.36 94.68 93.54 95.64 94.58

Table 8: Result details for Finnish data in monolingual setting using FinBERT and bilingual setting using
biBERT (percentages)

port 89.16% F-score for BERT-Tagger on En-
glish OntoNotes 5.0; an approx. 0.4% point dif-
ference. While more involved state-of-the-art
methods building on BERT have been reported
to outperform this result (e.g. 91.11% F-score for
the BERT-MRC method of Li et al. (2020)), we
are satisfied that the implementation used here is
broadly representative of BERT used for NER in a
standard sequence tagging setting.

For Finnish, we note that Luoma and Pyysalo
(2020) performed an evaluation of the combina-
tion of the FiNER and Turku NER corpora with
the comparatively coarse-grained six FiNER cor-
pus NE types, reporting an F-score of 93.66% on
the combined test set. While not perfectly compa-
rable, the training and evaluation texts of that ex-
periment are strict subsets of the Finnish training
and evaluation data here, and we find the F-score
of 92.99% on the 18 fine-grained OntoNotes-like
annotation a very positive sign of its quality and

consistency: using the newly introduced dataset,
we can train models to recognize mentions of three
times as many name and numeric entity types as
previously with only a modest decrease in overall
tagging performance.

5.3 Bilingual results

Table 7 summarizes the results of the bi- and mul-
tilingual models trained on the combined Finnish
and English data and evaluated on the two mono-
lingual corpora. We first observe that the bilin-
gual biBERT model achieves better results that
the multilingual mBERT model, providing further
support for the findings of Chang et al. (2020) in-
dicating that multilingual training processes pro-
duce notably better models when only two lan-
guages are targeted. In the remaining, we focus
on the results for the biBERT model. For Finnish,
we find that the bilingual model fine-tuned on the
combined bilingual training data falls just 0.2%
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Language Model Prec. Rec. F-score
Finnish mBERT 71.00 (0.81) 69.99 (0.47) 70.49 (0.50)
Finnish biBERT 77.01 (0.47) 77.01 (0.46) 77.01 (0.19)

Table 9: Zero-shot cross-lingual evaluation results from English to Finnish (percentages; standard devi-
ation in parentheses)

points in F-score below the monolingual FinBERT
model fine-tuned with monolingual data. For En-
glish, we unexpectedly find that the bilingually
trained model outperforms the monolingual En-
glish model with an approx. 0.5% point absolute
difference. These results indicate that the an-
notations of the English OntoNotes NER dataset
and the newly introduced Finnish NER dataset
are highly compatible, allowing bi- or multilin-
gual methods trained on a bilingual dataset created
by their simple concatenation to perform compet-
itively with or even potentially outperform mono-
lingual NER models.

The detailed results presented in Table 8 fur-
ther show that the performance of the monolingual
and bilingual models track very closely, with the
monolingual Finnish model slightly outperform-
ing the bilingual for most mention types. An ex-
ception to this pattern is seen for NORP, FAC,
LANGUAGE, DATE and PERCENT, where the
bilingual model shows better performance. These
results further suggest that there are no notable an-
notation inconsistencies in individual types, and
that multilingual training may still hold benefit for
some entity types.

5.4 Zero-shot cross-lingual results

Finally, Table 9 provides the results of zero-shot
cross-lingual transfer from English to Finnish,
where a bi- or multilingual model is trained ex-
clusively on English data but then evaluated on
Finnish data. We again find that the biBERT
model considerably outperforms the mBERT
model. While the model performance at 77% falls
far behind the over 90% F-scores achieved by the
monolingual and bilingual models, it is neverthe-
less interesting to note that this level of perfor-
mance can be achieved without any target lan-
guage data. This cross-lingual transfer approach
could potentially be applied e.g. to bootstrap ini-
tial annotations for manual revision when creating
named entity annotation for languages lacking a
corpus annotated with OntoNotes types.

6 Discussion and conclusions

We have introduced a new corpus for Finnish
NER created by combining and extending two pre-
viously released corpora, FiNER and the Turku
NER corpus, and by mapping their custom anno-
tations into the fine-grained OntoNotes representa-
tion through a combination of automatic and man-
ual processing steps. The resulting corpus con-
sists of over 50,000 annotations for nearly 500,000
tokens of text representing a broad selection of
genres, topics and text types, and is not only the
largest resource for Finnish NER created to date,
but also identifies three times as many distinct
name and numeric entity mention types as the pre-
viously introduced Finnish NER corpora.

To assess the internal consistency of the newly
created annotation and to provide a baseline for
further experiments on the data, we evaluated the
performance of a BERT-based NER system ini-
tialized with the FinBERT model and fine-tuned
on the new Finnish data. These experiments in-
dicated that the annotations of the new corpus
can be automatically recognized at nearly 93% F-
score, effectively matching previous results with
much coarser-grained entity types. To further as-
sess the compatibility of the newly introduced an-
notation with the original English OntoNotes cor-
pus v5.0 name annotation, we fine-tuned bi- and
multi-lingual BERT models on the combination of
the Finnish and English corpora, finding that bilin-
gual models can effectively match or potentially
even outperform monolingual ones, thus confirm-
ing the compatibility of the newly created annota-
tion with existing OntoNotes resources.

All resources introduced in the paper are
available under open licenses from https://
github.com/TurkuNLP/turku-one

Acknowledgments

This work was funded in part by the Academy of
Finland. We wish to thank CSC – IT Center for
Science, Finland, for computational resources.

142



References
Li-Hsin Chang, Sampo Pyysalo, Jenna Kanerva, and

Filip Ginter. 2020. Towards fully bilingual deep lan-
guage modeling. arXiv preprint arXiv:2010.11639.

Rochelle Choenni and Ekaterina Shutova. 2020. What
does it mean to be language-agnostic? Probing mul-
tilingual sentence encoders for typological proper-
ties. arXiv preprint arXiv:2009.12862.

Alexis Conneau, Kartikay Khandelwal, Naman Goyal,
Vishrav Chaudhary, Guillaume Wenzek, Francisco
Guzmán, Edouard Grave, Myle Ott, Luke Zettle-
moyer, and Veselin Stoyanov. 2019. Unsupervised
cross-lingual representation learning at scale. arXiv
preprint arXiv:1911.02116.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota.

Katri Haverinen, Jenna Nyblom, Timo Viljanen,
Veronika Laippala, Samuel Kohonen, Anna Missilä,
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Abstract

Finding the year of writing for a histor-
ical text is of crucial importance to his-
torical and philological research. How-
ever, the year of original creation is
rarely explicitly stated and must be in-
ferred from the text content, historical
records, and codicological clues. Given
a transcribed text, machine learning
has successfully been used to estimate
years of production. In this paper, we
present an overview of estimation ap-
proaches from the literature for histor-
ical text archives, spanning from the
12th century until today.

1 Introduction

Knowing when a text was written is of cru-
cial importance for relating its content to a
historical context. With the increasing digi-
tization of historical archives, many new re-
search opportunities have emerged for study-
ing how languages have evolved. However,
such studies rely on digitized corpora explic-
itly stating when the texts were originally writ-
ten. This information is often not given by
the original scribe, although educated guesses
from later owners can sometimes be found in
manuscripts. Additionally, improved dating
of historical manuscripts can help historians
to better understand the chronology of their
sources.

The premise for our paper is an imagined
scenario where a historian or philologist needs
help with a transcribed collection. We imag-
ine being given a partially annotated set of
documents (given either as specific years or
as intervals) and employing a computer model
to determine the production years of the un-

labelled documents. Although there is liter-
ature describing different ways of solving the
problem of the above scenario, there is little
work done on comparing the different mod-
elling approaches. In this paper, we will survey
and evaluate computational approaches to the
problem of estimating the production dates
of text in digitalized historical archives. We
have reimplemented several methods for esti-
mation and feature extraction proposed in the
literature. Our experimental setup allows us
to evaluate combinations of different methods
on datasets representing different times, text
lengths, and genres. Our reimplementation is
available as open source1.

Our primary historical datasets were two
medieval archives containing legal documents
from Denmark and Sweden. Comparing re-
sults on these collections is of special interest,
as they are similar with respect to content, but
differ in the number of documents, temporal
distributions and detail of annotation. To as-
sess the generalizability of the methods we also
include two modern collections. These modern
collections, that have previously been treated
in the literature, are a collection of English
news items, from the SemEval 2015 shared
task on diachronic text evaluation (Popescu
and Strapparava, 2015), and Colonia, a corpus
of historical Portuguese (Zampieri and Becker,
2013).

An overview of the relevant literature is
presented in Section 2, Section 3 contains a
description of the datasets, our experimental
setup is described in Section 4, and, finally, re-
sults and discussion are presented in Section
5.

1IPython notebooks can be found at http://
github.com/fredrikwahlberg/nodalida21
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Figure 1: The first line of charter SDHK 18863, containing an agreement on an exchange of land
in 1417. The text is ”Alle the thetta breff høra ælla see helsar jach Ælin Bruddadotter, abbatissa
i Wreta, och alt conuentit ther samastadz” (from ”Svenskt Diplomatariums Huvudkartotek”
18863, section 3).

2 Previous work
The problem of automatic text dating has been
treated using various methods and applied to
a wide range of different types of corpora. To
the best of our knowledge, the task of assign-
ing a date to documents was first introduced in
the information retrieval community with the
main goal to query document collections based
on temporal relevance. De Jong et al. (2005)
treat the problem as a text classification task
in which documents are dated by comparing
them to temporal query profiles. They refer
to such profiles as temporal language models,
which essentially capture the distribution of
term or concept usage over time. The same
idea is found in the work of Dalli and Wilks
(2006), in which word frequencies across time
are used to infer temporal association rules.
The work by de Jong et al. (2005) was later ex-
panded by Kanhabua and Nørvåg (2008) who
improved the temporal language models by ap-
plying various steps of pre-processing, includ-
ing filtering words based on TF-IDF scores and
POS tags, applying stemming, and collocation
extraction.

The above works were made on corpora of
newspaper articles, which have remained to
be an object of research within the field of
automatic dating, most recently in the Se-
mEval 2015 shared task on diachronic text
evaluation (DTE) on English news snippets
(Popescu and Strapparava, 2015). Follow-
ing the work on temporal language modelling,
Garcia-Fernandez et al. (2011) introduced us-
ing support vector machines (SVM) for the
task of dating, in which documents are rep-
resented by feature vectors of word and char-
acter counts, in addition to other handcrafted
features. Whereas in the temporal language

modelling approach the sole problem is to
learn the distribution of words in a set of doc-
uments belonging to a specific time span, the
goal of mapping a document to a date is now
part of the learning objective. Later work on
news corpora has focused on how the extrac-
tion of temporal references, such as expres-
sions for time and events, can facilitate the
task of dating, which was also the research
question in two of the three subtasks of the
DTE shared task (Chambers, 2012; Vashishth
et al., 2019).

Aside from news, scholars have studied a
wide range of different historical corpora, rang-
ing from broad collections such as Google n-
grams (Popescu and Strapparava, 2014) to
more narrow collections as in the DaDoE-
val2020 shared task (Menini et al., 2020),
which introduced a diachronic corpus of polit-
ical work by Alcide De Gasperi. While news
items naturally contain explicit temporal refer-
ences for when the text was written, this is of-
ten not the case when working with other gen-
res. For example, if a philologist were to date
a piece of literature, their work may solely rely
on features such as lexicon, grammar, topic, or
style, as the contemporary context is often im-
plicit. Thus, work outside the news genre has
generally put less emphasis on extracting tem-
poral references, and instead explore how the
language in a text can be represented.

One of the first studies to extend the work
beyond the news genre was Kumar et al.
(2011), who use language modelling to pre-
dict the date of a collection of short stories
published between 1798 to 2008 from Project
Gutenberg2. Subsequently, language mod-
elling has not been applied to the problem of

2https://www.gutenberg.org
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dating. Work has been done to identify tempo-
ral trends in historical corpora (Pichel Campos
et al., 2018; Pichel et al., 2020; Boldsen et al.,
2019), by using language modelling to mea-
sure the distance between time periods, but
models were not explicitly applied to the task
of dating. Instead, studies have focused on
creating vector representations of documents
and then using those for classification. The
raw text has been used directly as input to
create bag-of-words and/or characters, with n-
gram sizes ranging from one to three words
(Niculae et al., 2014; Szymanski and Lynch,
2015; Zampieri et al., 2016), and one to five
characters (Garcia-Fernandez et al., 2011; Nic-
ulae et al., 2014; Szymanski and Lynch, 2015).
Other features may be extracted, such as syn-
tactic features using POS annotations (Szy-
manski and Lynch, 2015; Zampieri et al., 2015,
2016) and stylistic measures such as lexical di-
versity (Štajner and Zampieri, 2013; Zampieri
et al., 2015).

Most commonly, the problem of dating a
text is defined as a classification problem in
which classes are treated as bins correspond-
ing to different time spans. Several estima-
tors have been applied, including logistic re-
gression (Chambers, 2012), support vector ma-
chines (Garcia-Fernandez et al., 2011; Szyman-
ski and Lynch, 2015; Zampieri et al., 2016) and
multinomial naive Bayes (Mihalcea and Nas-
tase, 2012; Zampieri et al., 2016). The size
of the bins depend on the problem and the
data available. For dating of contemporary
news items, scholars have worked with gran-
ularities down to a yearly basis (Chambers,
2012; Vashishth et al., 2019). This is typically
not possible when working with historical text,
as data is sparse and may in turn not have
such a precise date of production. Here, schol-
ars have instead worked on dating documents
within a century (Štajner and Zampieri, 2013)
or a decade (Popescu and Strapparava, 2015).

Compared to classification, regression meth-
ods have not been extensively explored. In
regression, samples are mapped to a date di-
rectly instead of a bin, thus circumventing the
obstacle of deciding on a specific bin size. Also,
regression preserves the ordinal nature of the
problem, which classification ignores. Niculae
et al. (2014) propose to use ordinal regression.

In this approach, the task of dating is con-
sidered as a ranking problem, where reference
documents are placed on a timeline, which is
then used to estimate the most probable time
spans for query documents. Another attempt
using regression comes from the field of image
processing, where Wahlberg et al. (2016) ap-
plied Gaussian Processes (GP) to the problem
of estimating the date of medieval manuscripts
using visual features extracted from the facsim-
ile together with the transcribed text.

Whether classification or regression is best
suited for the problem of dating text - and
what pitfalls such approaches have - are still
open questions. As for feature extraction, neu-
ral methods have over the last decades under-
mined the use of manual feature extraction for
a wide range of problems, including text classi-
fication. Vashishth et al. (2019) applied graph
convolutional networks to the problem of dat-
ing, utilizing syntactic information and tem-
poral reference extraction in addition to the
words of the text. For smaller corpora, neural
approaches are yet to be tested, which is out
of the scope of this paper. Instead, we seek to
describe and compare the methods that have
already been established for the dating of his-
torical text corpora.

3 Datasets

3.1 Svenskt Diplomatariums
Huvudkartotek

”Svenskt Diplomatariums Huvudkartotek”
(SDHK) is a collection of charters from me-
dieval Sweden (c. 1050-1523). The collection
consists of approximately 44,000 charters on
(mostly) parchment, of which about 10,500
have been transcribed. The most frequent
languages are Swedish (c. 3,000 transcribed
charters) and Latin (c. 7,500 transcribed
charters). Of the full collection, about 11,000
charters have been photographed, largely
overlapping with the transcribed set.

While the Latin vocabulary and spelling are
fairly consistent, except for small variations
in the use of abbreviations, the Swedish text
changes significantly with time. The Swedish
language goes through significant development
from Old Swedish (”fornsvenska”) involving
grammar, lexicon, and spelling between the
13th and 16th centuries. The material is fur-
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Figure 2: Box plots showing the represented years for the document collections (coloured dots
are individual documents) in each dataset described in section 3.

ther complicated by the transcribers’ inconsis-
tent expansion of abbreviations and spelling
normalization. Since these types of prob-
lems are common with this type of archive,
we did not see any need for further annota-
tion or human curation. Hypothetically, if
many researchers, each primarily interested in
their limited period, have contributed to the
transcribed collection, then transcription stan-
dards (e.g., expansions of abbreviations) might
change over time, through not due to changes
in the underlying historical material. Though
a machine could potentially overfit on such fea-
tures, we see this as falling outside the scope
of this paper.

3.2 The charters of St. Clara Convent

The charters of St. Clara Convent (Roskilde,
Denmark) are part of the Arnamagnæan
Collection at the University of Copenhagen
(Hansen, 2015). The charters date from when
the convent was founded in 1256 till it was
closed after the Reformation, after which the
convent and its archive became part of the uni-
versity’s properties. In total, 471 charters are
left from the old archive. The majority of the
charters are written in Latin and Danish (361
and 100 charters, respectively), the rest being
in German or Swedish.

The charters have been all digitized with
multiple layers of annotation, including both
a facsimile and diplomatic transcription of the
text. The facsimile level (a) captures the
handwritten form of the text by annotating
the palaeographic characteristics of the letters
(i.e., focusing on the shape of the character
rather than solely on its meaning). The diplo-
matic transcription (b) is of the kind that is
usually found in manuscript editions. At this

level, the difference in handwriting is ignored
and abbreviated diacritics are expanded, while
variation in spelling is still preserved:

(a) ſoꝛoꝝ ⁊ onasteɼí earu ı posteru

(b) soror(um) (et) monasterij earu(m) in
posterum

In the example above, the word ”ſoꝛoꝝ” is
written in a way very similar to the original
handwriting (i.e., as a facsimile). In diplo-
matic annotation, this becomes ”soror(um)”,
where ”soror” are the modern forms of the let-
ters and the ”-um” suffix is expanded from the
stroke on the last letter and inferred from the
context.

3.3 SemEval2015
The SemEval2015 shared task of ”Diachronic
Text Evaluation” introduces a corpus of En-
glish news snippets dating from the 18th to
the 21th centuries (Popescu and Strapparava,
2015). Contrary to the collections of charters,
the news snippets were not precisely dated but
rather given as intervals over years (2 and 6
years wide) which can be seen by the distribu-
tion of data points in Figure 2. For this paper,
we only utilize the training set data from the
task, ending up with c. 4,500 documents.

3.4 Colonia
Colonia is a corpus of historical Portuguese,
compiled from various sources spanning from
the 16th to the 20th century (Zampieri and
Becker, 2013). While the collection of news
snippets and charters contains text with
lengths ranging from 10 to hundreds of words,
the texts of Colonia are substantially longer,
containing full works with thousands of tokens.
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Thus, with the 100 documents that it contains,
the collection counts up to five million tokens
in total.

4 Experimental setup

In our experimental setup, we have imple-
mented a number of ways of doing feature ex-
traction. We then evaluated all combinations
between those feature spaces and a number
of ways of doing the mapping to years on the
timeline.

In the documents of several datasets, clearly
stated years can be found. In order not to
let the estimators simply learn to find this in-
formation (especially in the charter datasets,
where Roman numerals are frequently encoun-
tered) we have removed all numerals from the
text as a part of the preprocessing.

Some of the methods we have evaluated were
quite demanding of the hardware. Hence, we
randomised the training, validation, and test
sets while preprocessing the datasets, using
the same sets for all evaluations. It should
be noted that this is not standard for several
of our approaches (e.g., naive Bayes) which
are normally evaluated using cross-validation.
However, we saw this as the only way of mak-
ing a fair comparison and not risk giving some
estimators more or different data.

4.1 Feature spaces
Binary bag-of-words vectors (BOW) (i.e., en-
coding the existence or absence of a word) have
been shown to be useful in many applications.
Since the popularity of words changes over
time, this type of vector can encode distribu-
tional information on word choice. We gener-
ated such vectors from the training and valida-
tion folds of the datasets and then transformed
the full datasets into their respective vector
space representations. This meant that only
the part of the test set vocabulary that was
overlapping with the training and validation
vocabularies was used. As the Colonia dataset
had a higher level of annotation, we made bi-
nary BOW vectors from the words, pos-tags,
and concatenated word+pos-tags.

Several papers use n-gram feature vectors
on both the word and character level. Look-
ing at a small context around words has the
potential to encode changes in common ex-

pressions or even some semantics. In contrast,
character level n-grams have the potential to
catch spelling or phonetic changes (especially
during eras where there were no standardised
spellings). The order of a space spanned by
n-grams is only limited by computer memory.
We chose to extract n-grams of orders {1, 2, 3}.

For some estimators, it is considered best
practice to perform feature selection as noise
removal and to lower run times. We ran fea-
ture selection based on χ2 statistics, capping
the feature space dimensionality to 1000 for
all estimators, but only kept the automatic se-
lection for those estimators where the training
accuracy improved (Gaussian process, linear
SVM, and non-linear SVM).

4.2 Classification for date estimation
Usually, the date estimation was treated as a
classification task in the literature. This was
done by formulating the mapping from doc-
uments to the timeline by dividing the time-
line 25-year wide bins and then classifying
the documents into those bins. An advantage
of this approach was that several estimators
can be used, specializing on particular parts
of the timeline (Garcia-Fernandez et al., 2011;
Zampieri et al., 2016).

The most popular estimation method in our
chosen literature is the support vector machine
(SVM) (Cortes and Vapnik, 1995). One core
advantage with the SVM is that finding a sep-
aration in some feature space is a reasonable
fast convex optimisation problem. The result-
ing linear decision boundary is interpretable in
term of the feature set, especially with BOW
vectors, but suffers from the fact that the data
needs to be linearly separable. In the litera-
ture, strategies for finding hyper-parameters
or kernels are surprisingly absent. From this,
we draw the conclusion that (most likely) a lin-
ear SVM was used, which only has one regular-
isation hyper-parameter. Because of the high
dimensionality of some feature spaces, a non-
linear decision boundary is often not needed
(and expensive). For testing this in our set-
ting, we extended our experiments by using
the standard radial basis function (RBF) ker-
nel to introduce some non-linearity, in addi-
tion to the linear SVM.

Temporal language models are probabilistic
models over sequences of tokens, either words
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or characters, for a given set of time spans.
The model approximates the likelihood of a
sequence, given some corpus. To simplify such
models, the Markov assumption is commonly
used to split up longer sequences, creating a
so-called n-gram model (as in the feature de-
scribed above). In order to create temporal
language models for classification, we split up
the data into bins and trained language models
on these respective bins (Boldsen and Paggio,
2019). Given this set of temporal language
models, dating a document is equivalent to
finding the model that is more likely to gen-
erate a specific document. One of the issues
in estimating sequence probabilities is encoun-
tering unseen n-grams. This is commonly han-
dled by modifying the n-gram counts by dis-
counting from non-zero events. In this paper,
we used modified Kneser-Ney smoothing with
interpolation (Chen and Goodman, 1999).

Naive Bayes classifiers (surprisingly) often
deliver good results in a variety of domains
despite their assumption of independence be-
tween features. Zampieri et al. (2016) employ
a multinomial naive Bayes classifier, which is
common for linguistic applications. This fits
well with their chosen feature model, focusing
on the frequencies of words and POS-tags. For
the completeness of the comparison, we eval-
uate estimators using both multinomial and
Gaussian priors.

4.3 Regression for date estimation
To get around the problem of choosing the
proper bin width for a classification, some
papers treat dating as a regression problem.
In Wahlberg et al. (2016), a Gaussian pro-
cess (GP) was used for the regression, allowing
mapping from documents to normal distribu-
tions over the timeline (i.e., inferring uncer-
tainties in addition to point estimates).

For a GP, the weight vector ω, in the stan-
dard regression expression ŷi = ωϕ(xi), is
treated as a random vector from a multivariate
normal distribution (Rasmussen and Williams,
2006). Though the GP is non-parametric and
ω is analytically inferred from the data, the
hyper-parameters for the feature transform
(kernel) ϕ(·) must be trained (we used RBF
as to be able to compare to the SVM) by
maximizing the likelihood of generating the
training data given that parameter set. Since

MVB Uniform Weighted
Colonia 26.32 5.65 11.74
SDHK Latin 26.29 5.89 17.69
SDHK Swedish 69.04 7.16 54.24
SemEval 2015 23.64 7.72 11.32
St.Clara dipl. Danish 15.79 12.48 14.27
St.Clara dipl. Latin 19.72 8.31 14.71
St.Clara facs. Danish 15.79 12.49 13.85
St.Clara facs. Latin 19.72 8.25 14.68

Table 1: Accuracy for different baseline strate-
gies. The majority vote baseline (MVB) clas-
sifies all documents as the most common class
while the other baselines are expected accu-
racy with hypothetical random classifier. The
”uniform” baseline classifier draws random
years from a uniform distribution over the rele-
vant timeline, while the ”weighted” draws from
each dataset’s label distribution.

GPs are generative and probabilistic, all hyper-
parameters can be marginalized. However,
this is rarely done in practice. Most often, a
set of hyperparameters are chosen by maximiz-
ing their likelihood given the model (maximum
a posteriori).

4.4 Evaluation metric

In most of the papers presented in Section
2, accuracy was the preferred evaluation met-
ric. For any classification over a timeline, a
bin width needs to be chosen. Several pa-
pers used 50-year-wide non-overlapping bins.
In our implementation we have chosen 25-year
wide bins, making accuracy less forgiving.

As for accuracy baselines, we created ran-
dom baseline classifications using three strate-
gies. First, the majority vote baseline (i.e.,
always classifying as the most common bin),
a uniform bin probability, and a weighted
scheme with random classifications while re-
specting the date distribution of the data. The
baseline accuracy scores can be found in Ta-
ble 1. Given these methods, any accuracy
above 25% can be seen as better than random
for all datasets except for SDHK in Swedish,
which is heavily skewed and has a majority
vote baseline of 69%.
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Figure 3: Scatter plot over the estimated production years versus their true years for three types
of estimators. All used character bigram features and classification except for the rightmost that
used regression. The dashed lines on the diagonal are spaced 25 and 50 years from the diagonal.
Note that many points are plotted on top of each other, especially for the classification based
estimators.

5 Results and discussion

The results from the experiments can be found
in Table 2. Due to a lack of space, we chose
to focus the discussion on the four different
classifiers that provide the highest scores for
the individual datasets (highlighted with red).
The results for the remaining two classifiers
can be found in the appendix.

All classifiers perform above baseline for at
least one feature set. Considering the best per-
forming feature sets per classifier (highlighted
with blue), character models perform the best
across classifiers except for Gaussian Naive
Bayes. Aside from being able to capture fea-
tures such as morphology and spelling, charac-
ter models have the advantage that the feature
space is smaller than for word models, which
in turn increases the number of examples that
estimators consider. Whether it is the features
or simply the data size that is at play is diffi-
cult to read from these numbers.

When working with vector representation of
words and higher level character n-grams, the
feature set easily becomes larger than the num-
ber of samples used for training a model. In
these cases, one could argue that it is unlikely
for the estimators using these representations
(SVMs, naive Bayes) not to find something in
the training set that correlates with the time-
line, even though the feature might not nec-
essarily be related to language change. The
problem is compounded by that the training,
validation, and test data were all drawn from

the same data generating process and, hence,
might have the same spurious correlations in
relation to the target labels.

If we compare the linear SVM with the non-
linear SVM, the linear version has the advan-
tage of being more qualitatively interpretable
due to the lack of warping of the feature space.
However, if we compare the models in terms
of accuracy, using a non-linear kernel yields
slightly better results. When we compare the
test set predictions of the different estimators,
they do tend to correlate. As is revealed in Fig-
ure 4, there is a strong relationship between
the predictions made using different SVM es-
timators (linear and non-linear), especially on
similar feature sets. If we consider the predic-
tions using the non-linear SVM on character
unigrams, we see a slightly stronger correla-
tion with the predictions of the linear SVM
when using higher orders, which suggests that
a more complex model is able to utilize its non-
linear combination of features on the problem.
However, in terms of accuracy results, this ad-
vantage is not widely outspoken. Thus, we
argue that choosing a linear kernel may still
be preferable, as its predictions are more eas-
ily explained to a community of philologists or
historians.

Despite not appearing in more recent re-
search, the temporal language model outper-
forms other models on several datasets using
character features. All estimators that we
have evaluated describe language as a distri-
bution of words or characters. What distin-
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Temporal Language Model Classification
char1 char2 char3 word1 word2 word3

Colonia 5.3 5.3 5.3 5.3 5.3 5.3
SDHK Latin 0.5 69.2 75.3 0.0 7.5 15.7
SDHK Swedish 1.9 93.5 95.0 0.3 1.0 5.7
SemEval 2015 25.7 45.7 58.3 1.2 15.6 16.5
St. Clara dipl. Danish 15.8 42.1 31.6 0.0 31.6 31.6
St. Clara dipl. Latin 1.4 54.9 56.3 0.0 26.8 29.6
St. Clara facs. Danish 42.1 63.2 57.9 5.3 10.5 10.5
St. Clara facs. Latin 7.0 69.0 71.8 0.0 1.4 2.8

Linear Support Vector Classification
Colonia 36.8 47.4 36.8 36.8 42.1 36.8
SDHK Latin 37.5 53.9 53.4 41.3 35.1 34.2
SDHK Swedish 81.0 89.0 88.0 76.2 69.9 69.4
SemEval 2015 26.8 31.4 30.2 28.4 24.7 24.2
St. Clara dipl. Danish 26.3 57.9 36.8 10.5 10.5 10.5
St. Clara dipl. Latin 38.0 47.9 39.4 32.4 19.7 26.8
St. Clara facs. Danish 42.1 31.6 10.5 0.0 10.5 21.1
St. Clara facs. Latin 47.9 49.3 36.6 33.8 15.5 22.5

Gaussian naive Bayes
Colonia 31.6 21.1 31.6 26.3 36.8 42.1
SDHK Latin 12.9 37.2 58.3 62.9 - -
SDHK Swedish 19.8 84.6 92.7 86.9 88.8 -
SemEval 2015 19.7 21.7 39.8 50.9 49.0 43.1
St. Clara dipl. Danish 31.6 26.3 21.1 36.8 47.4 15.8
St. Clara dipl. Latin 16.9 39.4 54.9 54.9 66.2 69.0
St. Clara facs. Danish 26.3 31.6 36.8 36.8 47.4 36.8
St. Clara facs. Latin 53.5 67.6 70.4 63.4 66.2 59.2

Support Vector Classification with Radial Basis Function
Colonia 42.1 52.6 42.1 42.1 42.1 42.1
SDHK Latin 45.0 53.4 58.3 48.0 40.1 10.6
SDHK Swedish 88.3 90.3 90.1 80.6 1.3 1.5
SemEval 2015 27.6 30.1 31.6 27.4 10.3 14.3
St. Clara dipl. Danish 26.3 57.9 26.3 21.1 15.8 21.1
St. Clara dipl. Latin 45.1 46.5 50.7 38.0 25.4 19.7
St. Clara facs. Danish 36.8 21.1 31.6 21.1 15.8 26.3
St. Clara facs. Latin 50.7 47.9 45.1 33.8 15.5 25.4

Table 2: The accuracy scores (in percent) for the four estimators. Best results for each dataset
are highlighted with red, and best results for each estimator are highlighted with blue. We ran
several more combinations of feature sets and estimators, all of which can be found in our code
repository for this paper.

guishes the temporal language modelling ap-
proach from the other estimators, is that it
uses perplexity as a measure to model linguis-
tic difference. Several estimators are treat-
ing the probability density functions for the
different documents as points in a Euclidean
space (e.g., linear SVM). This assumption of-
ten works. However, by using a divergence
metric between probability density functions,
the space is treated more in line with the na-
ture of the encoding. This has been shown
to be beneficial for image based dating of
manuscripts (Wahlberg et al., 2014), leading
us to speculate that this result is valid here
too.

While performing well on character feature
sets, the temporal language model struggles
when it comes to word representations with
accuracies below 10%. This suggests that the
temporal language model is sensitive to larger
feature spaces, in which smoothing might not
be sufficient. Furthermore, it performs poorly
on the Colonia dataset. Whether this is due
to the number of samples, document length,
or dataset distribution is difficult to say, and
it calls for further analysis of the models with
respect to dataset statistics.

Finally, we wish to discuss the performance
of regression to classification methods. Most
previous work has preferred to use classifica-
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Figure 4: A heat map of the correlation co-
efficients (p < 0.005) between test set predic-
tions by SVM estimators with linear and RBF
kernels using different feature sets. The coeffi-
cients (p < 0.005) were computed as Kendall’s
τ , which does not assume a normal distribu-
tion and works for ordinal values.

tion instead of regression, treating the time-
line as discrete and with temporally indepen-
dent labels. That labels are independent is
reflected in the use of categorical accuracy as
the evaluation metric. If we look at Figure 3,
this is illustrated by the inner dashed lines,
outside which predictions are considered incor-
rect, even though they are close to the target
temporally. In this respect, regression meth-
ods should have an advantage, however, this
is not reflected in our results. It would be in-
teresting to further compare what advantages
there are - if any - to choosing regression over
the classification.

6 Conclusion and Future Work

In this paper, we present a survey of several
methods found in the literature for estimating
the production years of transcribed historical
documents. We have reproduced the methods
used in a number of papers, including differ-
ent n-gram/word/pos-tag feature spaces and
several linear (naive Bayes, linear SVM) and
non-linear (Gaussian process, SVM with RBF
kernel) estimators.

Our results show that several of the combi-
nations of estimators and feature models work
well, but that character n-gram features pro-
vide the best results overall. In particular, the

temporal language model with character fea-
tures surpasses more recently proposed mod-
els. Whether this is due to the linguistic fea-
tures (e.g., suffixes or phonetic changes lead-
ing to changes in spelling) that they poten-
tially capture or simply due to a reduced fea-
ture space giving better model parameter es-
timates, we cannot conclude from our results.
Therefore, we call for further analysis of the
estimators, preferably favouring more inter-
pretable approaches (e.g., linear SVM).

Our experiments show that combinations of
estimators and feature transforms that worked
well on younger materials were often also suc-
cessful on older materials, and vice versa. As
the datasets that we compare not only differ
in age, but also in number and size of sam-
ples. For future work, it would be interest-
ing to investigate the robustness of the meth-
ods from the literature with respect to such
dataset statistics. In this respect, it would
also be relevant to include recent work on
neural models such as using word embeddings
and convolutional networks, which have been
shown to work well for dating on large cor-
pora. However, these have yet to be trialed on
smaller corpora.

Acknowledgments
The first author is supported by the project
Script and Text in Time and Space, a core
group project supported by the Velux Foun-
dations. We are grateful to Patrizia Paggio
for her support and comments regarding this
paper.

We also want to thank the Swedish National
Archive for providing the SDHK dataset, both
as images and transcribed text. Funding for
the second author was provided by the project
”New Eyes on Sweden’s Medieval Scribes”,
headed by Lasse Mårtensson.

Finally, we want to thank the anonymous
reviewers for finding the time to give construc-
tive criticism.

153



References
Sidsel Boldsen, Manex Agirrezabal, and Patrizia

Paggio. 2019. Identifying temporal trends based
on perplexity and clustering: Are we looking at
language change?

Sidsel Boldsen and Patrizia Paggio. 2019. Auto-
matic dating of medieval charters from denmark.
In DHN.

Nathanael Chambers. 2012. Labeling docu-
ments with timestamps: Learning from their
time expressions. Technical report, NAVAL
ACADEMY ANNAPOLIS MD DEPT OF
COMPUTER SCIENCE.

Stanley F Chen and Joshua Goodman. 1999. An
empirical study of smoothing techniques for lan-
guage modeling. Computer Speech & Language,
13(4):359–394.

Corinna Cortes and Vladimir Vapnik. 1995.
https://doi.org/10.1023/A:1022627411411
Support-vector networks. Machine Learning,
20(3):273–297.

Angelo Dalli and Yorick Wilks. 2006. Automatic
dating of documents and temporal text classifi-
cation. In Proceedings of the Workshop on An-
notating and Reasoning about Time and Events,
pages 17–22.

Anne Garcia-Fernandez, Anne-Laure Ligozat,
Marco Dinarelli, and Delphine Bernhard. 2011.
When was it written? Automatically determin-
ing publication dates. In String Processing and
Information Retrieval, pages 221–236, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Anne Mette Hansen. 2015. Adkomstbreve i Skt.
Clara Klosters arkiv. In Matthew J. Driscoll
and Svanhildur Óskarsdóttir, editors, 66 hånd-
skrifter fra Arne Magnussons samling, pages
138–139. Museum Tusculanum.

Franciska de Jong, Henning Rode, and Djoerd
Hiemstra. 2005. Temporal language models for
the disclosure of historical text. In Humanities,
computers and cultural heritage: Proceedings
of the XVIth International Conference of the
Association for History and Computing (AHC
2005), pages 161–168. Koninklijke Nederlandse
Academie van Wetenschappen.

Nattiya Kanhabua and Kjetil Nørvåg. 2008. Im-
proving temporal language models for determin-
ing time of non-timestamped documents. In In-
ternational Conference on Theory and Practice
of Digital Libraries, pages 358–370. Springer.

Abhimanu Kumar, Matthew Lease, and Jason
Baldridge. 2011. Supervised language modeling
for temporal resolution of texts. In Proceedings
of the 20th ACM international conference on
Information and knowledge management, pages
2069–2072.

Stefano Menini, Giovanni Moretti, and S. Tonelli
R. Sprugnoli. 2020. Dating document evaluation
at EVALITA 2020. https://dhfbk.github.
io/DaDoEval/. Accessed: 2020-08-03.

Rada Mihalcea and Vivi Nastase. 2012. Word
epoch disambiguation: Finding how words
change over time. In Proceedings of the 50th
Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers),
pages 259–263.

Vlad Niculae, Marcos Zampieri, Liviu P Dinu, and
Alina Maria Ciobanu. 2014. Temporal text rank-
ing and automatic dating of texts. In Proceed-
ings of the 14th Conference of the European
Chapter of the Association for Computational
Linguistics, volume 2: Short Papers, pages 17–
21.

José Ramom Pichel, Pablo Gamallo,
Iñaki Alegria, and Marco Neves. 2020.
https://doi.org/10.1080/09296174.2020.1732177
A methodology to measure the diachronic lan-
guage distance between three languages based
on perplexity. Journal of Quantitative Linguis-
tics, 0(0):1–31.

José Ramom Pichel Campos, Pablo
Gamallo, and Iñaki Alegria. 2018.
http://aclweb.org/anthology/W18-3916 Mea-
suring language distance among historical
varieties using perplexity. Application to Eu-
ropean Portuguese. In Proceedings of the
Fifth Workshop on NLP for Similar Lan-
guages, Varieties and Dialects (VarDial 2018),
pages 145–155. Association for Computational
Linguistics.

Octavian Popescu and Carlo Strapparava. 2014.
Time corpora: Epochs, opinions and changes.
Knowledge-Based Systems, 69:3–13.

Octavian Popescu and Carlo Strapparava. 2015.
Semeval 2015, task 7: Diachronic text evalua-
tion. In Proceedings of the 9th International
Workshop on Semantic Evaluation (SemEval
2015), pages 870–878.

C. E. Rasmussen and C. K. I. Williams. 2006.
Gaussian Processes for Machine Learning. MIT
Press.

Sanja Štajner and Marcos Zampieri. 2013. Stylistic
changes for temporal text classification. In Text,
Speech, and Dialogue, pages 519–526, Berlin,
Heidelberg. Springer Berlin Heidelberg.

Terrence Szymanski and Gerard Lynch. 2015.
UCD: Diachronic text classification with charac-
ter, word, and syntactic n-grams. In Proceedings
of the 9th International Workshop on Semantic
Evaluation (SemEval 2015), pages 879–883.

154



Shikhar Vashishth, Shib Sankar Dasgupta,
Swayambhu Nath Ray, and Partha Talukdar.
2019. http://arxiv.org/abs/1902.00175 Dating
documents using graph convolution networks.

F. Wahlberg, L. Mårtensson, and A. Brun.
2014. https://doi.org/10.1109/ICFHR.2014.128
Scribal attribution using a novel 3-d quill-
curvature feature histogram. In 2014 14th Inter-
national Conference on Frontiers in Handwrit-
ing Recognition, pages 732–737.

F. Wahlberg, L. Mårtensson, and A. Brun. 2016.
Large scale continuous dating of medieval
scribes using a combined image and language
model. In 2016 12th IAPR Workshop on Docu-
ment Analysis Systems (DAS), pages 48–53.

Marcos Zampieri and Martin Becker. 2013. Colo-
nia: Corpus of historical portuguese. ZSM Stu-
dien, Special Volume on Non-Standard Data
Sources in Corpus-Based Research, 5:69–76.

Marcos Zampieri, Alina Maria Ciobanu, Vlad Nic-
ulae, and Liviu P Dinu. 2015. Ambra: A rank-
ing approach to temporal text classification. In
Proceedings of the 9th International Workshop
on Semantic Evaluation (SemEval 2015), pages
851–855.

Marcos Zampieri, Shervin Malmasi, and Mark
Dras. 2016. Modeling language change in his-
torical corpora: The case of Portuguese. In Pro-
ceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC
2016), pages 4098–4104, Paris, France. Euro-
pean Language Resources Association (ELRA).

155



A Experimental results

Temporal Language Model Classification
char1 char2 char3 word1 word2 word3

Colonia 5.3 5.3 5.3 5.3 5.3 5.3
SDHK Latin 0.5 69.2 75.3 0.0 7.5 15.7
SDHK Swedish 1.9 93.5 95.0 0.3 1.0 5.7
SemEval 2015 25.7 45.7 58.3 1.2 15.6 16.5
St. Clara dipl. Danish 15.8 42.1 31.6 0.0 31.6 31.6
St. Clara dipl. Latin 1.4 54.9 56.3 0.0 26.8 29.6
St. Clara facs. Danish 42.1 63.2 57.9 5.3 10.5 10.5
St. Clara facs. Latin 7.0 69.0 71.8 0.0 1.4 2.8

Linear Support Vector Classification
Colonia 36.8 47.4 36.8 36.8 42.1 36.8
SDHK Latin 37.5 53.9 53.4 41.3 35.1 34.2
SDHK Swedish 81.0 89.0 88.0 76.2 69.9 69.4
SemEval 2015 26.8 31.4 30.2 28.4 24.7 24.2
St. Clara dipl. Danish 26.3 57.9 36.8 10.5 10.5 10.5
St. Clara dipl. Latin 38.0 47.9 39.4 32.4 19.7 26.8
St. Clara facs. Danish 42.1 31.6 10.5 0.0 10.5 21.1
St. Clara facs. Latin 47.9 49.3 36.6 33.8 15.5 22.5

Gaussian naive Bayes
Colonia 31.6 21.1 31.6 26.3 36.8 42.1
SDHK Latin 12.9 37.2 58.3 62.9 - -
SDHK Swedish 19.8 84.6 92.7 86.9 88.8 -
SemEval 2015 19.7 21.7 39.8 50.9 49.0 43.1
St. Clara dipl. Danish 31.6 26.3 21.1 36.8 47.4 15.8
St. Clara dipl. Latin 16.9 39.4 54.9 54.9 66.2 69.0
St. Clara facs. Danish 26.3 31.6 36.8 36.8 47.4 36.8
St. Clara facs. Latin 53.5 67.6 70.4 63.4 66.2 59.2

Support Vector Classification with Radial Basis Function
Colonia 42.1 52.6 42.1 42.1 42.1 42.1
SDHK Latin 45.0 53.4 58.3 48.0 40.1 10.6
SDHK Swedish 88.3 90.3 90.1 80.6 1.3 1.5
SemEval 2015 27.6 30.1 31.6 27.4 10.3 14.3
St. Clara dipl. Danish 26.3 57.9 26.3 21.1 15.8 21.1
St. Clara dipl. Latin 45.1 46.5 50.7 38.0 25.4 19.7
St. Clara facs. Danish 36.8 21.1 31.6 21.1 15.8 26.3
St. Clara facs. Latin 50.7 47.9 45.1 33.8 15.5 25.4

Multinomial Naive Bayes
Colonia 26.3 26.3 26.3 26.3 26.3 26.3
SDHK Latin 26.3 26.4 29.9 39.0 39.1 36.7
SDHK Swedish 69.0 69.0 69.0 69.0 69.0 69.0
SemEval 2015 23.6 23.6 23.6 23.6 23.6 23.6
St. Clara dipl. Danish 10.5 21.1 15.8 26.3 21.1 10.5
St. Clara dipl. Latin 19.7 19.7 19.7 22.5 21.1 19.7
St. Clara facs. Danish 26.3 26.3 26.3 26.3 21.1 26.3
St. Clara facs. Latin 25.4 25.4 19.7 25.4 19.7 19.7

Gaussian Process Regression
Colonia 21.1 0.0 31.6 0.0 0.0 5.3
SDHK Latin 34.1 35.6 38.9 40.9 28.8 26.6
SDHK Swedish 79.7 75.4 79.3 80.2 3.1 1.5
SemEval 2015 12.8 17.1 15.3 12.3 8.3 6.9
St. Clara dipl. Danish 15.8 21.1 47.4 31.6 26.3 21.1
St. Clara dipl. Latin 23.9 22.5 29.6 25.4 16.9 16.9
St. Clara facs. Danish 21.1 47.4 52.6 21.1 26.3 21.1
St. Clara facs. Latin 54.9 42.3 42.3 31.0 14.1 16.9
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Abstract

In this paper, we present experiments in
register classification of documents from
the unrestricted web, such as news articles
or opinion blogs, in a multilingual setting,
exploring both the benefit of training on
multiple languages and the capabilities for
zero-shot cross-lingual transfer. While the
wide range of linguistic variation found
on the web poses challenges for register
classification, recent studies have shown
that good levels of cross-lingual transfer
from the extensive English CORE corpus
to other languages can be achieved. In this
study, we show that training on multiple
languages 1) benefits languages with lim-
ited amounts of register-annotated data, 2)
on average achieves performance on par
with monolingual models, and 3) greatly
improves upon previous zero-shot results
in Finnish, French and Swedish. The best
results are achieved with the multilingual
XLM-R model. As data, we use the CORE
corpus series featuring register annotated
data from the unrestricted web.

1 Introduction

The focus of this paper is on multilingual train-
ing and cross-lingual transfer in register classifi-
cation of web documents. Text register (or genre)
(Biber, 1988), such as discussion forum or ency-
clopedia article, has been shown to be one of the
most important predictors of linguistic variation
(Biber, 2012), and register affects also the auto-
matic processing of text (Mahajan et al., 2015;
Webber, 2009; Van der Wees et al., 2018). Yet,
web data is typically used without register infor-
mation in many NLP tasks.

Web register classification studies have suffered
from the lack of corpora featuring the full range of

registers found on the web, as many datasets are
based on a priori selection of register categories in-
stead of unrestricted sampling of the web (Asheghi
et al., 2016; Pritsos and Stamatatos, 2018). Fur-
thermore, despite the availability of web-scale
data in hundreds of languages, until recently, the
resources for register identification have focused
exclusively on English.

The data for this study consist of four similarly
annotated online register collections featuring the
CORE corpus series in English (Egbert et al.,
2015), Finnish (Laippala et al., 2019), French and
Swedish (Repo et al., 2021). All the datasets
have been extracted from the unrestricted open
web. While the English CORE is extensive, with
34k training examples, the other languages feature
merely 2.7–4.6% of that (cf. Table 1).

In this paper, we explore how joint training on
the four available CORE corpora can benefit reg-
ister classification, with a particular interest in im-
proving performance in smaller languages.1 First,
using multilingually pre-trained language models
and a custom sampling and training strategy, we
compare performance when training on all lan-
guages against previous monolingual results on
the same corpora, observing gains for the smaller
languages. Second, with the aim of creating a
universal model fit for all languages, we train a
multilingual master model that we evaluate in a
zero-shot cross-lingual setting, demonstrating re-
sults that land within a relatively short distance
from monolingual performances (4–6% F1-score
for XLM-R).

2 Related work

Until recently, register identification from the un-
restricted web has achieved only modest perfor-
mance (Sharoff et al., 2010; Asheghi et al., 2014;

1For code and model, see: https://github.com/
TurkuNLP/multilingual-register-labeling
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Lang. Train Dev. Test Total
En 33,915 4,845 9,692 48,452
Fi 1,559 222 445 2,226
Fr 909 363 546 1,818
Sv 1,093 435 654 2,182

Table 1: Data set sizes in number of documents.

Biber and Egbert, 2016). Most importantly, the
challenges are caused by the range of linguistic
variation found on the web. Texts are written with-
out gatekeepers, and not all registers are equally
well-defined with discrete class boundaries (Biber
and Egbert, 2018; Sharoff, 2018). To this end,
Biber and Egbert (2018) suggest to extend the
analysis to hybrid documents combining charac-
teristics of several register classes, and Sharoff
(2018, 2021) examines web genres by prototyp-
ical genre classes and text dimensions featuring
communicative functions, such as argumentation
or reporting.

Despite the difficulty, Laippala et al. (2019)
show that multi- and cross-lingual modeling of
registers between English and Finnish is possible
at practical levels of performance, as they propose
a convolutional neural network (CNN) model with
multilingual word embeddings to model registers.
Further, Repo et al. (2021) demonstrate that pre-
trained neural language models, especially XLM-
R, can achieve strong performance monolingually
on the four aforementioned languages, as well as
achieve strong cross-lingual transfer in a zero-shot
learning setting from English to other languages.

The benefits of combining several languages
during training has been demonstrated for other
NLP tasks. Training the multilingual XLM-
RoBERTa (XLM-R), Conneau et al. (2020)
showed that adding more languages to training
leads to better cross-lingual performance on low-
resource languages. Comparing the performance
of multiple multilingual models across a number
of tasks and languages, Hu et al. (2020) noted
as well that adding target language data to train-
ing provides higher performance. However, they
highlighted that a model’s cross-lingual perfor-
mance varies greatly between languages and tasks
– on QA tasks, zero-shot models are very efficient
and outperform models trained on 1,000 examples
of target-language data. Finally, also the posi-
tive effect of sampling under- and overpresented
languages has been demonstrated previously; in

the context of multilingual semantic parsing, Li
et al. (2020) perform up- and downsampling of
languages based on frequency as part of their sam-
pling strategy, in order to improve multilingual
performance.

3 Data

The four datasets we use in this study—CORE,
FinCORE, FreCORE and SweCORE—all feature
the unrestricted web, however, they have been
compiled in different ways. The English CORE is
based on unrestricted search queries of extremely
frequent n-grams, while the other datasets are ran-
domly sampled from the 2017 CoNLL Shared
Task datasets, originally drawn from Common
Crawl (Ginter et al., 2017). Table 1 summarizes
the data set sizes.

The four datasets have all manual register anno-
tations following the same register taxonomy that
was developed during the compilation of the En-
glish CORE. The taxonomy is hierarchical, with
eight main registers and approximately 30 sub-
classes, depending on the language-specific ver-
sion. In this study, we focus on the main register
level, which includes the classes Narrative (NA),
Informational Description (IN), Opinion (OP),
Interactive Discussion (ID), How-to/Instruction
(HI), Informational Persuasion (IP), Lyrical (LY)
and Spoken (SP) (for a detailed description, see
(Biber and Egbert, 2018)).

In order to reflect the variation found within the
data, hybrid documents combining characteristics
of several registers are also annotated. On the
main register level, these display 11–15% of all
other language-specific datasets but Finnish. Per-
haps because of the different approaches to gath-
ering the corpora, the register distributions differ
also for some other classes between CORE and the
others. Specifically, the Informational Persuasion
class covers only 2.75% of CORE, and 16.82–
24.15% of the other datasets, and also the Opinion
class covers 16.23% of CORE and 15,23% of Fin-
CORE, but only 6.63% of FreCORE and 6,60% of
SweCORE (for details, see Repo et al. (2021)).

4 Methods

4.1 Multilingual language models
We focus on two multilingual deep learning mod-
els, namely Multilingual BERT (mBERT, (De-
vlin et al., 2019)) and XLM-RoBERTa (XLM-R,
(Conneau et al., 2020)), which have been shown
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Figure 1: Illustration of the multilingual sampling
strategy. Languages are uniformly sampled to
generate training batches. A training set is inde-
pendently reshuffled after a full pass.

to achieve high performance in both monolin-
gual and zero-shot cross-lingual settings of reg-
ister classification. Repo et al. (2021) show that
XLM-R clearly outperforms mBERT by up to
8% points F1-score monolingually and up to 11%
points cross-lingually, while both clearly outper-
form previous state-of-the-art.

Both mBERT and XLM-R are based on the
BERT architecture, the first being trained on
Wikipedia in 104 languages and the latter on
cleaned Common Crawl data in 100 languages.
While both models lack an explicit cross-lingual
signal, XLM-R has more than double the vocab-
ulary size and was trained on significantly more
data for a longer time. We use the large version of
XLM-R, whereas mBERT is only available in base
size. In various multilingual tasks, XLM-R has
been shown to outperform mBERT, which tends
to struggle especially with smaller languages such
as Finnish and Swedish (Rönnqvist et al., 2019).
Nevertheless, we include both models in order to
study their relative performances as we introduce
a multilingual sampling strategy.

The experiments are performed as multi-label
classification in order to support hybrid registers.
We use TensorFlow checkpoints of the models
through the Huggingface Transformers library and
repository (Wolf et al., 2020). We train a deci-

sion layer on top of the top-layer CLS embedding,
while also fine-tuning the language model parame-
ters, with a binary cross-entropy loss. The models
are evaluated using micro-averaged F1-score and
a fixed prediction threshold of 0.5.

4.2 Sampling and training strategy
Since the training sets in the different language
corpora we use differ, they risk skewing the class
distributions when training on multiple languages
at once. In particular, the English set is much
larger than the others, and exhibits a somewhat dif-
ferent class distribution (see Section 3, Repo et al.
(2021)).

In order to mitigate this problem, we propose
a sampling strategy which samples all languages
in equal parts during training. The strategy is il-
lustrated in Figure 1. First, for each mini-batch,
the language is selected with uniform probabil-
ity, and then training samples are randomly sam-
pled without replacement. The examples in a lan-
guage set are reshuffled when they have all been
sampled, such that the smaller sets are repeated
more often. One training epoch consists of N ·B1

mini-batches, where N is the number of languages
and B1 the number of mini-batches in the smallest
training set.

In combination with this mode of sampling, we
train the models for longer than reported by Repo
et al. (2021), typically on the order of 100 epochs,
in order to avoid explicitly disregarding any data in
the larger training sets. We apply an early stopping
criterion on the validation set F1-score, in order to
avoid excessive training and to empirically deter-
mine when the data sets have been sufficiently re-
peated. We also use a learning rate about an order
of magnitude lower than in the previously reported
work to match the longer training.

5 Experiments

We first train models jointly on all four languages
following the sampling strategy introduced above,
and optimize hyperparameters2 for each target lan-
guage separately, based on development set per-
formance. The optimal model for each language is
tested on the respective test set. We compare the
multilingual results to the previous state-of-the-art
results in monolingual settings, i.e., where one and

2We test learning rates in the range 4e−6 to 7e−5 and
maximum number of epochs 25 to 175 (affecting rate of
warm-up and learning rate decay). Batch size is 7 (capped
by available GPU memory) and patience 5 epochs.
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Monolingual (baseline)
mBERT Dev. Test
Target F1 (%) Std. F1 (%) Std.
En 72.80 (0.21) 73.06 (0.09)
Fi 65.91 (0.85) 64.83 (1.16)
Fr 70.74 (1.67) 68.66 (0.63)
Sv 76.91 (0.45) 76.43 (0.46)
Average 70.75

excl. En 69.97

XLM-R
Target F1 (%) Std. F1 (%) Std.
En 75.80 (0.12) 75.68 (0.05)
Fi 76.25 (0.45) 73.18 (1.35)
Fr 77.38 (0.51) 76.92 (0.24)
Sv 82.61 (0.37) 83.04 (0.62)
Average 77.21

excl. En 77.71

Multilingual (ours)
Dev. Test Test diff.

F1 (%) Std. F1 (%) Std. F1 (%)
68.20 (1.36) 68.63 (1.39) -4.43
69.25 (1.75) 65.95 (1.06) 1.12
72.49 (0.54) 69.55 (0.36) 0.89
78.49 (0.85) 78.22 (1.17) 1.79

70.59 -0.16
71.24 0.91

F1 (%) Std. F1 (%) Std.
72.03 (0.89) 72.43 (0.48) -3.25
77.53 (0.94) 75.00 (0.53) 1.82
78.72 (0.49) 77.54 (0.99) 0.62
83.92 (0.34) 83.92 (0.34) 0.90

77.22 0.01
78.82 0.83

Table 2: Performance of models trained in monolingual and multilingual settings, optimized for each
language separately. F1-scores are means, N=3.

Multilingual master model

mBERT Common dev. Test
Target F1 (%) Std. F1 (%) Std.
En 66.27 (2.33)
Fi 65.27 (1.56)
Fr 69.76 (2.24)
Sv

71.32 (1.51)

77.92 (1.21)
Average 69.81

excl. En 70.98

XLM-R Common dev. Test
Target F1 (%) Std. F1 (%) Std.
En 72.37 (1.17)
Fi 75.05 (0.81)
Fr 78.81 (0.89)
Sv

78.20 (0.04)

82.36 (0.54)
Average 77.15

excl. En 78.74

Table 3: Performance of models validated against
a common development set that is balanced be-
tween the languages, and tested on the language-
specific test sets. F1-scores are means, N=3.

Zero-shot,
from English
(baseline)

mBERT Test
Target F1 (%) Std.
En – –
Fi 50.21 (0.74)
Fr 55.04 (0.66)
Sv 62.53 (0.78)
Average –
excl. En 55.93

XLM-R
Target F1 (%) Std.
En – –
Fi 61.35 (1.26)
Fr 64.27 (1.58)
Sv 69.22 (1.66)
Average –
excl. En 64.95

Zero-shot,
multilingual
(ours)

Test
F1 (%) Std.
55.15 (2.58)
58.46 (0.76)
62.82 (1.86)
69.48 (0.72)
61.48
63.59

F1 (%) Std.
63.32 (0.25)
69.60 (0.55)
72.85 (1.74)
79.49 (0.95)
71.31
73.98

Table 4: Performance of models trained in zero-
shot cross-lingual settings, from English to target
language (left), and from all other languages to tar-
get (right). F1-scores are means, N=3.
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Figure 2: Comparison of all F1-scores. The left box presents the performance of mBERT in the different
settings (bar groups) for all languages (color coded) and the right box presents those of XLM-R. Inter-
annotator agreement levels (horizontal colored lines) for French and Swedish provide points of reference
indicating potential upper bounds for modeling.

the same language is used to train, validate and test
the models.

Table 2 presents the results of these experiments
(right hand side), as well as the monolingual base-
line performances reported by Repo et al. (2021)
(left hand side). We observe that both mBERT
(above) and XLM-R (below) perform better in
multilingual training for all languages except for
English. The gains are on average (excluding En-
glish) 0.8–0.9% F1-score for the two models, in-
dicating some degree of cross-lingual knowledge
transfer from the extra data. Meanwhile, per-
formance for English drops by 3.3–4.4% points,
which is likely due to the class distribution being
pushed to its disadvantage by the uniform sam-
pling of the otherwise more homogeneous cor-
pora. In terms of average F1-score, the multi-
lingual performance is on par with the previous
monolingual models.

Second, after optimizing on each language in-
dividually, we perform another hyperparameter
search for training a single multilingual model that
should favor each language equally, which we call
a master model. In order to train the master model,
we create a common development set based on
the individual sets of the languages. The devel-
opment sets differ in size due to different sizes of
the corpora and different data split ratios (see Ta-
ble 1). We create the common set by upsampling

the Finnish and French and downsampling the En-
glish set to the size of the Swedish set; the sets
are then concatenated to a total size of 1740. The
master model is validated against this set during
training. In particular, when to stop training is de-
termined based on the performance on this set, i.e.,
on the average performance across languages.

Table 3 lists the best performance on the com-
mon development set for both mBERT and XLM-
R, as well as the performance of both models in
each language-specific test set. The level of per-
formance remains stable for the master model,
with an average decrease of 0.78% for mBERT
and only 0.08% for XLM-R compared to the mul-
tilingual results in Table 2.

Third, in order to estimate the performance that
can be expected of the master model on an unseen
language, we still perform an experiment where
each of our four languages is in turn taken as tar-
get, and a model is trained with the previously
optimized hyperparameters, using the remaining
three languages for training and validation (con-
trolling early stopping). The models are tested in
each language separately.

The results of this zero-shot cross-lingual ex-
periment are listed in Table 4 (right hand side),
along baseline results from previous work study-
ing cross-lingual transfer from English to the other
languages (Repo et al., 2021) (left hand side).
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HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.51 0.01 0.10 0.00 0.02 0.07 0.27

0.00 0.83 0.05 0.00 0.05 0.06 0.01

0.01 0.01 0.72 0.01 0.10 0.08 0.08

0.00 0.00 0.36 0.27 0.08 0.16 0.12

0.00 0.01 0.05 0.00 0.83 0.06 0.05

0.01 0.01 0.07 0.00 0.14 0.67 0.10

0.02 0.01 0.23 0.02 0.34 0.24 0.14

English
HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.61 0.00 0.07 0.07 0.00 0.04 0.21

0.00 0.70 0.04 0.00 0.11 0.07 0.07

0.06 0.03 0.64 0.04 0.08 0.10 0.06

0.03 0.00 0.12 0.70 0.07 0.07 0.01

0.02 0.01 0.05 0.00 0.83 0.06 0.03

0.00 0.03 0.03 0.02 0.14 0.72 0.06

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Finnish

HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.73 0.00 0.18 0.00 0.00 0.00 0.09

0.02 0.89 0.00 0.00 0.02 0.02 0.05

0.01 0.03 0.75 0.03 0.05 0.03 0.11

0.00 0.00 0.05 0.85 0.05 0.00 0.05

0.00 0.00 0.04 0.02 0.83 0.04 0.06

0.03 0.00 0.03 0.06 0.11 0.69 0.08

0.07 0.05 0.20 0.20 0.20 0.08 0.19

French
HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.67 0.00 0.13 0.00 0.00 0.00 0.20

0.00 0.62 0.05 0.00 0.29 0.05 0.00

0.01 0.01 0.90 0.02 0.02 0.01 0.03

0.01 0.00 0.06 0.78 0.07 0.03 0.07

0.00 0.01 0.03 0.01 0.92 0.01 0.03

0.02 0.00 0.02 0.02 0.19 0.60 0.14

0.05 0.00 0.09 0.17 0.40 0.07 0.22

Swedish

HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.31 0.02 0.08 0.03 0.16 0.01 0.38

0.01 0.76 0.05 0.01 0.08 0.06 0.04

0.02 0.01 0.48 0.14 0.17 0.04 0.15

0.01 0.00 0.06 0.63 0.10 0.09 0.10

0.00 0.01 0.03 0.02 0.84 0.05 0.04

0.02 0.02 0.05 0.05 0.31 0.43 0.12

0.02 0.01 0.12 0.12 0.44 0.15 0.13

English
HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.44 0.00 0.16 0.20 0.00 0.00 0.20

0.00 0.55 0.09 0.00 0.14 0.14 0.09

0.00 0.04 0.61 0.11 0.09 0.09 0.07

0.01 0.00 0.05 0.78 0.08 0.05 0.03

0.00 0.00 0.04 0.07 0.78 0.07 0.03

0.02 0.03 0.02 0.03 0.12 0.76 0.02

0.00 0.00 0.00 0.00 0.00 0.00 0.00

Finnish

HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.64 0.00 0.27 0.00 0.00 0.00 0.09

0.00 0.90 0.02 0.00 0.02 0.02 0.02

0.00 0.01 0.85 0.00 0.07 0.02 0.05

0.00 0.00 0.27 0.59 0.06 0.00 0.08

0.00 0.00 0.08 0.00 0.83 0.05 0.03

0.03 0.00 0.10 0.03 0.10 0.73 0.00

0.08 0.06 0.33 0.12 0.21 0.11 0.09

French
HI ID IN IP NA OP HYB

HI

ID

IN

IP

NA

OP

HYB

0.69 0.00 0.08 0.00 0.00 0.00 0.23

0.00 0.67 0.05 0.00 0.19 0.00 0.10

0.02 0.01 0.94 0.01 0.01 0.00 0.01

0.02 0.00 0.09 0.79 0.04 0.04 0.02

0.01 0.01 0.04 0.01 0.89 0.02 0.03

0.03 0.00 0.00 0.03 0.19 0.68 0.08

0.09 0.00 0.13 0.18 0.38 0.13 0.10

Swedish

Master model predictions Zero-shot model predictions

Figure 3: Confusion matrices for predictions in each language using the master multilingual model (left)
and the zero-shot cross-lingual models (right). Columns represent predictions and rows true labels for
the most common classes, with all hybrid instances represented by HYB only.

The numbers show a significant gain for multilin-
gual modeling over cross-lingual modeling from
English only; for mBERT the increase is 5.55%
(7.66% excluding English) and for XLM-R 6.36%
(9.03%).

Finally, Figure 2 summarizes the F1-scores
from the aforementioned tables in a side-by-side
comparison. We especially observe how the zero-
shot multilingual results take the lead over the
baseline of zero-shot from English, in order to ap-
proach the levels of the monolingual and multi-
lingual models for which target language is also
used for training. The levels of inter-annotator
agreement, as reported by Repo et al. (2021), were
counted prior to any discussions between the an-
notators. Although this level should be considered
as a lower bound of human agreement, it sets a
theoretical boundary for automatic register identi-
fication.

6 Error analysis

In order to gain a more detailed understanding of
the types of errors the models are making, we
study the confusion matrices in Figure 3. These
present the correct classifications (diagonal) and
misclassifications (rest), both in a single language
setting using the master multilingual model and in
a cross-lingual setting using the zero-shot model.

The matrices include the six most frequent classes
and a separate hybrid class, as the confusions ma-
trix is not defined for the multi-label setting.

We observe that hybrid documents overall are
difficult to recognize as such, in particular hybrids
composed of Narrative (NA) and another class are
often predicted as NA only. Comparing the master
model (left) and the zero-shot models (right), we
see that the overall patterns are quite similar, while
the cross-lingual performance, for instance, in En-
glish and Finnish is worse for How-to/Instruction
(HI) and Interactive discussion (ID). In Swedish,
however, ID performs better cross-lingually, and
Swedish generally exhibits the smallest differ-
ences between the settings.

Informational description (IN) and Informa-
tional persuasion (IP) are difficult to distinguish in
English for the master model, whereas the cross-
lingual model handles these classes much better,
although there is still room for improvement. Dis-
tinguishing purely informational texts and those
with an intent to persuade is difficult for other
zero-shot models as well.

Comparing the cross-lingual matrices with
those reported by Repo et al. (2021) for trans-
fer from English to the other languages, we note
that our diagonals are significantly crisper, i.e.,
the classes more frequently correctly predicted. In
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their results, especially the classes HI and IP are
generally more dispersed, as well as Opinion (OP)
for French, NA for Swedish and IN for Finnish
(vertically, i.e., other classes are mistaken for IN).

Finally, comparing class-wise F1-score be-
tween the master and zero-shot models we observe
a 3.1% mean decrease for NA (sd. 1.5%), 5.9% for
OP (sd. 2.6%) and 7.6% for IP (sd. 5.4%). Most of
the classes are too infrequent in our data for mean-
ingful interpretation of class-wise differences, or
the patterns are inconsistent across languages.

7 Discussion

Our results show that multilingual training brings
clear advantages to web register identification, in
particular for the languages with small amounts of
training examples. When allowing training on tar-
get data, performance is somewhat improved for
these languages, while it remains on par in aver-
age. In the zero-shot setting, however, the per-
formance is greatly improved compared to the re-
cent and already strong state-of-the-art results. As
illustrated in Figure 2, the multilingual zero-shot
XLM-R is closing in on its top-performing coun-
terparts trained monolingually or on all languages.

The fact that the multilingual performance on
English is lagging behind is expected, as its class
distribution differs notably from that of the other
languages, and the uniform sampling is designed
to allow the model to learn a mean distribution
across the languages. In the zero-shot experi-
ments, the English-targeted model will see rel-
atively little data compared to the other mod-
els, which likely works to its disadvantage. In
the context of pre-trained language models, En-
glish monolingual models are also known to be
high-performing; similar results on a multilingual
model outperforming other monolingual models
but not English have been reported by Hu et al.
(2020).

To test how the multilingual model performs in
a zero-shot setting, we experimented with a leave-
one-out version of the multilingual setting, where
a model was trained on all except for the target
language data on which the model was tested. Al-
though the results were, as expected, lower than
the monolingual and multilingual results where
target language was included in training, the gap
is closing quickly. With the baseline methods, the
average gap between the cross-lingual models and
monolingual models has been 12.76% points F1-

score—in our study, it is 3.73% excluding English,
5.9% including English (with XLM-R).

With an average F1-score of 73.98% for
Finnish, French and Swedish, we demonstrate that
applying this multilingual register classification
model in zero-shot settings can be done at very
practical levels of performance. This indicates that
our multilingual model can be applied without sig-
nificant loss of accuracy on languages without ex-
isting register-annotated corpora, which is an im-
portant step toward being able to perform register
identification on the truly unrestricted web, also in
terms of language.

In particular, these performances are competi-
tive considering the difficulty of the task. As dis-
cussed above, the inter-annotator agreements of
78% for French and 84% for Swedish serve as a
potential upper bound in modeling. The monolin-
gual models are already very close to this level,
and the multilingual zero-shot models are not far.

The competitiveness of multilingual training is
particularly interesting in the case of registers. Al-
though the advantages of this multilingual train-
ing have been noted before (see Section 2), it is
not evident that register identification can benefit
from it. Registers are specific to the situation and
to the culture where they have been produced. For
instance, Opinion blogs can express their points
of view differently depending on cultural con-
text, and the level of formality of Speeches and
News reports (subregisters of Spoken and Narra-
tive) may vary according to the culture. Also the
linguistic means to express functional character-
istics associated with registers, such as narration
or interaction, differ across languages. These dif-
ferences can have a drastic effect on the success
of the modeling even if the transfer itself works.
In the current study, the included languages are
all European, which makes also the transfer eas-
ier, whereas including more languages and more
distant cultures remains a research desideratum.

8 Conclusion

To sum up, our study corroborates the power of
multilingual training when modeling registers in
languages with a limited amount of training data.
We train and make available a multilingual mas-
ter model for register classification, whose perfor-
mance is competitive with existing monolingual
models. Its zero-shot performance is approaching
that of monolingual models, as it improves upon
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already strong state-of-the-art results. Consider-
ing the estimated level of human agreement on the
task, the margin for further improvement is rela-
tively slim. Nevertheless, it is our goal to con-
tinue this work in order to achieve robust zero-
shot performance in a wide range of languages up
to the level of monolingual models. Furthermore,
it would be interesting to test the robustness and
generalizability of our models by evaluating them
against the prototypical web genre categories and
Function Text Dimensions presented in (Sharoff,
2018, 2021).

Finally, in the future, we will also investigate
register-specific differences in their transfer. Reg-
isters differ in terms of how well they are linguis-
tically defined, which naturally also affects their
identification (Laippala et al., 2021). For instance,
while the linguistic characteristics of many blogs
can vary extensively, those of encyclopedia arti-
cles remain very similar across texts. This ten-
dency concerns also the cross-lingual similarities
of registers, and similarities have already been dis-
covered in particular in the spoken register.
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Abstract

We train neural models for morpholog-
ical analysis, generation and lemmatiza-
tion for morphologically rich languages.
We present a method for automatically
extracting substantially large amount of
training data from FSTs for 22 languages,
out of which 17 are endangered. The neu-
ral models follow the same tagset as the
FSTs in order to make it possible to use
them as fallback systems together with the
FSTs. The source code1, models2 and
datasets3 have been released on Zenodo.

1 Introduction

Morphology is a powerful tool for languages to
form new words out of existing ones through in-
flection, derivation and compounding. It is also a
compact way of packing a whole lot of informa-
tion into a single word such as in the case of the
Finnish word hatussanikinko (in my hat as well?).
This complexity, however, poses challenges for
NLP systems, and in the work concerning endan-
gered languages, morphology is one of the first
NLP problems people address.

The GiellaLT infrastructure (Moshagen et al.,
2014) has HFST-based (Lindén et al., 2013) finite-
state transducers (FSTs) for several morphologi-
cally rich (and mostly Uralic) languages. These
FSTs are capable of lemmatization, morphological
analysis and morphological generation of different
words.

These transducers are at the core of this infras-
tructure, and they are in use in many higher level
NLP tasks, such as rule-based (Trosterud, 2004)
and neural disambiguation (Ens et al., 2019), de-
pendency parsing (Antonsen et al., 2010) and

1https://github.com/mikahama/uralicNLP/wiki/Neural-
morphology

2http://doi.org/10.5281/zenodo.3926769
3http://doi.org/10.5281/zenodo.3928628

machine translation (Pirinen et al., 2017). The
transducers are also in constant use in several
real world applications such as online dictionar-
ies (Rueter and Hämäläinen, 2019), spell check-
ers (Trosterud and Moshagen, 2021), online cre-
ative writing tools (Hämäläinen, 2018), automated
news generation (Alnajjar et al., 2019), language
learning tools (Antonsen and Argese, 2018) and
documentation of endangered languages (Gersten-
berger et al., 2017; Wilbur, 2018). As an ad-
ditional important application we can mention
the wide use of FSTs in the creation of Uni-
versal Dependencies treebanks for low-resource
languages, at least with Erzya (Rueter and Ty-
ers, 2018), Northern Saami (Tyers and Sheyanova,
2017) Karelian (Pirinen, 2019a) and Komi-Zyrian
(Partanen et al., 2018).

Especially in the context of endangered lan-
guages, accuracy is a virtue. Rule-based meth-
ods not only serve as NLP tools but also as a
way of documenting languages in a machine-
readable fashion. Members of language commu-
nities do not benefit, for example, from a neural
spell checker that works to a degree in a closed test
set, but fails miserably in real world usage. On the
contrary, a rule based description of morphology
can only go so far. New words appear and dis-
appear all the time in a language, and keeping up
with that pace is a never ending job. This is where
neural models come in as they can learn to gen-
eralize rules for out-of-vocabulary words as well.
Pirinen (2019b) also showed recently that at least
with Finnish the neural models do outperform the
rule-based models. This said, Finnish is already
a larger language, so the experience doesn’t nec-
essarily translate into low-resource scenario (see
Hämäläinen 2021).

The purpose of this paper is to propose neu-
ral models for the three different tasks the Giel-
laLT FSTs can handle: morphological analysis
(i.e. given a form such as kissan, produce the
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morphological reading +N+Sg+Gen), morpho-
logical generation (i.e. given a lemma and a
morphology, generate the desired form such as
kissa+N+Sg+Gen to kissan) and lemmatization
(i.e. given a form, produce the lemma such as
kissan to kissa ‘a cat’). The goal is not to replace
the FSTs, but to produce neural fallback models
that can be used for words an FST does not cover.
This way, the mistakes of the neural models can
easily be fixed by fixing the FST, while the overall
coverage of the system increases by the fact that a
neural model can cover for an FST.

The main goal of this paper is not to propose a
state of the art solution in neural morphology. The
goal is to first build the resources needed to train
such neural models so that they will follow the
same morphological tags as the GiellaLT FSTs,
and secondly train models that can be used to-
gether with the FSTs. All of the trained models
will be made publicly available in a Python library
that supports the use of the neural models and the
FSTs simultaneously. The dataset built in this pa-
per and the exact train, validation and test splits
used in this paper have been made publicly avail-
able for others to use on the permanent archiving
platform Zenodo.

2 Constructing the Dataset

We are well aware of the existence of the popular
UniMorph dataset (McCarthy et al., 2020). How-
ever, it does not suit our needs of two reasons. One
reason is the incompatible morphological tagset.
Our goal is to build models that can directly be
used side-by-side with the existing FSTs, which
means that the data has to follow the same for-
malism. Conversion is not a possibility, as the
main reason we are not interested in using the Uni-
Morph data is its limited scope; not only does it
not cover all the languages we are dealing with
in this paper, but it does not cover any cases of
complex morphology. For example, the Finnish
dataset does not cover possessive suffixes, ques-
tion markers, comparative, superlative etc. Such a
data would not be on par with the output produced
by the FSTs.

We produce the data for the following lan-
guages: German (deu), Kven (fkv), Komi-Zyrian
(kpv), Mokhsa (mdf), Mansi (mns), Erzya (myv),
Norwegian Bokmål (nob), Russian (rus), South
Sami (sma), Lule Sami (smj), Skolt Sami (sms),
Võro (vro), Finnish (fin), Komi-Permyak (koi),

Latvian (lav), Eastern Mari (mhr), Western Mari
(mrj), Namonuito (nmt), Olonets-Karelian (olo),
Pite Sami (sje), Northern Sami (sme), Inari Sami
(smn) and Udmurt (udm). A vast majority of
these languages are greatly endangered (Moseley,
2010).

We use the FSTs and dictionaries from the Giel-
laLT with the UralicNLP (Hämäläinen, 2019) li-
brary to build the datasets for training the mod-
els. We do this in a clever way by taking all open
class part-of-speech words from the dictionaries
for each language and use the FSTs to produce all
morphological readings for them. The number of
words in the GiellaLT dictionaries is shown in Ta-
ble 1. The FSTs do not let us do this by default, so
we build a regular expression transducer that finds
all possibilities for an input word and its part-of-
speech.In order to build the regular expression, we
query all alphabets in the transducer that contain
one of the following strings for exclusion: #, Der,
Cmp or Err. This will remove compounds, er-
roneously spelled forms and derivations. Deriva-
tions need to be excluded because otherwise the
transducers would produce derivations of deriva-
tions of derivations and so on. Once the regular
expression transducer is composed with the FST
analyzer, we can use HFST to extract the trans-
ducer paths to get a list of all the possible mor-
phological forms of the input word. From these,
we filter out Clt and Foc tags because these multi-
ply the number of possible morphological forms,
especially since multiple different clitics can be
appended after each other, and some times even
in multiple different orders. We also remove tags
indicating non-standard forms, Use and Dial, and
Sem tags that are used in language learning tools
as well as contextual disambiguation to catego-
rize semantically similar words. Table 2 shows
how many unique inflectional forms each part-of-
speech category has per language.

We use the method described above to produce
the data with all the open class part-of-speech
words in the GiellaLT dictionaries for each lan-
guage. For languages with bigger dictionaries,
the maximum number of lemmas used per part of
speech is set to 2100, in which case the lemmas are
also picked at random. We use the typical split ra-
tio and split 70% of the data for training, 15% for
validation and 15% for testing. The split is done
on the lemma level and for each part-of-speech
separately. This means that the test and valida-
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deu fin fkv koi kpv lav mdf mhr mns mrj myv nob olo rus sje sma sme smj smn sms udm vro
N 8741 51916 5936 558 20042 9738 17196 14079 2263 2529 10234 32009 5942 24691 2685 5946 37943 4331 13826 21158 10722 4703
Adv 588 6036 652 89 2942 953 1771 2346 - 444 743 1743 14 2546 - 543 1314 343 1146 1729 985 122
V 4021 27875 1445 532 12504 2601 11983 9954 4924 2456 3781 7432 2782 14348 1751 5208 7724 3130 5436 5033 3669 4129
A 2768 13056 917 128 5218 1652 4407 5116 - 1031 2926 3236 2134 11054 185 645 2927 468 2295 3898 1550 1019

Table 1: The sizes of the GiellaLT dictionaries per part-of-speech

deu fin fkv koi kpv lav mdf mhr mns mrj myv nob olo rus sje sma sme smj smn sms udm vro
N 24 850 50 788 183 24 83 208 151 162 19 17 98 75 16 50 727 297 496 339 744 26
Adv 1 16 1 2 4 - 4 3 - 2 2 2 - 1 - 3 8 3 2 3 1 6
V 254 6667 139 198 249 1245 894 59 - 40 10 21 726 693 38 58 302 144 382 177 156 119
A 150 1244 77 4 244 44 127 4 - 2 5 15 217 39 52 75 1347 187 100 627 54 100

Table 2: Number of unique inflectional forms per part-of-speech category

tion sets will consist exclusively of out of vocab-
ulary words that have not appeared in the training
in any inflectional from. This also means that the
ratios are the same for each part-of-speech, 70%
of the adjectives are used in the training, 70% of
the verbs and so on. The actual sizes can be seen
in Table 3.

The reason why we do the testing purely on out-
of-vocabulary words is simply to test the accuracy
of the models in the scenario that is more close to
the one they are trained for, namely, in cases where
the FSTs fail in their coverage.

3 Experiments and Results

In this section, we cover the neural architecture for
the three separate morphological tasks: lemmati-
zation, analysis and generation. We also show the
results of the models in these tasks for each lan-
guage, and present an error analysis on the Finnish
and Komi-Zyrian by taking a closer look at the re-
sults.

3.1 The Neural Model

Over recent years, there has been a growing
body of work on different neural approaches for
low resourced languages in morphological analy-
sis (Moeller et al., 2019; Schwartz et al., 2019),
lemmatization (Kondratyuk, 2019; Silfverberg and
Tyers, 2019) and generation (Oseki et al., 2019; Yu
et al., 2020). Most notably the use of bi-directional
LSTM architecture seems to be supported by most
of the recent related work for analysis, generation
and lemmatization.

It is important to note that we approach the
lemmatization and analysis from the same point
of view as the FSTs. This means that it is a strictly
morphological process, and the question of disam-
biguation is left for another part of the GiellaLT
NLP pipeline, namely constraint grammar rules

(Bick and Didriksen, 2015). There is a plethora of
work dealing with in-context lemmatization (Man-
javacas et al., 2019; Malaviya et al., 2019), mor-
phological analysis (Lim et al., 2018; Zalmout and
Habash, 2020) and part-of-speech tagging (Perl
et al., 2020; Hoya Quecedo et al., 2020), but that
is not what we are aiming for. We are aiming for
neural models that can be used to complement the
already existing systems relying on the GiellaLT
infrastructure.

For all three tasks, we train a character based bi-
directional LSTM model (Hochreiter and Schmid-
huber, 1997) by using OpenNMT-py (Klein et al.,
2017) with the default settings except for the en-
coder where we use a BRNN (bi-directional recur-
rent neural network) (Schuster and Paliwal, 1997)
instead of the default RNN (recurrent neural net-
work) as BRNN has been shown to provide a per-
formance gain in a variety of tasks. We use the
default of two layers for both the encoder and the
decoder and the default attention model, which is
the general global attention presented by Luong et
al. (Luong et al., 2015).

Table 4 shows an example of the input and out-
put of the training data in each of the three differ-
ent tasks. Words are split into characters on both
the input and output side of the data. Different
morphological tags are treated as separate tokens,
this means that FST morphologies consisting of
multiple tags such as N+Msc+Sg+Dat are simply
split by the plus sign. We train a separate model
for each task, meaning that we train three different
models for each language: one for lemmatization,
analysis and generation. All models have shared
the same random seed (3435), therefore training
the models again with this seed should result in the
exact same results we are reporting in this paper.
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deu fin fkv koi kpv lav mdf mhr mns mrj myv nob olo rus sje sma sme smj smn sms udm vro
train 394k 14486k 286k 483k 873k 320k 1267k 666k 283k 232k 45k 37k 1054k 243k 80k 108k 799k 648k 1167k 2831k 943k 257k
val 87k 3061k 62k 105k 186k 68k 276k 142k 60k 50k 9k 8k 229k 51k 17k 22k 177k 145k 249k 628k 202k 54k
test 84k 3109k 60k 105k 186k 68k 274k 142k 60k 50k 9k 8k 221k 53k 16k 23k 179k 143k 253k 624k 203k 55k

Table 3: Sizes of the datasets for each language. The splits do not share vocabulary.

input output
lemmatization k a u n i i m p a n s a k o k a u n i s
analysis k a u n i i m p a n s a k o A Comp Sg Gen PxSg3 Qst
generation k a u n i s A Comp Sg Gen PxSg3 Qst k a u n i i m p a n s a k o

Table 4: Example of the training data for each task

3.2 Results

We report the performance of the models in terms
of accuracy, meaning how many results were fully
right (entirely correct lemma, entirely correctly
generated form and entirely correct morphologi-
cal analysis). In addition, we report CER (charac-
ter error rate) for the lemmatizers and generators,
and a MER (morphological error rate) for the ana-
lyzers. These values indicate how close the model
got to the correct result even if some of the results
were a bit erroneous.

The results can be seen in Table 5, the models
reaching to an accuracy to over 80 % are high-
lighted in bold. The results indicate that lemma-
tization is the easiest task for the model to learn,
and after that generation. Morphological analysis
is the most difficult task as it receives the scores
lower than the generation or lemmatization. Need-
less to say, some results are exceptionally good for
specific languages such as for Erzya (myv) and
Western Mari (mrj), while they are not good for
others like Finnish (fin) and German (deu). This
calls for more investigation of the results.

Figure 1 shows the accuracy of each model
based on the morphological complexity of the in-
put. The complexity is measured by the number of
morphological tags in the FST produced data. The
complexity axis of the plots shows a relative com-
plexity for each language, meaning that 1.0 has the
maximum number of tags, 0.8 shows results for in-
put having 80% of the maximum number of tags
and so on. The maximum complexity is shown in
brackets after the language ISO-code. Analyzers
seem to have a lower accuracy for most of the lan-
guages when the complexity is small. This is prob-
ably due to the fact that shorter word forms tend to
have more ambiguity to begin with and might be
analyzed as a word different from the one in the
gold standard. For many languages, the accuracy

increases towards the average complexity and drop
again for the most complex forms. It is to be re-
membered that these accuracies are also affected
by the peculiarities of the transducers themselves
and their tagging conventions.

Lemmatizers seem to follow the pattern of the
analyzers but do so more clearly. Lemmatization
of morpholgically simple forms is not as easy as
more complex forms. However, as the complex-
ity increases, the lemmatization accuracy does not
drop for most of the languages. This has proba-
bly something to do with the fact that unlike mor-
phological tags, the word forms follow clearer pat-
terns as they do not have such a large amount of
subjectivity in the tagging decisions the different
linguists working on these transducers have intro-
duced.

Generators are very even for most of the lan-
guages in the sense that they produce consistently
around the same accuracy regardless of the mor-
phological complexity. Although, some of the lan-
guages follow a more analyzer like pattern, gener-
ating wrong with small and large morphological
complexity.

Table 6 shows the most difficult tags for the an-
alyzers. The missing predictions column shows
the most frequent tags the analyzer did not pre-
dict even though they were in the gold data, and
the wrong predictions column shows the most fre-
quent ones the analyzer predicted but were not
in the gold data. We can see that many of the
most challenging tags are shared by different lan-
guages. In various Uralic languages, for exam-
ple, connegatives and imperatives, or connega-
tives and infinitives, are homonymous, and cannot
be predicted correctly just from the surface form
alone. Similarly cases such as illative and ines-
sive are in many complex forms homonymous in
Permic languages, which surfaces in missing pre-
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deu fin fkv koi kpv lav mdf mhr mns mrj myv nob olo rus sje sma sme smj smn sms udm vro
gen acc 0,65 0,64 0,68 0,67 0,78 0,95 0,85 0,58 0,78 0,90 0,93 0,94 0,83 0,97 0,77 0,69 0,73 0,67 0,57 0,40 0,87 0,82
gen CER 5,61 8,03 3,70 8,67 3,75 1,21 1,77 11,76 3,92 1,77 0,67 1,23 2,12 0,48 4,28 5,81 4,19 3,54 4,25 6,65 1,90 3,35
lem acc 0,88 0,68 0,80 0,70 0,87 0,85 0,93 0,88 0,79 0,88 0,90 0,76 0,87 0,82 0,72 0,71 0,06 0,70 0,67 0,79 0,92 0,79
lem CER 2,71 12,37 5,85 11,41 1,21 4,34 1,11 2,46 4,87 3,82 1,50 5,71 3,76 4,25 6,78 6,96 55,72 9,13 7,78 4,45 2,75 5,81
ana acc 0,11 0,57 0,86 0,78 0,88 0,39 0,61 0,94 0,77 0,92 0,98 0,49 0,86 0,36 0,73 0,60 0,56 0,53 0,42 0,42 0,76 0,74
ana MER 35,40 16,66 6,52 7,24 3,06 18,24 11,54 3,73 7,76 4,75 0,41 38,09 5,85 19,04 19,45 22,91 17,24 22,48 23,20 20,11 10,90 9,82

Table 5: Results of the models for different languages on out-of-vocabulary data

Missing predictions Wrong predictions
deu Def, Pl, Acc, Dat, Neu, Gen, Msc, Fem, NoArt, Nom NoArt, Fem, Msc, Indef, Sg, Gen, Acc, Nom, Def, Neu
fin PxSg3, A, PxPl3, N, Sg, Pl, Nom, Gen, Par, Pss V, Act, PxPl3, PrfPrc, PxSg3, Ind, PrsPrc, Pss, Prs, Sg
fkv A, Act, N, Sg, V, Pl, Ind, Inf3, Nom, Pl3 N, Act, A, V, Sg, Pl, Ind, Pass, Prs, Inf3
koi IV, TV, AprIne, AprIll, Ill, Prs, V, So/CP, Apr, Ind Apr, So/CP, TV, Ine, AprIne, Fut, Sg, N, IV, Nom
kpv Ine, TV, IV, Fut, Prs, Ill, V, Pl3, Sg1, PxSg1 Ill, IV, TV, Prs, Ine, Fut, Sg, Sg3, N, Pl1
lav IV, Fem, Acc, Pl, Sg, Nom, TV, Voc, Def, Gen TV, Gen, Msc, Sg, Pl, Indef, Loc, IV, Fem, Acc
mdf IV, TV, V, Ind, Prt2, OcPl3, N, A, PxSg2, NomAct TV, IV, N, Conj, OcSg3, Def, A, V, OcPl1, ScSg1
mhr N, Sg, V, So/CP, Nom, Ill, Ind, So/PC, Gen, Ger V, Ind, N, Sg, Adv, Nom, Prs, Sg3, Imprt, A
mns PxPl2, Sg, Pl, PxDu2, Nom, PxSg2, Du, Lat, Abl, Loc PxDu2, Pl, Sg, PxSg2, Nom, PxPl3, Du, Lat, Tra, PxPl2
mrj Sg, N, Lat, Prs, V, Nom, Ind, Imprt, Ine, PxPl3 Prt1, Ind, V, Ill, N, Sg, Nom, Sg3, Ine, Prs
myv N, A, Tra, Ela, Abl, Ine, Interr, PxSg2 A, N, Abl, Ine, Ela, Ill, Tra, NomAg, V, IV
nob A, Pos, Indef, Sg, Pl, PrfPrc, Def, Fem, V, MF Msc, Ind, V, Sg, Indef, Prt, Neu, Def, N, Pl
olo Ins, N, A, ConNeg, V, Sg, Act, PrfPrc, Nom, Pl Gen, ConNeg, Act, V, N, Ind, A, Sg, Prs, PrsPrc
rus TV, Acc, Neu, Gen, Anim, Inan, Impf, Dat, Pass, IV IV, Loc, Msc, AnIn, Nom, Perf, TV, Acc, Gen, Sg
sje Sg, V, Com, Prs, N, Sg2, Pl, Gen, Ind, Nom N, Sg, Pl, V, Ind, Nom, Prs, Prt, Gen, Ine
sma IV, TV, N, Ind, V, Ess, Sg, Pl, A, Prs Sg, IV, TV, N, Ind, Com, Prs, Pl, Nom, Ill
sme Acc, Gen, TV, Sg, Pl, Loc, IV, N, Com, Nom Gen, Sg, Acc, IV, TV, Nom, Pl, Com, Loc, A
smj Com, Sg, N, Pl, PxDu2, PxDu1, Gen, Acc, IV, NomAg Gen, TV, V, PxPl2, PxPl1, Pl, Sg, Nom, IV, Ine
smn Acc, Sg, Gen, PxPl2, PxSg3, N, PxPl3, IV, PxPl1, TV PxDu3, Gen, PxDu2, Nom, A, Ill, Sg, PxSg1, PxSg2, Pl
sms N, Sg, V, Acc, Pl, Gen, Ill, Com, Ind, Nom A, Pl, Nom, Sg, Gen, Loc, Acc, Com, Ill, Par
udm Ill, N, Opt, Sg, ConNeg, Ind, PxSg3, Imprt, Sg2, Ine ConNeg, Ind, Ine, Sg3, Fut, Nom, N, A, Det, Sg
vro A, Pss, Act, V, Pl, Sg, Ind, N, Gen, ConNegII Sg, Nom, Act, N, A, Pl, Sg1, Prs, Ind, Par

Table 6: The top 10 most difficult tags for the analyzers

dictions of all these languages. In the languages
where transitivity is a feature coded into FST, there
are regular problems in predicting these categories
correctly. Similarly, in many Indo-European lan-
guages gender is primarily a lexical category, and
in many instances the model cannot predict it cor-
rectly in cases where only the surface form that
doesn’t show the gender is presented. In the Sec-
tion 3.3 we go through more in detail this kind of
instances, for example, in relation to purely lexi-
cally determined Komi-Zyrian stem consonants.

Table 7 shows the morphological constructions
that were the most difficult ones for the models to
lemmatize and generate correctly in their respec-
tive columns. For instance, the Erzya (myv) gen-
eration indicates the translative with subsequent
possessive-suffix marking is the most problem-
atic. If it had been lemmatization, the explana-
tion would point to the extreme infrequency of
these translative forms and the fact that there is
an ambiguity with genitive and nominative forms
of derivations in ks. Lemmatization for Erzya,
however, appears to have no issues with ambigu-
ity at all. The same difficulties are not shared by

other languages, but seem to all be language spe-
cific. Eastern and Meadow Mari (mhr), for exam-
ple, appear to have difficulties with generation and
lemmatization of nearly the same tag set, namely,
the illative plural with a third person plural pos-
sessive suffix (ordered: possessive, plural and fi-
nally case marker). Looking at the sibling lan-
guage Western Mari (mrj), we will note that there
is a different tagging strategy in use, but here as
well there seems to be an intersection where the
same forms present problems for both generation
and lemmatization.

This could be seen as a type of sanity test
whereby simple flaws in the transducers might be
detected. The Latvian (lav) transducer is a bla-
tant example of inconsistencies in transducer de-
velopment. The problem, which has now been ad-
dressed and corrected, was in the multiple expo-
nence of part-of-speech tags, i.e. there are dou-
ble +V and +N tags due to the introduction of
automated part-of-speech tagging in XML dictio-
nary to FST formalism transformation without re-
moving the part-of-speech tagging in subsequent
continuation lexica of the rule-based transducer.
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Figure 1: Accuracies based on morphological complexity

Development of the Mari pair might be greatly
enhanced through the introduction of a segment-
ordering tag in Western or Hill Mari (mrj), which
would bring it closer to the strategy followed in the
Eastern and Meadow Mari (mhr) use of +So/PNC.
These questions with tag and suffix ordering ap-
pear also as important factor in Komi-Zyrian mor-
phological generation, as discussed in Section 3.3.

3.3 Error Analysis

In this section, we take a closer look at the result
of the Finnish (fin) and Komi-Zyrian (kpv) models
in order to better understand their shortcomings.

3.3.1 Finnish
For lemmatization Finnish offered one of the worst
results, which makes it an interesting target for er-
ror analysis. Some of the obvious errors are re-

lated to extremely common word formation pat-
terns, which the model for some reason is not
able to generalize. One of these pattern belongs
to adjectives and nouns formed with suffix -inen,
for example pienimuotoisissani ‘in my most mi-
nor (things)’ the correct lemmatization would be
pienimuotoinen, but the model returns pienimuo-
toida, which doesn’t mean anything. Interestingly,
it gives very consistently similar forms to different
variants of the same word, so the model appears to
believe this is the correct lemma. We can analyze
that out of all Finnish lemmatization errors -inen
derivations are involved in 7.7% of all mistakes.
Thereby future work should investigate what can
cause such a gap in the models prediction abilities,
as impact in this can lead into rapid improvements.
One phenomena we observed is that Finnish FST
also produces incorrect forms, such as pienimuo-
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generator lemmatizer

deu
V+PrfPrc+Pos+Pl+Nom+Indef, V+PrfPrc+Pos+Fem+Sg+Nom+Indef,
V+PrfPrc+Pos+Pred, V+PrfPrc+Pos+Fem+Sg+Acc+Indef,
V+PrfPrc+Pos+Neu+Sg+Acc+Def

N+Msc+Pl+Dat, N+Msc+Pl+Gen, N+Msc+Pl+Nom,
N+Msc+Pl+Acc, N+Msc+Sg+Dat

fin
A+Sg+Ess+PxSg3, A+Sg+Ess+PxPl3,
A+Sg+Ess+PxPl3+Qst, A+Sg+Ess+PxSg3+Qst,
N+Pl+Par+PxPl3+Qst

A+Sg+Ess+PxSg3, A+Sg+Ess+PxPl3, A+Sg+Ess+PxPl3+Qst,
A+Sg+Ess+PxSg3+Qst, N+Pl+Par+PxSg3

fkv V+Act+Inf3+A+Pl+Superl+Par, A+Pl+Superl+Par, N+Pl+All,
V+Act+Inf3+A+Pl+Par, V+Act+Inf3+A+Pl+Gen N+Pl+All, N+Pl+Par, N+Pl+Gen, N+Sg+Par, N+Pl+Abe

koi V+Ind+Prt2+Pl3+Comp, V+Ind+Prt2+Pl3, V+IV+Ind+Prt2+Pl3+Comp,
V+IV+Ind+Prt2+Pl3, V+TV+Ind+Prt2+Pl3

N+Sg+Ela+Comp+Cop+Pl, N+Sg+Ine+PxPl1+Comp+Cop+Pl,
N+Sg+Ine+PxPl2+Comp+Cop+Pl,
N+Sg+Ine+PxPl3+Comp+Cop+Pl, N+Sg+Ela+PxSg1+Comp+Cop+Pl

kpv N+Sg+Com+PxSg2, N+Sg+Com+PxSg3, N+Sg+Egr+PxSg1+Comp,
N+Sg+Egr+PxSg1, N+Sg+Egr+PxSg1+Comp+Cop+Pl

N+Sg+Acc, Adv, N+Sg+Prl+PxPl1, N+Sg+Com+PxSg2,
N+Sg+Com+PxSg3

lav

V+V+TV+PrsPrc+Act+Msc+Sg+Voc+Def,
V+V+TV+PrsPrc+Pss+Msc+Sg+Voc+Def,
V+V+TV+PrfPrc+Pss+Msc+Sg+Voc+Def,
N+N+Msc+Sg+Voc, V+V+IV+PrsPrc+Act+Msc+Sg+Voc+Def

N+N+Msc+Sg+Voc, N+N+Fem+Sg+Voc, N+N+Fem+Pl+Gen,
N+N+Fem+Sg+Acc, N+N+Fem+Sg+Loc

mdf
V+IV+NomAg+Pl+Gen+PxSg3, V+IV+NomAg+Pl+Nom+PxSg3,
V+IV+NomAg+SP+Cau+Indef, V+IV+NomAg+Sg+Dat+PxSg1,
V+IV+NomAg+Pl+Dat+PxSg3

N+Sg+Nom+Indef, N+SP+Gen+Indef, N+Sg+Dat+PxSg2,
N+Sg+Dat+PxSg1, N+SP+Tra+Indef

mhr
N+Pl+Ill+PxSg3+So/PNC, N+Pl+Ill+PxPl1+So/PNC,
N+Pl+Ill+PxPl2+So/PNC, N+Pl+Ill+PxPl3+So/PNC,
N+Pl+Ill+PxSg1+So/PNC

Adv, N+Pl+Ill+PxSg3+So/PNC, N+Pl+Ill+PxSg2+So/PNC,
N+Sg+Ill+PxSg3+So/CP, N+Pl+Ill+PxSg1+So/PNC

mns
N+Du+PxDu1+Abl, N+Du+PxDu1+Ins,
N+Du+PxDu1+Nom, N+Du+PxDu1+Loc,
N+Du+PxDu1+Lat

N+Pl+PxSg2+Ins, N+Pl+PxSg2+Loc, N+Pl+PxSg2+Abl,
N+Pl+PxSg2+Nom, N+Pl+PxSg2+Lat

mrj N+Sg+Ine+PxSg3, N+Sg+Ill, N+PxSg2+Pl+Ill,
N+Sg+PxSg2+Ill, N+PxSg1+Pl+Lat

N+Sg+Ill, N+Sg+Gen, N+Sg+Acc, N+Sg+Nom,
N+Sg+Ine+PxSg3

myv N+SP+Tra+PxSg2, N+SP+Tra+PxPl1, N+SP+Tra+PxPl2,
N+SP+Tra+PxPl3, N+SP+Tra+PxSg3

V+IV+Act+PrsPrc, V+IV+NomAg+SP+Ill+PxSg2,
V+IV+NomAg+SP+Ill+PxPl1, V+IV+NomAg+SP+Ill+PxSg3,
V+IV+NomAg+SP+Ine+PxPl1

nob N+Neu+Pl+Def, V+Ind+Prt, N+Neu+Pl+Indef,
V+PrfPrc, A+Superl+Def

V+Imp, A+Pos+Neu+Sg+Indef, A+Pos+Fem+Sg+Indef,
V+Ind+Prt, A+Pos+Msc+Sg+Indef

olo V+Act+PrsPrc+Pl+Abe, V+Act+PrsPrc+Pl+Abe+Qst,
N+Pl+Abe, N+Pl+Abe+Qst, N+Sg+Abe+Qst

N+Sg+Nom, N+Sg+Nom+Qst, N+Sg+Abe,
N+Pl+Abe+Qst, N+Sg+Abe+Qst

rus V+Perf+IV+Imp+Pl2, V+Perf+IV+Imp+Sg2,
V+Perf+IV+Fut+Sg3, V+Perf+IV+Fut+Sg2, V+Perf+IV+Fut+Sg1

Adv, A+Neu+Sg+Pred, A+Msc+Sg+Pred,
V+Perf+IV+Imp+Sg2, A+Msc+AnIn+Sg+Loc

sje N+Pl+Ela, N+Pl+Com, N+Sg+Ela, N+Sg+Com, V+Pot+Sg3 N+Pl+Com, N+Pl+Ela, N+Sg+Ela, N+Sg+Com, V+Ind+Prs+Sg3
sma N+Pl+Gen, N+Pl+Com, N+Sg+Com, N+Pl+Ill, N+Ess N+Pl+Gen, N+Sg+Gen, N+Ess, N+Pl+Ine, N+Pl+Nom

sme A+Comp+Sg+Nom+Qst, A+Comp+Sg+Nom,
A+Comp+Attr, A+Comp+Attr+Qst, V+TV+VAbess+Qst

A+Comp+Sg+Nom+Qst, A+Comp+Sg+Nom,
A+Comp+Attr, A+Comp+Attr+Qst, V+TV+VAbess

smj N+Sg+Com+PxSg1, N+Sg+Com+PxSg2,
N+Sg+Abe, N+Pl+Abe, N+Pl+Gen+PxSg1

N+Pl+Abe, N+Sg+Abe, N+Sg+Com+PxSg1,
N+Sg+Com+PxSg2, N+Pl+Com+PxSg2

smn N+Pl+Com+Qst, A+Pl+Com+Qst, A+Comp+Pl+Com+Qst,
A+Superl+Pl+Com+Qst, V+PrsPrc+Qst

N+Pl+Com+Qst, N+Pl+Gen+Qst, V+Ind+Prs+Sg3+Qst,
A+Pl+Com+Qst, V+Ind+Prs+ConNeg+Qst

sms A+Superl+Sg+Abe, A+Superl+Sg+Abe+Qst/a,
A+Superl+Sg+Abe+Qst/ko, V+VAbess+Qst/a, V+VAbess+Qst/ko

V+Ind+Prt+Pl1, V+VAbess+Qst/a, V+Ind+Prt+Pl1+Qst/ko,
V+VAbess+Qst/ko, V+VAbess

udm N+Sg+Ela+PxPl1, N+Sg+Ela+PxSg3,
N+Sg+Ela+PxSg2, N+Sg+Ela+PxPl3+Qst, N+Sg+Ela+PxSg1

V+Ind+Prs+Pl1, V+Ind+Prs+Pl1+Qst,
V+Ind+Fut+Pl1+Qst, V+Ind+Fut+Pl1, V+Imprt+Pl2

vro V+Act+Sup+Ine, V+Act+Ind+Prt+Sg2, V+Pss+Ind+Prt+Sg2, V
+Pss+PrfPrc, V+Pss+PrfPrc+Sg+Nom

V+Act+Ind+Prt+Sg2, N+Pl+Ill, V+Pss+PrfPrc,
V+Pss+PrfPrc+Sg+Nom, V+Pss+Ind+Prt+Sg2

Table 7: The top 5 morphological forms that were the most difficult to lemmatize and generate

toisimmillean, which probably should end into -
een. We can also observe that in many Finnish
lemmas that the model does analyze correctly the
forms are compounds. This leaves open the possi-
bility that the training data has contained either the
second component independently or within a com-
parable compound, which would had given the
model some example. One lemmatization issue
that can be distinguished is that the model doesn’t
lemmatize correctly proper names that are written
with initial capital letter. These include several
words, for example Unkareinansako ‘as their Hun-
garies?’ should be lemmatized as Hungary, but the
model returns nkareintaa. What this shows is that
the model struggles with uppercase characters, al-
though those would ideally be part of the correct
lemmatization result.

The Finnish model has problems in generating
forms for words ending in -lainen, as it seems to
inflect them as one would inflect the word laine
‘wave’, such as dominikaanilaineiltasi ‘≈ from

your Dominican waves’ instead of dominikaani-
laisiltasi ‘from your Dominican people’. Also,
other adjectives ending in -inen are problematic
such as keväneensä instead of keväisensä ‘his
spring-like’. In this case, the model has not
learned the typical inflectional category of adjec-
tives ending in -inen. This issue has an interest-
ing parallel with the same problem being present
in the lemmatization task, described above. This
shows that the problems the models encounter are
to some degree parallel to one another in differ-
ent tasks, and either relate to the complexity of the
linguistic system, or somehow inadequately repre-
sented input.

Interestingly, the generation model has prob-
lems with the plural forms of the abessive and illa-
tive case, and often generates the singular form in-
stead of the plural such as in sähkömittariksesi ‘for
your electricity meter’ instead of sähkömittareik-
sesi ‘for your electricity meters’ or a completely
erroneous form such as sähkömittaritsiisi instead
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of sähkömittareihisi ‘to your electricity meters’. In
these erroneous cases, the model has tried to plu-
ralize the word, for example sähkömittarit is the
correct plural form of electricity meters in nomi-
native, but it is no longer correct when inflected in
the illative case.

3.3.2 Komi-Zyrian
When we examine the lemmatization task, some
particularities are obvious in Komi-Zyrian. For
example, many of word forms with interspersed
white spaces in them are not lemmatized correctly.
We also see that some complex entries borrowed
from Russian are challenging to lemmatize, pos-
sibly due to their rarity, for example: народно-
освободительнӧйджыкъяснысланьджык
‘more in the direction of their people who are
more national-liberational’ would correctly result
in народно-освободительнӧй, but the model
predicts народнотильнӧй. In this case the hy-
phen within the compound probably contributes
to the rarity of the form itself. Similarly, the
model is also struggling when there are words
that follow orthographic conventions more typical
to Russian than Komi, for example областьсаас
would be correctly lemmatized as областьса, but
the model predicts областььса. If this reflects
the underlying code, model training like this
could be very useful for locating erroneously
coded transducers. The double soft sign would
seem to allude to double exponence in the code.
The model also has challenges with rarer ortho-
graphical conventions in Komi vocabulary. For
example пипуа-кыддзаинӧйланьсянь ‘from
the direction of my aspen and birch grove’ should
be пипуа-кыддзаин ‘aspen and birch grove’, but
we get пипуа-кыдзаин. These shortcomings,
however, are relatively rare in the Zyrian data, and
the model learns to lemmatize at high accuracy.
Much more so than Finnish, which could be
related to more concatenative morphology of
Komi where the word boundaries can be easier to
detect.

In the case of Komi-Zyrian we can observe that
a large portion of wrongly recognized forms re-
sults from ambiguity that is inherent to the mor-
phology of this language. For example, it is not
possible to distinguish some of the cases, such as
the inessive and illative, in all forms where they
occur. As the model inevitably returns only one
reading, it is clear that the evaluation accuracy
cannot be perfect. This finding is consistent with

analogous ambiguity for other forms in the Skolt
Sami (sms) model. There appears to be a con-
sistency in what is incorrectly predicted in Skolt
Sami. When there is a four-way ambiguity as in
the Sg Gen, Sg Acc Sg Nom and Pl Nom, the tag Sg
Gen is consistently predicted to be Pl Nom, leav-
ing the two readings Sg Acc and Sg Nom out of the
dichotomy. Komi models shows similar prefer-
ences into specific categories when there are mul-
tiple homonymous possibilities.

In the analysis above it was already briefly dis-
cussed that some categories are difficult to rec-
ognize correctly for Permic languages. Another
example like this is seen in the Komi-Zyrian and
Komi-Permyak (koi) future tense marking. As
these languages have morphologically marked fu-
ture in the third person alone, every first and sec-
ond person verb in the present tense also gets a
future reading, as both analyses can be seen as
correct. One could also argue, however, that if
some analysis is not possible to resolve at this
level, some of the distinctions could be removed
or merged at this level of analysis.

What comes to morphological generation of
Komi, the accuracy is rather high. Some of the er-
rors can be connected to the fact that some suffixes
can occur in varying orders. For example, with
input кольквиж A Sg Egr PxPl1 Comp one
could assume the output кольквижнымсяньд-
жык ‘more from the direction of our yellows’, but
in this case the model outputs кольквижсянь-
нымджык. The only difference is, however, in
the order of markers for case Egr and possessive
suffix PxPl1. The model is actually giving a cor-
rect output, but the input doesn’t have all informa-
tion about the suffix order that the model would
need.

There are also instances of word generation
where the correct prediction would demand actual
lexicographical knowledge, which the model can-
not have. For example, Komi displays with some
nouns an additional stem consonant. It is not pos-
sible to predict from the surface form whether this
consonant exists and what it is. So when the model
is given input мек N Sg Ins, it doesn’t predict the
correct мекйӧн ‘with a pelt’, but offers the regular
but incorrect form мекӧн. This is a good example
from construction where rule-formulated linguis-
tic knowledge may be necessary for optimal anal-
ysis. It also shows that the model is capable to
learn very well the regular structures of the lan-
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guage and does predict them with high accuracy.

4 Conclusions

In this paper, we have presented a method for
automatically extracting inflectional forms from
FST transducers by composing a regular expres-
sion transducer for each word with an existing
FST transducer. This way, we have been able to
gather very large morphological training data for
analysis, lemmatization and generation for 22 lan-
guages, 17 out of which are endangered and fight-
ing for their survival. We have used this dataset
to train neural models for each language. Because
the data follows the tags and conventions used in
the GiellaLT infrastructure, these neural models
can be used directly side by side with the FST
transducers in many of the applications that de-
pend on them.

The results look very good for some languages
while being a bit more modest for others. Analysis
seems to be the hardest problem out of the three,
and its training also took the longest time. Despite
this, many models reached to an over 80% accu-
racy in the tasks. This is rather good given that
the evaluation was conducted entirely on out-of-
vocabulary words.

The accuracies reported in this paper are a
somewhat lower than what they could be. This is
due to the fact that we ran the evaluation by pro-
ducing one result only for each input with the neu-
ral models and compared that input directly to the
one in the test data. As we saw in our analysis,
many of the inputs in the test data were ambigu-
ous, which caused the neural model to produce an
output that is correct, but not the one in the test
data. However, the right way to overcome this
problem would be to research how to deal with
ambiguity. The neural models we trained can al-
ready now produce N best candidates for each in-
put.

It is probable that within those N best candi-
dates, the models actually cater for the ambigu-
ity and produce other results that are correct as
well. For instance, the Finnish word noita, can
be an accusative singular noun meaning ‘witch’
or a partitive of nuo meaning ‘them’. Knowing
how to maximize the number of forms the neu-
ral model produces while minimizing the number
of incorrect forms is a question for another pa-
per. Although, some methods could already be
used with the models trained in this paper by in-

troducing simple modifications to how the results
are predicted (Silfverberg and Tyers, 2019).

Even though we aimed for a real world scale
morphological tag complexity by querying all pos-
sibilities from the FSTs, there are still a couple
of morphological categories we did not tackle for
practical reasons. One of them is the use of clitics.
The problem with these is that they can be attached
to almost any kind of word regardless of its part-
of-speech and inflectional form. On top of this,
multiple clitics can be added one after another. To
give an idea of the scale, with clitics, Finnish has
9425 unique forms for nouns (instead of 850), 216
for adverbs (instead of 16), 14794 for adjectives
(instead of 1244) and a whopping 88044 forms for
verbs (instead of 6667). This means that clitics
need to be solved by taking a different approach
than the one we had. One could, for example, in-
troduce some forms with different combinations of
clitics here and there in the training data, in which
case the question arises on how many forms need
to appear with clitics in order for the model to gen-
eralize their usage.

Compounds and derivations could not be in-
cluded because of how the FSTs were imple-
mented. If you ask an FST for compounds and
derivations, you will surely get them! Even in
such quantities that your computer will run out of
RAM and swap memory for the forms of a single
word, as there is no limit to how many words can
be written together to form a compound or how
many times one can derive a new word from an-
other. We people might have our cognitive limits
for that, but the FSTs will not4. The problem of
compounds is probably best to leave for a separate
model to solve, as there are already methods out
there for predicting word boundaries (Shao et al.,
2018; Seeha et al., 2020). The compound splits
by such methods could then be fed into the neu-
ral models trained in this paper. As for deriva-
tions, some of them could be included in the train-
ing data, but the question of how many forms are
needed would still require further research.

4Take, for instance, a look at this derivational Skolt
Sami word produced by the FST Piân’njatõõvvõlltâs-
ttiatemesvuõt’tsážvuõðtõvvstõlškuät’tteškuättõõlstõlstââst-
stõõstčâtttömâs for piânnai+N+Der/Dimin+Der/N2A+Der/toovvyd
+Der/oollyd+Der/jed+V+Der/Caus+Der/Dimin+Der/NomAg+N
+Der/Dimin+Der/N2A+Der/teqm+A+Attr+Der/vuott+N
+Der/sazh+A+Err/Orth+Attr+Der/vuott+N+Der/toovvyd
+Err/Orth+Der/stoollyd+V+Der/shkueqtted+Der/jed
+V+Der/Caus+Der/shkueqtted+Der/oollyd+Der/stoollyd
+Der/Dimin+V+Der/Dimin+Der/Dimin+V+Der/Dimin+Der/ched
+Der/Caus+Der/t+A+Superl+Attr
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Abstract

The paper introduces a new resource,
CoDeRooMor,1 for studying the morphol-
ogy of modern Swedish word formation.
The approximately 16.000 lexical items
in the resource have been manually seg-
mented into word-formation morphemes,
and labeled with their categories, such
as prefixes, suffixes, roots, etc. Word-
formation mechanisms, such as derivation
and compounding have been associated
with each item on the list. The article
describes the selection of items for man-
ual annotation and the principles of an-
notation, reports on the reliability of the
manual annotation, outlines the annotation
tool Legato, and presents the dataset and
some first statistics. Given the ”gold” na-
ture of the resource, it is possible to use it
for empirical studies as well as to develop
linguistically-aware algorithms for mor-
pheme segmentation and labeling (cf. sta-
tistical sub-word approach). The resource
is freely available through Språkbanken-
Text.2

1 Introduction

Linguistic complexity is a fascinating phe-
nomenon that influences language perception,
language learning and language production (cf.
Housen et al., 2019; Bentz et al., 2016; Newmeyer
and Preston, 2014). It has been studied at differ-
ent levels and with different intentions, for exam-
ple from a typological perspective (e.g. Gutierrez-
Vasques and Mijangos, 2020) or from a computa-
tional perspective (e.g. Branco, 2018).

Linguistic complexity also varies between indi-
vidual users of the same language, which makes

1CoDeRooMor - Compounding, Derivation, Root
Morphology (and more)

2https://spraakbanken.gu.se/en/resources#refdata

it possible to use linguistic indicators to differen-
tiate betweeen language typical of advanced lan-
guage users as opposed to, for instance, children or
beginner learners (De Clercq and Housen, 2017;
Brezina and Pallotti, 2019; Pilán and Volodina,
2018).

From a second language (L2) perspective there
is a need to be able to follow how the morpholog-
ical complexity develops in the learner language
(e.g. Pienemann and Kessler, 2012; Bonilla, 2020)
for instance by following how the learner acquires
more inflectional forms in the language but also by
seeing how their vocabulary growth can be related
to the acquisition of rules of word formation. The
latter is a rather underdeveloped research area and
it is that which has been our focus in developing
the CoDeRooMor resource – we want to be able
to follow how word families (cf. Bauer and Nation,
1993) grow and how awareness of word-formation
mechanisms develops in language learners.

Morphology, as one of the dimensions of lin-
guistic complexity, covers word formation in
terms of compounding and derivational morphol-
ogy as well as inflectional morphology, such as
grammatical affixes that words take to reflect num-
ber, definiteness, gender, etc. Most publications
on morphological complexity deal with studies
of the inflectional dimension of morphology (e.g.
Brezina and Pallotti, 2019; Forsberg and Bart-
ning, 2010), with a few rare exceptions (e.g. Bol-
shakova and Sapin, 2020), which is not surprising.
While automatic text annotation pipelines are able
to process inflectional morphology (cf. morpho-
syntactic descriptors available for corpora in the
Korp search interface (Borin et al., 2012, 2016)),
there is a lack of corpora containing analysis of the
morphemes consituting the word lemmas. This is
due to the absense of gold standard resources that
can be used for training automatic tools (e.g. Ket-
tunen, 2014). This is hypothetically also the rea-
son why we rarely find lexical resources organized
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by word family principles (cf. Bauer and Nation,
1993), even though there is a clear interest in that
kind of resources in connection to vocabulary test-
ing (e.g. Sasao and Webb, 2017) and psycholin-
guistic and cognitive research (e.g. Amirjalili and
Jabbari, 2018).3

In the currently pursued project, Development
of lexical and grammatical competences in im-
migrant Swedish,4 funded by Riksbankens Ju-
bileumsfond, we are looking for ways to character-
ize the language typical of second language (L2)
learners of Swedish from different perspectives
based on the analysis of two learner-specific cor-
pora (see Section 3). Based on those corpora, we
have generated a sense-based wordlist, Sen*Lex,
manually segmented each item on the list into
morphemes and labeled those for their morpheme
categories (Section 4). The intention is to use this
resource for empirical studies as well as for the
development of automatic morphological segmen-
tation and consequent morpheme classification for
Swedish. We expect this type of annotation to fa-
cilitate deeper studies into lexical and morpholog-
ical complexity, language acquisition patterns, as-
sociative learning mechanisms and the like. The
resource can also be of interest in pedagogical
studies and applications.

2 Related work

Morphemic segmentation is an important NLP
task which is applied to machine translation, cog-
nate identification, linguistic typological studies,
and the like (Sennrich et al., 2015; Miestamo et al.,
2008). The task of morpheme segmentation con-
sists of the identification of morpheme boundaries
within a word, and classifying them by their cate-
gory. Most work has been focused on inflectional
morphology and on classification of the endings
by their syntactic and grammatical functions, such
as gender, number, tense indicators (e.g. Cotterell
et al., 2019).

Identification of word formation morphemes
(roots, suffixes, prefixes) and their subsequent
classification is a more complicated task, and until
recently most approaches have been targeting only
morpheme boundary identification using unsuper-
vised or semi-supervised approaches, for example

3e.g.https://www.ltu.se/research/subjects/teknisk-
psykologi/nyheter/Nytt-projekt-om-barns-lasformaga-
1.203355

4https://spraakbanken.gu.se/en/projects/l2profiles

a language independent approach taken in Morfes-
sor (Creutz and Lagus, 2007; Smit et al., 2014) or
sub-word identification techniques (e.g. Gutierrez-
Vasques and Mijangos, 2020).

Only recently have datasets with labeled data
started to appear, and depending on their size,
neural networks are used for experimentation
with more complicated tasks including both mor-
pheme segmentation and labeling of word for-
mation morphemes (e.g. Bolshakova and Sapin,
2020; Sorokin and Kravtsova, 2018).

Morphology has not been one of the major
strands of research on Swedish, neither as an L1
(native speaker language) nor as an L2 (second
language learners). There also has not been a
lot of interest in the development of tools and re-
sources in relation to Swedish morphology except
for Saldo morphology (Borin et al., 2013) which
is used in annotation of Swedish texts and which
primarily includes inflectional paradigms. Due
to its language independence, Morfessor (Smit
et al., 2014) offers a possibility to annotate words
morphologically in any language and works rela-
tively well on concatenative languages, including
Swedish. The output consists of several sugges-
tions for word segmentation into morpheme con-
stituents.

In recent years interest has increased in find-
ing ways to study different forms of complexity
in connection to second language acquisition and
learner corpora (Housen et al., 2019). However as
Housen et al. say, morphological complexity has
not been at the centre of attention. When stud-
ies have looked at morphological complexity they
have also tended to focus primarily on inflectional
morphology.

The resource we present in this paper is aimed at
non-inflectional morphology of Swedish and can
be used in a variety of NLP and linguistic tasks,
including within the second language acquisition
domain, and is filling a gap by offering a richly
annotated dataset for morphological studies.

3 Item selection

To limit the annotation work to only the most rel-
evant items, which in our context means items
of relevance for second language learners of
Swedish, we have used two source corpora:

• COCTAILL (Volodina et al., 2014), a corpus
of coursebook texts that learners of Swedish
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Figure 1: Selection of items for morphological annotation

as a second language (L2 Swedish) read as
part of their proficiency courses, and

• SweLL-pilot (Volodina et al., 2016a), a cor-
pus of essays written by adult learners of
Swedish as a second language

Both corpora have indications of levels of
proficiency according to the Common European
Framework of Reference, CEFR (Council of Eu-
rope, 2001), and contain texts and essays at five
out of six defined levels: A1 (beginner), A2, B1,
B2, C1 (advanced).

From the two corpora, two lists of lemgrams
(i.e. baseforms of the words + their correspond-
ing parts of speech, POS) have been generated,
namely:

• SVALex (François et al., 2016), consisting of
L2 Swedish receptive vocabulary, and

• SweLLex (Volodina et al., 2016b), contain-
ing L2 Swedish productive vocabulary.

The approach used in the generation of the
above lists has been reused by us to generate
a new list based on senses (i.e. a list where
each entry corresponds to a unique combination
of baseform+POS+sense) once the pipeline for
Swedish could assign word senses (Nieto Piña,
2019) based on Saldo senses (Borin et al., 2013).
This work resulted in Sen*Lex (a sense-based vari-
ant of SweLLex and SVALex in one), a publica-
tion on which is currently under preparation. The
non-problematic items of this latter list have been
used for the morphological annotation.5

5By problematic items we mean the items that have au-

Figure 1 shows the basic information about
the two source corpora and the three vocabulary
lists. Sen*Lex includes both single-word items
and multi-word expressions (MWEs), and con-
tains word senses coming from both learner es-
says and course books. A certain amount of items
overlap, i.e. occur in both corpora; whereas some
items are homographs within the same part of
speech (cf. vara, verb – Eng. ’be’ and Eng.
’last’), but have several distinct senses. These lat-
ter items may have identical morphological analy-
sis despite having several entries in the list, but it is
also possible that they have different morphologi-
cal annotation as is the case with the verb vara,
where the root is var- in both lemmas but the
final -a is seen as derivational in one sense and
inflectional in the other, since vara (Eng. ’be’),
has the imperative form var! and the verb vara,
(Eng. ’last’) has the stem and imperative form
vara!, not that you are ever likely to use it in
the imperative.

The CoDeRooMor morphological dataset that
we are presenting is, thus, not all-covering for
modern Swedish. However, given the nature of
second language learning, the most central items
should be represented in the list, therefore making
it relatively comprehensive. 6

tomatically been assigned multiple lemgrams or failed to be
assigned a lemgram. These items are left for future work.

6We would also like to note that the set includes c. 500
triplets consisting of lemgrams which are verbs and part-of-
speech-tag participle, e.g. cykla ’to ride a bike’ + PC (par-
ticiple). Since we annotate lemgrams these have then been
annotated as the lemma of the verb, rather than one of the
participles. We did look into annotating them as participles,
but in fact each of these items can include occurrences in the
data which are a combination of present participles or past
participles, or even supine forms (a form etymologically re-
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Word formation Definition Example
Abbreviation words consisting of the initial components of a word or

several words, including chemical abbreviaions and some
blends

AB (aktiebolag) (cf. Eng. ’ltd’ = ’lim-
ited’), Au (Sw. guld, Eng. ’gold’)

Compound words formed by adding together two stems skol+bok (’school book’)
Derivation words formed by adding a prefix or a suffix to a stem sorglig (’sad’)
Lexicalized form words that cannot be reduced to baseforms, e.g. MWEs Aftonbladet (name of a tabloid),

järnspikar (a swearword)
Root lexeme words consisting of a root only or a root and an inflec-

tional suffix
bok (’book’), adjö (’goodbye’), ande
(’spirit’)

Unknown reserved for difficult or uncertain cases including most
first names

alzheimers (name of a disease), kalen-
der (’calendar’)

Table 1: Taxonomy of word formation mechanisms with definitions and examples

4 Annotation principles

The aim of the morphology annotation work con-
sisted in

• segmenting each lexical item (lem-
gram+POS+sense) into morphemes

• assigning a word formation description to the
item according to a taxonomy (Table 1)

• categorizing each morpheme according to a
taxonomy of morpheme categories (Table 2).

The items were analysed at the lemgram level
and hence the work did not include annotation of
inflectional forms/morphemes, with a few excep-
tions (see below).

For example, oändlighet, noun (’infin-
ity’) was

1. segmented into four morphemes
o-änd-lig-het

2. each morpheme received a label:

o: prefix
änd: root
lig: derivational suffix
het: derivational suffix

3. the word formation of the item was labeled as
derivation

The taxonomy of morphemes is presented in Ta-
ble 2. Most of the categories are self-explanatory,
but some need to be explained.
• The category of real root should not be taken
as representing an actual morpheme, but is used
to catch cases of alternative spellings of the same
root, and hence a form of allomorphy. This was
done so that we could collect all words with the

lated to the past participle but which only occurs in the past
tense with the auxiliary verb ha ’to have’. We will return to
these items in future work.

Morph. Explanation Example
category

p derivational prefix fördjupa
r root (orthographic) kaotisk
rr real root kaos (kaotisk)
s derivational suffix kaotisk
f infix* kedjebrev
i inflectional suffix i höstas
? unknown ironi

Table 2: Taxonomy of morpheme categories and
examples. * Swe. fogemorfem

same root, including alternative root spellings,
into a word family to create a word family resource
for L2 Swedish (cf. Bauer and Nation, 1993).
• The category of inflectional suffix was added
to cover some suffixes that change in other in-
flectional forms in the paradigm, e.g. as the
final morpheme -a in skola (’school’, noun)
since the plural is skolor and the compound-
ing stem is also simply skol, e.g. skol-gård
(’school yard’); and also the final morpheme -
a in läsa since it is not part of the imperative,
which in Swedish is usually seen as the verb stem
läs! and nor is it part of the tense inflection
läser, läste, läst. Furthermore, we needed
to catch cases of lexicalized forms that are not re-
ducible to the (otherwise existing) baseforms, e.g.
järnspikar (a swear word literally meaning
’iron nails’). Yet another reason for this category
was the presense of multi-word expressions, e.g.
i det stora hela (’in general’), where some
of the constituent parts are always used in an in-
flected form whereas other parts might be possible
to inflect.
• During the annotation process an additional cat-
egory - question mark <?> - was introduced for
dubious cases that needed further discussion, e.g.
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a in a-kassa (’unemployment benefit fund’) or
the on in ironi, ironisk (’ironic, ironical’).
In most cases later comparisons helped resolve
these issues and enabled the classificiation of the
morpheme into one of the main morpheme cate-
gories.

The taxonomy of word formation mechanisms
follows from Table 1, and is based on SAG (Tele-
man et al., 1999) and Haspelmath (2002). Where a
word was a derivation based on a compound (e.g.
all-var-lig, ’serious’) or a compound which
consisted partly of a derivation (e.g. å-bäk-e,
’monstrosity’), only word formation mechanism
that gave us the final word was annotated, i.e.
all-var-ligwas annotated as a derivation and
å-bäk-e as a compound. Detailed description of
our annotation principles is available in our guide-
lines.7

To prepare a reliable resource for analysis of
Swedish morphology, two authoritative resources
have been used for major guidance in our annota-
tion work: the Swedish Academy Grammar, SAG
(Teleman et al., 1999) and two contemporary lex-
icons from the Swedish Academy: the Contempo-
rary Dictionary of the Swedish Academy, Svensk
ordbok, SO and The Swedish Academy Glossary,
Svenska akademiens ordlista, SAOL (Sköldberg
et al., 2019), both available through https:
//svenska.se/. To get access to the informa-
tion in the lexicons, the Swedish Academy further
allowed us to match our list of items against the
SO/SAOL database, download the aspects of in-
terest and integrate them into our annotation tool
where annotators could consult them or copy to
work further based on that.8

Each item in the SO/SAOL database con-
tains division markers within the word, indicating
where two morphemes meet (see Figure 2). Dots
and vertical lines are used as notations, where the
vertical line has a higher priority and is seen as a
major word boundary. However, no information
is provided about exactly what each morpheme
stands for, e.g. whether it is a derivational suffix,

7https://docs.google.com/document/d/1
G5PEfeDEKg4dAZaupj6FmUUWBGiegiqagzXgTA3c
DSY/

8We initially discussed an opportunity to use auto-
matic pre-processing for detection of morpheme boundaries,
e.g. using SWETWOL tool (Karlsson, 1992) or Morfessor
(Creutz and Lagus, 2007), but instead opted for expert mor-
pheme boundary indication performed by trained lexicogra-
phers and available through the SAOL/SO, as described in
this subsection.

Figure 2: SO-SAOL analysis

an inflection or a root. They also do not provide
marking of the compounding / derivational infix
(Swe. fogemorfem), since their notation has the
primary goal to indicate to the user where a word
can be hyphenated, and infixes are always then at-
tached to the stem.

5 Annotation workflow and visualization

A team of three highly qualified annotators per-
formed the annotation under the supervision of a
project researcher. During the first month the three
annotators went through a training period where
they worked in parallel with the project researcher
and annotated 100 new items per week plus rean-
notated items from previous weeks when need be.
Based on the parallel items, comparisons were run
on both the morphological analysis and the word
formation assignment of each item. The guide-
lines were refined to take care of any remaining
unclarities or disagreements.

The 400 items that were annotated by the 4
members of the morphology group during the
training period have been used for calculating
Inter-Annotator Agreement (IAA) which we re-
port using Krippendorff’s Alpha in Table 3. As
can be seen from the Table, the agreement was
consistently high during all training steps, with
segmentation being the most agreed upon anno-
tation type (0.93) and labeling the one with most
disagreements (0.86). However, the agreement is
considered to be acceptable with values over 0.75,
and very high with values over 0.9, which makes
us believe that the annotation of CoDeRooMor is
very reliable and of high quality.

After annotating 400 items in parallel, the rest
of the items were divided between the 3 anno-
tators with weekly meetings to monitor progress
and discuss problematic cases. Before each meet-
ing the project researcher got a morpheme-based
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Annotation type 1-100 -200 -300 -400
Segmentation 0.87 0.87 0.89 0.93
Labeling 0.86 0.86 0.89 0.86
Segmentation+Labeling 0.85 0.85 0.87 0.88
Word formation 0.89 0.89 0.94 0.91

Table 3: IAA measure using Krippendorff’s Al-
pha, reported for each 100-word portion.

comparison where disagreements and partial dis-
agreements were identified, and these could then
be checked by the project researcher and discussed
as needed at the meeting. The team came up with
a solution and amended the guidelines to ensure
systematic annotation in the future. After each
meeting the annotators were expected to correct
any items that had been picked up in the com-
parison to adhere to the agreed or revised prin-
ciples. The guidelines have been a living docu-
ment all through the process. An article with a
more detailed description of the linguistic princi-
ples of segmentation and labeling is under prepa-
ration (Lindström Tiedemann et al., In Prep.).
Once the annotation was completed the project re-
searcher once again checked disagreements, par-
tial disagreements and also searched through the
data consistently for certain strings to find possi-
ble inconsistencies. Based on this some further
corrections were done according to the guidelines,
e.g. if a suffix had been annotated as an inflec-
tional suffix but should be a derivational suffix ac-
cording to the guidelines this was corrected.

To ensure consistency of the annotation work,
a tool for lexicographic annotation Legato (Alfter
et al., 2019) was implemented within the frame-
work of the project, see Appendix A. The tool
requires annotators to log in to save their anno-
tations. The functionality of the tool allows the
annotator to see

• the current item as a lemgram, the lemgram
part of speech, the part of speech tag and its
first level of occurence in the source corpora

• sense descriptor from the Saldo lexicon

• examples from the corpora

• two fields where previous annotation for the
annotator appears when available

• two fields with annotations from the Swedish
Academy lexicons (SO and SAOL)

• a text area for entering ”Current values” for
the analysis

In addition, the tool offers possibilities to open
guidelines, check a list of previously ”skipped
items” or click on supportive links (among others,
COCTAILL corpus hits for the current item and
SAOL/SO hits). To navigate between the items, it
is possible to ”jump” to another item at a certain
numeric index, search for some specific items or
filter items.

Furthermore, the tool also allows each annotator
to download their own annotated words with time
stamps for inspection of the results. The project
researchers can, in addition, download the annota-
tions from all annotators, to generate several types
of comparisons and statistics, and download a full
set of annotated words.

6 CoDeRooMor dataset description

The CoDeRooMor dataset (version 1.0) contains
16 230 analyzed lemgrams9 representing 4 429
unique roots, 259 unique derivational suffixes, 155
unique prefixes and 12 unique binding morphemes
(infixes), see Table 4. Table 4 shows statistics over
all morphemes in the dataset with some examples,
number of times these morphemes appear in the
lexemes in the Sen*Lex list, number of times they
are used in the running tokens in the COCTAILL
corpus (coursebooks) and in the SweLL-pilot cor-
pus10 (essays).

The five most frequent root morphemes in the
Sen*Lex items on the CoDeRooMor are:

• ut (313 words in the ”family”, each contain-
ing that root), e.g. utbildning, (’education’)

• i (272 words), e.g. i (preposition), (’in’)
• för (228 words), e.g. överföra, (’trans-

fer’)
• upp (225 words), e.g. kolla upp,

uppdrag, (’check up’, ’assignment’)
• till (189 words), e.g. tillbaka, (’back’)
If we instead look at the five most frequent

root morphemes in the corpora, the most common
in Coctaill are ha (13 933 words), var (13 597

9We started with 16 324 triplets (lemgram + POS + sense),
but we had to invalidate some lemgrams which were in-
correctly lemmatized and not found in the data when dou-
blechecking. We found these items since they were unex-
pected in learner data and were therefore doublechecked in
the corpora by the project researcher supervising the annota-
tion.

10The calculations were performed on a new version of
SweLL-pilot, from 2020, which contains an extended collec-
tion of essays compared to Volodina et al. (2016a), namely
490 essays and 156 988 tokens (as compared to 339 essays
and 144 087 tokens in the 1st version)
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Morpheme Unique Sen*Lex COCTAILL SweLL-pilot Examples
category count
root 4429 23 987 471 056 142 381 matbord, kärleksaffär, sagolik
suffix 259 10 062 91 646 28 638 marknad, kostsam, militär
prefix 155 2 183 19 828 5 489 konsonant, nyrenoverad
infix 12 1 089 3 441 1 641 kännedom, kvinnorörelse
inflection 32 3 067 88 641 28 810 saker och ting, Medelhavet, läsa

Table 4: Statistics per morpheme type in the three resources

words), och (13 154 words), gå (13 046 words)
and kunn (12 528 words). In the SweLL-pilot
they are kunn (6 962 words), att (5 007 words),
och (4 737 words), var (4 726 words) and jag
(4 690 words).

Examples of other frequent root morphemes are
• liv with 73 family members, e.g.

affärsliv, livmoder, leva livet,
(’business life’, ’uterus’, ’live the life’); and

• sam with 53 family members, e.g. samtal,
samhällelig, sambo, (’conversation’, ’soci-
etal’, ’partner’).

On inspection we can see that these family
groupings need to be refined to be separated fur-
ther into proper ”families”, so that words contain-
ing unrelated homographic roots do not acciden-
tally end up in the same family. To give one exam-
ple, the sam-family at the moment contains both
samisk (’Sami’, adj.) and samhälle (’soci-
ety’), which should be separated into two different
families since a morpheme is the smallest mean-
ingful unit in language and therefore each root
should have only one meaning and homographs
should be separated.

Taking a look at the most frequent derivational
morphemes (prefixes and suffixes), we can see that
in the annotated wordlist

• the most common prefixes in the wordlist
are för- (380 words), be- (299 words), o-
(256 words), re- (112 words), pro- (85
words) as in förälder, besök, odjur,
reagera, problem (’parent’, ’visit’, ’beast’,
’react’, ’conference’, ’problem’)

• and the most common derivational suffixes
in the wordlist are -a (1 894 words), -er (640
words), -ning (443 words), -ig (433 words),
-ar (378 words) as in idrotta, aktivera,
utbildning, duktig, ägare (’do sports’,
’activate’, ’education’, ’smart’, ’owner’).

There are several prefixes that only occur

once in the dataset (wordlist and corpora), e.g.
abs-, fysio-, ko- as in abstrakt,
fysiologisk, koefficient (’abstract’,
’physiological’, ’coefficient’). In cases such as
koefficient it would be good to consider
comparison to allomorphs such as kon, but this
currently needs to be done manually. Some of
the least common suffixes are -ej, -enn as in
pastej, persienn (’paté’, ’Venetian blind’)
which only occur once in the dataset (wordlist
and corpora). In the dataset it is also possible to
access the frequency in relation to the number of
occurrences in the L2 corpora we work with.

Figure 3: Statistics (raw count) over word forma-
tion mechanisms in the course book data

From the initial exploration of the word forma-
tion mechanisms in the two source corpora, we
can see that root lexemes clearly dominate (Fig-
ures 3 and 4), followed by derivation and com-
pounding. Abbreviation is hardly represented, nor
are lexicalized forms that we haven’t even included
into the graphs. The hypothetical reason for the
overrepresentation of root lexemes can be the fact
that most frequent words in the language, namely
prepositions, particles and conjunctions, are root
lexemes and therefore add to the running statis-
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Lemgram Sense POS Analysis Segment. Pattern RealRoot WordForm CEFR
adekvat..av.1 adekvat..1 JJ p:ad r:ekv s:at ad-ekv-at p:r:s derivation C1
adla..vb.1 adla..1 PC r:adl s:a adl-a r:s rr:adel derivation B2
adel..nn.1 adel..1 NN r:adel adel r root lexeme B1
adelsman..nn.1 adelsman..1 NN r:adel f:s r:man adel-s-man r:f:r compound B1
adjektiv..nn.1 adjektiv..1 NN p:ad r:jekt s:iv ad-jekt-iv p:r:s derivation A2
adjö..in.1 adjö..1 IN r:adjö adjö r root lexeme A2

Table 5: CoDeRooMor dataset by lemgram, an excerpt

Morpheme Identifier Category Frequency Examples
a s suffix 1 605 leverera, lugna sig, meritera, narkotika, pumpa, rasa
er s suffix 577 abdikera, intrigera, politiker, kritiker, motivera, tekniker
tid r root 128 arbetstid, nutid, skoltid, livstid, dåtid, deltid
ny r root 46 nyinköpt, nykokt, nykomling, nyligen, nymodighet, Nynäshamn
o p prefix 240 olaglig, olämplig, olik, olika, olikhet, oljud
re p prefix 105 reaktionstid, rebell, rebellisk, recensent, recensera, recension
s f infix* 803 fredstid, landsfader, riksbank, tvångsgift, landsdel, riksdag
o f infix* 76 vilopaus, sagobok, sannolik, sociolog, vilorum, typografi

Table 6: CoDeRooMor dataset by morpheme with examples, an excerpt. *Swe. fogemorfem

Figure 4: Statistics (raw count) over word forma-
tion mechanisms in the learner essay data

tics. In addition some words which could also be
seen as derivations are currently seen as root lex-
emes since the final suffix falls in other inflectional
forms and hence they are counted as root lexemes,
e.g. resa ’to travel’, cf. resa ’journey’, since
the rule was that annotators should usually select
a word formation which fit with the first part of
the annotation (segmentation and morpheme cate-
gorization).

Using CoDeRooMor, it is possible to trace the
morphemic complexity of the words at different
stages of language development. From Figure 5
we can see that the morphemic word structure
is getting more complex as proficiency develops,
with the average number of morphemes per new
word (based on words which first occur at that
CEFR-level in our data) growing from 1.79 at the

Figure 5: Statistics over morpheme per word at
different levels of proficiency

beginner level till 2.89 at the advanced level.
The dataset can be downloaded as an excel file

or as a file with comma separated values (csv file
format). The information can be organized in sev-
eral ways:

1. with lemgrams as the main lookup items (see
Table 5). The associated information per
lemgram consists of:

• lemgram
• sense indicator (Saldo-based)
• part of speech
• analysis by morpheme
• real root (if applicable)
• word segmentation boundaries
• word morpheme patterns
• word formation mechamism
• the CEFR level (level of first occurence)
• frequency information from COC-

TAILL, by level and in total (if
applicable)

• frequency information from SweLL-
pilot, by level and in total (if applicable)
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2. with morphemes as the main lookup item (see
Table 6 for an example). The associated in-
formation consists of:

• morpheme, e.g. abs
• identifier, e.g. p
• category, e.g. prefix
• number of unique words containing that

morpheme in the Sen*Lex list
• list of words containing this morpheme-

category (building a ”morpheme” fam-
ily)

• frequency in Sen*Lex by level and in to-
tal, if applicable (several columns)

• frequency in COCTAILL by level and in
total, if applicable (several columns)

• frequency in SweLL-pilot by level (sev-
eral columns)

The Legato annotation tool can compile some
statistics and tables for overviews and visualiza-
tion, which currently is only available for project
researchers. In the future, we plan to make these
functions open to all users, together with making
this dataset available not only for download, but
also for browsing (cf. English Vocabulary Profile,
Capel, 2010).

The CoDeRooMor dataset can be freely down-
loaded from Språkbanken-Text.11

7 Future work

The CoDeRooMor resource offers promising pos-
sibilities for several types of research. Research
questions with Linguistics and Second Language
Acquisition domain are described in detail in
Lindström Tiedemann et al. (In Prep.) and are
mentioned briefly in the introduction to this arti-
cle. With regards to pedagogical and applied re-
search prospects, we are currently exploring how
the items can best be linked together and presented
to the public as a word family resource for use both
in research and in teaching. The plan is that since
Swedish uses both derivation and compounding
frequently the resource will show all words which
have a common root as a family and there will be
information about how this relates to CEFR lev-
els based on the corpora that we mentioned above.
The dataset can be effetively used for Intelligent
Computer-Assisted Language Learning research,

11https://spraakbanken.gu.se/en/resources#refdata

for example for exercise generation or text com-
plexity analysis.

To visualize the resource and support research
into the non-inflectional morphology, we are
working on a user interface for Swedish similar to
the English Vocabulary Profile (EVP)12 and Pear-
son GSE Teacher Toolkit.13 The interface has a
working title Swedish L2 Profile (SweL2P) and is
integrated into the Lärka platform14 (Alfter et al.,
2018), at Språkbanken Text (Gothenburg, Swe-
den). The GUI will provide possiblilites to search,
filter, browse and download various L2 Swedish
datasets (lexical, morphological, grammar, includ-
ing CoDeRooMor) generated as an output of the
project.

We are currently also experimenting with au-
tomatic morpheme segmentation based on the
CoDeRooMor dataset which is showing promis-
ing results and we hope that this might result in
a new functionality in the Sparv pipeline (Borin
et al., 2016) allowing automatic segmentation and
labeling of morpheme categories for Swedish.

The ultimate aim is to analyze learner language
in a more nuanced way, where analysis of word
formation morphemes could help us to look deeper
into lexical and morphemic complexity and to un-
derstand language acquisition and processing bet-
ter. Type token ratio (TTR) has been often used as
a way to measure lexical diversity, i.e. how varied
the vocabulary in a text is (see e.g. McKee et al.,
2000). However recently TTR has also been used
as a means of studying morphological complex-
ity (Gutierrez-Vasques and Mijangos, 2020; Ket-
tunen, 2014). Gutierrez et al. also explore the
possibility of studying morphological complexity
through entropy and CRF in relation to typolog-
ical comparisons of languages. Our intention is
to apply similar techniques for analysis of learner
language.
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cal, applied and interdisciplinary research, 7(1):13–
24.

Peter Smit, Sami Virpioja, Stig-Arne Grönroos, Mikko
Kurimo, et al. 2014. Morfessor 2.0: Toolkit for sta-
tistical morphological segmentation. In The 14th
Conference of the European Chapter of the Associa-
tion for Computational Linguistics (EACL), Gothen-
burg, Sweden, April 26-30, 2014. Aalto University.

Alexey Sorokin and Anastasia Kravtsova. 2018. Deep
convolutional networks for supervised morpheme
segmentation of russian language. In Conference on
Artificial Intelligence and Natural Language, pages
3–10. Springer.

Ulf Teleman, Staffan Hellberg, and Erik Andersson.
1999. Svenska akademiens grammatik. Svenska
akademien.

Elena Volodina, Ildikó Pilán, Stian Rødven Eide,
and Hannes Heidarsson. 2014. You get what
you annotate: a pedagogically annotated corpus of
coursebooks for Swedish as a Second Language.
In Proceedings of the third workshop on NLP
for computer-assisted language learning at SLTC
2014, Uppsala University, 107. Linköping Univer-
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Elena Volodina, Ildikó Pilán, Ingegerd Enström,
Lorena Llozhi, Peter Lundkvist, Gunlög Sundberg,
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Abstract

Quantitative studies of historical syntax
require large amounts of syntactically an-
notated data, which are rarely available.
The application of NLP methods could re-
duce manual annotation effort, provided
that they achieve sufficient levels of accu-
racy. The present study investigates the
automatic identification of chunks in his-
torical German texts. Because no training
data exists for this task, chunks are ex-
tracted from modern and historical con-
stituency treebanks and used to train a
CRF-based neural sequence labeling tool.
The evaluation shows that the neural chun-
ker outperforms an unlexicalized base-
line and achieves overall F-scores between
90% and 94% for different historical data
sets when POS tags are used as feature.
The conducted experiments demonstrate
the usefulness of including historical train-
ing data while also highlighting the impor-
tance of reducing boundary errors to im-
prove annotation precision.

1 Introduction

The analysis of linguistic phenomena in historical
language requires large amounts of annotated data.
For example, to study the development of syntac-
tic phenomena like object order or extraposition
in German, syntactically annotated texts from all
relevant time periods are needed. To date, how-
ever, only very few historical corpora provide an-
notations beyond the morpho-syntactic level, thus
limiting syntactic research to qualitative studies on
small data sets. Using NLP methods for the auto-
matic creation of relevant annotations could sup-
port the annotation process and reduce the nec-
essary manual effort for quantitative studies. But
the application of standard tools to historical data

faces a variety of challenges, as there is less or no
training data, the data is less standardized, etc.

The present study investigates the automatic
recognition of chunks in historical German. Sec-
tion 2 gives a short introduction to the chunk-
ing task and explains peculiarities about chunking
German concerning complex pre-nominal modifi-
cation. Section 3 presents previous approaches to
automatic chunking, which have not yet been ap-
plied to historical data, likely because no manually
annotated data is available. In this study, to address
the lack of chunked historical data, chunks are ex-
tracted from modern and historical constituency
treebanks. Section 4 describes the training data as
well as the additional test data sets before Sec-
tion 5 introduces the selected methods for auto-
matic chunking: a regular expression-based base-
line and a neural CRF chunker. Finally, Section 6
details the evaluation process and presents the re-
sults, followed by a conclusion in Section 7.

2 Chunking (German)

Chunking is also referred to as partial or shallow
parsing. The concept of chunks was introduced by
Abney (1991), who defines them as non-recursive
phrases from a sentence’s parse tree ending with
the head of the phrase. According to this defini-
tion, a chunk may contain chunks of other types
but not of the same type, and post-nominal mod-
ifiers start a new chunk. Example (1) shows the
annotation of an English sentence following Ab-
ney’s chunk definition:

(1) [S [NP The woman] [PP in [NP the lab coat]]
[VP thought]] [S [NP you] [VP had bought]
[NP an [ADJP expensive] book]].

(Kübler et al., 2010, p. 147)

The CoNLL-2000 shared task on chunking
(Sang and Buchholz, 2000), which is still widely
used as a benchmark, has popularized a more
restricted definition of chunks and only allows

190



for non-recursive, non-overlapping chunks, i.e. a
word belongs to a maximum of one chunk while
keeping the restriction that a chunk ends at the
head token. When applied to sentence (1), this re-
sults in the annotation in example (2).

(2) [NP The woman] [PP in] [NP the lab coat]
[VP thought] [NP you] [VP had bought] [NP
an expensive book].

Defining chunks this way makes them suitable
for the automatic annotation with sequence label-
ing methods and is especially useful for tasks that
do not require a complete syntactic analysis but
profit from an easy and fast annotation, e.g. agree-
ment checking in word processors (Fliedner, 2002;
Mahlow and Piotrowski, 2010). Furthermore, it
may serve as a basis for deeper syntactic analyses
(cf. Van Asch and Daelemans, 2009; Daum et al.,
2003; Osenova and Simov, 2003) and thus could
build the foundation for the automatic syntactic
annotation of historical data.

However, applying the standard definition of
chunks is problematic when chunking German be-
cause of possibly complex pre-nominal modifica-
tion. The phrase in example (3) violates Abney’s
chunk definition due to the embedded noun chunk
and, when annotated according to the CoNLL-
style definition, it would contain an article der that
is separated from its noun chunk as in example (4).

(3) [NC der [NC seinen Sohn] liebende Vater]
the his son loving father
‘the father who loves his son’

(Kübler et al., 2010, p. 148)

(4) der [NC seinen Sohn] [NC liebende Vater]

While in some German corpora, these stranded
tokens are left unannotated, e.g. DeReKo (Dip-
per et al., 2002), Kübler et al. (2010) introduce
a special category for stranded material, marked
with an initial ‘s’, e.g. sNC for a stranded noun
chunk. They also suggest including the head noun
chunk in the prepositional chunk while leaving
post-nominal modifiers separate. In the following,
their approach is adopted for chunking German.

Of the eleven original chunk types from the
CoNLL-2000 shared task, four main types are
considered in this study: noun chunks (NC), prepo-
sitional chunks (PC), adjective chunks (AC), and
adverb chunks (ADVC), and, in addition, stranded
noun (sNC) and prepositional chunks (sPC). Ex-
ample (5) shows the annotation of a sentence from

an 1871 newspaper taken from one of the histor-
ical data sets in this study. For better readability,
the relation of stranded articles to their respective
noun chunks is indicated by subscripts.

(5) [sNC1 die] [sNC2 den] [PC an Deutschland]
[NC2 abgetretenen Landestheilen]
[NC1 angehörenden Kriegsgefangenen] [...]
werden [ADVC sofort] [PC in Freiheit]
gesetzt;
the the to Germany transferred territories be-
longing prisoners of war will be immediately
to freedom set
‘Prisoners of war belonging to the territories
transferred to Germany will be released im-
mediately’

Allgemeine Zeitung, no. 72, 1871
(DTA; BBAW, 2021)

3 Related Work

Since chunking can be understood as both a shal-
low parsing and a sequence labeling task, de-
pending on the chunk definition, there have been
many different approaches to the automatic iden-
tification of chunks. For non-recursive Abney-
style chunking, Abney (1991) uses finite-state cas-
cades, yet similar techniques have also been ap-
plied to CoNLL-style chunking. Müller (2005)
gives an overview of chunking studies on German,
many of which use finite state-based methods, but
also other parsing approaches. For his FSA-based
chunker, he reports an overall F1-score of 96%.

For non-recursive, non-overlapping CoNLL-
style chunking, there have been experiments
with different classification and sequence labeling
methods, including the application of taggers (e.g.
Osborne, 2000; Molina and Pla, 2002; Shen and
Sarkar, 2005) with F1-scores between 92% and
94% as well as machine learning, e.g. with Condi-
tional Random Fields yielding F1-scores of 93%
to 94% (cf. Sun et al., 2008; Roth and Clematide,
2014). More recently, there have also been ex-
periments with neural sequence labeling using bi-
directional LSTMs (Akhundov et al., 2018; Zhai
et al., 2017), RNNs (Peters et al., 2017), and neu-
ral CRFs (Huang et al., 2015; Yang and Zhang,
2018) with F1-scores of about 95%.

As chunks of a given type can only contain cer-
tain part-of-speech sequences, most of the studies
use POS tags as features. However, lexicalization
of models can also improve chunking results (cf.
Shen and Sarkar, 2005; Indig, 2017) and current
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contextual word representations already seem to
have some awareness of shallow syntactic struc-
tures like chunks (Swayamdipta et al., 2019). In
general, van den Bosch and Buchholz (2002) find
that POS tags are most relevant if the training data
is small, while words become more helpful with
increasing amounts of data, and a combination of
both features yields the best results.

For evaluation, most studies still use the data
set from the CoNLL-2000 shared task (Sang and
Buchholz, 2000), i.e. WSJ data from the Penn
Treebank, and written news data also serves as
the evaluation basis for most studies on German.
However, when Pinto et al. (2016) compare tools
on English CoNLL-2000 data with their perfor-
mance on Twitter data, they find that for standard
toolkits, F1-scores decrease by 17 to 38 percent-
age points to 45%–54% on social media text. A
similar drop in performance might also occur for
other non-standard data like historical language
and would underline the importance of methods
and models that are specifically tailored to a par-
ticular language variety.

But to date, there has only been a small number
of studies on the automatic syntactic analysis of
historical German, all of which have to deal with
a lack of syntactically annotated historical data. In
the absence of a gold standard, some studies de-
velop rule-based approaches, e.g. Chiarcos et al.
(2018) for topological field identification in Mid-
dle High German. But without the possibility for
evaluation, the accuracy of such systems remains
unclear. Other studies try to compensate for the
lack of historical data by falling back on modern
German. Petran (2012) approximates historical
language by removing punctuation and capitaliza-
tion from a modern German news corpus. Using
CRFs, he tries to identify segments of increasing
length, chunks, clauses, and sentences, in this ar-
tificial data set and concludes that smaller units
are easier to identify. For chunking, he reports
an F1-score of 93.3%, but since capitalization and
punctuation are not the only differences between
modern and historical German, it is unclear how
well these results generalize to real historical data.
Nevertheless, the exploitation of modern data can
be conducive for automatically annotating histor-
ical language by reducing the need for large an-
notated historical data sets. As a previous study
has shown, models trained on modern newspaper
text can successfully be transferred to historical

German with F1-scores >92% when POS tags are
used as input unless the historical language struc-
tures differ too much from modern German (Ort-
mann, 2020).

4 Data

As already mentioned, most German corpora and
especially historical corpora do not offer a man-
ual chunk annotation that could be used for train-
ing and evaluating automatic models. However,
Kübler et al. (2010) notice that chunks can be ex-
tracted directly from constituency trees by con-
verting the lowest phrasal projections with lexical
content to chunks. Using this method, they auto-
matically transform the constituency annotations
from the TüBa-D/Z treebank (Telljohann et al.,
2017) into chunks. The resulting corpus1 com-
prises 3,816 newspaper articles with more than
100k sentences and almost 2M tokens. In total,
it contains over 743k instances of the six chunk
types considered in the present study.

Since the extracted chunks might be influenced
by the structure of the constituency trees and,
hence, may differ between treebanks with differ-
ent syntactic annotation schemes, a second Ger-
man treebank is included in the present study.
The Tiger corpus (Brants et al., 2004)2 contains
about 50k sentences with about 888k tokens from
2,263 German news articles, but the annotation of
certain syntactic phenomena deviates significantly
from those in the TüBa-D/Z corpus (Dipper and
Kübler, 2017). Most notably, the Tiger treebank
includes discontinuous annotations. Therefore, all
sentences must be linearized first3 before chunks
of the six different types can be extracted from
the constituency trees similar to the procedure de-
scribed by Kübler et al. (2010).

Besides accounting for possible influences of
the annotation scheme on the extracted chunks, in-
cluding the Tiger treebank offers another advan-
tage: While annotated historical data sets rarely
exist for syntactic annotation tasks, there are two

1Release 11.0, chunked version, http://www.
sfs.uni-tuebingen.de/ascl/ressourcen/
corpora/tueba-dz.html

2Version 2.2, TIGER-XML format, https:
//www.ims.uni-stuttgart.de/forschung/
ressourcen/korpora/tiger

3As only the lowest phrasal projections are used to derive
chunks from the tree, the broader structure of the tree is ir-
relevant for the task at hand. Therefore, discontinuous nodes
are simply duplicated and re-inserted at the correct position
inside the tree according to the linear order of terminal nodes
in the sentence.
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Corpus #Docs #Sents #Toks #Chunks
Training

TüBa-D/Z 3,075 83,225 1,564,840 593,735
Tiger 1,863 39,976 726,811 255,077
Mercurius 2 6,709 150,354 53,831
ReF.UP 26 16,761 415,934 163,438

Development
TüBa-D/Z 377 10,702 196,308 74,780
Tiger 200 4,567 81,593 28,615
Mercurius 2 820 18,287 6,570
ReF.UP 26 2,112 53,836 21,245

Test
TüBa-D/Z 364 10,491 196,636 74,982
Tiger 200 4,445 78,018 27,253
Modern 78 547 7,605 2,829
Mercurius 2 818 18,740 6,691
ReF.UP 26 2,173 54,005 21,120
HIPKON 53 342 4,210 1,529
DTA 29 606 18,515 6,651

Table 1: Overview of the data sets. The number of
chunks refers to the six chunk types evaluated in
this study. Only sentences containing at least one
chunk of the given types are included.

treebanks for historical German, which are anno-
tated according to the Tiger scheme and thus, for-
tunately, can also be used for chunk extraction.
The Mercurius corpus (Demske, 2005)4 contains
semi-automatic annotations of approximately 8k
sentences with 187k tokens from newspaper text
from the 16th and 17th centuries. The second
treebank, ReF.UP, is a subcorpus of the Reference
Corpus of Early New High German (Wegera et al.,
2021)5 and includes annotations of 26 documents
with 21k sentences and 500k tokens from different
language areas from the 14th to 17th century. Like
with the Tiger corpus, the constituency trees from
both historical treebanks must be linearized before
chunks can be extracted from them. In total, the
two corpora contain about 67k chunks and over
205k chunks of the six relevant types, respectively.
While the Tiger corpus is already provided with a
training, development, and test section, the other
three corpora were split into a training (80%), de-
velopment (10%), and test set (10%) for this study.
Also, the historical POS tagsets in the Mercurius
and ReF.UP treebanks were mapped to the Ger-
man standard tagset STTS (Schiller et al., 1999).

Compared to previous studies on historical data,
the two modern and historical treebanks form a
solid basis for training and evaluating automatic

4Mercurius Baumbank (version 1.1),
https://doi.org/10.34644/
laudatio-dev-VyQiCnMB7CArCQ9CjF3O

5https://www.linguistics.rub.de/ref

chunking methods on historical German. How-
ever, Osborne (2002) notes that distributional dif-
ferences between training and test data can be even
more problematic for chunking performance than
noise in the data itself. Therefore, three additional
data sets from a previous study (Ortmann, 2020),6

which are unrelated to the training data, are used
for evaluation. The first data set is a collection
of about 550 sentences with 7.6k tokens from five
modern registers with a varying degree of for-
mality: Wikipedia articles, fiction texts, Christian
sermons, TED talk subtitles, and movie subtitles.
In total, the modern data set contains about 2.8k
chunks of the six types and is used to test the appli-
cability of annotation methods to non-newspaper
registers.

The two other data sets comprise historical data
from two different corpora. The HIPKON corpus
(Coniglio et al., 2014) contains 342 manually an-
notated sentences from 53 sermons from the 12th

to the 18th century. Originally, the corpus only in-
cludes a partial annotation of chunks, which was
completed for the present study. Also, the map-
ping of the historical POS tags to STTS tags from
Ortmann (2020) was used. The second historical
data set consists of 600 sentences with 18.5k to-
kens from 29 texts from the German Text Archive
DTA (BBAW, 2021). The texts were published in
a variety of genres7 from the 16th to the 20th cen-
tury and were manually enriched with chunks for
this study, using the corrected POS tags and sen-
tence boundaries from Ortmann (2020). Table 1
gives an overview of the data sets. The annotated
data sets and additional resources can be found in
this paper’s repository.8

Table 2 shows the distribution of the six chunk
types in the test data. As could be expected, noun
chunks (NC) are the most frequent chunk type, fol-
lowed by prepositional chunks (PC) and adverb
chunks (ADVC). Stranded chunks make up about
1% of the chunks in all data sets, except for the
TüBa-D/Z data with 0.6% and the modern non-
standard data with only 0.4% stranded chunks.
While stranded noun chunks (sNC) are more fre-
quent in the modern data, the opposite can be ob-
served for most of the historical data sets where

6https://github.com/rubcompling/
latech2020

7The DTA subset contains five newspaper texts and three
texts each from the genres: funeral sermon, language science,
medicine, gardening, theology, chemistry, law, and prose.

8https://github.com/rubcompling/
nodalida2021
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Corpus NC PC AC ADVC sNC sPC
TüBa-D/Z 54.2 24.6 5.9 14.8 0.4 0.2
Tiger 55.2 30.7 4.6 8.5 0.6 0.4
Modern 60.3 21.2 5.5 12.5 0.3 0.1
Mercurius 51.5 29.5 4.4 13.5 0.4 0.7
ReF.UP 57.7 20.6 5.9 15.1 0.2 0.5
HIPKON 56.4 25.1 2.4 15.3 0.1 0.9
DTA 56.4 24.4 5.2 12.8 0.6 0.6

Table 2: Distribution of chunk types in the test
data reported as percentage of the total number of
chunks per data set.

stranded prepositional chunks (sPC), as in exam-
ple (6) from the Mercurius corpus, are more com-
mon.

(6) [sPC von] [NC der Frantzosen] [PC Vor-
haben]
of the French’s plan
‘of the plan of the French’

5 Methods

As detailed in Section 3, various methods have
been applied to the automatic recognition of
chunks in modern text. In the present study, two
different approaches are tested: an unlexicalized
regular expression-based chunker, which serves as
a baseline, and a neural state-of-the-art sequence
labeling tool.

The regular expression-based approach is com-
parable to the finite-state chunkers mentioned
in Section 3. For this study, a simple RegExp
chunker as implemented in the NLTK9 is used,
which successively applies a set of manually cre-
ated context-sensitive regular expressions to an in-
put POS sequence to identify non-recursive, non-
overlapping chunks of the six different types.

The neural sequence labeling tool NCRF++
(Yang and Zhang, 2018)10 achieves state-of-the-
art results for several tasks, including chunking.
On the English CoNLL-2000 data, the best model
reaches an F1-score of 95% (Yang et al., 2018).
The toolkit consists of a three-layer architecture
with a character sequence layer, a word sequence
layer, and a CRF-based inference layer. While the
RegExp chunker relies on expert knowledge in the
form of manually compiled rules, NCRF++ must
be trained on annotated data to perform the task.
For this study, the tool is trained on the two dif-
ferent modern treebanks: model News1 is trained

9http://www.nltk.org/api/nltk.chunk.
html

10https://github.com/jiesutd/NCRFpp

on the TüBa-D/Z training set, and model News2
on the Tiger training set. Also, the two historical
treebanks are used to train a joined model Hist,
which might be more suitable for the analysis of
historical data and its peculiarities. Finally, since
the historical data sets are smaller than the modern
training sets, a model News2+Hist is trained on
a combination of the modern and historical tree-
banks that follow the same annotation scheme.
During training, the tool is provided with the cor-
responding development data and each of the mod-
els is trained with and without POS tags as an
additional feature. Since current contextual word
representations seem to be aware of shallow syn-
tactic structures (Swayamdipta et al., 2019), each
model is also trained with GloVe embeddings pre-
trained on German Wikipedia.11 To ensure com-
parability, all models are trained with the same de-
fault settings.12 While the News2 and Hist train-
ing sets only contain annotations of the six chunk
types considered in this study, the News1 model
is trained on all chunk types included in the TüBa-
D/Z corpus, although only the six types described
in Section 2 are evaluated here. For each token,
both selected methods, i.e. the RegExp chunker
and the NCRF++ toolkit, output the single most
likely chunk label encoded as a BIO tag.

6 Evaluation and Results

To assess the performance of the automatic meth-
ods introduced in the previous section, their output
is compared to the gold standard annotation. As
already mentioned, every token is annotated with
a BIO tag, i.e. either B-XC (beginning of chunk),
I-XC (inside chunk), or O (outside chunk). How-
ever, the number of tokens inside and outside of
chunks provides little information about the qual-
ity of the automatic chunk annotation. Instead, it is
of interest whether the boundaries of chunks align
between automatic and gold annotation. There-
fore, the evaluation is carried out chunk-wise in-
stead of token-wise and each chunk in the gold

11GloVe embeddings trained on German Wikipedia
and provided by deepset, https://deepset.ai/
german-word-embeddings

12The experiments of Yang et al. (2018) suggest that the
default combination of character CNN, word LSTM, and a
CRF-based inference layer gives the best result for the chunk-
ing task with good model stability for random seeds (mean
F1: 94.86 ± 0.14). However, the present study is only a first
investigation of chunking historical German and further ex-
periments should be conducted to test for model stability and
to explore fine-tuning of parameters for optimal results.
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Model Words POS GloVe TüBa-D/Z Tiger Modern Mercurius ReF.UP HIPKON DTA
RegExp - + - 85.46 86.75 90.35 85.70 86.83 91.76 88.20

News1

+ - - 93.46 87.80 89.63 72.52 49.77 47.69 72.07
+ - + 94.30 88.16 90.12 73.48 51.94 48.43 71.50
+ + - 97.07 90.33 92.91 90.34 91.01 93.71 90.11
+ + + 97.17 90.89 93.68 90.37 90.66 92.92 90.15

News2

+ - - 85.02 91.41 86.67 71.15 49.09 43.25 67.75
+ - + 86.19 92.76 87.77 72.05 50.01 46.90 69.59
+ + - 90.96 94.70 94.04 88.58 89.84 94.20 88.76
+ + + 91.22 95.44 93.97 88.55 88.77 92.50 88.35

Hist

+ - - n.a. n.a. n.a. 11.68 16.10 12.81 13.86
+ - + n.a. n.a. n.a. 85.53 81.28 69.41 73.61
+ + - n.a. n.a. n.a. 92.37 93.48 93.29 89.89
+ + + n.a. n.a. n.a. 92.80 93.64 93.85 90.37
+ - - n.a. n.a. n.a. 82.56 79.42 60.47 73.24

News2 + - + n.a. n.a. n.a. 83.40 79.02 65.05 74.77
+Hist + + - n.a. n.a. n.a. 91.94 93.03 94.49 90.15

+ + + n.a. n.a. n.a. 92.19 93.41 93.99 90.29

Table 3: Overall F1-scores for the RegExp chunker and all NCRF++ models for the seven corpora.
Models trained on historical data are only applied to historical corpora. All numbers are given in percent
and the best result for each corpus is highlighted in bold.

standard is compared to the system output and vice
versa concerning chunk type and chunk bound-
aries. Only sentences for which the gold standard
contains at least one of the six relevant chunk types
are considered. Chunks with identical labels and
boundaries are counted as true positives, whereas
chunks only existing in the gold standard are con-
sidered false negatives, and chunks only present in
the system output count as false positives.

In addition to these common categories, there
can be additional types of errors, though, which
are not captured by the three categories and usu-
ally are penalized as multiple errors in a single
unit. For example, a system could identify a chunk
spanning the correct token sequence but label it as
a different chunk type, e.g. ADVC instead of AC,
which would count as a false positive ADVC and
a false negative AC. Also, a system can get the
boundaries of a chunk wrong, e.g. miss the first
word of an ADVC, which would correspond to a
false positive and a false negative ADVC. And fi-
nally, the system can make both errors at once,
for example by missing the initial preposition and
classifying a PC as NC, resulting in a false pos-
itive NC and a false negative PC. To account for
these types of errors, in the following, seven dif-
ferent categories are distinguished during evalua-
tion: true positives (TP), false positives (FP), la-
beling errors (LE), boundary errors (BE), labeling-
boundary errors (LBE), and false negatives (FN).13

13The idea for this distinction between error types
stems from a blog post by Chris Manning about

Because labeling and boundary errors mean that
the system recognized some chunk, although not
entirely correctly, and not that it missed a chunk,
LE, BE, and LBE errors are counted as false pos-
itives for the calculation of precision and recall
while preventing multiple penalties for a single
unit. As the evaluation is carried out chunk-wise,
sensible true negatives cannot be determined and
are not evaluated here. Table 3 gives an overview
of the results for the different annotation methods
and models.

The evaluation shows that the RegExp parser,
which operates on POS tags only, reaches F1-
scores between 85% and 92% for all data sets,
setting a high baseline for the task. The best re-
sults are achieved for the modern non-newspaper
data and the HIPKON corpus. The NCRF++ mod-
els outperform this baseline by several percent-
age points on each data set, achieving F1-scores
between 90% and 97%. The recall lies between

a similar problem with named entity evaluation
(https://nlpers.blogspot.com/2006/08/
doing-named-entity-recognition-dont.
html). The problem with double penalties when using
F-scores has also been recognized in the literature. For ex-
ample, in the context of word tokenization, Shao et al. (2017)
show that precision favors under-splitting systems, suggest-
ing that recall, i.e. the proportion of correctly segmented
units, gives a more realistic impression of system perfor-
mance and should be used as the only evaluation metric.
However, for tasks that require segmentation and labeling
such as chunking or NER, almost correct chunks/entities
may still provide useful information for certain purposes.
Thus, the more fine-grained distinction of errors and adjusted
calculation of precision and recall seem appropriate for a
thorough evaluation of these annotations.
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97% and 99% for the best models on all data
sets and is always higher than the precision with
84% to 95%. As already observed in other stud-
ies (van den Bosch and Buchholz, 2002), models
that include POS as additional features generally
perform better than models purely based on char-
acters and word forms. Also, adding pre-trained
word embeddings improves the results in almost
all cases, especially for models without POS tags.

The modern newspaper data is analyzed with
the highest F1-scores of 97% and 95% respec-
tively. Unsurprisingly, models trained on the train-
ing section of the same corpus perform better on
the test data than models trained on another data
set. This may be a result of distributional dif-
ferences between data sets (Osborne, 2002) but
could, in part, also be due to differences between
the constituency trees from which the chunks were
extracted.

The results for the modern non-newspaper data
are slightly lower than for the news corpora with
a maximum F1-score of 94%. Interestingly, the
overall F1-scores are higher for the more informal
registers than for the formal ones. Probably, in-
formal sentences are generally easier to chunk be-
cause they contain more simple (noun) chunks and
less pre-nominal modification.

While models purely based on words still per-
form well on the modern data, POS tags prove to
be especially relevant for the historical data. Even
the Hist model must be complemented with
(modern) pre-trained word embeddings for accept-
able performance on the historical corpora, possi-
bly reflecting problems with the non-standardized
spelling in historical German. For the Mercurius
and ReF.UP corpora, the Hist model with POS
and word embeddings achieves the best results
with F1-scores of about 93%, followed by the
News2+Hist model. For the HIPKON corpus,
the News2+Hist model with POS reaches the
highest F1-score of 94.5%, closely followed by
the News2 model. The DTA data is analyzed with
the highest F1-score of 90.4% by the Hist model
with POS and word embeddings, followed by the
News2+Hist and the News1 models with F1-
scores of about 90% as well.

These results are in line with the observations
of Ortmann (2020) that models trained on mod-
ern news data can successfully be transferred to
historical German with overall F1-scores >90%
when POS tags are used as input. However, the

Corpus NC PC AC ADVC sNC sPC
TüBa-D/Z 95.6 97.9 86.8 97.0 77.2 70.0
Tiger 94.4 95.0 85.2 84.7 84.7 68.4
Modern 93.3 91.3 85.4 83.7 80.0 0.0
Mercurius 90.6 90.8 84.3 86.0 0.0 36.7
ReF.UP 92.9 92.3 81.1 85.1 5.6 40.3
HIPKON 94.1 90.4 87.0 87.4 0.0 26.7
DTA 87.5 90.0 80.4 81.8 10.3 16.7

Table 4: Overall F1-scores per chunk type (in per-
cent) for the best performing model on each data
set.

evaluation also shows that historical training data
further improves the automatic annotation of his-
torical language.14

In Table 4, the results per chunk type are dis-
played for the best performing model on each data
set. Here, no distinction is made between true pos-
itives, labeling, and boundary errors, i.e. one unit
can correspond to multiple errors in one or two
of the categories as exemplified above. For all
data sets, the best results are observed for noun
and prepositional chunks with F1-scores mostly
above 90%, while the results for adjective and
adverb chunks range mostly between 80% and
87%. The stranded chunk types are recognized
much less reliably, especially in the historical data
where the majority of errors in these categories re-
sult from structures with a pre-nominal modifying
noun chunk NC inside a prepositional chunk PC
like in example (6) above. These structures are
more frequent in historical German, causing the
higher proportion of stranded prepositional chunks
compared to modern data. When confronted with
a structure like this, in most cases, instead of an-
notating a stranded preposition sPC preceding a
pre-nominal noun chunk NC, the models identify a
joined PC, followed by an NC as in example (7).

14It is important to note that the experiments in this pa-
per were conducted with gold standard POS tags and using
automatically assigned POS can be expected to negatively
influence the results. For example, Müller (2005) reports a
chunking F1-score of only 90% instead of 96% when using
automatic POS. Applying the Stanza tagger (Qi et al., 2020,
German hdt model) to the modern data sets in this study
results in POS error rates of 4% (TüBa-D/Z) to 6% (Mod-
ern) and reduces the F1-scores of the RegExp chunker by 1
(TüBa-D/Z) to 4 (Modern) percentage points. The F1-scores
of the best NCRF++ models with POS as feature decrease
by 3 (TüBa-D/Z) to 3.7 (Tiger, Modern) percentage points.
It can be assumed that similar reductions would be observed
for historical data if a comparable tagger model for the rel-
evant language stages was available and used to tag the data
automatically.
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Corpus FP LE BE LBE FN
TüBa-D/Z 10.9 4.4 60.1 4.8 19.8
Tiger 17.7 6.0 59.8 4.2 12.3
Modern 11.3 5.5 63.6 2.4 17.1
Mercurius 22.6 10.3 53.2 7.1 6.7
ReF.UP 17.5 8.1 56.0 7.1 11.3
HIPKON 11.7 10.4 55.8 12.3 9.8
DTA 13.9 6.5 58.9 6.7 14.0

Table 5: Proportion of the five different error
types: false positives (FP), labeling errors (LE),
boundary errors (BE), labeling-boundary errors
(LBE), and false negatives (FN). Numbers are
given in percent for the best performing model on
each data set.

(7) Gold: [sPC von] [NC der Frantzosen] [PC
Vorhaben]

NCRF++: [PC von der Frantzosen] [NC
Vorhaben]

Since, in these cases, the embedded noun chunk
cannot be recognized based on STTS POS tags, a
morphological analysis is necessary to distinguish
structures with a pre-nominal genitive from prepo-
sitional chunks with a post-modifying noun chunk.
When the genitive form is not syncretized, i.e. the
word form differs from the morphological realiza-
tion in other cases like nominative or dative, lex-
icalized models could, in theory, identify the cor-
rect structure. But as stranded chunks constitute
only about one percent of all chunks in the data
sets, there is not enough training data to recognize
them reliably.

Finally, Table 5 shows the distribution of error
types in the data sets, including the more fine-
grained distinction of labeling and boundary er-
rors. Interestingly, for all corpora, boundary er-
rors constitute more than half of the errors, i.e. the
models identified the chunks but did not achieve
an exact match of the boundaries. One could argue
that this type of error is less severe than completely
missing (FN) or made-up chunks (FP), which are
the second and third most frequent error types for
most data sets. The evaluation approach in this
study, which does not multiply penalize a model
for boundary errors, thus seems appropriate to get
a more realistic impression of model performance.

7 Conclusion

The present study has investigated the automatic
recognition of chunks in historical German. To ad-
dress the main problem of analyzing historical lan-
guage, namely a lack of manually annotated data

for training and evaluation, chunks of six differ-
ent types were derived from modern and histor-
ical constituency treebanks. Using the extracted
chunks, the state-of-the-art neural sequence label-
ing tool NCRF++ was trained on modern news ar-
ticles, Early New High German corpora, as well as
a combination of modern and historical data.

The evaluation has shown that models that in-
clude POS tags as features can be transferred suc-
cessfully from modern to historical language, with
F1-scores >90%, thereby outperforming a regular
expression-based baseline. By adding historical
training data, the results can be improved further,
yielding F1-scores between 90.4% and 94.5% for
the different historical corpora.

Regarding the evaluation of chunks, the present
study has argued for a distinction between differ-
ent types of errors that are commonly penalized
as multiple errors in a single unit. An analysis of
the occurring error types showed that the major-
ity of errors are boundary errors, meaning that the
system identified the chunks, but the boundaries
do not exactly match those in the gold standard.
Since this type of error can be considered less se-
vere than pure false positives or negatives, the pre-
sented results give a more realistic impression of
the actual system performance.

Future studies should focus primarily on a re-
duction of incorrect chunk boundaries to increase
the annotation precision, as well as further investi-
gate and improve the analysis of stranded chunks
and complex pre-nominal modification in (histori-
cal) German.
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treebanks: TIGER and TüBa-D/Z. In Nancy Ide and
James Pustejovsky, editors, Handbook of linguistic
annotation, pages 595–639. Springer.

Gerhard Fliedner. 2002. A system for checking NP
agreement in German texts. In Proceedings of the
ACL Student Research Workshop, pages 12–17.

Zhiheng Huang, Wei Xu, and Kai Yu. 2015. Bidi-
rectional LSTM-CRF models for sequence tagging.
arXiv preprint arXiv:1508.01991.

Balázs Indig. 2017. Less is more, more or less... Find-
ing the optimal threshold for lexicalization in chunk-
ing. Computación y Sistemas, 21(4):637–646.
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versität Tübingen, Germany.

Vincent Van Asch and Walter Daelemans. 2009.
Prepositional phrase attachment in shallow pars-
ing. In Proceedings of the International Conference
RANLP-2009, pages 12–17. Association for Com-
putational Linguistics.

Klaus-Peter Wegera, Hans-Joachim Solms, Ulrike
Demske, and Stefanie Dipper. 2021. Referenzkor-
pus Frühneuhochdeutsch (Version 1.0).

Jie Yang, Shuailong Liang, and Yue Zhang. 2018. De-
sign challenges and misconceptions in neural se-
quence labeling. In Proceedings of the 27th Inter-
national Conference on Computational Linguistics
(COLING), pages 3879–3889, Santa Fe, New Mex-
ico, USA.

Jie Yang and Yue Zhang. 2018. NCRF++: An open-
source neural sequence labeling toolkit. In Proceed-
ings of ACL 2018, System Demonstrations, pages
74–79, Melbourne, Australia.

Feifei Zhai, Saloni Potdar, Bing Xiang, and Bowen
Zhou. 2017. Neural models for sequence chunking.
In Proceedings of the Thirty-First AAAI Conference
on Artificial Intelligence, pages 3365–3371.

199



Part-of-speech tagging of Swedish texts in the neural era

Yvonne Adesam and Aleksandrs Berdicevskis
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Abstract

We train and test five open-source taggers,
which use different methods, on three
Swedish corpora, which are of compara-
ble size but use different tagsets. The KB-
Bert tagger achieves the highest accuracy
for part-of-speech and morphological tag-
ging, while being fast enough for practi-
cal use. We also compare the performance
across tagsets and across different genres.
We perform manual error analysis and per-
form a statistical analysis of factors which
affect how difficult specific tags are. Fi-
nally, we test ensemble methods, showing
that a small (but not significant) improve-
ment over the best-performing tagger can
be achieved.

1 Introduction

The standard approach to automatic part-of-
speech tagging for Swedish has been using the
Hunpos tagger (Halácsy et al., 2007), trained by
Megyesi (2009) on the Stockholm-Umeå corpus
(Ejerhed et al., 1992). Just over a decade later neu-
ral methods have reshaped the NLP landscape, and
it is time to re-evaluate which taggers are most ac-
curate and effective for Swedish text.

In this paper we explore part-of-speech and
morphological tagging for Swedish text. The
primary purpose is to see which tagger or tag-
gers to include in the open annotation pipeline
Sparv1 (Borin et al., 2016) for tagging the multi-
billion token corpora of Språkbanken Text, avail-
able through Korp2 (Borin et al., 2012). We there-
fore train and test a set of part-of-speech taggers,
which rely on different methods, on a set of cor-
pora of comparable size, with different part-of-

1https://spraakbanken.gu.se/sparv
2https://spraakbanken.gu.se/korp

speech annotation models. We apply a 5-fold
training and evaluation regime.

In Section 2 we describe the corpora, and in
Section 3 the taggers and models. We evaluate
the taggers along a number of dimensions in Sec-
tion 4, including the potential for using ensemble
methods, and discuss the results in Section 5.

2 Data

2.1 Corpora and tagsets
Corpora and treebanks have a long history in Swe-
den; the first large annotated treebank, Talbanken,
was compiled in the mid 1970s (Teleman, 1974).
For several decades, the Stockholm-Umeå corpus
(SUC, Ejerhed et al., 1992) has been the main re-
source for training part-of-speech taggers.

In this paper, however, we use three other cor-
pora: Talbanken-SBX, Talbanken-UD, and Eu-
kalyptus. The primary reason for using these
three resources is that they are annotated with dif-
ferent tagsets, which allows us to compare re-
sults between tagsets. Talbanken-SBX follows the
same annotation model as SUC. Talbanken-UD
follows the Swedish version of the Universal De-
pendencies (UD) framework (Nivre et al., 2016;
Nivre, 2014). The UD project develops a cross-
linguistic annotation framework and resources an-
notated with it for a large number of languages. In
contrast, the Eukalyptus treebank (Adesam et al.,
2015) was developed specifically for Swedish to
be “in line with the currently standard view on
Swedish grammar” (Adesam and Bouma, 2019, p.
7). We also exclude SUC because these three re-
sources are of comparable size – close to 100,000
tokens and with a type-token ratio of around 0.17.
SUC is much larger, and would have to be scaled
down to be comparable.

We briefly describe the corpora below. For
consistency, we use the same terms to describe
the annotation in the corpora: POS for coarse-
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TB-SBX TB-UD Euk
Tokens 96,346 96,858 99,909
Types 16,242 16,305 17,237
POS-tags 25 16 13
MSD-tags 130 213 117

Table 1: Statistics for the corpora used in the
tagging experiments; Talbanken-SBX, Talbanken-
UD, and Eukalyptus. Tag counts are used tags, not
potential tags.

grained part-of-speech level tags and MSD for
finer-grained morphosyntactic descriptions (fea-
tures in the UD parlance).

The two Talbanken corpora originate from a
subset (the professional prose section) (Nivre
et al., 2006) of the original Talbanken (Tele-
man, 1974), which was converted to the SUC
tagset (Ejerhed et al., 1992) for the Swedish Tree-
bank (Nivre and Megyesi, 2007)3. The morpho-
logical annotation was manually checked and re-
vised. Both Talbanken-SBX and Talbanken-UD
are based on the output of this conversion.

Talbanken-SBX4 has the converted SUC tags,
and is the result of some minor corrections made
later at Språkbanken Text. Among our three cor-
pora, the SUC tagset is the largest set at the POS-
level (see Table 1). It has a very fine-grained set of
tags for determiners, pronouns, adverbs, and punc-
tuation symbols. There are also separate tags for
infinitival markers, participles, verb particles, and
ordinals.

Talbanken-UD5 is the result of an independent
conversion of the same corpus to UD. The texts
themselves were cleaned during this conversion,
some sentences that had been lost during the initial
conversion were recovered, and sentence segmen-
tation and the order of texts was changed. Thus,
Talbanken-UD and Talbanken-SBX are not strictly
parallel. The conversion to UD has partly been
manually checked and revised. We use version
2.7.

The number of POS-tags in the UD tagset is
quite small, but together with MSD-tags the tagset

3https://cl.lingfil.uu.se/˜nivre/
swedish_treebank/

4https://spraakbanken.gu.se/en/
resources/talbanken

5https://universaldependencies.org/
treebanks/sv_talbanken/index.html

is the largest among our corpora (Table 1). The
tagset does not have separate categories for the
infinitival marker, ordinals, or participles. It also
does not mark foreign words as a category, but in-
stead treats this as a feature in the morphological
description. In contrast to the other tagsets, it does,
however, mark auxiliaries separately.

Eukalyptus6 contains texts of five different
types, including Wikipedia and blog texts, which
makes this data the most recent and allows us
to compare different genres. The tagset loosely
builds upon the SUC tagset. The treebank is cur-
rently in an early version, and although tagging
has been checked, there are still some known er-
rors, such as inconsistencies in noun gender. This
tagset is the smallest one, both at POS- and MSD-
levels (Table 1). The tagset does not, for exam-
ple, distinguish determiners, infinitival markers,
participles, particles, or ordinals as separate cat-
egories.

2.2 Preprocessing and data splits
We pre-processed all corpora in a similar manner.
For all corpora, spaces within tokens, if present,
were replaced with underscore, since some taggers
do not allow spaces in the input. We divided all
three datasets into five folds for cross-validation.
In the case of Eukalyptus, the treebank is shipped
in five different files, one for each text type, which
were used as is. In the case of Talbanken, we split
the data into five consecutive splits, i.e. putting the
first fifth of the data into the first split, the second
fifth in the second, etc. We would have preferred
to divide the data according to text types or docu-
ments, but this is not easily retrievable for all the
data. Using consecutive splits rather than random
splits or splits where the first sentence is put in
the first split, the second sentence in the second
split, etc, means that the data splits are more dis-
tinct than with random splits (see the discussion
in e.g. Gorman and Bedrick, 2019; Søgaard et al.,
2020). This means that the same text is not divided
over all splits, although possibly into two splits.

One of the five folds (20%) is always used a test
set. Some of the taggers we investigated do use
a separate validation (dev) set, some do not (see
Table 2). For the latter ones, we merge all four
remaining folds into a training set (80%). For the
former ones, we first merge the four folds and then

6https://spraakbanken.gu.se/en/
resources/eukalyptus
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randomly (not consecutively) split them into train
and dev in the proportion 3:1 (60% of the total data
for training and and 20% for validation). We con-
sider this solution to be more fair to the “dev-less”
taggers than using the same training sets through-
out and then adding dev for some taggers, but not
for others.

3 Taggers

We have selected five open-source taggers. Our
goal was to sample taggers that use different meth-
ods, are (or were at some point) known to have
high performance and either can be easily incorpo-
rated into our annotation pipeline Sparv or already
are (as Hunpos and Stanza). This last considera-
tion steers the selection to a large extent (Stanza,
for instance, has an important advantage of being
a convenient pipeline that achieves high perfor-
mance on other tasks, such as dependency pars-
ing).

We also wanted to compare taggers that were
state-of-the-art in the “pre-neural” era7 with the
current ones. The key properties of the taggers are
summarized in Table 2. Note that the classifica-
tion in the “Key method” column is of course very
crude (Flair, for instance, can be labelled as both
neural and CRF).

As can be seen from the table, different tag-
gers use different kinds of additional information.
Hunpos does not take any further input. For Mar-
mot, we plug in Saldo-Morphology (Borin et al.,
2013), a morphological dictionary of 1M words
with a tagset that is similar (but not equivalent)
to the SUC tagset. From previous experiments
we know that using Saldo gives Marmot a boost
when it is applied to texts tagged with the SUC
tagset (i.e. TalbankenSBX in our case). We as-
sume it can also boost performance on Eukalyptus,
since the tagsets are similar, but we do not expect
a boost for UD. For Stanza, we use word2vec em-
beddings8 trained on the CONLL17 corpus (Ze-
man et al., 2017), which was built using the Com-
monCrawl data and contains approximately 3 bil-
lion words for Swedish. One of the main ideas
of Flair is to combine various types of embed-
dings; the best combination we were able to find
was that of the CONLL17 word2vec and Flair’s

7An anonymous reviewer notes that the best label for the
current era is not “neural”, but “post-neural” or “language-
model” era.

8http://vectors.nlpl.eu/repository

own embeddings (trained on Wikipedia/OPUS9,
size is not reported). For KB-Bert10, we used the
bert-base-swedish-cased model, trained
by the Datalab of the National Library of Swe-
den (KB) on 3.5 billion words from the library
collection. The collection contains predominantly
(85%) newspaper texts, but also official reports
from authorities, books, magazines, social me-
dia and Wikipedia. The training and tagging it-
self was done as in (Malmsten et al., 2020), us-
ing the run ner.py script from the Hugging-
face framework11. For Stanza and Flair, we exper-
imented with using different classic and contextu-
alized embeddings, for instance, word2vec trained
on a press corpus (Fallgren et al., 2016) or Bert
instead of Flair’s own embeddings, but the results
were always slightly worse than those we report.

4 Evaluation

We evaluate the taggers on the treebanks along
several dimensions. In the following we report
tagger speed and accuracy. We also explore un-
seen words, specific tags that seem more difficult
to get right, as well as an ensemble approach.

4.1 Speed
We trained the neural taggers on GPU (on CPU the
training time is prohibitively long) and the non-
neural ones on CPU. This means the time mea-
surements are not directly comparable, and we
thus do not report detailed quantitative results, but
the qualitative picture is very clear. For Hunpos,
the training on one fold takes about a second, so
does tagging. For Marmot, training takes about 1.5
minutes, tagging about 10 seconds. For Stanza,
training takes about 2 hours, tagging about 8 sec-
onds. For Flair, training takes about 6 hours, tag-
ging about 5 seconds. KB-Bert, however, breaks
the pattern “the better the slower”: training takes
about 3 minutes, tagging takes about 5 seconds.
Note that for the neural taggers the tagging time

9https://github.com/flairNLP/flair/
blob/master/resources/docs/embeddings/
FLAIR_EMBEDDINGS.md

10The script crashes if the dev set contains previously un-
seen tags. To solve this, we replace all such tags with the
tag for adverb (AB for SBX and Eukalyptus, ADV for UD)
when training Bert. This can potentially affect the results, but
the number of such tags is always small (varying from 0 to
10 across various folds), which should only give a negligible
bias against KB-Bert.

11https://github.com/huggingface/
transformers/blob/master/examples/
token-classification
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Embeddings
Name Key method Token Type Dictionary Dev References
KB-Bert Neural KB-BERT - - Yes Malmsten et al. (2020);

Wolf et al. (2020)
Flair Neural Flair Word2vec - Yes Akbik et al. (2019)
Stanza Neural - Word2vec - Yes Qi et al. (2020)
Marmot CRF - - SALDO No Mueller et al. (2013)
Hunpos HMM - - - No Halácsy et al. (2007)

Table 2: Basic info about the taggers. HMM = hidden Markov models, CRF = conditional random fields,
Dev = whether the tagger uses a development set. Type embeddings = “classic” (“static”) embeddings,
token = “contextualized” (“dynamic”).

excludes the time necessary to load models, em-
beddings and all necessary modules. If this is
taken into account, the tagging time becomes con-
siderably longer (for KB-Bert, for instance, about
30 seconds).

4.2 Overall tagging quality
Table 3 shows the accuracy (macroaverage over
5 folds) for the full POS+MSD label. It shows
that KB-Bert achieves the best results, and that the
Talbanken-SBX corpus is easiest to tag, while Eu-
kalyptus has lower results. It is not surprising that
the newer neural models perform the best, while
the older models achieve lower scores. To test
whether differences between the taggers are sig-
nificant, we rank them by performance and then
do pairwise comparisons of adjacent taggers (KB-
Bert and Flair, Flair and Stanza etc.) by running
paired two-tailed t-tests on 15 (3x5) datapoints.
We apply the same procedure to the sentence-
level accuracy (Table 5) and to accuracy on unseen
words (Table 7). All the differences are significant
(p < 0.05 level) and have non-negligible effect
size (Cohen’s d > 0.2). The results remain signif-
icant after applying the Bonferroni correction for
multiple comparisons.

One may wonder if Eukalyptus has more diffi-
cult distinctions, or is more inconsistently anno-
tated. However, it should be noted that the varia-
tion between splits is much larger for Eukalyptus
than for the other two corpora. If we disregard
testing on the blog part (although we still include
it for training) the 4-fold macro average is more
similar to the Talbanken-UD results, although still
lower. However, the standard deviation (SD) is
also still higher than for the other two corpora.
The reason for this may be the distinctiveness of
text types or genres of the Eukalyptus parts.

To check this, we also ran KB-Bert on ran-
domized versions of the three corpora, where sen-
tences are randomly assigned to folds. This means
that the differences are evened out between folds
and that the test data is more similar to the train-
ing data. The results are shown in Table 4. As
we can see, the results between the three corpora
are more similar than for the consecutive splits
(with Eukalyptus even getting better results than
Talbanken-UD). SD between folds is very low, ex-
cept for Talbanken-UD. However, since the ran-
dom assignment of sentences to splits makes tag-
ging easier, all results reported in this paper, ex-
cept for in Table 4, are based on the consecutive
splits, not the random splits.

In Table 5 we look at sentence-level accuracy,
that is the amount of sentences where all words
have the correct tag. The pattern is the same as for
the token-level results in Table 3 regarding which
tagger performs the best, but the distance between
Bert and the other taggers is even greater. How-
ever, the differences between folds are also greater.

4.3 Unseen words
Since training data can never contain all potential
words or word-tag combinations, how well a tag-
ger does on words previously unseen in the train-
ing data (OOV) is important, and often varies be-
tween different methods.

In Table 6 we show the numbers of unseen
words, averaged over the five folds of each corpus.
It is clear that the different folds for Talbanken-
SBX and Talbanken-UD are quite similar, while
there are larger differences between the folds of
Eukalyptus. There, the Wikipedia part has the
largest number of OOV word forms.

Table 7 shows tagging results for unseen words
only. The only notable deviation from the general
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TB-SBX TB-UD Euk Euk 4-fold
KB-Bert 97.71 (0.2) 97.28 (0.1) 96.64 (1.1) 97.14 (0.4)
Flair 97.31 (0.2) 96.79 (0.1) 95.88 (1.6) 96.63 (0.5)
Stanza 96.18 (0.3) 95.79 (0.1) 94.64 (1.7) 95.39 (0.8)
Marmot 95.62 (0.4) 94.94 (0.2) 93.75 (2.1) 94.72 (1.0)
Hunpos 93.58 (0.5) 92.85 (0.2) 91.31 (2.5) 92.33 (1.5)

Table 3: 5-fold macroaveraged accuracy for POS+MSD for all three corpora and all five taggers (standard
deviation in parentheses). The final column shows a 4-fold macro average for Eukalyptus, excluding the
blog part for testing.

TB-SBX TB-UD Euk
97.94 (0.05) 97.36 (0.11) 97.42 (0.04)

Table 4: 5-fold macroaveraged accuracy for
POS+MSD for all three corpora using KB-Bert,
where the data has been divided over the folds ran-
domly (SD in parentheses).

TB-SBX TB-UD Euk
KB-Bert 72.69 (4.5) 68.83 (3.4) 59.86 (5.2)
Flair 68.98 (4.9) 64.47 (2.7) 54.15 (5.8)
Stanza 60.10 (5.0) 57.55 (2.8) 46.27 (5.1)
Marmot 55.31 (4.6) 51.11 (2.6) 40.84 (5.2)
Hunpos 45.47 (4.4) 39.99 (2.1) 31.86 (5.4)

Table 5: 5-fold macroaveraged sentence-level ac-
curacy for POS+MSD for all three corpora and all
five taggers (SD in parentheses).

results is that Hunpos does equally well on un-
seen words for all three corpora. Given that Euka-
lyptus exhibits a large variation of unseen words,
we examine the results per split. The results for
the Blog fold are the worst (about 10 points lower
POS+MSD-tagging accuracy on OOV tokens than
the rest of the folds), while the number of OOV
tokens in this fold is relatively low. This indicates
that the unseen words in the blog data are difficult
to tag given the context.

4.4 Difficult categories
If we look at the top-3 and bottom-3 POS tags,
ranked by F1-score, for each fold and each tagger,
we see that for Eukalyptus the worst tags are for-
eign words, interjections and proper nouns. Ad-
verbs and adjectives appear among the bottom 3
once each (over all testfolds and all taggers). For
Talbanken-SBX and Talbanken-UD the bottom is
not as clear. The most frequent in the bottom 3

TB-SBX TB-UD Euk
train 3377 (319) 3246 (257) 4368 (723)
train-dev 3076 (270) 2948 (242) 4065 (717)

Table 6: Average numbers of unseen words for the
5-fold test data sets (SD in parentheses). The train-
dev data was used for training Hunpos and Mar-
mot, while the train data only was used for KB-
Bert, Flair, and Stanza.

TB-SBX TB-UD Euk
KB-Bert 93.31 (0.4) 92.90 (0.4) 91.21 (3.2)
Flair 92.65 (0.6) 92.17 (0.4) 89.36 (3.8)
Stanza 88.65 (1.0) 88.49 (0.6) 85.33 (4.5)
Marmot 87.78 (0.9) 86.96 (0.7) 82.68 (5.8)
Hunpos 82.68 (3.5) 82.68 (3.2) 82.68 (12.6)

Table 7: 5-fold macroaveraged results for
POS+MSD for previously unseen wordforms for
all three corpora and all five taggers (SD in paren-
theses).

for Talbanken-SBX are foreign word, verb parti-
cle and interjection, while proper nouns, posses-
sive wh-pronouns and wh-determiners appear a
few times. Participles and ordinals appear only
once. For Talbanken-UD symbols, subordinating
conjunctions, interjections and proper nouns ap-
pear in the bottom 3 most frequently, while ad-
verbs appear only twice.

Overall, this shows that interjections, foreign
words, and proper nouns are difficult to predict
correctly. This may not be surprising, since these
categories generally apply to words with a high
type count and there are no visible morphologi-
cal cues. Foreign words additionally have a wide
range of syntactic functions. Note that UD has
a feature (MSD-tag) for foreign words, but not a
POS-tag.
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Another reason for these categories being dif-
ficult, at least in part, is that they are infrequent.
Let us therefore explore categories with higher
frequencies. Considering that there are generally
around 20,000 tokens in the test sets, we can look
at categories with more than 200 instances in the
test data (ignoring categories with less than 1% of
the test tokens each).

We see that for Eukalyptus, proper nouns, ad-
jectives and adverbs are generally difficult, with
foreign words, conjunctions and nouns also ap-
pearing in the bottom 3 at times. Hunpos seems
to have more problems with nouns, however. Mar-
mot has less difficulties with nouns, instead find-
ing numerals slightly difficult. For Talbanken-
SBX, participles are difficult, as well as proper
nouns, adjectives and adverbs. Bert seems to also
have problems with cardinals, but less with ad-
verbs, while Marmot has less trouble with adjec-
tives. For Talbanken-UD, the most difficult cat-
egories are proper nouns and subjunctions. Ad-
verbs are also difficult for most taggers, although
less so for Hunpos. Auxiliaries are a bit more dif-
ficult for Marmot and Hunpos, while numerals are
bit more difficult for Bert, Flair and Stanza. Alto-
gether, these differences can be exploited, for ex-
ample in an ensemble approach (Section 4.6).

Looking at POS+MSD confusion matrices, we
can see that one of the most frequent confu-
sions (especially for both Talbankens) is that of
singular and plural neuter indefinite nouns (in
both directions). Indefinite singular and plural
forms for Swedish neuter nouns ending in a con-
sonant are syncretic (barn ‘child/children’, hus
‘house/houses’). The problem is exacerbated by
the fact that at least in Talbanken-SBX, there are
many contexts where the number of the noun can-
not actually be inferred (both interpretations are
possible). Such nouns, however, are not annotated
as underspecified for number, but as either sin-
gular or plural, often inconsistently, which makes
learning difficult. One example is shown in the ex-
ample below. Undantag is tagged as plural accord-
ing to the gold data, and as singular by KB-Bert,
and both interpetations are possible.

(1) Undantag:
Exception(s):

periodiskt
periodic

understöd
support

eller
or

därmed jämförlig
comparable

periodisk
periodic

inkomst
income

In Talbanken-UD, a frequent error concerns
confusing verbs and auxiliaries. It seems to be that

the distinction between these two categories is not
entirely consistently annotated in Talbanken-UD.
In the following shortened examples, the gold data
has different annotations for the verb vara ‘be’,
although there is no clear difference between the
two.

(2) Frågan
The question

är [AUX]
is

om
if

man med den konservativa grundsynen kan [...]
one with the conservative basic view can

(3) Frågan
The question

är [VB]
is

om
if

synen på äktenskapet kan [...]
the view of marriage can [...]

An issue particular to Eukalyptus is confusing
symbols and punctuation. They are considered
the same POS category, but two different MSD
tags. This is not very surprising and seems to
emerge from the amount of smileys in the blog
fold. The result is a frequent mistagging of sym-
bols as punctuation in the blog fold, and several
cases of mistagging punctuation as symbols in the
other folds, in particular in the novels. Many of
the latter cases are quotation dashes, indicating a
character’s speech. This method of marking direct
speech is uncommon in the other types of texts.

4.5 What makes a tag difficult: quantitative
analysis

We also perform a systematic statistical analysis of
the factors which can potentially affect tagger per-
formance. More specifically, we attempt to iden-
tify which properties make a tag difficult.

For every corpus, we concatenate all five test
sets (i.e. microaverage across folds), and measure
the following for every POS+MSD tag:

• the accuracy of every tagger on this tag;
• the frequency. The prediction is that frequent

tags are easier to identify;
• type-token ratio (TTR) of tokens that have

this tag. The prediction is that high TTR will
make the tag more difficult to identify, cf.
Section 4.4. TTR is strongly dependent on
the sample size (less frequent tags are more
likely to have higher TTR), but we judge that
in this case, no correction is necessary;

• average “difficulty” of tokens that have this
tag. This is done in two steps. First, we
go through all tokens in the dataset, calculate
the probability distribution of tags for every
token and then the Shannon entropy of this
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Predictor Average (%) SD Significance
Frequency 0.003 0.0006 10/15
TTR -85.2 6.4 15/15
Tag-by-token entropy -27.0 7.4 15/15
Tag-by-ending entropy 6.8 3.1 10/15

Table 8: Summary of the regression models: average slope values and SD across all 15 models. Signifi-
cance shows in how many of the models the predictor is significant at 0.05 level.

distribution. The entropy shows for every to-
ken how difficult it is to guess its tag and
thus serves as a measure of “token difficulty”.
At the second step, when analyzing a par-
ticular tag, we weigh the associated entropy
by the relative frequency for every token that
has this tag. We then sum the weighted val-
ues. The result (average conditional entropy)
is meant to gauge how difficult on average the
tokens that have the particular tag are;

• average “difficulty” of token endings (aver-
age entropy of tag conditioned on token end-
ing). The procedure is exactly the same as
for tokens, but instead of the whole token we
are using its ending, which is typically the
main grammatical marker in Swedish. For
instance, -er can mark a present-tense verb
or an indefinite plural noun. We are using the
last two characters of the token as the ending
(or the whole token if it’s shorter than two
characters).

We fit a linear regression model with accuracy
as the dependent variable (measured as percent-
age, i.e. on the 0–100 scale) and the four pre-
dictors described above as independent variables.
We fit a separate model for every tagger and every
corpus, i.e. 15 models in total. For all corpora,
the collinearity of the predictors is very mild (the
condition number varies from 8.2 to 9.5) and thus
acceptable (Baayen, 2008, p. 181–182).

We summarize the results of the 15 models in
Table 8. The results are very similar across cor-
pora and folds for TTR and tag-by-token entropy,
less so for frequency and tag-by-ending entropy.
All models have high goodness-of-fit: the average
multiple R2 is 0.65, SD is 0.05.

In general, the first three predictions are borne
out. On average, the increase in frequency by 1
token is expected to result in the increase in the tag
accuracy by 0.003%. Frequency ranges from 1 to
11,000, which means that theoretically, the largest
expected increase can be 33%.

The increase in tag-by-token entropy by 1 (note
that this is a very large increase: entropy varies
from 0 to 1.86 in our sample) is expected to de-
crease accuracy by 27%. The increase in TTR
by 1 is expected to decrease accuracy by 85.2%
(note that TTR cannot actually be larger than 1).
TTR that is close to 0 is typical for tags that are
assigned to a very small closed class of frequent
tokens (e.g. punctuation marks). TTR of 1, on the
contrary, can be achieved by tags that occur with
(a few) very infrequent tokens (this is often a result
of misannotation, or some very infrequent form or
usage).

Surprisingly, the average conditional entropy of
the tag given the ending goes directly against the
prediction, yielding a positive effect (though small
and not always significant). We cannot explain this
effect. Our best guess is that high tag-by-ending
entropy is correlated with some other properties
that facilitate accurate tagging.

4.6 Ensemble
We tested whether combining the output of the five
taggers may yield improved performance. In the-
ory, it should be possible, since the proportion of
cases where at least one of the taggers outputs a
correct tag is higher than the accuracy of any indi-
vidual tagger (see Table 9, row “Ceiling”).

We tried simple voting and a naive Bayes classi-
fier (as implemented in the NBayes Ruby gem 12).
In both methods, the taggers are ordered by perfor-
mance in descending order. In simple voting, each
tagger gets one vote. In case of a tie, the vote that
has come first wins. The naive Bayes classifier has
to be trained. For that, we split the test set in each
fold of each corpus into a training set (75%) and a
test set (25%). What the classifier learns is how to
match the input string (the token and the tags pro-
posed by each tagger) with the label (which tagger
makes the correct guess). If several taggers make
a correct guess, the first one of those is chosen. If

12https://github.com/oasic/nbayes
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Method TB-SBX TB-UD Euk
Ceiling 99.16 (0.1) 98.78 (0.4) 98.26 (1.5)
KB-Bert 97.65 (0.3) 97.35 (0.6) 96.72 (1.6)
Voting 97.50 (0.1) 97.12 (1.0) 96.38 (2.2)
Bayes 97.65 (0.2) 97.41 (0.5) 96.75 (1.6)
Voting-fast 96.96 (0.3) 96.69 (0.7) 95.91 (1.8)
Bayes-fast 97.67 (0.3) 97.37 (0.6) 96.76 (1.7)

Table 9: Results of ensemble methods with comparison to the potential ceiling (at least one of the taggers
guessed right) and the best single tagger (macroaveraged accuracy across all folds, SD in parentheses).

no taggers make a correct guess, KB-Bert is cho-
sen by default. Changing this method (e.g. using
only the tags as the input string) leads to slightly
worse performance. Both voting and the classifier
are then tested on the test set. Since Stanza and
Flair are slow at training time, we also try a com-
bination of the “fast” taggers: KB-Bert, Marmot
and Hunpos.

The results are summarized in Table 9. Sim-
ple voting always performs worse than the best
single tagger, but naive Bayes performs slightly
better. For Talbanken-SBX and Eukalyptus, the
best performance is achieved when the classifier
is trained on the output of fast taggers only, while
for Talbanken-UD the full training set yields better
results. All differences are, however, very small.
The difference between KB-Bert and Bayes is not
significant (t(14) = -1.1, p = 0.28, d = -0.03), nor is
the one between KB-Bert and Bayes-fast (t(14) = -
1.6, p = 0.12, d = -0.03), no correction for multiple
comparisons.

A possible avenue for future research would be
to use other recently developed ensemble meth-
ods, as for instance Bohnet et al. (2018); Stoeckel
et al. (2020).

5 Conclusions

We applied five taggers to three important Swedish
corpora. The corpora are of comparable size and
have different tagsets. Two of them consist of vir-
tually the same texts, but are not entirely parallel.

We show that the three neural taggers outper-
form the two pre-neural (HMM and CRF) ones
when it comes to tagging quality, but are signif-
icantly slower. KB-Bert, however, while always
yielding the highest accuracy, is also the fastest of
the neural taggers, and its speed on GPU is com-
parable with that of the pre-neural taggers.

Token-level accuracy of KB-Bert (97.2 on av-
erage across corpora) is very high, and is decent

also for OOV tokens (92.5). If we apply sentence-
level accuracy, a less forgiving measure (Manning,
2011), we can see that there is actually much room
for improvement (67.1).

The success of the taggers depends to a large
extent on the additional data (embeddings, mor-
phological dictionaries) that they receive as input,
of which token embeddings (a.k.a. contextualized
or dynamic) seem to be the most powerful ones. It
is reasonable to assume that it is also important on
which corpus the embeddings were trained. The
size of this corpora is comparable for all neural
taggers, but KB-Bert’s is likely to be the most bal-
anced one.

The results vary across corpora/tagsets. If we
use consecutive splits, TalbankenSBX always has
the highest annotation accuracy and Eukalyptus
the lowest one. The reason for that is that the
two Talbankens are more homogeneous (contain
only professional prose texts), while Eukalyptus
contains texts from five different domains, one of
which (blogs) is notoriously difficult. The reason
for TalbankenSBX yielding better results than Tal-
bankenUD is probably the less fine-grained tagset,
but possibly also more consistent annotation. If,
however, we use random splits, the accuracy for
Eukalyptus goes up, surpassing the one for Tal-
bankenUD.

Manual error analysis suggests that a high type
count, absence of morphological cues, a wide
range of syntactic functions, and low frequency
make tags more difficult. Inconsistent annota-
tion (which is very difficult to avoid in border-
line cases) also seems to play an important role.
We also perform a statistical analysis of the fac-
tors that can potentially affect how difficult the
POS+MSD tags are. The regression model shows
that type-token ratio within tag and average “diffi-
culty” of tokens within tag (measured as entropy
of guessing the tag given the token) have con-
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sistently significant and very strong negative ef-
fects on the accuracy. Tag frequency has a pos-
itive (though not always significant) effect. Sur-
prisingly, so does the average “difficulty” of token
endings within tag (though the effect is small and
not always significant). The results of the statis-
tical analysis partly support the predictions done
on the basis of the manual one. In general, this is
a promising research avenue which deserves more
systematic attention.

Finally, we test whether the tagger outputs can
be combined using ensemble methods, since in
theory, there clearly is a potential for that. In prac-
tice, it turns out that using a naive Bayes classifier
it is possible to achieve a very small improvement
over the best-performing tagger, but the difference
is not statistically significant.

The data and scripts that are necessary to re-
produce the regression analysis and the ensemble
methods are available as supplementary materi-
als13.
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Abstract

De-identification is the task of detect-
ing privacy-related entities in text, such
as person names, emails and contact
data. It has been well-studied within
the medical domain. The need for de-
identification technology is increasing, as
privacy-preserving data handling is in high
demand in many domains. In this paper,
we focus on job postings. We present JOB-
STACK, a new corpus for de-identification
of personal data in job vacancies on Stack-
overflow. We introduce baselines, com-
paring Long-Short Term Memory (LSTM)
and Transformer models. To improve
upon these baselines, we experiment with
contextualized embeddings and distantly
related auxiliary data via multi-task learn-
ing. Our results show that auxiliary data
improves de-identification performance.
Surprisingly, vanilla BERT turned out to
be more effective than a BERT model
trained on other portions of Stackoverflow.

1 Introduction

It is becoming increasingly important to
anonymize privacy-related information in
text, such as person names and contact details.
The task of de-identification is concerned with
detecting and anononymizing such information.
Traditionally, this problem has been studied in
the medical domain by e.g., Szarvas et al. (2007);
Friedrich et al. (2019); Trienes et al. (2020)
to anonymize (or pseudo-anonymize) person-
identifiable information in electronic health
records (EHR). With new privacy-regulations
(Section 2) de-identification is becoming more
important for broader types of text. For example,
a company or public institution might seek to

♦The authors contributed equally to this work.

de-identify documents before sharing them.
On another line, de-identification can benefit
society and technology at scale. Particularly
auto-regressive models trained on massive text
collections pose a potential risk for exposing
private or sensitive information (Carlini et al.,
2019, 2020), and de-identification can be one way
to address this.

In this paper, we analyze how effectively se-
quence labeling models are in identifying privacy-
related entities in job posts. To the best of our
knowledge, we are the first study that investigates
de-identification methods applied to job vacancies.
In particular, we examine: How do Transformer-
based models compare to LSTM-based models
on this task (RQ1)? How does BERT compare
to BERTOverflow (Tabassum et al., 2020) (RQ2)?
To what extent can we use existing medical de-
identification data and Named Entity Recognition
(NER) data to improve de-identification perfor-
mance (RQ3)? To answer these questions, we put
forth a new corpus, JOBSTACK, annotated with
around 22,000 sentences in English job postings
from Stackoverflow for person names, contact de-
tails, locations, and information about the profes-
sion of the job post itself.

Contributions We present JOBSTACK, the first
job postings dataset with professional and per-
sonal entity annotations from Stackoverflow. Our
experiments on entity de-identification with neural
methods show that Transformers outperform bi-
LSTMs, but surprisingly a BERT variant trained
on another portion of Stackoverflow is less effec-
tive. We find auxiliary tasks from both news and
the medical domain to help boost performance.

2 Related Work

2.1 De-identification in the Medical Domain
De-identification has mostly been investigated in
the medical domain (e.g., Szarvas et al. (2007);
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Meystre et al. (2010); Liu et al. (2015); Jiang
et al. (2017); Friedrich et al. (2019); Trienes
et al. (2020)) to ensure the privacy of a patient
in the analysis of their medical health records.
Apart from an ethical standpoint, it is also a
legal requirement imposed by multiple legisla-
tions such as the US Health Insurance Portability
and Accountability Act (HIPAA) (Act, 1996) and
the European General Data Protection Regulation
(GDPR) (Regulation, 2016).

Many prior works in the medical domain used
the I2B2/UTHealth dataset (Stubbs and Uzuner,
2015) to evaluate de-identification. The dataset
consists of clinical narratives, which are free-form
medical texts written as a first person account
by a clinician. Each of the documents describes
a certain event, consultation or hospitalization.
All of the texts have been annotated with a set
of Protected Health Information (PHI) tags (e.g.
name, profession, location, age, date, contact, IDs)
and subsequently replaced by realistic surrogates.
The dataset was originally developed for use in
a shared task for automated de-identification sys-
tems. Systems tend to perform very well on this
set, in the shared task three out of ten systems
achieved F1 scores above 90 (Stubbs et al., 2015).
More recently, systems reach over 98 F1 with neu-
ral models (Dernoncourt et al., 2017; Liu et al.,
2017; Khin et al., 2018; Trienes et al., 2020; John-
son et al., 2020). We took I2B2 as inspiration for
annotation of JOBSTACK.

Past methods for de-identification in the medi-
cal domain can be categorised in three categories.
(1) Rule-based approaches, (2) traditional ma-
chine learning (ML)-based systems (e.g., feature-
based Conditional Random Fields (CRFs) (Laf-
ferty et al., 2001), ensemble combining CRF
and rules, data augmentation, clustering), and (3)
neural-based approaches.

Rule-based First, Gupta et al. (2004) made use
of a set of rules, dictionaries, and fuzzy string
matching to identify protected health information
(PHI). In a similar fashion, Neamatullah et al.
(2008) used lexical look-up tables, regular expres-
sions, and heuristics to find instances of PHI.

Traditional ML Second, classical ML ap-
proaches employ feature-based CRFs (Aberdeen
et al., 2010; He et al., 2015). Moreover, earlier
work showed the use of CRFs in an ensemble with
rules (Stubbs et al., 2015). Other ML approaches

include data augmentation by McMurry et al.
(2013), where they added public medical texts to
properly distinguish common medical words and
phrases from PHI and trained decision trees on the
augmented data.

Neural methods Third, regarding neural meth-
ods, Dernoncourt et al. (2017) were the first to
use Bi-LSTMs, which they used in combination
with character-level embeddings. Similarly, Khin
et al. (2018) performed de-identification by using
a Bi-LSTM-CRF architecture with ELMo embed-
dings (Peters et al., 2018). Liu et al. (2017) used
four individual methods (CRF-based, Bi-LSTM,
Bi-LSTM with features, and rule-based methods)
for de-identification, and used an ensemble learn-
ing method to combine all PHI instances predicted
by the three methods. Trienes et al. (2020) opted
for a Bi-LSTM-CRF as well, but applied it with
contextual string embeddings (Akbik et al., 2018).
Most recently, Johnson et al. (2020) fine-tuned
BERTbase and BERTlarge (Devlin et al., 2019) for
de-identification. Next to “vanilla” BERT, they
experiment with fine-tuning different domain spe-
cific pre-trained language models, such as SciB-
ERT (Beltagy et al., 2019) and BioBERT (Lee
et al., 2020). They achieve state-of-the art per-
formance in de-identification on the I2B2 dataset
with the fine-tuned BERTlarge model. From a dif-
ferent perspective, the approach of Friedrich et al.
(2019) is based on adversarial learning, which au-
tomatically pseudo-anonymizes EHRs.

2.2 De-identification in other Domains

Data protection in general however is not only lim-
ited to the medical domain. Even though work
outside the clinical domain is rare, personal and
sensitive data is in abundance in all kinds of data.
For example, Eder et al. (2019) pseudonymised
German emails. Bevendorff et al. (2020) published
a large preprocessed email corpus, where only the
email addresses themselves where anonymized.
Apart from emails, several works went into de-
identification of SMS messages (Treurniet et al.,
2012; Patel et al., 2013; Chen and Kan, 2013)
in Dutch, French, English and Mandarin respec-
tively. Both Treurniet et al. (2012); Chen and
Kan (2013) conducted the same strategy and au-
tomatically anonymized all occurrences of dates,
times, decimal amounts, and numbers with more
than one digit (telephone numbers, bank accounts,
et cetera), email addresses, URLs, and IP ad-
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Train Dev Test Total

Time June – August 2020 September 2020 -

# Documents 313 41 41 395
# Sentences 18,055 2082 2092 22,219
# Tokens 195,425 22,049 21,579 239,053
# Entities 4,057 462 426 5,154

avg. # sentences 57.68 50.78 51.02 53.16
avg. tokens / sent. 10.82 10.59 10.32 10.78
avg. entities / sent. 0.22 0.22 0.20 0.21
density 14.73 14.31 14.58 14.54

Organization 1803 215 208 2226
Location 1511 157 142 1810
Profession 558 63 64 685
Contact 99 10 7 116
Name 86 17 5 108

Table 1: Statistics of our JOBSTACK dataset.

dresses. All sensitive information was replaced
with a placeholder. Patel et al. (2013) introduced
a system to anonymize SMS messages by using
dictionaries. It uses a dictionary of first names
and anti-dictionaries (of ordinary language and of
some forms of SMS writing) to identify the words
that require anonymization.

In our work, we study de-identification for
names, contact information, addresses, and pro-
fessions, as further described in Section 3.

3 JOBSTACK Dataset

In this section, we describe the JOBSTACK dataset.
There are two basic approaches to remove privacy-
bearing data from the job postings. First,
anonymization identifies instances of personal
data (e.g. names, email addresses, phone num-
bers) and replaces these strings by some place-
holder (e.g. {name}, {email}, {phone}). The
second approach, pseudonymisation preserves the
information of personal data by replacing these
privacy-bearing strings with randomly chosen al-
ternative strings from the same privacy type (e.g.
replacing a name with “John Doe”). The term de-
identification subsumes both anonymization and
pseudonymisation. In this work, we focus on
anonymization.1

Eder et al. (2019) argues that the anonymiza-
tion approach might be appropriate to eliminate
privacy-bearing data in the medical domain, but

1Meystre (2015) notes that de-identification means re-
moving or replacing personal identifiers to make it difficult to
reestablish a link between the individual and his or her data,
but it does not make this link impossible.

would be inappropriate for most Natural Language
Processing (NLP) applications since crucial dis-
criminative information and contextual clues will
be erased by anonymization.

If we shift towards pseudonymisation, we ar-
gue that there is still the possibility to resurface
the original personal data. Henceforth, our goal is
to anonimize job postings to the extent that one
would not be able to easily identify a company
from the job posting. However, as job postings are
public, we are aware that it would be simple to find
the original company that posted it with a search
engine. Nevertheless, we abide to the GDPR com-
pliance which requires us to protect the personal
data and privacy of EU citizens for transactions
that occur within EU member states (Regulation,
2016). In job postings this would be the names of
employees, and their corresponding contact infor-
mation.2

Over a period of time, we scraped 2,755 job
postings from Stackoverflow and selected 395
documents to annotate, the subset ranges from
June 2020 to September 2020. We manually an-
notated the job postings with the following five en-
tities: Organization, Location, Contact,
Name, and Profession.

To make the task as realistic as possible, we kept
all sentences in the documents. The statistics pro-

2https://ec.europa.eu/info/law/
law-topic/data-protection/reform/
rules-business-and-organisations/
application-regulation/
do-data-protection-rules-apply-data-about-company_
en
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...
13. Job description:
14. [XXXOrganization] is a modern multi tenant, microservices based solution and Floor Planning is one major functional
solution vertical of the [XXXOrganization] platform.

15. What you’ll be doing:
16. As a [XXXProfession] for [XXXOrganization], you will be one of the founding members of our [XXXLocation] based floor planning
development team.
17. You will be in charge for development of future floor planning capabilities on the [XXXOrganization] platform and be the
software architect for the capability.
18. You will drive the team to improve the coding practices and boost performance.
19. You will also be a member of our [XXXOrganization] and have a major influence on feature roadmap and technologies we use.
...

Figure 1: Snippet of a job posting, full job posting can be found in Appendix A.

vided in the following therefore reflect the natural
distribution of entities in the data. A snippet of an
example job post can be seen in Figure 1, the full
job posting can be found in Appendix A.

3.1 Statistics

Table 1 shows the statistics of our dataset. We
split our data in 80% train, 10% development,
and 10% test. Besides of a regular document-
level random split, ours is further motivated based
on time. The training set covers the job posts
posted between June to August 2020 and the
development- and test set are posted in Septem-
ber 2020. To split the text into sentences, we use
the sentence-splitter library used for pro-
cessing the Europarl corpus (Koehn, 2005). In the
training set, we see that the average number of
sentences is higher than in the development- and
test set (6-7 more). We therefore also calculate
the density of the entities, meaning the percent-
age of sentences with at least one entity. The table
shows that 14.5% of the sentences in JOBSTACK

contain at least one entity. Note that albeit hav-
ing document boundaries, we treat the task of de-
identification as a standard word-level sequence
labeling task.

3.2 Annotation Schema

The aforementioned entity tags are based on
the English I2B2/UTHealth corpus (Stubbs and
Uzuner, 2015). The tags are more coarse-grained
than the I2B2 tags. For example, we do not dis-
tinguish between zip code and city, but tag them
with Location. We give a brief explanation of
the tags.
Organization: This includes all companies
and their legal entity mentioned in the job post-
ings. The tag is not limited to the company that au-
thored the job posting, but does also include men-

tions of stakeholders or any other company.
Location: This is the address of the company in
the job posting. The location also refers to all other
addresses, zip codes, cities, regions, and countries
mentioned throughout the text. This is not limited
to the company address, but should be used for all
location names in the job posting, including abbre-
viations.
Contact: The label includes, URLs, email ad-
dresses and phone numbers. This could be, but is
not limited to, contact info of an employee from
the authoring company.
Name: This label covers names of people. This
could be, but is not limited to, a person from the
company, such as the contact person, CEO, or the
manager. All names appearing in the job posting
should be annotated no matter the relation to the
job posting itself. Titles such as Dr. are not part
of the annotation. Apart from people names in our
domain, difficulties could arise with other type of
names. An example would be project names, with
which one could identify a company. In this work,
we did not annotate such names.
Profession: This label covers the profession
that is being searched for in the job posting or de-
sired prior relevant jobs for the current profession.
We do not annotate additional meta information
such as gender (e.g. Software Engineer (f/m)). We
also do not annotate mentions of colleague posi-
tions in neither singular or plural form. For ex-
ample: “As a Software Engineer, you are going to
work with Security Engineers”. Here we annotate
Software Engineer as profession, but we do not an-
notate Security Engineers. While this may sound
straightforward, however, there are difficulties in
regards to annotating professions. A job posting
is free text, meaning that one can write anything
they prefer to make the job posting as clear as pos-
sible (e.g., Software Engineer (at a unicorn start-
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up based in [..]). The opposite is also possible,
when they are looking for one applicant to fill in
one of multiple positions. For example, “We are
looking for an applicant to fill in the position of
DevOps/Software Engineer”. From our interpre-
tation, they either want a “DevOps Engineer” or a
“Software Engineer”. We decided to annotate the
full string of characters “DevOps/Software Engi-
neer” as a profession.

3.3 Annotation Quality

Token Entity Unlabeled

A1 – A2 0.889 0.767 0.892
A1 – A3 0.898 0.782 0.904
A2 – A3 0.917 0.823 0.920

Fleiss’ κ 0.902 0.800 0.906

Table 2: Inter-annotator agreement of the annota-
tors. We show agreement over pairs with Cohen’s
κ and all annotators with Fleiss’ κ.

To evaluate our annotation guidelines, a sam-
ple of the data was annotated by three annota-
tors, one with a background in Linguistics (A1)
and two with a background in Computer Science
(A2, A3). We used an open source text anno-
tation tool named Doccano (Nakayama et al.,
2018). There are around 1,500 overlapping sen-
tences that we calculated agreement on. The an-
notations were compared using Cohen’s κ (Fleiss
and Cohen, 1973) between pairs of annotators, and
Fleiss’ κ (Fleiss, 1971), which generalises Co-
hen’s κ to more than two concurrent annotations.
Table 2 shows three levels of κ calculations, we
follow Balasuriya et al. (2009)’s approach of cal-
culating agreement in NER. (1) Token is cal-
culated on the token level, comparing the agree-
ment of annotators on each token (including non-
entities) in the annotated dataset. (2) Entity is
calculated on the agreement between named enti-
ties alone, excluding agreement in cases where all
annotators agreed that a token was not a named-
entity. (3) Unlabeled refers to the agreement
between annotators on the exact span match over
the surface string, regardless of the type of named
entity (i.e., we only check the position of tag with-
out regarding the type of the named entity). Landis
and Koch (1977) state that a κ value greater than
0.81 indicates almost perfect agreement. Given
this, all annotators are in strong agreement.

After this annotation quality estimation, we fi-
nalized the guidelines. They formed the basis for
the professional linguist annotator, who annotated
and finalized the entire final JOBSTACK dataset.

4 Methods

For entity de-identification we use a classic
Named Entity Recognition (NER) approach us-
ing a Bi-LSTM with a CRF layer. On top of
this we evaluate the performance of Transformer-
based models with two different pre-trained BERT
variants. Furthermore, we evaluate the helpfulness
of auxiliary tasks, both using data close to our do-
main, such as de-identification of medical notes,
and more general NER, which covers only a sub-
set of the entities. Further details on the data are
given in Section 4.3.

4.1 Models

Firstly, we test a Bi-LSTM sequence tagger (Bilty)
(Plank et al., 2016), both with and without a CRF
layer. The architecture is similar to the widely
used models in previous works. For example,
preliminary results of Bilty versus Trienes et al.
(2020) show accuracy almost identical to each
other: 99.62% versus 99.76%. Next we test a
Transformer based model, namely the MaChAmp
(van der Goot et al., 2021) toolkit. Current re-
search shows good results for NER using a Trans-
former model without a CRF layer (Martin et al.,
2020), hence we tested MaChAmp both with and
without a CRF layer for predictions. For both
models, we use their default parameters.

4.2 Embeddings

For embeddings, we tested with no pre-trained
embeddings, pre-trained Glove (Pennington et al.,
2014) embeddings, and Transformer-based pre-
trained embeddings. For Transformer-based em-
beddings we focused our attention on two BERT
models, BERTbase (Devlin et al., 2019) and
BERTOverflow (Tabassum et al., 2020). When us-
ing the Transformer-based embeddings with the
Bi-LSTM, the embeddings were fixed and did not
get updated during training.

Using the MaChAmp (van der Goot et al., 2021)
toolkit, we fine-tune the BERT variant with a
Transformer encoder. For the Bi-LSTM sequence
tagger, we first derive BERT representations as in-
put to the tagger. The tagger further uses word
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Model F1 Score Precision Recall

Bilty 71.76± 2.57 79.00± 1.10 65.80± 3.72
Bilty + CRF 75.15± 0.66 84.09± 1.90 67.96± 0.81
Bilty + Glove 50d 72.53± 0.83 79.21± 2.19 67.03± 2.76
Bilty + Glove 50d + CRF 72.74± 2.23 82.93± 0.87 64.93± 3.93
Bilty + BERTbase 77.99± 0.91 83.70± 0.58 73.01± 1.34
Bilty + BERTbase + CRF 80.09± 0.60 88.23± 0.87 73.30± 1.47
Bilty + BERTOverflow 52.01± 3.15 70.86± 0.68 41.27± 4.19
Bilty + BERTOverflow + CRF 53.08± 2.88 77.79± 1.20 40.33± 2.98

MaChAmp + BERTbase 85.70± 0.13 86.66± 0.73 84.78± 0.44
MaChAmp + BERTbase + CRF 86.27± 0.31 86.40± 0.62 86.15± 0.00
MaChAmp + BERTOverflow 65.84± 0.48 70.88± 0.17 61.47± 0.81
MaChAmp + BERTOverflow + CRF 69.35± 0.96 77.27± 3.68 63.06± 2.11

Table 3: Results on the development set across three runs using our JOBSTACK dataset.

Model Auxiliary tasks F1 Score Precision Recall

Bilty + BERTbase + CRF
JOBSTACK + CoNLL 81.90± 0.32 86.91± 1.94 77.49± 1.87
JOBSTACK + I2B2 79.15± 2.19 83.61± 2.61 75.18± 2.59
JOBSTACK + CoNLL + I2B2 81.37± 2.01 84.92± 1.67 78.28± 4.34

Bilty + BERTOverflow + CRF
JOBSTACK + CoNLL 58.62± 1.46 79.34± 2.34 46.54± 1.99
JOBSTACK + I2B2 55.99± 1.93 72.03± 6.48 46.10± 2.55
JOBSTACK + CoNLL + I2B2 59.15± 2.15 71.20± 4.80 50.86± 3.31

MaChAmp + BERTbase + CRF
JOBSTACK + CoNLL 87.20± 0.34 87.24± 1.94 87.23± 1.24
JOBSTACK + I2B2 86.64± 0.53 88.44± 0.84 84.92± 0.44
JOBSTACK + CoNLL + I2B2 86.06± 0.66 86.13± 0.50 86.00± 0.87

MaChAmp + BERTOverflow + CRF
JOBSTACK + CoNLL 70.62± 0.64 75.65± 1.41 66.24± 0.98
JOBSTACK + I2B2 73.88± 0.16 80.26± 1.32 68.47± 1.03
JOBSTACK + CoNLL + I2B2 73.29± 0.22 77.66± 0.82 69.41± 0.89

Table 4: Performance of multi-task learning on the development set across three runs.

and character embeddings which are updated dur-
ing model training.

The BERTOverflow model is a transformer with
the same architecture as BERTbase. It has been
trained from scratch on a large corpus of text
from the Q&A section of Stackoverflow, making it
closer to our text domain than the “vanilla” BERT
model. However, BERTOverflow is not trained on
the job postings portion of Stackoverflow.

4.3 Auxiliary tasks

Both the Bi-LSTM (Plank et al., 2016) and the
MaChAmp (van der Goot et al., 2021) toolkit are
capable of Multi Task Learning (MTL) (Caruana,
1997). We therefore, set up a number of experi-
ments testing the impact of three different auxil-
iary tasks. The auxiliary tasks and their datasets
are as follows:

• I2B2/UTHealth (Stubbs and Uzuner, 2015) -
Medical de-identification;

• CoNLL 2003 (Sang and De Meulder, 2003) -
News Named Entity Recognition;

• The combination of the above.

The data of the two tasks are similar to our
dataset in two different ways. The I2B2 lies in a
different text domain, namely medical notes, how-
ever, the label set of the task is close to our label
set, as mentioned in Section 3.2. For CoNLL, we
have a general corpus of named entities but fewer
types (location, organization, person, and miscel-
laneous), but the text domain is presumably closer
to our data. We test the impact of using both aux-
iliary tasks along with our own dataset.
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Model Auxiliary tasks F1 Score Precision Recall

Bilty + BERTbase + CRF JOBSTACK 78.99± 0.32 82.44± 0.95 75.90± 1.39

MaChAmp + BERTbase + CRF

JOBSTACK 79.91± 0.38 75.92± 0.39 84.35± 0.49
JOBSTACK + CoNLL 81.27± 0.28 77.84± 1.19 85.06± 0.91
JOBSTACK + I2B2 82.05± 0.80 80.30± 0.99 83.88± 0.67
JOBSTACK + CoNLL + I2B2 81.47± 0.43 77.66± 0.58 85.68± 0.57

Table 5: Evaluation of the best performing models on the test set across three runs.

5 Evaluation

Here we will outline the results of the experiments
described in Section 4. All results are mean scores
across three different runs.3 The metrics are all
calculated using the conlleval script4 from the
original CoNLL-2000 shared task. Table 3 shows
the results from training on JOBSTACK only, Table
4 shows the results of the MTL experiments de-
scribed in Section 4.3. Both report results on the
development set. Lastly, Table 5 shows the scores
from evaluating selected best models as found on
the development set, when tested on the final held-
out test set.

Is a CRF layer necessary? In Table 3, as ex-
pected, adding the CRF for the Bi-LSTM clearly
helps, and consistently improves precision and
thereby F1 score. For the stronger BERT model
the overall improvement is smaller and does not
necessarily stem from higher precision. We
note that on average across the three seed runs,
MaChAmp with BERTbase and no CRF mistakenly
adds an I-tag following an O-tag 8 times out of
426 gold entities. In contrast, the MaChAmp with
BERTbase and CRF, makes no such mistake in any
of its three seed runs. Earlier research, such as
Souza et al. (2019) show that BERT models with
a CRF layer improve or perform similarly to its
simpler variants when comparing the overall F1
scores. Similarly, they note that in most cases it
shows higher precision scores but lower recall, as
in our results for the development set. However,
interestingly, the precision drops during test for
the Transformer-based model. As the overall F1
score increases slightly, we use the CRF layer in
all subsequent experiments. The main take-away
here is that both models benefit from an added
CRF layer for the task, but the Transformer model

3We sampled three random seeds: 3477689, 4213916,
8749520 which are used for all experiments.

4https://www.clips.uantwerpen.be/
conll2000/chunking/output.html

to a smaller degree.

LSTM versus Transformer Initially, LSTM
networks dominated the de-identification field in
the medical domain. Up until recently, large-scale
pre-trained language models have been ubiquitous
in NLP, although rarely used in this field. On
both development and test results (Table 3, Table
5), we show that a Transformer-based model out-
performs the LSTM-based approaches with non-
contextualized and contextualized representations.

Poor performance with BERTOverflow
BERTbase is the best embedding method among all
experiments using Bilty, with BERTOverflow being
the worst with a considerable margin. Being able
to fine-tune BERTbase does give a good increase in
performance overall. The same trend is apparent
with fine-tuning BERTOverflow, but it is not enough
to catch up with BERTbase. We see that overall
MaChAmp with BERTbase and CRF is the best
model. However, Bilty with BERTbase and CRF
does have the best precision.

We hypothesized the domain-specific
BERTOverflow representations would be bene-
ficial for this task. Intuitively, BERTOverflowwould
help with detecting profession entities. Profession
entities contain specific skills related to the IT do-
main, such as Python developer, Rust developer,
Scrum master. Although the corpus it is trained
on is not one-to-one to our vacancy domain, we
expected to see at most a slight performance drop.
This is not the case, as the drop in performance
turned out to be high. It is not fully clear to us
why this is the case. It could be the Q&A data it
is trained on consists of more informal dialogue
than in job postings. In the future, we would like
to compare these results to training a BERT model
on job postings data.

Auxiliary data increases performance Look-
ing at the results from the auxiliary experiments
in Table 4 we see that all auxiliary sources are ben-
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eficial, for both types of models. A closer look re-
veals that once again MaChAmp with BERTbase is
the best performer across all three auxiliary tasks.
Also, we see that Bilty with BERTbase has good
precision, though not the best this time around.
For a task like de-identification recall is preferable,
thereby showing that fine-tuning BERT is better
than the classic Bi-LSTM-CRF. Moreover, we see
that BERTOverflow is under-performing compared
to BERTbase. However, BERTOverflow is able to get
a four point increase in F1 with I2B2 as auxiliary
task in MaChAmp. For Bilty with BERTOverflow
we see a slightly greater gain with both CoNLL
and I2B2 as auxiliary tasks. When comparing the
auxiliary data sources to each other, we note that
the closer text domain (CoNLL news) is more ben-
eficial than the closer label set (I2B2) from a more
distant medical text source. This is consistent for
the strongest models.

In general, it can be challenging to train multi-
task networks that outperform or even match their
single-task counterparts (Alonso and Plank, 2017;
Clark et al., 2019). Ruder (2017) mentions training
on a large number of tasks is known to help regu-
larize multi-task models. A related benefit of MTL
is the transfer of learned “knowledge” between
closely related tasks. In our case, it has been ben-
eficial to add auxiliary tasks to improve our per-
formance on both development and test compared
to a single task setting. In particular, it seemed to
have helped with pertaining a high recall score.

Performance on the test set Finally, we evalu-
ate the best performing models on our held out test
set. The best models are selected based on their
performance on F1, precision, and recall. The re-
sults are seen in Table 5. Comparing the results
to those seen in Table 3 and Table 4 it is clear to
see that Bilty with BERTbase sees a smaller drop in
F1 compared to that of MaChAmp with BERTbase.
We do also see an increase in recall for Bilty com-
pared to its performance on the development set.
In general we see that recall for each model is
staying quite stable without any significant drops.
It is also interesting to see that, the internal rank-
ing between MTL MaChAmp with BERTbase has
changed, with JOBSTACK + I2B2 being the best
performing model in terms of F1.

Per-entity Analysis In Table 6, we show a
deeper analysis on the test set: the performance
of the two different auxiliary tasks in a multi-

MaChAmp + JOBSTACK

Entity + CoNLL + I2B2

Organization (208)
F1 77.51± 0.81 78.34± 1.32
P 73.73± 1.66 77.86± 1.60
R 81.73± 0.96 78.85± 1.74

Location (142)
F1 86.88± 1.51 86.67± 1.80
P 83.86± 1.82 83.47± 1.19
R 90.14± 1.41 90.14± 2.54

Profession (64)
F1 80.20± 2.76 83.88± 0.90
P 77.44± 3.82 82.42± 0.63
R 83.33± 4.51 85.42± 1.80

Contact (7)
F1 87.91± 3.81 75.48± 4.30
P 90.47± 8.25 71.03± 4.18
R 85.71± 0.00 80.95± 8.24

Name (5)
F1 86.25± 8.08 85.86± 4.38
P 76.39± 12.03 75.40± 6.87
R 100.00± 0.00 100.00± 0.00

Table 6: Performance of the two different auxil-
iary tasks. Reported is the F1, Precision (P), and
Recall (R) per entity. The number behind the en-
tity name is the gold label instances in the test set.

task learning setting, namely CoNLL and I2B2.
We hypothesized different performance gains with
each auxiliary task. For I2B2, we expected
Contact and Profession to do better than
CoNLL, since I2B2 contains contact information
entities (e.g., phone numbers, emails, et cetera)
and professions of patients. Surprisingly, this is
not the case for Contact, as CoNLL outper-
forms I2B2 on all three metrics. We do note how-
ever this result could be due to little instances of
Contact and Name being present in the gold
test set. Additionally, both named entities are pre-
dicted six to nine times by both models on all three
runs on the test set. This could indicate the strong
difference in performance. For Profession,
it shows that I2B2 is beneficial for this particu-
lar named entity as expected. For the other three
named entities, the performance is similar. As
Location, Name, and Organization are in
both datasets, we did not expect any difference in
performance. The results confirm this intuition.

6 Conclusions

In this work we introduce JOBSTACK, a dataset
for de-identification of English Stackoverflow job
postings. Our implementation is publicly avail-
able.5 The dataset is freely available upon request.

We present neural baselines based on LSTM
5https://github.com/kris927b/JobStack
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and Transformer models. Our experiments show
the following: (1) Transformer-based models con-
sistently outperform Bi-LSTM-CRF-based mod-
els that have been standard for de-identification in
the medical domain (RQ1). (2) Stackoverflow-
related BERT representations are not more effec-
tive than regular BERT representations on Stack-
overflow job postings for de-identification (RQ2).
(3) MTL experiments with BERT representations
and related auxiliary data sources improve our
de-identification results (RQ3); the auxiliary task
trained on the closer text type was the most benefi-
cial, yet results improved with both auxiliary data
sources. This shows the benefit of using multi-task
learning for de-identification in job vacancy data.
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A Example Job Posting

1. [XXXProfession]

2. [XXXOrganization]

3. <ADDRESS>, <ADDRESS>, [XXXLocation] , - , [XXXLocation]

4. Date posted: 2020−08−13
5. Likes: 0, Dislikes: 0, Love: 0
6. Salary: SALARY
7. Job type: FULL TIME
8. Experience level: Mid–Level, Senior, Lead
9. Industry: Big Data, Cloud-Based Solutions, Enterprise Software
10. Company size: 501–1
11. Company type: Private

12. Technologies: c#, typescript, cad, 2d, 3d

13. Job description:
14. [XXXOrganization] is a modern multi tenant, microservices based solution and Floor Planning is one major functional
solution vertical of the [XXXOrganization] platform.

15. What you’ll be doing:
16. As a [XXXProfession] for [XXXOrganization], you will be one of the founding members of our [XXXLocation] based floor
planning development team.
17. You will be in charge for development of future floor planning capabilities on the [XXXOrganization] platform and be the
software architect for the capability.
18. You will drive the team to improve the coding practices and boost performance.
19. You will also be a member of our [XXXOrganization] and have a major influence on feature roadmap and technologies we
use.

20. What you’ll bring to the table:
21. Solid software design and development skills and at least 5 year experience in the industry
22. Good understanding of CAD type of software in 2D and 3D worlds
23. Experience on rendering technologies, 2D/3D data models and data types
24. Hands-on experience in implementing CAD designers / drafting / drawing tools for on-line use
25. C#, C++, TypeScript or Angular/React knowledge
26. Strong ambition to deliver great quality software and to continuously improve the way we do development
27. Good spoken and written English
28. Ability to work on-site in our [XXXLocation] office, with flexible remote work possibilities

29. What we consider as an advantage:
30. Eagerness to find out and learn about the latest computer graphics technologies, and also to share your findings
31. Knowledge of OpenDesign components (Teigha)

32. What we offer you in return:
33. An international career and learning opportunities in a rapidly growing software company
34. A fun, ambitious, and committed team of smart people to work with
35. A respectful and professional, yet easy-going atmosphere where individual thinking is encouraged
36. Responsibilities in challenging projects from day one
37. A position where you can help retailers fight against food waste

38. Are you the one we’re looking for?
39. Apply today and become a part of our [XXXOrganization] family!
40. You can apply by sending your cover letter and resume through the application form as soon as possible, but no later than
31st of August.
41. Please note that we will fill this position as soon as we’ve found the right person, so we recommend that you act quickly.
42. If you have questions, [XXXName] ([XXXContact]) from our Recruitment team is happy to answer them.
43. Also kindly note that we cannot process any applications through email.

44. Job benefits:
<cutoff>

53. Company description:
54. [XXXOrganization] is a fast-growing software company developing products that help retail companies plan and operate more
efficiently.
55. By accurately forecasting consumption of goods, we reduce inventory costs, increase availability and cut waste.
56. Helping retailers eliminate food spoilage and reduce fleet emissions from transportation has a significant environmental
impact as well!
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Abstract
Building tools to remove sensitive infor-
mation such as personal names, addresses,
and telephone numbers - so called Pro-
tected Health Information (PHI) - from
clinical free text is an important task to
make clinical texts available for research.
These de-identification tools must be as-
sessed regarding their quality in the form
of the measurements precision and re-
call. To assess such tools, gold stan-
dards - annotated clinical text - must be
available. Such gold standards exist for
larger languages. For Norwegian, how-
ever, there are no such resources. There-
fore, an already existing Norwegian syn-
thetic clinical corpus, NorSynthClinical,
has been extended with PHIs and anno-
tated by two annotators, obtaining an inter-
annotator agreement of 0.94 F1-measure.
In total, the corpus has 409 annotated
PHI instances and is called NorSynthClin-
ical PHI. A de-identification hybrid tool
(machine learning and rule-based meth-
ods) for Norwegian was developed and
trained with open available resources, and
obtained an overall F1-measure of 0.73
and a recall of 0.62, when evaluated us-
ing NorSynthClinical PHI. NorSynthClin-
ical PHI is made open and available at
Github to be used by the research commu-
nity.

1 Introduction

The data contained within Electronic Health
Records (EHRs) are of significant value to medical
researchers and for administrative purposes, but
privacy and patient confidentiality legislation re-
stricts access. However, de-identification of such
data – removing the Protected Health Informa-
tion (PHI) within – allows it to be shared between

researchers (El Emam et al., 2009). This pro-
cess can be done manually; however, manual de-
identification has proven to be inefficient with re-
gards to cost, time and quality (Dernoncourt et al.,
2017).

Tools for automatic de-identification of clinical
data have been studied extensively. However, most
of the published research is concerned with struc-
tured records and not clinical free-text, and few
de-identification tools are made publicly available
(Neamatullah et al., 2008). Furthermore, most re-
search focus on English and other languages with
many native speakers. Despite the fact that the
Norwegian language has comparatively few na-
tive speakers1, hospitals and organisations like the
Cancer Registry of Norway are in possession of
comprehensive collections of clinical data. En-
abling research on this valuable and unique infor-
mation could reveal new discoveries and would be
of great importance for the future health care.

To ensure that de-identification applications can
successfully de-identify clinical texts, they must
be evaluated in a quantitative manner (Dalianis,
2018). For this purpose, verified, annotated cor-
pora are used to test and score the applications
(Pustejovsky and Stubbs, 2012). These corpora
are referred to as gold standards (or reference stan-
dards), and are typically made by domain experts
or linguists - following specific guidelines. A gold
standard does not need to contain real PHI, and
it can be developed using synthetic data. Conse-
quently, a gold standard developed with synthetic
data can be made publicly available.

This study describes the efforts of creating and
evaluating the first publicly available gold stan-
dard for de-identification of Norwegian Bokmål2

clinical text, describing and discussing the devel-

1Norwegian has approximately 4,320,000 native speak-
ers, (Rehm and Uszkoreit, 2012)

2Norwegian Bokmål - One of the two official written vari-
ants of Norwegian.
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opment and evaluation of the gold standard.

2 Related research

Marimon et al. (2019) created a gold standard cor-
pus of Spanish synthetic clinical text. The corpus
is called Spanish Medical Document Anonymiza-
tion (MEDDOCAN) and consists of 250 clinical
cases manually enriched with PHI phrases. The
gold standard was applied in a community chal-
lenge track in order to evaluate the performance
of de-identification tools focusing on the Spanish
language. 63 systems were evaluated and 61 re-
ceived an F1-measure score above 0.70, and the
highest score was 0.97. As the gold standard
seems to have served its purpose, Marimon et al.
(2019) provides a good example of how to solve
data sparsity problems.

The lack of publicly available clinical text in
Norwegian places limitations on the development
of gold standards and tools for de-identification
of Norwegian clinical text. Recently, there have
been developments of open datasets for Named
Entity Recognition (NER) of the Norwegian lan-
guage, most notably NorSynthClinical (Rama
et al., 2018) and NorNE (Jørgensen et al., 2020).
NorSynthClinical is a small dataset of synthetic
clinical text, focusing on family history informa-
tion (further described in Section 3) (Rama et al.,
2018). While the development of NorNE resulted
in a sizeable dataset with approximately 300,000
tokens for each written variant of Norwegian and
a rich entity set, most PHI entity types are missing
(Jørgensen et al., 2020).

Only a few attempts aiming at developing de-
identification tools focusing on the Norwegian
language have previously been made. One of these
was conducted by Bjurstrøm and Singh (2013).
They tackled de-identification of Norwegian free
text clinical notes for their master’s thesis project,
employing a combination of pattern recognition
and simplistic statistical methods, reporting an F1-
measure of 0.72. Furthermore, they developed a
reference in order to evaluate their developed tool,
consisting of 225 records manually annotated and
de-identified. It was, however, not evaluated fur-
ther or made publicly available (Bjurstrøm and
Singh, 2013).

As previously mentioned, most of the existing
tools and gold standards for de-identification of
clinical text are written in, and for, the English
language (Dalianis, 2018). One of the most well-

known gold standards is the Multiparameter In-
telligent Monitoring in Intensive Care (MIMIC II)
corpus (Saeed et al., 2002).

In Sweden, the development of both de-
identification tools and gold standards has come
further than in Norway. In 2008, a group of
Swedish researchers developed a gold standard
corpus for de-identification of Swedish clinical
text (Velupillai et al., 2009). The researchers man-
ually annotated and de-identified 100 electronic
patient records (EPRs) deriving from five different
clinics (Neurology, Orthopaedia, Infection, Dental
Surgery and Nutrition) at Karolinska University
Hospital. The gold standard consists of unstruc-
tured text (around 174,000 tokens in total) and is
known as the Stockholm EPR PHI corpus. It has
4,700 annotated instances distributed over 8 PHI-
classes. It has been further developed to Stockholm
EPR PHI Pseudo corpus, which contains only sur-
rogate names, addresses, phone numbers, etc., and
is partly available for research (Dalianis, 2019).

3 Data

3.1 NorSynthClinical

A corpus of Norwegian synthetic clinical text,
the NorSynthClinical corpus3, formed the basis
of the created gold standard. NorSynthClinical is
considered the first publicly available resource of
Norwegian clinical text (Rama et al., 2018). It
is written by one clinician with large experience
with clinical work and genetic cardiology. The
corpus describes patients’ family history relating
to cases of cardiac disease, and according to
Rama et al. (2018), it consists of 477 sentences
and 6030 tokens. Only a few of these tokens can
be characterised as PHI.

4 Method

The development of the gold standard involved
two main steps: extension and annotation. The
gold standard was evaluated by measuring the
Inter-Annotator Agreement (IAA) and by testing
it on a hybrid de-identification tool.

4.1 Extension

The original dataset, NorSynthClinical, contains
very few PHIs. Therefore, it was extended with

3NorSynthClinical, https://github.com/
ltgoslo/NorSynthClinical.
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synthetic PHIs (see example below). Where appli-
cable, substatements and single words, or tokens,
were manually added to the corpus. Most of the to-
kens were randomly selected from publicly avail-
able lists, such as Statistics Norway’s lists of per-
sonal names used by 200 Norwegians or more4.
The rest of the tokens were invented. They did,
however, follow specific Norwegian formats, such
as for social security numbers5 and phone num-
bers6. For more details regarding the extension,
see (Bråten, 2020).

1. Original sentence in Norwegian: Moren har
visstnok noen hjerteproblemer, hun er 75 år
gammel. (The mother apparently has some
heart problems, she is 75 years old.)

2. Extended sentence: Moren har visstnok noen
hjerteproblemer, hun er 75 år gammel og
bor på Bakklandet Menighets Omsorgsenter.
(The mother apparently has some heart prob-
lems, she is 75 years old and lives at Bakklan-
det Menighets Omsorgsenter.)

4.2 Annotation
The second step of the gold standard development
involved annotation. Named Entity Tagging, us-
ing the tags provided in Table 1, as proposed by
(Dalianis and Velupillai, 2010), was applied in or-
der to mark up elements of PHI. Annotation guide-
lines were developed7, and the tags were assigned
in the following way in the following Norwegian
sentence:

3. Moren har visstnok noen hjerteproblemer,
hun er <Age>75 år</Age> gammel og bor
på <Health Care Unit>Bakklandet
Menighets Omsorgsenter</Health Care
Unit>. In Eng. (The mother apparently has
some heart problems, she is <Age>75 years

4Norwegian personal names, https://www.ssb.
no/statbank/table/12891/ and https://www.
ssb.no/statbank/table/10501//

5Social security numbers, https:
//www.skatteetaten.no/en/
person/National-Registry/
Birth-and-name-selection/
Children-born-in-Norway/
National-ID-number/

6Phone numbers, https://www.nkom.
no/telefoni-og-telefonnummer/
telefonnummer-og-den-norske-nummerplan/
alle-nummerserier-for-norske-telefonnumre

7Annotation guidelines, https://github.com/
synnobra/NorSynthClinical-PHI/raw/
master/Annotation_guidelines.pdf

</Age>old and lives at<Health Care Unit>
Bakklandet Menighets Omsorgsenter
</Health Care Unit>.)

PHI tags
First Name
Last Name
Age
Health Care Unit
Phone Number
Social Security Number
Date Full
Date Part
Location

Table 1: The Named Entity Tag set used to mark
up elements of PHI.

Two annotators annotated the whole corpus sep-
arately in order to facilitate error detection and
comparative evaluation. The annotators, one mas-
ter of medical science student, A1, and one finance
manager, A2, were both Norwegian native speak-
ers. No specific medical knowledge was needed to
carry out the annotation.

4.3 Evaluation using Inter-Annotator
Agreement and a hybrid de-identification
tool

As mentioned, the gold standard was evaluated by
measuring the IAA. This is a common evaluation
method for providing a quantitative score of how
accurate an annotation task is (Pustejovsky and
Stubbs, 2012). The two annotated corpora writ-
ten in UTF-8 encoding format, were converted to
CoNLL8 format, using a Python3 script, to enable
the measurement of IAA. During this process, a
token was defined as a string of characters between
two spaces or a delimiter. The symbols that were
defined as a part of a token, were percentage sym-
bols located to the right of a number as well as hy-
phens and full stops between two letters or num-
bers. Moreover, the named entity tags were as-
signed IOBES schema, indicating whether a token
was Inside, Outside, in the Beginning or in the End
of an entity, or whether the entity was represented
by a Single token, (Collobert et al., 2011). The
evaluation metrics used to measure the IAA were
precision, recall and F1-measure.

Further evaluation was conducted by execut-
ing the de-identification tool developed for Nor-

8CoNLL, Conference on Natural Language Learning
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NorNE Label PHI Tags Label
B-PER First Name
I-PER Last Name
B-ORG S/B Health Care Unit
I-ORG I/E Health Care Unit
B-LOC S/B Location
I-LOC I/E Location

Table 2: NorNE labels matched to PHI Tags la-
bels. S = Single, B = Beginning, E = Ending, I =
Inside, O = Outside

wegian pathology reports, employing the same
metrics of precision, recall and F1-measure as
for the IAA. The de-identification tool is a hy-
brid de-identification tool utilizing a Conditional
Random Fields (CRF)9 machine learning (ML)
model trained on the Bokmål half of the NorNE
corpus and regular expressions (REGEX) rule-
based pattern matching. NorNe is a corpus of
Norwegian non-clinical text made publicly avail-
able (Jørgensen et al., 2020), The hybrid de-
identification tool is further described in (Wie,
2020).

Some, but not all PHI entities in the developed
gold standard are found in the NorNE training data
set. Furthermore, the labels in the NorNE data set
differ from the gold standard’s PHI both in label
names and annotation schema10. The labels are
matched as seen in Table 211. As the CRF machine
learning model is unable to recognize entities not
found in the training set, some entities are detected
by ML and some by REGEX, see Table 3.

Label Method
First Name CRF
Last Name CRF
S/B Health Care Unit CRF
I/E Health Care Unit CRF
Location CRF
Age REGEX
Date REGEX
Phone Number REGEX
Social Security Number REGEX

Table 3: Method for detecting labels.

The evaluation done by the de-identification ap-
9sklearn-crfsuite, https://github.com/

TeamHG-Memex/sklearn-crfsuite
10NorNE uses the IOB2 schema (Jørgensen et al., 2020)
11Most notable is the matching of ORG and

Health Care Unit

plication is based on the CoNLL format described
earlier in this chapter. The de-identification ap-
plication was not designed to distinguish between
Date Part and Date Full, so these entities were
combined for the evaluation. Furthermore, the
REGEX for phone numbers, dates and social
security numbers were not designed to recognize
entities split into more than one token.

5 Results

5.1 Extension and Annotation
An extended and annotated version of the NorSyn-
thClinical corpus has been created. It has been
given the name NorSynthClinical PHI and made
publicly available on GitHub12. In total, it con-
sists of 8,270 tokens and 409 PHI instances. The
distribution of the PHI categories and an overview
of the number of tokens added during the exten-
sion, is provided in Table 4. Moreover, Figure 1
shows the number and distribution of annotations
where the annotators agreed and not, resulting in
a micro-averaged overall IAA of 0.94, see Table
5. Only annotations with exactly the same tag and
span were considered matching.

5.2 De-identification
The initial evaluation test yielded the results seen
in Table 6 - a micro-averaged F1-measure of 0.553.
Following the initial test, the two following modi-
fications were implemented:

1. The Health Care Unit entity label and Loca-
tion entity label were merged.

2. The labels for entities predicted by rule-based
methods were reduced – leaving the single-
token instances and the first token in multi-
token instances as is, and removing the rest.

These modifications yielded a micro-averaged
F-measure of 0.730 and a recall of 0.619, see
Table 7, and are discussed further in the analysis
and discussion chapter.

6 Analysis

6.1 The NorSynthClinical PHI corpus
The amount of PHI in the extended corpus,
NorSynthClinical PHI, constitutes around 5% of

12NorSynthClinical PHI, https://github.com/
synnobra/NorSynthClinical-PHI.
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Table 4: The distribution of PHI categories in the original NorSynthClinical corpus containing 7,863
tokens) and the extended NorSynthClinical PHI corpus containing 8,270 tokens).

Figure 1: The distribution of agreed (n=376) and disagreed (n=50) annotation tags in each PHI category
made by the two annotators A1 and A2

the content. This is above the average of 2%
(Dalianis, 2018), but quite similar to the 4.3% re-
ported by Bjurstrøm and Singh (2013). Even the
distribution of the different PHI categories resem-
bles the distribution in other clinical texts where
names and dates make up the largest categories
(Neamatullah et al., 2008; Dalianis and Velupil-
lai, 2010; Deleger et al., 2014; Hanauer et al.,
2013). In the extended corpus, names (including

First Name and Last Name combined) make up
almost one third of the overall PHI, and dates (in-
cluding Date Full and Date Part) more than 15%.
The most common category in the extended cor-
pus, however, is Age. In the NorSynthClinical
PHI corpus, Age constitutes around 39% of all
PHI, while in other corpora, it constitutes no more
than 1% (Neamatullah et al., 2008; Dalianis and
Velupillai, 2010; Deleger et al., 2014).
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Table 5: The agreement between the two annotators that annotated the extended NorSynthClinical cor-
pus.

Label Precision Recall F1-measure Support
First Name 0.951 0.806 0.872 72
Last Name 0.946 0.964 0.955 55
S/B Health Care Unit 0.090 0.167 0.117 42
I/E Health Care Unit 0.833 0.192 0.346 26
Location 0.209 1.000 0.346 9
Age (REGEX) 0.985 0.259 0.410 247
Date (REGEX) 0.862 0.770 0.797 74
Social Security Number (REGEX) 1.000 0.286 0.444 7
Phone Number (REGEX) 1.000 0.217 0.357 23
Micro avg. 0.675 0.468 0.553 555

Table 6: Initial evaluation test with the hybrid de-identification tool.

Label Precision Recall F1-measure Support
First Name 0.951 0.806 0.872 72
Last Name 0.946 0.964 0.955 55
S/B Health Care Unit 0.767 0.647 0.702 51
I/E Health Care Unit 1.000 0.231 0.375 26
Age (REGEX) 0.985 0.395 0.564 162
Date (REGEX) 0.783 0.857 0.818 63
Social Security Number (REGEX) 1.000 0.400 0.571 5
Phone Number (REGEX) 0.800 0.444 0.571 9
Micro avg. 0.893 0.619 0.731 443

Table 7: Final evaluation with the modified hybrid de-identification tool. The entities Health Care Unit
and Location observed in Table 6 were merged into Health Care Unit. in this table

6.2 Inter-Annotator Agreement

The IAA score of 0.94 indicates that the agree-
ment between the two annotators is high. This is
especially true for the categories Phone Number
and Social Security Number, which the annota-
tors completely agreed on, see Figure 1. How-

ever, these and most other categories contain a
small number of PHI instances, questioning the
reliability of the statistical analysis. The cate-
gories that the annotators disagreed on the most,
were Health Care Unit and Location, see Figure
1. On five occasions, a PHI instance was anno-
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tated as Location by one of the annotators and as
Health Care Unit by the other annotator. Other
disagreements were caused by differences in the
annotation span or in the interpretations of the pro-
vided annotation guidelines.

6.3 Evaluation with a hybrid
de-identification tool

While the overall score for First Name
and Last Name was high, the scores for
Health Care Unit and Location were low,
see Table 6. The low scores were suspected to
be due to health care units often being named
after locations and being syntactically similar,
resulting in the CRF model frequently labelling
Health Care Unit as Location – which was
confirmed with a manual review of the incorrect
predictions.

“Of the 35 incorrect predictions where
the correct label was B-ORG, 24 were
labelled as B-LOC (approx. 69%).
Of the 21 incorrect predictions where
the correct label was I-ORG, 6 were la-
belled as I-LOC (approx. 29%).” (Wie,
2020)

For the entities processed by the rule-based
part (REGEX) of the hybrid de-identification tool
the initial precision was high (0.908 micro avg.).
However, the recall was low for all entities except
date (0.770). This was attributed to the CoNLL
conversion of the NorSynthClinical PHI corpus
splitting the pertinent entities into more tokens,
which the de-identification application was not de-
signed to handle. Another consequence of some of
these entities being split is an inflation of the sup-
port for these categories. An example being the
original nine instances of Phone Number in the
NorSynthClinical PHI corpus being counted as 23
instances – skewing the recall score, see Table 8.
Applying the aforementioned modification of re-
duction based on prefixes resulted in the same in-
stance support as the original.

7 Discussion and conclusion

What makes the NorSynthClinical PHI special
and valuable is the fact that it is synthetic. As
it does not contain any real personal informa-
tion, the gold standard can be accessed by anyone
and utilized in the development of tools for de-
identification of Norwegian clinical text. Hope-

Label Original CoNLL
Age 162 247
Date 63 74
Social Security Number 5 7
Phone Number 9 23

Table 8: Converting from SGML format to
CoNLL format support inflation.

fully, this will facilitate more research on the con-
tent of clinical notes, and eventually a better health
care.

The major weakness of the created gold stan-
dard is its small size. The English corpus MIMIC
II consists of 412,509 clinical notes and the
Stockholm EPR PHI corpus consists of 100 pa-
tient records (Dalianis, 2018). As mentioned
in (Velupillai et al., 2009), the latter contributes
174,000 tokens. In comparison, the NorSynthClin-
ical PHI, which consists of 8,270 tokens, is very
small. Besides, it is very specific to the area of
cardiology, written by one cardiologist, and ex-
tended by a layman. Therefore, there might be a
lack of linguistic variety. Furthermore, the gold
standard is written in Norwegian Bokmål and not
in Nynorsk. However, it would be relatively un-
complicated to translate the gold standard from
Bokmål to Nynorsk.

The de-identification tool used for evaluating
NorSynthClinical PHI corpus was initially de-
signed for another purpose13 and trained on pub-
licly available data. The effect of fundamental
incompatibilities between the training set and the
gold standard, like the disparity between ORG and
Health Care Unit, is difficult to estimate. How-
ever, no other de-identification system for Norwe-
gian is available.

The final evaluation of the modified hybrid de-
identification tool for Norwegian using NorSynth-
Clinical PHI gave an F1-measure of 0.731 and a
recall of 0.619.

A de-identification tool is aiming on a higher
recall to remove all possible PHIs, also on the cost
of lower precision.

Further improvements could be made to the
de-identification tool. Implementing dictionary-
based algorithms could improve the accuracy of
certain entity types. Task-specific dictionaries
for Norwegian health care units and/or medi-
cations are feasible implementations and would

13De-identification of Norwegian pathology reports.
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likely improve accuracy on clinical texts. Fur-
thermore, implementing tokenization directly in
the de-identification tool would allow for de-
identification of untokenized text, and mini-
mize incompatibilities between the input and de-
identification algorithm.

The gold standard has its limitations and cannot
alone decide whether a specific tool provides suffi-
ciently de-identified outcomes. Therefore, we en-
courage to further expansions of the gold standard
corpus, in addition to more evaluation research,
in order to make it more reliable and improve its
quality.

Contributions of each author

SB made and evaluated the gold standard corpus,
and wrote in the article. WW developed the hy-
brid de-identification tool and tested it on the gold
standard corpus and co-authored the paper. HD
supervised the study, gave comments and wrote in
the article.
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Abstract

To be able to share the valuable information
in electronic patient records (EPR) they
first need to be de-identified in order to pro-
tect the privacy of their subjects. Named en-
tity recognition and classification (NERC)
is an important part of this process. In re-
cent years, general-purpose language mod-
els pre-trained on large amounts of data,
in particular BERT, have achieved state of
the art results in NERC, among other NLP
tasks. So far, however, no attempts have
been made at applying BERT for NERC on
Swedish EPR data.

This study attempts to fine-tune one
Swedish BERT-model and one multilingual
BERT-model for NERC on a Swedish EPR
corpus. The aim is to assess the applica-
bility of BERT-models for this task as well
as to compare the two models in a domain-
specific Swedish language task. With the
Swedish model, recall of 0.9220 and preci-
sion of 0.9226 is achieved. This is an im-
provement to previous results on the same
corpus since the high recall does not sac-
rifice precision. As the models also per-
form relatively well when fine-tuned with
pseudonymised data, it is concluded that
there is good potential in using this method
in a shareable de-identification system for
Swedish clinical text.

1 Introduction

Electronic patient records (EPR), also called clin-
ical text, contain valuable information about pa-
tients’ symptoms, physicians’ assessments, diag-
noses, treatments and treatment outcomes. Ad-
vancements in natural language processing (NLP)
and machine learning have made it possible to use
large amounts of clinical text to assist physicians

and medical researchers in detecting early symp-
toms of disorders, predicting adverse effects of
treatments, etc, see Chapter 10 in (Dalianis, 2018).
However, clinical text contains information that can
reveal the identity of patients and other mentioned
individuals, so called Protected Health Informa-
tion (PHI). Methods have been developed to detect
this information and obscure it in order to protect
people’s identities (Meystre et al., 2010; Stubbs
et al., 2015). One important note to make is that
de-identified text cannot be guaranteed to be safe
to release and must still be handled with great care.
A good de-identification system can, however, help
facilitate an efficient anonymisation process.

In this study PHI refers only to the named en-
tities which may reveal a person’s identity, such
as name, age and location. In this sense, detect-
ing and identifying the PHI before obscuring it
is a Named Entity Recognition and Classification
(NERC) problem. When it comes to data-driven
NERC, models based on recurrent neural networks
(RNNs) and long short-term memory (LSTM) net-
works have been successfully used for several lan-
guages (Lê et al., 2020; Lange et al., 2019). In
the last two years, however, transformer-based lan-
guage models such as BERT have achieved state-
of-the-art results in several NLP task on commonly
used data sets (Devlin et al., 2019).

BERT is a general-purpose language model de-
veloped by Devlin et al. (2019). In essence, BERT
is a neural network based on transformers. Trans-
formers are a type of deep learning model designed
to handle sequential data, such as natural language
text. Since their introduction in 2017 (Vaswani
et al., 2017), transformers have been widely used
across a variety of NLP tasks, not least on clinical
text (Lewis et al., 2020). The benefit of transformer-
based models over previous architectures is that
they do not require the sequential data to be pro-
cessed in order, allowing for parallelization of the
training process. This has made it possible to
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develop large pre-trained models such as BERT,
which have been fitted on larger amounts of data
than was previously feasible.

Since the first BERT-model was released in 2018,
several models with modified architecture and dif-
ferent data used in pre-training have been released,
including the multilingual M-BERT1. M-BERT is
pre-trained on texts in 104 languages, including
Swedish. In 2019, the National Library of Swe-
den released a Swedish BERT model, KB-BERT2,
pre-trained exclusively on Swedish texts.

To use a pre-trained BERT-model for a down-
stream task, it needs to be fine-tuned for that task.
Both KB-BERT and M-BERT have shown success
in the NERC task for Swedish when fine-tuned
with the publicly available Stockholm-Umeå Cor-
pus consisting of Swedish texts from the 1990’s
(Malmsten et al., 2020). To our knowledge, how-
ever, no previous attempt has been made at using
these models for NERC in Swedish EPR data.

In this study, we attempt to improve NERC per-
formance on Swedish electronic patient records by
fine-tuning KB-BERT and M-BERT with domain-
specific data. More specifically, our aim is to
achieve high recall, which is a priority in the de-
identification task, without sacrificing precision. A
risk with de-identification methods based on ma-
chine learning is that a model trained on sensitive
data could be re-engineered, revealing the data. In
a BERT-model, there are no links between words
in the vocabulary, making it infeasible to retrieve
the patient records used for fine-tuning. However,
due to names and other personal identifiers appear-
ing in the model’s vocabulary, there may be legal
issues with releasing a model fine-tuned on patient
records. Therefore, in an additional experiment,
the models are fine-tuned using pseudonymised pa-
tient records to see how NERC performance on
authentic records is affected.

The outline of this paper is as follows. First,
Section 2 presents some previous studies on NERC
in clinical text and specifically previous results on
the data set at hand. Then, Section 3 describes the
data used in this study, gives some more detail on
the two BERT models and goes through how the
fine-tuning and evaluation are performed. Section
4 presents the results for both models. Finally, the
results are discussed in Section 5.

1M-BERT, https://github.com/
google-research/bert

2KB-BERT, https://github.com/Kungbib/
swedish-bert-models

2 Related Research

There are several publicly available BERT-models
pre-trained specifically for the biomedical and clin-
ical domains. In 2019, Lewis et al. (2020) released
BioBERT3, a BERT-model pre-trained on PubMed
articles as well as Wikipedia articles and books.
The authors present an F1-score of approximately
0.87 on the commonly used i2b2 2010 data set
for clinical text NERC. In a different 2019 project,
(Peng et al., 2019) continued to pre-train the pre-
trained BERT-model released by (Devlin et al.,
2019) on PubMed abstracts and clinical notes. This
model, named BlueBERT4, reaches an F1-score
of approximately 0.77 on the i2b2 data set. The
same year, (Alsentzer et al., 2019) released clin-
icalBERT5 pre-trained on clinical texts but also
specifically on discharge summaries. The com-
bined Bio+Discharge Summary model reaches an
F1-score of 0.88 on the i2b2 2010 data set. All of
these models are only pre-trained on English texts.

For non-English clinical text NERC, some ad-
vancements were made in connection to the 2019
shared task MEDDOCAN which consisted of
performing NERC on Spanish electronic patient
records with annotated PHI. In a submission to the
contest Mao and Liu (2019) used M-BERT, which
is also pre-trained on Spanish text (Mao and Liu,
2019) with a decoding CRF layer for token classi-
fication. They also applied some post-processing
techniques, achieving F1-score and recall of ap-
proximately 0.93.

When it comes to Swedish, several attempts have
been made at performing NERC on the annotated
data set of electronic patient records Stockholm
EPR PHI Corpus. In one study by Berg and Dalia-
nis (2020) the authors extended the annotated data
set with data generated using a semi-supervised
learning method with the aim of increasing recall
without sacrificing precision. The highest recall
reported was 0.8920, at which point the precision
was 0.9420. These results were achieved using a
Conditional Random Field (CRF) model. Gran-
charova et al. (2020) managed to increase the recall
to 0.9209 using the same model by under-sampling
negative tokens, thus tokens not belonging to a
PHI. However, this came at the cost of significant

3BioBERT, https://github.com/dmis-lab/
biobert

4BlueBERT, https://github.com/ncbi-nlp/
bluebert

5clinicalBERT, https://github.com/
EmilyAlsentzer/clinicalBERT
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decrease in precision to 0.8819. Regarding the
application of models trained on pseudonymised
clinical data for NERC on authentic data, there is
a study by Berg et al. (2019) where the authors
achieved at highest recall of 0.5510 using a LSTM
network. The experiment was repeated with a clas-
sic CRF and the recall decreased to 0.4983.

3 Data and Methods

This section describes the data, tools and meth-
ods used in this study. First, the EPR data set is
described in Section 3.1. Then, Section 3.2 de-
scribes the BERT-models used and how they were
fine-tuned. Lastly, Section 3.3 describes how the
models were evaluated in a number of experiments.

3.1 Data

The data used in this study is Stockholm EPR PHI
Corpus6 Stockholm EPR PHI Corpus is part of the
research infrastructure Health Bank - The Swedish
Health Records Research Bank7. Stockholm EPR
PHI Corpus consists of 200,000 tokens with nine
annotated PHI classes. See Table 1 for the classes
and their distribution.

The annotation of Stockholm EPR PHI Corpus is
described in more detail in (Velupillai et al., 2009).
The data was refined in the first de-identification
experiment described in (Dalianis and Velupillai,
2010) and has since been used in several studies.
Figure 1 shows an example of an pseudonymised
annotated record from the data set, followed by an
English translation of the same record.

When formatting the data for fine-tuning, tagged
entities consisting of multiple words were split into
separate tokens and tagged according to the BIOES-
standard. This means marking whether a positive
token is in the beginning (’B’), ending (’E’) or in-
side (’I’) a named entity, or if the token itself makes
up a named entity (’S’) (Reimers and Gurevych,
2017). Negative tokens, thus tokens which are not
part of a named entity, were marked ’O’.

3.2 Methods

This section describes the methods used in this
study. First, Section 3.2.1 gives more details on the
two pre-trained BERT models used. Then, Section
3.2.2 describes how the models were fine-tuned.

6This research has been approved by the Swedish Ethical
Review Authority under permission no. 2019-05679.

7Health Bank, http://dsv.su.se/healthbank

PHI Class Instances
First Name 923
Last Name 931
Phone Number 137
Age 55
Full Date 457
Date Part 709
Health Care Unit 1,414
Location 95
Organisation 43
Total 4,764

Table 1: The class distribution of Stockholm EPR
PHI Corpus.

3.2.1 BERT models

The BERT-models used in this study are the
Swedish KB-BERT and the multilingual M-BERT.
Both models implement the BERT-Base architec-
ture consisting of twelve layers with a hidden size
of 768 and 11 · 107 parameters.

KB-BERT was released by the National Library
of Sweden in 2019 (Malmsten et al., 2020). It is
pre-trained on approximately 20 GB of digitized
Swedish texts written between the years 1940 and
2019. The resources include news articles, legal
text, social media posts and Swedish Wikipedia
articles. This results in a vocabulary size of around
50,000 tokens. The model is cased, meaning that
there are separate entries for tokens beginning with
an upper case letter and tokens beginning with a
lower case letter.

Devlin et al. (2019) released a multilingual
BERT model alongside the original English BERT
model. The multilingual model used in this study,
M-BERT, is the cased version of this model. It
has been pre-trained on 104 languages, including
Swedish. For each language, the training data
consisted of Wikipedia articles written in that lan-
guage. To balance the data, high-resource lan-
guages were under-sampled while low-resource
languages were over-sampled using exponentially
smoothed weighting of the data. M-BERT has a
vocabulary size of around 120,000 tokens.

3.2.2 Fine-tuning

The pre-trained BERT models provide a general
representation, or encoding, of input data. To use
the models for prediction or inference they need to
be fine-tuned for a specific down-stream task. This
involves adding an additional output layer and fit-
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Planeringsansvarig: SSK Tjänstgörande
Patientansvarig läkare: <First_Name>Mohamed</First_Name>
<Last_Name>Åström</Last_Name>
Kontaktorsak: Ramlat i hemmet <Full_Date>10/5-2006</Full_Date> och krampat
<Date_Part>12/5</Date_Part>.
Hade inte ätit eller druckit på 4 dygn.
Hälsohistoria: vårderf. Se läkare anteckningar.
Närstående: Dotter <First_Name>Jessica</First_Name><Last_Name>Fredriksson</Last_
Name> tel: <Phone_Number>0715-463920</Phone_Number>,
tel hem <Phone_Number>92 35 45</Phone_Number> <Last_Name>Fredriksson</Last_Name>
tel. <Phone_Number>0392-857461</Phone_Number>
Social bakgrund: Bor på gruppboende, <Health_Care_Unit>Lärkan</Health_Care_Unit>
på <Location>Ladugårdsgärdet</Location>.

Planning manager: Nurse on duty
Attending physician: <First_Name>Mohamed</First_Name>
<Last_Name>Åström</Last_Name>
Reason of contact: Fallen at home <Full_Date>10/5-2006</Full_Date> and felt cramps
<Date_Part>12/5</Date_Part>.
Had not eaten or drunk in 4 days.
Health background: See physician’s notes.
Family: Daughter <First_Name>Jessica</First_Name><Last_Name>Fredriksson</Last_
Name> ph: <Phone_Number>0715-463920</Phone_Number>,
ph. home <Phone_Number>92 35 45</Phone_Number>
<Last_Name>Fredriksson</Last_Name>
ph. <Phone_Number>0392-857461</Phone_Number>
Social background: Lives at nursing home,
<Health_Care_Unit>Lärkan</Health_Care_Unit> at <Location>Ladugårdsgärdet</Location>.

Figure 1: Example of a pseudonymised electronic patient record in Swedish from Stockholm EPR PHI
Corpus and its translation to English.

ting the model with task-specific data. In this case,
the down-stream task is NERC and the data used
for fine-tuning is that described in Section 3.1. The
pre-trained models were loaded and fine-tuned us-
ing the HuggingFace’s Transformers library (Wolf
et al., 2020). Both models were loaded with the li-
brary’s BertForTokenClassification structure which
providers a linear output layer on top of the hidden-
states output.

A challenge with fine-tuning BERT is hyper-
parameter optimization. The model is sensitive to
several parameters such as number of epochs, batch
size and learning rate. Devlin et al. (2019) found
that for large data sets the hyper-parameters do
not have great impact on performance. On smaller
data sets, the authors recommend performing some
hyper-parameter optimization for the task at hand.
Due to the size of the models, the time it takes

to fine-tune them presents a limit on how much
resources can be delegated to hyper-parameter opti-
mization. In this study, the optimization is limited
to a simple parameter search with starting point at
the values recommended by Devlin et al. (2019).

3.3 Application of methods: Experiments

This section presents the different experiments per-
formed to generate the results presented in this
paper. First, 20% of the original data, selected at
random, was held out for testing. Out of the re-
maining data, 20% was reserved for development.
The purpose of the development set was to evaluate
different hyper-parameter settings. The remaining
data, which we call the training set, was used for
fine-tuning.

In addition to the original training set, Stock-
holm EPR PHI Corpus, we created a version of the
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training set, Stockholm EPR PHI Pseudo Corpus,
where the PHIs have been replaced by surrogates.
We call this the pseudonymised training set8, or
pseudo for short.

The surrogate generation is lexical, based on
the collection of Swedish named entity lists used
in (Dalianis, 2019). In this study, however, the
variation of surrogate names is much larger, con-
taining 123,000 female first names, 121,000 male
first names and 35,000 last names, rather than only
the 100 most common first- and last names used in
(Dalianis, 2019).

After fine-tuning on the pseudonymised training
set, the models were evaluated on the original test
set. The motivation behind these tests is that mod-
els trained on pseudonymised data are safer to re-
lease for further development by other researchers,
without risking that the PHI is revealed. Therefore,
it is of interest to see how well such models perform
on authentic, not de-identified, patient records.

For both KB-BERT and M-BERT, a search over
hyper-parameters was performed. The batch size
was set to 16 and the learning rate to 5 · 10−5.
When it comes to the number of epochs, the re-
sults differed slightly between the models. Figures
2 and 3 show the precision and recall for differ-
ent number of epochs over the training set when
fine-tuning KB-BERT and M-BERT, respectively.
When choosing the number of epochs, most atten-
tion was paid to recall as that is of highest priority
in a de-identification system. For all models ex-
cept one, recall either decreased or did not improve
significantly after three epochs. Thus, the models
were fine-tuned for three epochs. The exception
was M-BERT fitted with the pseudonymised data
which was fine-tuned for four epochs. The preci-
sion was also monitored and it was observed, as the
figures show, that precision continued to increase
longer than recall. Since recall was prioritized and
resources were limited, no experiments were made
with training the models further.

After the models were fine-tuned, they were eval-
uated on the original test set, namely the held out
data set, 20% of Stockholm EPR PHI Corpus. We
call this set test set A. In order to test how well the
models perform on a broader range of EPR data,
they were also evaluated on other medical special-
ities of Swedish EPR Corpora from Health Bank.
For the purpose of this report, this second test set is

8Generally, most research on clinical text is carried out on
pseudonymised data while most studies on Health Bank data
have used real data.

Figure 2: Precision on the development set after
different number of epochs for all four models.

Figure 3: Recall on the development set after dif-
ferent number of epochs for all four models.

called test set B. For the most part, test set B is anno-
tated according to the same standard as Stockholm
EPR PHI Corpus but is lacking the Organisation
class which is thus excluded from the evaluation
on this test set. Further, test set B contains ages
and dates but their annotation differs from those in
Stockholm EPR PHI Corpus. In order to minimize
the error caused by different annotation standards,
the classes Age, Date Part and Full Date are also
excluded from evaluation.

4 Results

The results presented in this section were achieved
with the best hyper-parameter values found, see
Section 3.3. Note that the hyper-parameter opti-
mization was not exhaustive and this may have
significant effects on the results.

Table 2 shows the precision (P), recall (R) and
F1-score for the two models fine-tuned with the
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original training set, as well as those fine-tuned on
the pseudonymised training set, when evaluated on
test set A. Table 3 shows the corresponding scores
for test set B.

Model Data P R F1

KB Original 0.9226 0.9220 0.9223
Pseudo 0.8827 0.8822 0.8824

M Original 0.9051 0.8899 0.8974
Pseudo 0.8602 0.8357 0.8478

Table 2: Precision, recall and F1-score of KB-
BERT and M-BERT fine-tuned with the original
training set and the pseudonymised training set re-
spectively, and evaluated on test set A.

Model Data P R F1

KB Original 0.6923 0.7272 0.7093
Pseudo 0.6427 0.7439 0.6896

M Original 0.6494 0.6847 0.6666
Pseudo 0.6398 0.6963 0.6669

Table 3: Precision, recall and F1-score of KB-
BERT and M-BERT fine-tuned with the original
training set and the pseudonymised training set re-
spectively, and evaluated on test set B.

Table 4 shows the recall per class for the models
fine-tuned with the original training set and evalu-
ated on test set A. Table 5 shows the corresponding
results for test set B. In the same manner, Tables 6
and 7 shows the recall per class for all the models
fine-tuned with the pseudonymised training set and
evaluated on test set A and test set B, respectively.
Note that the averages in all tables are weighted
based on the number of instances from each class
present in the test set at hand. The number of in-
stances per class are given by the figures within the
parentheses in the tables’ first column.

5 Discussion and Conclusions

The results show that the fine-tuned KB-BERT
achieves recall on the same level as that reported in
(Grancharova et al., 2020) on the same data set, see
Table 2. In this study, however, the relatively high
recall does not come at the price of low precision.
The precision achieved using KB-BERT is on par
with the highest recorded precision on Stockholm
EPR PHI Corpus which was documented in (Berg
and Dalianis, 2020). There, again, recall was below
0.9. Thus, the BERT-model seems to offer a good

Class (instances) KB-BERT M-BERT
First Name (195) 0.9385 0.9077
Last Name (213) 0.9531 0.9296
Phone Number (21) 0.9048 0.8571
Age (9) 1.0000 0.7778
Full Date (83) 0.9518 0.9518
Date Part (131) 0.9847 0.9824
Health Care Unit (293) 0.8737 0.8396
Location (19) 0.7895 0.4221
Organisation (10) 0.5000 0.5000
Weighted average 0.9220 0.8899

Table 4: Recall per class of the models fine-tuned
with the original training set and evaluated on test
set A.

Class (instances) KB-BERT M-BERT
First Name(208) 0.7212 0.7596
Last Name (282) 0.7270 0.6915
Phone Number (22) 0.8636 0.7727
Health Care Unit (208) 0.7163 0.6394
Location (57) 0.7368 0.5088
Weighted average 0.7272 0.6847

Table 5: Recall per class of the models fine-tuned
with the original training set and evaluated on test
set B.

Class (instances) KB-BERT M-BERT
First Name (195) 0.9128 0.8564
Last Name (213) 0.9202 0.8638
Phone Number (21) 0.8095 0.9048
Age (9) 1.0000 0.8889
Full Date (83) 0.9398 0.8554
Date Part (131) 0.9695 0.9847
Health Care Unit (293) 0.8029 0.7577
Location (19) 0.6842 0.4737
Organisation (10) 0.6000 0.5000
Weighted average 0.8822 0.8357

Table 6: Recall per class of the models fine-tuned
with the pseudonymised version of the training set
and evaluated on test set A.

balance between precision and recall. From a pure
de-identification perspective, high precision is not
a priority. However, for the de-identified data to
be of use to physicians and researchers, precision
remains important. In this sense, the results pre-
sented in this paper can be considered an overall
improvement of NERC on this data.
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Class (instances) KB-BERT M-BERT
First Name(208) 0.8077 0.7548
Last Name (282) 0.7447 0.7092
Phone Number (22) 0.7273 0.7273
Health Care Unit (208) 0.6490 0.6731
Location (57) 0.7368 0.4912
Weighted average 0.7349 0.6963

Table 7: Recall per class of the models fine-tuned
with the pseudonymised version of the training set
and evaluated on test set B.

Regarding the comparison between KB-BERT
and M-BERT, the first achieves higher precision
and recall on both test sets, see Tables 2 and 3. The
difference is more prevalent in some PHI classes
than in others. For instance, the recall on Location
drops significantly when using M-BERT compared
to using KB-BERT. This suggests that pre-training
specialized toward one language is more beneficial
than broader pre-training. This is only a specula-
tion since there are other differences between the
two models that could affect performance on the
task at hand, such as the nature and amount of
Swedish texts used in pre-training.

It is also worth mentioning that the difference
in recall between the two models is small, averag-
ing at approximately 0.5 percentage points when
fine-tuning on the original data and 1 percentage
point when fine-tuning on the pseudonymised data.
Since only a limited amount of time was spent
on optimisation, it is possible that M-BERT could
achieve results similar to KB-BERT if fine-tuned
with better settings or more data.

Tables 2 and 3 also show that the models fine-
tuned on the original records perform better than
those fine-tuned on the pseudonymised records.
This is not surprising, as the surrogates have lim-
ited range compared to the authentic named enti-
ties. Tables 4 - 7 show that, for instance, the recall
on Age is more negatively affected by fine-tuning
on pseudonymised records than the recall on First
name and Last name. An explanation could be
that the formats in which surrogate ages are given
do not cover all formats present in the authentic
records, resulting in greater discrepancies between
the training set and the test set when fine-tuning
with the pseudonymised records. The formats of
names, on the other hand, are less varied in this
domain.

Although the models fine-tuned with

pseudonymised data perform worse overall,
the differences between them and the same models
fine-tuned with the original data are not huge. In
some cases, such as Phone number in M-BERT,
the pseudonymised model actually performs better,
see Tables 4 and 6. It is clear that the BERT-models
are less sensitive to the discrepancies between the
original and pseudonymised data than the CRF
and LSTM models used on this data set previously,
see Section 2 Related research and (Berg et al.,
2019). This suggests that this method should be
explored further for the purpose of being able to
share models trained on electronic patient records
while reducing the risks of breaching the privacy
of patients or other individuals mentioned in the
text.

A comparison between Table 2 and Table 3
demonstrates that there is a loss in recall and an
even greater loss in precision when applying the
models to data in a slightly broader domain. Dif-
ferences in the annotation of the two test sets make
a direct comparison difficult, but it is clear that the
models have learned enough to generalize relatively
well to a broader range of electronic patient records.
Future work includes creating more annotated data
for evaluation as well as training on a broader range
of records in order to improve generalization.

In summary, this paper presents an improvement
on previous results on the Stockholm EPR PHI
Corpus in the sense that the same high recall is
achieved without sacrificing precision. It is also
demonstrated that performance is somewhat neg-
atively affected by fine-tuning on pseudonymised
electronic patient records but the models still
achieve relatively high recall. Due to the bene-
fit of being able to share non-sensitive models in
compliance with preserving the privacy of patients,
this approach should be studied and developed fur-
ther. The results also show that KB-BERT outper-
forms M-BERT overall but both models perform
relatively well. We can not make any concrete
conclusions on the limitations of the models due
to the limited resources delegated to optimisation
and the limited data used for fine-tuning. Future
work includes optimising the models further and
fine-tuning on a larger data set.

On a final note, even with a de-identification
system with high recall, the de-identified data could
be re-identified using external sources. Therefore,
the de-identified data must be be handled with care.
To improve the privacy where there could be some
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false negatives, thus missed PHI, one could remove
the tags of the true positive so the false negatives
are not distinguishable, performing what is known
as HIPS (Hide In Plain Sight) (Carrell et al., 2013).
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Abstract

Historical corpora are known to contain er-
rors introduced by OCR (optical charac-
ter recognition) methods used in the dig-
itization process, often said to be degrad-
ing the performance of NLP systems. Cor-
recting these errors manually is a time-
consuming process and a great part of the
automatic approaches have been relying
on rules or supervised machine learning.
We build on previous work on fully auto-
matic unsupervised extraction of parallel
data to train a character-based sequence-
to-sequence NMT (neural machine trans-
lation) model to conduct OCR error cor-
rection designed for English, and adapt
it to Finnish by proposing solutions that
take the rich morphology of the language
into account. Our new method shows
increased performance while remaining
fully unsupervised, with the added bene-
fit of spelling normalisation. The source
code and models are available on GitHub1

and Zenodo2.

1 Introduction

Nature language processing (NLP) is arguably
tremendously difficult to tackle in Finnish, due to
an extremely rich morphology. This difficulty is
reinforced by the limited availability of NLP tools
for Finnish in general, and perhaps even more so
for historical data by the fact that morphology has
evolved through time – some older inflections ei-
ther do not exist anymore, or are hardly used in
modern Finnish. As historical data comes with its
own challenges, the presence of OCR errors makes

1Source Code, https://github.com/ruathudo/
post-ocr-correction

2Trained models, https://doi.org/10.5281/
zenodo.4242890

the data even more burdensome to modern NLP
methods.

Obviously, this problematic situation is not
unique to Finnish. There are several other lan-
guages in the world with rich morphologies and
relatively poor support for both historical and
modern NLP. Such is the case with most of the lan-
guages that are related to Finnish like Erzya, Sami
and Komi, these Uralic languages are severely en-
dangered but have valuable historical resources in
books that are not yet available in a digital format.
OCR remains a problem especially for endangered
languages (Partanen, 2017), although OCR quality
for such languages can be improved by limiting
the domain in which the OCR models are trained
and used (Partanen and Rießler, 2019).

Automated OCR post-correction is usually
modelled as a supervised machine learning prob-
lem where a model is trained with parallel data
consisting of OCR erroneous text and manually
corrected text. However, we want to develop a
method that can be used even in contexts where
no manually annotated data is available. The most
viable recent method for such a task is the one
presented by Hämäläinen and Hengchen (2019).
However, their model works only on correcting in-
dividual words without considering the context in
sentences, and as it focuses on English, it com-
pletely ignores the issues rising from a rich mor-
phology. Extending their approach, we introduce
a self-supervised model to automatically gener-
ate parallel data which is learned from the real
OCRed text. Later, we train sequence-to-sequence
(seq2seq) NMT models on character level with
context information to correct OCR errors. The
NMT models are based on the Transformer algo-
rithm (Vaswani et al., 2017), whose detailed com-
parison is demonstrated in this article.
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2 Related work

As more and more digital humanities (DH) work
start to use the large-scale, digitised and OCRed
collections made available by national libraries
and other digitisation projects, the quality of OCR
is a central point for text-based humanities re-
search. Can one trust the output of complex NLP
systems, if these are fed with bad OCR? Beyond
the common pitfalls inherent to historical data (see
Piotrowski (2012) for a very thorough overview),
some works have tried to answer the question
stated above: Hill and Hengchen (2019) use a sub-
set of 18th-century corpus, ECCO3 as well as its
keyed-in counterpart ECCO-TCP to compare the
output of common NLP tasks used in DH and con-
clude that OCR noise does not seem to be a large
factor in quantitative analyses. A conclusion sim-
ilar to previous work by Rodriquez et al. (2012) in
the case of NER and to Franzini et al. (2018) for
authorship attribution, but in opposition to Mutuvi
et al. (2018) who focus on topic modelling for his-
torical newspapers and conclude that OCR does
play a role. More recently and still on historical
newspapers, van Strien et al. (2020) conclude that
while OCR noise does have an impact, its effect
widely differs between downstream tasks.

It has become apparent that OCR quality for
historical texts has become central for funding
bodies and collection-holding institutions alike.
Reports such as the one put forward by Smith
and Cordell (2019) rise OCR initiatives, while
the Library-of-Congress-commissioned report by
Cordell (2020) underlines the importance of OCR
for culturage heritage collections. These reports
echo earlier work by, among others, Tanner et al.
(2009) who tackle the digitisation of British news-
papers, the EU-wide IMPACT project4 that gath-
ers 26 national libraries, or Adesam et al. (2019)
who set out to analyse the quality of OCR made
available by the Swedish language bank.

OCR post-correction has been tackled in pre-
vious work. Specifically for Finnish, Drobac
et al. (2017) correct the OCR of newspapers using
weighted finite-state methods, accordance with,
Silfverberg and Rueter (2015) do the same for
Finnish (and Erzya). Most recent approaches rely
on the machine translation (MT) of “dirty” text

3Eighteenth Century Collections Online,
https://www.gale.com/primary-sources/
eighteenth-century-collections-online

4http://www.impact-project.eu

into “clean” texts. These MT approaches are
quickly moving from statistical MT (SMT) – as
previously used for historical text normalisation,
e.g. the work by Pettersson et al. (2013) – to NMT:
Dong and Smith (2018) use a word-level seq2seq
NMT approach for OCR post-correction, while
Hämäläinen and Hengchen (2019), on which we
base our work, mobilised character-level NMT.
Very recently, Nguyen et al. (2020) use BERT em-
beddings to improve an NMT-based OCR post-
correction system on English.

3 Experiment

In this section, we describe our methods for auto-
matically generating parallel data that can be used
in a character-level NMT model to conduct OCR
post-correction. In short, our method requires only
a corpus with OCRed text that we want to auto-
matically correct, a word list, a morphological an-
alyzer and any corpus of error free text. Since we
focus on Finnish only, it is important to note that
such resources exist for many endangered Uralic
languages as well as they have extensive XML
dictionaries and FSTs available (see (Hämäläinen
and Rueter, 2018)) together with a growing num-
ber of Universal Dependencies (Nivre et al., 2016)
treebanks such as Komi-Zyrian (Lim et al., 2018),
Erzya (Rueter and Tyers, 2018), Komi-Permyak
(Rueter et al., 2020) and North Sami (Sheyanova
and Tyers, 2017).

3.1 Baseline

We design the first experiment based on the pre-
vious work (Hämäläinen and Hengchen, 2019),
who train a character-level NMT system. Their
research indicates that there is a strong seman-
tic relationship between the correct word to its
erroneous forms and we can generate OCR er-
ror candidates using semantic similarity. To be
able to train the NMT model, we need to extract
the parallel data of correct words and their OCR
errors. Accordingly, we trained the Word2Vec
model (Mikolov et al., 2013) on the Historical
Newspaper of Finland from 1771 to 1929 using the
Gensim library (Řehůřek and Sojka, 2010). Af-
ter obtaining the Word2Vec model and its trained
vocabulary, we extract the parallel data by us-
ing the Finnish morphological FST, Omorfi (Piri-
nen, 2015), provided in the UralicNLP library
(Hämäläinen, 2019) and – following Hämäläinen
and Hengchen (2019) – Levenshtein edit distance
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(Levenshtein, 1965). The original approach used a
lemma list for English for the data extraction, but
we use an FST so that we can distinguish morpho-
logical forms from OCR errors. Without the FST,
different inflectional forms would also be consid-
ered to be OCR errors, which is particularly coun-
terproductive with a highly-inflected language.

We build a list of correct Finnish words by lem-
matisating all words in the Word2Vec model’s vo-
cabulary: if the lemma is present in the Finnish
Wiktionary lemma list,5 it is considered as correct
and saved as such. Next, for each word in this
“correct" list, we retrieve the most similar words
from the Word2Vec model. Those similar words
are checked to see whether they exist in the cor-
rect list or not and separated into two different
groups of correct words and OCR errors. No-
tice that not all the words in the error list are the
wrong OCR format of the given correct word, and
thus need to be filtered out. Following Hämäläi-
nen and Hengchen (2019), we calculate the Lev-
enshtein edit distance scores of the OCR errors to
the correct word and empirically set a threshold of
4 as the maximum distance to accept as the true
error form of that given word. As a result, for each
given correct word, we have a set of similar cor-
rect words including the given one and a set of er-
ror words. From the two extracted groups, we do
pairwise mapping to have one error word as train-
ing input and one correct word as the target output.
Finally, the parallel data is converted into a char-
acter level format before feeding it to the NMT
model for training. For example: j o l e e n → j
o k e e n (“into a river") pair has the first word is
incorrect and the second one is the right form. We
follow Hämäläinen and Hengchen (2019) and use
OpenNMT (Klein et al., 2017) with default set-
tings, i.e. bi-directional LSTM with global atten-
tion (Luong et al., 2015). We train for 10,000 steps
and keep the last checkpoint as a baseline, which
will be referred to as “NATAS" in the remainder
of this paper.

3.2 Methods

In the following subsections we introduce a dif-
ferent method to create a parallel dataset and ap-
ply a new sequence to the sequence model to train
the data. The baseline approach presented above
might introduce noise when we are unable to con-
fidently know that the error word is mapped cor-

5https://fi.wiktionary.org/wiki/Wikisanakirja:Etusivu

rectly to the given correct word, especially in the
case of semantically similar words that have simi-
lar lengths. Another limitation of the baseline ap-
proach is that NMT model usually requires more
variants to achieve better performance – some-
thing limited by the vocabulary of the Word2Vec
model, which is trained with a frequency thresh-
old so as to provide semantically similar words.
To solve these problems we artificially introduce
OCR-like errors in a modern corpus, and thus
obtain more variants of the training word pairs
and less noise in the data. We further specialise
our approach by applying the Transformer model
with context and non-context words experiments
instead of the default OpenNMT algorithms for
training. In the next section, we detail our imple-
mentation.

3.2.1 Dataset Construction
For the artificial dataset, we use the Yle News cor-
pus6 which contains more than 700 thousand ar-
ticles written in Finnish from 2011 to 2018. All
the articles are stored in a text file. Punctuation
and characters not present in the Finnish alphabet
are removed before tokenisation. After cleaning,
we generate an artificial dataset by two different
methods: random generator and a trained OCR er-
ror generator model.

Random Generator As previously stated, we
will use a random generator to sample an OCR
error word. In OCR text, an error normally hap-
pens when a character is misrecognized or ig-
nored. This behavior causes some characters in
the word to be missed, altered or introduced. The
wrong characters will take a small ratio in the text.
Thus, we design algorithm 1 to produce similar er-
rors in the modern corpus.

For each word in the dataset, we will intro-
duce errors to that word by deleting, replacing
and adding characters randomly with a threshold
of noise rate 0.07. The valid characters to be
changed, added or removed must be in the Finnish
alphabet, we do not introduce special characters as
errors. The idea is that we select a random charac-
ter position in the string with a probability smaller
than noise rate multiplied with length of the string
to restrict the percentage of errors in the word.
This mean with the long word (eg. 15 characters),
there will be always an error proposed. This pro-
cess is repeated for each action of deleting, replac-

6http://urn.fi/urn:nbn:fi:lb-2019030701
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Algorithm 1 Random errors generator
1: procedure RANDOMERROR(Word,NoiseRate)
2: Alphas = "abcdefghijklmnopqrstuvwxyzäåö"
3: for Action in [delete, add, replace] do
4: generate Rand is a random number between 0 and 1
5: if Rand < NoiseRate×WordLength then
6: Select a random character position P in Word
7: if character P is in Alphas then
8: Do the Action on P with Alphas
9: end if

10: end if
11: end for
12: end procedure

ing, adding, thus a word could either have all kinds
of errors or none if the random rate is bigger than
threshold. A longer word is likely to have more
errors than a shorter one.

Trained Generator Similarly to the random
generator, we will modify the correct word into an
erroneous form, but with a different approach. In-
stead of pure randomness, we build a model to bet-
ter simulate OCR erroneous forms. The hypothe-
sis is that if the artificial errors introduced to words
have the same pattern as found in the real OCRed
text, it would be more effective when applying the
resulting model back to the real dataset. For ex-
ample, the letter “i” and “l” are more likely to be
misrecognized than “i” and “g” by the OCR en-
gine.
To build the error generation model, we use the
extracted parallel dataset from the NATAS experi-
ment. However, the source and target for the NMT
model are reversed to have correctly spelled words
as the input and erroneous words as the output
from the training. By trying to predict an OCR
erroneous form for a given correct spelling, the
model can learn an error pattern that mimics the
real OCRed text. OpenNMT uses cross entropy
loss by default, which causes an issue when ap-
plied to solve this problem. In our experiments,
the model eventually predicted an output identical
to the source because it is the most optimal way
to reduce the loss. If we want to generate differ-
ent output for the input, there is a need to penal-
ize the model when having the same prediction as
the input. To solve the problem, we built a sim-
ple RNN translation model with GRU (gated re-
current unit) layers and a custom loss function as
shown in Equation 2. The loss function is built

up from cross entropy cost function in Equation 1,
where H = {h(1), ..., h(n)} is a set of predicted
outcomes from the model and T = {t(1), ..., t(n)}
is the set of targets. We calculate normal cross en-
tropy of predicted output Ŷ and the labels Y for
finding an optimal way to mimic the target Y , on
the other hand, the inverted cross entropy between
Ŷ and the inputs X is to punish the model if the
outcomes are identical to the inputs.

The model’s encoder and decoder each have
one embedding layer with 128 dimensions and
one GRU layer of 512 hidden units. The input
sequences are encoded to have the source’s con-
text, this context is then passed through the de-
coder. For each next character of the output, the
decoder concatenates the source’s context, hid-
den context and character’s embedded vector. The
merged vectors then are passed through a linear
layer to give the prediction. The model is trained
by teacher enforcing technique with the rate 0.5.
This means for the next input character, we either
select the top one from the previous output or use
the already known next one from the target label.

3.2.2 Models
Parallelisation and long memorisation are weak-
ness characteristic of RNNs in NMT (Bai et al.,
2018). Fortunately, Transformer proved to be
much faster (mainly due to the absence of recur-
sion), and since they process sequences as a whole
they are shown to “remember" information bet-
ter through their multi-head attention mechanism
and positional embedding (Vaswani et al., 2017).
Transformer has been shown to be extremely ef-
ficient in various tasks (see e.g. BERT (Devlin
et al., 2018)), which is why we apply this model
to our problem. Our implementation of the Trans-
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cross_entropy(H,T ) = − 1

n

n∑

i=1

t(i) lnh(i) + (1− t(i)) ln(1− h(i))

loss = cross_entropy(Ŷ , Y ) + 1÷ cross_entropy(Ŷ , X)

(1)

(2)

former model is based on (Vaswani et al., 2017)
and uses the Pytorch framework.7 The model con-
tains 3 encoder and decoder layers, each of which
has 8 heads of self-attention. We also imple-
ment a learned positional encoding and use Adam
(Kingma and Ba, 2014) as the optimizer with a
static learning rate of 5 · 10−4 which gave a bet-
ter convergence compared to the default value of
0.001 based on our experiment. Following prior
work, cross entropy was again used as the loss
function.

Our baseline NATAS only has fixed training
samples extracted from the Word2Vec model. In
this experiment, we design a dynamic data loader
which generates new erroneous words for every
mini-batch while training, allowing the model to
learn from more variants at every iteration. As
was mentioned in the introduction, we train con-
textualized sequence-to-sequence character-based
models. Instead of feeding a single error word to
the model as the input, we combine it with the con-
text words before and after it in sequence. We only
consider the correct form of that error word as the
label, and are not predicting the context words.
The input includes the error (target) word in the
middle and its two sides context make up a win-
dow of odd number of words. Hence, a valid win-
dow sliding over the corpus must have an odd size,
for instance 3, 5, etc. The way we construct the in-
put and gold label is presented as follows:

• The window size of n words is selected. The
middle word is considered the target word

• The words on left and right of the target are
context words

• The input sequence is converted in proper
format, for example with window n=5:
<sos> l e f t <sep> c o n t
e x t <ctx> f a r g e t <ctx>
r i g h t <sep> c o n t e x t
<eos> <pad>, where:

– <sos> indicates the start of a sequence;
– <sep> is the separator for the context

words;
7https://pytorch.org/

– <ctx> separates left and right context
with the target;

– <eos> indicates the end of a sequence;
– <pad> indicates the padding if needed

for mini-batch training.

Following the previous section, the “target”
word is generated by creating artificial errors in
two different ways: using random generator, and
a trained generator. For instance, the word “tar-
get” in the example above is modified to “farget”,
and the model is trained to predict the output “tar-
get”. The gold label is also formatted in the same
format, but without any context words. In this
case, the label should have this form: <sos> t
a r g e t <eos>. After having the pairs of
input and label formatted properly, we feed them
into the Transformer model with a batch size of
256 – a balance between the speed and accuracy
in our case. In this experiment, we evaluate our
model with 3 different window sizes: 1, 3, and
5, with the window size of 1 as a special case:
there are no context words, and the input is <sos>
f a r g e t <eos>. For every window size
we train with two different error generators (Ran-
dom and Trained), and have thus 6 models in total.
These models are named hereafter TFRandW1,
TFRandW3, TFRandW5, TFTrainW1, TF-
TrainW3, and TFTrainW5, where TF stands for
Transformer, Rand is for the random generator,
Train is for the trained generator and Wn for
a window of n words. We proceeded with the
training until the loss converged. All models con-
verged after around 20 epochs. The losses for the
Train models are ∼ 0.064 and those for Rand
are slightly lower, with ∼ 0.059.

4 Evaluation

We evaluate all proposed models and the NATAS
baseline on the Ground Truth Finnish Fraktur
dataset8 made available by the National Library of
Finland, a collection of 479 journal and newspaper
pages from the time period 1836 - 1918 (Kettunen

8“OCR Ground Truth Pages (Finnish Frak-
tur) [v1](4.8 GB)", available at https://digi.
kansalliskirjasto.fi/opendata
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et al., 2018). The data format is constructed as
a csv table with 471,903 lines of words or char-
acters and there are four columns of ground truth
(GT) aligned with the output coming from 3 differ-
ent OCR methods TESSERACT, OLD and FR11
(Kettunen et al., 2018).

Despite the existence of character-level bench-
marks for OCR post-correction (e.g. Drobac et al.
(2017)), we elect to evaluate models on the more
realistic setting of whole words. We would like
to note that Finnish has very long words, and as
a result this metric is actually tougher. In the
previous section, our models are trained without
non-alphabet characters, so all the tokens which
have non-alphabet will be removed. We also re-
moved the blank lines which have no result from
OCR. After having the ground truth and OCR
text cleaned, the number of tokens for each OCR
method (TESSERACT, OLD, FR11) are 458,799,
464,543 and 470,905 with accuracies of 88.29%,
75.34% and 79.79% respectively. The OCR words
will be used as input data for the evaluation of our
post-correction systems. The translation processes
apply for each OCR method separately with the in-
put tokens formatted based on the model’s require-
ment. In NATAS, we used OpenNMT to translate
with the default settings. In Transformer models
with context, we created a sliding window over
the rows of the OCRed text. For the non-context
model, we only need a single token for source in-
put. These models do the translation with beam
search k = 3 and the highest probability sequence
is chosen as the output. The result is shown in Ta-
ble 1.

Models TESSERACT
(88.29)

OLD
(75.34)

FR11
(79.79)

NATAS 63.35 61.63 64.95
TFRandW1 69.78 67.33 71.64
TFRandW3 70.02 67.45 71.69
TFRandW5 71.24 68.35 72.56
TFTrainW1 70.22 68.30 72.22
TFTrainW3 71.19 69.25 73.14
TFTrainW5 71.24 69.30 73.21

Table 1: Models accuracy on word level for all
three OCR methods (%)

4.1 Error Analysis
From the result in Table 1, we can see all the mod-
els could not make any improvement on OCR text.
However, there is clearly an advantage of using an

artificial dataset and Transformer model for train-
ing, which has a 7 percentage points higher ac-
curacy compared to NATAS. After analyzing the
result, we found that there are many interesting
cases where the output words are considered as er-
rors when compared to the ground truth directly
but they are still correct. The difference is that
the ground truth has been corrected by maintain-
ing the historical spelling, but as our model has
been trained to correct words to a modern spelling,
these forms will appear as incorrect when com-
pared directly with the ground truth. However,
our models still corrected many of them right, but
just happened to normalize the spelling to modern
Finnish at the same time. As examples, the word
lukuwuoden (“academic year") is normalized to
lukuvuoden, and the word kortt (“card") is nor-
malized to korrti, which are the correct spellings
in modern Finnish. So, the problem here is that
many words have acquired a new spelling in mod-
ern Finnish but are seen as the wrong result if com-
pared to the ground truth, which affects the real ac-
curacy of our models. In the 19th century Finnish
text, the most obvious difference compared to
modern Finnish is the variation of w/v, where most
of the words containing v are written as w in old
text, whereas in modern Finnish w is not used in
any regular word. Kettunen and Pääkkönen (2016)
showed in their experiments that the number of to-
kens containing letter w contribute to 3.3% of all
tokens and 97.5% of those tokens is missrecog-
nized by FINTWOL – a morphological analyzer.
They also tried to replace the w with v and the
unrecognized tokens decreased to 30.6%. These
numbers are significant which give us an idea to
apply it on our results to get a better evaluation.
Furthermore, there is another issue for our models
when they try to make up the new words which do
not exist in Finnish vocabulary. For example the
word samppaajaa is likely created from the word
samppanjaa (“of Champagne") which must be the
correct one. To solve these issues, we suggested a
fixing pipeline for our result:

1. Check if the words exist in Finnish vocabu-
lary using Omorfi with UralicNLP, if not then
keep the OCRed words as the output.

2. Find all words containing letter v, replace by
letter w.

After the processing with the strategy above, we
get updated results which can be found in Tables 2,
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3, and 4.

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 74.71 16.54 82.43
TFRandW1 80.49 16.13 89.03
TFRandW3 80.79 16.94 89.26
TFRandW5 81.89 17.02 90.49
TFTrainW1 83.05 17.11 91.79
TFTrainW3 83.96 18.15 92.68
TFTrainW5 84.00 18.02 92.75

Table 2: Models accuracy post-processing for
Tesseract (88.29%)

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 71.19 30.66 84.45
TFRandW1 75.10 28.14 90.47
TFRandW3 75.40 28.26 90.83
TFRandW5 76.26 28.63 91.85
TFTrainW1 78.19 35.07 92.30
TFTrainW3 79.26 36.03 93.41
TFTrainW5 79.17 35.41 93.50

Table 3: Models accuracy post-processing for
OLD (75.34%)

Models
Post

processed
accuracy

Error
words

accuracy

Correct
words

accuracy

NATAS 75.06 36.52 84.81
TFRandW1 79.66 36.04 90.71
TFRandW3 80.06 37.00 90.96
TFRandW5 81.09 38.04 91.99
TFTrainW1 82.39 43.39 92.26
TFTrainW3 83.50 45.17 93.21
TFTrainW5 83.34 44.01 93.30

Table 4: Models accuracy post-processing for
FR11 (79.79%)

The results in Tables 2, 3 and 4 show a vast
improvement for all models with the accuracy in-
creased by 10-12 percentage points. In Tesseract,
where the original OCR already has a very high
quality with an accuracy of about 88%, there is no
gain for all models. The best model in this case
is TFTrainW5 with 84% accuracy. The reason for
the models’ worse performance is that they intro-

duced more errors on the already correct words by
OCR than fixing actual error words. While the
ratio of fixing the error words (18.02%) is much
higher than the ratio of confounding the correct
words (7.25%), however, due to the number of cor-
rect words taking a much larger part in the cor-
pus, the overall accuracy is decreased. In the OLD
setting with accuracy of about 75%, 5 out of 7
models have successfully improved the accuracy
of the original text. The highest number comes
to TFTrainW3 which outperforms OLD by 3.92
percentage points, and following closely is TF-
TrainW5 with an accuracy of 79.17%. In OLD,
we see better error words corrected (36.03%) com-
pared to Tesseract. The accuracy of the TF-
TrainW5 model for the already corrected words is
also slightly higher with 93.5% versus Tesseract
92.75%. The last OCR method for evaluation is
FR11 (79%), where – just like in OLD – 5 out of
7 models surpass the OCR result. Again, the TF-
TrainW3 gives the highest number with 3.71 per-
centage points improvement on the OCRed text.
While the TFTrainW3 shows surprisingly good re-
sults on fixing the wrong words with 45.17% ac-
curacy, the TFTrainW5 performs slightly better at
handling the right words. Common to all our pro-
posed models, the window size of 1 somewhat un-
surprisingly performs worse within both the Rand
and Train variants.

5 Conclusion and Future work

In this paper, we have shown that creating and us-
ing an artificial error dataset clearly outperforms
the NATAS baseline (Hämäläinen and Hengchen,
2019), with a clear advantage for the Train over
the Rand configuration. Another clear conclusion
is that a larger context window results in increas-
ing the accuracy of the models. Comparing the
new results for all three OCR methods, we see the
models are most effective with FR11 when the ra-
tio of fixing wrong words (45.17%) is high enough
to overcome the issue of breaking the right words
(6.7%). Our methods also work very well on OLD
with ability to fix 36.03% of wrong words and
handle more than 93% of right words correctly.
However, our models are not compelling enough
to beat the accuracy achieved by Tesseract, a con-
clusion we see as further work.

In spite of the effectiveness of the post-
correction strategy, it does not guarantee that all
the words with w/v replaced are correct, nor that
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UralicNLP manages to recognize all the existing
Finnish words. For example: the wrong OCR
word mcntoistamuotiscn was fixed to metoistavuo-
tisen which is the correct one according to the gold
standard, but UralicNLP has filtered it out due to
not considering that is the valid Finnish word. This
is true, as the first syllable kol was dropped out
due to a line break in the data, and without the
line break, the word would be kolmetoistavuotisen
(“13 years old"). This means that in the future,
we need to develop better strategies more suitable
to OCR contexts for telling correct and incorrect
words apart.

This implies that in reality the corrected cases
can be higher if we don’t revert the already nor-
malized w/v words. In addition, if there is a bet-
ter method to ensure a word is valid in Finnish,
the result could be improved. Thus, our evaluation
provides an overall view of how the Transformer
and Trained Error Generator models with context
words could improve the post OCR correction no-
tably. Our methods also show that using artificial
dataset from a modern corpus is very beneficial to
normalize the historical text.

Importantly, we would like to underline that our
method does not rely on huge amounts of hand an-
notated gold data, but can rather be applied for as
long as one has access to an OCRed text, a vocabu-
lary list, a morphological FST and error-free data.
There are several endangered languages related to
Finnish that already have these aforementioned re-
sources in place. In the future, we are interested in
trying our method out in those contexts as well.
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Abstract

Lemmatization is often used with mor-
phologically rich languages to address is-
sues caused by morphological complex-
ity, performed by grammar-based lemma-
tizers. We propose an alternative for this,
in form of a tool that performs lemmati-
zation in the space of word embeddings.
Word embeddings as distributed represen-
tations natively encode some information
about the relationship between the base
and inflected forms, and we show that it
is possible to learn a transformation that
approximately maps the embeddings of in-
flected forms to the embeddings of the cor-
responding lemmas. This facilitates an al-
ternative processing pipeline that replaces
traditional lemmatization with the lemma-
tizing transformation in downstream pro-
cessing for any application. We demon-
strate the method in the Finnish language,
outperforming traditional lemmatizers in
an example task of document similarity
comparison, but the approach is language
independent and can be trained for new
languages with mild requirements.

1 Introduction

Morphologically rich languages (MRLs) encode
more information (such as case, gender, and tense)
into single word units, compared to analytical lan-
guages like English. For example, Finnish has 15
different word cases for nouns and adjectives. The
different cases generate new words from the syn-
tactical point of view, and in combination with
plural forms Finnish ends up having 30 different
word forms for each noun and adjective.

A rich morphology results in extremely large
vocabulary and hence low frequency for most
word forms in corpora of reasonable size, causing

problems, e.g., when learning distributed repre-
sentations – word embeddings – today widely used
in most language processing tasks. While embed-
dings can be trained for MRLs using the tradi-
tional methods, such as fastText (Bojanowski
et al., 2016), Word2Vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014), their quality still
leaves a lot to desire. For example, the results on
standard word embedding tests are often worse for
MRLs (Cotterell et al., 2018).

The natural solution for addressing morpholog-
ical complexity is lemmatizing, often used as pre-
processing before analysis. Even though lemma-
tization loses information by completely ignor-
ing the case, it typically improves performance in
various language processing tasks. Transformers
and other flexible language models (Devlin et al.,
2019; Brown et al., 2020), as well as advanced tok-
enization methods (Schuster and Nakajima, 2012;
Kudo and Richardson, 2018), may have reduced
the need for lemmatization in general, but it still
remains vital for MRLs for many tasks (Ebert
et al., 2016; Cotterell et al., 2018; Kutuzov and
Kuzmenko, 2019).

Traditional lemmatization does not, however,
resolve all issues caused by rich morphology, es-
pecially as part of a pipeline that uses word em-
beddings. The embeddings themselves are dif-
ficult to estimate for MRLs and the embedding
methods are typically not transparent about their
uncertainty. For instance, the lemma itself may be
rare in a typical training corpus and hence we may
even switch to using a less reliable embedding,
without knowing it. Ebert et al. (2016) proposed
a possible resolution of training the embeddings
on a lemmatized corpus, but this prevents the use
of high-quality pretrained embeddings available
for many languages and may otherwise hurt em-
bedding quality. The standard processing pipeline
also requires access to a good lemmatizer, which
may not be available for rare languages, and some-
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Figure 1: (Left): Traditional task models are
trained on the embeddings of either all word forms
or the lemmas, obtained by preprocessing with a
lemmatizer. (Right): We use embeddings of all
word forms but normalize them in the embedding
space, integrating naturally into the task model.

times they do not work ideally for specialized vo-
cabularies (e.g. medical language). The creation
of such a lemmatizer often requires expert knowl-
edge of the target language.

We propose a novel approach for addressing
rich morphology, illustrated in Figure 1. Instead
of using a traditional lemmatizer to find the lem-
mas and using the embeddings for those to rep-
resent the content, we do the opposite: We start
with the embeddings for all original word forms
and then perform lemmatization in the embedding
space. This is carried out by a neural network that
approximately maps the embeddings of inflected
forms into the embeddings of the lemmas. We
believe that this may provide embeddings that are
better for downstream processing tasks compared
to the ones available for the lemmas, for instance
when the lemma itself is rare since the model
is implicitly able to leverage information across
multiple words and cases. Another advantage of
lemmatization in the embedding space is easy in-
tegration as part of the standard modeling work-
flow that often builds on neural networks anyway,
instead of requiring a separate lemmatizer.

Traditional lemmatization is basically a
character-level operation, where grammar rules
are used to backtrack the basic form that could
have generated the inflected form. We, how-
ever, consider word inflections as ”bias” in the
embedding space, so that the embedding for
the inflected word combines (in some unknown
way) the semantic meaning of the word and the
case information. Consequently, our formulation

resembles conceptually the problem of bias
removal widely studied in the word embedding
literature (Bolukbasi et al., 2016; Brunet et al.,
2019). The task in bias removal is to transform
the embeddings of individual words such that
unwanted systematic biases related to gender etc.
disappear. Our approach can be interpreted in
this context as a method of removing undesired
morphological information while retaining the
semantic meaning of the word.

We demonstrate the approach on the Finnish
language, restricting the analysis for nouns and
adjectives that often contain the most important
content words for tasks like document similar-
ity comparison or information retrieval. We use
pretrained fastText embeddings (Bojanowski
et al., 2016) that use subword-level information to
provide embeddings for all possible word forms
and train a model for mapping them for embed-
dings of the lemmas using on the dataset extracted
from Wiktionary by Durrett and DeNero (2013).
The approach is, however, directly applicable to
other word classes and languages. Besides the pre-
trained embeddings, it requires only access to (a)
existing list of pairs of lemmas and inflected words
as in our case, (b) dictionary and morphological
generator, or (c) existing traditional lemmatizer
for the language. For instance, fastText pro-
vides such embeddings for 157 languages, and
morphological analyzers or generators exist for
most of these.

Besides the core concept of lemmatizing in the
embedding space, our main contributions are in
the specification of practical details for learning
the lemmatizers. We specify four alternative neu-
ral network architectures, define a suitable ob-
jective function and quality metric, and propose
a novel idempotency regularization technique to
prevent the models from doing anything else be-
sides the lemmatization. We evaluate the approach
in document comparison, outperforming the stan-
dard pipeline using traditional lemmatizers, and
demonstrate it additionally in the task of word list
generation.

An open-source implementation of the
method in Python is made available at
https://github.com/jalagus/
embedding-level-lemmatization.
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2 Related Work

Even though we are the first to directly consider
the task of transforming embeddings to lemma-
tize words, the general question of addressing
rich morphology in distributed representations has
been studied from various perspectives.

Cotterell et al. (2018) studied the effect of mor-
phological complexity for task performance over
multiple languages. They showed that morpholog-
ical complexity correlates with poor performance
but that lemmatization helps to cope with the com-
plexity. Kutuzov and Kuzmenko (2019) showed a
similar effect to hold even with more complex lan-
guage models, at least for the Russian language.
Ebert et al. (2016), in turn, showed that for MRLs
we can improve word similarity comparisons by
learning Word2Vec embeddings from a lemma-
tized corpus, rather than training them on all data
and lemmatizing while learning the task model.

Kondratyuk et al. (2018) studied supervised
lemmatization and morphological tagging using
bidirectional RNNs with character and word-level
embeddings in MRLs. They showed that a com-
bination of lemma information and morphologi-
cal tags improve lemmatization and tagging, but
may hurt for English. Along similar lines, Rosa
and Žabokrtskỳ (2019) suggested using word-
embedding clustering to improve lemmatization.

As we consider lemmatization from the per-
spective of bias removal, our work relates to meth-
ods for removal of gender bias (Bolukbasi et al.,
2016; Zhao et al., 2017). In this line of work, the
embedding space is assumed to encode gender in-
formation in specific dimensions, so that bias can
be minimized by removing them. The main dif-
ference to our work is that their goal is primarily
in removing the bias, whereas we look for embed-
dings that retain the semantic meaning of the word
well and that are good for downstream task perfor-
mance.

3 Evaluation of Lemmatization in
Embedding Spaces

A traditional lemmatizer either returns the true
lemma or not, but when operating in the embed-
ding space of continuous vector representations
the question of correctness needs more attention.
We start by discussing the evaluation before pro-
ceeding to explain the approach itself that builds
on these insights.

First of all, we note that we can use task per-
formance in any downstream task to evaluate the
quality – our ultimate goal is in solving the task
well, not in learning the embeddings. We will
demonstrate this later in the task of document sim-
ilarity comparison. However, it is highly use-
ful to also have a generic task-independent met-
ric directly measuring the lemmatization accuracy,
which can also be used for motivating the objec-
tive for training. We want a good word embed-
ding space lemmatizer M(ew) to simultaneously
satisfy two different criteria:

1. Ability to transform any embedding ew to the
embedding of its lemma w′, and

2. Ability to retain embeddings of lemmas or
lemmatized embeddings as is.

The first criterion is intuitive, matching our
goal, but we need to decide how to measure the
similarity. For high-dimensional spaces, it is not
reasonable to expect a perfect recovery of the em-
bedding ew′ itself, but instead, we should count all
embeddings that are close enough as correct. To
determine ’close enough’, we use a simple defi-
nition based on neighborhoods: Lemmatization is
correct if the closest neighbor for the transformed
embedding of a word w is the embedding of its
lemma w′. We denote by ACCLEM the accu-
racy of nearest-neighbor (rank-1) retrieval accu-
racy for w′ in the neighborhood of M(ew), using
Euclidean distance for similarity.

The second criterion is imposed as we want to
consider the lemmatization step as a black box for
which we can feed in arbitrary words, including
those that are already lemmas. The lemmatizer
should not alter them in any way. We measure
this by an indirect metric of ACCIDEM , which
corresponds to the rank-1 retrieval accuracy for w′

in the neighborhood of M(M(ew)), the output for
an embedding ew passed twice through the model.
For a more detailed discussion and justification,
see Section 4.3.

Together the metrics ACCLEM and
ACCIDEM characterize the general ability
of any embedding-space lemmatizer in a model-
independent way; both are based on retrieval
accuracy and can be evaluated without additional
assumptions besides the distance measure. We
will later use them also to motivate our objective
function, a differentiable approximation for their
weighted combination.
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4 Approach

Denoting an arbitrary inflected form word embed-
ding by ew and the related lemma word embed-
ding by ew′ , we wish to learn some mapping M(·)
such that M(ew|θ) ≈ ew′ . We do this by assum-
ing a parametric model family, a neural network,
and learning its parameters θ based on a collection
of (ew, ew′) pairs of pretrained embeddings in a
supervised fashion. For simplicity of notation, we
omit the parameters and simply write M(ew) in-
stead of M(ew|θ) for the rest of the paper.

We hypothesize that inflected forms lie on a spe-
cific subspace of the embedding space (see Fig-
ure 2) and that we can retrieve the lemmatized
forms by a simple, but a possibly nonlinear, trans-
formation in the embedding space. This can be
interpreted as the removal of ”bias” caused by the
inflection. We want this mapping to be lightweight
so that it can be integrated as part of a task model
with a small computational overhead. Complex
transformations are discouraged also because they
would increase the risk of altering the semantic
content captured by the embedding.

We discuss two alternative ways of lemmatiz-
ing in the embedding space. The first approach
learns a separate model Mc(ew) for each word
case c so that e.g. partitives and genitives are
processed with different models. This allows us-
ing simple models even if all of the rich morphol-
ogy was not constrained in low-dimensional sub-
spaces, and also allows reversing the model for
morphological generation (see Section 7).

For the processing of arbitrary words with an
unknown case, we can make a function com-
posite of multiple models, so that the output of
one model is always fed as input for the next
one. For instance, to lemmatize both partitives
and genitives we can compute (Mp ◦Mg)(ew) =
Mpartitive(Mgenitive(ew)), in either order. As-
suming the models do nothing else besides remove
the effect of the particular case, then this compos-
ite function performs the same operation as either
model alone, depending on the case of the input
word. We naturally cannot guarantee the trans-
formations work exactly like this, but will later
present a regularization technique that specifically
encourages the models to focus only on the case
removal and show empirically that such function
composition of multiple models works well.

The other alternative is learning a single global
model M(ew) that can lemmatize all word forms.

Embedding space

Genitive subspace

Lemma subspace

Partitive subspace

Figure 2: Embedding space as a union of inflected
subspaces. Each word class creates a subspace and
arrows represents the mappings we wish to learn in
order to do lemmatization in the embedding space.

We demonstrate also this approach, but our main
focus is on the separate models for each case.

4.1 Neural Architectures
We use feedforward neural networks as models
Mc(ew), restricting the architecture choice for
small networks to retain computational efficiency.
Both input and output dimensionality needs to
match the dimensionality of the embedding, in our
case d = 300. We investigate empirically four al-
ternative architectures:

1. Linear
W1ew + b1, where W1 ∈ Rd×d

2. Simple
W2R(W1ew+b1)+b2, whereW1 ∈ R500×d,
W2 ∈ Rd×500

3. Compression
W2R(W1ew+b1)+b2, whereW1 ∈ R100×d,
W2 ∈ Rd×100

4. Complex
W3(R(W2R(W1ew + b1) + b2) + b3, where
W1 ∈ R500×d, W2 ∈ R500×500, W3 ∈
Rd×500

In all variants,R(·) denotes the rectified linear unit
and bi is a bias term of proper size.

The linear model is motivated by the property of
some embeddings encoding various properties as
linear relationships (e.g. king−man+woman ≈
queen) and fast computation. However, there
are no guarantees a linear transformation is suf-
ficient for lemmatization and hence we consider
also the three simple nonlinear architectures with
at most two hidden layers. Other architectures
could certainly be used and a more careful choice
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of a specific architecture could further improve the
lemmatization accuracy, but we will later show
that already these lightweight models work well
in practice.

4.2 Objective and Training

To learn models such that Mc(ew) ≈ ew′ we
need to optimize for a loss function that penal-
izes for difference between Mc(ew) and ew′ for
known pairs of w and w′. As explained in Sec-
tion 3, we will eventually measure the quality by
nearest-neighbor retrieval in the embedding space.
Directly optimizing for that is difficult, and hence
we optimize for a natural proxy instead, minimiz-
ing the squared Euclidean distance

D(Mc(ew), ew′) = ‖Mc(ew)− ew′‖2.

Note that often the norm of the embeddings
is considered irrelevant and consequently e.g.
Word2Vec (Mikolov et al., 2013) used cosine sim-
ilarity to measure distances. We want to retain
the norms that for some embeddings encode in-
formation about e.g. word frequency (Schakel and
Wilson, 2015) and hence chose the Euclidean dis-
tance.

For training the model we need a collection of
N pairs of embeddings for words w and their lem-
mas w′. Assuming an embedding library that pro-
vides embeddings for large vocabulary (or even
arbitrary word forms, building on subword-level
embeddings (Bojanowski et al., 2016)) we simply
need some way of constructing these pairs. The
two practical alternatives for this are

• Dictionary of lemmas w′ and a morphologi-
cal generator to form wc for cases c

• Collection of words w and a traditional lem-
matizer for obtaining their lemmas w′

For case-specific models we only use pairs corre-
sponding to the case, whereas for the global model
we can pool all pairs, potentially having multiple
cases for the same lemma in the training data.

4.3 Idempotency Regularization

Any model trained as above learns to map w to w′,
but we cannot tell what it does for words that are
already lemmas or that belong to some other case
if training a case-specific model. One could in
principle add pairs of (w′, w′) into the training set
to address the former, but to prevent transforming

words of other classes we would need similar pairs
for all possible cases. This would be extremely in-
efficient.

To avoid transforming the embeddings of other
word forms, we propose an alternative of novel
regularization strategy encouraging idempotency,
meaning that the same transformation applied
multiple times will not change the output be-
yond the initial result. We do this by measuring
the Euclidean distance D(Mc(ew),Mc(Mc(ew))
between the output of the model Mc(ew) (the
supposed lemmatized embedding) and the result
of passing the input through the model twice,
Mc(Mc(ew)). By encouraging this distance to
be small we encourage the model to only remove
the information about the particular case, with-
out otherwise changing the embedding. Concep-
tually this is related to regularization techniques
like Barone et al. (2017) designed to prevent catas-
trophic forgetting (Kirkpatrick et al., 2017); both
prevent losing the already learned structure while
allowing the model to adapt to a new task.

In practice we minimize the objective

L(ew, ew′) = α×D(Mc(ew), ew′)+

(1− α)×D(Mc(ew),Mc(Mc(ew))),
(1)

where α ∈ [0, 1] controls the amount of regular-
ization. With α = 1 we only optimize the loss and
by decreasing the parameter we start regularizing
the solution using idempotency. Note that the ex-
treme of α = 0 is not meaningful, since the loss
term disappears.

5 Model Validation

We validate the approach and the modeling
choices (architecture and regularization), using
morphologically rich Finnish as an example lan-
guage. We first evaluate the performance in a task-
agnostic manner, before demonstrating case exam-
ples in the following two sections.

Data We validate the approach on Finnish lan-
guage, using pretrained embeddings provided by
the fastText library (Bojanowski et al., 2016).
The embeddings were trained on Common Crawl
and Wikipedia corpora and have dimensionality of
d = 300.

The lemmatization models are trained on the
data provided by Durrett and DeNero (2013)
which contains words extracted from the open dic-
tionary Wiktionary. It directly provides pairs of
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inflected and base forms for words, so we do not
need to construct them. For Finnish, the dataset
contains 1,136,492 word pairs of adjectives and
nouns both in singular and plural, resulting in
roughly 42,000 word pairs per word case. Each
row in the dataset is a pair of form (w,w′) which
are then transformed to pairs of word embeddings
(ew, ew′) using the fastText library.

Training We use AdamW optimizer (Kingma
and Ba, 2014; Loshchilov and Hutter, 2018) with
a learning rate of 0.0002 and a batch size of 32 for
training the models in all experiments, but all rea-
sonable stochastic optimization algorithms would
work. We separately validated in preliminary tests
that running the optimization until convergence of
the training objective does not result in overfit-
ting, and hence for the rest of the experiments we
used 50 epochs for training to make sure the mod-
els are fully converged. In practice, 20-30 epochs
were always enough. All experiments shown here
are efficient, so that training individual models on
consumer-grade 8-core CPU was done in the order
of minutes.

Model architectures To compare different ar-
chitectures, we trained individual models Mc(ew)
on all 15 word cases of Finnish with α = 1.0 (i.e.
no regularization), not separating plural and sin-
gular word cases so that always 10,000 word pairs
were used for training and 1,000 for testing. The
word pairs for training and test sets were chosen
randomly. For the final score, we averaged 10 dif-
ferent runs over randomized splits of the data so
that the splits were the same for all models for each
run.

Table 1 compares the four different architec-
tures in terms of metrics explained in Section 3,
presenting the average accuracy over all word
cases (the results are consistent over different
cases, not shown here). The main result is that
except for the compression architecture the accu-
racies ACCLEM are very similar. This suggests
there may not be a specific low-dimensional sub-
space that is sufficient for lemmatization, but that
it can be modeled with fairly simple architectures
nevertheless. In terms of ACCIDEM , all mod-
els here coincidentally converge to the same value
that is close to perfect despite not regularizing for
idempotency.

We also trained a global model M(ew) for lem-
matizing all cases using the simple model architec-

Model ACCLEM ACCIDEM Time/epoch (s)

linear 0.908 0.978 1.363
compression 0.870 0.978 1.807
simple 0.915 0.978 3.044
complex 0.911 0.978 3.669

global 0.974 0.998 11.145

Table 1: Lemmatization accuracy (ACCLEM ) and
idempotency criterion (ACCIDEM ) for alterna-
tive network architectures for case-specific mod-
els, averaged over all 15 word cases. The global
model can process all cases, but the numerical ac-
curacy is not directly comparable due to a different
number of test instances.

ture, using a combined data set of 50,000 exam-
ples covering the different cases and 5,000 word
pairs for evaluation. Note, however, that the eval-
uation set was not the same as for the case-specific
models that all used only pairs for the specific
case. Hence the numbers in Table 1 are not di-
rectly comparable, but we can still confirm that
also the global model learns to lemmatize well.

Function composition and idempotency regu-
larization When training separate models for
each word case c, we need a function composi-
tion of multiple models in order to process arbi-
trary input word forms. To perform this, we need
idempotency regularization to prevent individual
models from transforming words of wrong cases.

Table 2 demonstrates the effect of the regular-
ization parameter α for an example sentence, us-
ing two models trained for lemmatizing genitives
and partitives and their combination as function
composition. For very small α already the indi-
vidual models fail due to almost ignoring the main
task, whereas for very large α (no regularization)
the composition breaks. With α = 0.4 we can ac-
curately lemmatize both forms.

6 Application: Document Comparison

To demonstrate the method in a typical applica-
tion, we consider the task of document compar-
ison where the lemmas of content words often
provide sufficient information on similarity. We
use a dataset provided by the Finnish national
broadcasting company Yle1 containing news arti-
cles written in easy-to-read Finnish. We created
an artificial dataset by splitting news articles into

1http://urn.fi/urn:nbn:fi:lb-2019121205
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ααα Word case Example sentence

- original Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uutta ystävää

0.1 genitive Leijona oli saanut näinen hyvä pipopää nöyrä tahdonvoima näinen iso uusi ystävää
0.1 partitive Leijona oli saanut paitsi hyvä pehmyt nöyrä mielen myös muutama uusi ystävä
0.1 gen + part Leijona oli syynännyt näinen hyvä pipopää nöyrä tunteellisuus näinen pieni uusi tyttökaveri

0.4 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
0.4 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uusi ystävä
0.4 gen + part Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

0.7 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
0.7 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös useampi uusi ystävä
0.7 gen + part Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

1.0 genitive Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uutta ystävää
1.0 partitive Leijona oli saanut paitsi hyvän ja nöyrän mielen myös monta uusi ystävä
1.0 gen + part Leijona oli saanut paitsi hyvä yskäkin nöyrä tahdonvoima myös muutama uusi ystävä

0.3 global Leijona oli saanut paitsi hyvä ja nöyrä mielen myös monta uusi ystävä

- ground truth Leijona oli saanut paitsi hyvä ja nöyrä mieli myös monta uusi ystävä

Table 2: Idempotency regularization for function composition of separate models for lemmatizing gen-
itives and partitives. Both too large and small α introduce mistakes for this example sentence, but with
α = 0.4 and the alternative of global model the result is near perfect. The words in genitive form in the
original sentence are {hyvän, nöyrän,mielen}, and the words in partitive form are {uutta, ystävää}

two halves and try to predict which two parts be-
long together by ranking the articles via average
vector document representations. We take only a
subset of the data, using the first 10,000 news arti-
cles from the first three months of the year 2018.

We compare the proposed approach against a
conventional pipeline that first lemmatizes the
words using the uralicNLP library (Hämäläinen,
2019) (and then uses embeddings for the lemmas
for the task) and a pipeline that directly uses the
embeddings for all word forms. For the proposed
approach we perform lemmatization in the embed-
ding space for four different cases and their com-
binations, using the simple architecture.

For all methods, we form a representation for
the document by computing the mean of the word
embeddings for all words in the document and use
cosine similarity between these mean embeddings
to compare documents. One could alternatively
consider richer document representations (Wieting
et al., 2015; Arora et al., 2017; Gupta et al., 2020)
or more accurate similarity metrics (Torki, 2018;
Lagus et al., 2019) that might improve the overall
accuracy, but we chose the most commonly used
approach that is easy to understand to focus on
demonstrating the effect of the lemmatization.

We measure performance by retrieval accuracy,
by computing the rank of the second half of a
given document amongst the set of all 10,000 sec-
ond halves. Figure 3 shows the overall perfor-
mance of the different model variants as a func-

tion of the regularization parameter, measured by
rank-1 accuracy. We observe three clear results:
(a) all ways of lemmatization clearly improve the
task performance compared to no lemmatization
at all, (b) lemmatization in the embedding space
using case-specific models is considerably better
than the alternatives of traditional lemmatizer and
the global model lemmatizing in the embedding
space, and (c) idempotency regularization is cru-
cial, but the method is extremely robust with re-
spect to the specific choice of α – all values be-
tween 0.2 and 0.9 result in almost identical per-
formance.

Table 3 illustrates the task performance in more
detail for models trained using good choices for
the regularization parameter α, measured using re-
trieval accuracy with different ranks. The results
are consistent over the ranks, with case-specific
lemmatizers in the embedding space consistently
outperforming the other methods.

7 Application: Word List Generation

Even though our main goal is to learn lemmatiz-
ers, we note that that the approach is more general.
Instead of training a lemmatizer Mc(ew) ≈ ew′ ,
we can use the exact same architectures and data
for training Gc(ew′) ≈ ew to learn generators that
provide the embedding for the inflected form for
some particular case c.

We demonstrate this via the simple application
of word list expansion, which could be used simi-
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Model Word case ααα R@1 R@2 R@3 R@4 R@5 R@6 R@7 R@8 R@9 R@10

simple gen 0.8 0.368 0.455 0.502 0.534 0.560 0.582 0.599 0.613 0.625 0.636
simple gen + part 0.8 0.390 0.483 0.533 0.569 0.594 0.613 0.632 0.647 0.658 0.669
simple gen + ine + part 0.5 0.395 0.491 0.540 0.573 0.597 0.620 0.636 0.649 0.663 0.674
simple gen + ine + ela + part 0.5 0.390 0.482 0.533 0.567 0.594 0.614 0.631 0.645 0.657 0.668
global - 0.9 0.329 0.411 0.458 0.488 0.513 0.532 0.548 0.561 0.573 0.585
lemmatizer - - 0.311 0.391 0.434 0.464 0.485 0.503 0.518 0.532 0.543 0.552
none - - 0.286 0.362 0.404 0.431 0.454 0.474 0.490 0.501 0.514 0.526

Table 3: The best combinations of each model version averaged over 10 different subsets of the news
data. R@K means that we rank the documents by similarity and measure the accuracy of the relevant
document being within the top K documents.

larly to query expansion for retrieval tasks. Given
a list of words w′ provided in base form and their
embeddings ew′ , we form a list of embeddings for
different inflected forms. We trained case-specific
models Gc(ew′) similar to before with different
values for α, observing a similar trend: the method
is robust for the choice, as long as extreme values
are avoided.

Table 4 illustrates the method for the
word list {jääkiekko, Suomi, V enäjä}
({ice hockey, F inland,Russia} in English)
one could use as keywords for searching infor-
mation about ice hockey matches between the
two countries. We show here the words with the
embeddings closest to the ones provided by the
generator models to verify it works as intended,
but in real use, we would naturally use the
transformed embeddings directly for the retrieval
task – they are likely to be better representations
especially for rare cases for which the actual
pre-computed embedding ew is likely to be noisy.

8 Conclusions

For MRLs lemmatization helps in many tasks. We
showed that the conventional pipeline using tra-
ditional lemmatizers as preprocessing can be re-
placed by lemmatization in the embedding space.
Already simple neural networks can transform the
embeddings of inflected words so that the clos-
est word in the embedding space is of the correct
lemma. This verifies lemmatization in the embed-
ding space is possible, but in real applications, we
naturally would not convert the result back to the
lemma. Instead, any downstream task simply pro-
cesses the lemmatized embeddings directly.

We showed that the method outperforms con-
ventional lemmatization preprocessing in the doc-
ument similarity comparison task, which implies
we are not merely learning to replicate the exact
lemmatization but instead learn embeddings that

Regularization parameter

A
cc

u
ra

cy

Figure 3: The effect of the regularization param-
eter (the α parameter) on full-length document
comparison task using rank-1 accuracy as the scor-
ing method. There is a notable improvement over
the baselines (lemmatizer and none) when using
our models with idempotency regularization pa-
rameter chosen within the range (0.2, 0.9), and the
improvement is highly insensitive to the specific
value of the parameter.

better capture the word content. We hypothesize
this is related to how rare words are represented
in the embedding space; for rare words, the em-
beddings for all word forms are unreliable, includ-
ing the one for the lemma itself. Subword-level
embeddings, like fastText used in our exper-
iments, may still be able to learn sensible em-
beddings for the collection of all inflected forms
together, and by lemmatizing in the embedding
space we borrow some information from all of the
forms. In other words, we argue that the approx-
imate lemmatization performed by the neural net-
work may have the regularizing ability to reduce
noise in embeddings of rare words so that the ’ap-
proximation’ is actually better than the target em-
bedding used during training.
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Word case Expanded form Ground truth

genitive jääkiekon jääkiekon
genitive Suomen Suomen
genitive Venäjän Venäjän
inessive jääkiekkossa jääkiekossa
inessive Suomessa Suomessa
inessive Venäjässä Venäjässä
elative jääkiekosta jääkiekosta
elative Suomesta Suomesta
elative Venäjästä Venäjästä
partitive jääkiekkoa jääkiekkoa
partitive Suomea Suomea
partitive Venäjää Venäjää
illative jääkiekkoon jääkiekkoon
illative Suomeen Suomeen
illative Venäjälle Venäjälle

Table 4: Example word list expansion generated
for the word list {jääkiekko, Suomi, V enäjä}
({ice hockey, F inland,Russia}) using morpho-
logical generator models for genitive, inessive, el-
ative, partitive, and illative cases with regulariza-
tion parameter α = 0.4. Note the mistake for
the inessive case of ”jääkiekko”, which should be
”jääkiekossa” and not ”jääkiekkossa” – the word
has the correct ”-ssa” suffix but the root is incor-
rect. It is also worth noting that ”jääkiekkossa”
is not a valid word form in Finnish at all, but the
fastText library provides embeddings for arbi-
trary strings using sub-word information. The em-
beddings for the two forms are likely very close,
and hence the mistake would have no effect in re-
trieval tasks.

In this work we presented the overall concept
for lemmatization in the embedding space and ex-
perimented on various technical choices, building
the basis for future development. Our main find-
ings were that a global model can perform lemma-
tization well when measured only by accuracy, but
for the task of document comparison, we reached
considerably better results by function composi-
tion of case-specific models. To make this possi-
ble we proposed a novel idempotency regulariza-
tion, and showed that the approach is highly ro-
bust for the choice of the regularization parame-
ter, making it essentially parameter-free. Finally,
we note that even though we demonstrated the ap-
proach for an example MRL language Finnish and
only for lemmatization of nouns and adjectives,
the method is general and directly applicable for
other languages and word classes.
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Abstract

In this article, we explore the use of basic-
level nouns in texts of different complex-
ity, and hypothesise that hypernyms with
characteristics of basic-level words could
be useful for the task of lexical sim-
plification. Basic-level terms have been
described as the most important to hu-
man categorisation. They are the ear-
liest emerging words in children’s lan-
guage acquisition, and seem to be more
frequently occurring in language in gen-
eral. We conducted two corpus studies us-
ing four different corpora, two corpora of
standard Swedish and two corpora of sim-
ple Swedish, and explored whether cor-
pora of simple texts contain a higher pro-
portion of basic-level nouns than corpora
of standard Swedish. Based on insights
from the corpus studies, we developed a
novel algorithm for choosing the best syn-
onym by rewarding high relative frequen-
cies and monolexemity, and restricting the
climb in the word hierarchy not to suggest
synonyms of a too high level of inclusive-
ness.

1 Introduction

The research concerned with automatically reduc-
ing the complexity of texts is called Automatic
Text Simplification (ATS). Automatic text simplifi-
cation was first proposed as a pre-processing step
prior to other natural language processing tasks,
such as machine translation or text summarisation.
The assumption was that a simpler syntactic struc-
ture would lead to less ambiguity and, by exten-
sion, a higher quality of text processing (Chan-
drasekar et al., 1996). However, one of the main
goals of modern automatic text simplification sys-
tems is to aid different types of target readers. The

manual production of simple text is costly and if
this process could be automated, this would have
a beneficial effect on the targeted reader, as well
as the society as a whole. Previous ATS studies
have targeted different reader groups, such as sec-
ond language (L2) learners (Petersen and Osten-
dorf, 2007; Paetzold, 2016), children (De Belder
and Moens, 2010; Barlacchi and Tonelli, 2013;
Hmida et al., 2018), persons with aphasia (Carroll
et al., 1998; Canning and Tait, 1999; Devlin and
Unthank, 2006), the hearing-impaired (Inui et al.,
2003; Daelemans et al., 2004; Chung et al., 2013),
and other persons with low literacy skills (Aluı́sio
et al., 2008; Candido Jr et al., 2009; Aluisio et al.,
2010). Reducing the complexity of a text can be
done in numerous ways but one of the subtasks of
ATS is lexical simplification: the process of find-
ing and replacing difficult words or phrases with
simpler options. Finding such simpler words can
be done by using frequency measures to choose
between substitution candidates with the intuition
that the more common a word is, the simpler a syn-
onym it is. As pointed out, for instance by Alfter
(2021), more frequent words can also be complex
as they tend to be more polysemous.

Finding simpler words can also be done by
studying how human writers do. To write sim-
ple texts, the writers usually consult guidelines.
For Swedish, such guidelines are given by Myn-
digheten för Tillgängliga Medier (MTM)1. The
MTM guidelines state, among other things, that
the text should be adapted to the type of reader
who is going to read the text, and that everyday
words should be used (MTM, 2020).

In this article, we explore the use of basic-level
nouns in texts of different complexity, and hypoth-
esise that hypernyms with characteristics of basic-
level words could be useful for the task of lexical
simplification. We then use this knowledge to cre-

1Swedish Agency for Accessible Media
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ate an algorithm for synonym replacement. The
conventional definition of a synonym is a word that
have the same or nearly the same meaning as an-
other word. However, for simplicity, in this ar-
ticle we extend this notion to also include near-
synonyms or other semantically similar words.

Hypernyms have been previously studied from
the perspective of lexical simplification. For ex-
ample, Drndarević and Saggion (2012) explored
the types of lexical simplification operations that
were present in a parallel corpus comprising 200
standard and simple news texts in Spanish, and
found that the exchanged words could be hyper-
nyms, hyponyms and meronyms. Biran et al.
(2011) used the vocabularies of Wikipedia and
Simple English Wikipedia to create word pairs of
content words, and one of the methods for filtering
out substitution word pairs was to consult the syn-
onym and hypernym relations between the words.
Comparable synonym resources for Swedish in-
clude SynLex (Kann and Rosell, 2005) and Swe-
Saurus (Borin and Forsberg, 2014).

Given what we know how simple texts are writ-
ten, it seems probable that a corpus of simple text,
targeting children and readers with different kinds
of disabilities, is characterised by a higher propor-
tion of basic-level nouns than, for example, a cor-
pus comprising texts that are said to reflect gen-
eral Swedish language of the 90’s. The aim of this
study was to explore this claim in corpora of sim-
ple and standard texts, and to see how this could be
used in the context of lexical text simplification.

2 Basic-level Words

Prototype theory, as defined by Rosch et al.
(1976), claims that there is a scale of human cat-
egorisation where some representing concepts are
more representative than others. For example, fur-
niture can be regarded as higher up in the taxon-
omy than chair or table, whereas kitchen chair or
dining table can be found at a lower level with
higher specificity. Rosch et al. (1976) found that
the basic level is the most important to human
categorisation. For example, basic-level terms
emerge early in a child’s language acquisition, and
such terms generally seem to be more frequently
occurring in language. Another characteristic of
basic-level terms is that they often comprise one
single lexeme, while subordinate terms more of-
ten consist of several lexemes (Evans, 2019).

Theories in cognitive linguistics are important

for computational linguists as they adopt a usage-
based approach. This means that language use
is essential to how our knowledge of language is
gained, and plays a large role in language change
and language acquisition (Evans, 2019). When a
child learns a language, the knowledge is gathered
through extraction of constructions and patterns,
a process grounded in general cognitive processes
and abilities. One of the central ideas in the usage-
based approach is that the relative frequency of
linguistic constructions (such as words) affects the
language system so that more frequent construc-
tions are better entrenched in the system, thus fur-
ther influencing language use.

Within the field of cognitive linguistics cor-
pora is one of the proposed methods to study lan-
guage (Evans, 2019). Corpora make it relatively
simple to perform large-scale analyses in order to
get quantitative measures on how language is used
in a naturalistic setting. The simplest measures we
can use are frequency counts, which can provide
insights in how commonly used certain construc-
tions are, in comparison with others.

3 Corpus Analysis

We conducted two corpus studies using different
corpora.

The first study aimed to compare two corpora,
where the first corpus contained texts that reflect
the Swedish language, and the second corpus con-
tained easy-to-read texts. The Stockholm-Umeå
Corpus (SUC) corpus (Ejerhed et al., 2006) is a
balanced corpus of Swedish texts written in the
1990’s. In this study, we used the 3.0 version of
the corpus (SUC3).

The LäSBarT corpus (Mühlenbock, 2008), is a
corpus of Swedish easy-to-read texts of four gen-
res: easy-to-read news texts, fiction, community
information, and children’s fiction. The LäSBarT
corpus was compiled in order to mirror simple lan-
guage use in different domains and genres but it is
not truly balanced in the traditional sense.

The hypothesis was that the SUC3 corpus would
exhibit a higher average number of steps to the
top-level noun than the LäSBarT corpus.

The second study aimed to investigate whether
the genre did play a role. In order to investi-
gate this, we conducted an analysis of a corpus
of the Swedish newspaper 8 Sidor, that comprises
news articles in Simple Swedish, and a corpus
with Göteborgs-Posten articles (GP2D). The cor-
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pora were of the same genre, but not parallel.
The hypothesis was that the GP2D corpus

would exhibit an even higher average number of
steps to the top-level noun than the 8 Sidor corpus.
The SUC3 corpus is balanced and, hence, also in-
cludes, for instance, simple texts that may affect
the difference between the corpora.

3.1 Procedure

All nouns of the resources were extracted, to-
gether with their most probable sense gathered
from SALDO (Svenskt Associationslexikon) ver-
sion 2 (Borin et al., 2008). SALDO is a descrip-
tive lexical resource that, among other things in-
cludes a semantic lexicon in the form of a lexical-
semantic network.

SALDO was also used for extracting lexical re-
lations. For each such noun, we recursively col-
lected all primary parents of the input word. The
primary descriptor describes an entry which bet-
ter than any other entry fulfils two requirements:
(1) it is a semantic neighbour of the entry to be
described (meaning that there is a direct semantic
relationship, such as synonymy, hyponymy, and
meronymy, between words); and (2) it is more
central than the given entry. However, there is no
requirement that the primary descriptor is of the
same part of speech as the entry itself.

The number of steps taken to reach the top-
level noun was counted. The algorithm ended
when there were no more parents tagged as a
noun. The method was inspired by the collection
of synonym/near-synonym/hypernym relations in
Borin and Forsberg (2014).

In addition to this analysis, we also collected
the frequency counts of the nouns occurring in
the corpora and their superordinate nouns, as well
as indication of compositionality. The frequency
measures used were relative frequencies gath-
ered from the WIKIPEDIA-SV corpus, accessed
through Språkbanken2.

3.2 Corpus Analysis Results

The number of extracted instances were 206,609
(SUC3), 177,390 (LäSBarT), 180,012 (GP2D),
and 543,699 (8 Sidor). The distribution of the
number of words per superordinate level is pre-
sented in Figure 1.

In the first study, we compared the SUC3
corpus with the LäSBarT corpus. To compare

2https://spraakbanken.gu.se/verktyg/korp/korpusstatistik
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Åtta sidor
LäsBart

Figure 1: Number of words in the corpora at the
various levels. Words at level n are the words in
the corpora.

261



the medians, a Mann-Whitney U test was per-
formed. On average, the words of the SUC3
corpus had a slightly lower number of steps to
the top-level noun (M = 0.93,Md = 1.0)
than the words of the LäSBarT corpus (M =
1.02,Md = 1.0). This difference was significant
(U = 17489728875.50, n1 = 206, 609, n2 =
177, 390, p < 0.001, cles = 0.32).

In the second study, we compared corpora of
the same genre (news texts): GP2D and 8 Sidor.
To compare the medians, a Mann-Whitney U test
was performed. On average, the words of the
GP2D corpus had a slightly higher number of
steps to the top-level noun (M = 1.03,Md =
1.0) than the words of the 8 Sidor corpus (M =
0.93,Md = 1.0). This difference was significant
(U = 46166030968.50, n1 = 180, 012, n2 =
543, 699, p < 0.001, cles = 0.37).

The analyses of the relative frequencies of the
corpora are presented in Table 1. The words
at level n are the words that appear in the cor-
pora3, and each n+i step refers to the superordinate
words. Three of the corpora (LäSBarT, GP2D and
8 Sidor) had words represented at the level n+8,
but since these words were very few (1, 4 and 1
words respectively), they were excluded from the
analysis.

The SUC3 corpus had the highest relative fre-
quencies at level n+3. The LäSBarT corpus had
the highest relative frequencies at level n. The
GP2D corpus had the highest relative frequencies
at level n+7. The 8 Sidor corpus had the highest
relative frequencies at level n+3.

All corpora, except for the LäSBarT corpus ex-
hibited a tendency of peaking at level n+3 (see Ta-
ble 1 and Figure 2).

Regarding the news corpora, we can see that the
8 Sidor corpus has the highest relative frequency
at level n, while the highest relative frequency at
the standard news corpus GP2D is found at level
n+4.

3We use the notation level n to describe the words of the
corpora instead of, for example, level 0 words, as we do not
know on what level of inclusiveness they actually appear. The
words at level n are the words as they appear in the corpora,
thus, they could be anywhere on the vertical axis of inclusive-
ness of the category. The only thing we know is the number
of superordinate words, and therefore we chose to use the no-
tation n for the corpus-level and n+i for each superordinate
level.
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Figure 2: Relative frequencies at each level of the
word hierarchy in the corpora.

3.3 Implications for Synonym Replacement
Algorithms

From the research on cognitive linguistics re-
ferred above, we learnt that basic-level words are
more frequently occurring in language, and of-
ten monolexemic. Thus, an algorithm shall re-
ward synonym candidates that have high relative
frequency and consist of one single lexeme; be-
ing monolexemic. To account for the monolex-
ems, information from the frequency corpus about
whether or not the word could be interpreted as a
compound can be used.

From the corpus analysis, we also found that in
the two standard corpora, there seems to be a fre-
quency peak at level n+3. This could be due to the
fact that when climbing higher up in the hierarchy
of superordinate words, more general words are
found, as these words are often more frequently
occurring than words with a more specific mean-
ing. When searching for synonyms, we hypoth-
esise that the more general words are not neces-
sarily good synonym candidates. For instance,
whereas horse can be a good-enough synonym
candidate for the word shetland pony, the word
animal might be too general. We conducted exper-
iments with varying levels and chosed to restrict
our synonym-seeking algorithm to not go beyond
level n+2.

4 Synonym Replacement

Based on the analysis presented in Section 3.3, we
developed an algorithm for choosing the best syn-
onym from the extracted nouns and their superor-
dinate words.
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SUC3 LäSBarT GP2D 8 Sidor
Level n 140.66 190.02 155.44 274.54
Level n+1 219.69 176.59 195.59 212.82
Level n+2 199.97 165.67 163.39 203.38
Level n+3 280.56 126.48 310.78 317.01
Level n+4 84.60 48.68 113.92 88.22
Level n+5 74.25 38.10 93.04 34.64
Level n+6 51.04 30.88 79.37 33.24
Level n+7 83.47 36.03 401.41 53.76

Table 1: Average relative frequencies at each level of the words of the corpora. Highest level frequencies
in boldface.

The resulting algorithm is presented in Algo-
rithm 1. It picks, from words at most two levels
up in the hierarchy, the most frequent monolex-
emic word, if such exists, otherwise it picks the
most frequent word.

Data: candidates: a word chain containing
the word of the corpus and the
superordinate words collected from
Saldo.

Result: best synonym from candidates
candidates.sort(key=frequency);
bestSynonym = candidates[0];
for word in candidates[:3] do

if word is monolexemic then
bestSynonym = word;
break;

end
end

Algorithm 1: The FM algorithm for choosing
synonym.

5 Assessment of Synonym Replacement
Algorithm

We compared the performance of our com-
bined frequency/monolexemity algorithm (here-
after: FM) with two baseline algorithms. The
first baseline (OneLevel) always chose the word
one level higher up in the hierarchy as the best
synonym. If there was no superordinate word,
the word remained unchanged. The second base-
line (Freq) always chose the word with the over-
all highest relative frequency as the best synonym,
thus disregarding the monolexemity information.

We ran all algorithms on the nouns extracted
from the standard corpora: SUC3 and GP2D.

The results from both corpora regarding number
of monolexemic and polylexemic words are pre-
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Figure 3: Number of total words, monolexemic
words, and polylexemic words in the SUC3 corpus
after applying the algorithms. Corpus denotes the
original values of the specific corpus.

sented in Figure 3 and Figure 4 respectively. The
relative frequencies after running the algorithms
are illustrated in Figure 5.

Regarding the SUC3 corpus, all synonym re-
placement algorithms increased the number of
monolexemic words. The largest increase was ob-
served for the FM algorithm (+35,248), followed
by Freq (+21,656), and OneLevel (+12,951). Re-
garding the relative frequencies, all algorithms in-
creased the average relative frequency of the ex-
changed words. The largest increase was seen for
Freq (+153.68), followed by FM (+120.92), and
OneLevel (+34.68).

On the GP2D corpus, the number of monolex-
emic words increased for all algorithms. The
largest increase was seen for the FM algo-
rithm (+30,783), followed by the Freq algorithm
(+21,091), and OneLevel (+9,482). All synonym
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Example word chain FM OneLevel Freq
procent - hundradel - bråkdel - del procent hundradel del
percent - centesimal - fraction - part
universitet - högskola - skola universitet högskola universitet
university - college - school
rubel - myntenhet - mynt - pengar mynt mynthenhet mynt
ruble - currency unit - coin - money

Table 2: Example synonyms chosen by the different algorithms
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Figure 4: Number of total words, monolexemic
words, and polylexemic words in the GP2D corpus
after applying the algorithms. Corpus denotes the
original values of the specific corpus.

replacement algorithms resulted in a higher av-
erage relative frequency, and the largest increase
was observed for the Freq algorithm (+149.54),
followed by the FM algorithm (+110.58), and
OneLevel (+7.2).

Table 2 displays examples of the synonyms cho-
sen by the respective algorithms. As can be seen
frequency can sometimes choose a too general
word, del, whereas OneLevel can pick a too spe-
cific word, myntenhet.

6 Discussion

The algorithm for finding synonyms proposed in
this article is built on theory and corpus stud-
ies. This algorithm obviously needs to be evalu-
ated and compared to other methods for extracting
synonyms from corpora and lexical resources. It
would be valuable to compare the algorithm with
synonyms from, for example, the SynLex lexicon,
and to evaluate whether the exchanged synonyms
are simpler, when consulting lexicons of base vo-
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Figure 5: Relative frequencies for each corpus af-
ter applying the algorithms. Corpus denotes the
original values of the specific corpus.

cabularies, as well as humans. It can also be
enhanced with techniques to utilise semantic and
synonym similarity (Kann and Rosell, 2005).

The corpus analyses were not conclusive,
and, although further analyses will probably not
present results that argues against the proposed al-
gorithm, further investigations may be important
for the study of language use and we therefore
present a more detailed discussion on the corpus
study.

We hypothesised that simple texts would exhibit
a tendency towards the use of more basic-level
words, when compared with texts written in stan-
dard Swedish. However, there was no clear sup-
port for this hypothesis. In the statistical analysis,
we compared very large samples, and the presence
of statistical significance is not surprising. When
comparing the means and medians of the datasets,
it is clear that the differences are small and the re-
sults should be interpreted with caution.

The results of the first study revealed that the
SUC3 corpus had a significantly lower average
number of steps to the top-level noun, than the
LäSBarT corpus. Since our hypothesis was that
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the texts of the corpus of simple text would have
a lower average number of steps to the top-level
noun, these results showed a difference in the op-
posite direction.

The second study was normalised for genre,
in the sense that the compared corpora contained
texts of the same genre. The simple news corpus 8
Sidor had a significantly lower number of steps to
the top-level noun than the standard news corpus
GP2D. This tendency is further supported by the
results of the relative frequency analysis, where
we clearly see that the 8 Sidor corpus has rela-
tively high average relative frequency at the base
level (level n), although exhibiting the highest fre-
quencies at level n+3, whereas the GP2D corpus
generally had lower average frequencies at level n
and the highest frequencies at level n+7.

Regarding the analyses of the relative frequen-
cies, we would expect the standard corpora to have
lower relative frequencies at the base level (level
n) than the corpora of simple text. This difference
can be observed in the LäSBarT corpus, which
had the highest relative frequency scores at level n,
but is less prominent in the 8 Sidor corpus. How-
ever, even if the 8 Sidor corpus exhibits the high-
est relative frequencies at level n+3, it is notewor-
thy that the frequencies are relatively high even at
the lower levels. The level n score is the second
highest frequency score for this corpus, and much
higher when compared to the level n score of the
standard corpus of the same genre, GP2D.

The GP2D corpus had the highest average fre-
quency at level n+7, indicating that the words used
in this corpus are more specific than in the other
corpora. However, it should be noted that this high
relative frequency score is based on a relatively
low number of words (40), and that this corpus
also exhibit the frequency peak at level n+3.

For SUC3 and 8 Sidor, the most frequent words
are found at level n+3. This would mean that
the more basic-level nouns could be found if we
choose the superordinate words three levels above
the original word. However, it could also indi-
cate that the words at this level are higher up at
Rosch’s vertical axis, thus being more inclusive
than the basic-level words, and therefore more fre-
quent (compare: shetland pony, horse, animal).

When designing this study, we made a num-
ber of assumptions that can be discussed, such
as the assumption of the nature of texts in sim-
ple Swedish versus texts in standard Swedish. We

made the assumption, according to Rosch’s claims
of basic-level terms, that the proportion of such
constructions would be higher in the simple cor-
pora. This assumption should be tested, for exam-
ple by counting the relative frequencies of some
base vocabulary list words (Heimann Mühlenbock
and Johansson Kokkinakis, 2012) in both corpora.

The usage-based thesis of cognitive linguistics
implies that we gain knowledge about the linguis-
tic system by studying authentic language in use.
To this background, it seems reasonable that a cor-
pus study would be suitable for studying linguistic
phenomena. However, there are some drawbacks
of using such methods. One of the problems is
that we worked with four very different corpora.
Can we really say that a corpus reflects authentic
and direct language use? For example, one com-
monly mentioned measure in this context is fre-
quency. A frequency measure can provide infor-
mation on how commonly used certain linguistic
constructions are. However, what we see clearly
in this study is that if we compare corpora of dif-
ferent characteristics, the frequency measures will
differ between corpora depending on text type. A
corpus of medical texts will have frequent con-
structions that do not even exist in a corpus of
children’s literature. The same issue will proba-
bly be manifested if we compare texts of different
linguistic activities, such as spoken language with
written language. This means that the insights that
we can draw of the cognitive processes underly-
ing the studied linguistic phenomenon will be very
specific to the kind of corpus that we study. To
compare corpora, we must make sure that the cor-
pora are comparable, and consider the factor of
language use reflected in the texts of the corpora
when generalising our findings to a larger context.

7 Conclusion

The aim of this paper was to develop an algo-
rithm for synonym replacement based on theories
of basic-level nouns. We also presented results
from a study exploring whether corpora of sim-
ple texts contain a higher proportion of basic-level
nouns than corpora of standard Swedish, and to
see how this could be used in the context of lexi-
cal text simplification.

We observed that the corpus of simple news text
did indeed include more basic-level nouns than
the corpus of standard news. This in turn shows
that lexical simplification, through the use of base-
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level nouns, may benefit from traversing a word
hierarchy upwards. This could serve as a comple-
ment to the often-used replacement methods that
rely on word length and word frequency measures.

We presented techniques for finding the best
synonym candidate in a given word hierarchy,
based on information about relative frequencies
and monolexemity. We saw that all synonym
replacement techniques, including the baseline
methods, increased the number of monolexemic
words and relative frequencies. The FM algo-
rithm aimed to reward high relative frequencies
and monolexemity, while not climbing the word
hierarchy too high, and seems to perform well with
respect to these criteria. Future work includes fur-
ther evaluation of this algorithm, and comparison
to other synonym replacement strategies.
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Abstract

Language models are notoriously diffi-
cult to evaluate. We release SuperSim, a
large-scale similarity and relatedness test
set for Swedish built with expert human
judgments. The test set is composed of
1,360 word-pairs independently judged for
both relatedness and similarity by five
annotators. We evaluate three different
models (Word2Vec, fastText, and GloVe)
trained on two separate Swedish datasets,
namely the Swedish Gigaword corpus and
a Swedish Wikipedia dump, to provide a
baseline for future comparison. We release
the fully annotated test set, code, baseline
models, and data.1

1 Introduction

It is said that a cup and coffee are not very sim-
ilar while car and train are much more so given
that they share multiple similar features. Instead,
cup and coffee are highly related, as we typically
enjoy the one in the other. Of course, an immedi-
ate question that arises is whether we have words
that are similar but not related? Existing similarity
datasets have tended to rate words for their sim-
ilarity, relatedness, or a mixture of both, but not
either or. However, without both kind of informa-
tion, we cannot know if words are related but not
similar, or similar but not related.

The most common motivation for using word
similarity datasets, such as SimLex-999 (Hill
et al., 2015) and WordSim353 (Finkelstein et al.,
2001), is for use as a quality check for word em-
bedding models. The aim of most embedding
models is to capture a word’s semantic relation-
ships, such that words that are similar in mean-
ing are placed close in the semantic space; foods

1https://zenodo.org/record/4660084.

with other foods, technical terms together and sep-
arated from the musical instruments, to give an
example. However, the optimal performance of
such a semantic space is judged by whether or not
one wishes to capture similarity of words, or re-
latedness. It seems obvious that presenting cup
as a query reformulation for coffee in information
retrieval seems off, while presenting lamborghini
when searching for ferrari can be completely ac-
ceptable. Inversely, in places where relatedness is
needed, offering a cup when one asks for a coffee
is correct.

While the first word similarity datasets ap-
peared for English, in the past few years we have
seen datasets for a range of different languages
(see Section 2). For Swedish, there exists one
automatically-created resource based on an asso-
ciation lexicon by Fallgren et al. (2016). How-
ever, there are to date no test sets that are (1)
expertly-annotated, (2) comparable to other inter-
national test sets, and (3) annotated for both re-
latedness and similarity. And because we cannot
know which motivation lies behind creating a vec-
tor space, and because both relatedness and sim-
ilarity seem equally valid, we have opted to cre-
ate SuperSim. The SuperSim test set is a larger-
scale similarity and relatedness set for Swedish,
consisting of 1,301 words and 1,360 pairs rated
by 5 expert annotators. The pairs are based on
SimLex-999 and WordSim353, and can be used to
assess the performance of word embedding mod-
els, but also answer questions as to whether words
are likely to be similar but not related.

2 Related Work

Several works aim to provide test sets to assess
the quality of word embedding models. Most
of them tackle English (Rubenstein and Goode-
nough, 1965; Miller and Charles, 1991; Agirre
et al., 2009; Bruni et al., 2012; Hill et al.,
2015). Russian, Italian and German are cov-
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ered by Leviant and Reichart (2015) who trans-
lated the pairs in WordSim353 and SimLex-999,
and asked crowdworkers to judge them on a 0-
10 scale. The SemEval-2017 Task 2 on Multi-
lingual and Cross-lingual Semantic Word Similar-
ity (Camacho-Collados et al., 2017) provides pairs
in 5 languages: English, Farsi, German, Italian
and Spanish. Ercan and Yıldız (2018) provide
500 word pairs in Turkish annotated by 12 hu-
mans for both similarity and relatedness on a scale
ranging from 0 to 10, while Finnish is covered
in Venekoski and Vankka (2017). More recently,
Multi-SimLex (Vulić et al., 2020) provides anno-
tations in Mandarin Chinese, Yue Chinese, Welsh,
English, Estonian, Finnish, French, Hebrew, Pol-
ish, Russian, Spanish, Kiswahili, and Arabic, with
open guidelines and encouragement to join in with
more languages.2

For Swedish, Fallgren et al. (2016) harness
the Swedish Association Lexicon SALDO (Borin
et al., 2013), a large lexical-semantic resource that
differs much from Wordnet (Fellbaum, 1998) inso-
far as it organises words mainly with the ‘associ-
ation’ relation. The authors use SALDO’s ‘super-
senses’ to adapt Tsvetkov et al. (2016)’s QVEC-
CCA intrinsic evaluation measure to Swedish.
Still on evaluating Swedish language models,
Adewumi et al. (2020b) propose an analogy test
set built on the one proposed by Mikolov et al.
(2013), and evaluate common architectures on
downstream tasks. The same authors further com-
pare these architectures on models trained on dif-
ferent datasets (namely the Swedish Gigaword
corpus (Rødven-Eide et al., 2016) and the Swedish
Wikipedia) by focusing on Swedish and utilising
their analogy test set (Adewumi et al., 2020a).
Finally, for Swedish, SwedishGLUE/SuperLim3

(Adesam et al., 2020) is currently being devel-
oped as a benchmark suite for language models
in Swedish, somewhat mirroring English counter-
parts (Wang et al., 2018, 2019).

Whether similarity test sets actually allow to
capture and evaluate lexical semantics is debat-
able (Faruqui et al., 2016; Schnabel et al., 2015).
Nonetheless, they have the advantage of provid-
ing a straightforward way of optimising word
embeddings (through hyper-parameter search, at

2The website is updated with new annotations: https:
//multisimlex.com/.

3https://spraakbanken.gu.se/projekt/
superlim-en-svensk-testmangd-for-
sprakmodeller

the risk of overfitting), or to be used more cre-
atively in other tasks (Dubossarsky et al., 2019)
where “quantifiable synonymy” is required. Fi-
nally, task-specific evaluation (as recommended
by (Faruqui et al., 2016)) is, for languages other
than English, more than often nonexistent – mak-
ing test sets such as the one presented in this work
a good alternative.

Our dataset differs from previous work in
the sense that it provides expert judgments for
Swedish for both relatedness and similarity, and
hence comprises two separate sets of judgments,
as done by skilled annotators.4 A description of
the procedure is available in Section 3.

2.1 Relatedness and Similarity

Our work heavily draws from Hill et al. (2015),
who made a large distinction between relatedness
and similarity. Indeed, the authors report that pre-
vious work such as Agirre et al. (2009) or Bruni
et al. (2012) do not consider relatedness and simi-
larity to be different. Words like coffee and cup, to
reuse the example by Hill et al. (2015), are obvi-
ously related (one is used to drink the other, they
can both be found in a kitchen, etc.) but at the
same time dissimilar (one is (...usually) a liquid
and the other is a solid, one is ingested and not the
other, etc.).

All pairs in SuperSim are independently judged
for similarity and relatedness. To explain the con-
cept of similarity to annotators, we have reused the
approach of Hill et al. (2015) who introduced it
via the idea of synonymy, and in contrast to asso-
ciation: “In contrast, although the following word
pairs are related, they are not very similar. The
words represent entirely different types of things.”
They further give the example of “car / tyre.” We
use this definition embedded in the SimLex-999
guidelines to define relatedness according to the
following: “In Task 2, we also ask that you rate
the same word pairs for their relatedness. For this
task, consider the inverse of similarity: car and
tyre are related even if they are not synonyms.
However, synonyms are also related.”

4We have opted not to follow Multi-SimLex because (1)
we want to have annotations for both relatedness and similar-
ity, and (2) we have limited possibility to use platforms such
as Amazon Mechanical Turk, and have thus resorted to using
skilled annotators: to illustrate, we are bound to the hourly
rate of 326 SEK (32.08 EUR). As a result the cost of annotat-
ing with 10 annotators is significantly higher, in particular if
we want two separate sets of annotations.
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3 Dataset description

While the WordSim353 pairs were chosen for use
in information retrieval and to some extent mix
similarity and relatedness, the original SimLex-
999 pairs were chosen with more care. They were
meant to measure the ability of different models to
capture similarity as opposed to association, con-
tain words from different part-of-speech (nouns,
verbs, and adjectives), and represent different con-
creteness levels. Despite the risks of losing some
intended effect in translation, we opted to base Su-
perSim on both of these resources rather than start
from scratch.

3.1 Methodology
We machine-translated all words in WordSim353
and SimLex-999 to Swedish. The translations
were manually checked by a semanticist who is a
native speaker of Swedish, holds an MA in linguis-
tics, and is currently working towards obtaining a
PhD in linguistics. The semanticist was presented
a list of words, out of context, decoupled from the
pairs they were parts of. Where needed, transla-
tions were corrected. Pairs were reconstructed ac-
cording to the original datasets, except for the few
cases where the translation process would create
duplicates. In a few cases where one single trans-
lation was not obvious – i.e. cases where either
Google Translate or the semanticist would output
two (equally likely) possible Swedish translations
for the same English word –, two pairs were con-
structed: one with each possible translation. For
example, the presence of ‘drug’ led to pairs with
both the läkemedel (a medical drug aimed at treat-
ing pathologies) and drog (a narcotic or stimulant
substance, usually illicit) translations.

We selected 5 annotators (4F/1M) who are na-
tive speakers of Swedish and all have experience
working with annotation tasks. One of the anno-
tators was the same person who manually checked
the correctness of the translations. The other 4 an-
notators can be described as follows:

• holds an MA in linguistics and has experi-
ence in lexicography,

• holds an MA in linguistics,

• holds BAs in linguistics and Spanish and is
studying for an MSc in language technology,

• holds a BA in linguistics and has extensive
work experience with different language-

related tasks such as translation and NLP (on
top of annotation).

Annotators were each given (i) the original
SimLex-999 annotation instructions containing
examples illustrating the difference between relat-
edness and similarity; (ii) one file for the relat-
edness scores; and (iii) one file for the similarity
scores. They were instructed to complete the an-
notation for similarity before moving on to relat-
edness, and complied. The annotation took place,
and was monitored, on Google Sheets. Annota-
tors did not have access to each others’ sheets, nor
were they aware of who the other annotators were.

To allow for a finer granularity as well as to
echo previous work, annotators were tasked with
assigning scores on a 0-10 scale, rather than 1-6
as in SimLex-999. Unlike the procedure for Sim-
lex, where sliders were given (and hence the an-
notators could choose real values), our annotators
assigned discrete values between 0–10. This pro-
cedure resulted in pairs with the same score, and
thus many rank ties.

3.2 SuperSim stats

The entire SuperSim consists of 1,360 pairs. Out
of these, 351 pairs stem from WordSim353 and
997 pairs from SimLex-999. Pairs where both
words translate into one in Swedish are removed
from the SimLex-999 and WordSim353 subsets,
thus resulting in fewer pairs than the original
datasets: for example, ‘engine’ and ‘motor’ are
both translated as motor and therefore the ‘motor’
– ‘engine’ pair is removed. The SuperSim set con-
sists of both sets, as well as of a set of additional
pairs where multiple translations were used (see
the läkemedel and drog example above). The full
set of 1,360 pairs is annotated for both similarity
and relatedness separately, resulting in a total of
2 * 1,360 gold scores, and thus 13,600 individual
judgments. An example of relatedness judgments
for two pairs is available in table form in Table 1.

We release two tab-separated files (one for relat-
edness, one for similarity) containing judgments
from all annotators as well as the mean gold score.
We additionally release all baseline models, code,
and pre-processed data where permissible. The
data is freely available for download at https:
//zenodo.org/record/4660084.
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Table 1: Example of relatedness judgments on pairs flicka-barn ‘girl-child’ and skola-mitten ‘school-
centre.’

Word 1 Word 2 Anno 1 Anno 2 Anno 3 Anno 4 Anno 5 Average

flicka barn 10 10 10 8 10 9.6
skola mitten 1 0 0 0 0 0.2

3.3 Intra-rater agreement

For quality control, annotation files contained a to-
tal of 69 randomly sampled duplicate pairs, in ad-
dition to the 1,360 true pairs.5 These duplicates
allowed us to calculate every annotator’s consis-
tency, and to judge how difficult each task was
in practice. Table 2 illustrates the consistency of
every annotator in the similarity and relatedness
tasks for our 69 control pairs. ‘Disagreement’ in-
dicates two different values for any given pair and
‘hard disagreement’ two values with an absolute
difference higher than 2 (on the scale of 0–10).
On average, the hard disagreements differed by 4.3
points for relatedness, and by 3.0 for similarity,
and there were more disagreements (both kinds)
for relatedness, indicating that for humans, relat-
edness is the harder task. In addition, we indi-
cate the computed self-agreement score (Krippen-
dorff’s alpha, Krippendorff 2018) for every anno-
tator for both tasks. Despite annotators disagree-
ing somewhat with themselves, Krippendorff’s al-
pha indicates they annotated word pairs consis-
tently.

Out of the 69 control pairs, 4 were incon-
sistently annotated by four annotators for sim-
ilarity, while 12 pairs were inconsistently an-
notated by four or more annotators for related-
ness: 3 by all five annotators, and 9 by four.
The three “hardest” pairs to annotate for relat-
edness are lycklig-arg ‘happy-angry,’ sommar-
natur ‘summer-nature,’ tillkännagivande-varning
‘announcement-warning.’

3.4 Inter-rater agreement

Following Hill et al. (2015), we use the aver-
age Spearman’s ρ for measuring inter-rater agree-
ment by taking the average of pairwise Spear-
man’s ρ correlations between the ratings of all re-
spondents.6 For the original SimLex-999, over-

5SuperSim includes the values for the first seen annota-
tion of a duplicate pair. To illustrate: if a control pair was
annotated first to have a score of 3 and then to have a score of
6, the first score of 3 is kept.

6We use the scipy.stats.mstats spearmanr
(Virtanen et al., 2020) implementation with rank ties.

all agreement was ρ = 0.67 as compared to Word-
Sim353 where ρ = 0.61 using the same method.
Spearman’s ρ for our similarity rankings is 0.67.
In addition, we have a Spearman’s ρ for our re-
latedness rankings of 0.73.7 It is unclear how the
background of our annotators affects the quality of
their annotation. In another semantic annotation
study, although on historical data, Schlechtweg
et al. (2018) show a larger agreement between an-
notators sharing a background in historical lin-
guistics than between a historical linguist and a
‘non-expert’ native speaker. It is, however, fully
possible that the linguistic expertise of the anno-
tators affects the similarity and relatedness judg-
ments in a negative way. We leave this investiga-
tion for further work.

4 Model evaluation

To provide a baseline for evaluation of embedding
models on SuperSim, we trained three different
models on two separate datasets.

4.1 Baseline Models

We chose three standard models, Word2Vec
(Mikolov et al., 2013), fastText (Bojanowski et al.,
2017), and GloVe (Pennington et al., 2014).
Word2Vec and fastText models are trained with
gensim (Řehůřek and Sojka, 2010) while the
GloVe embeddings are trained using the official
C implementation provided by Pennington et al.
(2014).8

4.2 Training data

We use two datasets. The largest of the two
comprises the Swedish Culturomics Gigaword
corpus (Rødven-Eide et al., 2016), which con-

7These results are opposing those of the disagreements
which indicate that similarity is easier than relatedness for
our annotators. We postulate that this can be due to the many
rank ties we have in the similarity testset (where many pairs
have 0 similarity). If we use the Pearson’s ρ, we get values
of ρ = 0.722 for relatedness, and ρ = 0.715 for similarity
bringing the two tasks much closer.

8Tests were also made using the Python implementa-
tion available at https://github.com/maciejkula/
glove-python, with similar performance.
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Table 2: Number of control word-pairs with annotator self-disagreements. ‘Disagreem.’ = different
values between two annotations for a given pair (0-10 scale), ‘hard disagreem.’ = difference> 2 between
values between two annotations for a given pair (0-10 scale), α = Krippendorff’s alpha. Total number of
control pairs is 69, percentages follow absolute counts in parentheses.

Consistency of judgments
Similarity Relatedness

# disagreem. (%) # hard disagreem. (%) α # disagreem. (%) # hard disagreem. (%) α

Anno 1 17 (25%) 5 (7%) 0.83 20 (29%) 10 (14%) 0.89
Anno 2 1 (1%) 1 (1%) 0.99 26 (38%) 11 (16%) 0.86
Anno 3 21 (30%) 6 (9%) 0.94 24 (35%) 9 (13%) 0.87
Anno 4 10 (14%) 0 (0%) 0.96 18 (26%) 4 (8%) 0.96
Anno 5 29 (42%) 3 (4%) 0.89 28 (41%) 7 (10%) 0.89

Table 3: Evaluation of models trained on the Swedish Gigaword corpus. WordSim353 and SimLex-999
are subsets of the SuperSim. Best results for each “test set - task” combination are bolded.

Model Test set Spearman’s ρ Spearman’s ρ Included pairsrelatedness similarity

Word2Vec
SuperSim 0.539 0.496 1,255
WordSim353 pairs 0.560 0.453 325
SimLex-999 pairs 0.499 0.436 923

fastText
SuperSim 0.550 0.528 1,297
WordSim353 pairs 0.547 0.477 347
SimLex-999 pairs 0.520 0.471 942

GloVe
SuperSim 0.548 0.499 1,255
WordSim353 pairs 0.546 0.435 325
SimLex-999 pairs 0.516 0.448 923

tains a billion words9 in Swedish from different
sources including fiction, government, news, sci-
ence, and social media. The second dataset is a
recent Swedish Wikipedia dump with a total of
696,500,782 tokens.10

While the Swedish Gigaword corpus contains
text from the Swedish Wikipedia, Rødven-Eide
et al. (2016) precise that about 150M tokens out
of the 1G in Gigaword (14.9%) stem from the
Swedish Wikipedia. In that respect, there is an
overlap in terms of content in our baseline corpora.
However, as the Swedish Wikipedia has grown ex-
tensively over the years and only a sub-part of it
was used in in Rødven-Eide et al. (2016), the over-
lap is small and we thus have opted to also use the
Gigaword corpus as it is substantially larger and
contains other genres of text.

The Wikipedia dump was processed with a ver-
sion of the Perl script released by Matt Mahoney11

91,015,635,151 tokens in 59,736,642 sentences, to be pre-
cise.

10Available at https://dumps.wikimedia.org/
svwiki/20201020/svwiki-20201020-pages-
articles.xml.bz2.

11The script is available at http://
mattmahoney.net/dc/textdata.html. It effec-
tively only keeps what should be displayed in a web browser

modified to account for specific non-ASCII char-
acters (äåöé) and to transform digits to their
Swedish written form (eg: 2→ två).12

All baseline models are trained on lowercased
tokens with default hyperparameters.13

4.3 Results

An overview of the performance of the three base-
line models is available in Table 3 and Table 4. In
both tables we show model performance on sim-
ilarity and relatedness judgments. We split the
results into three sets, one for the entire Super-
Sim, and two for its subsets: WordSim353 and
SimLex-999. For each model and dataset, we
present Spearman’s rank correlation ρ between
the ranking produced by the model compared to
the gold ranking in each testset (relatedness and
similarity). As fastText uses subword informa-
tion to build vectors, it deals better with out-of-
vocabulary words, hence the higher number of

and removes tables but keeps image captions, while links are
converted to normal text. Characters are lowercased.

12‘1’, which can be either en or ett in Swedish, was re-
placed by ‘ett’ every time.

13Except for sg = 1, min count = 100 and seed =
1830.
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Table 4: Evaluation of models trained on the Swedish Wikipedia. WordSim353 and SimLex-999 are
subsets of the SuperSim. Best results for each “test set - task” combination are bolded.

Model Test set Spearman’s ρ Spearman’s ρ Included pairsrelatedness similarity

Word2Vec
SuperSim 0.410 0.410 1,197
WordSim353 pairs 0.469 0.415 315
SimLex-999 pairs 0.352 0.337 876

fastText
SuperSim 0.349 0.365 1,297
WordSim353 pairs 0.339 0.334 347
SimLex-999 pairs 0.322 0.311 942

GloVe
SuperSim 0.467 0.440 1,197
WordSim353 pairs 0.524 0.429 315
SimLex-999 pairs 0.418 0.375 876

pairs included in the evaluation.
To provide a partial reference point, Hill et al.

(2015) report, for Word2Vec trained on English
Wikipedia, ρ scores of 0.655 on WordSim353, and
0.414 on SimLex-999.

From the results in Table 3 and 4, it appears
that fastText is the most impacted by the size of
the training data, as its performance when trained
on the smaller Wikipedia corpus is ‘much’ lower
than on the larger Gigaword: 0.349 vs 0.550 for
SuperSim relatedness and 0.365 vs 0.528 for Su-
persim similarity – both tasks where fastText actu-
ally performs best on Gigawords out of the three
models tested. We find that all models perform
better when trained on Gigaword as compared
to Wikipedia. Contrary to results on the anal-
ogy task reported by Adewumi et al. (2020a),
our experiments on SuperSim seem to confirm
the usual trope that training on more data indeed
leads to overall better embeddings, as the higher
scores, in terms of absolute numbers, are all from
models trained on the larger Gigaword corpus.
Nonetheless, the discrepancy between our results
and theirs might be due to a range of factors, in-
cluding pre-processing and hyperparameter tuning
(which we did not do).14

Note that for similarity, Word2Vec trained on
Gigaword performs slightly better on the trans-
lated SimLex-999 pairs (0.436) than Word2Vec
does on English SimLex-999 (0.414) but substan-
tially lower for WordSim (0.436 vs 0.655) (Hill
et al., 2015). We make the comparison for Giga-
word, rather than Wikipedia because of the com-

14The effect of the benefits of more training data is con-
founded with the broader genre definitions in Gigaword that
could be an indication of the advantage of including e.g., fic-
tion and social media text in defining for example emotions.
We leave a detailed investigation into this for future work.

parable size, rather than the genre. This effect
could be due to different pre-processing and model
parameters used, but it could also be an effect of
the multiple ties present in our test set. We do,
however, consistently confirm the original conclu-
sion: SimLex-999 seems harder for the models
than WordSim353.

GloVe is the clear winner on the smaller
Wikipedia dataset, where it outperforms the other
two models for all test sets, and is on par with
Word2Vec for Gigaword.

Overall, our results indicate that for the tested
models relatedness is an easier task than simi-
larity: every model – aside from fastText on Su-
perSim – performs better (or equally well) on re-
latedness on the whole test set, as well as on its
subparts, compared to similarity.

5 Conclusions and future work

In this paper, we presented SuperSim, a Swedish
similarity and relatedness test set made of new
judgments of the translated pairs of both SimLex-
999 and WordSim353. All pairs have been rated
by five expert annotators, independently for both
similarity and relatedness. Our inter-annotator
agreements mimic those of the original test sets,
but also indicate that similarity is an easier task to
rate than relatedness, while our intra-rater agree-
ments on 69 control pairs indicate that the annota-
tion is reasonably consistent.

To provide a baseline for model perfor-
mance, we trained three different models, namely
Word2Vec, fastText and GloVe, on two separate
Swedish datasets. The first comprises a general
purpose dataset, namely the The Swedish Cultur-
omics Gigaword Corpus with different genres of
text spanning 1950-2015. The second comprises
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a recent Swedish Wikipedia dump. On the Giga-
word corpus, we find that fastText is best at cap-
turing both relatedness and similarity while for
Wikipedia, GloVe performs the best.

Finally, to answer the question posed in the
introduction: it is common to have words that
are highly related, but not similar. To give
a few examples, these are pairs with related-
ness 10 and similarity 0: bil-motorväg ‘car-
highway,’ datum-kalender ‘date-calendar,’ ord-
ordbok ‘word-dictionary,’ skola-betyg ‘school-
grade,’ and tennis-racket ‘tennis-racket.’

The opposite however, does not hold. Only four
pairs have a similarity score higher than the re-
latedness score, and in all cases the difference is
smaller than 0.6: bli-verka ‘become-seem,’ rör-
cigarr ‘pipe-cigarr,’ ståltråd-sladd ‘wire-cord,’
tillägna sig-skaffa sig ‘get-acquire.’

For future work, the SuperSim testset can be im-
proved both in terms of added annotations (more
annotators), and with respect to more fine-grained
judgements (real values in contrast to discrete ones
currently used) to reduce the number of rank ties.
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Abstract

Pre-trained neural language models give
high performance on natural language in-
ference (NLI) tasks. But whether they ac-
tually understand the meaning of the pro-
cessed sequences remains unclear. We
propose a new diagnostics test suite which
allows to assess whether a dataset con-
stitutes a good testbed for evaluating the
models’ meaning understanding capabil-
ities. We specifically apply controlled
corruption transformations to widely used
benchmarks (MNLI and ANLI), which in-
volve removing entire word classes and
often lead to non-sensical sentence pairs.
If model accuracy on the corrupted data
remains high, then the dataset is likely
to contain statistical biases and artefacts
that guide prediction. Inversely, a large
decrease in model accuracy indicates that
the original dataset provides a proper chal-
lenge to the models’ reasoning capabili-
ties. Hence, our proposed controls can
serve as a crash test for developing high
quality data for NLI tasks.

1 Introduction

Assessing the natural language inference (NLI)
and understanding (NLU) capabilities of a model
poses numerous challenges, one of which is the
quality and composition of the data used for eval-
uation. Popular NLI datasets (Bowman et al.,
2015; Marelli et al., 2014) contain annotation arte-
facts and statistical irregularities that can be eas-
ily grasped by a model during training and guide
prediction, even if the model has not acquired the
knowledge needed to perform this kind of rea-
soning. Notably, recent work shows that major
modifications such as word shuffling do not hurt
BERT’s (Devlin et al., 2019) NLU capabilities

Premise Hypothesis

C
on

tr
ad

ic
tio

n

He was hardly more than
five feet, four inches,
but carried himself with
great dignity.

The man was 6 foot
tall.

E
nt

ai
lm

en
t Two plants died on the

long journey and the
third one found its way
to Jamaica exactly how is
still shrouded in mystery.

The third plant was
a different type
from the first two.

N
eu

tr
al

In a couple of days the
wagon train would head
on north to Tucson, but
now the activity in the
plaza was a mixture of
market day and fiesta.

They were south of
Tucson.

Table 1: Sentence pairs from a corrupted MNLI
training dataset where nouns have been removed.

much, mainly due to individual words’ impact on
prediction (Pham et al., 2020). To the contrary,
small tweaks or perturbations in the data, such
as replacing words with mutually exclusive co-
hyponyms and antonyms (Glockner et al., 2018)
or changing the order of the two sentences (Wang
et al., 2019b), has been shown to hurt the perfor-
mance of NLI models.

Motivated by this situation, our goal is to con-
tribute a new suite of diagnostic tests that can be
used to assess the quality of an NLU benchmark.
In particular, we conduct a series of controlled ex-
periments where a set of data corruption trans-
formations are applied to the widely used MNLI
(Williams et al., 2018) and ANLI (Nie et al., 2020)
datasets, and explore their impact on fine-tuned
BERT and ROBERTa (Liu et al., 2019) model per-
formance. The obtained results provide evidence
that can reveal the quality of a dataset: Given that
the transformations seriously affect the quality of
NLI sentences, going as far as making them un-
intelligible (cf. examples in Table 1), a decrease
in performance for models fine-tuned on the cor-
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rupted dataset would be expected. High perfor-
mance would, instead, indicate the presence of bi-
ases and other artefacts in the dataset which guide
models’ predictions. This situation would be in-
dicative of a low quality dataset, i.e. one we cannot
rely upon to draw safe conclusions about a model’s
NLI capabilities.

Bringing in additional evidence to the debate on
problematic NLI evaluation setups and how poorly
they represent the real inference capabilities of the
tested models, our proposed diagnostics allow to
evaluate the quality of datasets by assessing how
artefact and bias-free they are, and hence the ex-
tent to which they can be trusted for evaluating
NLI models’ language reasoning capabilities. We
consider this step highly important for estimat-
ing the quality of existing benchmarks and inter-
preting model results accordingly, and for guiding
the development of new datasets addressing infer-
ence and reasoning. We make our code and data
available in order to promote the adoption of these
diagnostic tests and facilitate their application to
new datasets.1

2 Related Work

A well-known problem of NLU evaluation bench-
marks is that the proposed tasks are often solvable
by simple heuristics (Hewitt and Liang, 2019).
This is mainly due to the presence of linguistic bi-
ases in the datasets, which make prediction easy
(Lai and Hockenmaier, 2014; Poliak et al., 2018).
Notably, 90% of the hypotheses that denote a con-
tradiction in the original SNLI dataset (Bowman
et al., 2015) contain the verb sleep and its variants
(sleeping, asleep) which serve to mark a contrast
with an activity described in the premise (e.g., My
sister is playing → My sister is sleeping); while
contradictions in SICK (Marelli et al., 2014) are
often marked by explicit negation. This latter issue
also exists in SNLI and MNLI as spotted by Guru-
rangan et al. (2018), where negation is highly in-
dicative of contradiction, and generic nouns (e.g.,
animal, something) of entailment. These gram-
matical or lexical cues are easily grasped by the
models during training and help them correctly
predict the relationship between two sentences,
but this does not mean that the models are capa-
ble of performing this type of reasoning. Notably,
due to these annotation artefacts and statistical ir-

1https://github.com/Helsinki-NLP/
nli-data-sanity-check

regularities, it is possible even for hypothesis-only
NLI models (i.e. models that are fine-tuned only
on the hypotheses without access to the premises)
to make correct predictions (Poliak et al., 2018).

Recent work shows that state-of-the-art NLU
models are not very sensitive to word order which,
however, is one of the most important characteris-
tics of a sequence (Pham et al., 2020). Specifically,
performance of BERT-based classifiers fine-tuned
on GLUE tasks (Wang et al., 2018) remains rela-
tively high after randomly shuffling input words.
This is mainly explained by the contribution of
each individual word which remains unchanged
after its context is shuffled. Superficial cues such
as the sentiment of keywords in sentiment analy-
sis, or the word level similarity between sentence
pairs in NLI, allow BERT-based models to make
correct decisions even when tokens are arranged in
random orders, suggesting that many GLUE tasks
are not really challenging them to understand the
meaning of a sentence.

To the contrary, when simple heuristics do not
suffice to solve the NLI task, NLI systems seem
to be more prone to breaking. This is for example
what happens when swapping the test and train-
ing datasets of different benchmarks (i.e. train-
ing on one NLI dataset and testing on an other)
(Talman and Chatzikyriakidis, 2019). Wang et al.
(2019b) report problems in performance when the
premise and the hypothesis are swapped. The idea
is that the label of contradicting or neutral pairs
should remain the same in the case of a swap, in
contrast to entailment pairs where a different label
should be proposed after the swap. This would be
expected because entailment is a directional rela-
tionship, while contradiction is symmetric.2 Wang
et al. (2019b) test various models with respect to
this diagnostic and observe a a significant drop in
performance (i.e. predicted labels change) when
the contradicting and neutral pairs are swapped.
The models’ behaviour seems more reasonable
when these are tested on the swapped entailment
pairs, where all but one models correctly predict
a different label. In the light of these results, the
authors propose the swapping method as a sanity
check for NLI models.

The low quality of existing datasets and the
impressively high performance of NLI systems,
as measured on these benchmarks, have sparked

2More explicitly, for contradiction, the idea is that when
A → ¬B (i.e. B contradicts A), then, by contraposition,
B → ¬A also holds (A contradicts B).
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a new research direction where the goal is to
propose new more challenging and artefact-free
datasets. The ANLI dataset, for example, was
built precisely with the goal to eliminate anno-
tation artefacts (Nie et al., 2020). The authors
claim that this dataset is much less prone to anno-
tation artefacts compared to previous benchmarks,
as suggested by the lower prediction accuracy for
models fine-tuned on the ANLI hypothesis-only
dataset. Although there still seems to be space
for improvement (accuracy is around 0.5, i.e. well
above chance), the reported findings are promis-
ing. Specifically, the performance is lower than on
the hypothesis-only SNLI/MNLI datasets, show-
ing that the dataset contains less artefacts that can
guide prediction. ANLI is thus a natural candidate
to further test our hypotheses, as it claims to rem-
edy for a number of the shortcomings of earlier
NLI datasets.

Lessons learnt from previous work on design-
ing reliable linguistic probing tasks (Hewitt and
Liang, 2019) and the overfitting problems of NLI
models discussed above, demonstrate the impor-
tance of systematic sanity checks like the ones we
propose in this paper. Our dedicated control tasks
specifically allow to determine whether a dataset
triggers the models’ reasoning capabilities or, in-
stead, allows them to rely on statistical biases and
annotation artefacts for prediction. We use the
quality of the predictions made by models fine-
tuned and tested on corrupted data as a proxy to
evaluate data quality.

3 Datasets

3.1 The Multi-Genre NLI (MNLI) Corpus

We carry out our experiments on the Multi-
Genre Natural Language Inference (MNLI) cor-
pus (Williams et al., 2018). MNLI contains 433k
human-written sentence pairs labeled as “entail-
ment”, “contradiction” and “neutral”. The corpus
includes sentence pairs from ten distinct genres of
written and spoken English,3 making it possible
to approximate a wide variety of ways in which

3MNLI text genres: Two-sided in person and telephone
conversations (FACE-TO-FACE, TELEPHONE); content from
public domain government websites (GOVERNMENT); letters
from the Indiana Center for Intercultural Communication of
Philanthropic Fundraising Discourse (LETTERS); the public
report from the National Commission on Terrorist Attacks
Upon the United States (9/11); non-fiction works on the tex-
tile industry and child development (OUP); popular culture
articles (SLATE); travel guides (TRAVEL); short posts about
linguistics for non-specialists (VERBATIM); FICTION.

modern standard American English is used, and
supplying a setting for evaluating cross-genre do-
main adaptation. All ten genres appear in the test
and development sets, but only five are included in
the training set. The MNLI development and test
sets have been divided into “matched” and “mis-
matched”: The former includes only sentences
from the same genres found in the training data,
and the latter includes sentences from the remain-
ing genres not present in the training data. For our
experiments, we use the development sets as our
evaluation data since the annotated test sets are not
publicly available.

3.2 The Adversarial NLI (ANLI) Corpus

The Adversarial NLI benchmark (ANLI) (Nie
et al., 2020) was specifically designed to address
some of the shortcomings of the previous NLI
datasets. ANLI contains three datasets (rounds),
R1, R2 and R3. Each dataset was collected us-
ing a human-and-model-in-the-loop approach, and
they progressively increase in difficulty and com-
plexity. The annotators were shown a context
(premise) and a target label, and were asked to
propose a hypothesis that would lead a model to
miss-classify the label. For R1, the model that
the annotators were asked to deceive was BERT-
Large, while for R2 and R3, it was RoBERTa. For
R3, the contexts were selected from a wider set of
sources.4 The corpus also includes label explana-
tions provided by the annotators. Each round (R1-
R3) contains training, development and test data.

ANLI is a relatively small dataset. R1 consists
of only 16,946 training examples, 1,000 devel-
opment and 1,000 test examples. R2 is slightly
larger, it contains 45,460 training examples and
the same number of development and test exam-
ples as R1. Finally, R3 contains 100,459 training
examples and slightly larger development and test
sets (1,200 each).

3.3 Systematic NLI Data Corruption

We create modified versions of the MNLI train-
ing and evaluation data by applying a set of con-
trolled transformations to the original dataset. We
call these two sets MNLI CORRUPT-TRAIN and
CORRUPT-TEST, respectively. We specifically re-

4The contexts for R1 and R2 consist of sentences re-
trieved from Wikipedia. In R3 the contexts are retrieved from
Wikipedia, News (Common Crawl), fiction, The Children’s
Book Test (CBT), formal spoken text and procedural text ex-
tracted from WikiHow.
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move words of specific word classes after tagging
the texts with universal part of speech (POS) tags
using the NLTK library and the averaged percep-
tron tagger.5 In the obtained MNLI-NOUN train-
ing dataset, for example, all nouns in the origi-
nal MNLI training data have been removed. We
furthermore create training data following the in-
verse process, i.e. keeping only words of specific
classes and removing the others. For example,
the NOUN+VERB dataset contains only nouns and
verbs from the original MNLI sentences.

We similarly create the CORRUPT-TEST set by
removing words of specific word classes from the
MNLI-matched development dataset, or keeping
these and removing the rest. Table 2 in the Ap-
pendix contains statistics about the training and
evaluation datasets obtained after applying each
transformation. Finally, we combine the origi-
nal MNLI and the corrupted training datasets to-
gether. MNLI-ALLDROP contains the following
training sets: MNLI (original), -NUM, -CONJ, -
ADV, -PRON, -ADJ, -DET, -VERB, -NOUN.

We use ANLI as an example of a high quality
dataset, and create ANLI-CORRUPT-TEST by ap-
plying all the -POS transformations on the ANLI
test sets. Table 3 in the Appendix contains statis-
tics about the different ANLI-CORRUPT-TEST

datasets. To test the effect of corrupting the train-
ing data used in ANLI experiments (Nie et al.,
2020), we also create a training set that consists
of the SNLI, MNLI, FEVER and ANLI training
data with all the occurrences of nouns removed
(ANLI-CORRUPT-TRAIN).

We test the performance of BERT on the cor-
rupted MNLI data, and that of RoBERTa on the
corrupted ANLI data, and compare the results to
those obtained using the original datasets. We ex-
pect models fine-tuned on corrupted data – where
important information is missing and sentences
often do not make sense – to perform poorly
compared to the same models fine-tuned on the
original data. High performance of models fine-
tuned on these highly problematic data would in-
dicate that the models leverage clues (biases and
artefacts) that are present in the data, instead of
performing reasoning operations. Inversely, low
model performance would suggest that they are
unable to reason using these corrupted data, and
that the data do not contain artefacts that would
guide prediction in this setting.

5https://www.nltk.org/.

4 Models

We use Google’s original TensorFlow implemen-
tation6 of the uncased 768-dimensional BERT
model (BERT-base), a transformer model that
learns representations via a bidirectional encoder
(Devlin et al., 2019). BERT was pre-trained us-
ing a Masked Language Model (MLM or cloze)
task where some percentage of the input tokens
are masked at random, and the model needs to pre-
dict these masked tokens; and on a Next Sentence
Prediction (NSP) task, where it receives pairs of
sentences(A, B) as input and learns to predict if B
follows A in the original document. Sentence B in
(A, B) is 50% of the time the actual sentence that
follows A, and 50% of the time it is a random sen-
tence from the training corpus. NSP increases the
model’s ability to capture the relationship between
two sentences, which is the core task in NLI and
Question Answering.

Variants of the BERT model achieve very high
performance on NLU tasks, surpassing the hu-
man baseline on GLUE (Wang et al., 2018) and
reaching near-human performance on the chal-
lenging SuperGLUE dataset (Wang et al., 2019a).
For each experiment, we fine-tune BERT for ten
epochs on the original MNLI training dataset or its
transformed versions described in Section 3, using
a batch size of 100 (unless explicitly stated).

For the experiments on the ANLI benchmark,
we apply the RoBERTa-large model, a vari-
ant of BERT which has much higher performance
than BERT on the GLUE and SuperGLUE bench-
marks.7 We use the training and evaluation scripts
provided by Nie et al. (2020). 8 We fine-tune the
model for two epochs using a batch size of 16.

5 Evaluation

5.1 CORRUPT-TRAIN and Original Test
We evaluate the performance of the BERT model
when fine-tuned on each of the 14 training sets in
MNLI CORRUPT-TRAIN. We measure the mod-
els’ prediction accuracy on the original MNLI-

6https://github.com/google-research/
bert

7The modifications in RoBERTa include training the
model longer, with bigger batches, over more data and on
longer sequences. The pre-training approaches has also been
modified compared to BERT: The next sentence prediction
objective is removed and dynamic masking is introduced.
This results in different tokens being masked across training
epochs.

8https://github.com/facebookresearch/
anli
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Data CORRUPT-TRAIN ∆ CORRUPT-TEST ∆ CORRUPT-TRAIN AND TEST ∆
MNLI-NUM 82.37% -1.37 81.71% -2.03 81.87% -1.87
MNLI-CONJ 83.09% -0.65 82.75% -0.99 83.10% -0.64
MNLI-ADV 80.21% -3.53 72.41% -11.33 75.69% -8.05
MNLI-PRON 83.27% -0.47 81.98% -1.75 82.65% -1.09
MNLI-ADJ 81.67% -2.07 74.61% -9.13 76.44% -7.30
MNLI-DET 83.15% -0.59 79.29% -4.44 81.32% -2.42
MNLI-VERB 81.40% -2.34 73.96% -9.78 76.30% -7.44
MNLI-NOUN 80.72% -3.02 69.80% -13.94 73.38% -10.35
MNLI-NOUN-PRON 79.74% -4.00 68.41% -15.33 72.14% -11.60
NOUN+PRON+VERB 72.55% -11.19 54.59% -29.15 62.18% -21.56
NOUN+ADV+VERB 67.58% -16.16 62.58% -21.16 67.58% -16.16
NOUN+VERB 71.14% -12.60 52.90% -30.84 61.31% -22.43
NOUN+VERB+ADJ 75.54% -8.20 61.90% -21.84 68.20% -15.54
NOUN+VERB+ADV+ADJ 79.81% -3.93 71.81% -11.93 76.29% -7.45

Table 2: Prediction accuracy (%) for the BERT-base model fine-tuned on CORRUPT-TRAIN and tested
on the original MNLI-matched evaluation (dev) set (columns 2 and 3); fine-tuned on the original MNLI
data and tested on CORRUPT-TEST; fine-tuned on CORRUPT-TRAIN and tested on CORRUPT-TEST

(columns 6 and 7). The delta shows the difference in accuracy compared to the model fine-tuned on the
original MNLI training set and evaluated on the MNLI-matched development set (83.74%).

matched development dataset, which serves as our
test set. The results given in the first column of
Table 2 show that removing all the occurrences
of a specific word class from the MNLI training
data has a surprisingly low impact on BERT’s per-
formance, which remains high. As expected, the
biggest decrease is observed when content words
are removed, with adverbs having the largest im-
pact (-3.53), followed by nouns (-3.02) and verbs
(-2.34). Interestingly, the number of nouns is 4.5
times higher than the number of adverbs in the
dataset, suggesting that the latter have a larger im-
pact on NLI prediction. The small drop in accu-
racy observed across the board is, however, highly
surprising. Arguably, sentences with nouns re-
moved make very little sense to humans (cf. Table
1).9 The observed high performance of BERT on
these problematic data might be due to the knowl-
edge about gap filling and Next Sentence Predic-
tion acquired by the model during pre-training,
which it can still leverage and combine with other
cues in the training and test data for prediction.

5.2 Evaluation on CORRUPT-TEST

Models fine-tuned on original data. We eval-
uate the performance of the BERT model fine-
tuned on the original MNLI training data, on our
CORRUPT-TEST data. The middle columns of Ta-
ble 2 show the experimental results on the differ-
ent CORRUPT-TEST datasets, and the difference
(delta) from the results on the original (unmodi-

9Cf. Table 1 in the Appendix for examples of corrupted
sentence pairs from the MNLI-NOUN test set for which BERT
has made a correct prediction.

fied) MNLI-matched development set.
We observe a similar pattern as in the previ-

ous experiment. Removing content words (nouns,
verbs and adverbs) has the strongest impact on
model accuracy, whereas eliminating conjunctions
and numerals has only a small impact on the re-
sults. The decrease in prediction accuracy ob-
served in this setting is more important than in
the evaluation of models fine-tuned on CORRUPT-
TRAIN and tested on unmodified data. Neverthe-
less, the fact that BERT can still predict the correct
label with fairly high accuracy in cases where all
the nouns or verbs are removed is surprising, since
these transformations often lead to almost unintel-
ligible sentence pairs (cf. examples in Table 1 in
the paper and Table 1 in the Appendix). Since in-
ference in such non-sensical sentences cannot rely
on meaning, our explanation for the models’ per-
formance is that they leverage other clues and bi-
ases that remain in the sentences after corruption
for prediction. Note that the models tested in this
setting were fine-tuned on the original MNLI data.
We believe that during this stage the model ac-
quires knowledge about possible sequence pairs,
including the artefacts and other clues therein.

Models fine-tuned on CORRUPT-TRAIN. We
evaluate the performance of BERT models fine-
tuned on CORRUPT-TRAIN, on CORRUPT-TEST.
The results of these experiments are shown in the
last two columns of Table 2. We observe again
a similar pattern in terms of relative importance
of the different word classes, with content words
having the biggest impact. What is definitely

280



Training Data MNLI-matched (dev) MNLI-mismatched (dev)
MNLI 83.74% 83.76%
MNLI-ALLDROP 84.09% 84.30%

Table 3: Comparison of prediction accuracy (%) for BERT-base models fine-tuned on the original
MNLI training set and on MNLI-ALLDROP, and tested on the original MNLI evaluation (dev) sets.

Data CORRUPT-TEST R1 ∆ CORRUPT-TEST R2 ∆ CORRUPT-TEST R3 ∆
ANLI-CONJ 70.2% -3.6 49.0% 0.1 46.5% 2.1
ANLI-PRON 69.6% -4.2 49.7% 0.8 45.0% 0.6
ANLI-DET 69.5% -4.3 49.4% 0.5 45.0% 0.6
ANLI-ADV 67.1% -6.7 49.6% 0.7 43.8% -0.6
ANLI-ADJ 60.2% -13.6 45.1% -3.8 45.0% 0.6
ANLI-NUM 58.7% -15.1 43.8% -5.1 45.1% 0.7
ANLI-VERB 54.6% -19.2 44.7% -4.2 39.3% -5.1
ANLI-NOUN 43.7% -30.1 36.0% -12.9 32.4% -12.0

Table 4: Prediction accuracy (%) for the RoBERTa-large model on the CORRUPT R1, R2 and R3 test
sets. Delta shows the difference in accuracy compared to the state-of-the-art results reported by Nie et al.
(2020) on the original test sets, R1: 73.8%, R2: 48.9% and R3: 44.4%.

surprising in this case is that the drop in perfor-
mance is smaller than the one observed for the
models trained on the original data and tested on
CORRUPT-TEST, suggesting that the model relies
on data artefacts even more in this setting.

5.3 MNLI-ALLDROP Evaluation

Motivated by the small decrease in prediction ac-
curacy observed when removing specific word
classes from the training data (cf. Section 5.1), we
also fine-tune the model on a large dataset com-
bining the different CORRUPT-TRAIN sets and the
original MNLI training set. The BERT fine-tuning
code is shuffling the provided examples, so our
goal here is to explore whether seeing sentence
pairs where words of different classes are missing
(e.g., sentences without verbs following sentences
that contain no nouns) confuses the model.

The results of this experiment are shown in Ta-
ble 3. They indicate that removing occurrences
of different word classes from the sentences dur-
ing training can act as a regularisation technique
and, hence improve the model performance. We
observe a small increase (+0.35) when evaluated
on the original MNLI-matched development data,
and an increase of 0.56 when evaluated on the
original MNLI-mismatched development data.

5.4 Evaluating on ANLI

In order to demonstrate that systematic data cor-
ruption can be a useful diagnostic for evaluating
benchmark quality, we conduct additional exper-
iments on the ANLI test set (Nie et al., 2020).
The results for the RoBERTa-large model fine-

tuned on the original training sets and evaluated on
CORRUPT-TEST R1, R2 and R3 data are given in
Table 4.

As expected, we observe a clear drop in accu-
racy for the datasets where content-bearing words
are removed (-NOUNS, -VERBS), and a relatively
small drop when function words are missing (-
CONJ, -DET), but only in R1. However, the fact
that accuracy on the R2 and R3 datasets improves
after some corruption transformations are applied
(ANLI-PRON, -CONJ, -DET) is an interesting find-
ing. A possible explanation is that as the sen-
tences (especially the premises) are much longer
in ANLI compared to other NLI datasets, remov-
ing non-content-bearing words makes it easier for
the model to grasp the essential information for
making correct predictions. The large drop in ac-
curacy when nouns and verbs are removed sup-
ports our hypothesis regarding the superior quality
of the ANLI corpus compared to MNLI, suggest-
ing that the dataset contains less artefacts on which
the model can base prediction after corruption.

We also compare the results reported by Nie
et al. (2020) for the RoBERTa-large model to
the ones obtained with the model fine-tuned on
the ANLI-NOUN training set.10 We measure the
model’s prediction accuracy on the original R1,
R2 and R3 test sets, and report the results in Ta-
ble 5. The drop in prediction accuracy is signifi-
cantly larger than that observed on the MNLI data.
Hence, the data corruption procedure reveals the

10This corresponds to MNLI+SNLI+FEVER+ANLI with all
nouns removed.
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Training data R1 R2 R3
ANLI 73.8% 48.9% 44.4%
ANLI-NOUN 57.6% 40.3% 41.0%

Table 5: Prediction accuracy (%) for RoBERTa-
large on the ANLI-NOUN dataset. Comparison
to the results of Nie et al. (2020) on the original
ANLI dataset. ANLI contains MNLI, SNLI, FEVER

and ANLI.

improved quality of the ANLI data set as a bench-
mark for NLU. However, the fact that the model is
able to predict the correct label with 57.6% accu-
racy for ANLI R1 highlights that even with this
dataset the model learns some factors from the
data that it is able to use when predicting the la-
bel for a pair, even when the training sentences
do not make much sense. These results further
demonstrate the importance of carefully running
diagnostics such as ours to assess the use of a new
benchmark in NLU tasks.

6 Discussion

The question of whether current state-of-the-art
neural network models that beat human perfor-
mance in NLU tasks actually understand language
is currently much debated. Our proposed corrup-
tion transformations often lead to sentences that
make very little sense. Nevertheless, we observe
that BERT performs surprisingly well in these ex-
periments. This indicates that rather than under-
standing the meaning of the sentences and the se-
mantic relationship between them, the models are
able to pick up on other cues from the data that
allow them to make correct predictions.

Our proposed diagnostics tests are useful de-
vices for assessing the quality of a dataset as a
testbed for evaluating models’ language under-
standing capabilities. In our experiments, they
demonstrate the superior quality of a NLI dataset
(ANLI) over another (MNLI). We test this finding
in an additional experiment where we apply the
word shuffling mechanism of Pham et al. (2020)
on the ANLI data, which was shown to not de-
teriorate BERT-based model performance on the
GLUE tasks. Our results in Table 6 show that this
procedure significantly hurts model accuracy on
ANLI, and bring in additional evidence support-
ing the superior quality of this dataset over MNLI
(which is part of the GLUE benchmark).

Our test suite can be seen as an additional
“crash test” for assessing the quality of bench-

Test set R1 R2 R3
ANLI 73.8% 48.9% 44.4%
ANLI-SHUFFLE-n1 35.5% 33.8% 36.0%
ANLI-SHUFFLE-n2 45.4% 39.8% 37.1%
ANLI-SHUFFLE-n3 49.4% 40.7% 38.4%

Table 6: Prediction accuracy (%) for RoBERTa-
large after word shuffling (Pham et al., 2020).
Comparison to results obtained on the original
ANLI dataset (Nie et al., 2020). The ANLI-
SHUFFLE-n1/n2/n3 test sets contain shuffled n-
grams, with n = {1, 2, 3} respectively.

mark datasets that address common-sense reason-
ing. It falls in the same line as work that high-
lighted problems of earlier datasets and resulted in
the creation of ANLI. Our proposition can be part
of a good methodology for building future NLI
datasets. The multi-faceted nature of the problems
that exist in current NLI datasets makes research
that investigates these issues very important; the
more the diagnostic tests we have, the more reli-
able the datasets will hopefully get. The fact that
one type of testing (hypothesis only, word shuf-
fling or word class dropping) does not eliminate
all problems present in the datasets, highlights the
need for a variety of diagnostic devices addressing
different phenomena.

We propose the following set of diagnostics as
the minimum sanity check when developing new
NLI datasets:

• Hypothesis only baseline (Gururangan et al.,
2018; Poliak et al., 2018)

• Word-order shuffling (Pham et al., 2020)

• Swapping premises and hypotheses (Wang
et al., 2019b)

• Word class dropping (our proposed diagnos-
tics)

Returning to the specific findings of this pa-
per, we performed an additional set of analysis
aimed at identifying what the observed, relatively
small, impact of the proposed modifications is due
to. We explore whether the drop in performance
can be explained by the (smaller or larger) num-
ber of tokens pertaining to the word class being
removed. As can be seen in Figure 1, where we
compare the accuracy of BERT and the number of
tokens removed from the training data in each set-
ting, this factor does not explain the obtained re-
sults. For example, there are only 492,895 occur-
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Figure 1: Comparison of BERT-base model Ac-
curacy vs Tokens removed. The model is fine-
tuned on the MNLI training data with instances of
a specific word class removed, and evaluated on
the original MNLI-matched development data.

rences of adverbs removed from the training set,
but the delta to the original result is the highest
(-3.53 points), whereas removing 886,966 deter-
miners has only a small impact on accuracy (-0.59
points). This plot demonstrates the important role
of content words in NLI prediction.

Zhou and Bansal (2020) have shown that high
lexical overlap between premises and hypotheses
can guide models’ predictions. We thus explore
the extent to which our results can be explained
by the amount of lexical overlap in the CORRUPT-
TEST sets. We measure lexical overlap by count-
ing the tokens shared by the premise and the hy-
pothesis in a sentence pair. The orange bars in
the plot in Figure 2 show the amount of lexical
overlap between premises and hypotheses (% cal-
culated over the total number of examples) in the
original MNLI and the CORRUPT-TEST test sets.
The blue bars show the prediction accuracy ob-
tained by BERT fine-tuned on the original MNLI
data when evaluated on each test set. We observe
that although there is a decrease in lexical overlap
in some test sets (e.g., in MNLI-NOUN), there is no
clear correlation between lexical overlap and ac-
curacy, which suggests that the model picks up on
other cues that remain in the corrupted sentences
for prediction.

7 Conclusion

We propose a novel diagnostics suite for assessing
the quality of datasets used for NLI model training
and evaluation. We show that data corruption is an
efficient way to estimate dataset quality and their

Figure 2: Comparison of model accuracy and lex-
ical overlap in the original MNLI test and the
CORRUPT-TEST sets. The models are fine-tuned
on the original MNLI training data.

potential to reflect the real language understand-
ing capabilities of the models. Our results on the
MNLI and ANLI datasets show that our method-
ology can successfully identify datasets of high or
low quality, i.e. whether a dataset triggers models’
reasoning potential or rather allows them to rely on
cues and other statistical biases for prediction. Our
proposed tests can be used for assessing the qual-
ity of existing benchmarks used by the community
and interpreting the results accordingly, and also
to guide the development of new datasets address-
ing reasoning tasks. In this latter case, data cor-
ruption would serve to identify whether a dataset
construction methodology and the adopted anno-
tation guidelines are on the correct track.

Lastly, although it would be interesting to com-
pare a larger number of architectures, we leave this
comparison for future work due to lack of space
and also in order to not confuse the reader, given
the large number of settings where experiments
are conducted. We also focus in this paper on the
MNLI and ANLI datasets, since our main concern
is to cover as many corruption settings as possi-
ble. Extending the current work to other models
and NLU datasets is a natural next step for fu-
ture research. We have made our code available to
promote research in this direction.11 Additionally,
since the present work leaves open questions as re-
gards the factors behind the high performance ob-
served on the corrupted datasets, we plan to more
thoroughly investigate the cues and artefacts on
which the models rely and which allow them to

11https://github.com/Helsinki-NLP/
nli-data-sanity-check
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perform well in these tasks.
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Appendix

Table 1 contains examples of sentence pairs from
the MNLI-NOUN test set for which BERT pre-
dicted the correct labels. Table 2 contains statis-
tics for the number of tokens removed from the
corrupted MNLI datasets. Table 3 contains statis-
tics for the number of tokens removed from the
corrupted ANLI test sets.
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Label Premise Hypothesis
contradiction The intends that with appropriate in developing

this.
The discourages to consult with any.

contradiction Like and, warns, and Japanese are joined by yet
locked in traditional.

and Japanese have no between them.

contradiction To be sure, not all are. Every single is a.
entailment The, or Where the? The of saving.
entailment In the original, is set up by his and then ambushed

by a hostile named, and when he tries to answer
with an eloquent ( is clenched.

is out to get him.

entailment The other is retrospective and intended to help those
who review to assess the of completed.

It is made to help the assess the of the.

neutral and uh it that takes so much away from your you away from your because it is more im-
portant to you.

neutral The had been found in a in the. The that was in the was powdered.
neutral In the other, the beat the. The are a better.

Table 1: Randomly selected sentence pairs from MNLI-NOUN test set for which BERT predicted the
correct labels.

Training datasets Test datasets
Configuration Premises Hypotheses Total Premises Hypotheses Total
MNLI-NUM 119,587 44,289 163,876 3,100 1,133 4,233
MNLI-CONJ 320,210 76,466 396,676 7,584 1,874 9,458
MNLI-ADV 492,895 237,250 730,145 11,777 5,862 17,639
MNLI-PRON 543,968 301,293 845,261 13,060 7,466 20,526
MNLI-ADJ 677,095 302,652 979,747 16,162 7,562 23,724
MNLI-DET 886,966 483,238 1,370,204 21,198 11,723 32,921
MNLI-VERB 1,474,454 886,597 2,361,051 35,813 22,101 57,914
MNLI-NOUN 2,228,780 1,090,814 3,319,594 54,700 27,182 81,882
MNLI-NOUN-PRON 2,772,748 1,392,107 4,164,855 67,760 34,648 102,408
NOUN+PRON+VERB 4,501,189 2,166,146 6,667,335 109,325 53,647 162,972
NOUN+ADV+VERB 4,552,262 2,230,189 6,782,451 110,608 55,251 165,859
NOUN+VERB 5,045,157 2,467,439 7,512,596 122,385 61,113 183,498
NOUN+VERB+ADJ 4,368,062 2,164,787 6,532,849 106,223 53,551 159,774
NOUN+VERB+ADV+ADJ 3,875,167 1,927,537 5,802,704 94,446 47,689 142,135

Table 2: Datasets formed by removing tokens from MNLI. The numbers correspond to number of tokens
removed from the Premises and Hypotheses, and the total number of removed tokens.

R1 R2 R3
Test dataset Premises Hypotheses Total Premises Hypotheses Total Premises Hypotheses Total
ANLI-NOUN 23,523 4,719 28,242 23,646 4,275 27,921 23,086 4,033 27,119
ANLI-VERB 6,057 1,657 7,714 6,155 1,668 7,823 11,281 2,258 13,539
ANLI-PRON 1,567 184 1,751 1,657 178 1,835 4,152 446 4,598
ANLI-ADJ 2,827 514 3,341 2,783 495 3,278 3,525 625 4,150
ANLI-ADV 899 267 1,166 917 313 1,230 2,898 470 3,368
ANLI-NUM 2,934 576 3,510 2,862 515 3,377 1,737 286 2,023
ANLI-CONJ 1,816 161 1,977 1,897 122 2,019 2,073 142 2,215
ANLI-DET 5,631 1,195 6,826 5,669 1,086 6,755 7167 1,406 8,573

Table 3: Datasets formed by removing tokens from ANLI test sets. The numbers correspond to number
of tokens removed from the Premises and Hypotheses, and the total number of removed tokens for the
three datasets (rounds).
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Abstract
In this paper, we introduce the first
fully manually annotated paraphrase cor-
pus for Finnish containing 53,572 para-
phrase pairs harvested from alternative
subtitles and news headings. Out of all
paraphrase pairs in our corpus 98% are
manually classified to be paraphrases at
least in their given context, if not in all
contexts. Additionally, we establish a
manual candidate selection method and
demonstrate its feasibility in high quality
paraphrase selection in terms of both cost
and quality.

1 Introduction

The powerful language models that have recently
become available in NLP have also resulted in a
distinct shift towards more meaning-oriented tasks
for model fine-tuning and evaluation. The most
typical example is entailment detection, with the
paraphrase task raising in interest recently. Para-
phrases, texts that express the same meaning with
differing words (Bhagat and Hovy, 2013), are —
already by their very definition — a suitable target
to induce and evaluate models’ ability to represent
meaning. Paraphrase detection and generation has
numerous direct applications in NLP (Madnani
and Dorr, 2010), among others in question answer-
ing (Soni and Roberts, 2019), plagiarism detec-
tion (Altheneyan and Menai, 2019), and machine
translation (Mehdizadeh Seraj et al., 2015).

Research in paraphrase naturally depends on the
availability of datasets for the task. We will review
these in more detail in Section 2, nevertheless, bar-
ring few exceptions, paraphrase corpora are typi-
cally large and gathered automatically using one
of several possible heuristics. Typically a com-
paratively small section of the corpus is manually
classified to serve as a test set for method develop-
ment. The heuristics used to gather and filter the

corpora naturally introduce a bias to the corpora
which, as we will show later in this paper, demon-
strates itself as a tendency towards short examples
with a relatively high lexical overlap. Addressing
this bias to the extent possible, and providing a
corpus with longer, lexically more diverse para-
phrases is one of the motivations for our work. The
other motivation is to cater for the needs of Finnish
NLP, and improve the availability of high-quality,
manually annotated paraphrase data specifically
for the Finnish language.

In this paper, we therefore aim for the follow-
ing contributions: Firstly, we establish and test
a fully manual procedure for paraphrase candi-
date selection with the aim of avoiding a selec-
tion bias towards short, lexically overlapping can-
didates. Secondly, we release the first fully man-
ually annotated paraphrase corpus of Finnish, suf-
ficiently large for model training. The number of
manually annotated examples makes the released
dataset one of the largest, if not the largest manu-
ally annotated paraphrase corpus for any language.
And thirdly, we report the experiences, tools, and
baseline results on this new dataset, hopefully al-
lowing other language NLP communities to assess
the potential of developing a similar corpus for
other languages.

2 Related Work

Statistics of the different paraphrase corpora most
relevant to our work are summarized in Table 1.
For English, the Microsoft Research Paraphrase
Corpus (MRPC) (Dolan and Brockett, 2005) is
extracted from an online news collection by ap-
plying heuristics to recognize candidate document
pairs and candidate sentences from the documents.
Paraphrase candidates are subsequently filtered
using a classifier, before the final manual binary
annotation (paraphrase or not). In the Twitter
URL Corpus (TUC) (Lan et al., 2017), para-
phrase candidates are identified by recognizing
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Corpus Data source Size autom. Size manual Labels
English
MRPC Online news — 5,801 0/1
TUC News tweets — 52K 0/1
ParaSCI Scientific papers 350K — 1-5
PARADE flashcards (computer sci.) — 10K 0-3
QQP Quora 404K — 0/1
Finnish
Opusparcus OpenSubtitles 480K* 3,703 1-4
TaPaCo Tatoeba crowdsourcing 12K — —

Table 1: Summary of available paraphrase corpora of naturally occurring sentential paraphrases. The
corpora sizes include the total amount of pairs in the corpus (i.e. also those labeled as non-paraphrases),
thus the actual number of good paraphrases depend on the class distribution of each corpus. *The highest
quality cutpoint estimated by the authors.

shared URLs in news related tweets. All can-
didates are manually binary-labeled. ParaSCI
(Dong et al., 2021) is created by collecting para-
phrase candidates from ACL and arXiv papers us-
ing heuristics based on term definitions, citation
information as well as sentence embedding simi-
larity. The extracted candidates are automatically
filtered, but no manually annotated data is avail-
able. PARADE (He et al., 2020) is created by col-
lecting online user-generated flashcards for com-
puter science related concepts. All definitions for
the same term are first clustered, and paraphrase
candidates are extracted only among a cluster to
reduce noise in candidate selection. All extracted
candidates are manually annotated using a scheme
with four labels. Quora Question Pairs (QQP)1

contains question headings from the forum with
binary labels into duplicate-or-not questions. The
QQP dataset is larger than other datasets, however,
although including human-produced labels, the la-
beling is not originally designed for paraphrasing
and the dataset providers warn about labeling not
guaranteed to be perfect.

Another common approach for automatic para-
phrase identification is through language pivoting
using multilingual parallel datasets. Here sentence
alignments are used to recognize whether two dif-
ferent surface realizations share an identical or
near-identical translation, assuming that the iden-
tical translation likely implies a paraphrase. There
are two different multilingual paraphrase datasets
automatically extracted using language pivoting,
Opusparcus (Creutz, 2018) and TaPaCo (Scherrer,

1data.quora.com/First-Quora-Dataset-\
Release-Question-Pairs

2020), both including a Finnish subsection. Opus-
parcus consists of candidate paraphrases automat-
ically extracted from the alternative translations of
movie and TV show subtitles after automatic sen-
tence alignment. While the candidate paraphrases
are automatically extracted, a small subset of a
few thousand paraphrase pairs for each language
is manually annotated. TaPaCo contains candi-
date paraphrases automatically extracted from the
Tatoeba dataset2, which is a multilingual crowd-
sourced database of sentences and their transla-
tions. Like Opusparcus, TaPaCo is based on lan-
guage pivoting, where all alternative translations
for the same statement are collected. However, un-
like most other corpora, the candidate paraphrases
are grouped into ‘sets’ instead of pairs, and all sen-
tences in a set are considered equivalent in mean-
ing. TaPaCo does not include any manual valida-
tion.

3 Text Selection

As discussed previously, we elect to rely on fully
manual candidate extraction as a measure against
any bias introduced through heuristic candidate
selection methods. In order to obtain sufficiently
many paraphrases for the person-months spent, the
text sources need to be paraphrase-rich, i.e. have
a high probability for naturally occurring para-
phrases. Such text sources include for example
news headings and articles reporting on the same
news, alternative translations of the same source
material, different student essays and exam an-
swers for the same assignment, and related ques-
tions with their replies in discussion fora, where

2https://tatoeba.org/eng/
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one can assume different writers using distinct
words to state similar meaning. For this first
version of the corpus, we use two different text
sources: alternative Finnish subtitles for the same
movies or TV episodes, and headings from news
articles discussing the same event in two different
Finnish news sites.

3.1 Alternative Subtitles

OpenSubtitles3 distributes an extensive collection
of user generated subtitles for different movies
and TV episodes. These subtitles are available
in multiple languages, but surprisingly often the
same movie or episode have versions in a sin-
gle language, originating from different sources.
This gives an opportunity to exploit the natural
variation produced by independent translators, and
by comparing two different subtitles for a single
movie or episode, there is a high likelihood of find-
ing naturally occurring paraphrases.

From the database dump of OpenSubtitles2018
obtained through OPUS (Tiedemann, 2012), we
selected all movies and TV episodes with at least
two Finnish subtitle versions. In case more ver-
sions are available, the two most lexically differ-
ing are selected for paraphrase extraction. We
measure lexical similarity by TF-IDF weighted
document vectors. Specifically, we create TF-
IDF vectors with TfidfVectorizer from the
sklearn package. We limit the number of fea-
tures to 200K, apply sublinear scaling, use charac-
ter 4-grams created out of text inside word bound-
aries, and otherwise use the default settings. To
filter out subtitle pairs with low density of inter-
esting paraphrase candidates, pairs with too high
or too low cosine similarity of TF-IDF vectors are
discarded. High similarity usually reflects iden-
tical subtitles with minor formatting differences,
while low similarity is typically caused by incor-
rect identifiers in the source data. The two selected
subtitle versions are then roughly aligned using the
timestamps, and divided into segments of 15 min-
utes. For every movie/episode, the annotators are
assigned one random such segment, the two ver-
sions presented side-by-side in a custom tool, al-
lowing for fast selection of paraphrase candidates.

In total, we were able to obtain at least one
pair of aligned subtitle versions for 1,700 unique
movies and TV series. While for each unique
movie only one pair of aligned subtitles is se-

3http://www.opensubtitles.org

lected for annotation, TV series comprise different
episodes, dealing with the same plot and charac-
ters, and therefore overlapping in language. Af-
ter an initial annotation period, we noticed a topic
bias towards a limited number of TV series with
a large number of episodes, and decided to limit
the number of annotated episodes to 10 per each
TV series in all subsequent annotation. In total,
close to 3,000 different movies/episodes are used
for manual paraphrase candidate extraction, each
including exactly one pair of aligned subtitles.

3.2 News Headings

We have downloaded news articles through open
RSS feeds of different Finnish news sites during
2017–2021, resulting in a substantial collection of
news from numerous complementary sources. For
this present work, we narrow the data down to
two sources: the Finnish Broadcasting Company
(YLE) and Helsingin Sanomat (HS, English trans-
lation: Helsinki News). We align the news using a
7-day sliding window on time of publication, com-
bined with cosine similarity of TF-IDF-weighted
document vectors induced on the article body, ob-
taining article pairs likely reporting on the same
event. The settings of the TF-IDF vectors is the
same as in Section 3.1. We use the article headings
as paraphrase candidates, striving to select maxi-
mally dissimilar headings of maximally similar ar-
ticles as the most promising candidates for non-
trivial paraphrases. In practice, we used a simple
grid search and human judgement to establish the
most promising region of article body and heading
similarity values.

4 Paraphrase Annotation

The paraphrase annotation is comprised of multi-
ple annotation steps, including candidate selection
as described above, manual classification of can-
didates based on an annotation scheme, as well as
the possibility of rewriting partial paraphrases into
full paraphrases. Next, we will discuss the differ-
ent paraphrase types represented in our annotation
scheme, and afterwards the annotation workflow
is discussed in a more detailed fashion.

4.1 Annotation Scheme

Instead of a simple yes/no (equivalent or not
equivalent) as in MRPC (Dolan and Brockett,
2005) or 1–4 scale (bad, mostly bad, mostly good
and good) as in Opusparcus (Creutz, 2018), our
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annotation scheme is adapted to capture the level
of paraphrasability in a more detailed fashion. Our
annotation scheme uses the base scale 1–4 similar
to other paraphrase corpora, enriched with addi-
tional subcategories (flags) for distinguishing dif-
ferent types of paraphrases which would otherwise
fall from the label 4 (good) into label 3 (mostly
good).

An example for each of the categories discussed
below is shown in Table 2 (English translations
available in Appendix A). Each candidate pair is
first evaluated in terms of the base scale numbered
from 1 to 4, where:

Label 4 is a full (perfect) paraphrase in all rea-
sonably imaginable contexts, meaning one can al-
ways be replaced with the other without changing
the meaning. This ability to substitute one for the
other in any context is the primary test for label 4
used in the annotation.

Label 3 is a context dependent paraphrase,
where the meaning of the two statements is the
same in the present context, but not necessarily in
other contexts.

Label 2 is related but not a paraphrase, where
there is a clear relation between the two state-
ments, yet they cannot be considered paraphrases.

Label 1 is unrelated, there being no reasonable
relation between the two statements, most likely a
false positive in candidate selection.

If labeling a candidate pair is not possible for a
reason, or giving a label would not serve the de-
sired purpose (e.g. wrong language or identical
statements), the example can be skipped with the
label x.

With the base labels alone, a great number of
candidate paraphrases would fail the substitution
test for label 4 and be classified label 3. This
is especially so for longer text segments which
are less likely to express strictly the same mean-
ing. In order to avoid populating the label 3 cate-
gory with a very diverse set of paraphrases, we opt
to introduce flags for finer sub-categorization and
thus support a broader range of downstream ap-
plications of the corpus. These flags are always
attached to label 4 (subcategories of full para-
phrases), meaning the paraphrases are not fully
interchangeable due to the specified reason, but,
crucially, are context-independent, unlike label 3.
The possible flags are:

Subsumption (> or <) where one of the state-
ments is more detailed and the other more general.
The relation of the pair is therefore directional,
where the more detailed statement can be replaced
with the more general one in all contexts, but not
the other way around. The two common cases are
one statement having additional minor details the
other omits, and one statement being ambiguous
while the other not. If there is a justification for
crossing directionality (one statement being more
detailed in one aspect while the other in another
aspect), the pair falls into label 3 as the directional
replacement test does not hold anymore.

Style (s) for tone or register difference in cases
where the meaning of the two statements is the
same, but the statements differ in tone or regis-
ter such that in certain situations, they would not
be interchangeable. For example, if one statement
uses pejorative language or profanities, while the
other is neutral, or one is clearly colloquial lan-
guage while the other is formal. The style flag also
includes differences in the level of politeness, un-
certainty, and strength of the statements.

Minor deviation (i) marks in most cases min-
imal differences in meaning (typically ”this” vs.
”that”) as well as easily traceable differences in
grammatical number, person, tense or such. Some
applications might consider these as label 4 for
all practical purposes (e.g. information retrieval),
while others should regard these as label 2 (e.g.
automatic rephrasing).

The flags are independent of each other and can
be combined in the annotation.

4.2 Annotation Workflow

Given two aligned documents as described in Sec-
tion 3, an annotator first extracts all candidate
paraphrases. These can be anything between a
short phrase and several sentences long, typi-
cally being about a sentence long. The annota-
tors are encouraged to select as long continuous
statements as possible, nevertheless at the same
time avoiding a bias towards subsumption flag by
over-extending one of the candidates. The candi-
date paraphrases are subsequently transferred into
a classification annotation tool. In case of news
headings, where the candidates are extracted auto-
matically, the candidates are introduced directly in
the classification tool without any manual extrac-
tion step.
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Label Statement 1 Statement 2
4 Tyrmistyttävän lapsellista! Pöyristyttävän kypsymätöntä!
4s Olen työskennellyt lounaan ajan. Tein töitä koko ruokiksen.
4i Teitäpä onnisti. Oletpa onnekas.
4> Tein lujasti töitä niiden rahojen eteen. Paiskin kovasti töitä.
4<s Sä ruletat! Anna mennä! Sinä olet paras, Tähkä! Anna mennä!
4is Sä pöllit meidän kasvin! Varastit meidän kasvit!
3 Aion tehdä kokeen. Aion testata sitä.
2 Tappion kokenut Väyrynen katosi Helsingin yöhön. Väyrynen putoamassa eduskunnasta.

Rewrites
Orig Voinko palata tehtäviini? Saanko jatkaa?
Rew Voinko palata tehtäviini? Saanko jatkaa tehtäviäni?

Table 2: Example paraphrase pairs annotated with different labels and flags (English translations avail-
able in Appendix A).

In the classification tool, the annotator assigns
a label for each candidate. The candidate para-
phrases are shown one pair at a time, and for each
pair the document context is available.

In addition to assigning a label and optional
flags for a candidate pair, the classification tool
provides an option to rewrite the statements if the
classification is anything else than label 4 without
any flags. The annotators are instructed to rewrite
the candidates in cases, where a simple fix, for
example word or phrase deletion, addition or re-
placement with a synonym or changing an inflec-
tion, can be easily constructed. Rewrites must be
such that the annotated label for the rewritten ex-
ample is 4. In cases where the rewrite would re-
quire more complicated changes or would take too
much time, the annotators are instructed to move
on to the next candidate pair. One rewrite done
during the data annotation is illustrated in Table 2.

The annotators can mark unsure, difficult or
otherwise interesting cases for later discussion in
daily annotation meetings. The annotators also
communicate online, for instance seeking a quick
validation for a particular decision. The work is
further supported by a jointly produced 17-page
annotation manual, which is revised and extended
regularly.

The annotation work is carried out by 5 annota-
tors each working full-time or part-time through-
out the 4 month period used to construct the first
release version of the corpus. Each annotator has a
strong background in language studies by having
an academic degree or ongoing studies in a field
related to languages or linguistics.

Section Examples Rewrites Total
Train 36,600 6,239 42,839
Devel 4,474 884 5,358
Test 4,589 786 5,375
Total 45,663 7,909 53,572

Table 3: Data sizes in our corpus.

5 Corpus Statistics and Evaluation

The released corpus includes 45,663 naturally
occurring paraphrases with additional 7,909
rewrites, resulting in the total size of 53,572
paraphrase pairs. The data is randomly divided
into training, development and test sections using
80/10/10 split, however, with a restriction of all
paraphrases from the same movie or TV episode
being in the same section. Basic data statistics are
summarized in Table 3, and label distribution in
Figure 1. Notably, the amount of candidate pairs
labeled as not paraphrases (labels 1 or 2 in our
scheme) is almost non-existent, owing to the man-
ual candidate selection step in subtitles data from
which the vast majority of the corpus data origi-
nates. Only 5.6% of paraphrase pairs in the cor-
pus originate from the automated candidate selec-
tion from news data. The amount of candidates
labeled with label 1 or label x is insignificantly
small, therefore we decided to discard these from
the final corpus.

In Figure 2 we measure the density of different
label combinations in the training set conditioned
on cosine similarity of paraphrase pairs based on
TF-IDF weighted character n-grams of lengths 2–
4. Up to cosine similarity of 0.5 the most common
labels are evenly represented, while the prevalence
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Figure 1: Labels distribution in our corpus exclud-
ing 7,909 rewrites which can be added up with la-
bel 4.

of label 4 increases throughout the range and dom-
inates the sparsely populated range of similarities
over 0.8.

5.1 Annotation Quality

After the initial annotator training phase most of
the annotation work is carried out as single an-
notation. In order to monitor annotation con-
sistency, double annotation batches are assigned
regularly. In double annotation, one annotator
first extracts the candidate paraphrases from the
aligned documents, but later on these candidates
are assigned to two different annotators, who an-
notate the labels for these independently from
each other. Next, these two individual annotations
are merged and conflicting labels are resolved to-
gether with the whole annotation team in a meet-
ing. These consensus annotations constitute a gold
standard against which individual annotators can
be measured.

A total of 1,175 examples are double annotated
(2.5% of the data4). Most of these are annotated
by exactly two annotators, however, some exam-
ples may include annotations from more than two
annotators, and thus the total amount of individ-
ual annotations for which the gold standard label
exists is 2,513. We measure the agreement of indi-
vidually annotated examples against the gold stan-
dard annotations in terms of accuracy, i.e. the pro-
portion of individually annotated examples with
correctly assigned label.

4During the initial annotator training double annotation
was used extensively; this annotator training data is not in-
cluded in the released corpus.
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Figure 2: Density of different labels in the training
set conditioned on cosine similarity of the para-
phrase pairs.

The overall accuracy is 68.7% when the base
label (labels 1–4) as well as all additional flags
are taken into consideration. When discarding
the least common flags s and i and evaluat-
ing only base labels and directional subsumption
flags, the overall accuracy is 72.9%. To com-
pare the observed agreement to previous studies on
paraphrase annotation, the Opusparcus annotation
agreement is approximately 64% on Finnish de-
velopment set and 67% on test set (calculated from
numbers in Table 4 and Table 5 in Creutz (2018)).
The Opusparcus uses an annotation scheme with
four labels, similar to our base label scheme. In
MRPC, the reported agreement score is 84% on
a binary paraphrase-or-not scheme. While direct
comparison is difficult due to the different an-
notation schemes and label distributions, the fig-
ures show that the observed agreement seem to
be roughly within the same range with agreement
numbers seen in related works.

In addition to agreement accuracy, we calculate
two versions of Cohen’s kappa, a metric for inter-
annotator agreement taking into account the pos-
sibility of agreement occurring by chance. First
we measure kappa agreement of all individual an-
notations against the gold standard, an approach
typical in paraphrase literature. This kappa is 0.62,
indicating substantial agreement. Additionally, we
measure the Cohen’s kappa between each pair of
annotators. The weighted average kappa over all
annotator pairs is 0.41 indicating moderate agree-
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Figure 3: Comparison of paraphrase length distributions in terms of tokens per paraphrase.

Figure 4: Comparison of paraphrase pair cosine similarity distributions.

ment. Both are measured on full labels. When
evaluating only on base labels and directional sub-
sumption flags, these kappa scores are 0.65 and
0.45, respectively.

5.2 Corpus Comparison
We compare the distribution of paraphrase lengths
and lexical similarity with the two Finnish
paraphrase candidate corpora, Opusparcus and
TaPaCo, as the reference. Direct comparison is
complicated by several factors. Firstly, both Opus-
parcus and TaPaCo consist primarily of automat-
ically extracted paraphrase candidates, Opuspar-
cus having only small manually curated develop-
ment and test sections, and TaPaCo being fully un-
curated. Secondly, the small manually annotated
sections of Opusparcus are sampled to emphasize
lexically dissimilar pairs, and therefore not repre-
sentative of the characteristics of the whole cor-
pus. We therefore compare with the fully automat-
ically extracted sections of both Opusparcus and
TaPaCo. For our corpus, we discard the small pro-
portion of examples of base labels 1 and 2, i.e. not
paraphrases. Another important factor to consider
is that the proportion of false candidates in the au-
tomatically extracted sections of Opusparcus and
TaPaCo is unknown, further decreasing compara-
bility: the characteristics of false and true candi-
dates may differ substantially, false candidates for

example likely being on average more dissimilar
in terms of lexical overlap than true candidates.

For each corpus, we sample 12,000 paraphrase
pairs. For our corpus, we selected a random sam-
ple of true paraphrases (label 3 or higher) from the
train section. For TaPaCo, the sample covers all
paraphrase candidates from the corpus, however
with the restriction of taking only one, random pair
from each ‘set’ of paraphrases. For Opusparcus,
which is sorted by a confidence score in descend-
ing order, the sample was selected to contain the
most confident 12K paraphrase candidates.5

In Figure 3 the length distribution of para-
phrases in terms of tokens is measured for the
abovementioned samples. Although the majority
of paraphrases are rather short in all three cor-
pora, we see that our corpus includes a consider-
ably higher proportion of longer paraphrases. The
average number of tokens in our corpus is 8.3 to-
kens per paraphrase, while it is 5.6 in TaPaCo and
3.6 in Opusparcus candidates.

In Figure 4 the paraphrase pair cosine similarity
distribution is measured using TF-IDF weighted
character n-grams of length 2–4. While both

5When we repeated the length analysis with a sample of
480K most confident pairs, the length distribution and aver-
age length remained largely unchanged, while the similarity
distribution became close to flat. Without manual annotation,
it is hard to tell the reason for this behavior.
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TaPaCo and Opusparcus lean towards higher sim-
ilarity candidates, the distribution of our corpus
is more balanced including a considerably higher
proportion of pairs with low lexical similarity.

6 Paraphrase Classification Baseline

In order to establish a baseline classification per-
formance on the new dataset, we train a classi-
fier based on the FinBERT model (Virtanen et al.,
2019). Each paraphrase pair of statements A and B
is encoded as the sequence [CLS] A [SEP] B
[SEP], where [CLS] and [SEP] are the special
marker tokens of the BERT model. Subsequently,
the output embeddings of the three special tokens
are concatenated together with the averaged em-
beddings of the tokens in A and B. These five
concatenated embeddings are then propagated into
four decision layers: one for the base label 2/3/4,
one for the subsumption flag </>/none, and one
for each the binary flag s and i. Since the flags
only apply to base label 4, no gradients are ap-
plied to these layers for examples with base labels
2 and 3. We have explored also other BERT-based
architectures, such as basing the classification on
the [CLS] embedding only as is customary, and
having a single classification layer comprising all
possible base label and flag combinations. These
resulted in a consistent drop in prediction accu-
racy, and we did not pursue them any further.

The baseline results are listed in Table 4 show-
ing that per-class F-score ranges between 38–71%,
strongly correlated with the number of examples
available for each class. When interpreting the
task as a pure multi-class classification, i.e. when
counting all possible combinations of base label
and flags as their own class, the accuracy is 54%
with majority baseline being 34.3%, and the anno-
tators’ accuracy 68.7%. The model thus positions
roughly to the mid-point between the trivial ma-
jority baseline, and human performance.

7 Discussion and Future Work

In this work, we set out to build a paraphrase
corpus for Finnish that would be (a) in the size
category allowing deep model fine-tuning and
(b) manually gathered maximizing the chance of
finding more non-trivial, longer paraphrases than
would be possible with the traditional automatic
candidate extraction. The annotation so far took
14 person-months and resulted in little over 50,000
manually classified paraphrases. We have demon-

Label Prec Rec F-score Support
2 50.9 31.2 38.7 93
3 57.7 31.9 41.1 990
4 66.2 78.2 71.7 2149
4< 52.8 53.5 53.2 1007
4> 52.6 56.1 54.3 1136

i 51.5 36.5 42.7 329
s 51.4 28.9 37.0 249
W. avg 52.9 54.0 52.2
Acc 54.0

Table 4: Classification performance on the test set,
when the base label and the flags are predicted sep-
arately. In the upper section, we merge the sub-
sumption flags with the base class prediction, but
leave the i and s separated. The rows W. avg and
Acc on the other hand refer to performance on the
complete labels, comprising all allowed combina-
tions of base label and flags. W. avg is the aver-
age of P/R/F values across the classes, weighted
by class support. Acc is the accuracy.

strated that, indeed, the corpus has longer, more
lexically dissimilar paraphrases. Building such a
corpus is therefore shown feasible and presently
it is likely the largest manually annotated para-
phrase dataset for any language, naturally at the
inevitably higher data collection cost. The man-
ual selection is only feasible for texts rich in para-
phrase, and the domains and genres covered by the
corpus is necessarily restricted by this condition.

In our future work, we intend to extend the man-
ually annotated corpus, ideally roughly double its
present size. We expect the pursued data size will
allow us to build sufficiently accurate models, both
in terms of embedding and pair classification, to
gather further candidates automatically at a level
of accuracy sufficient to support down-stream ap-
plications. We are also investigating further text
sources, especially parallel translations outside of
the present subtitle domain. The additional flags
in our annotation scheme, as well as the nearly
10,000 rewrites allow for interesting further inves-
tigations in their own right.

While in the current study we concentrated
on training a classifier for categorizing the para-
phrases into fine-grained sub-categories, where
only 2% of the paraphrases in the current release
belonged to related but not a paraphrase category
(label 2), which can be seen as a negative class
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in the more traditional paraphrase or not a para-
phrase classification task. In order to better ac-
count for this traditional classification task, in fu-
ture work, in addition to extending the number of
positive examples, we will also look into methods
for expanding the training section with negative
examples. While extending the data with unre-
lated paraphrase candidates (label 1) can be con-
sidered a trivial task, as more or less any random
sentence pair can be considered unrelated, the task
of expanding the data with interesting related but
not a paraphrase candidates (label 2) is an in-
triguing question. One option to consider in fu-
ture work is active learning, where the confidence
scores provided by the initial classifier could be
used to collect difficult negatives.

8 Conclusions

In this paper we presented the first entirely manu-
ally annotated paraphrase corpus for Finnish in-
cluding 45,663 naturally occurring paraphrases
gathered from alternative movie or TV episode
subtitles and news headings. Further 7,909
hand-made rewrites are provided, turning context-
dependent paraphrases into perfect paraphrases
whenever possible. The total size of the released
corpus is 53,572 paraphrase pairs of which 98%
are manually classified to be at least paraphrases
in their given context if not in all contexts.

Additionally, we evaluated the advantages and
costs of manual paraphrase candidate selection
from two ‘parallel’ but monolingual documents.
We demonstrated the approach on alternative sub-
titles showing the technique being feasible for
high quality candidate selection yielding sufficient
amount of paraphrase candidates for the given an-
notation effort. We have shown the candidates to
be notably longer and less lexically overlapping
than what automated candidate selection permits.

The corpus is available at github.com/
TurkuNLP/Turku-paraphrase-corpus
under the CC-BY-SA license.
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A English Translation of Table 2

Label Statement 1 Statement 2
4 Shockingly childish! Astoundingly immature!
4s I have worked for the duration of lunch. I worked through the whole chowtime.
4i You guys got lucky, didn’t you. Aren’t you fortunate.
4> I worked so hard for the money. I put so much effort into work.
4<s You rule! Come on, dude! You are the best, Tähkä! Come on!
4is You nicked our plant! You stole our plants!
3 I intend to make an experiment. I am going to test it.
2 Defeated Väyrynen vanished into the Väyrynen is losing his seat in the parliament.

Helsinki night
Rewrites

Orig Can I get back to my assignments? Can I continue?
Rew Can I get back to my assignments? Can I continue working on my assignments?

Table 5: English translations for annotation examples in Table 2.
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Abstract

This paper introduces NoReCneg – the first
annotated dataset of negation for Norwe-
gian. Negation cues and their in-sentence
scopes have been annotated across more
than 11K sentences spanning more than
400 documents for a subset of the Norwe-
gian Review Corpus (NoReC). In addition
to providing in-depth discussion of the an-
notation guidelines, we also present a first
set of benchmark results based on a graph-
parsing approach.

1 Introduction

This paper introduces a new data set annotating
negation for Norwegian. As shown in the example
below, the annotations identify both negation cues
(in bold) and their scopes (in brackets) within the
sentence:

(1) Men
But

kanskje
maybe

ikke
not

[helt
completely

troverdig]
credible

.

.
‘But maybe not completely credible.’

The underlying corpus is the NoReCfine data set
(Øvrelid et al., 2020) – a subset of the Norwegian
Review Corpus (NoReC) (Velldal et al., 2018)
annotated for fine-grained sentiment, comprising
professional reviews from a range of different do-
mains. The new data set introduced here, named
NoReCneg, is the first data set of negation for Nor-
wegian. We also present experimental results for
negation resolution based on a graph-parsing ap-
proach shown to yield state-of-the-art results for
other languages. All the resources described in the
paper – the data set, the annotation guidelines, the
models and the associated code – are made pub-
licly available.1

The rest of the paper is structured as follows.
We start by reviewing related work on negation

1https://github.com/ltgoslo/norec_neg

for other languages in Section 2, with regards to
both annotation and modeling. In Section 3 we de-
tail our annotation guidelines, the annotation pro-
cedure and further present an analysis of inter-
annotator agreement. In Section 4 we then sum-
marize the statistics of the final annotated data set,
before presenting the first benchmark results for
negation resolution in Section 5. Before conclud-
ing, we finally provide a discussion of future work
in Section 6.

2 Related Work

Below we discuss related work on negation, start-
ing with datasets before moving on to modeling.

2.1 Datasets
While NoReCneg is the first dataset annotated for
negation for Norwegian, there are a number of
existing negation datasets for a range of other
languages, such as Chinese (Zou et al., 2016),
Dutch (Afzal et al., 2014), English (Pyysalo et al.,
2007; Vincze et al., 2008; Morante and Daele-
mans, 2012; Councill et al., 2010; Konstantinova
et al., 2012), German (Cotik et al., 2016), Span-
ish (Jiménez-Zafra et al., 2018; Diaz et al., 2017),
Swedish (Dalianis and Velupillai, 2010; Skepp-
stedt, 2011), Italian (Altuna et al., 2017), and
Japanese (Matsuyoshi et al., 2014). Jiménez-Zafra
et al. (2020) provide a thorough survey of existing
negation datasets. A large proportion of negation
corpora are based on data from the biomedical or
clinical domain (Vincze et al., 2008; Dalianis and
Velupillai, 2010; Cotik et al., 2016; Diaz et al.,
2017). We will here focus on the corpora that are
most relevant to the current annotation effort: the
SFU Corpus and the ConanDoyle-neg corpus. The
SFU corpus also annotates review data, hence is
similar to our work in terms of text type, whereas
ConanDoyle-neg is one of the most widely used
datasets in the field.

The English (Konstantinova et al., 2012) and
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Spanish (Jiménez-Zafra et al., 2018) parts of the
SFU Review Corpus contain reviews from eight
domains (books, cars, computers, cookware, ho-
tels, movies, music, phones) which have been an-
notated for sentiment at document-level, as well
as negation and speculation at sentence-level. The
annotation scheme for negation is based primar-
ily on the guidelines developed for the biomedi-
cal BioScope corpus (Vincze et al., 2008), which
largely employ syntactic criteria for the determi-
nation of scope, choosing the maximal syntactic
unit that contains the negated content. Unlike Bio-
Scope, however, negation cues are not included
within the scope in SFU. The corpus does not an-
notate affixal cues, e.g. im- in impossible.

The English ConanDoyle-neg corpus contains
Sherlock Holmes stories manually annotated for
negation cues, scopes, and events (Morante and
Daelemans, 2012) and was employed in the 2012
*SEM shared task on negation detection (Morante
and Blanco, 2012). The annotation scheme is
also based on the scheme employed for the Bio-
Scope corpus (Vincze et al., 2008), but with im-
portant modifications. In ConanDoyle-neg, the
cue is not included in the scope, and it annotates
a wide range of cue types, i.e., both sub-token (af-
fixal), single token and multi-token negation cues.
Scopes may furthermore be discontinuous, often
an effect of the requirement to include the sub-
ject within the negation scope. This is in contrast
to the annotation scheme found in the SFU cor-
pus, where subjects are not included in the nega-
tion scope. Note that the NegPar corpus contains a
re-annotated version of the ConanDoyle-neg cor-
pus, which fixes known bugs and also adds Chi-
nese data (Liu et al., 2018).

2.2 Modeling
Traditional approaches to the task of negation de-
tection have typically employed a wide range of
hand-crafted features, and often linguistically in-
formed, derived from constituency parsing (Read
et al., 2012; Packard et al., 2014), dependency
parsing (Lapponi et al., 2012), or Minimal Re-
cursion Semantics structures created by an HPSG
parser (Packard et al., 2014). Scope resolution
in particular has often been approached as a se-
quence labeling task, as pioneered by Morante and
Daelemans (2009) and later done in several other
works (Lapponi et al., 2012; White, 2012; Enger
et al., 2017). More recently, neural approaches

have been successfully applied to the task. Qian
et al. (2016) propose a CNN model for negation
scope detection on the abstracts section of the Bio-
Scope corpus, which operates over syntactic paths
between the cue and candidate tokens. Fancellu
et al. (2016) present and compare two neural ar-
chitectures for the task of negation scope detection
on the ConanDoyle-neg corpus: a simple feed-
forward network and a bidirectional LSTM. Note
that these more recent neural systems disregard the
task of cue detection altogether (Fancellu et al.,
2016; Qian et al., 2016; Fancellu et al., 2017), re-
lying instead on gold cues and focusing solely on
the task of scope detection.

Finally, Kurtz et al. (2020) cast negation res-
olution as a graph parsing problem and perform
full negation resolution using a dependency graph
parser (Dozat and Manning, 2018) to jointly pre-
dict cues and scopes. The neural model uses a
BiLSTM to create token-level representations, and
then includes two feed-forward networks to cre-
ate head- and dependent-specific token representa-
tions. Finally, each possible head-dependent com-
bination is scored using a bilinear model. Despite
the conceptual simplicity, this model achieves
state-of-the-art results. As such, we use this model
to evaluate our annotations and include further de-
tails in Section 5.

3 Annotations

In the following section we present our negation
annotation effort in more detail, including the un-
derlying source of the data. The guidelines we
have developed for the annotation of negation cues
and scopes in Norwegian are mainly adapted from
ConanDoyle-neg (Morante and Daelemans, 2009),
NegPar (Liu et al., 2018), and the Spanish SFU
corpus (Jiménez-Zafra et al., 2018), modified to
suit Norwegian, and with simplifications that will
be discussed below. Note that while the complete
set of guidelines is distributed with the corpus, we
provide a brief overview below together with ex-
amples, also discussing inter-annotator agreement.

3.1 The underlying corpus
The negation annotations described below are
added to the existing NoReCfine data set2 (Øvrelid
et al., 2020) – a subset of the Norwegian Review
Corpus (NoReC) annotated for fine-grained senti-
ment. The negation layer of the corpus is named

2https://github.com/ltgoslo/norec_fine
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NoReCneg. The full NoReC corpus (Velldal et al.,
2018) contains professional reviews from several
Norwegian online news sites, spanning a range of
different domains, like music, literature, products,
movies, restaurants, and more. While NoReC con-
tains more than 43,000 full-text reviews, the subset
annotated in NoReCfine, and hence also NoReCneg,
includes 414 full reviews, comprising 11,346 sen-
tences. Note that there are two official standards
for written Norwegian; Bokmål (the majority vari-
ant) and Nynorsk. While the data set contains a
majority of documents written according to the
Bokmål standard, four Nynorsk documents are
also included.

3.2 Negation in Norwegian
Since our starting point for guideline development
is English, we will here discuss linguistic differ-
ences between the expression of negation in the
two languages. Generally speaking, Norwegian
negation does not differ greatly from English. The
main means of negating a proposition is by using
adverbs, prepositions and quantifiers. The largest
differences between the two are syntactic in nature
and concern the placement of adverbials, caused
by the fact that Norwegian, unlike English, is a
V2-language. One clear difference with practi-
cal consequences is that certain Norwegian nega-
tion cues inflect for grammatical gender and num-
ber, notable examples being ingen (ingen, inga,
intet) ‘no’ and løs (-løs, -løst, -løse) ‘-less’, as
seen in example (2) for the affixally negated (a)
meningsløst ‘meaningless’ with the neuter ending,
(b) hensynsløse ‘inconsiderate’ with plural inflec-
tion, and (c) smakløs ‘tasteless’ with no inflection.
This property of Norwegian means that there are
likely a larger number of different tokens function-
ing as cues in Norwegian, as compared to English.

(2) (a) [...] blir ganske meningsløst
(b) [...] hensynsløse regnskog-ødeleggere
(c) [...] men ikke smakløs .

The discussion of negation in the Norwegian
Reference Grammar (Faarlund et al., 1997) is
largely limited to a selected few of the possible
cues, e.g., ikke ‘not’, ingen ‘none, no-one’ and re-
lated forms, and the preposition uten ‘without’.
Golden et al. (2014) contains a brief comment
on lexical negation, where they mention nektende
verb ‘negating verbs’. They also mention nega-
tive polarity items under a discussion of separate
words and expressions in negations.

3.3 Negation cues
A negation cue is a word or a set of words that
serve to signal negation. In our annotation scheme
we annotate both single token cues, such as ad-
verbs like ikke ‘not’, aldri ‘never’, prepositions,
e.g., uten ‘without’, and quantifiers like ingen
‘no’. We also annotate multi-word cues, such as
(på) ingen måte, ‘in no way’, as well as morpho-
logical or affixal negation cues, i.e. affixes such
as u- ‘un-/dis-/non-’ and -løs ‘-less’. Example
(3) shows the widely used negative adverb aldri
‘never’, which scopes over the whole sentence, in-
cluding the subject Jeg ‘I’, whereas (4) exempli-
fies the negative determiner ingen ‘no’ which oc-
curs in two conjoined noun phrase objects, where
both negation cues scope over the following noun
as well as the preceding subject and main verb.

(3) [Jeg
I

har]
have

aldri
never

[hørt
heard

henne
her

synge
sing

bedre
better

fra
from

en
a

scene]
stage

‘I have never heard her sing better from a stage’

(4) [Den
It

stiller]
asks

ingen
no

[spørsmål]
questions

og
and

[gir]
gives

ingen
no

[svar]
answers.

.

‘It asks no questions and gives no answers.’

Multi-word cues Multi-word cues are negation
cues that span more than one token. These
may further be discontinuous, as in the case of
(h)verken ... eller ‘neither ... nor’, as seen in ex-
ample (5). As noted by Morante and Daelemans
(2012), multi-word cues tend to be fixed/idiomatic
expressions – an observation that is largely true
for Norwegian as well. One practical difference
between the annotation scheme in Morante and
Daelemans (2009) and ours, is that we omit prepo-
sitions and particles related to these expressions,
as in (6), in favor of creating less variation that
might create noise in the data, especially in cases
where multiple prepositions are associated with
similar cues and the association is less fixed.

(5) [...]
[...]

verken
neither

[manus]
script

eller
nor

[skuespillere
actors

trekker
pull

oss
us

inn
in

på
on

en
a

engasjerende
engaging

måte]
method

.

.
‘[...] neither script nor actors pull us inside in an
engaging way’
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(6) Og
And

mest
most

av
of

alt
all

fraværet
the.absence

av
of

[mer
more

enn
than

bare
just

et
a

kvarter
quarter

musikk]
music

.

.
‘And most of all, the absence of more than just
15 minutes of music.’

Affixal cues We annotate both free-standing and
affixal negation cues. The affixal cues form a
rather closed group of cues, with the prefix u- and
the suffix -løs being the most common. However,
our annotations show that there is lexical varia-
tion, with less common cues such as -fri ‘-free’
and -tom ‘-empty’.

Negation vs. Modality One difficulty in anno-
tating cues is to separate between cases of negation
in isolation and cases where negation and modal-
ity interact. Cases where modality and negation
are inseparable, as in neppe ‘barely’ are not an-
notated, but cases of negation where the modal-
ity can be separated, either by it scoping over the
negation, or the negation scoping over it, were an-
notated as negations.

Lexical negation As mentioned above, the dis-
cussion of lexical negation in a Norwegian context
is limited. We borrow the term ‘lexical negation’
from Jiménez-Zafra et al. (2020), who split cues
into syntactic, lexical, and morphological/affixal,
and use the lexical category to mean words that
fall outside the ‘syntactic’ and more frequent cues,
like negative adverbs and determiners. Examples
from Norwegian include verbal constructs, e.g., la
være ‘refrain from’ or forsvinne ‘disappear’ as in
(7), and nouns such as mangel ‘lack’.

(7) . . . [Irritasjonen]
. . . the.irritation

forsvant
disappeared

da
when

maten
the.food

kom
arrived

.

.
‘. . . The irritation disappeared when the food
arrived.’

Lexicalization and idioms The words that are
used as negation cues might also have other func-
tions, and are in some cases part of fossilized ex-
pressions. The annotators were instructed to re-
frain from annotating affixal cues that no longer
signal negation. Lexicalization, in particular, is a
challenge when it comes to affixal negation, as it
can be difficult even for native speakers to judge
whether something should be treated as a nega-
tion or not. Some cases are clearer than others,
such as uansett ‘regardless’, which stems from

ansett ‘viewed/respected’, which it clearly does
not negate, on the one hand, and on the other
hand usikker ‘uncertain’, whose non-negated form
sikker ‘certain’ is also frequent. The absence of
the non-negated version of the lemma in the lan-
guage might be a good indicator of lexicalization,
and annotators were instructed to avoid annotating
such words.

In addition to lexicalized items, there are also
cases where a cue can have more than one mean-
ing. One frequent case is the prefix u- with nom-
inal roots, a construction that usually results in
nouns meaning bad x, as in uår lit. ‘un-year’,
which means ‘a bad year’, or uvenn, lit. ‘un-
friend’, meaning ‘enemy’. The annotators were
instructed to try and dismantle the word in order
to see if the word made sense without the nega-
tive prefix, in which case it would indicate that
it is not completely lexicalized. Even so, these
are often difficult judgements for the annotators
to make. Furthermore, nominalizations of negated
adjectives, such as uttrykksløshet ‘expressionless-
ness’ and umenneskelighet ‘inhumanity’ were not
to be annotated.

Table 1 presents the ten most common cues
found in the corpus, where we find both affixal
and single token cues. We see that variation
in the data is further caused by spelling differ-
ences. The adverb ikke ‘not’ can also be used af-
fixally, often, but not always, with a hyphen, as
in ikke-produksjonsklart ‘not-production-ready’.
The variation is also due in part to the two lan-
guage varieties present in the dataset, e.g in the
case of Bokmål ikke ‘not’ and Nynorsk ikkje ‘not’.

3.4 Negation scopes
The scope of a negation is the part of a sentence
that has its truth value inverted by the presence of
a negation cue. In our annotation scheme, cues
are never part of the scope. Subjects are included
in the scope if the negation scopes over the main
verb, which usually means that the whole propo-
sition is negated, and if the subject or object of
a sentence is negated by a determiner or similar,
the whole sentence is in the scope, apart from cer-
tain fixed elements discussed below. Phrase link-
ing conjunctions are not included. Furthermore,
scopes tend be discontinuous. In many cases this
is simply due to the the fact that in most sentences,
the subject precedes the negation cue, while the
predicate follows it.
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Cue Trans. Frequency Amb. Rate

ikke not 1,364 3
u- un-/dis-/non- 514 83
uten without 190 0
ingen none/nobody 134 0
-løs -less 123 5
aldri never 95 6
mangle lack 43 14
ingenting nothing 23 0
ikkje not 23 0
verken neither 21 30

Table 1: List of the 10 most common cues found
in the corpus, their translation to English, their fre-
quency as a cue, as well as their ambiguity rate
(Amb. Rate), which is defined as 1− (the fre-
quency as a cue / the absolute frequency) ×100.

Implicit scope The scope of a cue can be im-
plicit, meaning it is understood from the context.
In practice the scope is often expressed in a sen-
tence before or after the cue itself. This is in
particular the case with the interjection nei ‘no’,
which usually refers back to the proposition it
negates. Since our annotation does not span across
sentence boundaries, the scope is annotated as im-
plicit in these types of cases.

Subordinate clauses If the negation cue modi-
fies a verb in a subordinate clause, the whole sub-
ordinate clause, except the initial subjunction, is
part of the scope, see (8) below.

(8) Det
It

føles
feels

derfor
therefore

som
like

et
a

pluss
plus

at
that

[plata]
the.record

ikke
not

[er
is

særlig
especially

lang]
long

.

.
‘It therefore feels like a bonus that the record is
not especially long.’

Modifying subjects and objects If a cue, typi-
cally a determiner, modifies the subject or the ob-
ject of a sentence, the whole clause that contains
that subject or object is part of the scope, as in
(9) below. Note that certain elements, such as
subjunctions, conjunctions and sentence adverbs
might still not be included.

(9) [Her
Here

viser
shows

Selbekk]
Selbekk

ingen
no

[nåde]
mercy

.

.
‘Here, Selbekk shows no mercy.’

Cue as subject or object In cases where the
subject or object are also neagtion cues, the cue
is not included in the scope, see (10).

(10) Og
And

ingen
nobody

[er
is

hardere
tougher

enn
than

Regan]
Reagan

.

.
‘And nobody is tougher than Reagan.’

Exception items The annotation of exception
items, such as untatt ‘except’ and bortsett (fra)
‘except (for)’ depends on whether they are within
the scope of a negation cue or not. When the item
is not within the scope of another cue, it incurs a
negation, as in (11). This closely follows the an-
notation found in Morante and Daelemans (2012)
and Liu et al. (2018).

(11) Sportsseter
Sports-seats

-
-

som
which

gir
give

god
good

støtte
support

unntatt
except

[lårstøtten
the.thigh-support

for
for

høyvokste
high-grown

personer]
people

.

‘Sport seats - which give good support, except
for the thigh support for tall people’

When exception items are found within the scope
of another negation cue, however, they remove the
elements they scope over from the scope of the
other negation.

Sentential adverbs and adverbs scoping over
negation Two types of adverbs pose certain
challenges: sentential adverbs and adverbs that
indicate modality. Sentential adverbs such as
heldigvis ‘fortunately’ as in (12) are not part of
the propositional value of a sentence, but rather
function to comment on it (Faarlund et al., 1997).
Therefore they are usually outside the scope of the
negation, as is shown by (12):

(12) Heldigvis
Fortunately

[skjer
happens

dette]
this

nesten
almost

aldri
never

.

.
‘Fortunately, this almost never happens.’

Modal adverbs such as kanskje ‘maybe’ can occur
both within and outside of the scope of a negation
cue, and in these cases the annotators were asked
to paraphrase in order to pinpoint the placement of
these adverbs.

Negation raising Negation raising is the phe-
nomenon where a negator is “raised" further up
in a syntactic tree, which in the case of Norwegian
means further towards the beginning of a sentence.
What characterizes these types of constructions is
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that the negation is adjacent to the verb in the main
sentence, even though the negation only scopes
over a subsequent subordinate clause. This hap-
pens frequently in Norwegian, as in English, with
mental state verbs like mene ‘think’, tro ‘believe’,
as in (13).

(13) Harry
Harry

Hole
Hole

tror
believes

imidlertid
however

ikke
not

at
that

[saken
the

kan
case

være
can

så
be

enkel]
so

[...]
simple [...]

‘Harry Hole, however, does not believe that the
case is that simple!’

Expletive subjects In Norwegian, as in other
Scandinavian languages, there are several types of
linguistic constructions that involve an expletive
subject. A commonly used mechanism in these
languages is extraposition, where a clausal argu-
ment is postposed, and a formal, semantically void
subject det ‘it’ or der ‘there’ functions as the syn-
tactic subject, as in (14). Here we do not treat
the expletive subject as the subject of the negated
proposition, instead only the extraposed subordi-
nate clause is in scope of the negation. Since det
‘it’ is ambiguous in the sense that it can, in fact,
also be referential, the annotators have to assess
referentiality during annotation.

(14) Det
It

[er]
is

aldri
never

[kjedelig
boring

å
to

se
see

gode
good

replikker
lines

fremført
performed

i
in

vakre
beautiful

omgivelser]
surroundings.

.

‘It is never boring to see good lines performed in
beautiful surroundings.’

Negation in conditional, interrogative, and im-
perative sentences In the annotation scheme of
Morante and Daelemans (2012), they do not anno-
tate negation in non-factual sentences, i.e., condi-
tional, interrogative and imperative sentences. We
have chosen to include all negation regardless of
its factuality. We believe that negation has impli-
cations beyond asserting the factuality of a propo-
sition, and it can be useful for sentiment analysis,
among other tasks. For instance, in example (15),
the negation is under the scope of the conditional
hvis ‘if’, but is still marked, even though it is not a
factual proposition.

(15) Hvis
if

[folk]
people

ikke
not

[hadde
had

snakket
talked

til
to

hverandre
each.other

i
in

det
the

hele
whole

tatt]
taken

[...]
[...]

‘If people had not talked to each other at all [...]’

Negative polarity items (NPIs) NPIs are lexi-
cal entities that are used together with negation
cues, and which usually render the sentence un-
grammatical should the negation cues be removed
without further change. In our annotation scheme,
they are contained within the scope of the nega-
tion cue. In Norwegian, the negative adverb ikke
‘not’ in combination with the determiner noe/noen
‘some/any’ is a common negative polarity item.
However, the most common type of NPIs are ad-
verbs such as i det hele tatt ‘at all’, as in (16), that
serve to strengthen the negation.

(16) [Han
He

kan]
can

ikke
not

[synge
sing

i
in

det
the

hele
whole

tatt]
taken

.

.
‘He cannot sing at all.’

Foreign language citations The annotated texts
frequently contain titles of various products, such
as ‘Never Run Away’. These cases of foreign lan-
guage negation cues are not annotated.

Negation cues not indicating negation It is not
uncommon for negation cues to be part of expres-
sions that do not indicate negation in combination,
e.g., certain fixed expressions such as hvis ikke
‘otherwise’. Other borderline cases such as the fo-
cus marker ikke bare ‘not only’ and the expression
ingen tvil ‘no doubt’, were included after discus-
sion, as they are analyzed as introducing a negated
reading.

Affixal scope The scope of affixal items is anno-
tated in a slightly different way compared to other
cues. If an affixally negated adjective is the pred-
icate, then the whole sentence is included within
its scope. If it is part of a noun phrase, then only
that noun phrase is inside the scope. Additional
adjectives or adverbs in the sentence fall outside
the scope, as in (17).

(17) Passasjerene
the.passengers

er
are

for
for

oss
us

u[kjente]
unknown

,
,

anonyme
anonymous

[fjes]
faces

.

.
‘The passengers are unknown faces to us.’

3.5 Annotation Procedure
The annotation was performed by several hired
student research assistants with a background in
linguistics and with Norwegian as their native lan-
guage. All 414 documents in the original dataset,
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comprising 11,346 sentences, were annotated in-
dependently by two annotators in parallel. The
doubly annotated documents were then adjudi-
cated by a third annotator after a final round of
discussions concerning difficult cases. Annotators
had the possibility to discuss any potential prob-
lems during both the annotation and adjudication
period, but were encouraged to follow the guide-
lines as strictly as possible. The annotation and
adjudication were both performed using the web-
based annotation tool Brat (Stenetorp et al., 2012).

3.6 Inter-annotator agreement
We have measured the inter-annotator agreement
over the full (doubly annotated) dataset in terms
of both F1 and κ scores for cues, full scopes, and
scope tokens. The scores show that annotators
agree to a very high degree on the identification of
cues (0.995 F1, 0.841 κ). When it comes to nega-
tion scopes, the agreement is lower when mea-
sured towards full and exact spans (0.632 F1, 0.34
κ), but quite high when measured on the token-
level (0.912 F1, 0.803 κ).

Due to the adjudication phase of the annotation
process, we also have insight into the sources of
disagreements between the annotators. As noted
above, agreement between annotators is generally
high when it comes to cue detection, but surpris-
ing disagreements can be seen. These are most
likely due to the guidelines being improved as the
annotations continued to uncover new challenges.
There seems to be a clear tendency for annotators
to disagree on less common cues, such as verbs
and nouns that indicate negation, as opposed to
the more often discussed adverbs and determiners.
The annotators rarely agreed on less frequent lex-
ical items such as forsvinne ‘disappear’ and takke
nei til ‘say no to’. However, the disagreements
also reflect discussions concerning the inclusion or
omission of prepositions, in addition to cue span
errors. Annotators generally agree on the more
frequent cues. The prefix u- ‘un-/dis-/non-’, seems
to have a disproportionately large disagreement
score, but discussions among the annotators indi-
cate that this is likely due to prefixes being more
difficult to detect when annotating than isolated
whole-word tokens. Disagreement is also found
regarding modal elements, such as knapt ‘barely’
(almost not) and for...til ‘too...to’ (cannot be).

4 Corpus statistics

Table 2 summarizes the statistics for the final an-
notated data set. Of the 11,346 sentences in the
corpus, we see that just above 20% of them are
negated. Out of the negated sentences, 13% con-
tain multiple instances of negation. While, as ex-
pected, the number of tokens in a cue averages to
1, the average length of scopes is close to 7 (with
a maximum observed length of 53). Note, how-
ever, that a small number of cues (1.4%) also have
empty (‘null’) scopes. We report both any kind
of discontinuous scopes (disc.) and true discon-
tinuous scopes (true disc.), where the latter does
not count scopes which are only discontinuous
because of an intervening cue. While discontin-
uous scopes are very frequent (70% of scopes),
truly discontinuous scopes are much fewer (21%).
We see that affixal negation is quite widespread
in NoReCneg, comprising almost 25% of the cues.
Moreover, just above 11% are multi-word cues.
While most cues are not particularly ambiguous,
e.g., ikke ‘not’, uten ‘without’, others, such as u-
‘un-/dis-’, mangle ‘lack’ or verken ‘neither’ can
have rather high rates of ambiguity (meaning that
they can occur with both negated and non-negated
readings).

5 Experiments

5.1 Modeling approach
In order to benchmark the dataset, we use the se-
mantic graph parsing approach to negation detec-
tion proposed by Kurtz et al. (2020), see Section
2. Besides the baseline graph representation origi-
nally proposed (point-to-root), where all elements
of the scope have arcs that point to the cue, we pro-
pose several variants. For head-first, we set the
first token of the cue as the root node, and simi-
larly set the first token in the scope as the head of
the span. All elements within the span have arcs
that point to the head, and heads have arcs that
point to the root. head-final is similar, but instead
sets the final tokens of spans as the heads. There
can be several roots per sequence and not all to-
kens are connected. Finally, we enrich the depen-
dency labels to distinguish edges that are internal
to a holder/target/expression span from those that
are external and perform experiments by adding
an ‘in label’ to non-head nodes within the graph,
which we call +inlabel.
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Sentences Cues Scopes

# neg. # avg. max disc. mult. affixal # avg. max disc. true disc. null

train 8,543 1,768 2,025 1 3 19 228 508 1,995 6.9 44 1,403 423 30
dev 1,531 301 342 1 2 0 39 88 339 7.1 53 236 85 3
test 1,272 263 305 1 2 2 37 69 301 6.5 27 203 58 4
total 11,346 2,332 2,672 1 3 21 304 665 2,635 6.9 53 1,842 566 37

Table 2: Statistics of the dataset – per split and in total – including total number of sentences (#), number
of sentences that contain negation (neg.), as well as the number (#) of cues and scopes, along with their
average and maximum lengths in tokens. Additionally, we include the number of discontinuous cues and
scopes (disc.) as well as true discontinuous (true disc.) for scopes which we discuss in Section 4. Finally,
we detail the number of sentences that have multiple cues (mult.), the number of affixal cues, and the
number of cues that have no scope (null).

5.2 Results
The negation parser is evaluated using the metrics
from the *SEM 2012 shared task (Morante and
Blanco, 2012): cue-level F1 (CUE), scope token
F1 over individual tokens (ST), and the full nega-
tion F1 (FN) metric. In contrast to the *SEM 2012
shared task we do not annotate negated events,
meaning that FN only requires an exact match of
the negation’s cue(s) and, if present, all its scope
tokens. We run each experiment five times with
different random seeds and report an averaged F1

score and its standard deviation in Table 3.
The simplest graph representation point-to-root

generally performs best, most visibly in FN F1

(66.8). We attribute the variation in performance
to a loss of information in the head-first and head-
final variants, making it impossible to retrieve the
correct governing negation cue for partially over-
lapping scopes, thus lowering the score.

In order to see whether these performance dif-
ferences are statistically significant, we perform
bootstrap significance testing (Berg-Kirkpatrick
et al., 2012) resampling the test set 106 times while
setting the significance threshold to p = 0.05.
Comparing point-to-root to head-first and head-
final shows that while the differences seem sub-
stantial they are not statistically significant.

A manual error analysis on point-to-root shows
that the model tends not to predict infrequent cues,
e.g., null ‘zero’, istedenfor ‘instead-of’, savnet
‘missing’, while it overpredicts frequent cues, e.g.,
ikke ‘not’, ingen ‘no’, as well as overgeneraliz-
ing the affixal negation u- ‘un-/dis-/non-’ to other
words that begin with ‘u’, but are not negated, e.g.,
utfrika ‘freaked-out’, unnagjort ‘finished’. The
model also tends to predict slightly shorter scopes
(an average of 6.5 tokens for predicted scopes ver-

CUE ST FN
point-to-root 93.4 (0.5) 83.6 (0.7) 66.8 (0.8)

head-first 92.7 (0.3) 81.9 (1.4) 65.5 (0.6)

+inlabel 92.7 (0.7) 81.8 (1.0) 65.0 (2.2)

head-final 92.7 (0.6) 82.7 (1.8) 64.8 (3.1)

+inlabel 93.1 (0.3) 82.2 (1.5) 65.8 (0.8)

Table 3: Results of our negation parser using the
various graph representations. The results are av-
eraged over 5 runs, additionally reporting standard
deviation.

sus 6.7 for gold scopes), while the most com-
mon scope-related errors derive from discontin-
uous scopes, where the model fails on 75.4%.
These errors are often due to inversions with the
expletive ‘det’, which is not considered in scope.
Although rare (4 examples in test), multi-word
cues are also challenging, and the graph model
only correctly predicted one of the four. Finally,
affixal cues can pose a challenge as well, with the
model failing on 67.1% of the sentences contain-
ing affixal negation.

6 Future work

As mentioned previously, the underlying corpus
NoReCfine is annotated for fine-grained sentiment,
including opinion holders, targets, sentiment ex-
pressions, and positive/negative polarity. The fact
that negation is among the most important com-
positional phenomena that can affect sentiment
in terms of shifting polarity values motivated the
choice of this particular dataset for adding the
negation annotations. In future work we plan to
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further investigate the co-dependencies between
negation and sentiment, both through analyzing
the existing annotations and through joint model-
ing.

7 Summary

This paper has introduced the first annotated
dataset of negation for Norwegian, NoReCneg,
where negation cues and their corresponding in-
sentence scopes have been annotated across more
than 11K sentences spanning more than 400 docu-
ments; a subset of the Norwegian Review Corpus
(NoReC). In addition to providing in-depth dis-
cussion of the annotation guidelines, we have also
presented a first set of benchmark results based on
a graph-parsing approach.
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Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. BRAT: A Web-based Tool for NLP-
assisted Text Annotation. In Proceedings of the
Demonstrations at the 13th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics, pages 102–107, Avignon, France.

Erik Velldal, Lilja Øvrelid, Eivind Alexander Bergem,
Cathrine Stadsnes, Samia Touileb, and Fredrik Jør-
gensen. 2018. NoReC: The Norwegian Review Cor-
pus. In Proceedings of the 11th edition of the Lan-
guage Resources and Evaluation Conference, pages
4186–4191, Miyazaki, Japan.

V. Vincze, G. Szarvas, R. Farkas, G. Móra, and
J. Csirik. 2008. The BioScope corpus: biomedical
texts annotated for uncertainty, negation and their
scopes. BMC bioinformatics, Suppl 11.

James Paul White. 2012. UWashington: Negation res-
olution using machine learning methods. In Pro-
ceedings of the First Joint Conference on Lexical
and Computational Semantics (*SEM), Montreal,
Canada.

Bowei Zou, Guodong Zhou, and Qiaoming Zhu. 2016.
Research on chinese negation and speculation: cor-
pus annotation and identification. Frontiers of Com-
puter Science, 10(6):1039–1051.

308



Short Papers



What Taggers Fail to Learn, Parsers Need the Most

Mark Anderson Carlos Gómez-Rodrı́guez
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Abstract

We present an error analysis of neural
UPOS taggers to evaluate why using gold
standard tags has such a large positive con-
tribution to parsing performance while us-
ing predicted UPOS tags either harms per-
formance or offers a negligible improve-
ment. We evaluate what neural dependency
parsers implicitly learn about word types
and how this relates to the errors taggers
make to explain the minimal impact us-
ing predicted tags has on parsers. We also
present a short analysis on what contexts
result in reductions in tagging performance.
We then mask UPOS tags based on errors
made by taggers to tease away the contribu-
tion of UPOS tags which taggers succeed
and fail to classify correctly and the impact
of tagging errors.

1 Introduction

Part-of-speech (POS) tags have commonly been
used as input features for dependency parsers. They
were especially useful for non-neural implementa-
tions (Voutilainen, 1998; Dalrymple, 2006; Alfared
and Béchet, 2012). However, the efficacy of POS
tags for neural network dependency parsers is less
apparent especially when utilising character embed-
dings (Ballesteros et al., 2015; de Lhoneux et al.,
2017). Universal POS (UPOS) tags have still been
seen to improve parsing performance but only if
the predicted tags come from a sufficiently accurate
tagger (Dozat et al., 2017).

Typically using predicted POS tags has offered a
nominal increase in performance or has had no
impact at all. Smith et al. (2018) undertook a
thorough systematic analysis of the interplay of
UPOS tags, character embeddings, and pre-trained
word embeddings for multi-lingual Universal De-
pendency (UD) parsing and found that tags offer

a marginal improvement for their transition based
parser. However, Zhang et al. (2020) found that
the only way to leverage POS tags (both coarse
and fine-grained) for English and Chinese depen-
dency parsing was to utilise them as an auxiliary
task in a multi-task framework. Further, Anderson
and Gómez-Rodrı́guez (2020) investigated the im-
pact UPOS tagging accuracy has on graph-based
and transition-based parsers and found that a pro-
hibitively high tagging accuracy was needed to
utilise predicted UPOS tags. Here we investigate
whether dependency parsers inherently learn simi-
lar word type information to taggers, and therefore
can only benefit from the hard to predict tags that
taggers fail to capture. We also investigate what
makes them hard to predict.

2 Methodology

We performed two experiments. The first was an at-
tempt to compare what biaffine parsers learn about
UPOS tags by fine-tuning them with tagging infor-
mation and comparing their errors with those from
normally trained UPOS taggers. The second ex-
periment attempted to evaluate the impact tagging
errors have by either masking errors or using the
gold standard tags for erroneously predicted tags
while masking all other tags.

Data We took a subset of UD v2.6 treebanks
consisting of 11 languages, all of which are from
different language families (Zeman et al., 2020):
Arabic PADT (ar), Basque BDT (eu), Finnish TDT
(fi), Indonesian GSD (id), Irish IDT (ga), Japanese
GSD (ja), Korean Kaist (ko), Tamil TTB (ta), Turk-
ish IMST (tr), Vietnamese VTB (vi), and Wolof
WTB (wo). We used pre-trained word embeddings
from fastText (for Wolof we had to use the previ-
ous Wiki version) (Bojanowski et al., 2017; Grave
et al., 2018). We compressed the word embeddings
to 100 dimensions with PCA.
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Tagger Tagger-FT Parser

Arabic 96.71 96.52 93.73
Basque 95.35 95.18 88.09
Finnish 96.92 96.62 92.24
Indonesian 93.72 93.79 91.98
Irish 92.84 92.80 88.24
Japanese 97.94 97.85 92.80
Korean 95.09 94.26 86.93
Tamil 89.29 87.28 75.41
Turkey 95.10 94.98 86.14
Vietnamese 87.85 87.63 83.40
Wolof 93.85 93.79 85.81

Table 1: Tagging accuracies for tagger trained nor-
mally (Tagger), “fine-tuning” a newly initialised
MLP for the trained taggers (Tagger-FT), and for
parsers fine-tuned to predict tags (Parser).

Experiment 1: Error crossover We trained
parsers and taggers on the subset of UD treebanks
described above. We then took the parser network
and replaced the biaffine structure with a multi-
layer perceptron (MLP) to predict UPOS tags. We
froze the network except for the MLP and fine-
tuned the MLP with one epoch of learning, which
is similar to the process used in Vania et al. (2019).
We train for only one epoch to balance training
the MLP to decode what the system already has
encoded without giving it the opportunity to en-
code more information. We repeated this for the
tagger networks (replacing their MLP with a ran-
domly initialised MLP) to validate this fine-tuning
procedure. We then compared the tagging errors
of both the parsers fine-tuned for tagging and the
original taggers. We also undertook an analysis of
the errors from the normal taggers which included
looking at the impact out-of-vocabulary, POS tag
context, and a narrow syntactic context. We define
the contexts in Section 3.

Experiment 2: Masked tags We then used the
output from the taggers from Experiment 1 to train
different parsers. We trained parsers using all the
predicted tags, using only the gold standard tags
the taggers failed to predict (for both the standard
taggers and parsers fine-tuned for tagging), using
predicted tags from the standard taggers but mask-
ing the errors, and training with all gold standard
tags. Note that the respective sets of POS tags were
used at both training and inference time. We also
trained parsers with no tags as a baseline.

Network details Both the taggers and parsers
use pre-trained word embeddings and randomly-
initialised character embeddings. The parsers use

Figure 1: Average union of tagging errors for
parser fine-tuned for tagging and fully-trained tag-
ger (standard deviation: 159 for tagger error, 715
for parser, and 242 for union).

UPOS tag embeddings as specified in the experi-
mental details. The character and tag embeddings
are randomly initialised. The parsers consist of
the embedding layer followed by BiLSTM layers
and then a biaffine mechanism (Dozat and Man-
ning, 2017). The taggers are similar but with an
MLP following the BiLSTMs instead. We ran a
small hyperparameter search using fi, ga, tr, and
wo and using their respective development data.
This resulted in 3 BiLSTM layers with 200 nodes,
100 dimensions for each embedding type with 100
dimension input to the character LSTM. The arc
MLP of the biaffine structure had 100 dimensions,
50 for the relation MLP. Dropout was 0.33 for all
layers. Learning rate was 2×10−3, β1 and β2 were
0.9, batch size was 30, and we trained both taggers
and parsers for 200 epochs but with early stopping
if no improvement was seen after 20 epochs. Mod-
els were selected based on the performance on the
development set.

3 Results and discussion

Experiment 1: Error crossover Table 1 shows
the tagging performance for the normally trained
taggers, the re-fine-tuned taggers, and the fine-
tuned parser taggers. The re-fine-tuned taggers
achieve relatively similar performance to the orig-
inal taggers, which suggests that this procedure
does allow us to develop a decoder that captures

All Open Closed Other

Tagger 8,637 6,434 1,867 336
Parser 18,426 15,181 2,816 429

Total 171,373 101,965 46,362 23,046

Table 2: Error (Parser, Tagger) and total (Total)
counts across all data per word class of gold tag.
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Error Types Errors Tokens

ar noun→x 197 x→noun 139 noun→adj 108 adj→x 78 adj→noun 60 931 28.3K
eu propn→noun 145 verb→aux 113 noun→adj 101 aux→verb 100 adj→noun 94 1134 24.4K
fi propn→noun 56 noun→propn 53 noun→adj 43 adj→noun 39 noun→verb 37 649 21.1K
id propn→noun 147 noun→propn 92 adj→noun 47 noun→adj 34 verb→noun 23 740 11.8K
ga propn→noun 184 noun→propn 53 noun→adj 53 adj→noun 38 noun→pron 36 724 10.1K
ja noun→adv 52 propn→noun 24 noun→adj 22 adj→noun 22 aux→verb 20 269 13.0K
ko noun→propn 252 propn→noun 145 verb→adj 133 aux→verb 78 cconj→sconj 75 1394 28.4K
ta noun→propn 24 aux→verb 22 propn→noun 17 noun→verb 12 adj→adp 12 213 2.0K
tr noun→adj 54 propn→noun 52 noun→verb 37 noun→propn 35 adv→adj 31 491 10.0K
vi noun→verb 201 verb→noun 152 noun→adj 151 verb→adj 140 verb→x 83 1452 12.0K
wo noun→propn 71 verb→noun 57 pron→det 46 noun→verb 38 verb→aux 30 640 10.4K

Table 3: Top 5 most common errors and their number of occurrences for each treebank. Also shown are
the total number of errors and token count for each treebank.

what the BiLSTM and embedding layers learn
about UPOS tags without adding new information.
Clearly more training would likely improve the
parsers fine-tuned for tagging, but it would be less
clear if that would be extracting information the
parser previously learnt or adding more informa-
tion via MLP weights.

Figure 1 shows the average cross-over of spe-
cific error occurrences for the two systems, where
only 38% of the tagger’s errors don’t occur for the
parser. Table 2 shows the breakdown of errors from
each system by word type class for all treebanks.
The ratio of the errors is substantially different for
each class: 0.42 for open, 0.66 for closed, 0.78 for

F1-score
Tagger Parser Tokens Class

PUNCT 99.94 99.93 19.9K
OtherSYM 97.83 0.00 0.2K

X 76.37 54.51 2.6K

ADJ 87.98 74.98 9.4K

Open

ADV 93.94 89.97 8.5K
INTJ 40.91 0.00 0.1K
NOUN 95.49 94.63 43.7K
PROPN 90.21 57.49 9.0K
VERB 94.80 94.05 21.5

ADP 97.77 94.14 9.9K

Closed

AUX 96.37 93.65 6.8K
CCONJ 96.30 94.29 7.3K
DET 94.73 86.88 4.2K
NUM 93.96 78.12 4.4K
PART 90.49 76.88 1.7K
PRON 96.31 72.46 6.0K
SCONJ 93.15 91.22 3.2K

Table 4: F1-score for separate tags clustered by
word type class with ”Other” at the top, ”Open”
in the middle, and ”Closed” at the bottom for all
tokens in the collection of treebanks used. Also
reported are the total number of tokens for each tag
type present across all treebanks (Tokens).

other. This perhaps suggests that the parser has
a tendency to learn more syntactically fixed word
types than open types. Table 4 shows the F1-score
for each UPOS for both systems. For the most
part the parser is pretty close to the tagger for open
class tags, except for INTJ which the parser never
predicts, PROPN (32.7 less for the parser), and to a
lesser extent ADJ (13.0 less). Table 3 shows the top
5 most common errors per treebank for the normal
taggers where PROPN appears in 15 error types
and ADJ appears in 19 out of 55. This prevalence
combined with the parsers’ poor performance for
these tags suggests that errors containing these tags
are especially impactful for parsers when using pre-
dicted UPOS. However, it could also be that the
parsers perform poorly on predicting PROPN tags
as they occur in similar syntactic roles as NOUN
tokens and as such aren’t as important for syntactic
analysis.

For the closed class type tags, again the parser
performs similarly to the tagger but obtains a few
points less except for DET, NUM, PART, and PRON
with drops for parser scores of 7.9, 15.8, 13.6, and
23.9, respectively. However, of these 4 tags, only
PRON and DET appear in the most common errors
and only twice and once, respectively. The most
common tag to appear in an error is NOUN occur-
ring 41 times, but there is less than one point in dif-
ference between the tagger’s performance and the
parser’s for NOUN. Of these 41 appearances, 14 co-
occur with ADJ and 15 with PROPN with a fairly
even split of mis-tagging NOUN as either of these
tags or the other way around. So generally NOUN
tokens are fairly easy to tag, but the times where the
tagger fails are typically where there is confusion
with ADJ and PROPN tags. Figure 2 shows statis-
tical metrics of the taggers’ errors. First we show
the proportion of out-of-vocabulary (OOV) word
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Figure 2: Measurements of all tags (red) and error (blue) tags for OOV proportion, POS bigram surprisal
(〈I〉, 〈I〉-errors), and head POS and relation surprisal (〈IH〉, 〈IH〉-errors).

forms for all tokens and also the tokens where the
tagger makes an error. Consistently across all tree-
banks the OOV proportion is considerably higher
for tokens erroneously tagged. Second we report
the mean UPOS surprisal. For a given UPOS tag,
θn for token n, the surprisal of that UPOS tag in a
given context, ck is given as:

I(θn) = − log2 p(θn|ck) (1)

where we use a bigram context:

ck = (θn−2, θn−1) (2)

Then the mean surprisal, 〈I〉, over a sample of
tokens is given as:

〈I〉 = 1

N

∑

n∈N
I(θn) (3)

where N is the number of tokens in the sample.
Again, the mean tag surprisal is substantially dif-
ferent across all treebanks for the tokens where the
tagger makes a mistake in comparison to the aver-
age over the entire treebank. Finally we report the
mean surprisal of UPOS but with the context of its
head’s tag and the syntactic relation joining the two
tokens, such that ck is defined as:

ck = (θhead, rel) (4)

The difference between the error sub-sample and
the whole treebank is starker for the head-relation
surprisal, suggesting that the tagger struggles more
when the syntactic structure is uncommon.

Experiment 2: Masked tags Table 5 shows the
labelled attachment scores for parsers with varying
types of UPOS input. First we use the predicted
output from the normal taggers from Experiment 1
(Pred) and unlike Anderson and Gómez-Rodrı́guez
(2020) we observe a slight increase over using no

UPOS tags. However, using predicted tags isn’t uni-
versally beneficial. Arabic, Indonesian, Japanese,
and Tamil all perform better with no tags.

We then used gold standard tags but masking
the tags that the taggers correctly predicted to test
if the erroneous tags are particularly useful. We
did this for the normal taggers (M¬ET) and also
for the fine-tuned parsers (M¬EP). The average in-
crease for both is about 2.5 over the no tag baseline
and over 2 points better than using predicted tags.
Also, the improvement is universal with at least a
small increase in performance over using predicted
UPOS tags. Interestingly the smaller set from the
tagger outperforms the larger set from the parser by
0.15, suggesting that what both the taggers and the
parsers fail to capture is more important than the
errors unique to the parsers. We then masked the
errors from the taggers (M∀ET) to test if avoiding
adding errors would still be beneficial. The per-
formance is almost 2 points better than using the

None Pred. M¬ET M¬EP M∀ET Gold

ar 83.29 82.87 84.17 84.06 84.45 84.73
eu 81.12 81.14 82.33 82.62 83.13 84.45
fi 85.96 86.04 86.88 87.09 87.61 88.80
id 79.04 78.95 82.20 82.69 81.08 82.95
ga 76.13 76.57 76.62 76.65 77.46 77.90
ja 93.15 92.72 94.41 94.38 94.39 95.30
ko 85.40 85.86 87.53 87.82 87.44 88.52
ta 65.61 64.50 70.24 66.67 66.01 71.95
tr 66.67 67.68 67.62 67.66 67.84 68.86
vi 58.43 60.09 65.42 66.75 65.18 70.87
wo 77.87 78.49 82.03 81.39 81.11 85.41

avg 77.52 77.72 79.95 79.80 79.61 81.79

Table 5: LAS parser performance with no tags
(None), with predicted tags (Pred), gold standard
tags but with all tags masked except those the re-
spective taggers predicted wrong (M¬ET), sim-
ilarly for the tagging errors from the fine-tuned
parser (M¬EP), masking the errors from the tagger
(M∀ET), and finally using all gold standard tags.
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predicted tags and again an increase is observed for
all treebanks. This could be of use, as it is easy to
envisage a tagger which learns to predict tags when
a prediction is clear and to predict nothing when
the probability is low. Finally, using gold standard
tags is nearly 2 points better on average than the
best masked tag model, which suggests that to fully
utilise the information in the final few percentage
that taggers miss, the full set of easy to predict tags
are needed.

4 Conclusion
We have presented results which suggest that
parsers do learn something of word types and that
what taggers fail to learn is needed to augment
that knowledge. We have evaluated the nature of
typical tagging errors for a diverse subset of UD
treebanks and highlighted consistent error types
and also what statistical features they have com-
pared to the average measurement across all tokens
in a treebank. We have shown that it would be more
beneficial to implement taggers to not only predict
tags but also decide when to do so, as the errors un-
dermine anything gained from using predicted tags
for dependency parsers. Note that while we only
used one parser system, the original paper (Ander-
son and Gómez-Rodrı́guez, 2020) which prompted
this work observed similar behaviour with regard
to predicted UPOS tags for both the system used
here (graph-based) and a neural transition-based
parser, suggesting that the results discussed here
might extend to other parsing systems. And while
it is true that we have only investigated one POS
tagger system, we feel we have been careful in not
making egregiously grand claims of the universal-
ity of our findings: it is merely one data point to be
considered amongst many.
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Abstract

Choosing a transfer language is a crucial
step in cross-lingual transfer learning. In
much previous research on dependency
parsing, related languages have success-
fully been used. However, when parsing
Latin, it has been suggested that languages
such as ancient Greek could be helpful. In
this work we parse Latin in a low-resource
scenario, with the main goal to investigate
if Greek languages are more helpful for
parsing Latin than related Italic languages,
and show that this is indeed the case. We
further investigate the influence of other
factors including training set size and con-
tent as well as linguistic distances. We find
that one explanatory factor seems to be the
syntactic similarity between Latin and An-
cient Greek. The influence of genres or
shared annotation projects seems to have a
smaller impact.

1 Introduction

There have been multiple projects exploiting
the benefits of multilingual dependency parsing1

(Ammar et al., 2016; Ponti et al., 2018) and espe-
cially the use of transfer learning in low-resource
scenarios (Guo et al., 2015; Ponti et al., 2018).
Transfer learning in the context of parsing low-
resource languages uses knowledge from a trans-
fer language in order to parse the low-resource tar-
get language (Pan and Yang, 2010). Determining
the optimal transfer language for any target lan-
guage is a crucial step usually leading to the se-
lection of a language that belongs to the same lan-
guage family as the target language (Dong et al.,
2015; Guo et al., 2016; Dehouck and Denis, 2019).
However, language proximity is not always the
best criterion, since there are other properties that

1often mentioned as cross-lingual dependency Parsing

could lead to better results such as the content of
the syntactic, geographical, or phonological dis-
tances, which is confirmed by studies both in Ma-
chine Translation (Bjerva et al., 2019) and Syntac-
tic Parsing (Lin et al., 2019). Smith et al. (2018)
noted that for Latin, it was useful to group it with
other ancient languages such as ancient Greek and
Gothic, but they did not provide a comparison with
other potential transfer languages.

We perform an investigation of parsing Latin in
a low-resource setting, with the goal of investigat-
ing if Greek languages are better as transfer lan-
guages than Italic languages. We also explore the
role of factors such as treebank size, treebank con-
tent and linguistic distance measures. We find that
ancient Greek, and also modern Greek, are indeed
a better choice as transfer languages for Latin than
the related Italic languages Italian and French. We
further show that while using ancient Greek data
from the same annotation project is preferable, it
is not the sole cause of the strong results, since
good results are had also across different annota-
tion projects. These results also hold for different
training data sizes. Finally we note that ancient
Greek is syntactically more similar to Latin than
Italian, which can be an explanatory factor.

2 Related Work

Multilingual parsing has been an active topic of re-
search over the last decade, but there is a limited
number of studies that focus on transfer language
selection. There are works that include language
selection techniques for dependency parsing such
as using a typological database to choose trans-
fer languages based on their typological weight
similarities to the target language (Søgaard and
Wulff, 2012). Similarly, Agić (2017) use a part-
of-speech sequence similarity method between the
source and target language. A more detailed in-
vestigation on transfer language selection is per-
formed by Lin et al. (2019). They attempt to build
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models that rank languages based on linguistic
distance measures in order to predict the optimal
transfer languages. Another option is to choose
the most suitable single-source parser among a set
of parsers, either at the level of language (Rosa
and Žabokrtský, 2015) or for individual sentences
(Litschko et al., 2020), often based on part-of-
speech patterns.

3 Experimental Setup

Our main aim is to investigate the impact of differ-
ent transfer languages on low-resource Latin pars-
ing. In addition we explore the impact of training
data size and content, as well as the connection to a
number of distance measures between languages.

3.1 Parser

To train and evaluate the parsing models we use
UUparser2 (de Lhoneux et al., 2017). It is a
transition-based parser using a two-layer BiLSTM
to extract features, and a multi-layer perceptron
to predict transitions. Words are represented by
a word embedding, a character embedding and a
treebank embedding. Treebank embeddings rep-
resent the source treebank of each token, and has
been shown to be effective both in a multilinu-
gal (Smith et al., 2018) and monolinugal (Stymne
et al., 2018) settings. An arc-hybrid transition sys-
tem with a swap transition and a static-dynamic
oracle (de Lhoneux et al., 2017) is used. It can
handle non-projectivity, which is quite common in
Latin.

We keep the default hyperparameter settings of
the parser from Smith et al. (2018). All embed-
dings are initialized randomly at training time.
For evaluation, we use Labeled Attachment Score
(LAS). All models are trained for 30 epochs. The
best epoch is selected according to the best aver-
age development set LAS score.

3.2 Language and Treebank selection

Latin is used as the target/low-resource language
and we choose two transfer languages from each
language family. The languages from the Italic
branch, Italian and French, belong to a branch with
languages historically evolved from Latin and are
relatively closely related to the target language.
Ancient Greek and its descendant language, mod-
ern Greek, on the other hand, belong to the Hel-
lenic branch of the Indo-European Languages, and

2https://github.com/UppsalaNLP/uuparser

these languages are not as closely related as lan-
guages from the Italic branch (Nordhoff and Ham-
marström, 2011; Dehouck and Denis, 2019).

We use corpora from the Universal Dependen-
cies (UD) project (Nivre et al., 2020) version 2.5
(Zeman et al., 2019). The data is sampled by
choosing the first n sentences from each tree-
bank. In two cases the Latin and ancient Greek
datasets come from the same annotation projects.
The Perseus treebanks have parallel texts from the
Bible and classical writers (Bamman and Crane,
2011), while the PROIEL treebanks have similar
texts from the new testament, but they also include
texts from different authors (Haug and Jøhndal,
2008). Both the text overlap and supposedly simi-
lar annotation styles between these treebanks have
been hypothesized as one possible cause of the fact
that combining Latin and ancient Greek is useful
(Smith et al., 2018).

We also want to investigate the effect of the size
of training data, both for the target and transfer
treebanks. For the target treebank, where we fo-
cus on a low-resource scenario, we use 250 and
500 sentences, respectively, while we use 2.5K
and 10K sentences for the transfer languages. In
the latter scenario we focus on Italian and ancient
Greek, due to the small size of the modern Greek
treebank and the poor performance with French as
a target language. Table 1 contains information
about the treebanks. All development and test sets
include 250 sentences.

3.3 Linguistic Distances

Linguistic distance defines how distant a set of lan-
guages is based on genealogical, geographical, or
typological features created with linguistic analy-
sis (Lin et al., 2019). Littell et al. (2017) provide
various vector information on linguistic features in
URIEL Typological database which can be used to
calculate how distant are the languages.3 In this
work using the URIEL database we use the fol-
lowing linguistic distances:4

• Geographic distance (dgeo): The spherical
distance among languages on Earth’s surface,
divided by the diametrically opposite Earth’s
distance. The language points are abstrac-
tions, and not precise facts, derived from

3https://github.com/antonisa/lang2vec
4Inventory distance was not used in this study, since it is

similar to phonological distance, but the phonological feature
vectors are derived from PHOIBLE database
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Language Treebank Size Genre Exp1 Exp2 Exp3

Latin
la Perseus 2,273 Bible, Classical texts 250 500 500
la proiel 18,411 New Testament, Classical texts 250 500 500
la ittb 26,977 Classical texts 250 500 500

Italian it isdt 14,167 News, legal, wiki 2,500 2,500 10,000
it vit 10,087 News, Politics, Literary 2,500 2,500 10,000

Ancient Greek grc Perseus 13,919 Bible, Classical texts 2,500 2,500 10,000
grc proiel 17,080 New testament, Classical texts 2,500 2,500 10,000

Modern Greek el gdt 2,521 News, Politics, Health 2,500 2,500 –
French fr ftb 18,535 News, Politics 2,500 2,500 –

Table 1: Treebank information and the number of sentences used in each experiment.

dgeo dgen dfea dpho dsyn
Italian 0.0 0.5 0.7 0.2 0.52
French 0.1 0.68 0.8 0.54 0.71
ancient Greek 0.0 0.8 0.3 0.2 0.35
modern Greek 0.1 1 0.8 0.59 0.64

Table 2: Distances between Latin and the other
languages according to the URIEL typological
database

existing databases with declarations on lan-
guage location (Littell et al., 2017).

• Genetic distance (dgen): The genealogical
distance among languages, according to the
hypothesized world language family tree in
the Glottolog catalogue (Nordhoff and Ham-
marström, 2011).

• Phonological distance (dpho): The cosine
distance among the phonological vectors ex-
tracted from the World Atlas of Language
Structure (WALS) and Ethnologue databases
(Dryer and Haspelmath, 2013; Lewis, 2009).

• Syntactic distance (dsyn): The cosine dis-
tance among vectors mostly extracted from
the syntactic structures of the languages ac-
cording to WALS (Dryer and Haspelmath,
2013).

• Featural distance (dfea): The cosine dis-
tance between feature vectors from a com-
bination of the linguistic features described
above (geographic, genetic, syntactic, phono-
logical, inventory) extracted from the URIEL
database.

All the leveraged information from the URIEL
database can be found in Table 2, where the val-
ues range from 0.0 to 1.0.; numbers close to 0.0
represent proximity and vice versa. The language
codes are based on the ISO-639-3 codes.5 In order
to examine whether these linguistic distances are
related to the parsing results, the Pearson Correla-
tion Coefficient will be used.

5https://iso639-3.sil.org/codetables/639/data

4 Results

Table 3 shows results from training a monolingual
model for each Latin treebank with a small amount
of data. As expected, the scores are quite low,
given the limited training data size, but there is a
large improvement from doubling the data from
250–500 sentences of up to 8.4 LAS points. There
is a large difference in performance between the
treebanks, where the Persues treebank seems to
have the most challenging test set.

Table 4 shows results with a cross-lingual model
with 2.5K transfer language sentences and Table
5 shows the results with 10K transfer language
sentences. In all cases, one of the ancient Greek
treebanks give the best results, with improvements
of up to 16.9 LAS points compared to the mono-
lingual baseline for Latin PROIEL. In all but one
case, modern Greek also surpasses the results of
all Italic treebanks, and also beats all monolingual
baselines. Italian helps for the PROIEL and ITTB
Latin treebanks, but in most cases hurts slightly for
the Persues treebank. French, on the other hand
leads to very poor results in all cases, mostly giv-
ing worse results than the monolingual baseline.

Concerning the impact of training data size, we
can usually see a large improvement, when dou-
bling the target data, just as in the monolingual
case. Overall the improvements are larger for the
poor models than for the stronger ones. Increasing
the size of the transfer language from 2.5K to 10K
further improves the results in most cases when
ancient Greek is used as transfer language. The
improvements are typically smaller than when in-
creasing the size of the target language, though.
When using Italian as the transfer language, how-
ever, the results do not show much change com-
pared to using less Italian data, sometimes even
leading to worse results. It thus seems that using
more data from the transfer language is only use-
ful for transfer languages that are a good fit to the
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Training sentences: 250 500
la Perseus 17.9 26.1
la proiel 39.9 43.1
la ittb 33.1 41.6

Table 3: LAS scores for monolingual training with
250 and 500 sentences.

la Perseus la proiel la ittb
Target sent. 250 500 250 500 250 500
it isdt 19.9 25.9 46.5 55.6 38.1 46.4
it vit 17.8 24.5 44.2 54.7 36.9 44.3
grc Perseus 30.1 32.4 50.4 58.1 39.9 45.4
grc proiel 27.6 31.9 50.9 60 40.4 47.6
el gdt 23.6 27.2 48.5 58.4 36.6 46.6
fr ftb 12.8 22.8 39.8 50.3 13.7 40.2

Table 4: LAS scores for multilingual experiments
with 2.5K sentences from the transfer language,
and 250 or 500 sentences from the target language.

target language.
For Latin PROIEL and Perseus, where there are

ancient Greek treebanks from the corresponding
annotation projects, it is always preferable to use
the matching treebank. However, the gaps are
typically not large, ranging from 0.4 to 3.9 LAS
points, with the scores for the non-matching tree-
bank in most cases beating the scores for tree-
banks from all other languages. Also for the Latin
ITTB treebank, the scores for both non-matching
ancient Greek treebanks are among the highest
scores, with the PROIEL treebank being the best
match. This indicates that the impact of anno-
tation project, with content and annotation styles
matching, adds to the performance, but is not the
main explanatory factor for the usefulness of an-
cient Greek. It is also worth noting that the tree-
banks for Italian VIT, modern Greek and French
have similar content, but very different parsing re-
sults, indicating that language choice is more im-
portant than the genres of the treebanks.

Table 6 shows Pearson correlations between
the distance measures and the parsing scores for
the Latin PROIEL treebank using 500 sentences
and 2.5K transfer language sentences. There is
a strong negative correlation of -.76 between the
syntactic distance of the languages and the parsing
results, even though it is not significant. This find-
ing seems reasonable since syntactic features of a
language are intuitively important for parsing. An-
cient Greek and Latin actually have a closer syn-
tactic distance than Italian and Latin, see Table 2.
The same applies to the featural distance, which is

la Perseus la proiel la ittb
it isdt 24.3 55.3 44.7
it vit 24 55.4 42.7
grc Perseus 36.9 60.7 46.6
grc proiel 33 62.3 47.3

Table 5: LAS scores from multilingual experi-
ments with 10K sentences from the transfer lan-
guage and 500 from the target language

R Strength P-value
dgeo -0.47 weak 0.34
dgen 0.57 moderate 0.23
dfea -0.91 strong 0.011
dpho -0.44 weak 0.382
dsyn -0.76 strong 0.073

Table 6: Pearson correlation and p-value between
parsing scores and linguistic distance measures for
the Latin PROIEL treebank.

a combination of various features (including syn-
tactic, phonological, inventory, geographic, and
genealogical), and has a strong significant nega-
tive correlation of -.91. While this finding is quite
intuitive, it is contrary to the finding of Lin et al.
(2019) who found that geographic and genetic dis-
tances were more important than syntactic or feat-
ural distance, however, for 0-shot parsing with a
higher number of languages. It is, however, in
accordance with (Bjerva et al., 2019) who indi-
cated that structural similarity is a better predictor
of language representation similarities compared
to genetic similarity. The strong performance for
Hellenic languages is especially interesting since
they do not share script with Latin, which means
that the character embeddings in UUparser are less
useful than for Italian.

5 Conclusion

We have shown that using Hellenic languages is
preferable to using Italic languages when train-
ing a multilingual parsing model for Latin in a
low resource scenario. While we see the best re-
sults when we use ancient Greek treebanks from
the same annotation project as the Latin treebanks,
we also see very competitive results when training
across annotation projects, mostly surpassing all
other languages explored. We also see that it is
more useful to increase the training data size of
the target language than the transfer language, and
that increasing the size of the target language is
only useful when it is a good match. Finally we
show that there are strong correlations between the
parsing result and the featural and syntactic dis-
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tance of the target and transfer language, which
could explain the usefulness of ancient Greek, the
most syntactically similar language to Latin in our
sample.

In this study we only explored a low-resource
setting, using a limited amount of Latin data. It
would be interesting to see if the findings hold also
when we use all available data, as indicated by the
results of Smith et al. (2018). We would also like
to add pre-trained word embeddings, either cross-
lingual static embeddings, or multilingual contex-
tual embeddings, to see what the impact is, com-
pared to our current experiments where we do not
use any pre-trained embeddings. Another direc-
tion would be to investigate if ancient Greek is
a good transfer language for Latin also for other
tasks, which might be less sensitive to syntactic
distance.
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Glavaš. 2020. Towards instance-level parser selec-
tion for cross-lingual transfer of dependency parsers.
In Proceedings of the 28th International Conference
on Computational Linguistics, pages 3886–3898,
Barcelona, Spain (Online). International Committee
on Computational Linguistics.

Patrick Littell, David R. Mortensen, Ke Lin, Kather-
ine Kairis, Carlisle Turner, and Lori Levin. 2017.
URIEL and lang2vec: Representing languages as ty-
pological, geographical, and phylogenetic vectors.
In Proceedings of the 15th Conference of the Euro-
pean Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 8–14,
Valencia, Spain. Association for Computational Lin-
guistics.

319



Joakim Nivre, Marie-Catherine de Marneffe, Filip Gin-
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Abstract

We describe the process of conversion be-
tween the PoS tagging schemes of two
languages, the Icelandic MIM-GOLD tag-
ging scheme and the Faroese Sosialurin
tagging scheme. These tagging schemes
are functionally similar but use separate
ways to encode fine-grained morpholog-
ical information on tokenised text. As
Faroese and Icelandic are lexically and
grammatically similar, having a system-
atic method to convert between these two
tagging schemes would be beneficial in
the field of language technology, specifi-
cally in research on transfer learning be-
tween the two languages. As a product
of our work, we present a provisional ver-
sion of Icelandic corpora, prepared in the
Faroese PoS tagging scheme, ready for use
in cross-lingual NLP applications.

1 Introduction

Part of Speech (PoS) tagging is the process of la-
belling words and symbols of running text based
on their lexical category and morphological fea-
tures. Text corpora that have been PoS-tagged
in this way serve as a valuable tool in various
fields of linguistic research and language technol-
ogy. The specifics and format of the PoS tags used,
the tagging scheme, varies greatly between lan-
guages and applications. In the current project, we
focus on two languages with significant linguis-
tic similarities, Icelandic and Faroese, and PoS
tagging schemes for the two which overlap sig-
nificantly in function; the MIM-GOLD tagging
scheme (Barkarson et al., 2020) and the Sosialurin
tagging scheme (Hansen et al., 2004), respectively.

Icelandic and Faroese are distinct yet relatively
similar languages, with their similarities espe-
cially apparent in morphology and syntax. While

Icelandic has seen significant gains in the field
of language technology (LT) over the past few
decades (Nikulásdóttir et al., 2017), the same is
not true for Faroese. Due the similarities between
the two, there is a real possibility that employing
transfer learning, using Icelandic data in tandem
with Faroese, to create effective LT tools and dig-
ital language resources for Faroese.

With the end goal of cross lingual transfer learn-
ing in mind, we focus on the task of PoS tagging.
Our goal is to produce an effective way to map
between the tagging schemes used for the two lan-
guages. This requires some revisions to one of the
tagging schemes and assurance that a one-to-one
mapping between tagsets is possible.

The paper is structured as follows. Section 2
discusses the possibilities of cross-lingual trans-
fer learning between Faroese and Icelandic. Sec-
tion 3 describes the Icelandic MIM-GOLD tag-
ging scheme and Section 4 the Faroese Sosialurin
tagging scheme. Section 5 discusses the current
differences between the two tagging schemes and
Section 6 details the procedure of converting be-
tween the two tagsets, while Section 7 discusses
possible alternatives such a conversion. Section 8
concludes.

2 Faroese, Icelandic and transfer
learning

The fundamental reason that makes Icelandic NLP
implementations applicable for Faroese are the
grammatical similarities between the two lan-
guages. These similarities are especially apparent
in morphology, as both languages retain grammat-
ical categories not apparent in other similar lan-
guages, e.g., four grammatical cases for nominals
and an extensive conjugation system for verbs, to
name a few. Furthermore, the similarities also
extend to the syntax of the languages and or-
thographies, although with various systematic dif-
ferences in both. With this in mind it can be sup-
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posed that NLP solutions that perform well for
Icelandic may also perform well for Faroese, es-
pecially data-driven applications.

Some data already exists on the efficacy of
cross-lingual transfer learning between Icelandic
and Faroese. The FarParsald project (Ingason
et al., 2014) focused on using a syntactically anno-
tated corpus of Faroese, the Faroese Parsed Histor-
ical Corpus (FarPaHC; Sigurðsson et al. 2012), to
train a syntactical parser, FarParsald, based on the
data-driven Berkeley parser (Petrov et al., 2006;
Petrov and Klein, 2007). The relatively small
FarPaHC corpus, containing about 40,000 tokens,
was supplemented with excerpts from its Icelandic
counterpart, the one million word Icelandic Parsed
Historical Corpus (IcePaHC; Rögnvaldsson et al.
2012). Using this approach, the overall parsing
accuracy of FarParsald was raised from 75.44%
to 78.06%, when 20% of the IcePaHC corpus,
about 200,000 tokens, was added to the Faroese
training data. In effect, a training set made of
mostly Icelandic data returned better results than
the Faroese-only data.

A similar approach may be taken in PoS tag-
ging Faroese. ABLTagger (Steingrímsson et al.,
2019), a recent Bi-LSTM driven PoS Tagger has
shown impressive results in data-driven tagging of
Icelandic. This implementation might well serve
as a platform for further transfer learning between
the two languages.

3 The MIM-GOLD tagging scheme

The Icelandic tagging scheme we use in our
project is the MIM-GOLD tagging scheme, used
in its eponymous corpus (Barkarson et al., 2020),
a one million word, hand corrected corpus which
serves as a gold standard for PoS tagging Ice-
landic. This tagging scheme is a modified version
of the one used in the Icelandic Frequency Dic-
tionary (IFD) corpus (Pind et al., 1991), with var-
ious revisions made to the tagset to improve and
streamline machine tagging of texts.

In this tagging scheme, each token receives one
PoS tag, constisting of a tag string. Each tag string
consists of a series of characters, each having
a particular morphosyntactic function, e.g., case,
number, tense and grammatical gender. This is il-
lustrated in Table 1, where the sentence in (1) is
shown when tagged using the MIM-GOLD tag-
ging scheme.

(1) Ég
I

stökk
jumped

á
on

eftir
after

strætó
bus

og
and

veifaði.
waved

‘I jumped after the bus and waved.’

Token PoS tag Explanation
Ég fp1en f: pronoun; p: personal; 1: 1st person;

e: singular; n: nominative;
stökk sfg1eþ s: verb; f: indicative; g: active;

1: 1st person; e: singular; þ: past tense
á aa a: adverb; a: doesn’t govern case;
eftir af a: adverb; þ: governs case;
strætó nkeþ n: noun; k: masculine; e: singular;

þ: dative;
og c c: conjunction;
veifaði sfg1eþ s: verb; f: indicative; g: active;

1: 1st person; e: singular; þ: past tense
. pl p-punctuation, l-end of sentence

Table 1: A sentence tagged with the MIM-GOLD
tagging scheme, with explanations.

4 The Sosialurin tagging scheme

The Faroese PoS tagging scheme we focus on is
the one used in the Sosialurin corpus, devised by
Hansen et al. (2004) as part of a larger project
to create a PoS-tagged corpus for the language
and train automatic PoS tagging software. This
scheme is, to a large extent, based on the tagging
scheme used in the IFD corpus for Icelandic (Pind
et al., 1991). This was possible because of the
many similarities between Icelandic and Faroese
in morphology and grammar in general.

As in its Icelandic counterpart, the Faroese tag-
ging scheme assigns each token a tag string, which
contains a series of letters, each signifying relevant
morphosyntactic information. The languages are
not identical, however, and this is reflected in the
Faroese tagging scheme. Furthermore, in a hand-
ful of grammatical categories, the Sosialurin tag-
ging scheme encodes fewer details than the Ice-
landic one. In short, it is not as fine grained. Fi-
nally, the tagging schemes use different symbols
in the tag strings themselves, rendering the tagging
schemes superficially different. An example of the
Sosialurin tagging scheme in practice is shown in
Table 2, where the tokens of the sentence in (2) are
shown with respective PoS tags.

(2) Hann
he

er
is

grivin
buried

undir
under

Homrum.
Hamrar

‘He is buried at Hamrar.’

As discussed in Section 3 a number of revi-
sions have been made to the IFD tagging scheme,
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Token Tag Explanation
Hann PPMSN P-pronoun, P-personal M-masculine,

S-singular, N-nominative
er VNPS3 V-verb, N-indicative, P-present,

S-singular, 3-third person
grivin VAMSN V-verb, A-past participle, M-masculine,

S-singular, N-nominative,
undir ED E-preposition, D-governs dative
Homrum SMSDL S-noun, M-masculine, S-singular,

D-dative, L-location

Table 2: Example of the Sosialurin tagset, with
explanations

Pronouns: Added subcategories to tagstring
Adverbs: Interjections and prepositions

tagged as adverbs
Numerals: New and reorganised subcategories

Abbreviations: Subcategories for different types
of abbreviations

Verbs: Dedicated tag for supine removed
Nouns: Place names and names of

persons merged
Other: New dedicated classes for punctuation

and e-mail/web addresses

Table 3: Revisions applied to the Sosialurin tag-
ging scheme based on the Icelandic MIM-GOLD.

mostly to improve tagging efficiency, culminat-
ing in the current MIM-GOLD tagging scheme
for Icelandic. The same cannot be said about the
Sosialurin tagging scheme, as no substantial revi-
sions have been made to it since its inception. As
such, we suggest a set of revisions to the Sosialurin
tagging scheme, largely in step with the revisions
made for the MIM-GOLD tagging scheme. These
revisions are listed in Table 3.

The revisions applied to the Sosialurin tagging
scheme include reworked numeral and punctua-
tion tag strings, simplified case governance tag-
ging for adverbs and the removal of a dedicated tag
for past participles. Furthermore, various new tag
strings were introduced, based on features from
the original IFD tagging scheme which were omit-
ted from the original Faroese scheme, e.g., distinc-
tion between different categories of pronouns.

In addition to the MIM-GOLD based revisions,
we suggest a possible language-specific revision
to the Faroese taggings scheme. This entails the
removal of distinction between person (1st, 2nd
or 3rd) from verb tags in the original tagset. In
Faroese, person is never morphologically distinct
in verbal plural forms, and may thus be reduntant
in the tagging scheme, in theory. Such a revision
would improve the accuracy of machine-tagging,

but downstream effects, e.g., on syntactic parsing,
are not clear. As such, we leave it as an open sug-
gestion and do not apply it in our project.

With all revisions applied, the total number of
theoretical tags in the Sosialurin tagset is about
600. When applied to the original Sosialurin cor-
pus, 379 of these tags appear in the corpus, while
the original corpus contained 390 unique tags.
This is to be expected, mostly due to the simplified
punctuation tags in the revised tagging scheme.

The revisions applied to the Faroese tagging
scheme have been shown to positively affect over-
all PoS tagging accuracy. When applied to the
Sosialurin corpus and evaluated using ten-fold
cross validation, a Faroese implementation of
ABLTagger achieved an overall error reduction
rate of 7.51% (Hafsteinsson and Ingason, 2021).

5 Remaining tagging scheme differences

With the revisions based on MIM-GOLD, de-
scribed in Section 4, to the Faroese tagging
scheme, the function of the two tagging schemes
has become markedly more similar. The remain-
ing aspect separating the two are language-specific
features of the two schemes, specifically concern-
ing verbal PoS tags and the interpretation of article
tags.

Both Icelandic and Faroese make a morpholog-
ical distinction between two voices for verbs, the
active and middle voices. The MIM-GOLD tag-
ging scheme for Icelandic treats the verbal voice
as a defining characteristic of all verbs. In the tag
string, this is shown with the letter g for the ac-
tive voice, and m for the middle voice. However,
in the Sosialurin tagging scheme for Faroese, the
verbal voice is instead treated as a verbal mood.
This causes a discrepancy between the two tagging
schemes, as the hierarchy of the verbal tag string
is fundamentally different. A verb in Icelandic,
tagged as being in the indicative mood, could ei-
ther be in the active or middle voice. This is not
possible in the Faroese tagging scheme, since the
middle voice is considered a verbal mood; the hi-
erarchical nature of the tag string doesn’t allow
two different mood labels.

The reason for this difference might be differ-
ences in the languages themselves. Although both
Faroese and Icelandic exhibit what may be called
a grammatical voice in verbs, the Faroese form is
likely reduced compared to the Icelandic. In turn,
the distinction between voice in Faroese verbs is
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not as fundamental as in Icelandic. With this in
mind, the discrepancy as a whole may be tenta-
tively circumvented in the tag conversion.

A more significant difference between the two
tagging schemes concerns the article word class.
The Icelandic tagging scheme tags uses a spe-
cific tag for definite articles, which reflects con-
ventional analyses of Icelandic grammar, in which
the free-standing definite article ‘hinn’ is classi-
fied as a distinct word class, with no indefinite
article being used. This free-standing article is
thought of as a literary device of irregular usage,
with the more common suffixed definite article
being in more general use. Conversely, Faroese
uses both definite and indefinite free-standing ar-
ticles; ‘tann’ and ‘hin’ as definite and ‘ein’ as in-
definite, along with a suffixed definite article, like
Icelandic (Þráinsson et al., 2004). Despite the ap-
parent function of these words as articles within
Faroese, these words are tagged as indicative pro-
nouns in the Faroese tagging scheme, forgoing a
distinct article tag altogether. Furthermore, this
seems to be an inherent difference between the
conventional analyses between the two languages,
which discourages the approach of simply adding
an article tag to the tagging scheme.

6 Conversion between tagsets

We suggest a partial solution to the effect of
the inherent differences between the two tagging
schemes, when converting between the two. Con-
cerning the verbal tags, when converting from the
Faroese tagging scheme to the Icelandic, all verb
PoS tags not tagged as in the middle voice are
mapped to equivalent verbal tags in the indicative
mood, active voice. Faroese verbs tagged in the
middle are, conversely, mapped to the indicative
middle voice. The opposite is done when convert-
ing from Icelandic to the Faroese tagging scheme,
with the information on mood being overwritten,
in the case of verbs that are in the middle voice.
This approach produces a one-to-one mapping be-
tween the two tagging schemes and mitigates the
discrepancy between them. This is especially ef-
ficient when only converting from the Icelandic to
Faroese, which suffices use in cross-lingual trans-
fer learning, as described in Section 2.

Regarding the difference concerning the article
class, further research is needed before an end re-
sult is settled on. The conversion between tagsets
itself is not hampered by the absence of a distinct

article tag in the Faroese tagging scheme, but it
may have an effect when applying datasets with
converted tagging schemes, e.g., in transfer learn-
ing. Future work will shed more light on this.

With this in mind, we have set up simple Python
scripts which generate full tagsets for the tagging
schemes and convert between the two. Further-
more, we have produced preliminary datasets for
use in testing of cross-lingual transfer learning,
based on the MIM-GOLD corpus for Icelandic,
the tagset of which was used in the development
of the conversion described above. The conversion
scripts and training datasets are tentatively made
available on GitHub1 as products of this project.

7 Alternatives to conversion

Although we the main objective of the current
project concerns the conversion between two tag-
ging schemes, we are remain aware of the possi-
bility of alternatives to this approach. One notable
possibility would be to simply unify the two tag-
ging schemes. With the modifications described in
Section 4 applied to the Faroese tagging scheme,
the two tagging schemes become near identical in
function. If the end goal is to align one tagging
scheme to the other, it begs the question whether
a single tagging scheme would suit the needs of
the two languages for use in NLP, e.g, by simply
using the established Icelandic MIM-GOLD tag-
ging scheme to describe both. The grammatical
similarities between the two languages, discussed
in Section 2 further supports this argument. How-
ever, as the remaining discrepancies between the
tagging schemes suggests, this approach is at best
inopportune. At the moment, the conventional
analyses of the two languages differ in such a way
that simply applying the Icelandic MIM-GOLD
tagging scheme on Faroese text would be sub-
optimal. However, experimenting on this could be
fruitful, and reconciling these differences in anal-
ysis at a future date may also be possible.

Circumventing the topic of the two tagging
schemes discussed here, it should be noted that
both Faroese and Icelandic have been described
using the Universal Dependencies (UD) annota-
tion scheme. Three UD corpora are available for
Icelandic and two for Faroese, with considerable
overlap in the production of the Faroese FarPaHC
corpus and the Icelandic IcePaHC and Modern

1https://github.com/hinrikur/far-ice_
corpora
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corpora, each being converted to the UD format
from existing datasets, as described by Arnardóttir
et al. (2020). In this sense the two languages have
already been described with a common annotation
framework, although the UD annotating scheme
is not strictly a dedicated PoS tagging scheme
compared to the two tagging schemes used in our
project.

8 Conclusion

We have described the process of conversion be-
tween the PoS tagging schemes of two gram-
matically similar languages, the Icelandic MIM-
GOLD tagging scheme and the Faroese Sosialurin
tagging scheme. Despite the two tagging schemes
being functionally similar, they use separate ways
to encode fine-grained morphological information
on tokenised text. We described the differences
between the two, along with revisions made to the
Faroese tagging scheme, with the goal of stream-
lining automatic PoS tagging. We discussed gram-
matical differences between Faroese and Icelandic
which result in minor discrepancies between the
two tagging schemes and suggested a way to mit-
igate the effects of this when converting between
the two. As a result, we produced a simple way
to convert PoS tags between the languages. The
results of our work have been made available for
use, consisting of Python scripts for converting
Icelandic and Faroese tagged corpora and prelimi-
nary converted training data, ready for application
in cross-lingual NLP applications, with the end
goal of it being of benefit in cross-lingual transfer
learning.
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Abstract

Accurate translation requires document-
level information, which is ignored by
sentence-level machine translation. Recent
work has demonstrated that document-level
consistency can be improved with auto-
matic post-editing (APE) using only target-
language (TL) information. We study an
extended APE model that additionally in-
tegrates source context. A human evalua-
tion of fluency and adequacy in English–
Russian translation reveals that the model
with access to source context significantly
outperforms monolingual APE in terms of
adequacy, an effect largely ignored by auto-
matic evaluation metrics. Our results show
that TL-only modelling increases fluency
without improving adequacy, demonstrat-
ing the need for conditioning on source
text for automatic post-editing. They also
highlight blind spots in automatic meth-
ods for targeted evaluation and demonstrate
the need for human assessment to evaluate
document-level translation quality reliably.

1 Introduction

Neural machine translation (NMT) has signif-
icantly improved the state of the art in MT
(Sutskever et al., 2014; Bahdanau et al., 2015;
Vaswani et al., 2017) on the sentence level. How-
ever, accurate translation requires looking at larger
units than individual sentences (Hardmeier, 2014),
and context-aware NMT has recently become a
popular research direction (Miculicich et al., 2018;
Scherrer et al., 2019; Junczys-Dowmunt, 2019).

One approach to discourse-level processing in
NMT is automatic post-editing of the output of
a sentence-level system. DocRepair (Voita et al.,
2019a) is a monolingual sequence-to-sequence
model to correct inconsistencies in groups of adja-

cent sentence-level translations, showing improve-
ments for specific discourse-level phenomena such
as the generation of inflections in elliptic sentences.

The hypotheses explored in this work are (1)
that the coherence of the translation can be further
improved by exploiting context in the source lan-
guage, and (2) that the omission of source context
disproportionately affects adequacy in a way that is
not measured adequately by the existing automatic
evaluation procedures.

Our post-editing model is a document-level adap-
tation of Transference (Pal et al., 2019), a suc-
cessful three-way transformer architecture from
the WMT 2019 Automatic Post-Editing (APE)
task (Chatterjee et al., 2019). To keep the model
from over-correcting the hypothesis, we use data
weighting (Junczys-Dowmunt, 2018) and a conser-
vativeness penalty (Junczys-Dowmunt and Grund-
kiewicz, 2016). We evaluate on the same training
and evaluation sets as Voita et al. (2019a), includ-
ing a general test set validated by BLEU score and
contrastive sets for several discourse phenomena.

Our experimental results confirm both hypothe-
ses. Despite similar BLEU, human evaluation
demonstrates that our Transference model signif-
icantly outperforms DocRepair in terms of ade-
quacy, whilst both models show a comparable im-
provement in fluency over a baseline without APE.
The automatic evaluation on discourse-specific test
sets suggests that source-side information is partic-
ularly useful for predicting omitted verb phrases;
however, even the targeted discourse-specific eval-
uation does not reflect the adequacy gain found
by human evaluators. This is especially true since
some of the discourse-specific test sets of Voita
et al. (2019a) have a very narrow focus on prob-
lems for which source context is unlikely to help.

2 Transference

Transference (Pal et al., 2019) (Figure 1) is a multi-
source transformer (Vaswani et al., 2017) architec-

326



ture which exploits both source src and the MT out-
put mt to predict the reference ref. It is composed
of (1) a source encoder (encsrc) to generate the src
representation, (2) a second encoder (encsrc→mt)
which is a standard transformer decoder architec-
ture without mask to produce the representation
of mt incorporating src information, and (3) a de-
coder (decref) which captures the final representa-
tion from encsrc→mt via cross-attention.

encsrc
Transformer
Encoder

encsrc—>mt
Transformer
Decoder
without
Masking

decref
Transformer
Decoder
with

Masking

src mt ref

output

Figure 1: Transference architecture for multi-
source document-level repair model.

If document-level APE is trained on a small sub-
set of the parallel data, or only synthetic data, and
therefore presumably weaker as a general model
of translation than the sentence-level main model,
we need to control how aggressively APE can mod-
ify mt to prevent over-correction. We adopt two
strategies from the APE literature to achieve this. A
conservativeness penalty (Junczys-Dowmunt and
Grundkiewicz, 2016), denoted c, penalises the
score of each prediction that is not in src or mt.
Formally, let Vc = Vsrc ∪Vmt be the subset of the
full vocabulary V that occurs in an input segment.
Given a |V |-sized vector of candidates ht at time
step t, the score of each candidate v is defined as:

ht(v) =
{

ht(v)− c if v ∈V\Vc

ht(v) otherwise.
(1)

Second, similar to Lopes et al. (2019), we ap-
ply a data weighting strategy during training. We
assign each training sample a weight that is de-
fined as BLEUsmooth(mt, ref ) (Lin and Och, 2004)
to upweight samples that require little post-editing.

3 Data and Preprocessing

We use all of the English-to-Russian data released
by Voita et al. (2019a)1, including: (1) 6M context-

1https://github.com/lena-voita/good-
translation-wrong-in-context

Model Deixis Lex.c. Ell.infl. Ell.VP BLEU

Results reported by Voita et al. (2019a):
Baseline 50.0 45.9 53.0 28.4 32.41
DocRepair 91.8 80.6 86.4 75.2 34.60

Our experiments:
DocRepair 88.6 70.5 83.8 69.0 32.69
DocRepair (+P) 87.6 67.6 82.2 71.8 32.38
Transference 86.8 62.9 81.6 73.0 30.56
Transference (+P) 87.8 65.4 84.8 82.8 32.53

Experiments marked +P use the ParData corpus.

Table 1: BLEU score on general test set and accu-
racy on contrastive test sets (deixis, lexical consis-
tency, ellipsis (inflection), and VP ellipsis).

agnostic and 1.5M context-aware (4 consecutive
sentences in each sample) data from the OpenSub-
titles2018 corpus (Lison et al., 2018); (2) Russian
monolingual data in 30M groups of 4 consecutive
sentences gathered by Voita et al. (2019a). We
reuse the synthetic training data for APE gener-
ated by Voita et al. (2019a), treating Russian mono-
lingual data as ref, a sentence-level English back-
translation as src, and the Russian roundtrip transla-
tion as mt. The evaluation data consists of general
test sets extracted from the training data and four
contrastive test sets to evaluate specific contextual
phenomena.

The four contrastive test sets have a narrow fo-
cus on specific discourse-level phenomena. The
“Deixis” set targets consistent use of formal and
informal second-person pronouns (T-V distinction)
in Russian (however without regard to the social
acceptability of the selected form). “Lexical cohe-
sion” targets the consistent transliteration of proper
names into Cyrillic script. These two sets are inde-
pendent of source context by design, as the model
is only evaluated on the generation of consistent
repetitions of a form it has committed to, regard-
less of its adequacy in the context. The “Ellipsis
VP” set targets elliptic verb phrases, where Rus-
sian requires the production of a lexical verb form
not found in English. The “Ellipsis inflection” set
tests the generation of noun inflections in sentences
where the governing verb has been elided.

The training data is tokenised and truecased with
Moses (Koehn et al., 2007), and encoded using
byte-pair encoding (Sennrich et al., 2016b) with
source and target vocabularies of 32000 tokens.
Like Voita et al. (2019a), we report lowercased,
tokenised BLEU (Papineni et al., 2002) with multi-
bleu.perl from the Moses toolkit.
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4 Model

The sentence-level baselines (EN→RU) and model
used for RU→EN back-translation are Transformer
base models (Vaswani et al., 2017).

For document-level APE, DocRepair is a Trans-
former base model that operates on groups of adja-
cent sentences, mapping from mt to ref. We use the
Nematus toolkit (Sennrich et al., 2017) for DocRe-
pair and our implementation of the Transference
architecture, using the same configuration as Pal
et al. (2019).2 Detailed hyperparameters are listed
in Appendix A. We train our document-level mod-
els on the 30M pairs of synthetic data. For some
models, we also include the subset of the parallel
data (1.5M pairs) for which context sentences are
available, referred to as ParData. The mt part of
ParData is generated by randomly sampling 20
translations with our EN→RU baseline system.

In preliminary experiments, adding noise to the
training data improved model generalisation. We
generated noise with two strategies. Following
Voita et al. (2019a), mt in both synthetic data and
ParData is randomly selected from 20 translations,
and noise is added by making random token substi-
tutions with probability of 10%. Following Edunov
et al. (2018), noise is added to the src in synthetic
data by three operations: (1) replacing a token; (2)
deleting a token; (3) swapping adjacent token pairs,
with a probability of 10%.

5 Automatic evaluation

Table 1 shows the results in terms of accuracy on
the contrastive test sets and BLEU on the general
test set. For DocRepair, we were unable to repli-
cate the exact results of Voita et al. (2019a). Our
conclusions are based on our own implementation.

On the general test set, trained on only synthetic
training data, Transference achieves about 2 BLEU
points less than DocRepair. We suspect that this
derives from the mismatch of the training and test
data for Transference. Specifically, during train-
ing, the “source” seen by Transference is the result
of noisy back-translation from Russian, whereas
at test time, the source is an original English sen-
tence. When ParData is included, Transference
and DocRepair achieve comparable BLEU.

In accuracy on the test sets for T/V pronouns
(“deixis”) and transliteration consistency (“lexical

2Code available at https://github.com/
zippotju/Context-Aware-Bilingual-Repair-
for-Neural-Machine-Translation

cohesion”), Transference does not improve over
DocRepair, which is unsurprising considering how
those test sets are constructed. However, adding
source knowledge does improve results on both el-
lipsis test sets, for VP ellipsis even without adding
the ParData data. The improvement is generally
greater for VP ellipsis than for noun inflection.

6 Human evaluation

To gain a better picture of the merits of the differ-
ent systems, we conducted a manual evaluation.
We randomly selected 720 sentences from the gen-
eral test set and 100 sentences from the discourse
test set and had them evaluated separately for ade-
quacy and fluency by two native speakers of Rus-
sian. To avoid priming between the fluency and
adequacy conditions, the test set was split between
the annotators, and no sentence was annotated for
adequacy and fluency by the same annotator. To
determine the inter-annotator agreement, there are
100 overlapping sentences for two annotators. Ta-
ble 5 shows inter-annotator agreement results while
Table 4 shows the intra-annotator agreement. Ac-
cording to Landis and Koch (1977), all groups of
human evaluation results are fair (κ > 0.2).

The sentences were presented to the annotators
in random order along with 3 sentences of pre-
ceding context. The sentence to be evaluated was
highlighted, and the Russian translations of the
three systems (Baseline, DocRepair (+ParData)
and Transference (+ParData)) were displayed next
to each other, ordered randomly. In the adequacy
condition only, the English source text was also
shown. The annotators received instructions ac-
cording to Table 2 and were told to assign the same
rank if two translations were of equal quality. Once
the annotation was complete, the rankings were
converted into pairwise comparisons. Duplicate
assessments from the inter- and intra-annotator sets
were counted once if their annotations agreed, and
discarded if they disagreed.

Table 3 shows the outcome of pairwise compar-
isons between the systems, including the number of
times the output of one system was preferred over
that of the other by the annotator. The results were
tested for significance with a sign test. We find the
same pattern of results for both test sets. In the Flu-
ency evaluation, both monolingual DocRepair and
bilingual Transference significantly improve over
the Baseline. The comparison between DocRepair
and Transference is not significant in this condi-
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Adequacy: Please rank the three translations according to
how adequately the translation of the last sentence reflects the
meaning of the source, given the context.
Fluency: Please rank the three translations according to how
fluent the last sentence is, in terms of grammaticality, natural-
ness and consistency, taking into account the context of the
previous sentences.

Table 2: Instructions to human annotators

Preference
System A System B A B Ties

Fluency
General corpus:
Baseline DocRepair 30 < 62 612 (p < 0.005)
Baseline Transference 51 < 89 547 (p < 0.005)
DocRepair Transference 70 78 542 (n. s.)
Discourse corpus:
Baseline DocRepair 12 < 28 138 (p < 0.05)
Baseline Transference 15 < 34 120 (p < 0.01)
DocRepair Transference 23 25 121 (n. s.)

Adequacy
General corpus:
Baseline DocRepair 24 31 655 (n. s.)
Baseline Transference 34 < 67 592 (p < 0.005)
DocRepair Transference 39 < 66 592 (p < 0.05)
Discourse corpus:
Baseline DocRepair 16 20 140 (n. s.)
Baseline Transference 9 < 46 117 (p < 0.001)
DocRepair Transference 11 < 43 117 (p < 0.001)

n. s. = not significant
Significance threshold: p < 0.05

Table 3: Human evaluation results. Winning sys-
tems in pairwise comparisons marked in bold.

tion. In the Adequacy evaluation, the comparison
between DocRepair and the Baseline is not signif-
icant, but Transference significantly outperforms
both DocRepair and the Baseline, demonstrating
that knowledge of the source is essential for APE
to improve the accuracy of the translations.

One of the evaluators provided qualitative com-
ments on 32 pairs of DocRepair and Transference
outputs sampled from those sentences for which
the two systems were ranked differently in the hu-
man evaluation. The comments show that both

Per annotator:
Annotator 1 91.1%
Annotator 2 83.9%

Per dataset:
Fluency General 90.0%
Fluency Discourse 86.7%
Adequacy General 90.0%
Adequacy Discourse 78.3%

Table 4: Intra-annotator agreement of human eval-
uation

κ Pct.

Fluency General 0.234 5
Fluency Discourse 0.352 55
Adequacy General 0.301 27
Adequacy Discourse 0.471 93

Table 5: Inter-annotator agreement in terms of Co-
hen’s κ (Cohen, 1960). The last column shows
the percentile of our κ value in the context of a
series of similar evaluations carried out at WMT
2012–2016 (Bojar et al., 2016, Table 4).

systems tend to produce imperfect output for the
same sentences, but the winning system often man-
ages to fix errors partially. Both systems make a
wide range of errors in terms of morphology and
lexical choice, but the source information permits
Transference to correct certain recurring problems
more reliably, such as agreement errors, mistransla-
tions of proper names (e.g., Lena as Sarah), or the
incorrect use or omission of subjunctive mood in
conditional sentences.

7 Related Work

Our work draws on two strands of research: auto-
matic post-editing and context-aware MT.

Automatic post-editing has a long history in
MT (Knight and Chander, 1994), with regular
shared tasks (Bojar et al., 2015, 2016, 2017). Neu-
ral multi-source APE systems as first proposed
by Pal et al. (2016) and Junczys-Dowmunt and
Grundkiewicz (2016), some of them including
source language information (Junczys-Dowmunt
and Grundkiewicz, 2017; Chatterjee et al., 2017; Li-
bovický and Helcl, 2017), have come to dominate
APE. We take inspiration from the top-performing
systems at the WMT19 shared task for architec-
tures and training/decoding tricks (Chatterjee et al.,
2019), and make heavy use of synthetic training
data (Sennrich et al., 2016a; Junczys-Dowmunt and
Grundkiewicz, 2016; Freitag et al., 2019).

Neural context-aware MT can be achieved by
integrating context into the main translation model
(Jean et al., 2017; Tiedemann and Scherrer, 2017;
Bawden et al., 2018, inter alia). Two-stage models
with a sentence-level first pass and document-level
second pass have been explored for scenarios with
asymmetric training data. Voita et al. (2019b) intro-
duces a two-pass model where, unlike in APE, the
second-pass is tightly integrated with the first-pass
model, reusing its hidden representations. Apart
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from Voita et al. (2019a), the model closest to
ours is by Junczys-Dowmunt (2019), who explored
document-level APE, but only manually evaluated
its efficacy as part of a large model ensemble.

8 Conclusion

Our human evaluation shows that monolingual
APE oriented towards consistency beyond the sen-
tence level improves fluency, but not adequacy,
while multi-source APE with source context im-
proves both adequacy and fluency. This shortcom-
ing of monolingual APE in terms of adequacy was
not easily visible with a consistency-focused auto-
matic evaluation, highlighting the need for human
evaluation to avoid such blind spots and reinforcing
earlier findings about the inadequacy of automatic
evaluation methods for discourse-level MT (Guil-
lou and Hardmeier, 2018).

Clearly, a two-stage process with sentence-level
translation and multi-sentence APE is a viable
approach in asymmetric data settings with little
document-level parallel data. However, we still
required some actual document-level parallel data,
and were unable to match the success of monolin-
gual repair when using only synthetic data. Ex-
ploring the data requirements of document-level
APE, and devising ways to reduce them, are worth
further study.
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A Appendix

A.1 Hyperparameter Search and Validation
Performance

The following hyperparameters were manually
tuned:

• The percentage of ParData mixed with the
synthetic training data. of Transference.

• The conservativeness penalty.

• The decision whether to add the conservative-
ness penalty to the probability estimates or to
the logits of the model.

The tuning bounds are shown in Table 7 in curly
braces for each tuned hyperparameter. After 18
hyperparameter search trials, the best-performing
models were selected considering both BLEU score
on the general validation set and the accuracy on
the contrastive validation sets. The validation re-
sults are shown in Table 6, and the hyperparameter
configurations in Table 7.

Model Deixis Lex.c. CE.loss BLEU

DocRepair 89.0 68.0 58.2 32.01
DocRepair (+ParData) 88.8 68.8 56.3 31.63
Transference 86.0 62.2 61.0 30.37
Transference (+ParData) 85.4 64.8 50.7 31.99

Table 6: Validation performance of tested systems
(CE represents Cross Entropy).

A.2 Training Time and Model Size
The two sentence-level baselines and the DocRe-
pair model have approximately 72 million param-
eters each. The baseline systems are trained for
around 72 hours each on a GeForce GTX 1080 Ti
GPU. DocRepair and DocRepair (+ParData) are
trained for approximately 216 hours on four TI-
TAN X (Pascal) GPUs and 192 hours on a GeForce
RTX 2080 Ti GPU, respectively.

The Transference model has around 119 million
parameters. Transference and Transference (+Par-
Data) were trained for around 192 and 288 hours,
respectively, on three GeForce GTX 1080 Ti GPUs.
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DocRepair Transference Tuning bounds

Common hyperparameters
Embedding layer size 512
Hidden state size 512
Tied encoder/decoder embeddings yes no
Tie decoder embeddings yes
Loss function per-token cross-entropy
Label smoothing 0.1
Optimizer Adam
Learning schedule Transformer
Warmup steps 8000
Gradient clipping threshold 1.0
Maximum sequence length 500
Token batch size 15000
Length normalization alpha 0.6
Encoder depth 6
Decoder depth 6
Feed forward num hidden 2048
Number of attention heads 8
Embedding dropout 0.1
Residual dropout 0.1
ReLU dropout 0.1
Attention weights dropout 0.1
Beam size 4
Percentage of ParData in training 0.3 {0.2,0.3,0.4}
Transference-specific hyperparameters
Tied second encoder/decoder embeddings yes
Second encoder depth 6
Conservativeness penalty (0.2, probability) {0.1,0.2,0.3}×

{probability, logit}

Table 7: Hyperparameter configurations for best-performing DocRepair and Transference models, and
hyperparameter tuning bounds.
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Abstract

Chinese character decomposition has been
used as a feature to enhance Machine
Translation (MT) models, combining rad-
icals into character and word level mod-
els. Recent work has investigated ideo-
graph or stroke level embedding. How-
ever, questions remain about the different
decomposition levels of Chinese character
representations, radical and strokes, best
suited for MT. To investigate the impact
of Chinese decomposition embedding in
detail, i.e., radical, stroke, and intermedi-
ate levels, and how well these decomposi-
tions represent the meaning of the original
character sequences, we carry out analy-
sis with both automated and human evalu-
ation of MT. Furthermore, we investigate
if the combination of decomposed Mul-
tiword Expressions (MWEs) can enhance
model learning. MWE integration into
MT has seen more than a decade of explo-
ration. However, decomposed MWEs has
not previously been explored.

1 Introduction

Neural Machine Translation (NMT) (Cho et al.,
2014; Johnson et al., 2016; Vaswani et al., 2017;
Lample and Conneau, 2019) has recently replaced
Statistical Machine Translation (SMT) (Brown
et al., 1993; Och and Ney, 2003; Chiang, 2005;
Koehn, 2010) as the state-of-the-art for Machine
Translation (MT). However, research questions
still remain, such as how to deal with out-of-
vocabulary (OOV) words, how best to integrate
linguistic knowledge and how best to correctly
translate multi-word expressions (MWEs) (Sag
et al., 2002; Moreau et al., 2018; Han et al.,
2020a). For OOV word translation for European
languages, substantial improvements have been

made in terms of rare and unseen words by incor-
porating sub-word knowledge using Byte Pair En-
coding (BPE) (Sennrich et al., 2016). However,
such methods cannot be directly applied to Chi-
nese, Japanese and other ideographic languages.

Integrating sub-character level information,
such as Chinese ideograph and radicals as learning
knowledge has been used to enhance features in
NMT systems (Han and Kuang, 2018; Zhang and
Matsumoto, 2018; Zhang and Komachi, 2018).
Han and Kuang (2018), for example, explain that
the meaning of some unseen or low frequency Chi-
nese characters can be estimated and translated us-
ing radicals decomposed from the Chinese char-
acters, as long as the learning model can acquire
knowledge of these radicals within the training
corpus.

Chinese characters often include two pieces of
information, with semantics encoded within radi-
cals and a phonetic part. The phonetic part is re-
lated to the pronunciation of the overall character,
either the same or similar. For instance, Chinese
characters with this two-stroke radical, 刂 (tı́ dāo
páng), ordinarily relate to knife in meaning, such
as the Chinese character 劍 (jiàn, sword) and
multi-character expression 鋒利 (fēnglı̀, sharp).
The radical 刂 (tı́ dāo páng) preserves the mean-
ing of knife because it is a variation of a drawing
of a knife evolving from the original bronze in-
scription (Fig. 4 in Appendices).

Not only can the radical part of a character be
decomposed into smaller fragments of strokes but
the phonetic part can also be decomposed. Thus
there are often several levels of decomposition that
can be applied to Chinese characters by combin-
ing different levels of decomposition of each part
of the Chinese character. As one example, Fig-
ure 1 shows the three decomposition levels from
our model and the full stroke form of the above
mentioned characters 劍(jiàn) and 鋒(fēng) . To
date, little work has been carried out to investigate
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the full potential of these alternative levels of de-
composition of Chinese characters for the purpose
of Machine Translation (MT).

In this work, we investigate Chinese charac-
ter decomposition, and another area related to
Chinese characters, namely Chinese MWEs. We
firstly investigate translation at increasing levels of
decomposition of Chinese characters using under-
lying radicals, as well as the additional Chinese
character strokes (corresponding to ever-smaller
units), breaking down characters into component
parts as this is likely to reduce the number of un-
known words. Then, in order to better deal with
MWEs which have a common occurrence in gen-
eral contexts (Sag et al., 2002), and working in
the opposite direction in terms of meaning rep-
resentation, we investigate translating larger units
of Chinese text, with the aim of restricting trans-
lation of larger groups of Chinese characters that
should be translated together as one unit. In ad-
dition to investigating the effects of decompos-
ing characters we simultaneously apply methods
of incorporating MWEs into translation. MWEs
can appear in Chinese in a range of ways, such
as fixed (or semi-fixed) expressions, metaphor, id-
iomatic phrases, and institutional, personal or lo-
cation names, amongst others.

In summary, in this paper, we investigate: (i)
the degree to which Chinese radical and stroke se-
quences represent the original word and charac-
ter sequences that they are composed of; (ii) the
difference in performance achieved by each de-
composition level; (iii) the effect of radical and
stroke representations in MWEs for MT. Further-
more, we offer:

• an open-source suite of Chinese character de-
composition extraction tools;

• a Chinese ⇔ English MWE corpus where
Chinese characters have been decomposed

available at radical4mt1.
The rest of this paper is organized as follows:

Section 2 provides details of related work in char-
acter and radical related MT; Sections 3 and 4 in-
troduce our Chinese decomposition procedure into
radical and strokes, and our experimental design;
Section 5 provides details of our evaluations from
both automatic and human perspectives; Section 6
describes conclusions and plans for future work.

1https://github.com/poethan/MWE4MT

2 Related Work

Chinese character decomposition has been ex-
plored recently for MT. For instance, Han
and Kuang (2018) and Zhang and Matsumoto
(2018), considered radical embeddings as ad-
ditional features for Chinese → English and
Japanese ⇔ Chinese NMT. Han and Kuang
(2018) tested a range of encoding models
including word+character, word+radical, and
word+character+radical. This final setting with
word+character+radical achieved the best perfor-
mance on a standard NIST 2 MT evaluation data
set for Chinese → English. Furthermore, Zhang
and Matsumoto (2018) applied radical embed-
dings as additional features to character level
LSTM-based NMT on Japanese→ Chinese trans-
lation. None of the aforementioned work has how-
ever investigated the performance of decomposed
character sequences and the effects of varied de-
composition degrees in combination with MWEs.
Subsequently, Zhang and Komachi (2018) devel-
oped bidirectional English ⇔ Japanese, English
⇔ Chinese and Chinese ⇔ Japanese NMT with
word, character, ideograph (the phonetics and se-
mantics parts of characters are separated) and
stroke levels, with experiments showing that the
ideograph level was best for ZH→EN MT, while
the stroke level was best for JP→EN MT. Al-
though their ideograph and stroke level setting re-
placed the original character and word sequences,
there was no investigation of intermediate decom-
position performance, and they only used BLEU
score for automated evaluation with no human as-
sessment involved. This gives us inspiration to ex-
plore the performance of intermediate level em-
bedding between ideograph and strokes for the
MT task.

3 Chinese Character Decomposition

In this section, we introduce a character decom-
position approach and the extraction tools which
we apply in this work (code will be publicly avail-
able). We utilize the open source IDS dictionary
3 which was derived from the CHISE (CHarac-
ter Information Service Environment) project4. It
is comprised of 88,940 Chinese characters from
CJK (Chinese, Japanese, Korean script) Unified

2https://www.nist.gov/
programs-projects/machine-translation

3https://github.com/cjkvi/cjkvi-ids
4http://www.chise.org/
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Level-1


鋒 (fēng)

(semantic, metal) ⾦金金夆 (phonetic, féng)

⼈人王丷     夂丰

⼈人⼀一⼟土丷           夂三⼁丨

⼃丿㇏⼀一⼀一⼁丨⼂丶㇀⼀一        ㇀㇇㇏⼀一⼀一⼀一⼁丨
…

劍 (jiàn)

(phonetic, qiān) 僉⺉刂(semantic, knife)

亼吅从   ⺉刂

⼈人⼀一⼝口⼝口⼈人⼈人         ⺉刂

⼃丿㇏⼀一⼁丨𠃍⼀一⼁丨𠃍⼀一⼃丿㇏⼃丿㇏  ⼁丨⼅亅
… … …

Level-1: 

Level-2: 

Level-3: 
… 

Full-stroke:

Figure 1: Examples of the decomposition of Chinese characters.

Ideographs and the corresponding decomposition
sequences of each character. Most characters are
decomposed as a single sequence, but characters
can have up to four possible decomposed repre-
sentations. The reason for this is that the character
can come from different resources, such as Chi-
nese Hanzi (G, H, T for Mainland, Hong Kong,
and Taiwan), Japanese Kanji (J), Korean Hanja
(K), and Vietnamese ChuNom (V), etc.5 Even
though they have the same root of Hanzi, the his-
torical development of languages and writing sys-
tems in different territories has resulted in certain
degrees of variation in their appearance and stroke
order. For instance, (且, qiě) vs (目, mù) from
the second character example in Figure 2.

Figure 2 shows example characters that have
two different decomposition sequences. In our
experiments, when there is more than one de-
composed representation of a given character, we
choose the Chinese mainland decomposition stan-
dard (G) for the model, since the corpora we use
correspond best to simplified Chinese as used in
mainland China. The examples in Figure 2 also
show the general construction and corresponding
decomposition styles of Chinese characters, such
as left-right, up-down, inside-outside, and embed-
ded amongst others. To obtain a decomposition
level L representation of Chinese character α, we
go through the IDS file L times. Each time, we
search the IDS file character list to match the
newly generated smaller sized characters and re-
place them with decomposed representation recur-
sively.

4 NMT Experiments

We test the various levels of decomposed Chinese
and Chinese MWEs using publicly available data
from the WMT-2018 shared tasks Chinese to En-

5Universal Coded Character Set
(10646:2017) standards.iso.org/ittf/
PubliclyAvailableStandards

Character Decomposition Decomposition

丽 (lì) ⿱⼀一⿰⿵⼌冂⼂丶⿵⼌冂⼂丶
[G]

⿰⿱⼀一⿵⼌冂⼂丶⿱⼀一⿵
⼌冂⼂丶[T]

具 (jù) ⿱⿴且⼀一八[GTKV] ⿳⽬目⼀一八[J]

函 (hán) ⿶⼐凵⿻了了⿱丷八[GTV] ⿶⼐凵⿻丂⿱丷八[JK]

勇 (yǒng) ⿱甬⼒力力[GTV] ⿱⿱龴⽥田⼒力力[JK]

Character construction: ⿱: up-down, ⿰: left-right, ⿵⿶
⿴: inside-outside, ⿻: embedded

Figure 2: Character examples from IDS dictio-
nary; the grey parts of decomposition graphs rep-
resent the construction structure of the character.

glish, using the preprocessed (word segmented)
data as training data (Bojar et al., 2018). We
preserve the original word boundaries in decom-
position sequences. To get better generalizabil-
ity of our decomposition model, we use a large
size training set, the first 5 million parallel sen-
tences for training across all learning steps. The
corpora “newsdev2017” used for development and
“newstest2017” for testing are from the WMT-
2017 MT shared task (Bojar et al., 2017). These
include 2002 and 2001 parallel Chinese ⇔ En-
glish respectively. We use the THUMT (Zhang
et al., 2017) toolkit which is an implementation of
several attention-based Transformer architectures
(Vaswani et al., 2017) for NMT and set up the
encoder-decoder as 7+7 layers. Batch size is set as
6250. For sub-word encoding BPE technology, we
use 32K BPE operations that are learned from the
bilingual training set. We use Google’s Colab plat-
form to run our experiments6. We call our base-
line model using character sequences (with word
boundary) the character sequence model. For
MWE integrated models, we apply the same bilin-
gual MWE extraction pipeline from our previous
work (Han et al., 2020b), similar to (Rikters and

6https://colab.research.google.com
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Figure 3: Chinese→English BLEU scores for in-
creasing learning steps; RXD1/2/3 represents the
decomposition level of Chinese characters. RXD1
indicates ideograph from (Zhang and Komachi,
2018)

Bojar, 2017), which is an automated pre-defined
PoS pattern-based extraction procedure with fil-
tering threshold set to 0.85 to remove lower qual-
ity translation pairs. We integrate these extracted
bilingual MWEs back into the training set to in-
vestigate if they help the MT learning. In the de-
composed models, we replace the original Chinese
character sequences from the corpus with decom-
posed character-piece sequence inputs for train-
ing, development and testing (keeping the original
word boundary).

5 Evaluation

In order to assess the performance of each model
employing a different meaning representation in
terms of decomposition and MWEs, we carried
out both automatic evaluation using BLEU (Pap-
ineni et al., 2002) in Fig. 3, and human evalua-
tion (Direct Assessment) of the outputs of the sys-
tem. Since decomposition level 3 yields generally
higher scores than the other two levels, we also ap-
plied decomposition of MWEs to level 3 and con-
catenated the bilingual glossaries to the training.

We used the models with the most learning
steps, 180K, and run human evaluation on the
Amazon Mechanical Turk crowd-sourcing plat-
form,7 including the strict quality control mea-
sures of Graham et al. (2016). Direct Assessment
scores for systems were calculated as in Graham
et al. (2019) by firstly computing an average score
per translation before calculating the overall aver-
age for a system from its average scores for trans-
lations. Significance tests in the form of Wilcoxon
Rank-Sum test are then applied to score distri-
butions of the latter to identify systems that sig-
nificantly outperform other systems in the human
evaluation.

7https://www.mturk.com

Results of the Direct Assessment human eval-
uation are shown in Table 1 where similarly per-
forming systems are clustered together (denoted
by horizontal lines in the table). Systems in a
given lower ranked cluster are significantly out-
performed by all systems in a higher ranked clus-
ter. Amongst the six models included in the
human evaluation, the first five form a cluster
with very similar performance according to human
assessors, including the baseline, MWE, RXD1,
RXD3MWE, and RXD3 which do not outperform
each other with any significance. RXD2, on the
other hand, is far behind the other models in terms
of performance according to human judges (also
the automated BLEU score) performing signifi-
cantly worse than all other runs (at p < 0.05). As
the tradition of WMT shared task workshop, we
cluster the first five models into one group, while
the RXD2 into a second group. Furthermore, hu-
man evaluation results in Table 1 show that the top
five models all achieve high performance on-par
with state-of-the-art in Chinese to English MT.

We also discovered that the decomposed models
generated fewer system parameters for the neural
nets to learn, which potentially reduces compu-
tational complexity. For instance, the total train-
able variable size of the character sequence base-
line model is 89,456,896, while this number de-
creased to 80,288,000 and 80,591,104 respectively
for the RXD3 and RXD2 models (a 10.25% drop
for RXD3). As mentioned by Goodfellow et al.
(2016), in NLP tasks the total number of possible
words is so large that the word sequence models
have to operate on an extremely high-dimensional
and sparse discrete space. The decomposition
model reduced the overall size of possible tokens
for the model to learn, which is more space effi-
cient.

For the automatic and human evaluation results,
where decomposition level 2 achieved a surpris-
ingly lower score than the other levels, error anal-
ysis revealed an important insight. While level 1
decomposition encoded the original character se-
quences into radical representations, and this typi-
cally contains semantic and phonetic parts of the
character, and level 3 gives a deeper decompo-
sition of the character such as the stroke level
pieces with sequence order. In contrast, however,
level-2 decomposition appears to introduce some
intermediate characters that mislead model learn-
ing. These intermediate level characters are usu-
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Ave. Ave. z n N
raw

73.2 0.161 1,232 1,639 BASE

71.6 0.125 1,262 1,659 MWE
71.6 0.113 1,257 1,672 RXD1
71.3 0.109 1,214 1,593 RXD3MWE
70.2 0.073 1,260 1,626 RXD3
53.9 −0.533 1,227 1,620 RXD2

Table 1: Human evaluation results for systems
using Direct Assessment, where Ave. raw =
the average score for translations calculated from
raw Direct Assessment scores for translations,
Ave. z = the average score for translations af-
ter score standardization per human assessor mean
and standard deviation score, n is the number of
distinct translations included in the human evalua-
tion (the sample size used in significance testing),
N is the number of human assessments (including
repeat assessment).

ally constructed from fewer strokes than the orig-
inal root character, but can be decomposed from
it. As in Figure 1, from decomposition level 2,
we get new characters 从 (cóng) and 王 (wáng)
respectively from 劍 (Jiàn, sword) and 鋒 (fēng,
edge/sharp point), but they have no direct mean-
ing from their father characters, instead meaning
“from” and “king” respectively. In summary, de-
composition level-2 tends to generate some inter-
mediate characters that do not preserve the mean-
ing of the original root character’s radical, nor
those of the strokes, but rather smaller sized inde-
pendent characters with fewer strokes that result in
other meanings.

6 Conclusions and Future Work

In this work, we examined varying degrees of Chi-
nese character decomposition and their effect on
Chinese to English NMT with attention architec-
ture. To the best of our knowledge, this is the
first work on detailed decomposition level of Chi-
nese characters for NMT, and decomposition rep-
resentation for MWEs. We conducted experiments
for decomposition levels 1 to 3; we had a look
at level 4 decomposition and it appears similar
to level 3 sequences. We publish our extraction
toolkit free for academic usage. We conducted
automated evaluation with the BLEU metric, and

crowd sourced human evaluation with the direct
assessment (DA) methodology. Our conclusion is
that the Chinese character decomposition levels 1
and 3 can be used to represent or replace the origi-
nal character sequence in an MT task, and that this
achieves similar performance to the original char-
acter sequence model in our NMT setting. How-
ever, decomposition level 2 is not suitable to rep-
resent the original character sequence in meaning
at least for MT. We leave it to future work to ex-
plore the performance of different decomposition
levels in other NLP tasks.

Another finding from our experiments is that
while adding bilingual MWE terms can both in-
crease character and decomposed level MT score
according to the automatic metric BLEU, the hu-
man evaluation shows no statistical significance
between them. Significance testing using auto-
mated evaluation metrics will be carried out in
our future work, such as METEOR (Banerjee and
Lavie, 2005), and LEPOR (Han et al., 2012; Han,
2014), in addition to BLEU.

We will consider different MWE integration
methods in future and reduce the training set to in-
vestigate the differences in low-resource scenarios
(5 million sentence pairs for training set were used
in this work). We will also sample a set of the test-
ing results and conduct a human analysis regard-
ing the MWE translation accuracy from different
representation models. We will further investigate
different strategies of combining several level of
decompositions together and their corresponding
performances in semantic representation, such as
MT task. The IDS file we applied to this work lim-
ited the performance of full stroke level capability,
and we will look for alternative methods to achieve
full-stroke level character sequence extraction for
NLP tasks investigation.
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Appendices

Appendix A: Chinese Character Knowledge

Figure 4 demonstrates the meaning preservation
root of Chinese radicals, where the evolution of
the Chinese character 刀 (Dāo), meaning knife,
evolved from bronze inscription form to contem-
porary character and radical form, 刂 (named as:
tı́ dāo páng).

NMT for Asian languages has included trans-
lation at the level of phrase, word, and character
sequences (see Figure 5).

Appendix B: More Details of Evaluation

The evaluation scores of character sequence
baseline NMT, character decomposed NMT and
MWE-NMT according to the BLEU metric are
presented in Fig. 3. The RXD1 model, decompo-
sition level 1, is the ideograph model Zhang and
Komachi (2018) used for their experiments where
the phonetics (声旁 shēng páng) and semantics
(形旁 xı́ng páng) parts of character are separated
initially.

From the automated evaluation results, we see
that decomposition model RXD3 has very close
BLEU scores to the baseline character sequence
(both with word boundary) model. This is very
interesting since the level 3 Chinese decompo-
sition is typically impossible (or too difficult)
for even native language human speakers to read
and understand. Furthermore, by adding the de-
composed MWEs back into the learning corpus,
“rxd3+MWE” (RXD3MWE) yields higher BLEU
scores in some learning steps than the baseline
model. To gain further insight, we provide the
learning curve with the learning steps and corre-
sponding automated-scores in Figure 6.

The BLEU score increasing ratio in decom-
posed models (from RXD3 to RXD3MWE) is
larger than the ratio in original character sequence
models (from BASE to BASEMWE) by adding
MWEs in general. Furthermore, the increase in
performance is very consistent by adding MWEs
from the decomposed model, compared to the con-
ventional character sequence model. For instance,
the performance has a surprisingly drop at 100K
learning steps for BASEMWE.

Appendix C: Looking into MT Examples

From the learning curves in Fig. 6, we suggest that
with 5 million training sentences and 7+7 layers
of encoder-decoder neural nets, the Transformer
model becomes too flat in its learning rate curve
with 100K learning steps, and this applies to both
original character sequence model and decompo-
sition models.

In light of this, we look at the MT outputs from
head sentences of testing file at 100K learning
steps models, and provide some insight into er-
rors made by each model. Even though the au-
tomated BLEU metric gives the baseline model a
higher score 21.56 than the RXD3 model (20.75)
the translation of some Chinese MWE terms is
better with the RXD3 model. For instance, in Fig-
ure 7, the Chinese MWE 商场 (Shāngchǎng) in
the first sentence is correctly translated as mall
by RXD3 model but translated as shop by the
baseline character sequence model; the MWE 楼
梯间 (lóutı̄jiān) in the second sentence is cor-
rectly translated as stairwell by the RXD3 model
while translated as stairs by baseline. Further-
more, the MWE 近日 (Jı̀nrı̀) meaning recently is
totally missed out by the original character se-
quence model, which results in a misleading am-
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Chinese radical 刂 (Dāo, knife) evolution from Pictogram to Regular script

商 Shang Dynasty 

(1600-1046BC)

⻄西周 Western-
Zhou Dynasty 
(1045-771BC)

戰國 Warring 
States period 
(476-221BC)

漢漢 Han Dynasty 
(202BC-220)

東漢漢 Eastern 
Han (from 57AD 

on)

Bronze 
inscriptions

Oracle bone 
script

Bronze

Inscription Silk 篆 (on Seal) Regular script

Figure 4: Example Chinese radical, 刂 (Dāo), where the character evolved from leftmost pictogram to
present day regular script (rightmost) containing only two strokes. The two strokes are called as 豎 (Shù,
vertical) +豎 (Shù gōu, vertical with hook). The corresponding character representation is 刀 (Dāo).

Word level 28 /  歲 /  廚師 /  被 /  發現 /  死 /  於 /  舊金⼭ /  一家 / 商場
Character 28               歲 廚 師 被 發 現 死 於 舊 金 ⼭ 一 家 商 場
Pronunciation èr shí bā Suì chú shī bèi fā xiàn sǐ yú jiù jīn shān yī jiā shāng chǎng

Radical 28               止戌 广尌 𠂤帀 衤皮 癶 王見 歹匕 方仒 萑臼 人王丷 ⼭ 一 宀豕 亠丷冏 土昜𣥂 𭚧

English Ref. 28-Year-Old Chef Found Dead at San Francisco Mall

Figure 5: Example of Chinese word to character level changes for MT. Pronunciation is Mandarin in
Pinyin. The English reference here is taken from the corpus we used for our experiments.

biguous translation of an even larger content, i.e.,
did the chief moved to San Francisco (SF) recently
or this week. We will not get this clearly from
the character base sequence model, however, the
MWE 近日 (Jı̀nrı̀) is correctly translated by the
RXD3 model and the overall meaning of the sen-
tence is clear that the chef moved to SF recently
and was found dead this week.

We also attach the translations of these two sen-
tences by four other models. With regard to the
first sentence MWEs, all the four models trans-
late San Francisco mall correctly as REF and RXD3
beating BASE model. In terms of the second sen-
tence MWEs, BASEMWE and RXD2 drop out the
MWE 近日 (Jı̀nrı̀, recently) as BASE model, and
all the four models drop out the translation of
MWE楼梯间 (lóutı̄jiān, stairwell).
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Figure 6: Learning curves from different models with BLEU metric

src
28 岁 厨师 被 发现 死 于 旧⾦金金⼭山 ⼀一家 商场 
近⽇日 刚 搬 ⾄至 旧⾦金金⼭山 的 ⼀一位 28 岁 厨师 本周 被 发现 死 于 当地 ⼀一家 商场 的 楼梯间 。

ref
28 @-@ Year @-@ Old Chef Found Dead at San Francisco Mall 
a 28 @-@ year @-@ old chef who had recently moved to San Francisco was found dead in the stairwell of a local 
mall this week .

rxd3
the 28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef who recently moved to San Francisco has been found dead on a stairwell in a local mall 
this week .

base
the 28 @-@ year @-@ old chef was found dead in a shop in San Francisco 
a 28 @-@ year @-@ old chef who has moved to San Francisco this week was found dead on the stairs of a local mall .

base
MWE

28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef who recently moved to San Francisco was found dead this week at a local mall .

rxd3
MWE

28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef recently moved to San Francisco was found dead this week at a local mall .

rxd1
the 28 @-@ year @-@ old chef was found dead at a San Francisco mall 
a 28 @-@ year @-@ old chef recently moved to San Francisco was found dead in a local shopping mall this week .

rxd2
the 28 @-@ year @-@ old chef was found dead in a San Francisco mall 
a 28 @-@ year @-@ old San Francisco chef was found dead in a local mall this week .

Figure 7: Samples of the English MT output at 100K learning steps: RXD1, RXD2 and RXD3 are the Chi-
nese decomposition with level 1 to 3, BASE is the character sequence model, BASEMWE and RXD3MWE
are character sequence model with MWEs and decomposition level 3 model with decomposed MWEs,
and src/ref represents source/reference.
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Abstract
Forced alignment is an effective process
to speed up linguistic research. How-
ever, most forced aligners are language-
dependent, and under-resourced languages
rarely have enough resources to train an
acoustic model for an aligner. We present
a new Finnish grapheme-based forced
aligner and demonstrate its performance
by aligning multiple Uralic languages and
English as an unrelated language. We
show that even a simple non-expert created
grapheme-to-phoneme mapping can result
in useful word alignments.

1 Introduction

Matching speech signal and its orthographic tran-
scription is a necessary first step for many research
questions in linguistics (Yuan et al., 2018; Olsen
et al., 2017; DiCanio et al., 2013). For well-
resourced languages, manually aligned corpora
exist, providing an easy starting point for linguis-
tic research. For under-resourced languages such
corpora are rare, and for all languages new corpora
are continuously studied. In these situations, the
researcher needs to complete this task before any
actual research can begin. Forced alignment, i.e.,
automatically matching text to speech using auto-
matic speech recognition (ASR), is widely used,
and tools that can accomplish this automatically
exist, such as FAVE (Rosenfelder et al., 2011),
Prosodylab-aligner (Gorman et al., 2011), MAUS
(Kisler et al., 2017), and Montreal Forced aligner
(MFA) (McAuliffe et al., 2017).

If the researcher is studying a language that is
supported by an existing tool for forced alignment,
learning to use it will be beneficial, since man-
ual segmentation is much more arduous than tran-
scription (Jarifi et al., 2008). However, the effort
for this necessary, but often uninteresting step in-
creases tremendously if no suitable model exits.

The reason may be that the target data is out-of-
domain of what the acoustic model was trained
with, or the target language is under-resourced and
there is no model available at all. Some aligning
tools do not support retraining models. For others,
such as FAVE and Prosodylab, the model has been
trained with a known ASR framework, here HTK
(Young et al., 2002), and the researcher could use
the framework to train their own models. How-
ever, at this point it would be more straightforward
to use the ASR framework itself. In addition to all
of this, the technical knowledge required to train
an acoustic model with minimal or difficult data is
formidable.

MFA provides ample documentation, and has
a user friendly wrapper over Kaldi (Povey et al.,
2011), a popular speech recognition framework. It
gives users the option to retrain the model to fit
their own data, and add new languages. Gonza-
lez et al. (2018) used MFA to experiment on it-
erative forced alignment, and how it compared to
the traditional linear method. Even though they
used a ready-made tool, the effort to try two align-
ment methods on an under-resourced language
was enough to qualify as a research paper on its
own right. For a linguist, who might not have tech-
nical expertise on ASR, this may be intimidating
as the first step.

An alternative solution to the task of training
new models is cross-language forced alignment, in
which an aligner trained with a different language
than the speech and transcriptions to be aligned,
is used. In this paper we introduce a new word-
level forced alignment tool based on Kaldi. We
show that this very simple command line tool can
align closely related languages, is robust against
speaker variability without any fine-tuning, and
can even adequately align linguistically very dis-
similar languages. This paper shows the first re-
sults for cross-language forced alignment involv-
ing Finnish. In addition, using the tool we force-
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aligned a Northern Sámi corpus without proper
word alignments with very little expert knowledge
of the language.

2 Related research

2.1 Forced aligners
In their paper (McAuliffe et al., 2017), the de-
signers of MFA compared their tool to FAVE and
Prosodylab. The latter tools are based on mono-
phone models, while MFA utilizes triphones, and
adds speaker adaptation to the process. A cen-
tral underlying difference is that, similar to us,
MFA uses Kaldi as the speech recognition frame-
work. However, MFA uses Gaussian mixture
models (GMM), popular in speech recognition be-
fore deep neural networks (DNN), while our tool
uses the modern machine learning methods trained
with Kaldi’s lattice-free maximum mutual infor-
mation cost function (Hadian et al., 2018). An-
other Kaldi-based tool is Gentle 1, which also uses
DNNs. Munich AUtomatic Segmentation system
(MAUS) is a popular aligner based on its own
speech recognition framework, utilizing a statis-
tical expert system of pronunciation.

2.2 Cross-language forced alignment
Forced alignment has also been successfully used
across languages, e.g., when the target language
does not have enough transcribed data. This task
is called cross-language or cross-linguistic forced
alignment (CLFA), sometimes untrained forced
alignment. Kempton et al. (2011) used their
own phonetic distance metric to evaluate the ac-
curacy of three phoneme recognizers on isolated
words from under-resourced language, and again
in (Kempton, 2017) to a different target language.
In another early experiment (DiCanio et al., 2013),
tools trained on English were used to align isolated
words from Yoloxóchitl Mixtec. Free conversa-
tions were aligned in (Kurtic et al., 2012), where
authors tested multiple phoneme recognizers on
Bosnian Serbo-Croatian.

Most of the tools introduced at the start of this
section have also been tried for CLFA. The authors
of MAUS experimented a language-independent
’sampa’ version on a multitude of under-resourced
languages by comparing word start and end
boundaries (Strunk et al., 2014). Later Jones et al.
(2019) compared MAUS’ language-independent
and Italian versions for conversational speech in

1https://github.com/lowerquality/gentle

Kriol, finding that the Italian version surpassed the
language-independent one.

A unifying method was presented by Tang and
Bennett (2019), who combined a larger source lan-
guage and the target language with MFA to train
the aligner. Finally Johnson et al. (2018) reviewed
previous CLFA research and experimented on the
minimum amount of data necessary for language
dependent forced alignment, achieving good re-
sults with an hour of transcribed speech.

3 Experiments

We evaluate our Kaldi-based aligner on related
and unrelated languages, with a small amount of
expert knowledge added to grapheme-to-phoneme
mapping. We also experiment on speaker varia-
tion. This is the first time either has been done in
CLFA literature. The code and tool used in this
paper are publicly available. 2

3.1 Kaldi pipeline

Our method uses Kaldi to force-align transcibed
audio. As is customary in Kaldi when align-
ing speech with neural networks, we employ
39 dimension Mel-frequency cepstral coefficients
(MFCCs) and Cepstral mean and variance normal-
ization (CMVN). Kaldi’s i-vectors are used for
speaker adaptation. The original Finnish acous-
tic model and i-vector exctractor are the same as
in (Mansikkaniemi et al., 2017). After the feature
generation we create a dataset-specific dictionary
from all the words in the transcription. The or-
thography is assumed to be phonetic, so the words
in the lexicon are composed of their graphemes,
which are mapped to closest Finnish match man-
ually by non-experts. Smit et al. (2021) show that
with DNN-based acoustic models, the assumption
of phonetic orthography works reasonably well
even for a language like English. As a final prepa-
ration for alignment Kaldi uses the lexicon, acous-
tic model and transcripts to create dataset-specific
finite state transducers.

3.2 Datasets

We first evaluate the model on Finnish data using
manually annotated Finnish read speech from one
male speaker (Vainio, 2001; Raitio et al., 2008).
We use Pympi (Lubbers and Torreira, 2013-2015)

2https://github.com/aalto-speech/finnish-forced-
alignment
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to prepare the data. Here the grapheme-to-
phoneme mapping is one to one due to Finnish
being a phonetic language. For experimenting on
speaker variability and CLFA, we align nine Esto-
nian speakers with data gathered from the corpus
of lecture speeches introduced in (Meister et al.,
2012). For each speaker we have little over 15
minutes of speech, much less than the recom-
mended hour by Johnson et al. (2018). We cre-
ate a rough mapping between Estonian graphemes
and Finnish phonemes, which is a straightforward
task as the languages are closely related. We also
evaluate our model on Northern Sámi, by force-
aligning the Giellagas corpus (Kielipankki, 2014-
2017). Since there are no accurate word bound-
aries for the dataset, we use ELAN (Wittenburg
et al., 2006) to manually annotate roughly 20 sec-
onds of speech from 11 native speakers to compare
to our automatically generated boundaries. The
annotations should be considered only approxima-
tive, as the recorded speech has poor quality and
the annotator did not know the Sámi language. For
Northern Sámi, we use the grapheme-to-phoneme
mapping introduced by Leinonen (2015). While
most of CLFA papers use closely related or other-
wise similar languages, we also try to align En-
glish speech with our Finnish model using the
clean test sets from Librispeech corpus (Panay-
otov et al., 2015). For the lexicon we map the
graphemes e, and y to Finnish i, and a to ä, oth-
erwise assuming one-to-one mapping.

For all datasets, we follow McAuliffe et al.
(2017), and compare what percentage of abso-
lute differences in word start and end boundaries
are inside the ranges 10, 25, 50 and 100 mil-
liseconds, when comparing the aligner’s results to
the gold standard boundaries. Since we do not
have manual alignments for the English and Es-
tonian datasets, we align the audio with language-
dependent acoustic models and use the predicted
boundaries as gold standards. For Estonian this
is done with a dockerized Estonian aligner3. The
Librispeech datasets were aligned with an acous-
tic model trained with Kaldi Librispeech recipe4.
We use the final GMM-based model called tri6b to
create the word boundaries. We also experiment
with other triphone models trained with the Lib-
rispeech recipe, varying in the amounts of training
data, and model complexity, to test what improve-

3https://github.com/alumae/kaldi-align-server
4https://github.com/kaldi-

asr/kaldi/tree/master/egs/librispeech/s5

ments the advances in triphone models bring, and
how well our Finnish model compares to language
dependent models. Table 1 summarizes the sizes
of studied datasets.

Lang Dataset lenght tokens
fin Finnish 1h7m27s 6464

al 16m41s 1910
ao 16m45s 2199
hv 16m40s 1697
jp 16m46s 1953

est mk 16m41s 2602
ms 16m48s 1523
mj 16m48s 1394
mr 16m42s 2025
th 16m48s 1344

eng
dev-clean 5h23m16s 54402
test-clean 5h24m12s 52576

smi Giellagas 3min19s 384

Table 1: Speech and text data used for evaluations,
with initials of the participant names for Estonian
data as they were in the corpus.

4 Results

The Finnish alignment results in Table 2 are
quite comparable to what McAuliffe et al. (2017)
achieved using MFA for the English Buckeye cor-
pus (Pitt et al., 2005). This seems reasonable since
both are using Kaldi. The different amounts of
smaller boundary errors might be due to audio
quality, speaking style or method of annotation.
For instance the Finnish dataset was more focused
on phoneme labels than word boundaries.

Model Dataset <10 <25 <50 <100
Finnish Finnish 0.21 0.55 0.84 0.98
MFA Buckeye 0.33 0.68 0.88 0.97

Table 2: Differences in word boundary accu-
racy between language-dependent forced align-
ment. MFA results from (McAuliffe et al., 2017)
using the English Buckeye corpus.

When analysing the Estonian results in Table 3,
they look comparable to Finnish. Aside from the
last 100ms range, they are very similar to MFA’s
results for Buckeye. And for smaller ranges are ac-
tually better than Finnish alignments. This can be
due to similarities in how the speech recognizers
generally align speech. Speaker variation is small,
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Speaker <10 <25 <50 <100
al 0.32 0.65 0.82 0.90
ao 0.36 0.72 0.89 0.94
hv 0.32 0.64 0.81 0.88
jp 0.37 0.67 0.83 0.90

mk 0.29 0.59 0.77 0.88
ms 0.33 0.64 0.82 0.89
mj 0.38 0.70 0.86 0.92
mr 0.30 0.62 0.84 0.93
th 0.34 0.64 0.81 0.89

Median 0.33 0.64 0.82 0.90
Std 0.027 0.038 0.033 0.02

Table 3: Cross-language forced alignment for Es-
tonian: results of word boundary accuracy for
speaker-wise alignments with median and stan-
dard deviation.

with standard deviation being 0.02-0.038. Over-
all, compared to how well MFA aligned English
speech, this is a more fat-tailed distribution, with
10% of boundary errors being larger than 100ms.

Dataset <10 <25 <50 <100
Giellagas 0.12 0.26 0.45 0.62

Table 4: Cross-language forced alignment for
Northern Sámi: word boundary accuracy using a
part of the Giellagas corpus.

The results for Northern Sámi in Table 4 are not
as good as for Estonian, with some of the possible
reasons listed in Section 3.2. With closer inspec-
tion of the differences between manual and forced
alignment, it could be argued that the automatic
method is more accurate. It is definitely much
faster, being seconds instead of taking hours.

Dataset <10 <25 <50 <100
dev-clean 0.12 0.30 0.51 0.68
test-clean 0.12 0.30 0.51 0.67

Table 5: Cross-language forced alignment for En-
glish: word boundary accuracy using Librispeech
datasets.

The results for English in Table 5 are weaker
than for any other target language, with the
largest 100ms range having the same results as
25ms range for Estonian. While any researcher
who needs to align English speech naturally has
language-dependent models, this demonstrates the

worst case scenario for CLFA, with multiple
wrong assumptions including rough grapheme-to-
phoneme mapping, and even using phonetic or-
thography. If there is very little target speech, us-
ing an unrelated source language might be more
cost effective than trying to train a new model or
manual alignment.

Model <10 <25 <50 <100
tri1 0.55 0.87 0.97 1.00

tri2b 0.65 0.93 0.98 1.00
tri3b 0.72 0.95 0.99 1.00
tri4b 0.80 0.97 0.99 1.00
tri5b 0.88 0.99 1.00 1.00

Table 6: Librispeech word boundary accu-
racy with different English HMM-GMM models
trained with Librispeech recipe. Dataset is dev-
clean, using tri6b as a gold standard.

The authors of MFA hypothesize the effects of
using different phone models, speaker adaptive
training and other methods in (McAuliffe et al.,
2017). Also to give context to the Finnish-English
results, we experimented on how simpler ASR
models might perform at the task. Table 6 show
that improving the basic model underneath does
improve the results for the smallest ranges, and
that a much simpler language-dependent model
is much better than results with cross-language
alignment.

5 Future work

Most of the papers in related research use some
tool to automatically generate a phoneme-based
lexicon for the target language. These lexicons
do contain errors, so we have evaluated our results
with word boundaries, since the words can be ex-
tracted as is from the transcription. However, au-
tomatic phoneme mapping would be an interesting
next step, and allow better comparison with previ-
ous research effort in this multidisciplinary field.

6 Conclusion

We have demonstrated promising results for cross-
language forced alignment using Finnish acoustic
model for related and unrelated languages. We
have shown that its results for Finnish in language-
dependent use are comparable to state-of-the-art
aligners for English data. In addition, we present
promising results with related and unrelated lan-
guages. We also showed the effects of speaker
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variation in cross-language situations, demonstrat-
ing that retraining speaker dependent models is
generally not necessary. We share our tool as an
easy to use Docker image.

Acknowledgments

We acknowledge the computational resources pro-
vided by the Aalto Science-IT project. SV was
supported by the FoTran project, funded by the
European Research Council (ERC) under the Eu-
ropean Union’s Horizon 2020 research and inno-
vation programme (grant agreement № 771113).

References
Christian DiCanio, Hosung Nam, Douglas H Whalen,

H Timothy Bunnell, Jonathan D Amith, and
Rey Castillo Garcı́a. 2013. Using automatic align-
ment to analyze endangered language data: Testing
the viability of untrained alignment. The Journal
of the Acoustical Society of America, 134(3):2235–
2246.

Simon Gonzalez, Catherine Travis, James Grama,
Danielle Barth, and Sunkulp Ananthanarayan. 2018.
Recursive forced alignment: A test on a minority
language. In Proceedings of the 17th Australasian
International Conference on Speech Science and
Technology, volume 145, page 148.

Kyle Gorman, Jonathan Howell, and Michael Wagner.
2011. Prosodylab-aligner: A tool for forced align-
ment of laboratory speech. Canadian Acoustics,
39(3):192–193.

Hossein Hadian, Hossein Sameti, Daniel Povey, and
Sanjeev Khudanpur. 2018. End-to-end speech
recognition using lattice-free mmi. In Interspeech,
pages 12–16.

Safaa Jarifi, Dominique Pastor, and Olivier Rosec.
2008. A fusion approach for automatic speech
segmentation of large corpora with application to
speech synthesis. Speech communication, 50(1):67–
80.

Lisa M Johnson, Marianna Di Paolo, and Adrian Bell.
2018. Forced alignment for understudied language
varieties: Testing prosodylab-aligner with tongan
data. Language Documentation & Conservation,
12:80–123.

Caroline Jones, Weicong Li, Andre Almeida, and Amit
German. 2019. Evaluating cross-linguistic forced
alignment of conversational data in north australian
kriol, an under-resourced language. Language Doc-
umentation and Conservation, pages 281–299.

Timothy Kempton. 2017. Cross-language forced align-
ment to assist community-based linguistics for low
resource languages. In Proceedings of the 2nd

Workshop on the Use of Computational Methods in
the Study of Endangered Languages, pages 165–
169, Honolulu. Association for Computational Lin-
guistics.

Timothy Kempton, Roger K Moore, and Thomas Hain.
2011. Cross-language phone recognition when the
target language phoneme inventory is not known.
In Twelfth Annual Conference of the International
Speech Communication Association.

Kielipankki. 2014-2017. Pohjoissaamen näytekorpus.
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Abstract

We consider a low-resource translation
task from Finnish into Northern Sámi.
Collecting all available parallel data be-
tween the languages, we obtain around
30,000 sentence pairs. However, there
exists a significantly larger monolingual
Northern Sámi corpus, as well as a rule-
based machine translation (RBMT) sys-
tem between the languages. To make the
best use of the monolingual data in a neu-
ral machine translation (NMT) system, we
use the backtranslation approach to create
synthetic parallel data from it using both
NMT and RBMT systems. Evaluating the
results on an in-domain test set and a small
out-of-domain set, we find that the RBMT
backtranslation outperforms NMT back-
translation clearly for the out-of-domain
test set, but also slightly for the in-domain
data, for which the NMT backtransla-
tion model provided clearly better BLEU
scores than the RBMT. In addition, com-
bining both backtranslated data sets im-
proves the RBMT approach only for the
in-domain test set. This suggests that the
RBMT system provides general-domain
knowledge that cannot be found from the
relative small parallel training data.

1 Introduction

Machine translation from and to minority lan-
guages is challenging because large parallel cor-
pora are typically hard to obtain. Two strate-
gies have proven most successful to eliminate this
bottleneck: using rule-based machine translation
(RBMT) systems that do not rely on large data, or
training data-driven translation systems with auto-
matically created synthetic data, e.g. backtransla-
tion (Sennrich et al., 2016). In this paper, we com-

bine both strategies in the context of neural ma-
chine translation (NMT) from Finnish to North-
ern Sámi. In particular, we investigate the impact
of RBMT in data augmentation in comparison to
standard NMT-based backtranslation.

Northern Sámi is a Uralic minority language
spoken in Norway, Sweden and Finland. His-
torically, most of the work on machine trans-
lation from and to Sámi languages is based on
RBMT (Trosterud and Unhammer, 2012; Anton-
sen et al., 2017; Pirinen et al., 2017). Data-driven
approaches such as NMT are generally more com-
petitive, but require large amounts of training data
in the form of parallel translated sentences. For
minority languages, finding parallel data sets is
usually more difficult than collecting monolingual
data, which is also the case for Northern Sámi.

A common way of leveraging monolingual data
for NMT is the above mentioned backtranslation
strategy, a method where monolingual data of the
target language is translated automatically to the
source language to create additional parallel train-
ing data. In this work, we use two reverse trans-
lation models to produce the backtranslations: a
neural model trained only on the available parallel
data and a rule-based approach. The latter is a sys-
tem developed for the translation from Northern
Sámi to Finnish (Pirinen et al., 2017) within the
Apertium framework (Forcada et al., 2011). We
also combine both methods to further augment the
data. Our experiments demonstrate the positive ef-
fects of both strategies and the possibility of ob-
taining complementary information from different
backtranslation engines.

2 Related work

Using backtranslations from different sources as
training data has been shown to be beneficial for
improving machine translation quality. In addition
to proposing training data augmentation methods
that do not require reverse translation systems,
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Burlot and Yvon (2018) compare the effects of
using statistical machine translation (SMT) and
NMT based backtranslations for English→French
and English→German translations. They show
that both types of backtranslations improve trans-
lation quality, NMT slightly more than SMT. Pon-
celas et al. (2019) also produce backtranslations
with SMT and NMT. They show that the transla-
tion quality of a German→English NMT system is
improved when including either type of backtrans-
lations in the training data. The greatest improve-
ment is observed when both types of backtransla-
tions are used.

Augmenting training data with RBMT back-
translations has also proven to be useful for boost-
ing translation quality. Dowling et al. (2019)
use RBMT backtranslations to improve statisti-
cal machine translation performance for Scottish
Gaelic→English translations. The authors show
that backtranslations can be beneficial even in
cases where the translation quality of the MT
system used to produce the backtranslations is
low. Soto et al. (2019) study the performance
of NMT systems trained with augmented train-
ing data backtranslated using RBMT, SMT and
NMT. They experiment with Basque→Spanish
translations and show that the translation perfor-
mance improves when using each type of aug-
mented training data individually. Soto et al.
(2020) also analyze the effects of using aug-
mented training data backtranslated with the
three different paradigms. They focus on two
language pairs: a low-resource language pair,
Basque→Spanish, and a high-resource language
pair, German→English. In addition to showing
similar results as Soto et al. (2019), they show
further improvement in translation performance
when all types of augmented training data are
combined.

3 Data

The UiT freecorpus1 contains a Finnish - North-
ern Sámi (fin-sme) parallel corpus with 110k sen-
tence pairs and a distinct set of 868k monolingual
Northern Sámi sentences. The UiT corpora are
collected from multiple sources and cover various
domains. Both the parallel and the monolingual
corpora contain considerable amounts of duplicate
lines. In this section, we describe our data clean-
ing and filtering efforts and the data split. For ad-

1https://giellatekno.uit.no/

ditional evaluation, we collected a small test set
consisting of translated YLE news articles2.

Data filtering and cleaning is carried out with
the OpusFilter toolbox (Aulamo et al., 2020). Our
OpusFilter configuration files are available on-
line3, which helps to replicate the data preprocess-
ing steps. First, we remove duplicate lines from
the parallel corpus. This process removes 67.7%
of the sentence pairs, leaving us with 35,426
unique sentence pairs. The remaining data set is
then cleaned with a set of filters from OpusFil-
ter. Similar filtering setups have been confirmed to
improve translation quality (Vázquez et al., 2019;
Aulamo et al., 2020). In particular, we remove
sentence pairs that satisfy one of the following
conditions:

• One or both of the sentences are empty or
longer than 100 words,

• The ratio of the sentence lengths in words is
greater than 3,

• The sentence pair contains words longer than
40 characters,

• The sentence pair contains HTML elements,

• The sentences have dissimilar numerals
based on the “Non-zero numerals score”
(Vázquez et al., 2019),

• The sentences have dissimilar punctuation
based on the “Terminal punctuation score”
(Vázquez et al., 2019),

• The sentence pair contains characters outside
of the Latin script,

• The sentences are not recognized to be their
correct language by the langid.py lan-
guage identifier (Lui and Baldwin, 2012).

After filtering, 29,106 clean sentence pairs re-
main in the parallel data set. From this clean set,
2000 pairs are randomly selected to form a vali-
dation set and another 2000 pairs to form a test
set, leaving 25,106 pairs for training. Note that all
subsets are disjoint due to the initial deduplication.

The additional test set consists of two news ar-
ticles describing Sámi culture in Finland avail-
able in both Finnish and Northern Sámi on YLE
News. It was extracted from the web and manually
aligned to create a clean reference set. This test set

2https://yle.fi/uutiset/osasto/sapmi/
3https://github.com/Helsinki-NLP/

Sami-MT
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is, however, small (151 sentence pairs) and may
not produce completely reliable evaluation scores,
but it should still provide additional insights about
the quality of the translation models and their abil-
ity to generalize to new domains.

The monolingual Northern Sámi data is pro-
cessed in a similar way as the parallel data above.
Duplicate removal discards 35.6% of the total of
867,677 sentences, leaving 559,074 sentences in
the data set. For corpus cleaning, we use all filters
of those cited above that are applicable to mono-
lingual data, i.e. the sentence length filter, the
word length filter, the HTML element filter, the
Latin script filter, and the language identification
filter. The resulting clean monolingual corpus con-
tains 462,803 sentences.

4 Method

In this section, we compare a baseline fin-sme
NMT model trained only with the available par-
allel data to NMT models trained with additional
backtranslated data. The backtranslations are pro-
duced by translating the clean monolingual North-
ern Sámi data to Finnish either with a NMT system
trained on the parallel data in the reverse direction
(sme-fin), or with the sme-fin RBMT system. This
yields three additional synthetic training sets that
augment the original parallel training data: one
with the NMT backtranslations, one with RBMT
translations, and one with both types of backtrans-
lations. Each of them is then used to train a sepa-
rate NMT model that we can compare to the base-
line model, which is trained on the original parallel
data only. Note that we do not use any data sam-
pling or weighting scheme to balance original and
augmented training data.

All NMT models in our experiments are trained
with MarianNMT (Junczys-Dowmunt et al., 2018)
version 1.8.33. The backtranslation model is
based on a RNN architecture with GRU cells (Cho
et al., 2014) and attention. In our experiments, the
RNN architecture slightly outperformed Trans-
formers in the out-of-domain test set for this trans-
lation direction. All models using additional back-
translated training sets are trained with both RNNs
and Transformers. All RNN models have the same
architecture as the backtranslation model. For
Transformers, we use the example hyperparame-
ters from MarianNMT 4 which replicate the setup

4https://github.com/marian-nmt/
marian-examples/tree/master/transformer

UiT YLE
NMT 19.4 4.5
RBMT 12.3 10.0

Table 1: Reverse translation model (sme-fin) qual-
ity in BLEU points evaluated with the UiT test set
and the YLE test set.

from Vaswani et al. (2017). For subword segmen-
tation, we use the SentencePiece tokenizer (Kudo
and Richardson, 2018) with vocabulary size 8000,
which has been shown to produce the best results
with the data set sizes that we are dealing with
(Gowda and May, 2020; Grönroos et al., 2021).
We train the models until the cross-entropy of the
validation set does not improve for 10 consecutive
validation steps.

For the RBMT backtranslations, we use Aper-
tium with the sme-fin model by Pirinen et al.
(2017). This system implements a shallow
transfer-based translation engine consisting of
modules for morphological analysis, disambigua-
tion and generation, modules for lexical transla-
tion based on context rules, and a module for syn-
tactic transformation operations.

Table 1 shows the quality of the sme-fin trans-
lation models used for backtranslations in BLEU
points (Papineni et al., 2002). The NMT model
performs much better with UiT test data than with
the YLE test data, which shows that the NMT sys-
tem is strongly adapted to the UiT data, while the
RBMT system has similar performance with both
test sets.

4.1 Backtranslations

All the 462,803 sentences of the cleaned mono-
lingual data are translated with the sme-fin NMT
and RBMT models. As the quality of the source
side of the backtranslations is not as important
as the quality of the target side (Sennrich et al.,
2016), we keep an unfiltered version of both back-
translation data sets. To see the effect of filter-
ing the augmented data set, we apply OpusFil-
ter with a reduced set of filters (recall that the
monolingual Northern Sámi data has already been
processed): sentence length filter, length ratio fil-
ter, word length filter, HTML element filter, non-
zero numeral filter and terminal punctuation fil-
ter. After filtering and an additional dedupli-
cation step, the NMT-produced backtranslations
amount to 415,313 sentence pairs and the RBMT-
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Transformer RNN
Training data UiT YLE UiT YLE

Baseline 25,106 18.9 4.3 18.5 5.1
+ NMT-all-bt 470,085 32.9 9.2 23.0 8.4
+ RBMT-all-bt 487,862 37.0 14.4 26.4 11.0
+ NMT-all-bt + RBMT-all-bt 932,790 38.8 10.9 26.3 9.6
+ NMT-clean-bt 422,596 34.0 9.8 25.0 8.8
+ RBMT-clean-bt 378,567 36.3 15.5 25.6 10.9
+ NMT-clean-bt + RBMT-clean-bt 776,006 38.9 11.3 28.2 10.7
+ NMT-clean-bt + RBMT-all-bt 885,301 40.1 10.8 29.9 9.9

Table 2: Training data sizes (sentence pairs) and results (in BLEU points) for the fin-sme translation
models with two different architectures (Transformer and RNN) using original parallel data (Baseline),
augmented data sets with unfiltered and filtered backtranslations (all-bt and clean-bt, resp.) evaluated on
the UiT test set and the YLE test set.

produced ones to 353,465 sentence pairs. After
concatenation with the parallel data and removal
of duplicates in this concatenated set, we are left
with 422,596 and 378,567 sentence pairs respec-
tively. Furthermore, another training set is cre-
ated by merging both the NMT and RBMT back-
translations with the parallel data; this set contains
776,006 sentence pairs. The first column of Ta-
ble 2 shows the training data sizes of the different
configurations.

5 Results

The upper part of Table 2 shows the BLEU scores
of the translation models trained with the original
parallel data set (baseline) and the unfiltered aug-
mented data sets. Similarly to the reverse model,
the baseline fin-sme models are well adapted to
the UiT test set and do not perform as well with the
YLE test set. Adding the NMT backtranslations to
the training data gives a significant improvement
with respect to BLEU scores: using Transform-
ers on the UiT set, the score raises by 14 points
(74% relative), and on the YLE set, the score goes
up by 4.9 points (114%). The RBMT backtransla-
tions give an even larger boost on the UiT set than
the NMT translations (18.1 points, 96%) and espe-
cially on the YLE data (10.1 points, 235%). Using
RNNs, the scores are lower overall, but they do
show similar improvements with the same training
sets as Transformers.

The significant boost from RBMT backtransla-
tions is quite remarkable considering that Aper-
tium does not seem to perform very well on the re-
verse translation direction on UiT data. This result
stresses once more that the effect of backtransla-

tion is to a larger extent due to improved target lan-
guage coverage than to the quality of the transla-
tions. Instead, the additional, less domain-specific
knowledge encoded in the RBMT model seems to
lead to the additional push even in the UiT domain
and it certainly carries over to the out-of-domain
data represented by the YLE news data.

The simple combination of both types of back-
translations only provides a modest additional
boost on the UiT test set. The out-of-domain
performance drops substantially compared to us-
ing RBMT-based backtranslations alone. Adding
NMT-based translations seem to hurt the model in
this regard.

Next, we study the effect of filtering the back-
translations before training the augmented NMT
models. Table 2 also shows the results of this
approach. We can see that the models benefit
from filtering the NMT backtranslations, espe-
cially on the UiT domain, whereas the RBMT-
based augmentation model performance decreases
on the UiT test set. The RBMT-based Transformer
model gains an improvement on the YLE set, but
the same score with the RNN model decreases
slightly. The combination of both backtranslation
augmentations leads to a boost in translation qual-
ity over the unfiltered backtranslation training set,
which suggests that a careful data selection can
be important when using data augmentation tech-
niques. The performance on the YLE data is still
lower than the RBMT-based data augmentation
alone, which could indicate that the RBMT back-
translations are able to carry over out-of-domain
information, but this result needs to be taken with
a grain of salt as the test set is very small.
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Finally, we also train a models that com-
bine filtered NMT backtranslations with unfil-
tered RBMT backtranslations (last row in Table 2).
These models reach the overall highest BLEU
scores on the UiT test set, 40.1 with Transformer,
but on the YLE test set the performance is lower
than with other models, which is a bit surprising
but may also depend on random variation and on
the small size of the test set.

6 Conclusion

In this work, we confirm that the addition of back-
translations produced with multiple paradigms,
including RBMT, improves the quality of NMT
models. Additionally, the translation perfor-
mance can be further improved by removing
noisy sentence pairs from the NMT backtransla-
tions. We show that these methods are benefi-
cial in a real-world low-resource setting with the
Finnish→Northern Sámi translation pair.

In the future, we plan to extend our work in var-
ious ways including more careful data selection
and filtering, the use of subword regularization,
domain labeling, improved sampling strategies
and further data augmentation techniques such as
pivot-based translations and transfer learning us-
ing multilingual NMT models. Furthermore, we
would like to optimize hyper-parameters such as
vocabulary size, network architectures and train-
ing parameters to maximize the translation perfor-
mance in low-resource scenarios.
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Abstract
We present on-going work of evaluating
the, to our knowledge, first large genera-
tive language model trained to converse in
Swedish, using data from the online dis-
cussion forum Flashback. We conduct a
human evaluation pilot study that indicates
the model is often able to respond to con-
versations in both a human-like and infor-
mative manner, on a diverse set of topics.
While data from online forums can be use-
ful to build conversational systems, we re-
flect on the negative consequences that in-
cautious application might have, and the
need for taking active measures to safe-
guard against them.

1 Introduction

Dialog is an important means through which ma-
chines can exhibit intelligence toward humans,
which is interesting from a general AI perspective.
But dialog also constitutes a natural interface for
humans to interact with technology, which opens
up for a breadth of applications involving com-
plex information acquisition, automation of tasks
and smart support systems. A promising direc-
tion towards this goal is the development of open
domain conversational systems using large neural
networks.

Early approaches to neural conversational sys-
tems rely on various forms of Recurrent Neu-
ral Networks (RNN) trained autoregressively to
model the textual sequences (Shang et al., 2015;
Vinyals and Le, 2015; Sordoni et al., 2015; Ser-
ban et al., 2016). More recently, as large pre-
trained Transformer networks have come to dom-
inate progress in NLP in general (Devlin et al.,
2019; Radford, 2018; Radford et al., 2019; Brown
et al., 2020; Raffel et al., 2020), approaches such
as DialoGPT (Zhang et al., 2020), Meena (Adi-
wardana et al., 2020) and Blender (Roller et al.,

2020) have proven the architecture’s applicability
in open domain dialog systems as well.

However, as the research effort is predomi-
nantly put into making progress on English, the
importance of making progress in other languages
as well has been noted (Ruder, 2020; Wali et al.,
2020). Each language is its own unique challenge
for many reasons, but the difference in availabil-
ity of resources is a major one, in particular for
data-driven methods. We argue this is also impor-
tant to keep the public debate on the risks and ethi-
cal aspects of large scale language models open to
non-English speaking communities. Toward those
ends, we present the first (to our knowledge) at-
tempt to build a large scale open domain dialog
system in Swedish based on data from Flashback,
one of the largest social discussion forums in Swe-
den. We also present early indicative results on a
human evaluation to assess its response generation
capabilities across a wide range of topics.

2 Data and preprocessing

Flashback1 is a Swedish online forum that
launched in 1996 and has since grown to become
one of the country’s most popular social medias
(Internetstiftelsen, 2019). In the various sub fo-
rums, a breadth of topics are openly discussed in-
cluding computers and programming, economics,
politics, sports and science. To the general public
however, the forum is also widely known for hous-
ing an anonymous safe haven for controversial
subjects such as prostitution, drugs and conspiracy
theories (Östman and Aschberg, 2015). Due to its
consistent popularity over the last two decades, it
arguably today makes up Sweden’s biggest single
source of general conversational text.

On Flashback, posts are chronologically orga-
nized into threads. In a single thread, the discus-
sion is centered around a specific topic typically

1http://www.flashback.org
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Number of layers 48
Dimensionality 1600
Feed-forward dim 5400
Number of heads 16
Number of parameters 1.4B
Max context length 400
Batch size 512
Optimizer Adam
Vocabulary size 52,000

Table 1: Model hyperparameters

described by a thread title. Acknowledging the po-
tential for embedding undesired biases, we have
initially chosen to use a complete and unfiltered
dump of the forum for this study.

The data was tokenized into strings of BPE
tokens (Sennrich et al., 2016) using a customly
trained vocabulary. Due to Flashback’s organi-
zation of posts into a single linear feed (unlike
the tree structure on e.g. Reddit), it is common
that users quote the previous post they respond to,
to avoid confusion. As a quote holds important
contextual information to a post, we chose to ex-
plicitly include this in the way we formatted the
threads. More details of how the data was format-
ted into strings can be found in Appendix A.

3 Model

Following previous works on open-domain dia-
logue systems (Zhang et al., 2020; Adiwardana
et al., 2020), we trained an auto-regressive lan-
guage model using a slightly modified Trans-
former (Vaswani et al.) decoder as proposed by
Radford et. al. (2019). That is, for an input se-
quence of tokens x1, ..., xn, the language model
is trained to maximize the likelihood of the joint
probability:

p(x1, ..., xn) = p(x1)
n∏

i=2

p(xi|xi−1, ..., x1) (1)

We denote our model Flashback-GPT, where GPT
is an acronym for Generative Pre-trained Trans-
former as first coined by Radford et. al. (2019).
The hyper-parameters chosen are similar to those
of the largest variant of GPT-2 (Radford et al.,
2019), and are detailed in Table 1.

The model was trained on 16 Nvidia Tesla V100
SXM2 GPUs for 7 days, equivalent to 86,250 gra-
dient updates. The learning rate was increased

linearly for the first 5,000 steps up until 5e−5,
after which it was kept constant. We used the
deepspeed (Rasley et al., 2020) library to opti-
mize memory efficiency across the devices during
training.

4 Evaluation

Evaluating natural language generation systems is
known to be hard. Even though it is common
to conduct automatic evaluations due to their low
cost, a human evaluation often serves as an addi-
tional validation of the results. However, design-
ing a human evaluation to measure a specific quan-
tity is also not trivial since there is always room for
interpretation among the human annotators.

Therefore, we present a pilot study where the
main aim is merely to get early indications rather
than definite results, and to guide the design of
bigger future studies. We design our pilot to mea-
sure our quantity of interest: To which extent is the
model capable of participating in social discussion
forums across a diverse set of topics?

To that end, we seek to measure two quantities:
humanlikeness and informativeness. As language
models can often be inconsistent and show lack of
commonsense knowledge, humanlikeness is sup-
posed to answer if there is anything in a response
that seems off, suggesting it has not been written
by a human. However, a response can be human-
like but still uninformative. The notion of ”infor-
mativeness” is particularly interesting in our set-
ting as forums can be relatively knowledge centric,
and uninformative responses such as I don’t know
add little to the discussion.

4.1 Study design
The study was designed as follows. We select a set
of N Flashback threads, held out from training, to
be used in the study. For each thread, we only
take the first two or three posts to limit the discus-
sion context. We then, for each thread, swap the
last post for an alternative generated by the model.
Along with the originals, we now have 2N threads
that we present (in shuffled order) to human anno-
tators. For each thread, we ask two binary ques-
tions to measure humanlikeness and informative-
ness respectively:

1. Is there any indication that the last message
was not written by a human?

2. Do you think that the last message adds in-
formation to the discussion?
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This draws close resemblance to previous evalu-
ations performed on English systems (Zhang et al.,
2020; Adiwardana et al., 2020). In Zhang et. al.
(2020), humans are asked to rank two alternative
responses according to informativeness, human-
likeness and relevance. In Adiwardana et. al.
(2020), humans are instead asked the binary ques-
tions whether a response ”makes sense” and also
whether it is ”specific”, and the average of the two
(Sensibleness and Specificity Average - SSA) is
found to correlate with humanlikeness. For sim-
plicity, we chose to directly ask for humanlikeness
instead of the SSA proxy questions. The complete
annotator guideline (Swedish) is included in Ap-
pendix B for reference.

For the pilot study, we collected a sample of
N = 120 Flashback threads, stratified across 12
of the top level forums. We then formed two
groups of human annotators with three persons in
each group. Each group was presented 60 threads
with generated responses, and 60 original, with no
overlap. The threads included were randomly cho-
sen, except for a few criteria that we employed
to prevent the annotators from exploiting obvious
surface patterns when answering question 1.

• As has been noted previously (Roller et al.,
2020), beam search decoding strategies have
a tendency to generate shorter responses over
longer. We decided to only include threads
where the last (human written) response is at
most 200 characters.

• Since the model supports a maximum se-
quence length of 400 tokens, we exclude
threads where the context is longer than 350
tokens, to leave some room for the generated
response.

• Since the model often fails to generate cor-
rect quotes of previous responses, we remove
any quotes from the last (human written) re-
sponse, and force the model not to generate
quotes as well.

We include a subset of the threads (both with
generated and ground truth responses) in Ap-
pendix C.

4.2 Decoding

The decoding strategy used to generate responses
from neural language models is an important part
of the system as a whole (Roller et al., 2020).

Flashback-GPT Human
Humanlike 68% (48%) 95% (79%)
Informative 48% (52%) 83% (74%)
Humanlike +
informative

46% 83%

Table 2: Pilot study results. Humanlike is the
percentage where the majority response to the
first question is no. Informative is the percentage
where the majority response to the second ques-
tion is yes. Numbers in parentheses are percent-
ages of the 120 threads where all three annotators
agreed

Computer & IT
Sports & training

Home & family
Food, drink & tobacco
Science & Humanities

Economy
Travels

Culture & media
Automotive & traffic

Politics
Lifestyle
Society

0% 25% 50% 75%
Human Flashback-GPT

Figure 1: Ratio of responses that were deemed
both humanlike and informative for each of the
evaluated forums

While the commonly employed beam search al-
gorithm is optimizing the joint likelihood for the
whole generated sequence, its outputs are known
to be generic, unspecific and repetitive (Holtzman
et al., 2020; See et al., 2019). We chose to use a
beam sampling strategy, where we at each step, for
each beam, sample from the (re-normalized) top
50 predicted vocabulary items. This struck a good
balance between generating short uninformative
responses vs longer incoherent ramblings. We
used a beam size of 6. The model has a tendency to
generate responses such as ”duplicate thread, lock-
ing //mod”, which are commonly found on Flash-
back but are not very interesting for this study. We
try to circumvent this by banning the generation
of certain distinguishing words, such as ”mod”.
Finally, to avoid repetitions we also prevent the
model from generating repetitions of any 3-grams
occurring in the context, or in the generated se-
quence thus far.
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5 Results and Discussion

Results from the study are shown in Table 2.
We judge a thread’s humanlikeness and informa-
tiveness based on the majority response from the
three annotators. We also report the percentage
of threads where all annotators agreed in their re-
sponses.

Unsurprisingly, ground truth human responses
display a high ratio of humanlikeness, consol-
idated by a relatively high degree of annotator
agreement. Our model’s responses also show
signs of humanlikeness, as suggested by the fact
that 68% of its generated responses were deemed
plausible to be human-written. We note however
that the annotator agreement is significantly lower
compared to ground truth responses, suggesting
we could further clarify the humanlikeness ques-
tion we ask the human annotators.

The model shows less strength on our measure
of informativeness, with only 48% of the model’s
generated responses were deemed informative to
the discussion. If we compare the amount of
threads where the responses were both deemed hu-
manlike and informative, the model’s ratio drops
to 46% compared to 83% for the ground truth re-
sponses. While our sample size is too small to
draw any statistically significant conclusions, Fig-
ure 1 shows the distribution of humanlike + infor-
mative responses over their top-level forums. In-
terestingly, the top-3 most popular forums (Soci-
ety, Politics and Culture & media), which together
comprise 41% of the training data, all perform be-
low average.

Qualitative feedback from the annotators high-
light how the model tends to respond with short
and straight answers, less prone to vent thoughts
and opinions compared to human responses. Com-
mon failure modes include completely misunder-
standing the question being asked, or change of
topic to a related but irrelevant one.

Reflecting on the design of the study, we found
very few responses were deemed informative but
not humanlike (2 of the generated, 0 ground truth).
If the main purpose of a future study is to mea-
sure both humanlikeness and informativeness, the
question of informativeness might be sufficient.

6 Broader implications

Conversational models such as that presented in
this paper can be understood as part of a broader
transformation of communication. As argued by

Guzman and Lewis (2020), we are now moving
away from the traditional view of communica-
tion as anchored in human such. How we apply
and evaluate conversational models going forward
may come to alter the way we relate to each other
as communicators, and ultimately, humans. There
is need for informed discussion around what con-
stitutes desirable use. While highlighting the risks
of these emerging technologies could be consid-
ered detrimental, we believe it to be an important
means towards enabling the inclusion of diverse
perspectives in this discussion.

A prominent issue related to NLP is found in the
notion of bias. Explicit and implicit biases con-
cerning gender, race or disability can be embedded
in e.g. text corpora (Caliskan et al., 2017), word
embeddings (Bolukbasi et al., 2016) and genera-
tive models (Sheng et al., 2019). Employing bi-
ased conversational models risks scaling system-
atic discrimination of various groups in society.

When developing conversational technologies,
we must acknowledge that they can be used
for malicious purposes. As generative language
technology improves and grows in Swedish, so
will its ability to manipulate and deceive at
scale. As noted by the Swedish Defence Research
Agency (FOI), recent developments within gen-
erative language technology present risks of in-
creased computer-generated false news and com-
ments – predominately on social media – possi-
bly posing a national security threat (Lundén et al.,
2021).

Potential harm must also be considered on
the individual level. In 2020, a GPT-3-powered
(Brown et al., 2020) bot engaged in Reddit-forums
with 30 million users about sensitive topics such
as suicide and conspiracy theories (Heaven, 2020).
With the indicative model performance demon-
strated in this article, such human-machine com-
munication could soon transpire in Swedish.

7 Conclusions and Future work

We demonstrate that Flashback can provide a base
on which to build general conversational systems
in Swedish. While our early results suggest the
model is often capable to converse across a di-
verse set of topics, more work remains to ex-
amine its utility on various conversational tasks.
We also believe developing methods for ground-
ing the responses in additional data is an inter-
esting direction to further the performance on in-
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formativeness in particular. However, we also
believe particular care should be taken as the
underlying data is known to contain toxic con-
tent. This points to the importance of putting
our model through further scrutiny in follow-
ing work, to better understand its biases, how
they are manifested in downstream tasks, and
how they can be mitigated. Towards those ends,
we intend to make the model available for such
purposes, and more information is available at
https://github.com/TobiasNorlund/
flashback-gpt
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Karin Östman and Richard Aschberg. 2015. Flashback
– ett laglöst land.
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Appendix A Flashback data details

The data needs to be converted into a textual string format for it to be compatible with a standard language
model. To this end, each thread was formatted into textual records. Listing 1 provides an example of a
formatted data record used to train the model. A record can be at most 400 tokens, and as such, threads
are often broken up into multiple records. This means the model will in general not have the full thread
context when predicting the next message.

1 Dator och IT > Hårdvara: PC
2 Luft eller vattenkylning till cpu
3
4 [user1]:
5 Jag har lite beslutsångest till vilken kylning jag ska satsa på till min AMD Phenom

II X4 965 AM3.
6 Denna fläkten http://www.komplett.se/k/ki.aspx?sku=456730 eller är det smartare att

satsa på vattenkylning?
7
8 [user2]:
9 Citat: [user1]

10 Jag har lite beslutsångest till vilken kylning jag ska satsa på till min AMD
Phenom II X4 965 AM3.

11 Denna fläkten http://www.komplett.se/k/ki.aspx?sku=456730 eller är det
smartare att satsa på vattenkylning?

12 Det där var väl ett jävla åbäk iaf, är du säker på att det inte finns bättre för typ
halva priset? Typ Noctua eller liknande?

13
14 [user3]:
15 En vettig fråga är: Vad skall du göra med datorn? Extrem överklockning? Få en tyst

dator?

Listing 1: Example of a formatted training record. The usernames are anonymized.

Table 3 details the amount of data from each of the top level forums that was used for training. The
dump was collected in September 2020 and in total the data comprised 23.5 GB of raw formatted text.

Top-level forum (swedish) Top-level forum (english) Num threads Num posts
Samhälle Society 230,931 8,681,841
Politik Politics 123,031 7,578,865
Kultur & Media Culture & Media 165,929 6,495,860
Vetenskap & humaniora Science & Humanities 225,139 5,130,519
Dator och IT Computer & IT 334,931 4,833,468
Sport & träning Sports & training 81,922 4,475,793
Hem, bostad & familj Home & family 158,819 4,055,688
Droger Drugs 137,870 3,551,768
Övrigt Others 75,735 2,164,237
Livsstil Lifestyle 81,750 2,060,600
Sex Sex 49,512 1,335,657
Ekonomi Economy 68,078 1,327,001
Mat, dryck & tobak Food, drink & tobacco 51,133 1,286,707
Fordon & trafik Automotive & traffic 68,078 1,070,619
Om Flashback About Flashback 73,910 486,536
Resor Travels 29,514 478,150
- Forum unknown 181 71,933
Total 1,956,463 55,085,242

Table 3: Flashback training data statistics
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Appendix B Annotation guideline for human evaluation

A
nnoteringsbeskrivning:   Flashback   

  D
en   annotering   som

   du   skall   genom
föra   är   en   del   av   ett   forskningsprojekt   för   att   studera   en   ny   

typ   av   chatbot.   C
hatbotten   är   fram

tagen   för   att   efterlikna   m
änniskor   i   diskussionsforum

.   
  D
u   kom

m
er   gå   igenom

   ett   kalkylark   m
ed   diskussionstrådar   från   internetforum

et   Flashback.   
Varje   diskussionstråd   innehåller   2   eller   3   m

eddelanden.   För   varje   tråd   förväntas   du   svara   på   två   
frågor   som

   båda   rör    det   sista   m
eddelandet   i   konversationen    (m

arkerat   m
ed    grönt    nedan).   

  E
tt   exem

pel   på   en   sådan   tråd   är: 
 

 
  

K
ultur   &

   M
edia   >   Film

   och   film
produktion   >   Film

:   listor   och   rekom
m

endationer   
N

ågon   tecknad   film
   som

   är   bättre   dubbad   på   svenska?   
  K
P

isce89 :   
Ja   som

   rubriken   säger.   
Finns   det   någon   tecknad   film

   som
   du   föredrar   på   svenska?   

E
ller   något   annat   språk   kanske?   

Jag   föredrar   nog   de   flesta   tecknade   film
er   i   sitt   orginalspråk   m

en   jag   har   nog   m
ärkt   att   den   ende   som

   står   ut   
är   nog   Lejonkungen.   
Tycker   att   röstskådespelarna   är   bättre   och   m

er   nyanserade   än   på   engelska.   
Vad   tycker   du?   
  A
rturoB

andini :   
Jag   tror   inte   riktigt   att   jag   kan   svara   helt   objektivt   på   det,   då   m

ycket   av   glädjen   i   att   se   tecknat   idag   beror   på   
m

innen   från   dessa   film
er   som

   m
an   hade   när   m

an   var   liten.   D
ärför   så   skulle   jag   ha   svårt   att   tänka   m

ig   att   se   
typ   D

ucktales   på   engelska.   
  K
P

isce89 :   
V

isst   m
ycket   jag   nog   vara   kvar   från   hur   m

an   såg   det   då.   M
en   generellt   sätt   tycker   jag   att   det   m

esta   är   bättre   
på   sitt   orginalspråk .   

    Varje   diskussionstråd   börjar   m
ed   det    forum

    på   Flashback   som
   tråden   är   skriven   i   (m

arkerat   i   
orange    ovan).   D

ärefter   följer   trådens    rubrik    (m
arkerat   m

ed    gul ).   S
edan   kom

m
er   ett   antal   

m
eddelanden ,   där   varje   m

eddelande   börjar   m
ed   ett   användarnam

n+kolon   (m
arkerat   m

ed    blå )   
och   därefter   ett   antal   textrader.   

  
  I   kalkylarket   finns   två   svars-kolum

ner.   V
i   vill   att   du   för   varje   diskussionstråd   svarar   på   följande   

frågor:   
  

1.
Finns   det   något   som

   tyder   på   att   det   sista   m
eddelandet    inte    är   skrivet   av   en   

m
änniska?   

●
E

xem
pel   kan   vara   att   den   säger   något   felaktigt,   är   m

otsägelsefull   eller   generellt   
säger   något   som

   m
an   inte   förväntar   sig   av   en   Flashback-användare.   

●
O

m
   ditt   svar   är   ja,   skriv   då   "1"   i   svars-kolum

nen.   A
nnars   skriver   du   "0"   

●
S

yftet   m
ed   denna   fråga   är   att   ta   reda   på    hur   ofta   chattbotten   skriver   något   som

   
inte   går   att   skilja   från   en   m

änniska ?   
●

O
m

   du   är   osäker   på   grund   av   en   faktauppgift   i   m
eddelandet   som

   du   ej   vet   är   
sann   eller   läm

plig   i   sam
m

anhanget   behöver   du   inte   kontrollera   denna   genom
   att   

exem
pelvis   googla,   utan   svara   i   sådana   fall   "0". 

 
 

  
2.

Tycker   du   att   svaret   tillför   inform
ation   till   diskussionen?   

●
O

m
   det   sista   m

eddelandet   enligt   din   m
ening   inte   tillför   särskilt   m

ycket   till   
diskussionen,   svara   m

ed   "0"   annars   "1"   
●

E
xem

pel   på   detta   kan   vara   om
   m

eddelandet   är   orelaterat   till   äm
net   t.ex.   att   en   

m
oderator   skriver   att   hen   låser   tråden   eller   att   det   skrivs   att   det   redan   finns   en   

tråd   om
   äm

net.   I   sådana   fall   svarar   du   "0".   
●

E
tt   annat   exem

pel   kan   vara   om
   tråden   handlar   om

   hur   m
an   löser   en   m

atem
atisk  

ekvation.   D
å   tillför   ett   svar   såsom

   "Lös   ekvationen"   inte   särskilt   m
ycket   till   

diskussionen,   i   vilket   fall   du   också   svarar   "0".   
    K
alkylarket   innehåller   diskussionstrådar   där   det   sista   m

eddelandet   antingen   är   autom
atiskt   

genererat   eller   ett   faktiskt   Flashback-m
eddelande.   

  
 

 
E

fter   att   du   svarat   på   alla   diskussionstrådar   i   kalkylarket,   vänligen   sam
m

anfatta   i   några   få   
m

eningar   vad   som
   du   tycker   är   utm

ärkande   för   chattbotten   (som
   fått   dig   att   svara   "1"   på   fråga   

1).   
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Appendix C Examples from study

In the following examples, the last response is generated by the model. Usernames are anonymized.

1 Fordon & trafik > Motorcyklar och mopeder
2 Off road MC
3
4 [user1]:
5 När jag blir äldre vill jag köra Off road MC, typ Yamaha WR250X verkar nice.
6 Annars finns det yamaha XT125X. men med mindre klenare motor.
7 Det är ju bäst att skaffa mc kort med obegränsad motoreffekt, så jag för köra alla

typer.
8 Jag är 175 cm just nu.
9 1. Hade jag kunnat ha en Yamaha WR250X, så jag inte är för kort?

10 någon som vet?
11
12 [user2]:
13 när du blir äldre?
14 e du över 18..?
15 men nej, tror inte du e för kort att köra off road mc
16
17 [user3]:
18 Vad ska du ha den till?

1 Vetenskap & humaniora > Fysik, matematik och teknologi > Matematiska och
naturvetenskapliga uppgifter

2 ekvationer som omformas med formler-ma d
3
4 [user1]:
5 5sin4x=3sin2x
6 lös ekvationen och svara med en decimal?
7 Jag vet att jag ska flytta över HL i VL. Men sedan vet jag ej vad jag ska göra.
8
9 [user2]:

10 sin(2a) = 2sin(a)cos(a) giver ju i princip svaret.
11
12 [user3]:
13 Du skall multiplicera båda leden med cos(a).

1 Resor > Övriga resediskussioner
2 Beställa saker som ligger i planet när jag sätter mig!
3
4 [user1]:
5 Heellu, har en fråga här.. När man beställer saker ifrån tax-free saken så det

ligger i sätet när man kommer in i planet, måste man vara 20 och över för vodka
o sånt då?

6 Är inte mer än 19 när jag ska åka, vore gûtt att få med sig en flaska ner dit man nu
ska =)

7
8 [user2]:
9 Eftersom du är 19 så misstänker jag att du ska ner till nåt varmt partyställe runt

medelhavet, har jag rätt? I så fall är det billigare att köpa den där flaskan på
plats och de bryr sig inte om din ålder.

10
11 [user3]:
12 Du behöver inte vara 20 för att köpa sprit i tax-freen.
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Below are the same examples, but translated to English

1 Automotive & traffic > Motorcycles and mopeds
2 Off road MC
3
4 [user1]:
5 When I get older I want to drive Off road MC, like Yamaha WR250X seems nice.
6 Otherwise there is yahama XT125X. but with a weaker engine.
7 It is best to get the mc license with unlimited power, so I can drive all types.
8 I’m 175cm right now.
9 1. Can I have a Yamaha WR250X, or am I too short?

10 anyone who knows?
11
12 [user2]:
13 when you get older?
14 are you above 18..?
15 but no, don’t think you’re too short to drive off road mc
16
17 [user3]:
18 What are you gonna use it for?

1 Science & Humanities > physics, mathematics and technology > Mathematical and
natural science exercises

2 reshaping equations with forumlas-ma d
3
4 [user1]:
5 5sin4x=3sin2x
6 solve the equation and answer with one decimal?
7 I know I should move right-side over to left-side. But then I don’t know what to do.
8
9 [user2]:

10 sin(2a) = 2sin(a)cos(a) basically gives you the answer
11
12 [user3]:
13 You should multiply both sides with cos(a).

1 Travels > Other travel discussions
2 Order things to my plane seat
3
4 [user1]:
5 Heellu, got a question here.. When you order stuff from the tax-free thing they lie

on your seat when you board the plane, do you have to be 20 or above for vodka
and such then?

6 Won’t be more than 19 when I’m going, would be sweet to bring a bottle down to the
destination =)

7
8 [user2]:
9 Since you are 19 I’m suspecting you’re going down to some warm party place around

the Mediterranean, am I right? In such case it is cheaper to buy that bottle in-
place and they won’t care about your age.

10
11 [user3]:
12 You don’t need to be 20 to buy spirits in the tax-free.
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Abstract

When is it beneficial for a research com-
munity to organize a broader collaborative
effort on a topic, and when should we in-
stead promote individual efforts? In this
opinion piece, we argue that we are at
a stage in the development of large-scale
language models where a collaborative ef-
fort is desirable, despite the fact that the
preconditions for making individual con-
tributions have never been better. We con-
sider a number of arguments for collabora-
tively developing a large-scale Nordic lan-
guage model, include environmental con-
siderations, cost, data availability, lan-
guage typology, cultural similarity, and
transparency. Our primary goal is to raise
awareness and foster a discussion about
our potential impact and responsibility as
NLP community.

1 Introduction

Deep Transformer language models have become
the weapon of choice in modern NLP (and in AI
more generally). There is a rich, and evergrowing,
flora of models available, including BERT (Devlin
et al., 2019), XLNet (Yang et al., 2019), Electra
(Clark et al., 2020), T5 (Raffel et al., 2020), and
GPT (2 and 3) (Radford et al., 2019; Brown et al.,
2020). These models present slight variations of
architectural choices, training objectives, parame-
ter settings, and size and composition of the train-
ing data. Despite some internal variation in perfor-
mance, Transformer language models in general
hold state of the art results in basically all NLP
benchmarks and evaluation frameworks at the mo-
ment (Wang et al., 2018, 2019; Nie et al., 2020).

The downside to this recent development is the
computational cost of training deep Transformer

∗Corresponding author: magnus.sahlgren@ri.se

models. Starting with BERT-Base with its (now
viewed as modest, but at the time of publica-
tion seen as substantial) 110 million parameters,
and BERT-Large with its 340 million parameters,
there has been a virtual explosion in the num-
ber of parameters, culminating in the recent GPT-
3 with its 175 billion parameters (Brown et al.,
2020), GShard with 600 billion parameters (Lep-
ikhin et al., 2021), and the most recent Switch
Transformer with a whopping 1,3 trillion param-
eters (Fedus et al., 2021). This development trans-
lates into an acute need for access to powerful pro-
cessing platforms, huge amounts of training data,
and an ability to harbor extremely long training
times. Taken together, this is a perfect recipe for
extreme energy consumption and cost, which risks
leading to reduced inclusivity in research on large-
scale language models.

There is a budding debate on the environmen-
tal and cultural impact of training and using large-
scale language models. Two recent examples are
Strubell et al. (2019) and Bender et al. (2021);
the former analyze the energy consumption and
cost of training deep Transformer language mod-
els, and the latter voice concerns regarding both
the environmental and cultural impact of train-
ing and using large-scale language models. We
hope to contribute to this discussion by providing
a Nordic perspective on the need for large-scale
language models. We will assume the position
that a collaborative effort towards training a large-
scale Nordic language model is something worth
striving for. We consider a number of arguments
for this position, include environmental consider-
ations, cost, data availability, language typology,
cultural similarity, and transparency.

2 Argument 1: The Environment

Strubell et al. (2019) estimate that the CO2 emis-
sion from training a single BERT-Base amounts to
roughly 652 kg (1,438 lbs), which is comparable
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to a flight between San Fransisco and New York,
or the average emissions resulting from electricity
and heating for one person for one year in Stock-
holm.1 This is something of a best-case scenario;
the authors also calculate that training a BERT-
Large with neural architecture search emits some-
thing like 284 tonnes of CO2, which is roughly
equivalent to the emissions of 56 average persons,
throughout a year. An interesting question thus
becomes: how much CO2 emission has been pro-
duced as a result of the current development in
NLP?

It is of course impossible to get an accurate
count on this, but one way to approximate an an-
swer might be to consider how many models have
been trained in the world so far. We obviously can-
not know this either, but we might be able to get an
idea by looking at the number of models published
in open source libraries. Luckily, much of the re-
cent development is centered around one such li-
brary: the Transformers library of the company
Hugging Face.2 The Transformers library con-
tains (at the time of submission) more than 6,800
models covering a total of 250 languages. A sur-
vey carried out by Benaich and Hogarth in the fall
of 2020 claims that more than 1,000 companies
are using the Transformers library in production,
and that it has been installed more than 5 million
times.3

6,800 models times a low estimate of 652 kg
of CO2 sums to 4,434 tonnes of CO2 emissions.
This is of course an extremely unreliable estimate.
Many of the models uploaded to the Transformers
library are merely finetuned and not trained from
scratch (we have not been able to quantify this
proportion). On the other hand, many of the up-
loaded models are significantly larger than BERT-
Base, and one can assume that only a fraction of
models that are built are actually uploaded to the
Transformers model repository. By comparison,
the average Swedish citizen emits around 8 tonnes
of CO2 per year,4 while RISE (the Research In-
stitutes of Sweden) with approximately 2,800 em-
ployees emitted a total of 1,287 tonnes CO2 during
2019 according to the 2019 annual report.

Counting only the Nordic models uploaded to
Hugging Face, there are (at the time of submis-

1www.regionfakta.com
2https://github.com/huggingface/

transformers
3https://www.stateof.ai/ (slide 127)
4www.naturvardsverket.se

Language Number of models
Swedish 215
Danish 43
Norwegian 33
Icelandic 28
Norwegian Bokmål 12
Norwegian Nynorsk 12
Faroese 11

Table 1: Number of language models available for
the Nordic languages via Hugging Face’s Trans-
formers library (at the time of submission).

sion) a total of 354 models for the Nordic lan-
guages (see Table 1). Based on the assumptions
in Strubell et al. (2019), this amounts to more than
230 tonnes of CO2. By comparison, Anthony et al.
(2020) estimates (using slightly different assump-
tions than Strubell et al. (2019)) that training GPT-
3 resulted in at least 85 tonnes of CO2 emission.
Although these estimates are not directly compa-
rable, they indicate that a focused effort to produce
a large-scale Nordic language model may lead to a
smaller carbon footprint than the current develop-
ment where we see a steady increase in the number
of monolingual models.

3 Argument 2: Cost

It is anything but cheap to train large-scale lan-
guage models. The cost for performing a single
training pass for the largest T5 model is estimated
to be $1, 3 million (Sharir et al., 2020), while train-
ing GPT-3 is estimated at around $4, 6 million.5

To put these numbers into perspective, the average
project funding in the EU Horizon 2020 program
is estimated to be around $2, 1 million,6 while the
average national research project is typically not
more than around $150 thousand.7 This means
that, unless you happen to be in the possession of a
sizeable computing infrastructure, training models
on this scale will be out of the question for most
researchers.

However, even with access to suitable GPUs, it
is not obvious that it will be possible to train a
model on the required scale. Li (2020) estimates

5lambdalabs.com/blog/demystifying-gpt-
3/

6accelopment.com/blog/lessons-learnt-
from-horizon-2020-for-its-final-2-
years/

7vr.se/soka-finansiering/beslut/2020-
09-08-humaniora-och-samhallsvetenskap.
html
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that performing a single training run with the full
GPT-3 using an NVIDIA Tesla V100 GPU at its
theoretical max speed would require 355 years.
Assuming access to an NVIDIA DGX-1, which
features 8 V100 GPUs, we would still need 44
years to build a replica of GPT-3. The cost of buy-
ing a DGX-1 machine is around $129 thousand
– i.e. roughly the size of an average national re-
search project.

The sizeable cost (monetary as well as tempo-
ral) required to build a large-scale language model
effectively excludes a large proportion of the NLP
community from training models. This may not
be entirely negative, considering the environmen-
tal concerns raised in the previous section, but it
would be desirable if the production of large-scale
language models was more inclusive and collab-
orative, with transparency and the possibility to
influence the procedure even by smaller research
groups. A communal effort would not only en-
able more researchers to have an influence on the
model design, but it may also lead to broader us-
age of the resulting model, thereby reducing the
need to constantly build new small (and probably
not very useful) models.

4 Argument 3: Data Size and Transfer

It is a known fact that bigger training data leads
to improved performance when using statistical
learning methods in NLP (Banko and Brill, 2001;
Sahlgren and Lenci, 2016). This has been em-
inently well demonstrated in the context of lan-
guage models by the recent improvements using
models that have been trained on very large data
samples (Raffel et al., 2020; Brown et al., 2020). It
is a fascinating question whether there at all exists
sufficiently large text data to build native models
for all Nordic languages.

Considering the biggest Nordic language
Swedish as an example, Sweden has legal deposit
laws installed in 1661 for everything printed.
During the the twentieth century it was gradually
extended to include sound, moving images and
computer games and electronic material. The
law for legal deposit of electronic material was
added in 2012. As a result, the National Library
of Sweden (KB), has vast and ever growing
collections, closing in on 26 Petabyte of data.

Though only a fraction of the collections are
digitized, the digital collections are nonethe-
less substantial. KB, through its data lab

(KBLab), works continuously to assembly corpora
of Swedish texts and to make them available for
modeling. The latest corpus of cleaned, edited,
raw Swedish text is just over 104 GB of size (cor-
responding to approximately 1,4 billion sentences
and 18,2 billion words). The sources for this cor-
pus are: Swedish Wikipedia 2 GB; Governmental
texts 5 GB; Electronic publications 0,4 GB; Social
media 5GB; Monographs 2GB, and; Newspapers
90 GB. The corpus currently under construction
increases primarily the share of born digital text
from legal electronic deposits and is expected to
be around 1 TB of cleaned, edited, raw Swedish
text (thus approximately 14 billion sentences and
182 billion words). The upper limit (in terms of
size) for subsequent corpora is expected to be be-
tween 2−5 TB, depending on the possibilities to
transcribe spoken Swedish present in the KB col-
lections.

The situations in the other Nordic countries
are similar, relative to the size of the popula-
tion in the respective countries. There are conse-
quently extensive Danish and Norwegian collec-
tions available, whereas the text/data resources in
Iceland and Faroe Islands are expected to be sub-
stantially smaller. Combining all Nordic text re-
sources would likely lead to a fairly substantial
data source, likely on the order of Terabytes.

The data conditions for the larger Nordic lan-
guages look promising even when considered in-
dividually, but it is not obvious that there even ex-
ists enough data to train native large-scale mod-
els in the smaller Nordic languages. Fortunately,
it has been demonstrated that multilingual mod-
els improve the performance for languages with
less available training data, due to transfer effects
(Conneau et al., 2020). In particular, the transfer
effects seems to be specifically beneficial for ty-
pologically similar languages (Karthikeyan et al.,
2020; Lauscher et al., 2020). It is thus likely that
in particular Icelandic and Faroese would benefit
from a joint Nordic language model.

5 Argument 4: Typology

The Nordic languages belong to one of three
Germanic language groups, also referred to as
North Germanic languages (in addition to West
and now extinct East Germanic). The North Ger-
manic language group is further divided into two
branches: East Scandinavian languages, which in-
cludes Swedish and Danish, and West Scandina-
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vian languages, which contains Norwegian, Ice-
landic and Faroese. This genealogical catego-
rization is sometimes contrasted with a distinc-
tion based on mutual intelligibility, which sepa-
rates Continental Scandinavian (Swedish, Norwe-
gian and Danish) from Insular Scandinavian (Ice-
landic and Faroese).

The Nordic languages are so similar from a ty-
pological perspective that the language boundaries
have been, if not in dispute, at least subject to
some discussion (Stampe Sletten et al., 2005). The
difference between dialects within the Nordic lan-
guages is in some cases probably larger than the
difference between the languages. A telling exam-
ple is the difference between Norwegian Bokmål,
which is very similar to Danish and as such is cat-
egorized as an East Scandinavian language, and
Nynorsk, which is categorized as a West Scandina-
vian language. Another example is the difference
between Jamtlandish (or Jamska, a dialect spoken
in the Swedish region Jämtland, which is catego-
rized as a West Scandinavian language) and stan-
dard Swedish (which is East Scandinavian).

From a typological perspective, it thus makes
sense to entertain the idea of a joint North Ger-
manic language model, in particular when con-
sidering the potential for transfer effects to the
smaller Nordic languages. Of course, one can al-
ways ask whether we should not aim for a com-
bined Germanic model instead? There will proba-
bly be something like an order of magnitude more
data available if we consider all Germanic lan-
guages rather than just the Nordic ones. How-
ever, one can expect diminishing returns by adding
more data at some point, and it is an interesting
(and, as far as we are aware, open) question what is
the trade-off between language similarity and data
size?

6 Argument 5: Culture

Bender et al. (2021) raise concerns about the con-
siderable anglocentrism of current language mod-
els. We agree that this is potentially problematic;
most current models are trained on data harvested
from the Internet, which we know is produced by
certain demographies, and as such is not represen-
tative of the general population.8 A consequence
of this is that current language models only encode
the perspectives of certain groups of people, and

8https://www.pewresearch.org/internet/
fact-sheet/social-media/

these people tend to not belong to marginalized
groups. It is well-known that language models en-
code biases and prejudice that may be problematic
(Bordia and Bowman, 2019; May et al., 2019).

Anglocentrism is not necessarily a disqualify-
ing factor for the Nordic countries, some of which
(such as Sweden) is sometimes considered to be
among the most Americanized countries in the
world (Åsard, 2016; Alm, 2003). We generally
listen to the same type of music, watch the same
type of movies, and watch the same type of TV-
shows. We don’t, however, have similar political
systems (as demonstrated by recent events). By
contrast, there is arguably no (significant) differ-
ence in culture, politics, or economics between the
Nordic countries. In fact, there are probably more
cultural differences within the countries than be-
tween.

A relevant question is how to also include mi-
nority languages from other language families,
such as Sámi. A natural suggestion for this spe-
cific case is to consider a Uralic language model,
which would include languages such as Finnish,
Hungarian, Estonian, as well as the smaller lan-
guages Erzya, Moksha, Mari, Udmurt, Sámi, and
Komi.

7 Argument 6: Transparency

The largest concurrent language models are not
publicly available. Few have probably missed
the controversy surrounding the initial decision of
Open AI to not release GPT-2 due to concerns
of adversarial usages.9 As we know, GPT-2 was
eventually released in full, and there are now GPT-
2 models available in many other languages. The
original GPT-3 model is however not yet openly
available (Open AI is beginning to look like a mis-
nomer), but there are several open-source efforts
to provide competing, or at least alternative, mod-
els.10,11

This lack of transparency obviously limits the
ability for other researchers not only to investi-
gate this type of model, but also to contribute to
its future development. A collaborative Nordic ef-
fort would ensure inclusivity in the development,
as well as accessibility to the final model.

9openai.com/blog/better-language-
models/

10github.com/EleutherAI/gpt-neo
11github.com/sberbank-ai/ru-gpts
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8 Conclusions

Based on the considerations raised in this paper,
we argue that we – the Nordic NLP community
– should work together to build a truly large-
scale Nordic language model, for the Nordic lan-
guages, by Nordic researchers. We believe that
such a resource will be extremely beneficial for
Nordic NLP, and that it will have the potential to
reduce the environmental impact of continuously
training new models.
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Emma Strubell, Ananya Ganesh, and Andrew McCal-
lum. 2019. Energy and policy considerations for
deep learning in NLP. In Proceedings of the 57th
Annual Meeting of the Association for Computa-
tional Linguistics, pages 3645–3650, Florence, Italy.
Association for Computational Linguistics.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019. Superglue: A
stickier benchmark for general-purpose language
understanding systems. In Advances in Neural In-
formation Processing Systems, pages 3266–3280.
Curran Associates, Inc.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2018.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop Black-
boxNLP: Analyzing and Interpreting Neural Net-
works for NLP, pages 353–355, Brussels, Belgium.
Association for Computational Linguistics.

Zhilin Yang, Zihang Dai, Yiming Yang, Jaime Car-
bonell, Russ R Salakhutdinov, and Quoc V Le. 2019.
Xlnet: Generalized autoregressive pretraining for
language understanding. In Advances in Neural
Information Processing Systems, volume 32, pages
5753–5763. Curran Associates, Inc.

372



Decentralized Word2Vec Using Gossip Learning ∗

Abdul Aziz Alkathiri† Lodovico Giaretta† Šarūnas Girdzijauskas† Magnus Sahlgren‡
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Abstract

Advanced NLP models require huge
amounts of data from various domains to
produce high-quality representations. It is
useful then for a few large public and pri-
vate organizations to join their corpora dur-
ing training. However, factors such as leg-
islation and user emphasis on data privacy
may prevent centralized orchestration and
data sharing among these organizations.
Therefore, for this specific scenario, we in-
vestigate how gossip learning, a massively-
parallel, data-private, decentralized proto-
col, compares to a shared-dataset solution.
We find that the application of Word2Vec
in a gossip learning framework is viable.
Without any tuning, the results are com-
parable to a traditional centralized setting,
with a reduction in ground-truth similarity
scores as low as 4.3%. Furthermore, the
results are up to 54.8% better than indepen-
dent local training.

1 Introduction

Machine learning models, and especially deep
learning models (LeCun, 2015) used to represent
complex systems, require huge amounts of data.
This is also the case with large-scale Natural Lan-
guage Processing (NLP) models. Moreover, these
models benefit from merging various sources of
text from different domains to obtain a more com-
plete representation of the language.

For this reason, a small number of separate or-
ganizations (for example, government agencies)

∗ This project has received funding from the European
Union’s Horizon 2020 research and innovation programme un-
der the Marie Skłodowska-Curie grant agreement No 813162.
The content of this paper reflects the views only of their author
(s). The European Commission/ Research Executive Agency
are not responsible for any use that may be made of the infor-
mation it contains.

may want to train a complex NLP model using the
combined data of their corpora to overcome the lim-
itations of each single corpus. However, the typical
solution in which all data is moved to a centralized
system to perform the training may not be viable,
as that could potentially violate privacy laws or
data collection agreements and would require all
organization to trust the owner of the system with
access to their data.

This problem can potentially be solved using
massively-parallel, data-private, decentralized ap-
proaches – that is, distributed approaches where
training is done directly on the machines that pro-
duce and hold the data, without having to share or
transfer it and without any central coordination –
such as gossip learning (Ormándi et al., 2013).

Therefore, we seek to investigate, in the scenario
of a small group of large organizations, how mod-
els that are produced from the corpus of each node
on a decentralized, fully-distributed, data-private
configuration, i.e. gossip learning, compare to mod-
els trained using a traditional centralized approach
where all the data are moved from local machines
to a data center. Furthermore, we investigate how
these models compare to models trained locally
using local data only, without any cooperation.

Our results show that the Word2Vec (Mikolov
et al., 2013b) models trained by our implementation
of gossip learning are close to models produced
by its centralized counterpart setting, in terms of
quality of the generated embeddings, and vastly
better than what simple local training can produce.

2 Background and related work

The main technique for massively-parallel, data-
private training is federated learning (Yang et al.,
2019), a centralized approach where each worker
node calculates an update of the model based on
local data. This gradient is then sent back to the
central node which aggregates all these gradients
to produce an updated global model which is sent
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back to the workers. This approach, however, suf-
fers from issues such as the presence of a central
node which may act as a privileged “gatekeeper”,
as well as reliability issue on the account of that
central node.

Unlike centralized approaches, with decentral-
ized machine learning all the nodes in the network
execute the same protocols with the same level of
privileges, mitigating chances of exploitation by
malicious actors. Furthermore, with a peer-to-peer
network protocol, decentralized machine learning
can virtually scale up to unlimited sizes and be
more fault-tolerant, as the network traffic is spread
out across multiple links, and not all directed to a
single central location. One such approach is the
gossip learning protocol (Ormándi et al., 2013).

The gossip communication approach refers to a
set of decentralized communication protocols in-
spired by the behaviour of the spread of gossip
socially among people (Shah, 2009). First intro-
duced for the purpose of efficiently synchronizing
distributed servers (Demers et al., 1987), it has also
applied to various problems, such as data aggre-
gation (Kempe et al., 2003) and failure detection
(Van Renesse et al., 1998).

3 Gossip Learning

Gossip learning is an asynchronous, data-parallel,
decentralized averaging approach based on gossip
communications. It has been shown to be effective
when applied to various ML techniques, including
binary classification with support vector machines
(Ormándi et al., 2013), k-means clustering (Berta
and Jelasity, 2017) and low-rank matrix decom-
position (Hegedűs et al., 2016). However, these
implementations of gossip learning are limited to
simple scenarios, where each node holds a single
data point and network communications are unre-
stricted. Giaretta and Girdzijauskas (2019) showed
that the gossip protocol can be extended to a wider
range of more realistic conditions. However, they
identify issues with certain conditions that appear
in some real-world scenarios, such as bias towards
the data stored with faster communication speeds
and the impact of network topologies on the con-
vergence speed of models.

Algorithm 1 shows the general structure of gos-
sip learning as introduced by Ormándi et al. (2013).
Intuitively, models perform random walks over the
network, merging with each other and training on
local data at each node visited.

Algorithm 1: Generic Gossip Learning.
mcur ← INITMODEL()
mlast ← mcur
loop

WAIT (∆)
p← RANDOMPEER()
SEND(p,mcur)

end loop
procedure ONMODELRECEIVED(mrec)

mcur ← UPDATE(MERGE(mrec,mlast))
mlast ← mrec

end procedure

Each node, upon receiving a model from a peer,
executes ONMODELRECEIVED. The received
model mrec and the previous received model mlast

are averaged weight-by-weight. The resulting
model is trained on a single batch of local data
and stored as mcur. At regular intervals, mcur is
sent to a random peer.

We simulate gossip learning on a single machine,
using synchronous iterations. This approximation
works well under the assumption that all nodes have
similar speeds. If that is not the case, additional
measures must be taken to ensure correct model
behaviour (Giaretta and Girdzijauskas, 2019).

4 Methodology

While gossip learning could be applied to most
NLP algorithms, in this work we use Word2Vec
(Mikolov et al., 2013a) because it is simple, small,
and fast, thus allowing us to perform larger experi-
ments on limited hardware resources. Additionally,
it is a well-known, well-understood technique, al-
lowing us to more easily interpret the results.

The dataset used is the Wikipedia articles dump
(Wikimedia Foundation, 2020) of more than 16GB,
which contains over 6 million articles and in wiki-
text format with embedded XML metadata. From
this dump we extract the articles belonging to the
following 5 Wikipedia categories of similar size:
science, politics, business, humanities and history.

To measure the quality of the word embeddings
produced by a specific model, we collect the k = 8
closest words to a target word wt according to said
model. We then assign to each of these words a
score based on their ground-truth cosine similarity
to wt. We repeat this process for a set of (contextu-
ally ambiguous) target words Wt (|Wt| = 23) and
use the total sum as the quality of the model. We
estimate the ground-truth word similarities using
a high-quality reference model, more specifically
a state of the art Word2Vec model trained on the
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Figure 1. w2vsim evolution for centralized train-
ing.

Google News dataset, which uses a similar embed-
ding size (d = 300) and contains a vocabulary of 3
million words (Google Code Archive, 2013).

This metric can be defined as

w2vsim(M) =
∑

wt∈Wt

∑

w∈Nk
M (wt)

simR(w,wt)

where M is the model to be evaluated, Nk
M (·) is

the top-k neighbourhood function over the embed-
dings of M and simR is the ground-truth cosine
similarity measure defined based on the reference
model.

5 Experimental results

To establish the baseline to compare to, the first ex-
periment is in the traditional non-distributed, cen-
tralized configuration of Word2Vec. The baseline
w2vsim value is 64.479, as shown in Figure 1.

We simulate gossip learning with 10 nodes, with
three different data distributions. In the r-balanced
distribution, the corpora of the nodes have similar
sizes and are randomly drawn from the dataset. In
the r-imbalanced distribution, the corpora are simi-
larly drawn at random, but have skewed sizes (up
to a 4:1 ratio). Finally, in the topicwise distribution,
the dataset is divided between the nodes based on
the 5 Wikipedia categories, with two nodes split-
ting each category.

The intuition behind dividing the texts by topic
is that often times the corpora of organizations are
limited to a specific domain. And setting imbal-
anced content sizes in one of the distributions can
provide insights into how the learning is affected
when some nodes have significantly bigger corpora
than others. Both these configurations are very rel-
evant to the practical applicability of this work, as
they both reflect common real-world scenarios.

Exchange
frequency

Data
distribution w2vsim

w2vsim
reduction w.r.t.

baseline
Frequent topicwise 60.606 6.390%

r-balanced 59.936 7.580%
r-imbalanced 60.122 7.247%

Infrequent topicwise 61.840 4.267%
r-balanced 60.910 5.859%
r-imbalanced 60.968 5.759%

Table 1. Summary of w2vsim scores for all tested
gossip learning configurations.

The formulation of gossip learning presented in
Section 3 requires the nodes to exchange their mod-
els after every local batch update. As complex NLP
models can require millions of training batches, the
communication overheads can quickly add up. We
thus investigate the effect of reducing the exchange
frequency while still maintaining the same number
of training batches. More precisely, we repeat the
same tests but limit the nodes to exchange the mod-
els every 50 batch updates, thus reducing overall
communication by a factor of 50.

Figure 2 shows the evolution of the trained mod-
els for all combinations of exchange frequency and
data distribution. Table 1 summarizes the final
scores and compares them to the baseline. In all
combinations, the model quality is quite compa-
rable to the traditional centralized configuration.
In fact, for the gossip learning with infrequent ex-
change configuration, there is a slight improvement
over the frequent exchange in terms of training time
required and w2vsim value. This indicates that the
original gossip learning formulation has significant
margins of optimization in terms of communication
overhead. Furthermore, the relatively unchanged
values of w2vsim between the data distributions, in
spite of the heterogeneity/homogeneity of the node
contents and their sizes, show that gossip learning
is robust to topicality and local dataset size. The
results suggest that the quality of word embeddings
produced using gossip learning is comparable to
what can be achieved by training in a traditional
centralized configuration using the same parame-
ters, with a loss of quality as low as 4.6% and never
higher than 7.7%.

We perform one more experiment, in which each
node independently trains a model on its local data
only, using the topicwise distribution. The w2vsim
values do not converge as quickly and range from
41.657 to 56.570 (see Figure 3). This underscores
the importance for different organizations to collab-
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(a) topicwise, frequent exch. (b) r-balanced, frequent exch. (c) r-imbalanced, frequent exch.

(d) topicwise, infrequent exch. (e) r-balanced, infrequent exch. (f) r-imbalanced, infrequent exch.

Figure 2. Evolution of w2vsim similarity scores for all tested data distributions and exchange frequencies.

Figure 3. Local, independent training at each node:
w2vsim similarity score evolution.

orate to overcome the specificity of local corpora,
as this can increase model quality by as much as
54.8%.

6 Limitations and future work

Although the experimental setup of this research
takes into account parameters and conditions which
simulate real-world scenarios, it is still limited in
scope. For instance, the network conditions were
assumed to be perfect. Furthermore, security and
privacy considerations in the area of networking
were not taken into account. Although they were
not the focus of this research, their significance can-
not be overlooked. Investigating the behaviour of
the proposed solution in more realistic network con-
ditions is therefore a possible avenue of research.

A single, simple NLP algorithm (Word2Vec) was
evaluated in this work. This is due to the purpose
of this research, which was to test the viability of

gossip learning and compare it to a centralized solu-
tion in a specific scenario. Evaluating more recent,
contextualized NLP models, such as BERT (De-
vlin et al., 2019) would be an interesting research
direction, as these can better capture the different
meanings of the same words in multiple domains.

Finally, the experiments were run without exten-
sive hyperparameter optimization. Given the sat-
isfactory results obtained, it is likely that a proper
tuning, based on state of the art distributed training
research (Shallue et al., 2018), could lead to gossip
learning matching or even surpassing the quality of
traditional centralized training.

7 Conclusions

Motivated by the scenario where various organi-
zations wish to jointly train a large, high-quality
NLP model without disclosing their own sensitive
data, the goal of this work was to test whether
Word2Vec could be implemented on top of gos-
sip learning, a massively-parallel, decentralized,
data-private framework.

The quality of the word embeddings produced
using gossip learning is close to what can be
achieved in a traditional centralized configuration
using the same parameters, with a loss of quality
as low as 4.3%, a gap that might be closed with
more advance tuning. The frequency of model ex-
change, which affects bandwidth requirements, has
also been reduced 50 times without negative effects.
Finally, gossip learning can achieve up to 54.8%
better quality than local training alone, motivating

376



the need for joint training among organizations.
The results of this work therefore show that gos-

sip learning is a viable solution for large-scale, data-
private NLP training in real-world applications.
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Abstract

Multilingual pretrained language models
are rapidly gaining popularity in NLP sys-
tems for non-English languages. Most
of these models feature an important cor-
pus sampling step in the process of ac-
cumulating training data in different lan-
guages, to ensure that the signal from bet-
ter resourced languages does not drown
out poorly resourced ones. In this study,
we train multiple multilingual recurrent
language models, based on the ELMo ar-
chitecture, and analyse both the effect of
varying corpus size ratios on downstream
performance, as well as the performance
difference between monolingual models
for each language, and broader multilin-
gual language models. As part of this ef-
fort, we also make these trained models
available for public use.

1 Introduction

As part of the recent emphasis on language model
pretraining, there also has been considerable focus
on multilingual language model pretraining; this is
distinguished from merely training language mod-
els in multiple languages by the creation of a mul-
tilingual space. These have proved to be very use-
ful in ‘zero-shot learning’; i.e., training on a well-
resourced language (typically English), and rely-
ing on the encoder’s multilingual space to create
reasonable priors across languages.

The main motivation of this paper is to study the
effect of corpus sampling strategy on downstream
performance. Further, we also examine the util-
ity of multilingual models (when constrained to
monolingual tasks), over individual monolingual
models, one per language. This paper therefore
has two main contributions: the first of these is
a multilingual ELMo model that we hope would

see further use in probing studies as well as eval-
uative studies, downstream; we train these mod-
els over 13 languages, namely Arabic, Basque,
Chinese, English, Finnish, Hebrew, Hindi, Italian,
Japanese, Korean, Russian, Swedish and Turkish.
The second contribution is an analysis of sampling
mechanism on downstream performance; we elab-
orate on this later.

In Section 2 of this paper, we contextualise our
work in the present literature. Section 3 describes
our experimental setup and Section 4 our results.
Finally, we conclude with a discussion of our re-
sults in Section 5.

2 Prior work

Multilingual embedding architectures (static or
contextualised) are different from cross-lingual
ones (Ruder et al., 2019; Liu et al., 2019) in that
they are not products of aligning several mono-
lingual models. Instead, a deep neural model is
trained end to end on texts in multiple languages,
thus making the whole process more straightfor-
ward and yielding truly multilingual representa-
tions (Pires et al., 2019). Following Artetxe et al.
(2020), we will use the term ‘deep multilingual
pretraining’ for such approaches.

One of the early examples of deep multilingual
pretraining was BERT, which featured a multilin-
gual variant trained on the 104 largest language-
specific Wikipedias (Devlin et al., 2019). To
counter the effects of some languages having over-
whelmingly larger Wikipedias than others, Devlin
et al. (2019) used exponentially smoothed data
weighting; i.e., they exponentiated the probability
of a token being in a certain language by a cer-
tain α, and re-normalised. This has the effect of
‘squashing’ the distribution of languages in their
training data; larger languages become smaller, to
avoid drowning out the signal from smaller lan-
guages. One can also look at this technique as
a sort of sampling. Other multilingual models,
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such as XLM (Lample and Conneau, 2019) and
its larger variant, XLM-R (Conneau et al., 2020),
use different values of α for this sampling (0.5
and 0.3 respectively). The current paper is aimed
at analysing the effects of different α choices; in
spirit, this work is very similar to Arivazhagan
et al. (2019); where it differs is our analysis on
downstream tasks, as opposed to machine transla-
tion, where models are trained and evaluated on a
very specific task. We also position our work as
a resource, and we make our multilingual ELMo
models available for public use.

3 Experimental setup

3.1 Background

When taken to its logical extreme, sampling essen-
tially reduces to truncation, where all languages
have the same amount of data; thus, in theory, in
a truncated model, no language ought to domi-
nate any other. Of course, for much larger mod-
els, like the 104-language BERT, this is unfea-
sible, as the smallest languages are too small to
create meaningful models. By selecting a set of
languages such that the smallest language is still
reasonably sized for the language model being
trained, however, we hope to experimentally de-
termine whether truncation leads to truly neutral,
equally capable multilingual spaces; if not, we at-
tempt to answer the question of whether compres-
sion helps at all.

Our encoder of choice for this analysis is an
LSTM-based ELMo architecture introduced by
Peters et al. (2018). This might strike some
as a curious choice of model, given the (now)
much wider use of transformer-based architec-
tures. There are several factors that make ELMo
more suitable for our analysis. Our main moti-
vation was, of course, resources – ELMo is far
cheaper to train, computationally. Next, while
pre-trained ELMo models already exist for several
languages (Che et al., 2018; Ulčar and Robnik-
Šikonja, 2020), there is, to the best of our knowl-
edge, no multilingual ELMo. The release of our
multilingual model may therefore also prove to be
useful in the domain of probing, encouraging re-
search on multilingual encoders, constrained to re-
current encoders.

3.2 Sampling

Our initial starting point for collecting the lan-
guage model training corpora were the CoNLL

2017 Wikipedia/Common Crawl dumps released
as part of the shared task on Universal Dependen-
cies parsing (Ginter et al., 2017); we extracted the
Wikipedia portions of these corpora for our set of
13 languages. This gives us a set of fairly typo-
logically distinct languages, that still are not en-
tirely poorly resourced. The smallest language in
this collection, Hindi, has ∼ 91M tokens, which
we deemed sufficient to train a reasonable ELMo
model.

Despite eliminating Common Crawl data, this
gave us, for our set of languages, a total corpus
size of approximately 35B tokens, which would
be an unfeasible amount of data given computa-
tional constraints. We therefore selected a base-
line model to be somewhat synthetic – note that
this is a perfectly valid choice given our goals,
which were to compare various sampling expo-
nents. Our ‘default’ model, therefore, was trained
on data that we obtained by weighting this ‘real-
world’ Wikipedia data. The largest α we could
use, that would still allow for feasible training,
was α = 0.4 (further on, we refer to this model
as M0.4); this gave us a total corpus size of ∼4B

tokens. Our second, relatively more compressed
model, used α = 0.2 (further on, M0.2); giving
us a total corpus size of ∼2B tokens; for our fi-
nal, most compressed model (further on, TRUNC),
we merely truncated each corpus to the size of our
smallest corpus (Hindi; 91M), giving us a corpus
sized ∼1.2B tokens. Sampling was carried out as
follows: if the probability of a token being sam-
pled from a certain language i is pi, the adjusted
probability is given by qi = pi∑N

j=1 pj
. Note that

this is a similar sampling strategy to the one fol-
lowed by more popular models, like mBERT. We
trained an out-of-the box ELMo encoder for ap-
proximately the same number of steps on each cor-
pus; this was equivalent to 2 epochs for M0.4 and
3 for M0.2.

Detailed training hyperparameters and precise
corpus sizes are presented in Appendices A and B.

3.3 Tasks
While there is a dizzying array of downstream
evaluation tasks for monolingual models, looking
to evaluate multilingual models is a bit harder. We
settled on a range of tasks in two different groups:

1. Monolingual tasks: these tasks directly test
the monolingual capabilities of the model,
per language. We include PoS tagging and
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dependency parsing in this category. In addi-
tion to our multilingual models, we also eval-
uate our monolingual ELMo variants on these
tasks.

2. Transfer tasks: these tasks involve leverag-
ing the model’s multilingual space, to trans-
fer knowledge from the language it was
trained on, to the language it is being evalu-
ated on. These tasks include natural language
inference and text retrieval; we also convert
PoS tagging into a transfer task, by training
our model on English and asking it to tag text
in other languages.

In an attempt to illuminate precisely what the
contribution of the different ELMo models is, we
ensure that our decoder architectures – that trans-
late from ELMo’s representations to the task’s la-
bel space – are kept relatively simple, particularly
for lower-level tasks. We freeze ELMo’s parame-
ters: this is not a study on fine-tuning.

The tasks that we select are a subset of the tasks
mentioned in XTREME (Hu et al., 2020); i.e., the
subset most suitable to the languages we trained
our encoder on. A brief description follows:

PoS tagging: For part-of-speech tagging, we
use Universal Dependencies part-of-speech tagged
corpora (Nivre et al., 2020). Built on top of our
ELMo-encoder is a simple MLP, that maps repre-
sentations onto the PoS label space.

PoS tagging (transfer): We use the same archi-
tecture as for regular PoS tagging, but train on En-
glish and evaluate on our target languages.

Dependency parsing: We use dependency-
annotated Universal Dependencies corpora; our
metrics are both unlabelled and labelled attach-
ment scores (UAS/LAS). Our parsing architecture
is a biaffine graph-based parser (Dozat and Man-
ning, 2018).

XNLI: A transfer-based language inference
task; we use Chen et al.’s 2017 ESIM architec-
ture, train a tagging head on English, and evaluate
on the translated dev portions of other languages
(Conneau et al., 2018).

Tatoeba: The task here is to pick out, for each
sentence in our source corpus (English), the
appropriate translation of the sentence in our
target language corpus. This, in a sense, is the
most ‘raw’ tasks; target language sentences are

Figure 1: Performance difference between mono-
lingual and multilingual models, on our monolin-
gual tasks. Absent bars indicate that the language
was missing.

ranked based on similarity. We follow Hu et al.
(2020) and use the Tatoeba dataset.

We tokenize all our text using the relevant UD-
Pipe (Straka et al., 2019) model, and train/evaluate
on each task three times; the scores we report are
mean scores.

4 Results

First, we examine the costs of multilingualism,
as far as monolingual tasks are concerned. We
present our results on our monolingual tasks in
Figure 1. Monolingual models appear to per-
form consistently better, particularly PoS tagging;
this appears to be especially true for our under-
resourced languages, strengthening the claim that
compression is necessary to avoid drowning out
signal. For PoS tagging, the correlation be-
tween performance difference (monolingual vs.
M0.4) and corpus size is highly significant (ρ =
0.74; p = 0.006).

PoS UAS LAS PoS (trf.) XNLI Tatoeba

MONO 0.86 0.86 0.81 - - -
M0.4 0.83 0.85 0.80 0.36 0.45 0.18
M0.2 0.84 0.85 0.80 0.39 0.46 0.21
TRUNC 0.83 0.85 0.80 0.36 0.45 0.13

Table 1: Average scores for each task and encoder;
non-monolingual best scores in bold.

We find that compression appears to result in
visible improvements, when moving from α = 0.4
to α = 0.2. These improvements, while not dra-
matic, apply across the board (see Table 1), over
virtually all task/language combinations; this is
visible in Figure 2a. Note the drop in performance
on certain tasks for English, Swedish and Italian –
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(a) M0.2 vs. M0.4 (b) TRUNC vs. M0.4

Figure 2: Performance differences between our models on our selected tasks.

we hypothesise that this is due to Swedish and Ital-
ian being closer to English (our most-sampled lan-
guage), and therefore suffering from the combina-
tion of the drop in their corpus sizes, as well as the
more significant drop in English corpus size. The
Pearson correlation between the trend in perfor-
mance for PoS tagging and the size of a language’s
corpus is statistically significant (ρ = 0.65; p =
0.02); note that while this is over multiple points,
it is single runs per data point.

Figure 2b also shows the difference in perfor-
mance between the truncated model, TRUNC, and
M0.4; this is a lot less convincing than the dif-
ference to M0.2, indicating that no additional ad-
vantage is to be gained by downsampling data for
better-resourced languages.

We include full, detailed results in Appendix C.

Cross-lingual differences Finally, in an attempt
to study the differences in model performance
across languages, we examine the results of all
models on Tatoeba. This task has numerous ad-
vantages for a more detailed analysis; i) it covers
all our languages, bar Hindi, ii) the results have
significant variance across languages, and iii) the
task does not involve any additional training. We
present these results in Figure 3.

We observe that M0.2 consistently appears to
perform better, as illustrated earlier. Performance
does not appear to have much correlation with
corpus size; however, the languages for which
M0.4 performs better are Swedish and Italian, co-
incidentally, the only other Latin-scripted Indo-
European languages. Given the specific nature of
Tatoeba, which involves picking out appropriate
translations, these results make more sense: these
languages receive not only the advantage of hav-
ing more data for themselves, but also from the

Figure 3: Accuracy on Tatoeba per model

additional data available to English, which in turn
optimises their biases solely by virtue of language
similarity.

5 Discussion

Our results allow us to draw conclusions that come
across as very ‘safe’: some compression helps, too
much hurts; when compression does help, how-
ever, the margin appears rather moderate yet sig-
nificant for most tasks, even given fewer training
cycles. Immediately visible differences along lin-
guistic lines do not emerge when ratios differ, de-
spite the relative linguistic diversity of our lan-
guage choices; we defer analysis of this to a future
work, that is less focused on downstream analysis,
and more on carefully designed probes that might
illuminate the difference between our models’ in-
ternal spaces. Note that a possible confounding
factor in our results is also the complexity of the
architectures we build on top of mELMO: they
also have significant learning capacity, and it is not
implausible that whatever differences there are be-
tween our models, are drowned out by highly pa-
rameterised downstream decoders.
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To reiterate, this study is not (nor does it aim
to be) a replication of models with far larger pa-
rameter spaces and more training data. This is
something of a middle-of-the-road approach; fu-
ture work could involve this sort of evaluation
on downscaled transformer models, which we shy
away from in order to provide a usable model re-
lease. We hope that the differences between these
models provide some insight, and pave the way for
further research, not only specifically addressing
the question of sampling from a perspective of per-
formance, but also analytically. There has already
been considerable work in this direction on mul-
tilingual variants of BERT (Pires et al., 2019; Chi
et al., 2020), and we hope that this work motivates
papers applying the same to recurrent mELMo, as
well as comparing and contrasting the two. The
ELMo models described in this paper are publicly
released via NLPL Vector Repository.1
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A Hyperparameters

B Corpus sizes

C Detailed results

Param Value

Layers 2
Output dimensionality 2048
Batch size 192
Negative samples per batch 4096
Vocabulary size 100,000
Number of epochs 2 (M0.4); 3(M0.2)

Table 2: Models were bidirectional LSTMs.
Monolingual models were trained on individual
sizes given at α = 0.4.
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Language AR EN EU FI HE HI IT JA KO RU SV TR ZH Total
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M0.2 149.09 231.76 102.01 148.25 138.29 91.74 207.3 205.54 130.15 186.68 183.45 190.6 161.06 2125.92
TRUNC 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 91.74 1192.62

Table 3: Corpus sizes, in million tokens

Language AR EN EU FI HE HI IT JA KO RU SV TR ZH

POS

MONO 0.89 0.89 0.88 0.82 0.84 0.9 0.91 0.94 0.67 0.88 - 0.83 0.86
0.4 0.81 0.89 0.81 0.78 0.82 0.87 0.89 0.94 0.64 0.87 - 0.81 0.84
0.2 0.86 0.89 0.85 0.79 0.83 0.9 0.89 0.94 0.64 0.87 - 0.82 0.85

TRUNC 0.82 0.89 0.84 0.8 0.82 0.9 0.88 0.93 0.63 0.86 - 0.81 0.85

UAS

MONO 0.86 0.89 0.84 0.88 0.89 0.94 0.93 0.95 0.8 - 0.85 0.69 0.8
M0.4 0.85 0.89 0.83 0.85 0.89 0.94 0.93 0.95 0.79 - 0.84 0.68 0.78
M0.2 0.85 0.89 0.84 0.87 0.88 0.94 0.93 0.95 0.79 - 0.84 0.67 0.79

TRUNC 0.85 0.89 0.83 0.86 0.89 0.94 0.93 0.95 0.78 - 0.84 0.68 0.79

LAS

MONO 0.79 0.86 0.79 0.84 0.84 0.9 0.9 0.94 0.74 - 0.81 0.59 0.74
0.4 0.78 0.85 0.78 0.81 0.84 0.9 0.9 0.94 0.72 - 0.79 0.57 0.72
0.2 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.94 0.73 - 0.8 0.57 0.72

TRUNC 0.79 0.85 0.78 0.82 0.84 0.9 0.9 0.93 0.72 - 0.79 0.57 0.72

POS (trf.)
0.4 0.23 0.89 0.25 0.43 0.36 0.31 0.52 0.22 0.18 0.49 - 0.23 0.22
0.2 0.26 0.89 0.29 0.47 0.37 0.33 0.54 0.24 0.18 0.55 - 0.29 0.28

TRUNC 0.23 0.89 0.3 0.48 0.32 0.26 0.48 0.2 0.17 0.49 - 0.27 0.28

XNLI
M0.4 0.41 0.67 - - - 0.44 - - - 0.48 - 0.35 0.35
M0.2 0.46 0.56 - - - 0.45 - - - 0.49 - 0.45 0.34

TRUNC 0.43 0.66 - - - 0.43 - - - 0.43 - 0.43 0.35

Tatoeba
0.4 0.05 - 0.05 0.19 0.16 - 0.36 0.11 0.04 0.26 0.55 0.12 0.11
0.2 0.12 - 0.12 0.26 0.21 - 0.34 0.11 0.05 0.33 0.4 0.17 0.19

TRUNC 0.05 - 0.1 0.2 0.09 - 0.22 0.05 0.03 0.15 0.29 0.1 0.13

Table 4: Full score table across all languages, tasks and models
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Abstract

Most work in NLP makes the assumption
that it is desirable to develop solutions in
the native language in question. There is
consequently a strong trend towards build-
ing native language models even for low-
resource languages. This paper questions
this development, and explores the idea of
simply translating the data into English,
thereby enabling the use of pretrained, and
large-scale, English language models. We
demonstrate empirically that a large En-
glish language model coupled with mod-
ern machine translation outperforms native
language models in most Scandinavian lan-
guages. The exception to this is Finnish,
which we assume is due to inferior trans-
lation quality. Our results suggest that ma-
chine translation is a mature technology,
which raises a serious counter-argument
for training native language models for low-
resource languages. This paper therefore
strives to make a provocative but impor-
tant point. As English language models
are improving at an unprecedented pace,
which in turn improves machine translation,
it is from an empirical and environmental
stand-point more effective to translate data
from low-resource languages into English,
than to build language models for such lan-
guages.

1 Introduction

Although the Transformer architecture for deep
learning was only recently introduced (Vaswani
et al., 2017), it has had a profound impact on the de-
velopment in Natural Language Processing (NLP)
during the last couple of years. Starting with the
seminal BERT model (Devlin et al., 2019), we have
witnessed an unprecedented development of new

model variations (Yang et al., 2019; Clark et al.,
2020; Raffel et al., 2020; Radford et al., 2019;
Brown et al., 2020) with new State Of The Art
(SOTA) results being produced in all types of NLP
benchmarks (Wang et al., 2018, 2019; Nie et al.,
2020).

The leading models are large both with respect to
the number of parameters and the size of the train-
ing data used to build the model; this correlation be-
tween size and performance has been demonstrated
by Kaplan et al. (2020). The ongoing scale race
has culminated in the 175-billion parameter model
GPT-3, which was trained on some 45TB of data
summing to around 500 billion tokens (Brown et al.,
2020).1 Turning to the Scandinavian languages,
there are no such truly large-scale models avail-
able. At the time of writing, there are around 300
Scandinavian models available in the Hugging Face
Transformers model repository.2 Most of these are
translation models, but there is already a signifi-
cant number of monolingual models available in
the Scandinavian languages.3

However, none of these Scandinavian language
models are even close to the currently leading En-
glish models in parameter size or training data used.
As such, we can expect that their relative perfor-
mance in comparison with the leading English mod-
els is significantly worse. Furthermore, we can
expect that the number of monolingual Scandina-
vian models will continue to grow at an exponential
pace during the near future. The question is: do
we need all these models? Or even: do we need
any of these models? Can’t we simply translate
our data and tasks to English and use some suitable
English SOTA model to solve the problem? This
paper provides an empirical study of this idea.

1The currently largest English model contains 1.6 trillion
parameters (Fedus et al., 2021).

2huggingface.co/models
3At the time of submission, there are 17 monolingual

Swedish models available.
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Language Vocab size Lexical richness Avg. word length Avg. sentence length
Swedish 31,478 0.07 4.39 14.75
Norwegian 26,168 0.06 4.21 14.10
Danish 42,358 0.06 4.17 19.55
Finnish 34,729 0.14 5.84 10.69
English 27,610 0.04 3.99 16.87

Table 1: The vocabulary size, Lexical richness, average word length and average sentence length for the
Trustpilot sentiment data of each language.

2 Related work

There is already a large, and rapidly growing, liter-
ature on the use of multilingual models (Conneau
et al., 2020a; Xue et al., 2020), and on the possi-
bility to achieve cross-lingual transfer in multilin-
gual language models (Ruder et al., 2019; Artetxe
et al., 2020; Lauscher et al., 2020; Conneau et al.,
2020b; Karthikeyan et al., 2020; Nooralahzadeh
et al., 2020). From this literature, we know among
other things that multilingual models tend to be
competitive in comparison with monolingual ones,
and that especially languages with smaller amounts
of training data available can benefit significantly
from transfer effects from related languages with
more training data available. This line of study fo-
cuses on the possibility to transfer models to a new
language, and thereby facilitating the application
of the model to data in the original language.

By contrast, our interest is to transfer the data
to another language, thereby enabling the use of
SOTA models to solve whatever task we are in-
terested in. We are only aware of one previous
study in this direction: Duh et al. (2011) performs
cross-lingual machine translation using outdated
methods, resulting in the claim that even if per-
fect translation would be possible, we will still see
degradation of performance. In this paper, we use
modern machine translation methods, and demon-
strate empirically that no degradation of perfor-
mance is observable when using large SOTA mod-
els.

3 Data

In order to be able to use comparable data in the
languages under consideration (Swedish, Danish,
Norwegian, and Finnish), we contribute a Scandina-
vian sentiment corpus (ScandiSent),4 consisting of
data downloaded from trustpilot.com. For each
language, the corresponding subdomain was used

4https://github.com/timpal0l/ScandiSent

to gather reviews with an associated text. This data
covers a wide range of topics and are divided into
22 different categories, such as electronics, sports,
travel, food, health etc. The reviews are evenly
distributed among all categories for each language.

All reviews have a corresponding rating in the
range 1 − 5. The review ratings were polarised
into binary labels, and the reviews which received
neutral rating were discarded. Ratings with 4 or
5 thus corresponds to a positive label, and 1 or 2
correspond to a negative label.

To further improve the quality of the data, we ap-
ply fastText’s language identification model (Joulin
et al., 2016) to filter out any reviews containing
incorrect language. This results in a balanced set of
10,000 texts for each language, with 7,500 samples
for training and 2,500 for testing. Table 1 sum-
marizes statistics for the various datasets of each
respective language.

3.1 Translation
For all the Nordic languages we generate a cor-
responding English dataset by direct Machine
Translation, using the Neural Machine Translation
(NMT) model provided by Google.5 To justifiably
isolate the effects of modern day machine trans-
lation, we restrict the translation to be executed
in prior to all experiments. This means that all
translation is executed prior to any fine-tuning, and
that the translation model is not updated during
training.

4 Models

In order to fairly select a representative pre-trained
model for each considered Scandinavian language,
we opt for the most popular native model according
to Hugging Face. For each considered language,
this corresponds to a BERT-Base model, hence
each language is represented by a Language Model

5https://cloud.google.com/translate/docs/advanced/translating-
text-v3
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Model name in Hugging Face Language Data size
KB/bert-base-swedish-cased sv 3B tokens
TurkuNLP/bert-base-finnish-cased-v1 fi 3B tokens
ltgoslo/norbert no 2B tokens
DJSammy/bert-base-danish-uncased BotXO,ai da 1.6B tokens
bert-base-cased en 3.3B tokens
bert-base-cased-large en 3.3B tokens
xlm-roberta-large multi 295B tokens

Table 2: Models used in the experiments and the size of their corresponding training data. ’B’ is short for
billion.

Model sv no da fi en
BERT-sv 96.76 89.32 90.68 83.40 86.76
BERT-no 90.40 95.00 92.52 83.16 78.52
BERT-da 86.24 89.16 94.72 80.16 85.28
BERT-fi 90.24 86.36 87.72 95.72 84.32
BERT-en 85.72 87.60 87.72 84.16 96.08
BERT-en-Large 91.16 91.88 92.40 89.56 97.00

Translated Into English
BERT-sv 88.24 87.80 89.68 83.60 -
BERT-no 88.40 86.80 88.44 80.72 -
BERT-da 88.24 84.20 89.12 83.32 -
BERT-fi 90.04 90.08 89.36 86.04 -
BERT-en 95.76 95.48 95.96 92.96 -
BERT-en-Large 97.16 96.56 97.48 94.84 -

Table 3: Accuracy for monolingual models for the native sentiment data (upper part) and machine
translated data (lower part). Underlined results are the best results per language in using the native data,
while boldface marks the best results considering both native and machine translated data.

Model sv no da fi en
XLM-R-large 97.48 97.16 97.68 95.60 97.76

Translated Into English
XLM-R-large 97.04 96.84 98.24 95.48 -

Table 4: Accuracy on the various sentiment datasets using XLM-R-Large

of identical architecture. The difference between
these models is therefore mainly in the quantity and
type of texts used during training, in addition to
potential differences in training hyperparameters.

We compare these Scandinavian models against
the English BERT-Base and BERT-Large models
by Google. English BERT-Base is thus identical
in architecture to the Scandinavian models, while
BERT-Large is twice as deep and contains more
than three times the amount of parameters as BERT-
Base. Finally, we include XLM-R-Large, in order
to compare with a model trained on significantly
larger (and multilingual) training corpora.

Table 2 lists both the Scandinavian and English
models, together with the size of each models cor-
responding training corpus.

5 Experiments

5.1 Setup

We fine-tune and evaluate each model towards each
of the different sentiment datasets, using the hy-
perparameters listed in Appendix 5. From this we
report the binary accuracy, with the results for the
BERT models available in Table 3, and the XLM-R
results in Table 4.
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5.2 Monolingual Results

The upper part of Table 3 shows the results us-
ing the original monolingual data. From this we
note a clear diagonal (marked by underline), where
the native models perform best in their own respec-
tive language. Bert-Large significantly outperforms
BERT-Base for all non-English datasets, and it also
performs slightly better on the original English
data.

Comparing these results with the amount of train-
ing data for each model (Table 1), we see a corre-
lation between performance and amount of pre-
training data. The Swedish, Finnish and English
models have been trained on the most amount of
data, leading to slightly higher performance in their
native languages. The Danish model which has
been trained on the least amount of data, performs
the worst on its own native language.

For the cross-lingual evaluation, BERT-Large
clearly outperforms all other non-native models.
The Swedish model reaches higher performance
on Norwegian and Finnish compared to the other
non-native Scandinavian models. However, the
Norwegian model performs best of the non-native
models on the Danish data. Finally, we observe an
interesting anomaly in the results on the English
data, where the Norwegian model performs consid-
erably worse than the other Scandinavian models.

5.3 Translation Results

The results for the machine translated data, avail-
able as the lower part of Table 3, show that BERT-
Large outperforms all native models on their native
data, with the exception of Finish. The English
BERT-Base reaches higher performance on the ma-
chine translated data than the Norwegian and Dan-
ish models on their respective native data. The
difference between English BERT-Base using the
machine translated data, and the Swedish BERT
using native data is about 1% unit.

As expected, all Scandinavian models perform
significantly worse on their respective machine
translated data. We find no clear trend among the
Scandinavian models when evaluated on translated
data from other languages. But we note that the
Danish model performs better on the machine trans-
lated Swedish data than on the original Swedish
data, and the Finnish model also improves its per-
formance on the other translated data sets (except
for Swedish). All models (except, of course, the
Finnish model) perform better on the machine trans-

lated Finnish data.
Finally, 4 shows the results from XLM-R-Large,

which has been trained on data several orders of
magnitude larger than the other models. XLM-R-
Large achieves top scores on the sentiment data
for all languages except for Finnish. We note
that XLM-R produces slightly better results on the
native data for Swedish, Norwegian and Finnish,
while the best result for Danish is produced on the
machine translated data.

6 Discussion & Conclusion

Our experiments demonstrate that it is possible to
reach better performance in a sentiment analysis
task by translating the data into English and using
a large pre-trained English language model, com-
pared to using data in the original language and a
smaller native language model. Whether this result
holds for other tasks as well remains to be shown,
but we see no theoretical reasons for why it would
not hold. We also find a strong correlation between
the quantity of pre-training data and downstream
performance. We note that XLM-R in particular
performs well, which may be due to data size, and
potentially the ability of the model to take advan-
tage of transfer effects between languages.

An interesting exception in our results is the
Finnish data, which is the only task for which the
native model performs best, despite XLM-R report-
edly having been trained on more Finnish data than
the native Finnish BERT model (Conneau et al.,
2020a). One hypothesis for this behavior can be
that the alleged transfer effects in XLM-R hold
primarily for typologically similar languages, and
that the performance on typologically unique lan-
guages, such as Finnish, may actually be negatively
affected by the transfer. The relatively bad perfor-
mance of BERT-Large on the translated Finnish
data is likely due to insufficient quality of the ma-
chine translation.

The proposed approach is thus obviously de-
pendent on the existence of a high-quality ma-
chine translation solution. The Scandinavian lan-
guages are typologically very similar both to each
other and to English, which probably explains the
good performance of the proposed approach even
when using a generic translation API. For other
languages, such as Finnish in our case, one would
probably need to be more careful in selecting a
suitable translation model. Whether the suggested
methodology will be applicable to other language
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pairs thus depends on the quality of the transla-
tions and on the availability of large-scale language
models in the target language.

Our results can be seen as evidence for the matu-
rity of machine translation. Even using a generic
translation API, we can leverage the existence of
large-scale English language models to improve
the performance in comparison with building a so-
lution in the native language. This raises a seri-
ous counter-argument for the habitual practice in
applied NLP to develop native solutions to practi-
cal problems. Hence, we conclude with the some-
what provocative claim that it might be unnecessary
from an empirical standpoint to train models in lan-
guages where:

1. there exists high-quality machine translation
models to English,

2. there does not exist as much training data to
build a language model.

In such cases, we may be better off relying on
existing large-scale English models. This is a clear
case for practical applications, where it would be
beneficial to only host one large English model
and translate all various incoming requests from
different languages.
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A Training Details

Parameters Value
train epochs 2
early stopping false
optimizer AdamW
learning rate 4e-5
batch size 512
max seq length 128
max grad norm 1.0

Table 5: Training hyperparameters for the senti-
ment classification experiments.
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Abstract
Recent research using pre-trained language
models for multi-document summarization
tasks lacks a deep investigation of potential
erroneous cases and their possible applica-
tion in other languages. In this work, we ap-
ply a pre-trained language model (BART)
for multi-document summarization (MDS)
task, both with fine-tuning and without fine-
tuning. We use two English datasets and
one German dataset for this study. First, we
reproduce the multi-document summaries
for the English language by following one
of the recent studies. Next, we show the
applicability of the model to the German
language by achieving state-of-the-art per-
formance on German MDS. We perform
an in-depth error analysis of the followed
approach for both languages, which leads
us to identify the most notable errors, from
made-up facts to topic delimitation. Lastly,
we quantify the amount of extractiveness.

1 Introduction
Nowadays, we are confronted with an enormous
amount of information through news, mails, social
media, etc., which are difficult to absorb for a hu-
man being in one go. Hence, there is a pressing
need to compress and comprehend this information.
Capturing salient details from multiple sources to
produce an abridged version is described as Multi-
Document Summarization (MDS) (Nenkova and
McKeown, 2011) and can be carried out in both
an abstractive or extractive manner. MDS has re-
cently become one of the most interesting research
topics in the field of Natural Language Processing
(NLP). As per the literature, whilst the state-of-the-
art models (Gehrmann et al., 2018; Liu et al., 2018)
heavily rely on large datasets, recent advances with
pre-trained language model systems (Ziegler et al.,
2019; Raffel et al., 2020; Lewis et al., 2020) have

shown great potential for the summarization task.
While there have been studies to gradually improve
the performance of MDS for the English language,
MDS for other languages has rarely been attempted.
There has also been a lack of in-depth error analy-
sis for the MDS task. In this study, we attempt to
analyze and address these issues.

Our main contributions are the following: Firstly,
we reproduce recent pre-trained and fine-tuned re-
sults for multi-document summarization with the
BART model, introduced by Lewis et al. (2020), on
two English datasets. Further, we adapt the model
for the German language and achieve state-of-the-
art performance for the German MDS task, beating
the most competitive baseline by a margin of 3.48-
8.67%. Secondly, we perform an analysis on the
erroneous cases for both languages where we point
out general errors and cross-lingual error similar-
ities regarding factfulness and topic delimitation.
Additionally, we also investigate the extractiveness
of the generated summaries.

2 Related Work

Early approaches on extractive MDS apply term
frequency-inverse document frequency (TF-IDF)
(McKeown et al., 1999; Goldstein et al., 2000;
Radev et al., 2000). Later, Conroy et al. (2006) and
Shen and Li (2010), attempt the MDS task with a
topic and set-based methodology, respectively. Ini-
tial attempts for abstractive multi-document sum-
marization are made by McKeown and Radev
(1995) and Radev and McKeown (1998). Barzi-
lay and McKeown (2005) use sentence-fusion for
text generation to create summaries across differ-
ent documents. Haghighi and Vanderwende (2009)
build a model based on word frequency and La-
tent Dirichlet Allocation (LDA) for MDS whereas
phrase selection and merging approaches have also
been tried (Bing et al., 2015) for the same.

In recent years, neural network architecture is
being adapted for several NLP tasks, especially
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with the approach of using encoder-decoder archi-
tecture. Here, relevant work includes Rush et al.
(2015), who propose an attention model for com-
bining extractive and abstractive methods, which
is supplemented with document-wide contextual-
ization by Cheng and Lapata (2016) and Nalla-
pati et al. (2016). In a different direction, sev-
eral graph-based approaches are explored as well
(Tan et al., 2017; Yasunaga et al., 2017). Liu et al.
(2018) show the feasibility of using Wikipedia as
an MDS dataset whereas Fabbri et al. (2019) ap-
ply a pointer-generator network with a transformer
model complemented with Maximal Marginal Rel-
evance (MMR). Li et al. (2020) explores graph
representation and proposes to leverage graphs for
abstractive MDS.

Most recently, fine-tuning pre-trained language
models have gained a lot of attention for NLP
tasks. For summarization, one such work by Raf-
fel et al. (2020) attempted to explore fine-tuning,
whereas, in another work, Liu and Lapata (2019)
fine-tune BERT for summarization. Later, Hokamp
et al. (2020) adapt and fine-tune BART on MDS.
Approaches regarding a systematic error analysis
of those models were introduced by Huang et al.
(2020) who compared BART to other abstractive
and extractive methods.

In another direction, attempts have also been
made for single-document summarization for non-
English text. For instance, single-document sum-
marization of text in German language was done
by Parida and Motlicek (2019) who utilized trans-
former models for abstractive summarization on
two datasets — SwissText 20191 and Common
Crawl2. Evaluation of summarization models to
non-English data was done by Tauchmann and
Mieskes (2020) who applied an automatic eval-
uation paradigm on the German heterogeneous
dataset DBS (Benikova et al., 2016). Since our
main focus is on multi-document summarization,
we do not explore the literature of single-document
summarization extensively.

3 Datasets
For our experiments we use three datasets that
exhibit extractive characteristics: two English
datasets — CNN/DM (Hermann et al., 2015),
Multi-News (Fabbri et al., 2019) and one German
dataset — auto-hMDS (Zopf, 2018).

1https://www.swisstext.org/
2http://commoncrawl.org/

CNN/DailyMail This dataset is an English
single-document summarization (SDS) news
dataset consisting of 311,971 news articles with
an average length of ∼800 words from the CNN
and DailyMail websites including abstractive
summaries.

Multi-News The Multi-News dataset is an
English MDS news dataset consisting of 56,216
summaries and over 250,000 sources with an
average of ∼2,100 words from 1,500 differ-
ent sites. The summaries are linked to 2-10
human-written source documents retrieved from
https://www.newser.com/.

auto-hMDS This is the largest dataset for multi-
document summarization in German language with
2,210 summaries and 10,454 source documents,
and diverse in nature. The dataset is created by
selecting available summaries from Wikipedia and
search for corresponding source documents on the
internet. On an average, a summary is linked to
4.73 source documents.

4 Methodology

We consider the state-of-the-art BART model
(Lewis et al., 2020) for the multi-document summa-
rization (MDS) task. First, we use only pre-trained
BART, and next, we fine-tune the pre-trained
BART model using each of the three datasets
separately and analyze the performances. The
details about the BART model are described below.

Description of BART model BART (Lewis et al.,
2020) generalizes the concepts of bidirectional
encoders from BERT (Devlin et al., 2019) and
autoregressive decoders from GPT-2 (Radford
et al., 2019). The model is trained with text cor-
rupted through an arbitrary noising function and
a sequence-to-sequence model that learns to re-
construct the original text. The encoder reads the
sequential input e.g. a document to summarize
while the decoder generates the outputs autoregres-
sively. Both layers are connected by cross-attention
where each decoder layer focuses on specific as-
pects over the final state of the encoder output cre-
ating sequences, closely connected to the initial
input. The bidirectional encoder architecture takes
all previous and subsequent tokens into account
for predicting a masked token. In text generation,
BERT without any modification loses its strength
of bi-directionalism and becomes directional to-
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wards past words, as following words have yet to
be generated. Here BART adopts the architecture
of GPT-2 to predict future words only by utilizing
previous words. The advantage of BART therefore
is the combination of contextual embeddings from
BERT and text generation from GPT-2. Transfor-
mation, as described in Lewis et al. (2020), can be
implemented through token masking, token dele-
tion, text infilling, sentence permutation, or docu-
ment rotation.

Note that, in the work done by Lewis et al.
(2020), authors apply the BART model only on
single-document summarization (SDS) task, not
on the multi-document variant of the summariza-
tion task. Therefore, to adapt the BART model for
the MDS task, we follow the approach prescribed
by Lebanoff et al. (2018), where authors reuse the
existing SDS model for MDS by merging multiple-
input to single-input. On the other hand, the issue
of redundant and overlapping information is one
major point to be taken care of for any summa-
rization task, especially for MDS tasks. For that
purpose, we rely on the n-gram blocking approach
following the work done by Paulus et al. (2017).

5 Experimental Results and Error
Analysis

For our experiments we make use of the pre-trained
BART model3 and fine-tune the model on the three
datasets and compare the performance with com-
petitive baselines.

Method R-1 R-2 R-L
LEAD-3 (Liu and Lapata) 40.42 17.62 36.67
BERTSUMABS (Liu and Lapata) 41.72 19.39 38.76
BERTSUMEXTABS (Liu and Lapata) 42.13 19.60 39.18
BART pre-trained 25.98 11.26 17.50
BART fine-tuned 42.21 19.10 35.38

Table 1: Performance of the BART pre-trained
and fine-tuned models along with most competi-
tive baselines (Liu and Lapata, 2019) on CNN/DM
dataset.

5.1 Comparative Evaluation
We split each dataset into training (80%), validation
(10%) and test (10%) set. In our experimental set-
up, we use the beam size of 4, n-gram size of 3 and
use the Adam optimizer (Kingma and Ba, 2014)4.
To evaluate the the model generated summaries, we
use the variants (R-1, R-2, R-L) of ROUGE metric

3https://github.com/pytorch/fairseq/
tree/master/examples/bart

4Default settings β1 = 0.9 and β2 = 0.999
and a learning rate of 3e− 05

(Lin, 2004) as required for the comparison with the
baseline models.

Method R-1 R-2 R-L
HI-MAP (Fabbri et al.) 40.08 14.90 19.70
BART DYNE-1 (Hokamp et al.) 43.90 15.80 22.20
BART DYNE-5 (Hokamp et al.) 43.20 13.60 20.40
BART pre-trained 30.67 10.05 16.99
BART fine-tuned 40.58 15.50 21.73

Table 2: Performance of the pre-trained and fine-
tuned BART model along with baseline models on
Multi-News Dataset.

100 words 200 words
Method R-1 R-2 R-1 R-2
RANDOM (Zopf) 18.57 1.85 25.53 3.25
LEAD (Zopf) 12.29 2.61 10.56 2.28
TOP-5 SENTENCES 21.71 4.28 19.61 3.87
LEXRANK 29.76 6.58 23.81 5.61
BART pre-trained 28.48 8.79 20.84 6.02
BART fine-tuned 38.43 12.93 30.24 9.09

Table 3: Performance of the BART pre-trained and
fine-tuned model along with baseline models on
auto-hMDS dataset.

Summary (gold)
A South Carolina man says he spent 66 days alone at sea before being res-
cued . Other sole survivor stories include a Japanese man washed away by
a tsunami . An El Salvador man says he drifted from Mexico to Marshall
Islands over a year .
Summary (generated) R-1 = 12.50 R-2 = 2.53 R-L = 8.75
Sailors can’t bank on technology or the proximity of a nearby city, town,
or boat. In order to survive, they can rely on ingenuity, resourcefulness and
luck. Jose Salvador Alvarenga says his journey began in Paredon Viejo, a
port on Mexico’s Pacific coast, in late 2012. He says he drank rainwater
and when there wasn’t any available, his own urine. Louis Jordan says he
used laundry to trap and scoop up fish, rigged a makeshift mast, and sail.

Table 4: Example of missing facts within the
CNN/DM dataset.

Table 1 shows the performance of the pre-trained
and fine-tuned BART model on the CNN/DM
dataset, along with the performance of the base-
line models. We see, that the fine-tuned BART
model produces comparable performance with the
baselines. On the other hand, Table 2 shows the
results of the pre-trained and fine-tuned BART
model on the Multi-News dataset. We observe the
fine-tuned model outperform the HI-MAP (Fabbri
et al., 2019) model, whereas it produces compa-
rable performance with BART-DYNE (Hokamp
et al., 2020). Note that, the fine-tuned BART model
considers all source documents for the MDS task
whereas the model by Hokamp et al. (2020) only
takes one (DYNE-1) or five source documents
(DYNE-5) into account, which otherwise simpli-
fies the task. Table 3 shows the results on the Ger-
man auto-hMDS dataset of pre-trained and fine-
tuned BART models in comparison to baselines
proposed by Zopf (2018). We prepare two baseline
models as well. The first one is trivial by extract-
ing ‘Top-5 Sentences’ based on the frequency of
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occurring words and the second one by following
the LexRank (Erkan and Radev, 2004) approach.
We see that the fine-tuned BART model outper-
forms all the baseline models by a significant
margin, producing a state-of-the-art performance
for the German MDS task5.

5.2 Error Analysis
Even though the BART model produces satisfac-
tory performance for multi-document summariza-
tion for both languages, there is still scope for
improvement. Hence, we investigate cases fur-
ther, where even the fine-tuned BART model goes
wrong. We perform this analysis for both English
and German languages. To start with, we observe
some interesting cases for which the model does
not generate the desired gold summary due to the
fact that some information in the gold summary is
actually not present in any of the source documents.
Table 4 represents one such interesting error case
obtained from the CNN/DM dataset.

Table 5 shows one example from another fre-
quently occurring genre of erroneous cases, for
the Multi-News dataset (at top) where the model
generated summary is very meaningful and compre-
hensive but makes up new facts such as the death
of Bob Dylan (color-coded in orange). We perform
a manual survey on the randomly selected model-
generated summaries and observe at least 4 out of
50 summaries which include made-up facts in an
otherwise coherent summary. This very pattern
can also be seen while experimenting with the Ger-
man auto-hMDS dataset (Table 5, at the bottom),
where the place and date of birth are made-up facts.
This is misleading as wrong facts are embedded
in a reasonable and correct context, making them
especially hard to spot.

Summary (model generated) R-1 = 67,59, R-2 = 29.91, R-L = 31.41
[...] The former James Bond star, 65, who was trained as a commercial
artist and worked as an illustrator, just auctioned off one of his paintings
for $1.4 million, depicting the singer, who died in 2013. Other auction
highlights included a Pierce Brosnam original painting, which sold for

Summary (model generated) R-1 = 55.88, R-2 = 11.94, R-L = 30.88
Andrew Johnson (* 29. Dezember 1808 in Raleigh (North Carolina, USA;
† 15. April 1865 in Greeneville, Tennessee) war der dritte Vizepraesident
der Vereinigten Staaten, der durch den Tod seines Vorgaengers ins Amt
kam und der erste nach einem Attentat. Als Hauptaufgabe seiner Praesi-
dentschaft galt die sogenannte Reconstruction, der Wiederaufbau [...]

Table 5: Examples of summaries showing wrong
facts while experimenting with the Multi-News
(Top) and auto-hMDS (Bottom) datasets.

5Note that, we do not report the R-L score in Table 3, as
R-L scores are not reported for the baseline models used for
comparison in the previous works.

Summary (model generated) R-1 = 75,81, R-2 = 31.14, R-L = 32.53
Die Westminster Abbey ist die Kroenungskirche der bristischen Monar-
chen seit Wilhelm dem Eroberer im 11. Jahrhundert. Erbaut wurde die
Westminster Abbey zwischen 1045 und 1065 auf dem Kloster Kloster
der Themse an den damals noch sumpfigen Ufern der themse errichtet.
Bis zum Jahr 1529 diente der Palast den britischen Koenigen als Resi-
denz. Heute ist der neugotische Palast vor allem als Houses of Parliament
bekannt.

Table 6: Example of summary showing wrong con-
textualization and topic extraction while experi-
menting with auto-hMDS dataset.

Another genre of erroneous summaries, which
we detect while experimenting with the German
auto-hMDS dataset, comes from lacking clear con-
textualization and topic delimitation. Table 6
presents one such example, where the model should
summarize information about the ‘Palace of West-
minster’, but as the source document includes ref-
erences to related buildings, the model lost atten-
tion and mixed up information about the ‘Palace of
Westminster’ and ‘Westminster Abbey’ (in orange)
in one summary.

5.3 Analysis of Extractiveness of Summaries

After analyzing and pointing out the erroneous
cases, we further investigate the nature of model-
generated summaries along with the gold sum-
maries of each dataset, in terms of extractiveness.
Even though according to one of the recent studies
(Lewis et al., 2020), the BART model output is
“highly abstractive, with few phrases copied from
the input”, our findings are contrary with sum-
maries mainly built from extractive fragments or
even whole paragraphs.
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Figure 1: Comparison of extractiveness of gold
summaries and model-generated summaries.

To investigate quantitatively, we measure the ex-
tractiveness by using the method of extractive cov-
erage and extractive density, introduced by Grusky
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et al. (2018)6.
From Figure 1, we can see that the model-

generated summaries from fine-tuned BART are
much more extractive than their gold counterparts
with an average extractive coverage over 94%.
While the gold summaries are already much more
extractive, BART generated summaries increase
extractiveness further. The figure also discloses the
difference between the German auto-hMDS dataset
and the English datasets. The average extractive
density of the gold summaries from the German
auto-hMDS shows that the summaries are mainly
built from long extractive fragments, much more
than the English gold standard summaries.

6 Conclusion

In this paper, we investigated the performance of
one of the most recent pre-trained language models
namely BART, for multi-document summarization
tasks in English and German language. For the first
time ever, we attempted fine-tuning BART for Ger-
man language multi-document summarization and
achieved state-of-the-art performance. We further
analyzed the erroneous cases for both English and
German language and attempted to find a set of
patterns where BART went wrong. The insights
obtained via this error analysis give rise to devise
more sophisticated methods for the task of multi-
document summarization addressing these errors,
of which the most severe is the hallucination of
facts.

Our code and data repository is available pub-
licly7.

References
Regina Barzilay and Kathleen R McKeown. 2005. Sen-

tence fusion for multidocument news summariza-
tion. Computational Linguistics, 31(3):297–328.

Darina Benikova, Margot Mieskes, Christian M. Meyer,
and Iryna Gurevych. 2016. Bridging the gap be-
tween extractive and abstractive summaries: Cre-
ation and evaluation of coherent extracts from het-
erogeneous sources. In Proceedings of COLING

6Extractive density measures how well a sequence of a
summary is made of extractions from the source, while extrac-
tive coverage measures, how much the summary is a derivative
of the source taking into account individual words. Note that,
many individual words could result in a high coverage, but a
high density can only be achieved with long extractive frag-
ments.

7https://github.com/uhh-lt/
multi-summ-german

2016, the 26th International Conference on Compu-
tational Linguistics: Technical Papers, pages 1039–
1050, Osaka, Japan.

Lidong Bing, Piji Li, Yi Liao, Wai Lam, Weiwei Guo,
and Rebecca J Passonneau. 2015. Abstractive multi-
document summarization via phrase selection and
merging. In Proceedings of the 53rd Annual Meet-
ing of the Association for Computational Linguistics
and the 7th International Joint Conference on Natu-
ral Language Processing (Volume 1: Long Papers),
pages 1587–1597, Beijing, China.

Jianpeng Cheng and Mirella Lapata. 2016. Neural sum-
marization by extracting sentences and words. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 484–494, Berlin, Germany.

John M. Conroy, Judith D. Schlesinger, and Dianne P.
O’Leary. 2006. Topic-focused multi-document sum-
marization using an approximate oracle score. In
Proceedings of the COLING/ACL 2006 Main Con-
ference Poster Sessions, pages 152–159, Sydney,
Australia.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. Bert: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
4171–4186, Minneapolis, Minnesota, USA.
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Abstract

We perform neural machine translation of
sentence fragments in order to create large
amounts of training data for English gram-
matical error correction. Our method aims
at simulating mistakes made by second lan-
guage learners, and produces a wider range
of non-native style language in comparison
to state-of-the-art synthetic data creation
methods. In addition to purely grammatical
errors, our approach generates other types
of errors, such as lexical errors. We per-
form grammatical error correction experi-
ments using neural sequence-to-sequence
models, and carry out quantitative and qual-
itative evaluation. A model trained on
data created using our proposed method is
shown to outperform a baseline model on
test data with a high proportion of errors.

1 Introduction

Grammatical error correction (GEC) is the task
of detecting and correcting grammatical errors
in texts, typically written by second language
learners. Current state-of-the-art GEC approaches
are based on neural machine translation (NMT)
(Grundkiewicz et al., 2019). As in other natural lan-
guage processing tasks, neural approaches to GEC
rely on large quantities of task-specific data, that
is, sentence pairs consisting of erroneous source
text coupled with corrected target text. However,
in-domain GEC data is scarce, and a number of
solutions to the data sparsity problem have been
proposed recently, often by introducing artificially
created GEC data into the training process.

Some error generation approaches also depend
on error-annotated authentic learner data. For ex-
ample, Felice and Yuan (2014) introduce errors
probabilistically with error probabilities that are
estimated using a learner corpus. Rozovskaya

et al. (2014) train error detection and classifica-
tion models on annotated data, focusing on verb
errors. Other methods dispense with the need for
annotated data, such as approaches based on in-
verted spell-checkers and heuristic error genera-
tion (Grundkiewicz et al., 2019; Grundkiewicz and
Junczys-Dowmunt, 2019).

To alleviate the data sparsity problem, in this
work we propose to use NMT to produce artificial
training data, simulating real errors made by lan-
guage learners. For instance, to produce English
text with errors, we use NMT models to translate
sentence fragments from other languages to En-
glish, and then combine the translated fragments
to form our erroneous source data. Similar ma-
chine translation approaches to GEC data creation
have been proposed before. For example, Rei et al.
(2017) use a statistical machine translation model
trained on reversed learner data, using the corrected
sentences as source data and erroneous sentences as
targets. Kasewa et al. (2018) extend this approach
and use an NMT model to produce errors. Htut and
Tetreault (2019) perform extensive experiments on
several neural models, likewise trained on learner
data to generate errors.

Our contribution is to split the foreign-language
source sentences into shorter fragments in order to
limit the context that is available to the machine
translation system. The rationale for doing this is to
produce text that contains artefacts from the foreign
language. Since the NMT system needs to trans-
late shorter fragments without the proper context,
we expect it to produce more literal translations
and to be less able to produce correct agreement
between different parts of speech. Additionally,
polysemy may prompt the system to suggest trans-
lations of a synonym in the foreign language, which
is not a synonym in English. The creation of syn-
thetic training data involves further steps, which
are described in Section 2. Model training is ex-
plained in Section 3. In Section 4 we evaluate our
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approach quantitatively against a strong baseline
(Grundkiewicz et al., 2019) and make some quali-
tative assessments.

2 Training data

The creation of our training data involves the fol-
lowing steps:

1. English sentences aligned with sentences of
other languages are used as data.1 Our parallel
text data are retrieved from the OpenSubtitles
(Lison and Tiedemann, 2016) and Europarl
(Koehn, 2005; Tiedemann, 2012) collections.2

2. The non-English sentences are split randomly
into chunks of an average length of three word
tokens.

3. Each sentence chunk in isolation is translated
into English using OPUS-MT machine trans-
lation models from HuggingFace (Tiedemann
and Thottingal, 2020). N-best lists containing
up to ten alternate translations for each chunk
are produced.

4. Full English sentences are created by concate-
nating chunks from the n-best lists. Ten dif-
ferent alternate full sentence translations are
generated for each source sentence by combin-
ing chunks at random, proportionally to the
translation scores of the chunks. Our aim is to
obtain English translations that contain errors
influenced by the source language. The origi-
nal English sentence from the parallel corpus
serves as a correct reference translation. Ex-
amples are shown in Table 1.

5. In theory, for each sentence in our data we
now have ten artificially created, erroneous
English sentences. However, many of the
synthetic sentences do not resemble authen-
tic human-produced erroneous sentences. We
therefore discard a significant portion (60 %)
of the synthesized sentences by sampling for
an error distribution that is closer to the error
distribution of authentic data, represented by
our development sets. This leaves us with just

1These languages, which have been chosen to represent
both European and Asian languages from different language
families are the following: Danish, Dutch, Finnish, French,
German, Italian, Japanese, Korean, Latvian, Portuguese, Rus-
sian, Spanish, and Swedish.

2Available for download at: https://opus.nlpl.
eu/

23 % of the words of our original set, reflect-
ing the fact that longer sentences are more
likely to be discarded.

6. The above mentioned sampling of sentences
requires us to be able to compare error distri-
butions between authentic and synthetic data.
First we POS tag the sentence pairs and align
them automatically using minimum string edit
distance coupled with some heuristics taking
into account part of speech and inflection. The
alignment algorithm is similar but not identi-
cal to ERRANT (Bryant et al., 2017; Felice
et al., 2016). This procedure is illustrated in
Table 2. From the alignments we extract tri-
grams consisting of a correction operation in
the context of one preceding and following
token, such as PRP ins(MD) VBP (“insert a
modal verb between a pronoun and a verb in
non-third person singular form”) or ins(DT)
ins(JJ) NN (“insert an adjective between an
inserted determiner and a noun in singular”).
These automatically extracted trigrams consti-
tute our correction types. Their frequency dis-
tributions are not the same across the authentic
and synthetic data. We filter the synthetic data
by keeping sentence pairs that contain com-
binations of correction types that are highly
likely to occur in authentic data and discard
sentence pairs with low-probability correction
types.

2.1 Final training sets

We carry out experiments using systems trained
on four different training sets. We create one data
set using our method that matches the word count
of the Baseline comparison. In addition, we cre-
ate two smaller data sets using both the Baseline
method and ours on the same correct target sen-
tences in order to control the effects of data do-
main.

• Baseline: We compare our own training
scheme to a system trained on the training
set created by Grundkiewicz et al. (2019).
They propose an unsupervised data genera-
tion method based on confusion sets from
spellcheckers. For each source sentence in the
news crawl data used for training, they replace
a random number of tokens with a substitute
from the vocabulary item’s confusion set. In
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de-src Während / du / bewusstlos im / Krankenhaus / lagst, sind / die Ärzte mit / diesen / Testergebnissen / zu / Daniel
gekommen.

en-tgt During / you / unconscious in / Hospital / the / doctors with / the / Test results / to / Daniel came.
en-ref While you were unconscious in the hospital, the doctors came to Daniel with these test results.
ru-src И никогда не / переставал / думать о / тебе.
en-tgt And never / I stopped / to think about / You.
en-ref I never stopped thinking about you.
fr-src Il est / vrai que toutes les / histoires ne peuvent avoir une fin heureuse, mais pour Jules / Daly, la rêveuse de Buffalo,

/ l’histoire ne / fait que commencer.
en-tgt It is / true that all / stories can’t have a happy ending, but for Jules / Daly, Buffalo’s dreamer, / history / Just

start.
en-ref It is true not all tales have happy endings, but then for Jules Daly, the dreamer from Buffalo, the story is just

beginning.
ja-src もし君が生き残れたら /一生懸命に働いたからだ
en-tgt And if you survive, / Because you worked hard.
en-ref If you live, you have worked very hard indeed.
fi-src Koulu / on - / lähettänyt / minut useammalle / terapeutille kuin / sinulla / on ollut huonoja / treffejä.
en-tgt School / is / sent / me to more / for a therapist / you / has been bad / Date.
en-ref This school has sent me to more therapists than you’ve had bad dates.

Table 1: Sentences in other languages (*-src) are split into chunks (e.g., / bewusstlos im /), and each
chunk in isolation is translated automatically into English. By concatenating the chunks we obtain English
sentences containing errors (en-tgt), for which correction hypotheses exist in the form of the English
reference translations (en-ref).

addition, they probabilistically delete and in-
sert random tokens, as well as swap adjacent
tokens in the sentence. They also introduce
additional noise at the character level using
similar operations. Although these operations
introduce some syntactic and word order mis-
takes, the method does not excel at producing
more complex syntactic errors, errors that re-
quire extensive reordering of the sentence, or
errors that result from L1 influence.

• Chunks: We produce a training set using our
method, which is sampled to contain the same
number of words as the Baseline (4.6 billion
words).

• Chunks-small: We produce a training set us-
ing our method such that the data set contains
only unique target sentences. This smaller
set contains approximately 650 million word
tokens and allows for faster model training.

• Baseline-small: We use the Baseline data cre-
ation method on the same target sentences as
in the Chunks-small set.

3 Model training

We build on the system described in Grundkiewicz
et al. (2019). We choose not to make changes to the
model or training parameters in order to isolate the
effects of our data creation method and ensure a fair
comparison. The same training setup is used for

all models, with modifications only in the training
sets. Specifically, we use their “Transformer Big”
architecture, with 6 self-attention layers, 16 atten-
tion heads, embeddings vectors of size 1024, and
feed-forward hidden size of 4096 with ReLU acti-
vation functions. We also tie the encoder, decoder,
and output embeddings.

We also adopt the training setup of Grund-
kiewicz et al. (2019), and train our models with
the Marian toolkit (Junczys-Dowmunt et al., 2018).
The models are first pretrained on the synthetic
data for a maximum of 5 epochs. After pretrain-
ing, we finetune the best model checkpoint using
the following corpora: FCE (Yannakoudakis et al.,
2011), NUCLE (Dahlmeier et al., 2013), W&I-
LOCNESS (Bryant et al., 2019; Granger, 1998),
and Lang-8 (Mizumoto et al., 2012). We use the
W&I-LOCNESS development set for validation
during training.

We use early stopping with a patience of 10 with
ERRANT F0.5 score on the W&I+locness devel-
opment set used as the early stopping criterion.
The checkpoint with the highest F0.5 score is cho-
sen for further finetuning. We choose the ADAM
optimizer, a learning rate of 0.0002 and a linear
warmup for 8k updates. We use Marian’s option
to dynamically fit mini-batches to GPU memory,
and train our models using 4 Nvidia Volta V100
GPUs (32GB RAM). In addition, we use strong reg-
ularization, which has been found useful in GEC
systems, with dropout probabilities of 0.3 between
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Learner sentence: We had enjoy time .
Correction: We had a great time .
Alignment: PRP VBD del(VB) ins(DT) ins(JJ) NN .
Synthetic sentence: You be the the old donkey of the forestry
Correct reference: You ’ll be the oldest donkey in the forest .
Alignment: PRP ins(MD) VBP del(DT) DT inf(JJS) NN del(IN) ins(IN) DT typ(NN) ins(.)

Table 2: Pairs of sentences with alignments. The upper example is an authentic sentence produced by a
language learner accompanied by a correction (target hypothesis) proposed by a teacher. The alignment is
a sequence describing how to modify the learner sentence into the corrected one. It reads as follows: PRP:
keep pronoun (“we”), VBD: keep verb in past tense (“had”), del(VB): delete verb in infinitive (“enjoy”),
ins(DT): insert determiner (“a”), ins(JJ): insert adjective (“great”), NN: keep noun in singular (“time”), .:
keep punctuation. The lower example is analogous, but the alignment is between a synthetically produced
sentence and the correct English reference. This alignment sequence contains a few more correction types:
inf(JJS): change inflection of adjective into superlative (“oldest”), typ(NN): fix typo in noun in singular
(the word “forestry” is here classified as a spelling error by the algorithm).

W&I-LOCNESS YKI
Baseline 66.44 52.63
Chunks 65.44 53.41
Baseline-small 60.09 46.66
Chunks-small 59.89 49.73

Table 3: F0.5 scores for the four models on the two
test sets. F0.5 is a weighted harmonic mean of pre-
cision and recall, where precision is accentuated.

layers, 0.1 for self-attention and feed-forward lay-
ers, 0.3 for entire source token embeddings, and
0.1 for target embeddings.

4 Evaluation

We report results on two different data sets. We
use the W&I-LOCNESS set, which was used as
official test data in the BEA19 GEC shared task
(Bryant et al., 2019), as well as a subset of the
English portion of learner texts derived from the
Finnish National Certificates of Language Profi-
ciency exams (YKI).3 We do not use the YKI data
as a blind test set, but instead use it to qualitatively
analyze differences in model predictions. Still, no
part of the YKI data was used during training or
development of the models.

We compare our results with those reported by
Grundkiewicz et al. (2019), whose system achieved
first place in the BEA19 GEC shared task. However
due to limited resources we do not train an ensem-
ble of models, but instead take a single left-to-right

3Available for research purposes from the Centre for Ap-
plied Language Studies at the University of Jyväskyla, Finland:
http://yki-korpus.jyu.fi/

model from Grundkiewicz et al. (2019) as base-
line. Their best system uses an ensemble approach
with right-to-left and language model reranking
and achieves a higher F0.5 score of 69.47 on the
W&I-LOCNESS test set.

The upper part of Table 3 compares our Chunks
model with the baseline by Grundkiewicz et al.
(2019). The Baseline model performs best on W&I-
LOCNESS with a one absolute point difference
compared to our model. However, our model out-
peforms the Baseline on YKI. These results sug-
gest that our data creation method might be suitable
when correcting noisier source sentences, as YKI
generally contains more challenging language with
more errors than W&I-LOCNESS.

The lower part of Table 3 demonstrates that the
trends are the same for the smaller models, in which
we match the data domain in training. That is, the
Baseline is no longer trained on news data but on
OpenSubtitles and Europarl. The results are lower
overall due to the smaller data size. The Baseline
outperforms our model on W&I-LOCNESS also in
this setting, although by a smaller margin. How-
ever, the performance gap on YKI increases by
approximately two absolute points in favor of our
model, offering additional support that our method
can improve performance on noisy data. To bet-
ter understand differences between the models, we
examine their predictions on the same source sen-
tences, as described in the next section.

4.1 Qualitative assessment

We have taken a closer look at the corrections made
by the Baseline and Chunks models on the 320
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sentences in the YKI data set. The results are sur-
prisingly similar although the models have been
trained on different text corpora, into which errors
have been introduced using different methods. The
Chunks model suggests slightly more corrections
on average than the Baseline, yielding a somewhat
higher recall and lower precision.

It is interesting to see that the Chunks model
performs quite well on misspelled words (broblems,
i’ts, beatyfull) although it has not been explicitly
trained to correct spelling mistakes, in contrast to
the Baseline method. In the training data of the
Baseline, spelling errors have been introduced by
random sampling, whereas the models based on
machine translated data generally do not contain
any spelling mistakes, as machine translation does
not generate them. Yet, it appears that the Chunks
model corrects spelling errors at least as well, if not
better, than the Baseline. The latter model leaves
word forms, such as wery, nicier and higing (for
hiking) unchanged.

When it comes to choosing the correct spelling in
context, the Chunks model distinguishes between
the different usages of prize and price (“The prize
for you is betveen 1500-1700 euros.”), and it has
in fact been trained on almost 4000 sentence pairs
in which prize is corrected to price in context. The
Baseline does not make this correction.

None of the models manage to correct the sen-
tence “I have old but wery fine cun selling.”. Firstly,
the models fail to change cun into gun. Secondly,
one could have expected the Chunks model to see
the connection between selling and for sale, since
there are 800 training examples containing that
substitution, but for some reason this particular test
sentence does not trigger the desired change.

Many of the sentences in the YKI corpus are in-
deed hard to interpret without broader world knowl-
edge; The Chunks model corrects the sentence “If
it isn’t help then you will ask for help to polish-
man” into “If it doesn’t help then you will ask the
Polishman for help.”. However, the correct person
to ask for help here would be the police man. In
another sentence, “I begin hobbies about 12 yers.”,
the model would somehow need to understand that
the person picked up hobbies at the age of twelve
rather than twelve years ago.

Additionally, we have examined the W&I-
LOCNESS development set, although it has been
used as a stopping criterion in the training, which
may bias the results slightly. The F0.5 scores on

the dev set are the same for both the Baseline and
the Chunks model (52.6 %). This is considerably
lower than for the final test set (65.4 - 66.4 %), sug-
gesting that the test set is less challenging than the
dev set. Compared to the YKI data, even the W&I-
LOCNESS dev set seems cleaner and appears to
contain fewer mistakes. It is hard to see significant
differences in performance between the models.
For 65 % of the sentences, the Baseline and the
Chunks model produce exactly the same correc-
tions. The corresponding figure for the YKI set is
57 %.

5 Discussion and conclusion

We have shown that our model rivals a competitive
baseline, a left-to-right model by Grundkiewicz
et al. (2019), which was one component of an en-
semble model that performed best in the BEA19
GEC shared task. We did not yet train our own
ensemble model, but we expect to see similar im-
provements in performance in future experiments.

Our results show that two models can perform on
par, although they have been pretrained on different
training corpora and using different error simula-
tion techniques. In addition, the Chunks model
outperforms the Baseline in noisy conditions. In
the future, we would like to analyze further tech-
niques for modeling challenging types of errors,
which originate from structures that differ between
the target language and the native languages of the
language learners.
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Abstract

We introduce Regína, a rule-based system
that can automatically normalize data for
a text-to-speech (TTS) system. Normal-
ized data do not generally exist so we cre-
ated good enough data for more advanced
methods in text normalization (TN). We
manually annotated the first normalized
corpus in Icelandic, 40,000 sentences, and
developed Regína, a TN-system based on
regular expressions. The new system gets
89.82% accuracy compared to the man-
ually annotated corpus on non-standard
words and showed a significant improve-
ment in accuracy when compared to an
older normalization system for Icelandic.
The normalized corpus and Regína will be
released as open source.

1 Introduction

Text normalization is an integral part of a TTS sys-
tem. Unrestricted input texts can contain so-called
non-standard words (NSWs), which are impossi-
ble for a computer to read without being format-
ted into regular strings of alphabetical letters and
punctuation marks. These NSWs are divided into
semiotic classes and include abbreviations, num-
bers, and special characters.

The degree of importance of text normalization
in TTS is not obvious even though its utility is
known. Most words do not need to be normalized,
and therefore normalized datasets and their unnor-
malized counterparts are almost identical. How-
ever, without expanding NSWs, a TTS system
skips those words, making the text inaccurate and
incomplete.

To clarify, let us look at an example of a sen-
tence before and after normalization.
Hæsti tindur Esjunnar er 914 m.

(Esjan’s highest peak is 914m.)

↓
Hæsti tindur Esjunnar er níu

hundruð og fjórtán metrar.
(Esjan’s highest peak is nine
hundred and fourteen meters.)

Text normalization systems are customarily
rule-based but are moving in the direction of neu-
ral networks (NNs). Models made with NNs re-
quire less human effort (Graves and Jaitly, 2014)
but need a vast amount of correctly annotated data
to learn from, and these do not naturally exist
for text normalization. People can generally read
NSWs without requiring an explanation, so there
is no motivation to create data with normalized
text, such as in translation. To acquire data in Ice-
landic for the training of more sophisticated sys-
tems, we start by making a system that can make
data good enough for further training. We com-
pare the results of this system with manually an-
notated data to better assess the quality.

1.1 Background
In 1996, Sproat (Sproat, 1996) published work for
a unifying model for most text normalization prob-
lems, built with Weighted Finite-State Transduc-
ers (WFSTs). The transducers were constructed
using a lexical toolkit that allows descriptions of
lexicons, morphological rules, numeral-expansion
rules, and phonological rules. In 2001, Sproat
(Sproat et al., 2001) expanded on this work and de-
scribed challenges that heavily inflected languages
like Russian (and Icelandic) face. This work was
the first that treated the problem as essentially a
language modelling problem.

Up until recently, the primary approach to the
text normalization problem was with WFSTs. In
2015, Ebden et al. (Ebden and Sproat, 2015) re-
leased a paper where they described the Kestrel
text normalization system, a component of the
Google TTS system. It differed from previous sys-
tems by separating the tokenization and classifica-
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tion (determining whether a word should be nor-
malized and, if so, which semiotic class it belongs
to) from the verbalization step. Kestrel recognizes
a large set of semiotic classes: various categories
of numbers, times, telephone numbers and elec-
tronic addresses.

Work on Icelandic spoken language technolo-
gies is defined within the Language Technology
Programme for Icelandic (2019-2023) (Nikulás-
dóttir et al., 2020). Previous work on language re-
sources for Automatic Speech Recognition (ASR)
and TTS include acoustic data gathering (Guðna-
son et al., 2012; Steingrímsson et al., 2017; Moll-
berg et al., 2020) and text corpus building for Ice-
landic (Steingrímsson et al., 2018). Spoken lan-
guage technologies for Icelandic commenced with
building ASR systems (Helgadóttir et al., 2017)
with resource work on TTS aimed at a pronuncia-
tion lexicon (Nikulásdóttir et al., 2018) and acous-
tic data recordings (Sigurgeirsson et al., 2020) fol-
lowing.

The only research that has been done on text
normalization in Icelandic was done in 2019,
(Nikulásdóttir and Guðnason, 2019) focusing ex-
clusively on numbers. The system built follows
the open-source version of Kestrel, Sparrowhawk1

(Ebden and Sproat, 2015), and contains a set of
grammar rules written in Thrax. Numbers are han-
dled with a classification grammar, which classi-
fies input containing digits into several semiotic
classes, and a verbalization grammar, which in-
flates the numbers. The verbalization grammar
labels possible verbalizations with part-of-speech
tags and a language model is then used to choose
the most probable word form where verbalization
is ambiguous.

In the last few years, people have been experi-
menting with deep learning (neural networks) for
text normalization (Pusateri et al., 2017; Pramanik
and Hussain, 2019; Zhang et al., 2019). This
works well for many tasks, but the task of text nor-
malization is fragile. Neural networks are prone
to so-called unrecoverable errors; they do not only
expand the words incorrectly, but the result is mis-
leading. For instance, a navigation system could
send the user to another side of town because it in-
correctly expanded the postal code. Some exper-
iments have been performed with hybrid systems,
using a neural model and then applying a gram-
mar system, such as Kestrel. The grammar system

1https://github.com/google/sparrowhawk

implements an overgenerating grammar, which in-
cludes the correct verbalization, and can be used to
guide the system (Sproat and Jaitly, 2017; Zhang
et al., 2019, 2020).

In 2016, Sproat et al. (Sproat and Jaitly, 2016)
released a challenge: given a large corpus of writ-
ten text aligned to its normalized spoken form,
train an RNN to learn the correct normalization
function. The authors presented a dataset of gen-
eral text with generated normalizations using an
existing text normalization component of a TTS
system (Kestrel).

2 Data

The data used are 40,000 sentences (741,909
words) from the 2017 version of the Icelandic Gi-
gaword Corpus (IGC). We use sentences that in-
clude many NSWs, such as numbers, abbrevia-
tions, and symbols. They are from all sources in
the IGC. 534 of the sentences deal with sports re-
sults and were handled separately. The sentences
were manually annotated and make up the first
manually curated normalization corpus for Ice-
landic. For a small experiment on inter annota-
tor agreement, three people from Reykjavík Uni-
versity normalized 30 sentences with 205 NSWs,
using the guidelines in Appendix B. The annota-
tors expanded words without regard to a semiotic
class. The inter-annotator agreement for NSWs
was κ = 0.85.

3 Methodology

Icelandic is an inflected language, where each
word can have various forms of words depend-
ing on the context. For example, the number 2
(two) can be expanded as tveir, tvo, tveimur, tveg-
gja, tvær, or tvö, depending on the next word’s
case. The ordinal number 2. (second) can then
be annar, annan, öðrum, annars, önnur, aðra, an-
narri, annarrar, annað, öðru, annars, aðrir, an-
narra, or aðrar. Only the first four numbers (one,
two, three, and four) have this inflected nature.

The most significant ambiguity in the data was
whether to write hyphens and dashes as til (to) or
silence when it was used to describe sports results.
In Icelandic, a sentence like Leiknum lauk með 2-1
sigri (The game ended with a 2-1 victory), is read
as Leiknum lauk með tvö (2) eitt (1) sigri and the
hyphen is silent. In a TTS system, the idea is that
the user can either mark the topic herself or run the
text through data-driven topic classification.
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The system built in this research uses regular
expressions and grammar rules to determine how
a word should be expanded. It has been given
the name Regína. The first step of Regína is to
run rules for expansions of abbreviations, mea-
surements, money, weblinks, and roman numer-
als through the unnormalized text. The rules for
measurements take prepositions into account. For
example, this could help when the base version of
km is kílómetrar. If we say til 2 km, Regína uses
the preposition til to expand the word to the gen-
itive case, kílómetra. The next step is to run this
expanded text through a part-of-speech (POS) tag-
ger. (Steingrímsson et al., 2019) Instead of reading
km as an abbreviation (and giving it a tag as such),
the tagger now recognizes the word kílómetra and
knows from context it is in genitive case. Now
Regína is preserving part-of-speech tags for each
word. Next, the semiotic class of remaining NSWs
is determined. Rules for numbers are applied to
cardinal and ordinal numbers, decimals and frac-
tions. In this step, the words tagged as numbers
consider the next word’s tag. The numbers that
are not followed by an adjective or a noun are as-
signed a default case. The final step of the system
is to run the text through rules for other semiotic
classes: time, sports results, digits, letters, dates,
and symbols. For comparison, the normalized text
was re-aligned with the manually annotated text,
with each sentence and word indexed to keep the
structure clear. In Appendix A, the pipeline for
Regína is shown.

4 Results

The dataset with general news had 729,763 words,
of which 701,088 did not need normalization.
The baseline of the system without any work was
thus 96.08%. The remaining 28,675 words were
split into cardinal, ordinal, and decimal numbers,
digits, fractions, letter sequences, abbreviations,
weblinks, measurements, clock times, dates, and
symbols. The accuracy and size of each class are
shown in Table 1.

Sports
The only specific domain looked at were sports be-
cause of the ambiguity regarding hyphens. The
portion regarding sports was 12,106 words, 1.7%
of the dataset. The ratio of NSWs in need of nor-
malization is relatively high in sports, 14.66%. We
looked at the same semiotic classes, with an addi-
tion of a special one for sports results.

SEMIOTIC CLASS ACCURACY [%] # examples
ALL 99.51 729,673
PLAIN 99.94 626,541
CARDINAL 86.87 8,456
ORDINAL 87.24 1,653
DIGIT 51.45 241
DECIMAL 74.36 197
FRACTION 33.33 39
LETTERS 96.05 3,576
ABBREVIATIONS 80.72 1,675
ROMAN NUMERALS 33.66 104
MONEY 46.89 352
WLINK 99.14 348
MEASURE 61.96 1,559
TIME 80.36 713
DATE 97.75 7,937
SYMB 88.36 1,735
PUNCT 99.93 74,547

Table 1: Results for general news

SEMIOTIC CLASS ACCURACY [%] # examples
ALL 98.45 12,106
PLAIN 99.98 8,923
CARDINAL 96.84 538
ORDINAL 91.89 74
DIGIT 0.0 1
DECIMAL 0.67 3
FRACTION 0.0 1
LETTERS 99.06 106
ABBREVIATIONS 75.0 20
WLINK 100.0 1
MEASURE 60.0 5
TIME 100.0 2
DATE 88.4 43
SYMB 90.91 88
SPORT 84.55 893
PUNCT 1.0 1,408

Table 2: Results for sports news

Error division
We considered error division for the classes and
listed them in Table 4. All classes are handled
alike in the two domains except for the symbol
class (where a dash is generally a til (to) but silent
in the sport domain), and the SPORT class is
unique to sports news. The errors are divided up
to:

• CLASS – incorrect normalization due to mis-
classification of the token

• FORM – incorrect grammatical form of the
normalization but otherwise correct

• NON-ERRORS – errors due to errors in the
manual data, misalignment of whitespaces,
or instances where both expansions are cor-
rect but different (e.g. þúsund and eitt þúsund
(thousand and one thousand)).
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SEMIOTIC CLASS ORIGINAL MANUAL MACHINE (evt. classification) ERROR
CARDINAL 4 fjórum fjögur FORM
ORDINAL 2. öðru annað FORM
DECIMAL 2.4 tveir komma fjórir tveir punktur fjórir (DIGIT) CLASS
DECIMAL 12,883 tólf þúsund átta hundruð áttatíu og þrír einn fimm komma átta átta þrír (DIGIT) CLASS
DATE 4/4 fjórði apríl fjórir fjórðu (FRACTION) CLASS
FRACTION 1/8 einum áttunda einn áttundu FORM
PLAIN ALLIR ALLIR A L L I R (LETTERS) CLASS
ABBREVIATION -100 kg undir hundrað kíló mínus hundrað kíló (wrong word) OTHER
CARDINAL 70s seventies (English) sjötíu sekúndur OTHER
MEASURE 3 cm þriggja sentimetra þrír sentimetrar FORM
TIME 1:22 eitt tuttugu og tvö ein tuttugu og tvær FORM
DATE 1. nóv 2012 fyrsta nóvember tvö þúsund og tólf fyrsti nóvember tvö þúsund og tólf FORM
SPORT 24/7 tuttugu og fjóra <sil> sjö tuttugu og fjögur <sil> sjö FORM
SYMB (general) - - til OTHER
SYMB (sport) - til - OTHER
PUNCT / / skástrik (SYMB) CLASS

Table 3: Incorrect results from Regína

• NO ACTION – the token was not expanded

• INSUFFICIENT – the token was only par-
tially expanded

• OTHER – the token was normalized incor-
rectly, not due to class or grammatical form.
Examples include dates written in English,
incorrectly expanded dashes, and reverse or-
der of money, such as $5 incorrectly being
expanded to dollarar fimm (dollars five).

Comparison with an existing system
To compare Regína with the old Thrax normalizer,
Textahaukur (Nikulásdóttir and Guðnason, 2019),
400 sentences from the whole dataset were nor-
malized with both systems. 147 of those contained
NSWs and were observed for more meaningful re-
sults. Regína had an accuracy score of 83.67%,
with 20 sentences containing 22 words that did not
match the manual annotation. Textahaukur had an
accuracy score of 61.22%, with 55 sentences con-
taining 106 incorrectly normalized words.

4.1 Discussion

Normalization systems are either rule-based, made
with neural models or a hybrid of those two. The
drawback of a rule-based system is that it is less
generalizable and requires more maintenance. The
main advantage is that it never makes unrecov-
erable errors. The worst errors Regína makes is
not expanding a non-standard word, which hap-
pens when it does not find an appropriate semiotic
class. It can also happen that it assigns the wrong
class to it – making the expansion comprehensible
but awkward.

As mentioned, the main problem with an in-
flected language like Icelandic is that each word
has several forms. A part-of-speech tagger helps
determine the expansion of the preceding number,
but if the word following a number is not a noun or
an adjective, it is given a default form. For cardi-
nal numbers, that is the neutral, nominative, singu-
lar version, which works well with sports results,
years, timings, addresses, et cetera. For decimals,
it is the masculine, nominative, singular version.
For ordinal numbers, it is the masculine, dative,
singular form. This covers most cases, especially
dates.

These default cases, plus the next word’s
tag, covered a vast majority of examples in the
data. The incorrect examples from these semiotic
classes, as seen in 4, are mostly from the target
word neither having a tag for reference nor being
in the default form. Abbreviations, measurements,
and fractions have the same problem, i.e., the de-
fault class is not correct. The system also marks
dates written as 6/6 as fractions and expands them
to sex sjöttu (six sixths) instead of sjötti júní (the
sixth of June).

The system is built with an intention of a spell-
correcting layer before the normalization. In Ice-
landic, the rule is to write thousands separators
with a dot and decimal separators with a comma,
opposite to English. Regína sends numbers that
do not conform to Icelandic rules to the digit class
and writes them out, digit by digit, sometimes go-
ing against the author’s intention.

The time class only has rules for the 24-hour
clock format, so when it read results from time-
keeping, it did not expand the numbers correctly.
The symbol class mostly suffers from the strict
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SEMIOTIC CLASS # ERRORS CLASS FORM NON-ERRORS NO ACTION INSUFFICIENT OTHER
PLAIN 384 280 0 103 0 0 1
CARDINAL 882 17 820 23 8 13 1
ORDINAL 223 6 212 0 0 5 0
DIGIT 118 110 0 4 0 4 0
DECIMAL 51 27 23 0 1 0 0
FRACTION 27 3 21 0 1 0 2
LETTERS 142 9 0 11 120 2 0
ABBREVIATIONS 328 51 83 1 184 8 1
ROMAN NUMBERS 69 0 47 0 22 0 2
MONEY 188 1 84 3 5 64 31
WLINK 4 2 0 0 1 0 1
MEASURE 595 6 524 2 0 60 3
TIME 140 4 3 1 0 132 0
DATE 182 16 81 663 4 8 11
SPORT 140 46 58 34 2 0 0
SYMB (general) 202 0 1 1 189 0 11
SYMB (sport) 8 0 0 0 0 0 8
PUNCT 53 50 0 3 0 0 0

Table 4: Error division

translation of / to skástrik (slash) and -/– to til
in general text, silence in sports. Regína tried to
catch all non-standard words, sometimes outside
its scope. Parts of sentences in Icelandic text are
sometimes written with spelling errors, in English,
or as with the separators, with rules that do not ap-
ply to Icelandic. Both ends have rigid rules about
weblinks and sports results, and the results are al-
most 100% accurate. The only incorrect examples
are misclassified – like 24/7 (twenty-four-seven) is
classified as a sports result.

Finally, the slight inaccuracy of the plain class,
which should remain unchanged, resulted mainly
from words being misclassified to the LETTERS
class (NATO −→ N A T O) and mistakes in the
manual data.

4.1.1 Comparison between systems
The errors made by Regína and Textahaukur were
examined. Regína had some abbreviations that
were not expanded because of possible ambiguity.
Otherwise, a majority of the errors was the wrong
case of an expanded number.

These were also the most common errors for
Textahaukur. More serious errors were a strong
tendency to change cases in the middle of a token.
For example, the number 110 was normalized in
the feminine for the first part (hundraðasta og) and
then masculine (tíundi). Textahaukur deleted to-
kens when they were followed by a token it could
not handle (5,5°C became °) or skipped handling
a whole sentence. In some cases, Textahaukur
did not have any rules implemented. These were
cases of weblinks and sports, which Regína han-
dles almost perfectly with rigid rules on both ends.

Regína and Textahaukur both had cases where
they expanded correctly, but the manual normal-
ization was incorrect, showing that even when a
computer knows less than a person, it is more con-
sistent.

4.2 Conclusions and future work

Regína works well and does not return misleading
results. The manually annotated data inevitably
became a development dataset, since it was always
visible for the developer of Regína. However, this
is exclusively a problem for comparing the system
with the corpus. Regína will be used to normalize
text for TTS synthesis. Although the exact expan-
sion might differ from person to person, that does
not indicate an incorrect normalization.

In the future, we want to do more thorough
experiments on inter-annotator agreement. For
the 205 words, the annotators mostly disagreed
on words that can be expanded in multiple ways.
Regína will be used to normalize more data for
further development in text normalization, using
neural models. For the TTS application, we will
create a test set-up for extrinsic evaluation given
the new dataset.
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A Regína Pipeline

Figure 1: Pipeline of Regína from unnormalized to normalized text.
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B Normalization guidelines

SEM. CLASS EXPLANATION EXAMPLE NORMALIZED

PLAIN Words remain same dæmum dæmum

PUNCT Punctuation marks .,?!:;”„“...·| .,?!:;”„“...·|

CARDINAL Cardinal numbers 86.761 áttatíu og sex þúsund sjö hundruð
sextíu og einn/ein/eitt/eina/einum

/einni/einu/eins/einnar

337.429 þrjú hundruð þrjátíu og sjö þúsund
fjögur hundruð tuttugu og níu

ORDINAL Ordinal numbers 86.761. áttatíu og sex þúsund sjö hundruð
sextugasti og fyrsti / sextugasta og

fyrsta/sextugustu og fyrstu
337.429. þrjú hundruð þrjátíu og sjö þúsund

fjögur hundruð tuttugasti og níundi
/tuttugasta og níunda/tuttugustu og

níundu

LETTERS Letter sequences KR K R (ká err)
ehf E H F (e há eff)

DATE Dates 1919 nítján hundruð og nítján
29. september 1928 tuttugasti/a og níundi/a september

nítján hundruð tuttugu og átta

14. mars fjórtándi/a mars

september 2008 september tvö þúsund og átta

kl. 20:00 klukkan tuttugu núll núll
klukkan 11.15 klukkan ellefu fimmtán

MEASURE Measurements 120 kW hundrað og tuttugu kíló(vött/vöttum/vatta)
5% fimm prósent(um/a)

39,5 kg þrjátíu og níu komma fimm kíló(um/a)

SYMB Symbols + plús
- mínus

@ hjá
© höfundarréttur

ABBR Abbreviations a.m.k. að minnsta kosti
SV-átt suðvestanátt

WLINK Web handles helgas@ru.is h e l g a s hjá r u punktur i s
@BarackObama hjá B A R A C K O B A M A

#ljosanott2014 myllumerki l j o s a n o t t tveir núll einn fjórir

DECIMAL Decimal numbers 0,45 núll komma fjórir/fjóra/fjórum
/fjögurra/fjórar/fjögur fimm
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SEM. CLASS EXPLANATION EXAMPLE NORMALIZED

SPORT Sports results 2-1 tvö eitt
3:0 þrjú núll

16/5 (fráköst) sextán <sil> fimm (fráköst)

RNUM Roman numerals XII tólf(ti/ta/tu)

FRACTION Fractions ½ hálfur/hálfan/hálfum/hálfs/hálf/hálfa
/hálfri/hálfrar/hálft/hálft/hálfu

2/6 tveir/tvo/tveimur/tveggja/tvær/tvö sjöttu
1 1/3 einn og einn þriðji / einn og einn þriðja

/ einum og einum þriðja/eins og eins þriðja
/ ein og ein þriðja / eina og eina þriðju

/ einni og einni þriðju / einnar og einnar þriðju
/ eitt og eitt þriðja/einu og einu þriðja

/ eins og eins þriðja

DIGIT Digit numbers 1109-05-420 einn einn núll níu <sil> núll fimm <sil>
fjórir tveir núll

365 þrír sex fimm

MONEY Monetary amounts 3000 kr. þrjú þúsund krónur/krónum/króna
kr. 4000 fjögur þúsund krónur/krónum/króna

$40 fjörutíu dollara(r/um)
38 m.kr. þrjátíu og átta milljón(ir/um/a) króna

B.1 Rules
• Separate a word that’s built from letters and numbers, C19 becomes C nítján, 1.ferð becomes 1. ferð
−→ fyrsta ferð.

• Delete a dash at the start of the line.

• If a word ends in dash it is ignored.

• @ is written hjá.

• = is written jafnt og.

• Links are written like www.mbl.is/123 −→ w w w punktur m b l punktur i s skástrik einn tveir þrír, all
letters are separated except for symbols and numbers, they are written out.

• For basketball results like 24/14 fráköst, the / is written as <sil>, i.e., 24/14 fráköst −→ tuttugu og
fjögur <sil> fjórtán fráköst.

• In digit sequences, dashes are written as <sil>, e.g., 234-353-42 −→ tveir þrír fjórir <sil> þrír fimm
þrír <sil> fjórir tveir

B.2 Ambiguities
• DASH: can imply bandstrik (dash) (links), <sil> (sports results), til (number intervals) or nothing.

• SLASH: can imply skástrik (slash) (links), og (and, eða (or), a fraction, a <sil> or nothing.
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Abstract

Danish language technology has been hin-
dered by a lack of broad-coverage corpora
at the scale modern NLP prefers. This pa-
per describes the Danish Gigaword Corpus,
the result of a focused effort to provide a di-
verse and freely-available one billion word
corpus of Danish text. The Danish Giga-
word corpus covers a wide array of time pe-
riods, domains, speakers’ socio-economic
status, and Danish dialects.

1 Introduction

It is hard to develop good general-purpose language
processing tools without a corpus that is broadly
representative of the target language. Further, de-
veloping high-performance deep learning models

requires hundreds of millions of tokens (Radford
et al., 2019; Raffel et al., 2020). To address this gap
for Danish, a North Germanic/Scandinavian lan-
guage spoken primarily in Denmark, we propose
an open giga-word corpus. This corpus is free to
download and use, thus enabling researchers and
organizations to further develop Danish NLP with-
out worrying about licensing fees. The corpus is
a first necessary step to allow Danish speakers to
receive the many benefits of the powerful range of
NLP technologies.

This paper details the Danish Gigaword Cor-
pus (DAGW), a billion-word corpus of language
across various dimensions, including modality,
time, setting, and place.

It is tricky to collect such a corpus automatically:
automatic language identification tools confound
closely related languages, especially Danish and
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Bokmål, and are likely to miss important data (Rad-
ford et al., 2019; Haas and Derczynski, 2021). Ex-
isting representations underperform for Danish: the
multilingual FastText embeddings (Joulin et al.,
2018) miss core Danish words such as “træls”;
Multilingual BERT lacks sufficient support for the
Danish vowel “å”.1

To remedy this situation, we propose a Danish
Gigaword Corpus. The overriding goals are to cre-
ate a dataset that is (1) representative, (2) accessi-
ble, and (3) a general-purpose corpus for Danish.

2 Background

Today’s NLP is generally data-intensive, meaning
that large representative corpora tend to correlate
with better models and better processing results.
However, large representative corpora are avail-
able for only a small set of languages; there are
fewer than ten manually-compiled gigaword-scale
corpora, for example, and none for Danish.

Several substantial Danish text corpora have
been compiled during recent decades. CLARIN-
DK offers a variety of individual corpora of varying
genres, annotations, and writing times. However,
non-commercial licensing restricts corpus usage.
Some major Danish corpora are related to dictio-
nary production, as is the case for the 56 million
words Korpus-DK available for search at the dic-
tionary site ordnet.dk.2 Leipzig Corpora Collec-
tion assembles Danish corpora from the Web, news
sites, and Wikipedia (Goldhahn et al., 2012). The
combined size of these corpora is orders of mag-
nitude smaller than The Danish Gigaword Corpus.
By themselves, these corpora do not meet the data
size needs of modern language models.

Modern language models like T5 (Raffel et al.,
2020) and GPT2 (Radford et al., 2019) are text-
hungry, making automatic corpora construction at-
tractive. Massive, monolithic, automatically col-
lected datasets of web content, such as Common
Crawl, support the training of large language mod-
els but suffer from quality issues (Radford et al.,
2019) and bias (Ferrer et al., 2021). Models trained
exclusively with such data quickly delve into gen-
erating toxic language (Gehman et al., 2020). Fur-

1BotXO maintains a Danish BERT instance at
https://github.com/botxo/nordic_bert.
This model was trained exclusively on uncurated web text
and, therefore, (a) has a spurious understanding of Danish
among other languages and (b) is particularly susceptible to
the kind of toxic language identified by Gehman et al. (2020).

2http://ordnet.dk
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Figure 1: Content by domain (% of corpus).

thermore, the Danish section of Common Crawl
is plagued by significant amounts of non-Danish
content, in part due to the pervasive confusion be-
tween Danish and Norwegian Bokmål by highly
multilingual language ID classifiers (Haas and Der-
czynski, 2021). Datasets derived exclusively from
Common Crawl also have a bias toward webspeak
and content from recent years, leaving models built
over them sub-optimally prepared to process older
Danish.

The lack of a large and qualitative Danish corpus
causes Danish NLP tools to lag behind equivalent
tools for better-resourced languages, and the gap
is increasing (Pedersen et al., 2012; Kirkedal et al.,
2019; Kirchmeier et al., 2020).

The first gigaword corpus was the English Giga-
word (Graff et al., 2003), consisting of roughly one
billion (109) words of English-language newswire
text. The content was single-genre, national and
global newswire, published between 1994 and
2002. Other gigaword corpora emerged later, for
French, Arabic, Chinese, and Spanish. Even Ice-
landic, a language with just over 360 000 speak-
ers, has a healthy gigaword project (Steingrímsson
et al., 2018).

3 Linguistic diversity

For a corpus to be useful for a wide range of appli-
cations, it must include a wide range of language,
mixing domains, speakers, and styles (Biber, 1993).
Failing to do this can lead to severe deficiencies in
the data. For example, when NLP work started on
social media text, the Wall Street Journal-trained
part of speech taggers missed essential words such
as “Internet” (due to the articles being from the late
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eighties and early nineties) and “bake”, due to their
domain.

Common Crawl’s undirected collection of con-
tent often over-represents some dialects at the ex-
pense of other dialects. GeoWAC (Dunn and
Adams, 2020) uses demographic information to
construct English corpora that balance dialects.
Unfortunately, a demographic- and Web-based ap-
proach underrepresents Danish dialects such as the
endangered Bornholmsk dialect (Mortensen, 2016),
which is almost absent from the Web.

These deficiencies do not form a solid basis
for general-purpose NLP. So the Danish Giga-
word Corpus captures and distributes as broad a
range of Danish language use as possible, explic-
itly including language from a variety of settings
(long-form writing, novels, social media, speeches,
spontaneous speech), domains (news, politics, fic-
tion, health, social media, law, finance), time peri-
ods (from the 1700s to present day), registers (for-
mal, informal), and dialects (including, e.g., Born-
holmsk and Sønderjysk).

4 Dataset construction

The Danish Gigaword Corpus consists of sections,
with each section corresponding to a single source
of text. Following prior efforts to construct broad-
coverage datasets (Derczynski et al., 2016), sec-
tions are selected based on how well they help the
corpus’ coverage of Danish language use over a va-
riety of dimensions, including: time of authorship;
speech situation; modality; domain; register; age
of utterer; dialect of utterer; socio-economic status
of utterer. This is a strong, intentional departure
from editions of English Gigaword that focused
on newswire. Achieving some degree of repre-
sentativeness (Biber, 1993) requires the inclusion
of sources beyond newswire text. We provide an
overview of The Danish Gigaword Corpus’s con-
tent in Figure 1 and detail the sections in Table 1
and the appendix.

The Danish Gigaword Corpus follows the def-
inition of genre used by Biber (1993), grounded
in “situationally defined categories”, such as a lan-
guage style recognized by (or used to define) a
community, such as news articles, personal letters,
or online chat; a domain as a particular topical
focus (or set of foci) that are discussed, such as
biomedicine, politics, or gaming; and a medium as
the means by which communication is conducted,
such as writing, online chat, conversation, and so

on. There is a natural overlap between medium and
speech situations, but the delineation is beyond this
work’s scope.

While the goal of DAGW is to cover a range
of genres, domains, and media, it is difficult to
measure the prevalence of each of these across all
Danish users, let alone then gather and redistribute
this data. Therefore, the goal is to cover something
of everything that can be feasibly included, with-
out letting any particularly monolithic combination
dominate (in contrast to, e.g., the 100% written
newswire content of English Gigaword v1 or the
100% Common Crawl content of GeoWAC). Not
every intersection between genres, domains, and
media can be covered, nor represented proportion-
ally, in the first version of this corpus. Table 1
contains an overview of the genres, domains, and
modalities included in the Danish Gigaword Cor-
pus.

4.1 Data and metadata unification

Each section is contained in one directory, named
after the “prefix” for the section. Each file in a
section represents a single UTF encoded document.
Each section contains at least two functional files:
one describing how the section is licensed and one
describing metadata about each document. For
multi-speaker corpus sections, an optional file can
contain a dictionary keyed by speaker ID. This
assumes speaker IDs are used consistently through
all documents in that section. Appendix B contains
a complete description of the file format.

Sections are managed individually as part of a
larger repository of the whole Danish Gigaword
Corpus. A validation script helps make sure that
the sections comply with the file format.

4.2 Data protection

The corpus does not contain “sensitive” data as per
the GDPR definition; that means no information
identifying sexual orientation, political beliefs, re-
ligion, or health connected with utterer ID. This
is achieved by stripping utterer information from
social media content. Thus, data discussing po-
tentially personally sensitive topics, for example,
social media around political discussions, is dis-
connected from personally-identifying information.
Further, social media content is supplied not as
plain text but as IDs and code for rehydration, a
process where the content is re-downloaded, thus
avoiding redistribution of this content and affording
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Date Form Domain Dialect Socioeconomic status Size (M)

Legal 308.8
Retsinformation contemporary written Laws legal high 188.4
Skat.dk contemporary written Tax code legal high 52.8
H-Sø contemporary written Court cases mixed mixed 67.6

Social Media 261.4
Hestenettet contemporary written forum mixed mixed 228.9
General Discussions 2 019 - 2 020 written Twitter mixed mixed 32.0
Parliament Elections 2 019 written Twitter mixed mixed 0.5

Conversation 239.4
OpenSubtitles contemporary spoken Movie subtitles mixed mixed 130.1
Folketinget 2 009 - 2 019 spoken Debates rigsdansk high 60.6
Europarl 2 004 - 2 008 spoken Debates standard mixed 47.8
Spontaneous speech 2 019 spoken Conversation mixed mixed 0.7
NAAT 1930 - now spoken Speeches rigsdansk high 0.2

Web 101.0
Common Crawl contemporary written Web mixed mixed 101.0

Wiki & Books 92.2
Wikipedia 2 019 - 2 020 written Encyclopaedic standard mixed 55.6
Danish Literature 1 700 - now written Literature standard mixed 25.6
Gutenberg 1 700 - now written Literature standard mixed 3.2
WikiBooks 2 019 - 2 020 written Manuals standard mixed 2.6
WikiSource 1 700 - now written Literature standard mixed 2.5
Johannes V. Jensen - written JVJ’s works rigsdansk unknown 2.1
Religious texts - written Religious rigsdansk unknown 0.6

News 40.0
TV2R 2 015 - 2 019 written News rigsdansk high 10.0
DanAvis 1 999 - 2 003 written News rigsdansk medium 30.0

Other 1.2
Dasem data3 contemporary written Other mixed mixed 0.7
Botxt contemporary written Other Bornholmsk mixed 0.4
DDT contemporary written Other mixed mixed 0.1
Sønderjysk contemporary written Sønderjysk Sønderjysk mixed 0.02

TOTAL 1 045

Table 1: Text dimensions by text source in the Danish Gigaword corpus. Size in millions of words.

social media users the ability to delete their content
without it being preserved by Danish Gigaword.

4.3 Test/Train partitions

Following the result that fixed test/train splits lead
to unreliable results (Gorman and Bedrick, 2019),
we avoid setting explicit test/train partitions in Dan-
ish Gigaword. We encourage users to select multi-
ple random test splits. Since the Danish Gigaword
is highly diverse, selecting multiple random splits
will result in test sets with different biases follow-
ing best practices (Søgaard et al., 2021).

4.4 Licensing

All corpus parts are licensed openly, for free distri-
bution. We implement this with a mixture of Cre-
ative Commons general license (CC0) and CC-BY.

Some older corpora (e.g., Kromann et al. (2003))
used the right under Danish copyright law to cite
small excerpts of up to 250 words from published
articles. While this is a creative solution to shar-
ing digital language data, Danish Gigaword uses
almost exclusively whole articles, as they are easier
to work with, providing full context.

5 Distribution and sustainability

As mentioned earlier in this paper and by Kirkedal
et al. (2019); Kirchmeier et al. (2019, 2020), one
problem that plagues Danish NLP is a lack of large
accessible corpora. To address this and maintain
strict licensing standards that permit open and free
redistribution, Danish Gigaword Corpus is hosted
and freely distributed via https://gigaword.dk/.
Alternative downloads will be provided through
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major dataset distribution services at each signifi-
cant release.

DAGW is an intrinsically open project. In a bid
to improve and uphold its relevance at a broad level,
the current group of participants covers academia,
industry, and the public sector. However, the
DAGW project is also volunteer-led and volunteer-
driven, which brings intrinsic risk. Aside from
cross-sector involvement, the DAGW project at-
tempts to mitigate that risk through licensing, distri-
bution, membership, community, and data integrity
policies.

Strategically, the corpus strives for an improved
balance. The contents in the first release, with this
paper, reflect the data that is available in Denmark.
Data that is legally required to be open and unli-
censed dominates the corpus, reflecting the current
state of text sharing in Denmark. We hope that
this will become less conservative over time and
particularly look forward to further donations of
newswire and literature, so that NLP for Danish can
start to offer Danish speakers improved technology.

The data is licensed CC-BY and CC0, which
gives it broad reach and applicability, and makes
it easier for stakeholders to join than copyleft or
non-commercial licenses, such as GPL or CC-NC,
would. It also improves distribution prospects: be-
cause of this licensing choice, DAGW can be hosted
at a third-party research data repository like Zen-
odo or Figshare, shifting the responsibility for data
hosting and provision to specialized third parties.
The DAGW project also maintains an open policy,
with any qualified stakeholders welcome to join,
especially if there is a compatible donation of data.
Denmark’s size helps keep a manageable commu-
nity. The Danish Gigaword also fosters community
involvement by publishing results – for example,
this paper. Finally, a small toolkit is included in the
project’s Github repository for automatic validation
of any committed data, ensuring content integrity,
quality, and uniformity.

6 Conclusion and Future Work

In Denmark, natural language processing is nascent
and growing faster and faster. Content restrictions
and conservative licensing abound. This paper
presents the Danish Gigaword Corpus, a unified
effort across many institutions and many Danish
speakers to construct a billion-word corpus rep-
resenting the language. It aims to be useful to a
maximally broad and diverse group of users.

The Danish Gigaword Corpus is an active
project. There is continuing effort to add sources
that enhance the corpus’ breadth, including fiction,
older works from the 1800s, and newswire. DAGW

continues past the first billion words, with data
always released under Creative Commons license
and freely distributed via https://gigaword.dk/.

We hope that this concrete and significant contri-
bution benefits anyone working with Danish NLP
or performing other linguistic activities and encour-
ages others to publish language resources openly.
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A Detailed corpus description

Here we detail some of the sections included in the
corpus, specifying what they bring to the dataset
to make it a rich resource covering a wide range of
lexical, syntactic, and sociolinguistic phenomena
expressed by Danish users. Table 1 provides an
overview of the corpus.

A.1 TV2 Regionerne

This section is a contemporary Danish newswire
sample: approximately 50 000 full newswire arti-
cles published between 2010 and 2019. It contains
articles of regional interest, written following ed-
itorial standards. This section’s value is in both
its temporal variation, covering a decade of events,
and its spatial variation, covering many local events
across most of Denmark (TV2 Bornholm is ex-
cluded). As a result of local event coverage, the
section contains many locally relevant named en-
tities, which might otherwise not be present in a
dataset of national news.

A.2 Folketinget

The Danish parliament (Folketinget) keeps a record
of all meetings in the parliament hall.4 All records
have a transcript produced by commercial Auto-
matic Speech Recognition (ASR) followed by post-
editing by linguists employed by Folketinget for
intelligibility, i.e., edit out dysfluencies, restarts,
repairs, and mistakes. The transcript is, therefore,
not a representation of spoken Danish but rather
information content.

In the parliament hall, one speaker at a time ad-
dresses members of the parliament. Monologues

4There are no records of committee meetings or samråd.

may include rebuttals or other comments to state-
ments in previous monologues. While speakers
can read aloud from a prepared statement or speak
extemporaneously, we expect no difference to be
apparent in the data because of the post-editing.

The Folketinget section covers parliament hall
sessions between 2009 and 2019. It contains dis-
cussions on a wide range of topics, issues, and
named entities relevant to Danish society.

A.3 Retsinformation

The site retsinformation.dk provides access to Dan-
ish laws and regulations and documents from the
Danish parliament (Folketinget). The text is pro-
vided by Folketinget, ministries, the ombudsman
of Folketinget, and Rigsrevisionen. The legisla-
tive texts in this section include a variety of fea-
tures: Uppercase text, redaction where names and
addresses are left out, itemized text with chapter
and section numbering, headlines, words with intra-
letter spacing.

A.4 Spontaneous speech

The conversational corpus included originates from
interdisciplinary research conducted within the In-
teracting Minds Center,5 and the Puzzle of Danish
project6 at Aarhus University. Transcribed Dan-
ish speech is generally a rare kind of data, and
spontaneous speech especially so; these manually
transcribed conversations thus form a valuable re-
source. Spontaneous and pseudo-spontaneous con-
versations come from various contexts, e.g., get-
ting to know each other, solving a puzzle together,
or making joint decisions. The participants have
agreed on releasing anonymized transcripts of their
conversations. All conversations involve two speak-
ers, sometimes conversing face-to-face, sometimes
via a chat tool. Speech is transcribed post-hoc by
native speakers. Studies published relying on this
data include Fusaroli et al. (2012), Dideriksen et al.
(2019), and Tylén et al. (2016).

A.5 Danish Wikipedia

This section comprises a dump of Danish
Wikipedia7, stripped of Wikipedia-specific markup.
The content is collaboratively written by a broad
range of authors and covers many specific articles
that often do not exist in other languages. Most

5http://interactingminds.au.dk
6https://projects.au.dk/

the-puzzle-of-danish/
7https://dumps.wikimedia.org/dawiki/
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content has been roughly checked for syntactic and
orthographic canonicity by editors of the Danish
Wikipedia and is a rich source of region-specific
named entities, often situated in full, fluent sen-
tences. The content is reproduced verbatim in ac-
cordance with the GNU Free Documentation Li-
cense.

A.6 Europarl

The Europarl Parallel Corpus (Koehn, 2005) con-
tains proceedings of the European Parliament in
21 European languages that were automatically ex-
tracted and aligned. We include the Danish part of
the Europarl corpus and perform no pre-processing
other than file format conversions.

A.7 OpenSubtitles

OpenSubtitles8 is a website where a community
writes and shares subtitles for mostly big-budget
movies. We extract the Danish subtitles from the
OpenSubtitles section of OPUS (Lison and Tiede-
mann, 2016). We clean the corpus to fix issues
such as the capital letter I instead of the lower case
letter L. We remove files that do not contain any
characters specific to Danish (i.e., any of the letters
å, æ, or ø).

A.8 Religious text

This section contains a Danish translation of
the Bible from the Massively Parallel Bible cor-
pus (Christodouloupoulos and Steedman, 2015)
without any pre-processing other than file format
conversion. We continue to look for other sources
of religious textual content to improve the coverage
and significance of this section.

A.9 Danish Twitter

Social media content is rich in unedited text, allow-
ing for a very broad range of expressions. We know
that social media users typically vary their language
use to afford some representation for what would
typically be communicated non-verbally, and while
there are corpora for this for e.g. English, there
are very few published corpora containing Danish
social media text (e.g., (Hovy et al., 2015; Lillie
et al., 2019)). This section contains two datasets of
Danish tweets as dehydrated content, and includes
a script for rebuilding this part of the corpus, thus
permitting GDPR-compliant redistribution. The
first dataset contains approximately 29 000 tweets

8https://www.opensubtitles.org

in Danish from the #dkpol hashtag collected during
the national parliamentary elections of 2019. The
second dataset, consisting of approximately 1.6 mil-
lion Danish tweets collected between April-June
2020, is not constrained by topic as tweets were
collected using the 250 highest frequency Danish
words.

A.10 DanAvis20

Corpus DanAvis20 consists of articles from vari-
ous national Danish (daily) newspapers, including
Aktuelt, Berlingske Tidende, Dagen, and Weeken-
davisen. The articles were published during 1999-
2003. All texts included have been cleared for
distribution under the CC0 license (cf. Section 4.4).
As part of the clearing agreement, the papers were
slightly edited by limiting all text quotes to 200
words (at most), picking sentences from longer
papers at random. Sentences were mildly scram-
bled (DanAvis20 has no instances left of 4 adjacent
sentences). Proper names were pseudonymized (ex-
cept “Denmark”, “København”, “USA”, and a few
others). Infrequent content words (10ppm or less)
were replaced in situ by “statistical cognates”, i.e.,
words of similar frequency and equivalent morpho-
syntactic form (e.g., replacing “Der er sardiner i
køleskabet.” with “Der er skilsmissesager i for-
sikringsselskabet.” while keeping “Ministeren re-
jser hjem igen”). As overall statistical and lexical
properties of DanAvis20 are thus kept invariant, the
corpus still provides good material for most NLP
training purposes.

A.11 The Bornholmsk Ordbog Dictionary
Project

Fictional texts of various kinds written in Born-
holmsk, the dialect spoken on the Danish island
of Bornholm,9 have been digitized (OCR’ed and
proofread) by volunteers working within the re-
cently resumed Bornholmsk Ordbog dictionary
project (Kjeldsen, 2019). Most of the material in-
cluded is written by Otto J. Lund in the period
1930-48 (novels, short stories, and poems). The
Bornholmsk subcorpus, which in its present state
amounts to circa 400 K words, also includes folk
stories published by J. P. Kuhre in 1938, and by
K. M. Kofoed in 1935, fictional letters by various
authors published in the 1930s, as well as poems by
Alfred Jensen published in 1948 and various other

9The language code for Bornholmsk under IETF BCP-47
is da-bornholm.
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texts from the same period. The non-standardized
orthography varies considerably from source to
source. The Bornholmsk part of the Danish Gi-
gaword is a significantly extended dataset, well
beyond that studied in earlier NLP work on the
dialect (Derczynski and Kjeldsen, 2019).

B File format

The philosophy is to present data as plaintext,
UTF8, one file per document. Accompanying meta-
data gives information about (for example) the au-
thor, the time or location of the document’s cre-
ation, an API hook for re-retrieval of the document,
among others.

B.1 Corpus Sections
As the corpus many sections, per section, we do
the following:

• Give each corpus section a directory with an
agreed name.

• Keep all plaintext as one file per document.

• Use a section prefix, underscore, and
document identifier as the filename,
e.g., “tv2r_01672”.

• Do not use file extensions for the text files.

• Maintain a one-record-per-line JSONL file in
the directory, with the same name as the sec-
tion, and with “jsonl” suffix, e.g., “tv2r.jsonl”.
The content of this file should follow the
JSONL format, see http://jsonlines.org.

• Each document’s metadata is placed as a sin-
gle JSON record in the JSONL metadata file,
with a key “doc_id” matching the filename it
describes. Separate entries by line breaks (i.e.,
one JSON object per line).

• A LICENSE file should be included in each
section, stating the license under which the
section is distributed. CC and public domain
only! Preferably CC0 or CC-BY; CC-NC if
we have to. No copyleft licenses - they restrict
the use of the data too much, which we are
trying to avoid.

Here are the fields for the standoff JSONL meta-
data file entries:

• doc_id: a string containing the document
ID, which is also its filename. Begin with
the section prefix, followed by an underscore.
String. Required.

• date_published: the publication date
of the source document, including the
timezone. If only the year is available,
use year_published instead. In the
Python strftime() format, use "%c %z".
String. Preferred.

• uri: the URI from which the document orig-
inated; can be an API endpoint that links di-
rectly to the data. String, URI. Preferred.

• year_published: the year CE that
the source document was published.
Integer. Use only as an alternative to
date_published. Optional.

• date_collected: the date at which the
source document / API result collection, in-
cluding the timezone. In the Python strftime()
format, use "%c %z". String. Optional.

• date_built: the date this document was
included in the current version of the dataset,
including the timezone. In the Python strf-
time() format, use "%c %z". String. Op-
tional.

• location_name: the name of the location
of the document’s origin. String. Optional.

• location_latlong: latitude and longi-
tude of the document’s origin. List of
two floats. Optional.

B.2 Speech transcripts
To represent speakers in the text files, prefix each
turn with “TALER 1:” (substituting whatever ID
is appropriate). Note: there is no space before the
colon; use one space after the colon. It is also
OK to include the speaker’s name directly if this is
publicly known, e.g., “Thomas Helmig:”.

For multi-speaker corpus sections, an optional
talere.jsonl file can be included in the sec-
tion, containing one JSON dictionary keyed by
speaker ID. Speaker IDs should be consistent
through all documents in a section. Speaker IDs
need only be unique to speakers in a section, not
universally.
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Abstract
Automatic detection of false claims is a
difficult task. Existing data to support
this task has largely been limited to En-
glish. We present a dataset, DANFEVER,
intended for claim verification in Danish.
The dataset builds upon the task framing
of the FEVER fact extraction and verifica-
tion challenge. DANFEVER can be used
for creating models for detecting mis- &
disinformation in Danish as well as for
verification in multilingual settings.

1 Introduction

The internet is rife with false and misleading in-
formation. Detection of misinformation and fact
checking therefore presents a considerable task,
spread over many languages (Derczynski et al.,
2015; Wardle and Derakhshan, 2017; Zubiaga
et al., 2018). One approach to this task is to break
down information content into verifiable claims,
which can subsequently be fact-checked by auto-
mated systems.

Automated fact checking can be framed as a
machine learning task, where a model is trained
to verify a claim. Applying machine learning re-
quires training and validation data that is represen-
tative of the task and is annotated for the desired
behaviour. A model should then attempt to gener-
alise over the labeled data.

One dataset supporting automatic verification
is the Fact Extraction and VERification dataset
(FEVER) in English (Thorne et al., 2018a), which
supports the FEVER task (Thorne et al., 2018b;
Thorne and Vlachos, 2019). The dataset is aimed
both at claim detection and verification.

While the misinformation problem spans both
geography and language, much work in the field
has focused on English. There have been sugges-
tions on strategies for alleviating the misinforma-
tion problem (Hellman and Wagnsson, 2017). It is

however evident that multilingual models are es-
sential if automation is to assist in multilingual re-
gions like Europe. A possible approach for mul-
tilingual verification is to use translation systems
for existing methods (Dementieva and Panchenko,
2020), but relevant datasets in more languages are
necessary for testing multilingual models’ perfor-
mance within each language, and ideally also for
training.

This paper presents DANFEVER, a dataset
and baseline for the FEVER task in Danish, a
language with shortage of resources (Kirkedal
et al., 2019). While DANFEVER enables im-
proved automatic verification for Danish, an
important task (Derczynski et al., 2019), it is
also, to our knowledge, the first non-English
dataset on the FEVER task, and so paves the
way for multilingual fact verification systems.
DANFEVER is openly available at https:
//figshare.com/articles/dataset/
DanFEVER_claim_verification_
dataset_for_Danish/14380970

2 English FEVER

The Fact Extraction and VERification dataset
and task (FEVER) is aimed at automatic claim
verification in English (Thorne et al., 2018a).
When comparing we will stylize the original
FEVER dataset ENFEVER to avoid confu-
sion. The dataset was created by first sampling
sentences from approximately 50,000 popular
English Wikipedia pages. Human annotators were
asked to generate sets of claims based on these
sentences. Claims focus on the same entity as
the sentence, but may not be contradictory to or
not verifiable by the sentence. A second round
of annotators labelled these claims, producing
the labels seen in Table 1, using the following
guidelines:

”If I was given only the selected sentences, do
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I have strong reason to believe the claim is true
(Supported) or stronger reason to believe the
claim is false (Refuted).”
”The label NotEnoughInfo label was used if
the claim could not be supported or refuted by
any amount of information in Wikipedia.”

The ENFEVER guidelines state that claims la-
belled NotEnoughInfo could possibly be ver-
ified using other publicly available information,
which was not considered in the annotation.

Label Verifiability # %
Supported Verifiable 93,367 50.3
Refuted Verifiable 43,107 23,2
NotEnoughInfo NotVerifiable 48,971 26,4

Total 185,445 -

Table 1: Annotated classes in ENFEVER.

In the FEVER task (Thorne et al., 2018b),
automatic verification is commonly framed as a
two-step process: given a claim, relevant evidence
must first be collected, and secondly be assessed
as supporting or refuting the claim, or not pro-
viding enough information. ENFEVER contains
data for training models for both steps.

We tasked annotators to create claims for DAN-
FEVER based on the same guidelines and with-
out regulation of class-distribution. The class-
distribution of DANFEVER is therefore a bit
different that that of ENFEVER; there is about
the same ratio of Supported claims, but more
Refuted and less NotEnoughInfo claims in
DANFEVER that in ENFEVER.

3 Method

A FEVER task instance consists of a claim, zero
or more pieces of evidence, and a label. The labels
take one of the following values:

Supported Claims that can be supported by ev-
idence from the textual data

Refuted Claims that can be refuted by evidence
from the textual data

NotEnoughInfo Claims that can neither be
supported or refuted based on the textual data

The claims were created based on data from
Danish Wikipedia and Den Store Danske (a

privately-developed, non-profit, online encyclope-
dia based in Denmark and financed through foun-
dations and universities). Both sites are gen-
erally considered high quality and trustworthy.
Along with the claims, DANFEVER supplies the
Wikipedia dump used for creating the claims as
well as the content of the articles used from Den
Store Danske. The remaining articles from Den
Store Danske are not included (due to rights), and
all articles should be considered to be iid.for mod-
elling.

The format of the dataset can be found in Ap-
pendix A.1.

3.1 Dataset Goal
DANFEVER can be used for research and imple-
mentation of multi-lingual claim-detection. The
dataset can be used for bench-marking models on
a small language, as well as for fine-tuning when
applying such models on Danish data.

3.2 Data Statement
The following is a data-statement as defined by
Bender and Friedman (2018). The dataset consists
of a text corpus and a set of annotated claims. The
annotated part contains 6407 claims, with labels
and information about what articles can be used to
verify them.

Curation Rationale A dump of the Danish
Wikipedia of 13 February 2020 was stored as well
as the relevant articles from Den Store Danske
(subset of site to adhere to rights). Two teams of
two people independently sampled evidence, and
created and annotated claims from these two sites
(more detail in section 3.3).

Speaker Demographic Den Store Danske is
written by professionals and is funded by various
foundations for creating free information for the
Danish public. Wikipedia is crowd-sourced and its
writers are therefore difficult to specify, although
the content is generally considered to be of high
quality.

Annotator Demographic The annotators are
native Danish speakers and masters students of IT.

Speech Situation The data is formal, written
texts created with the purpose of informing a broad
crowd of Danish speakers.

Language Variety and Text Characteristics
The language of the texts is fairly formal Danish
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Claim 3152: “Udenrigsministeriet har eksisteret siden
1848.”
The Ministry of Foreign Affairs has existed since 1848.

Evidence Extract: “Dette er en liste over ministre for
Udenrigsministeriet siden oprettelsen af ministeriet i
1848.”
This is a list of ministers of the Ministry of Foreign Af-
fairs since it was founded in 1848.

Evidence Entities: wiki 93781

Verifiable: Verifiable

Label: Supported

(a) A Supported claim.

Claim 1306: “Hugh Hudson er født i England i 1935.”
Hugh Hudson was born in England in 1935.

Evidence Extract: “Hugh Hudson (født 25. august
1936 i London, England) er en britisk filminstruktør.”
Hugh Hudson (born 25th of August 1936 in London,
England) is a British film director.

Evidence Entities: wiki 397805

Verifiable: Verifiable

Label: Refuted

(b) A Refuted claim.

Claim 2767: “Lau Lauritzen har instrueret både stumfil-
men Skruebrækkeren og vikingefilmen Når ræven fly-
ver.”
Lau Lauritzen directed the silent film Skruebrækkeren
and the viking film Når Ræven Flyver.

Evidence Extract: “”
Evidence Entities: wiki 833896

Verifiable: NotVerifiable

Label: NotEnoughInfo

(c) A NotEnoughInfo claim.

Table 2: Examples of claims. English translations
are in italic.

from encyclopedias. It is considered to be con-
sistent. Any deviation from Danish language is
largely due to topics on history from non-Danish
regions.

3.3 Sampling and Annotation

The main text corpus was created by storing the
Danish Wikipedia dump of the time as well as a
subset of pages from Den Store Danske, selected
from the annotation process. Two strategies were
employed for gathering specific texts for claims.
A selection of pages with well-known topics were
selected from Wikipedia’s starred articles and Den
Store Danske (similar to the “popular articles” se-
lection in ENFEVER). Furthermore a random se-
lection of Wikipedia entities with abstracts were

Label Verifiability # %
Supported Verifiable 3,124 48.8
Refuted Verifiable 2,156 33.6
NotEnoughInfo NotVerifiable 1,127 17.6

Total 6,407 -

Table 3: Annotated classes in DANFEVER.

Median Mean SD
Claims
# Characters 45 50.18 22.02
# Tokens 7 8.46 3.86
# Evidence Entities 1 1.10 0.34

Evidence Extracts
# Characters 260 305.56 257.20
# Tokens 47 53.75 44.64

Table 4: Claims and evidence extracts in dataset.

selected to ensure broad spectrum of topics. Ran-
dom substrings were selected and passed to an-
notators, who created claims based on each sub-
string, as in ENFEVER. The claims focus on the
same entity as the substring’s source document
and may be supported by the text in the substring,
but may also be refuted or unverifiable by the sub-
string. It is up to the annotator to decide on what
type of claim to aim for (although the final label of
each claim is provided by the next annotator).

The set of claims were subsequently revisited
by another annotator, who labelled the claim as
Supported, Refuted or NotEnoughInfo,
based on the original substring used to generate
the claim. The majority of the claims (80%) are
generated based on Wikipedia pages, while 20%
were based on articles from Den Store Danske.
Note that claims are independent of the source and
could be verified using any text; while the FEVER
format presents a list of articles where evidence is
present, this list is not exhaustive, just as in the
TREC and TAC challenges. The two annotating
teams reported Fleiss κ-scores of 0.75 and 0.82
measured on a reduced subset. The remaining data
was annotated by a single annotator.

4 Dataset Details & Analysis

DANFEVER consists of 6407 claims. We have
included one example from each class in Tables
2a, 2b and 2c, and shown the label distribution in
Table 3.

Table 4 summarizes the lengths of claims and
evidence extracts, as well as the number of entities
linked to the claims.
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Location # Person # Organization #
Finland 184 Donald Trump 110 Aalborg Universitet 11
Danmark 109 Winston Churchill 73 FN 11
Preussen 89 Hillary Clinton 44 DR 10
USA 80 Mary Wollstonecraft 36 Københavns Universitet 9
Chile 79 George W. Bush 24 Electronics Art 9
København 71 Frederik Den Store 16 FC Barcelona 9
Tyskland 64 Obama 15 Apollo Rejser 8
Israel 57 Eastwood 13 Bananarama 8
Norge 54 Jens 9 EU 8
Storbritannien 49 Grant Rodiek 8 MTV 7

Table 5: Most frequent entities and number of occurrences.

4.1 Named Entities in Claims
The entities mentioned frequently in a corpus can
give insight into popular themes in the data. In
this case, the topic of the claims is particularly rel-
evant. We present an automatic survey of DAN-
FEVER’s entities. Entities in claims were identi-
fied using the DaNLP NER tool (Hvingelby et al.,
2020), which identifies location (LOC), person
(PER), and organization (ORG) entities. Those
most frequently named are shown in Table 5.1.

5 Baseline: Recognizing Textual
Entailment

The FEVER task consists of verifying claims
based on a text corpus. One common strategy is
to split the task into three components (as in the
original work (Thorne et al., 2018a))

1. Document Retrieval: Retrieve a useful subset
of documents from the corpora, based on the
claim.

2. Sentence Retrieval: Retrieve a useful subset
of sentences from those documents, based on
the claim.

3. Recognize Textual Entailment: Classify
the claims as Supported, Refuted or
NotEnoughInfo, based on the claim and
the subset of sentences.

To provide baseline performance for future re-
search to benchmark against, we trained a base-
line model on the final task; recognizing textual
entailment. Since there are no evidence extracts
for the NotVerifiable samples, we apply the
random-sampling method from the original EN-
FEVER paper, where evidence is randomly as-
signed from the data to each of these samples. We
trained classifiers on the resulting 3-class problem.

1Interestingly the most mentioned location is Finland

The transformer based model BERT (Devlin
et al., 2019) has shown promising performance
for claim verification (Soleimani et al., 2020), and
the team (DOMLIN) with highest FEVER-score
in the FEVER2.0 competition used a BERT-
based system (Thorne et al., 2019). Using the
transformers repository from HuggingFace (Wolf
et al., 2020) we test; mBERT (Feng et al., 2020)
(tag: bert-base-multilingual-cased),
XLM-RoBERTa Small and XLM-RoBERTa
Large (Conneau et al., 2020; Liu et al.,
2019) (tags: xlm-roberta-base and
xlm-roberta-large), and the Danish
NordicBERT (BotXO, 2019). We use BERT’s
sentence-pair representation for claims and ev-
idence extracts. The classification embedding
is then passed to a single-hidden-layer, fully-
connected neural network for prediction. We
first train the prediction layer, while freezing the
weights of the language model, and consecutively
fine-tune them both. We do this in a 10-fold
cross-validation scheme for the 4 models.

Table 6 shows weighted-mean F1-scores, train-
ing parameters and info about the models.
XLM-RoBERTa Large performed best, fol-
lowed by mBERT and then XLM-RoBERTa
Small. NordicBERT performed surprisingly
poor. The learning curve of NordicBERT flat-
tened out quickly and nothing further was learned
despite the high learning rate used. NordicBERT
was trained for Masked-Language-Modelling, but
we are unsure whether it was also trained for Next-
Sentence-Prediction like BERT (or even Causal-
Language-Modelling like RoBERTa). If not, this
may explain the poor performance on this task,
even when NordicBERT has shown promising
results for other tasks.

For comparison the multi-layer perceptron and
decomposable attention models from the EN-
FEVER paper (Thorne et al., 2018a) maintained
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Model F1 Train F1 Test Params Time BS Epochs LR WD DR
mBERT 94.5% 85.0% 110M 14h, 10m 32 40 10−5 10−6 0.3
XLM-RoBERTa Small 78.8% 78.5% 270M 11h, 40m 32 40 10−5 0 0
XLM-RoBERTa Large 98.5% 90.2% 550M 18h, 20m 8 20 5 · 10−6 0 0
NordicBERT 65.5% 65.5% 110M 6h, 40m 32 20 0.001 0.0 0.1

Table 6: Model Evaluations. F1 score is weighted-mean. Params: number of parameters in model. Time:
total training & evaluation time using 1 NVIDIA Tesla V100 PCIe 32 GB card; RMSProp optimizer. BS:
batch size. LR: maximum learning rate in single-round, cosine schedule w/ 10% warm-up.2WD: weight
decay. DR: dropout rate.

Predicted

NEI R S

Tr
ue

C
la

ss NEI 1118 7 2

R 6 1643 507

S 4 441 2679

Table 7: Test-set confusion matrix of
xlm-roberta-large classifier.

an F1 score of respectively 73% and 88% on the
verification subtask. The comparable performance
indicates that pretrained, multilingual, language
models are useful for the task, especially consid-
ering that DANFEVER is small relative to EN-
FEVER. We show the collective test-set confu-
sion matrix of xlm-roberta-large in table
7 and note that it is much easier to disregard the
randomized evidence (classify NotEnoughInfo
(NEI)), than it is to refute or support claims, which
is to be expected.

6 Conclusion

We have presented a human-annotated dataset,
DANFEVER, for claim verification in a new lan-
guage; Danish. DANFEVER can be used for
building Danish claim verification systems and for
researching & building multilingual claim verifi-
cation systems. To our knowledge DANFEVER
is the first non-English FEVER dataset, and it is
openly accessible3. Baseline results are presented
over four models for the textual-entailment part of
the FEVER-task.

2Available in Huggingface’s library: https:
//huggingface.co/transformers/main_
classes/optimizer_schedules.html#
transformers.get_cosine_schedule_with_
warmup

3https://figshare.com/articles/
dataset/DanFEVER_claim_verification_
dataset_for_Danish/14380970
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A Appendices

A.1 Format
DANFEVER contains three sqlite
databases (SQLite Consortium, 2000);
da fever.db, da wikipedia.db and
den store danske.db.

The databases da wikipedia.db and
den store danske.db contain article data
from Danish Wikipedia and Den Store Danske
respectively. They contain an id-field, which
is a numerical ID of the article (the curid for
Wikipedia and a simple enumeration for Den
Store Danske). They also contain the text and
title of each article, as well as the url to that
article.

The da fever.db database contain the anno-
tated claims. Each row in the database contain a
claim and a unique id. With each claims comes
the labels verifiable (Verifiable and
NotVerifiable) and label (Supported,
Refuted and NotEnoughInfo). The
evidence column contain information about
what articles were used to create and annotate the
claim, and is composed by a comma-separated
string, with IDs referring to the articles. The
ID-format is Y X where Y is either wiki or
dsd to indicate whether the article comes from
Danish Wikipedia or Den Store Danske, and X is
the numerical id from that data-source. Finally
the claims that were Verifiable contains an
evidence extract which is the text-snippet
used to create and annotate the claim. Note
that there may be some character-level incon-
gruence between the original articles and the
evidence extract, due to formatting and
scraping.

All three databases are also provided in TSV-
format.

The data is publicly available at
https://figshare.com/articles/
dataset/DanFEVER_claim_
verification_dataset_for_Danish/
14380970
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Abstract

The new Icelandic Word Web (IW) is a
language technology focused redesign of
a lexicosemantic database of semantically
related entries. The IW’s entities, rela-
tions, metadata and categorization scheme
have all been implemented from scratch in
two systems, OntoLex and SKOS. After
certain adjustments were made to Onto-
Lex and SKOS interoperability, it was also
possible to implement specific IW features
that, while potentially nonstandard, form
an integral part of the Word Web’s lex-
icosemantic functionality. Also new in
this implementation are access to a larger
amount of linguistic data, a greater vari-
ety of search options, the possibility of
automated processing, and the ability to
conduct research through SPARQL with-
out possessing a mastery of Icelandic.

1 Introduction

We introduce the new Icelandic Word Web (IW;
Icel. Íslenskt orðanet), a language technology fo-
cused overhaul and redesign of a lexicosemantic
database of semantically related Icelandic words
and phrases (Jónsson, 2017). This moderniza-
tion improves access to the IW’s intricate systems,
makes its data more malleable, enables the use of
a greater variety of metadata, and allows for a new,
open-ended approach to conducting research on its
various elements.

The IW is the only database of its kind for the
Icelandic language. Although there does exist a
number of other semantic databases, e.g. Ara-
bic WordNet (Black et al., 2006), BalkaNet (Tufis
et al., 2004), EuroWordNet (Vossen, 1998), Indo-
WordNet (Bhattacharyya, 2010), and The Multi-
WordNet Project (Pianta et al., 2002), there is a
strong tendency for these to be modeled on the

Princeton WordNet (Princeton University, 2010),
arguably one of the best known databases of se-
mantic word relations. While comparisons might
be made between the IW and the Princeton Word-
Net, the IW diverges considerably in its overall
structure and approach to semantic relations; its
structure is more fluid and its focus more on the
relations between core entries rather than the com-
plex hierarchy around them (Rögnvaldsson, 2018).
The implementation of the new IW itself repre-
sents a novel application of the two models with
which the IW is encoded, and may prove useful
in other projects involving the encoding of lexi-
cal databases with nonstandard structures and ele-
ments.

We begin by describing the core structure of
the original IW, focusing on the aspects that re-
mained unaltered. We then move on to the details
of the overhaul. We discuss the choice of imple-
mentation models, how we applied them to the IW
and what benefits we derived, and how we adapted
them to certain aspects of the IW that were vital to
its design but could not be represented by standard
model features. We subsequently describe how the
redesign has increased search scope, both in terms
of the amount of accessible data and of the ways
in which that data may now be searched for and
inspected. Lastly, we touch on the potential future
development and use of the IW, now that it is in
this new form.

2 Core Structure of the Icelandic Word
Web

The IW is effectively composed of two sepa-
rate but interconnected systems: Entries and cat-
egories.

The former, entries, contains the words them-
selves and their semantic relations, and forms the
bulk of the IW. Entries come in many varieties:
Monolexical and polylexical, unordered and or-
dered (including phrasemes), sourced both from
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reference works and primary sources, and accom-
panied by varying degrees of explanatory and mor-
phosyntactic metadata (Jónsson, 2018). As is
common with these types of collections, the en-
tries do not have definitions except in cases where
glosses are necessary to differentiate word forms;
rather, their meanings are considered to be im-
plicit in the relations they have to other entries or
to their respective categories. The semantic rela-
tions themselves are similarly sourced both from
primary sources and older reference works, with
the majority being derived from the former.

The latter system, categories, contains a seman-
tic classification scheme, and effectively functions
as an ontology for the IW’s entries. Unlike the en-
tries and their relations, which are primarily de-
rived from source material, the categories have
been created and implemented over the years by
the IW’s past administrators. The scheme is de-
scriptive rather than prescriptive, and is not in-
tended to be all-encompassing; each entry may
thus belong to one, none, or multiple categories.
All categories have equal priority, there are no cat-
egory hierarchies, and from a semantic perspective
their subjects may overlap. Although categories
do exist as separate entities in the IW, there are
no direct category-to-category relations. They are
connected only through the relations of the entities
that belong to them.

The IW’s primary type of semantic relation is
a specific kind of parallel construction, which we
will call Pairings for short. This relation indicates
that two given entries, X and Y, have at some point
appeared in a source text with the conjunction og
(Eng. and) between them. Pairings are unordered
by design, with a sourced X og Y being consid-
ered the equivalent of Y og X. Most of the other
relation types in the original IW build in some
way on Pairings, aside from a relatively small set
of synonyms and antonyms whose handcrafted re-
lations are drawn from preexisting entries in the
IW’s database. Pairings combine semantics and
syntax, albeit with an emphasis on the former; and
this amalgamated nature, coupled with their status
as a cornerstone of the IW’s full span of relation
types, was a major design factor in the develop-
ment of the new IW.

The creation of the original IW involved the
work of several people, over a period of decades
rather than years, collating relational information
that initially described syntax and morphology but

later shifted in focus to involve semantics as well,
all of which culminated in a deep and complex
collection of data. While the original IW is pre-
sented through a web interface1, there is no single,
fully standardized type of entry in its underlying
database. Some entries may be written or encoded
differently from others, some have more metadata,
and in certain cases the metadata itself may also be
encoded differently between entries.

In short, a direct conversion to an established
format was not an option. The only way of bring-
ing the IW to a language technology friendly for-
mat while simultaneously maintaining its breadth
of data and functionality was to design and imple-
ment it in the new format almost from scratch – a
process that not only allowed for greater standard-
ization, but also for greater inclusivity of informa-
tion that up until now had either been difficult to
use or entirely inaccessible.

3 General Implementation

Given that the IW’s original structure is divided
into two separate systems whose functionality is
not the same, we approached the reimplementa-
tion from the very beginning with the idea that
it would not necessarily contain only one system.
We therefore expected – and later found – one of
the major points of complexity not to lie in how
to fit the entire structure into one paradigm, but
rather how well two new schemes could interact.

We modeled the new IW using two separate sys-
tems: OntoLex (McCrae et al., 2017) and SKOS
(Miles and Bechhofer). Not only was each of
these well suited to represent its respective part of
the IW, but their point of intersection also turned
out to be both fully workable – OntoLex’s func-
tionality has been designed with SKOS’s interop-
erability in mind, so the two models mesh well
when applied to the IW – and useful to model
certain important and nonstandard aspects of the
IW. Moreover, the use of these systems opened
up the possibility of a range of new queries into
the data that had not been possible until now,
both through the new systemized encoding of its
metadata, which made it available to users for the
first time, and through the option of user-created
SPARQL queries rather than fixed web site user
patterns.

OntoLex was used to encode the IW’s basic en-
tities: Lemmas, their semantic relations, and per-

1https://ordanet.arnastofnun.is/
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tinent morphosyntactic information. It supports
complex linguistic modeling, and was the model
of choice for structuring an RDF version of the
Princeton WordNet. It has already been used to
recreate dictionaries in such a way that they are
easily integrable with certain outside resources, an
important point for the IW’s two systems. More-
over, it is the only data model of its kind that can
reasonably be applied to a morphologically rich
language such as Icelandic (Cimiano et al., 2016).
OntoLex allowed us to recreate with relative ease
a myriad of the original IW’s features, and, more-
over, it enabled us to codify data that had been
present in the original IW but had not been di-
rectly available to the user. As an example, most
of the new IW’s monolexical entries are now ac-
companied by data drawn (when available and ap-
plicable) from the Database of Icelandic Morphol-
ogy (DIM) (Bjarnadóttir et al., 2019). The data
cover not only each entry’s lemmatized form but
also its various inflectional forms and associated
morphosyntactic features as well. This enables
users to conduct both context-based searches for
inflectional forms, and searches based on the mor-
phosyntactic features themselves. These include
gender, case, number, voice, mood, tense, person,
and definiteness.

Additionally, certain entries (both mono- and
polylexical) are labeled as exclamations, con-
junctions, prepositions, numerals, set phrases and
proper nouns, to the degree that the IW’s original
data allows. The encoded data for polylexical en-
tries is somewhat more sparse than for monolex-
ical ones, partly to save space and avoid redupli-
cating data. However, a valuable new feature of
the IW is interlinking: Wherever possible we have
added to each single word of a polylexical entry a
link to that word’s corresponding monolexical en-
try. This new feature grants access by proxy to the
word’s morphosyntactic data, removing the need
to reduplicate all that information in the polylex-
ical entry, and overall greatly increases both the
accessibility and interrelatedness of the IW’s data.

SKOS, a popular RDF-based ontology model,
was used to encode the IW’s categories. While
OntoLex has a great variety of various encoding
options but a stringently ordered design dictating
their use, the base version of SKOS has a compara-
tively smaller range of options but is far more mal-
leable, a fact that makes it well-suited for the IW.
Instead of being a standalone entity with a com-

plete and systematic internal structure, the IW’s
category system draws heavily on the content of
its other system of entities – categories are only
created and put into use if existing lemmas sup-
port them – and there is a great deal of commin-
gling and cross-referencing between the categories
and lemmas, which means that the category sys-
tem needs to be represented by a model that does
not require all its entities to be discrete. Using
SKOS, modeling the categories was a straightfor-
ward process. Where SKOS really comes into play
is at the point where the IW’s two systems – and
hence these two models – intersect.

4 Model Convergence

While OntoLex is an ideal option for represent-
ing the IW’s complex grammar, it is unable to en-
capsulate certain other aspects of the IW’s design.
Most notably, OntoLex cannot comfortably rep-
resent semantic relationships such as the Pairings
noted in the previous section, nor can it encode
entities at all if, as is sometimes the case in the
IW, they do not have an ontological connection to
at least one category. SKOS, meanwhile, may be
used to implement both these features but cannot
store the entities themselves, which must be kept
in OntoLex if we are to hold on to that linguistic
modeling mentioned earlier.

Our solution was to develop a separate concep-
tual layer that hovers between these two models
and serves as an intermediary. The change can be
seen in Figures 1 and 2 below.

Figure 1: Potential IW implementation, without
adjustment.

Figure 1 shows what the IW would be like if im-
plemented directly in OntoLex and SKOS, with-
out taking into account the aforementioned issues.
The IW’s entities would be encoded in OntoLex
as Lexical Entries, while its categories would be
encoded in SKOS as Concepts. The two would
then be connected by an OntoLex relation called
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Lexical Sense. Entities that did not belong to
an IW category would not have this kind of re-
lation, which would render them invalid in Onto-
Lex. Moreover, the IW’s Pairings relation would
need to be directly between Lexical Senses, and al-
though OntoLex does support a number of sense-
to-sense relations, none of them are a suitable fit
for our purpose.

Figure 2: The new IW’s actual implementation in
OntoLex and SKOS.

Figure 2, on the other hand, shows our final im-
plementation of the IW in OntoLex and SKOS,
where these issues are taken into account. Here,
we have added the separate conceptual layer. Note
the replication of entities: After we have encoded
every one of them in OntoLex as Lexical En-
tries, we mirror them in SKOS as Concepts. We
call these mirrored entities Lemma-as-Concept, or
LaC for short (Lemma being a more direct transla-
tion of the IW’s Icelandic term for entities, Fletta)
(Jónsson, 2017). From the viewpoint of OntoLex,
LaCs serve as connectors to an ontology. From a
SKOS viewpoint, LaCs are effectively a new cat-
egory layer where each respective unit represents
exactly one entity: The Lemma in question. In
those cases where there does exist an actual cate-
gory, the LaC merely functions as its subset.

Not only does this ensure that we always have
the Lexical Entry/Concept connection mandatory
for sustaining each Lexical Sense, but it also al-
lows us to encode Lemma Pairings by using the
SKOS senseOf keyword to relate LaCs as appro-
priate. In implementing this separate layer and
its functionality, we have thus avoided creating
nonstandard keywords that might have otherwise
complicated the IW’s use, and have confined any
somewhat atypical use of the models to a clearly
delineated section of our system, while simulta-
neously maintaining vital core functionality of the
original IW. If new types of semantic word rela-

tions were to be added to the IW, they could com-
fortably be fitted into this layer.

5 Data Accessibility and Augmentation

In terms of existing entity relations, the new IW
has greatly increased their scope. The original IW,
which is accessible through a bespoke web site,
contains one fundamental semantic relation – Pair-
ings – and three ancillary ones (Synonyms, Near-
Synonyms and Antonyms), plus a half-dozen de-
rived relations that build on these. While these
relations could often be highly informative, both
in content and presentation, the precise nature of
each relation was fixed and could not be altered
by the user. Search functionality, likewise, was
simple and clean but unmalleable, with a focus on
textual searches for entities. Parameters both for
the search and the relations themselves could not
be altered, and the results could not be exported
for further examination. The original data was
stored in multiple tables in a database backend be-
hind the web site, and was either not accessible
except through the web site’s search options or, in
the case of morphosyntactic metadata, not acces-
sible to regular users in any way.

The new IW, by contrast, effectively offers a
limitless variety of potential searches. It is stored
in a single RDF file accessible directly through
CLARIN2 under a CC BY 4.0 license. We have
encoded only the Pairings and ancillary relations
into the system, and the derived relations are not
formally encoded in the system.

Instead, everything may now be produced
through queries written in SPARQL, and the raw
data itself may be viewed at will as needed. The
sample query in Figure 3 shows a search for all
words and phrases whose written form, irrespec-
tive of grammatical categorization, has more than
one “gloss”, or explicitly mentioned definition.
The SPARQL code is on the left, and the results on
the right, with the results’ left-hand column listing
Word Web entries and the right-hand one listing
their corresponding glosses.

These queries extend to practically every at-
tribute encoded into the IW, including all those
listed in the chapter on general implementation.
So long as the user can formulate their intent into
a valid SPARQL query, it may be applied to the
IW’s data. (This includes LaCs, which may be
trivially folded into SPARQL queries.)

2http://hdl.handle.net/20.500.12537/69
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Figure 3: Word Web SPARQL query and corresponding output.

6 Conclusion and Future Developments

By its encoding in a publicly accessible form, the
new IW reduces the barriers to entry for anyone
wishing to make use of its stores of information.
It also encodes that information in such a way
that far more of it is accessible and usable for
research, while maintaining, wherever possible,
an adherence to official standards that ensure the
IW’s functionality is well-documented and com-
parable to that of any other models encoded using
those same standards. On those occasions where
that adherence is not possible or practical, we have
tried to ensure that non-standard use is properly
documented, kept to a minimum, and contained
within a specific, clearly-defined part of the IW.

The IW’s data storage is kept current, with new
information added on a regular basis. As noted
earlier, updates of existing data will grant the IW
even greater usability. In addition, the models in
which the IW is encoded support a range of po-
tential information such as bilingualism and pho-
netics that, although not currently a part of the IW,
may now be added to a system designed to store
and handle this kind of data.

Overall, the IW is a deep and extensive system
that models varying degrees of semantic relations
between single- and multiword lemmas, drawing
its information not from third party schemas and
design, but rather directly from first-party sources.
There is ample reason to think that the IW will be
relevant to any number of research projects in the
future, particularly now that it has been redesigned
and reimplemented with depth of reach and ease of
access in mind.
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Abstract
In this paper, we introduce the first cor-
pus specifying negative entities within sen-
tences. We discuss indicators for their pres-
ence, namely particular verbs, but also the
linguistic conditions when their prediction
should be suppressed. We further show that
a fine-tuned BERT-based baseline model
outperforms an over-generating rule-based
approach which is not aware of these fur-
ther restrictions. If a perfect filter were
applied, both would be on par.

1 Introduction

In online media including social media, the world
is often conceptualized as being divided into bene-
ficiaries and benefactors, victims and villains. For
quite some time, the most interesting questions
seem to have been: Who is to blame and who bene-
fits most. In this work, we strive to create a dataset
and a first model to answer the first of these ques-
tions, i.e. to identify the villains in texts. But what
is a villain, anyway? Are we compelled to reveal
our moral convictions in order to answer this ques-
tion? A murderer, a cheater, a liar seem to be clear
cases. But what about white lies and the cheating
in a card game? We could introduce a severeness
score in order to quantify the villainousness grade.

In this paper, we describe our annotation efforts
to create a corpus of sentences that comprises at
least one entity that realises a negative (semantic)
role. The filler of a negative semantic role might
be a person, organization etc. But it also might be
an event or even a non-animate physical object. Es-
pecially in metonymic constructions, non-animate
fillers are to be expected. Although we also have
started to annotate the strength of negativity, in this
short paper we focus on the language usage that
gives rise to the assignment of negative roles per
se. In the second part of the paper we discuss two
models: a rule-based and a BERT-based one.

2 Phenomena to be considered

The goal of our annotation is to identify those enti-
ties of a sentence that occupy a negative semantic
role. A number of constructions can be used to
take a negative perspective on some entity. One
can do it explicitly by a noun phrase (the lies of the
president), a predicative construction (he is a liar)
or by using a verb who implies a negative actor (He
vilifies the people). In this paper, we focus on verbs.
It turns out, though, that not every usage of such a
verb assigns a negative role. Only if the situation
at hand is factual, then a negative role actually indi-
cates a villain (Klenner and Clematide, 2016). Also
ambiguity has to be taken into account. We, thus,
are talking about a probability distribution, depend-
ing on various grammatical parameters. Before
we have a more detailed look at this grammatical
means, please note that quite a couple of verbs do
have negative roles especially at the actor position.
We have identified about 400 for the German lan-
guage (Klenner and Amsler, 2016). Among them
are verbs that indicate a crime (e.g. to murder, to
kill, to injure, to torture ...), but also verbs like to
vilify, to rebuff, to lie, to cheat, to mock, to demor-
alize, to prejudge and so on. Most of the time, the
subject of the verbs bears the negative role.

As we said, metonymic reference has to be taken
into account. Besides classical cases of metonymy
like producer for product (e.g. Pynchon is hard
to read), we also consider all references to be
metonymic when humans are involved, e.g. This
agreement destroys our hope.

There are a number of grammatical means (see
Fig. 1) that indicate non-factuality and thus block
the assignment of negative roles.

In reported speech (1), the actor of the reported
event (China) is blocked. Subjunctive mood (2)
inhibits the inference (agreement) since nothing
has happened, which is also true for future tense
(3). For verbs that have a theme dependent nega-
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1. reported speech: He said China was responsi-
ble for the virus

2. subjunctive mood: This agreement would de-
stroy our hope

3. future tense: He will deny his guilt

4. pronoun underspecification: They admit it

5. modal verbs: The UN must invade

6. modal adverbs: He possibly is lying

7. negation: He has never cheated the people

8. conditional constructions: If he lies, the peo-
ple won’t elect him

9. reflexive usages: He cheats himself

10. different reading: He hurts the deadline

Figure 1: Inference Blocker

tive actor assignment (like to admit a mere/serious
mistake/crime), an unresolved pronoun (4) blocks
inference. Some modal verbs (5) prevent the as-
signment of negativity (UN) as do adverbs (6) like
possibly. Negation (7) also acts as a plug for such
inferences, as well conditional statements (8). We
also argue that the reflexive use of these verbs is
not indicating a negative actor (9). Harder to detect
are cases where the right reading should suppress
the assignment of a negative actor (10).

In traditional machine learning we would use the
items from Fig. 1 as features. A rule-based system
could try to use them as filters. In a Deep Learning
scenario, e.g. a BERT-based model, we could hope
that the fine-tuning process will be sufficient to
learn the regularities.

3 Annotated Corpus

As source for sentences that might have a negative
role, we selected 1300 sentences from two corpora1.
The first one is a German newspaper corpus called
TuebaDZ (Telljohann et al., 2009) comprising more
than 100,000 sentences (publically available) and
the second one are Facebook posts of a German
right-wing party (AfD) with more than 300,000

1The annotated data is available, just contact the first au-
thor.

sentences2. The AfD texts also contain offensive
language. The TuebaDZ data, on the other hand,
comes from a left-oriented newspaper. We delib-
erately have chosen two different world views in
order to have a broader range of examples.

We generated the candidate sentences by the fol-
lowing procedure: we parsed the sentences with
the German ParZu parser (Sennrich et al., 2009)
and then for those sentences that had a verb from
our lexicon, we extracted the predicate argument
structures (as a preprocessing step of our rule-based
system, see (Klenner et al., 2017)) from the depen-
dency parse trees. Finally, we identified the agent
position (ARG0) and suggested it to be a negative
actor. Given

Unser Land wird von den Medien zerstört
which translates to Our country is being de-
stroyed by the media, the predicate argument
structure (as a formula in Predicate Logic)
is destroy(media,country). From this, media
was extracted to denote a negative actor nega-
tive role filler(media). The two annotators were
presented with the full sentence and had to deter-
mine whether the suggested negative actor actually
is one. Moreover, the strength of negativity had to
be determined on the basis of a scale from 1 (low)
up to 3 (high). A zero means false positive.

In the course of the annotation, we removed a
couple of sentences, because no actor was found
by the predication extractor. We ended up with
1260 sentences. 460 cases are false positives, i.e.
the found actor was not a negative actor, exactly
800 were true positives. We had a closer look at
the reasons for the false positives, i.e. how the
criteria from Fig. 1 are distributed. Only 4 cases
would need coreference resolution, 18 are errors
based on negation, 19 cases were future tense, 19
reported speech, 38 subjunctive mood, 48 reflexive
usage, 59 conditional forms and 162 were wrong
readings. We also had a number of parsing errors,
namely 93 (wrong candidate). From 460 cases of
false positives, thus, 183 cases (39.78 %) can be
blocked by a perfect filter, coreference, negation,
parsing errors and cases of wrong readings due to
ambiguity are out of reach.

Our inter-annotator agreement is a Kappa score
of 0.78: i.e. whether the annotators agreed that
a noun candidate was really a negative actor or a
false positive.

2The data is publically avaiable on request - please contact
the first author.
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4 Experiments

4.1 Rule-based Baseline

We used our rule-based system for sentiment infer-
ence3 as a baseline. The system is verb-based and
is designed to generate all pro (in favor of) and con
(against) relations among the entities mentioned
in a text. Moreover it indicates which discourse
referents are negative actors and which receive a
negative effect (see (Klenner et al., 2017) for the
details). We just took the negative actors from the
output and tested against our gold-standard. The
system is over-generating: a rule triggers if a verb
from the lexicon is found and the syntactic frame
of the verb is met by the parse tree. We have not
realised a filter (from Fig. 1) to block non-factual
sentences from producing negative actors, but we
give the hypothetical improvement the rule-based
system would achieve if it was available (RB* in
Tab. 1).

Figure 2: Top is right, bottom wrong

Figure 2 shows the result for the sentence The
contract destroys our hope (top) and The contract
would destroy our hope (subjunctive, bottom). The
negative actor (nac) Vertrag (contract) stands in
a con relation (red arc) with Hoffnungen (hopes)
which receives a negative effect (neff ). Only the
top analysis is right, since the second sentence is
not factual.

The advantage of such a rule-based system is
transparency. The logic behind the predictions can
be analysed, further refined, and applied to new
verbs, if needed. The backside is that it remains
brittle: lexical gaps (reduced recall) and erroneous
parse trees (reduced precision) affect the perfor-
mance. Moreover, if we are interested only in a
well-performing system (in some end-to-end archi-
tecture), we do not necessarily need transparency.
It might turn out that a neural approach is on par

3https://pub.cl.uzh.ch/demo/stancer/

with or even outperforms it. Also, the next step
in our research strives to automatically quantify
the severeness of negativity of an actor. Here a
regression analysis is a natural approach (given
that enough training material is available which is
current work).

4.2 BERT-based Model

We realised a straightforward neural model by fine-
tuning a German BERT model4. Several runs
with different test sets showed that the results only
slightly vary.

We tried two scenarios. In the first one, the
whole sentences together with the labels were given
to the training procedure. The binary classification
task then was to label the sentence either as 1 (true
positive) or 0 (false positive). If 1, then we know
that the candidate noun (ARG0, which is mostly
the subject of the verb from our verb lexicon) is a
negative actor, given 0, it is not. The results were
not very promising. We achieved 61% precision
and 52% recall. We, thus, stopped further experi-
ments with this setting.

In the second and simpler setting, the training
procedure just gets all words between ARG0 and its
verb (including ARG0 and the verb). Due to Ger-
man word order, it might be the other way round
as well (every word between the verb and ARG0).
Sometimes, a potential indicator word (e.g. an ad-
verb) gets lost in these cases, but they are rare. To
give an example of such a fragment:

”er die Frauen immer wieder anschrie” (he
yelled at the women again and again)

ARG0 is er (he) and the verb from the lexicon
is anschreien (to yell). In Table 1 we provide the
results of four runs with BERT (DL 1-4) and the
single result from the application of the rule-based
model (RB).

First of all, the RB model does not trigger on ev-
ery sentence. The reason might be a missing verb
subcategorization frame or a wrong dependency
tree (the model only triggers if the verb frame from
the lexicon is found). This explains the recall below
100%. The precision is lower than that of the DL
model since the RB model is not able to identify
class 0. Some of the predicted 1, thus, are 0. The
recall of RB is higher than those of DL probably
since no inference blocking mechanisms are imple-

4We use the Transformer library from Hugging-
Face (Wolf et al., 2020) and the BERT model made
publicly available at https://huggingface.co/
bert-base-german-cased
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precision recall f-measure
RB 64.87 88.04 74.83
RB* 71.83 88.04 78.59
DL 1 72.77 84.75 78.31
DL 2 74.86 79.87 77.28
DL 3 72.02 84.75 77.87
DL 4 72.82 86.58 79.10

DL mean 73.12 83.99 78.14
DL std 1.05 2.49 0.66

Table 1: Rule-based (RB) versus BERT-based (DL):
label 1

precision recall f-measure
DL 1 42.30 60.12 49.65
DL 2 51.11 58.22 54.43
DL 3 40.00 59.01 47.68
DL 4 41.11 62.71 49.66

DL mean 43.63 60.02 50.36
DL std 4.39 1.70 2.49

Table 2: Results of BERT-based (DL): label 0

mented and, thus, more is predicted. RB* gives the
results if a perfect filter was applied. Out of the
183 filtered out cases5, 102 have triggered an infer-
ence. If we reduce the number of found cases (the
denominator of precision) by 102, precision goes
up to 71.83% and the f-measure raises to 78.59%.
Both approaches were on par, then.

The DL model has - to a certain extend - learned
that some examples belong to the category 0. Table
2 shows the DL results for the label 0. They are
worse than those for 1. This might stem from the
truncation which sometimes cuts away too much.

5 Related Work

Our task, detecting negative actors, is somehow
related to the task of opinion role identification
(see e.g. (Wiegand et al., 2019)), where the goal is
to identify the source (our case) and the target of an
opinion event expressed by a sentence. However,
our task is more specific and more general at the
same time. We are interested in opinion sources
that also are conceptualized as negative actors as in
He vilifies the people. But we not only are looking
at opinion sources but are also interested in any
event source (or actor) that is negatively connotated
through the sentence (e.g. He deliberately injured
others). There is a superficial similarity with the

5As discussed, 39.78 % of the 460 false positives could be
detected by a simple filter.

work of (Wiegand et al., 2016) where also a rule-
based approach was used. Our rule-based system is
described in (Klenner et al., 2017). Among others,
it also produces predictions of negative actors. The
system uses a large verb lexicon where each verb is
specified according to its various syntactic frames
and where the frame elements are further specified
with respect to their polar roles (e.g. negative actor)
and the pro or con relation among each other. The
shortcoming of the system clearly is that it is over-
generating, it only partially is able to identify non-
factuality and has no means to distinguish relevant
from irrelevant readings of a verb.

We have also tried to find related work in the
fields of stance detection and even argumentation
mining. But we are not aware of any approaches
that directly focuses as we do on that task, neither
for German nor for any other language. The field
of emotion classification is relevant, as negative
actors might evoke strong emotions. Inspired by
(Oberländer et al., 2020)’s paper title, we want to
investigate ”which semantic roles enable machine
learning to infer” the negative sentiments towards
agent entities. Based on cognitive appraisal theo-
ries, the corpus of thousand sentences described in
(Hofmann et al., 2020) explicit the link between
emotions caused by events and the appraisal dimen-
sions. Our ongoing attempt to quantify the severe-
ness of negativity involved might benefit from a
closer look at the emotional side. (Bostan et al.,
2020) annotated emotions in English news head-
lines via crowdsourcing, together with semantic
roles and the reader’s perception. To gain more in-
sights into the severeness dimension, crowdsourc-
ing could be a good way in order to come to a more
representative since larger corpus.

6 Conclusion

We have introduced a dataset of 1260 actor-verb
pairs (including their sentences) where each pair
either identifies a negative actor of a factual situ-
ation described by the verb or the actor is not a
negative actor mostly because the verb denotation -
given the sentence - is non-factual. Factuality could
in principle be determined on the basis of certain
grammatical indicators, but other inference block-
ers are harder to identify (verb ambiguity). If the
rule-based system had a basic (and perfect) filter,
both approaches, DL and RB, are on par. We have
shown that the neural models (DL) are able to learn
the needed distinctions without relying on manual
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feature engineering or manual filter specifications.
The identification of negative actors might be use-
ful for a system that detects offensive language or
hate speech, where targets (e.g. migrants) quite
often are being conceptualized as villains.

Future work will focus on the determination of
the strength of negativity. Manually quantifying
negativity of actors is an error prone task. More-
over, the actual strength value is not so crucial -
it is the right ranking (is actor A more negative
than actor B) that counts. We have started to exper-
iment with a lexicon-based quantification metric
(see (Clematide and Klenner, 2010) for the lexicon)
that takes into account different types of sentiment
specifications, e.g. appraisal categories (Martin and
White, 2005) (judgement, emotion, apprehension
words) and the classification of emotion words ac-
cording to the base emotions they express (Plutchik,
1980).
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Abstract

We present Talrómur1, a large high-quality
Text-To-Speech (TTS) corpus for the Ice-
landic language. This multi-speaker cor-
pus contains recordings from 4 male
speakers and 4 female speakers of a wide
range in age and speaking style. The cor-
pus consists of 122,417 single utterance
recordings equating to approximately 213
hours of voice data. All speakers read
from the same script which has a high
coverage of possible Icelandic diphones.
Manual analysis of 15,956 utterances indi-
cates that the corpus has a reading mistake
rate no higher than 0.25%. We addition-
ally present results from subjective evalu-
ations of the different voices with regards
to intelligibility, likeability and trustwor-
thiness.

1 Introduction

All statistical TTS models require some training
data to learn the mapping from text to speech.
Unit selection TTS models are capable of produc-
ing an intelligible voice using less than 2 hours of
aligned speech (Conkie, 1999). HMM-based TTS
models can produce somewhat natural-sounding
speech using less than 500 utterances (Yoshimura
et al., 1999). The more recent neural end-to-
end models have reached a considerably higher
mean opinion score (MOS) in regard to natural-
ness. However, they require a much larger training
corpus; most require tens of thousands of utter-
ances to converge and reach natural sounding syn-
thesis (Wang et al., 2017) (Ren et al., 2019). The
widely used LJ Speech corpus consists of 13,100
recordings amounting to approximately 24 hours
(Ito and Johnson, 2017).

1"Tal" means speech and "rómur" means voice.

To produce high quality synthesised speech
with minimal noise, the corpora used for train-
ing TTS models are most often captured in a stu-
dio under supervision. New approaches have low-
ered the language-specific expertise needed for
high quality TTS but at the cost of requiring larger
amounts of training data (Sotelo et al., 2017) (Arik
et al., 2017) (Wang et al., 2017) (Ren et al., 2019).
The large amount of data needed and the quality
of that data limits the ability of many low resource
language communities to benefit from these recent
advancements in the TTS domain.

The Icelandic language program (ILP) is a 5
year government funded program to make the
Icelandic language viable in the digital world
(Nikulásdóttir et al., 2020). TTS development for
Icelandic is a significant part of the ILP ranging
from unit selection voices to multi-speaker TTS
models. A prerequisite for all TTS projects of the
ILP is a large high quality TTS corpus which up
to this point has not been available for open use
(Nikulásdóttir et al., 2020).

Previous work in spoken language technology
for Icelandic has been more focused on speech
recognition, both in terms of data acquisition
and acoustic modelling (Helgadóttir et al., 2017)
(Guðnason et al., 2012) (Steingrímsson et al.,
2017) (Mollberg et al., 2020). Since most of that
data is found or crowd-sourced data from multi-
ple speakers it is not ideal for speech synthesis
where low background noise and high recording
quality is important. An Icelandic pronunciation
dictionary for TTS exists as well as a limited text
normalisation system (Nikulásdóttir et al., 2018)
(Nikulásdóttir and Guðnason, 2019). To address
the lack of high quality Icelandic TTS data, Talró-
mur has been created.

2 The Talrómur Corpus

One of the aims of the Talrómur project is to at-
tain diversity in age, speaking style, dialect and
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ID Name Gender Age # Utterances Duration # Characters # Words # Unique
Words

A Rósa F 59 9,899 16h32m12s 556,767 93,002 19,272
B Bjartur M 70 12,048 25h43m05s 713,578 118,564 22,617
C Diljá F 71 13,443 27h57m33s 843,530 139,636 25,492
D Búi M 49 12,357 22h32m58s 766,037 126,814 23,857
E Ugla F 26 20,050 31h28m04s 1,298,318 215,176 33,629
F Álfur M 35 19,849 29h07m18s 1,284,508 212,979 33,401
G Salka F 33 16,886 30h09m38s 1,078,978 178,818 29,966
H Steinn M 39 17,637 29h49m01s 1,134,244 187,868 30,977

Table 1: Overview of corpus, outlining key statistics and information for each speaker. The "Name"
column contains pseudonyms for the speakers in the corpus

prosody. Voice samples from speaker applicants
were analysed and evaluated with this and a sub-
jective evaluation of pleasantness in mind. Each
participating speaker got a recording schedule,
typically two hours each working day until com-
pletion.

Dialect diversity is low in Iceland and six main
but rather similar regional variants are listed in the
Icelandic pronunciation dictionary (Nikulásdóttir
et al., 2018). Speakers A-F all speak in the most
frequent standard dialect while speakers G and H
speak in the second most frequent regional vari-
ant. Speakers A, B and C differ a bit from the rest
of the group and their qualities deserve a specific
mention.

Speaker A was the first speaker we recorded. At
that time the development of the recording client
was ongoing and we had limited experience with
the studio and equipment. As shown in table 1 that
speaker has significantly fewer hours recorded.

Speaker B is a 70 year old man with limited
eyesight. This speaker often had issues with read-
ing the prompts fluently. This results in unnatural
pauses in the middle of sentences that correspond
with where the line is split on the screen. We
have looked into using silence detection to remove
these silences and current results suggest that this
task is easily automated. We release the data in the
raw format however, without any trimming.

Speaker C is a female voice actor with a deep,
breathy voice. This speaker’s recordings are more
similar to audio-book recordings in that they have
a more animated speaking style when compared to
the other speakers.
Technical Details
Each speaker reads single sentence prompts from
the same reading list. The reading list was de-

Figure 1: Mel-frequency spectrograms of all
speakers saying the same phrase: "Ég, ég er sko,
ég er ekki sko, alveg viss um þetta".

signed to have a high coverage of diphones in
the Icelandic language (Sigurgeirsson et al., 2020).
The prompts were sourced from Risamálheild, a
large Icelandic text corpus consisting of text from
many different types of sources (Steingrímsson
et al., 2018).

Recording sessions were carried out in a stu-
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dio at the national broadcaster of Iceland. Af-
ter recording the first 2 speakers, the project was
moved to a different studio at the national broad-
caster due to restrictions caused by the COVID-19
pandemic. The last two speakers reside in north-
ern Iceland and they were therefore recorded in
a third studio. The recordings were captured be-
tween November 2019 and September 2020.

Since the speakers read prompts from the same
reading list nearly all sentences in the corpus are
spoken by multiple speakers. This makes the
corpus ideal for multi-speaker TTS development,
prosody transfer, voice conversion and other re-
search domains where the speaker identity and lin-
guistic content have to be disentangled by the TTS
model (Skerry-Ryan et al., 2018) (Wang et al.,
2018).

The same recording hardware was used for all
recordings. The hardware consisted of an AKG
ULS series condenser microphone equipped with
a CK-61 cardioid capsule, an SPL channel one
pre-amplifier and a Clarett 2Pre sound card. The
recordings are captured using a recording client
specifically made for this project (Sigurgeirsson
et al., 2020).

We store some information about every record-
ing captured, such as how the text appeared on the
monitor to the speaker, the session ID and techni-
cal information about the recordings. Most record-
ings are sampled at 48kHz with a 16 bit depth.
Some recordings of speakers A and B are sampled
at 44.1kHz. All recordings are single channel.

3 Recording Analysis

Type of error Occurrence Rate
Volume too low 8 0.05%
Volume too high 70 0.44%
Audio flaw 347 2.17%
Prompt mismatch 196 1.23%
Actual mismatch 39 0.25%

Table 2: The results of 15,956 recording analyses.
The evaluators judge long silences as prompt mis-
matches resulting in 196 prompt mismatch evalu-
ations. Subtracting those results in a much lower
number or 39.

We have analysed a portion of the recordings
for quality. Of the approximately 122,417 record-
ings 15,956 recordings have been analysed. Us-
ing a proprietary tool, human evaluators are asked

to first listen to a single recording and then in-
dicate whether the recording matches the prompt
and whether the recording quality is good. We
specifically ask the evaluators to indicate whether
the volume is either too high, resulting in pops or
distortions, or too low making the recording hard
to comprehend or whether any other audio flaws
are audible in the recording.

Of the recordings analysed 613 were marked as
bad or about 3.8%. Only 1.23% of the recordings
were indicated to have a mismatch between the
prompt and the recording. Upon further inspec-
tion it seems that the evaluators marked record-
ings with untimely silences as prompt mismatches.
Most of those are spoken by speaker B as ex-
plained in section 2. After a second pass over the
evaluations we are confident that a better estimate
of prompt mismatches is no more than 0.25%.

The rate of audio flaws is 2.17% but review-
ing the samples in question revealed that a signif-
icant portion of these recordings do not have any
unwanted artefacts. Upon inspection we believe
some of these recordings have a higher than nor-
mal volume, making them sound unpleasant when
compared to other recordings. This is particularly
common for speaker B. The volume of recordings
can be too high if the speaker has moved too close
to the microphone, the hardware has not been con-
figured correctly or the speaker speaks with more
effort than is natural to the speaker. There are
however some recordings that do have unwanted
artefacts. In most cases this consists of a small
pop at a random location in the recording. These
pops mostly appear in recordings from speakers A
and B and we therefore deduce that the source of
this artefact is the hardware configuration in the
recording studio for those speakers.

4 Subjective Listening Experiment

To gain further information about which voice
would be most suitable for general TTS use, we
set up a subjective listening experiment with 50
participants. During the listening experiment, the
participants listen to a single recording at a time.
They are then asked one of three questions2:

Q1: How easy is it to understand this voice?
Q2: How pleasant is this voice?
Q3: How trustworthy is this voice?

2In Icelandic: Q1: Hversu auðskiljanleg þykir þér þessi
rödd? Q2: Hversu viðkunnanleg þykir þér þessi rödd? Q3:
Hversu traustverðug þykir þér þessi rödd?
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ID SR F0 Duration
words / sec chars / sec Min Mean ± SD Max Min Mean ± SD Max

A 2.34 13.70 147.77 198.82± 22.56 246.68 1.30 6.01± 1.55 14.38
B 1.73 10.19 76.58 150.71± 24.57 215.14 2.22 7.68± 1.91 18.68
C 1.89 11.20 107.62 173.61± 24.52 331.10 2.71 7.48± 1.77 17.76
D 2.24 13.28 79.69 143.69± 28.02 210.22 0.91 6.57± 1.53 15.97
E 2.94 17.39 128.37 210.74± 27.00 294.88 1.86 5.65± 1.50 14.46
F 3.26 19.33 102.03 128.10± 12.89 165.02 1.78 5.28± 1.36 12.96
G 2.39 14.13 154.71 237.08± 20.60 271.69 2.26 6.43± 1.64 14.82
H 2.60 15.42 98.45 142.69± 23.36 213.84 1.44 6.09± 1.56 14.57

Table 3: Estimation of speaking rate (SR) and average F0. Pitch was estimated by averaging pitch over
voiced segments in the phrase used in figure 1. ProsodyPro was used for pitch tracking (Xu, 2016).

The participants then rate the recording on a scale
from 1 to 5, e.g. from very untrustworthy to very
trustworthy. Before starting the evaluation partici-
pants are made aware that the sentences being spo-
ken should not affect their judgement and that they
should focus on the voice itself.

Each participant listens to 3 recordings from
each speaker for each of the three questions, re-
sulting in 24 evaluations per question and 72 eval-
uations in total per participant. We used a balanced
Latin square experimental design with 24 differ-
ent recordings tested for each evaluation question
(MacKenzie, 2002). This resulted in 1074 Q1
responses, 1074 Q2 responses and 1088 Q3 re-
sponses. The number of responses per utterance
ranges from 4 to 8.

Results from this experiment are shown in table
4. These scores are relative between the 8 speakers
since listeners only listen to recordings from the
Talrómur corpus. Due to the fact that the listening
test wasn’t anchored, the interpretation of the rat-
ing scale varied noticeably between listeners. The
results we present here are normalised per listener,
and the raw scores are higher, particularly for Q1.
Voice G is rated as the most intelligible, voice H
as the most likable and most trustworthy, although
they didn’t score significantly higher than the sec-
ond highest for each question.

5 Summary and Future Work

In this paper we introduce the Talrómur corpus
which is the result of the first TTS data acquisition
phase of the Icelandic language program. Talró-
mur is a large, high quality speech corpus designed
specifically for TTS. The corpus consists of 8 dif-
ferent voices with a wide range in prosodic effect,
speaking style and age. The quality and amount of

ID Q1 Q2 Q3
A 2.78± 0.36 2.84± 0.33 2.80± 0.32
B 1.82± 0.36 1.66± 0.30 1.50± 0.30
C 2.96± 0.37 1.95± 0.38 2.14± 0.35
D 3.57± 0.33 3.02± 0.31 3.55± 0.29
E 4.13± 0.28 2.87± 0.32 3.72± 0.28
F 3.54± 0.31 3.10± 0.34 2.87± 0.34
G 4.27± 0.22 2.91± 0.33 3.32± 0.30
H 3.97± 0.28 3.15± 0.27 3.73± 0.28

Table 4: Normalised mean opinion score with
standard deviation for each speaker and each ques-
tion. Q1 tested for intelligibility, Q2 for likeability
and Q3 for trustworthiness.

data in Talrómur matches or exceeds that used in
many state-of-the-art end-to-end neural TTS mod-
els for the English language. A subjective evalua-
tion indicates which voice users are likely to prefer
but we believe most of the voices are good candi-
dates for general TTS use. As with other deliver-
ables belonging to the ILP, the data will be pub-
lished under open licenses to encourage wide use
and adoption of the data. The data has been made
available through the CLARIN project3.
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Abstract

Norway has a large amount of dialectal
variation, as well as a general tolerance
to its use in the public sphere. There are,
however, few available resources to study
this variation and its change over time and
in more informal areas, e.g. on social me-
dia. In this paper, we propose a first step
to creating a corpus of dialectal variation
of written Norwegian. We collect a small
corpus of tweets and manually annotate
them as Bokmål, Nynorsk, any dialect, or
a mix. We further perform preliminary ex-
periments with state-of-the-art models, as
well as an analysis of the data to expand
this corpus in the future. Finally, we make
the annotations and models available for
future work.

1 Introduction

Norway has a large tolerance towards dialectal
variation (Bull et al., 2018) and, as such, one can
find examples of dialectal use in many areas of
the public sphere, including politics, news media,
and social media. Although there has been much
variation in writing Norwegian, since the debut of
Nynorsk in the 1850’s, the acceptance of dialect
use in certain settings is relatively new. The offi-
cial language policy after World War 2 was to in-
clude forms belonging to all layers of society into
the written norms, and a “dialect wave” has been
going on since the 1970’s (Bull et al., 2018, 235-
238).

From 1980 to 1983 there was an ongoing project
called Den første lese- og skriveopplæring på di-
alekt ‘The first training in reading and writing in
dialect’ (Bull, 1985), where primary school stu-
dents were allowed to use their own dialect in
school, with Tove Bull as project leader. Bull et al.

∗The authors have equal contribution.

(2018) also point out that later interest in writing
in dialect in media such as e-mail and text mes-
sages can be seen as an extension of the interest
in dialectal writing in the 1980s (Bull et al., 2018,
239). They also note that the tendency has been
the strongest in the county of Trøndelag initially,
but later spreading to other parts of the country,
also spreading among adults.

At the same time, there are two official main
writing systems, i.e. Bokmål and Nynorsk, which
offer prescriptive rules for how to write the spo-
ken variants. This leads to a situation where peo-
ple who typically use their dialect when speaking
often revert to one of the written standards when
writing. However, despite there being only two
official writing systems, there is considerable vari-
ation within each system, as the result of years of
language policies. Today we can find both ‘rad-
ical’ and ‘conservative’ versions of each writing
system, where the radical ones try to bridge the
gap between the two norms, while the conservative
versions attempt to preserve differences. However,
it is still natural that these standards have a regu-
larizing effect on the written varieties of people
who normally speak their dialect in most situa-
tions (Gal, 2017). As such, it would be interest-
ing to know to what degree dialect users deviate
from these established norms and use dialect traits
when writing informal texts, e.g. on social media.
This could also provide evidence of the vitality of
certain dialectal traits.

In this paper, we propose a first step towards
creating a corpus of written dialectal Norwegian
by identifying the best methods to collect, clean,
and annotate tweets into Bokmål, Nynorsk, or di-
alectal Norwegian. We concentrate on geolects,
rather than sociolects, as we observe these are eas-
ier to collect on Twitter, i.e. the traits that iden-
tify a geolect are more likely to be written than
those that identify a sociolect. This is a necessary
simplification, as dialect users rarely write with
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full phonetic awareness, making it impossible to
find dialect traits that lie mainly in the phonol-
ogy. As such, our corpus relies more on lexical
and clear phonetic traits to determine whether a
tweet is written in a dialect.

We collect a corpus of 1,073 tweets which
are manually annotated as Bokmål, Nynorsk,
Dialect, or Mixed and perform a first set of
experiments to classify tweets as containing di-
alectal traits using state-of-the-art methods. We
find that fine-tuning a Norwegian BERT model
(NB-BERT) leads to the best results. We perform
an analysis of the data to find useful features for
searching for tweets in the future, confirming sev-
eral linguistic observations of common dialectal
traits and find that certain dialectal traits (those
from Trøndelag) are more likely to be written, sug-
gesting that since their traits strongly diverge from
Bokmål and Nynorsk, they are more likely to de-
viate from the established norms when composing
tweets. Finally, we release the annotations and di-
alect prediction models for future research.1

2 Related Work

The importance of incorporating language varia-
tion into natural language processing approaches
has gained visibility in recent years. The VarDial
workshop series deals with computational meth-
ods and language resources for closely related lan-
guages, language varieties, and dialects and have
offered shared tasks on language variety identifi-
cation for Romanian, German, Uralic languages
(Zampieri et al., 2019), among others. Simi-
larly, there have been shared tasks on Arabic di-
alect identification (Bouamor et al., 2019; Abdul-
Mageed et al., 2020). To our knowledge, however,
there are no available written dialect identification
corpora for Norwegian.

Many successful approaches to dialect identifi-
cation use linear models (e.g. Support Vector Ma-
chines, Multinomial Naive Bayes) with word and
character n-gram features (Wu et al., 2019; Jauhi-
ainen et al., 2019a), while neural approaches often
perform poorly (Zampieri et al., 2019) (see Jauhi-
ainen et al. (2019b) for a full discussion). More
recent uses of pretrained language models based
on transformer architectures (Devlin et al., 2019),
however, have shown promise (Bernier-Colborne
et al., 2019).

1Available at https://github.com/jerbarnes/
norwegian_dialect

Corpus-related work on Norwegian dialects has
mainly focused on spoken varieties. There are two
larger corpora available for Norwegian: the newer
Nordic Dialect Corpus (Johannessen et al., 2009),
which contains spoken data from several Nordic
languages, and the Language Infrastructure made
Accessible (LIA) Corpus, which in addition to
Norwegian also contains Sámi language clips.2

There is also the Talk of Norway Corpus (Lap-
poni et al., 2018), which contains transcriptions
of parliamentary speeches in many language va-
rieties. While they contain rich dialectal informa-
tion, this information is not kept in writing, as they
are normalized to Bokmål and Nynorsk. These re-
sources are useful for working with speech tech-
nology and questions about Norwegian dialects as
they are spoken, but they are likely not sufficient
to answer research questions about how dialects
are expressed when written. The transcriptions
in these corpora also differ from written dialect
sources in the sense that they are in a way truer
representations of the dialects in question. In writ-
ing dialect representations tend to focus more on
a few core words, even if the actual phonetic real-
ization of certain words could have been marked
in writing.

3 Data collection

In this first round of annotations, we search for
tweets containing Bokmål, Nynorsk, and Dialect
terms (See Appendix A), discarding tweets that
are shorter than 10 tokens. The terms were col-
lected by gathering frequency bigram lists from
the Nordic Dialect Corpus (Johannessen et al.,
2009) from the written representation of the di-
alectal varieties.

Two native speakers annotated these tweets with
four labels: Bokmål, Nynorsk, Dialect, and
Mixed. The Mixed class refers to tweets where
there is a clear separation of dialectal and non-
dialectal texts, e.g. reported speech in Bokmål
with comments in Dialect. This class can be
very problematic for our classification task, as the
content can be a mix of all the other three classes.
We nevertheless keep it, as it still reflects one of
the written representations of Norwegian.

In Example 1, we show two phrases from the
Nordic Dialect Corpus, from a speaker in Ballan-
gen, Nordland county. We show it in dialectal

2https://www.hf.uio.no/iln/english/research/projects/language-
infrastructure-made-accessible/
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Bokmål Nynorsk Dialect Mixed Total

Train 348 174 274 52 848
Dev 52 20 30 4 106
Test 38 31 35 6 110

Total 438 225 348 62 1,073

Table 1: Data statistics for the corpus, including
number of tweets per split.

form (a) and the Bokmål (b) transcription, but with
added punctuation marks. To exemplify the two
other categories we have manually translated it to
Nynorsk (c) and added a mixed version (d), as well
as an English translation (e) for reader comprehen-
sion.

(1) (a) Æ ha løsst å fær dit. Æ har løsst å gå på
skole dær.

(b) Jeg har lyst å fare dit. Jeg har lyst å gå
på skole der.

(c) Eg har lyst å fara dit. Eg har lyst å gå på
skule der.

(d) Æ ha løsst å fær dit. Jeg har lyst å gå på
skole der.

(e) I want to go there. I want to go to
school there.

The two annotators doubly annotated a subset
of the data in order to assess inter annotator agree-
ment. On a subset of 126 tweets, they achieved a
Cohen’s Kappa score of 0.76, which corresponds
to substantial agreement. Given the strong agree-
ment on this subset, we did not require double an-
notations for the remaining tweets. Table 1 shows
the final distribution of tweets in the training, de-
velopment, and test splits. Bokmål tweets are
the most common, followed by Dialect and
Nynorsk, and as can be seen, Mixed represents
a smaller subset of the data.

Certain traits made the annotation difficult.
Many tweets, especially those written in dialect,
are informal, and therefore contain more slang and
spelling mistakes. For example, jeg ‘I’ can be mis-
spelled as eg, which if found in a non-Nynorsk
setting could indicate dialectal variation. Spelling
mistakes should not interfere with dialect identifi-
cation, but as some tweets can contain as little as
one token that serve to identify the language va-
riety as dialectal, this can cause problems. Some
dialects are also quite similar to either Bokmål or

Bokmål-Dialect Nynorsk-Dialect

‘e’ 288.7 ‘e’ 131.8
‘æ’ 188.0 ‘æ’ 92.5
‘ska’ 55.0 ‘ska’ 23.9
‘hu’ 36.6 ‘ei’ 18.9
‘te’ 28.9 ‘berre’ 14.5
(‘æ’, ‘e’) 27.5 ‘hu’ 14.4
‘ka’ 22.0 ‘heilt’ 13.8
‘mæ’ 21.6 (‘æ’, ‘e’) 13.2
‘går’ 19.9 ‘meir’ 12.3
‘va’ 12.4 ‘mæ’ 11.9

Table 2: Top 10 features and χ2 values between
Bokmål – Dialect tweets and Nynorsk – Dialect.

Nynorsk, and speakers might switch between them
when speaking or writing. Similarly, certain el-
ements can be indicative of either a geolect or a
sociolect, e.g. the pronoun dem ‘they’ as the third
person plural subject pronoun (de in Bokmål and
Nynorsk), which in a rural setting might be typi-
cal for an East Norwegian dialect, while in an ur-
ban setting might be a strong sociolectal indicator.
Tweets with similar problems are annotated in fa-
vor of the dialect class. Additionally, there is the
problem of internal variation. A tweet can belong
to a radical or conservative variety of standard-
ized Norwegian, e.g. Riksmål, and thereby not be
dialectal. However, this distinction can be diffi-
cult to make if a writer uses forms that are now
removed from the main standards (Bokmål and
Nynorsk), and therefore become more marked,
such as sprog instead of språk ‘language’.

4 Dialectal traits

To find the most salient written dialect traits com-
pared to Bokmål and Nynorsk, we perform a χ2

test (Pearson, 1900) on the occurrence of uni-
grams, bigrams, and trigrams pairwise between
Bokmål and Dialect, and then Nynorsk and Di-
alect and set p = 0.5.

The most salient features (see Table 2) are
mainly unigrams that contain dialect features, e.g.
æ ‘I’, e ‘am/is/are’, ska ‘shall/will’, te ‘to’, mæ
‘me’, frå ‘from’, although there are also two sta-
tistically significant bigrams, e.g. æ e ‘I am’, æ
ska ‘I will’. We notice that many of these fea-
tures likely correspond to Trøndersk and Nord-
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norsk variants. Similar features from other di-
alects (i, jæ, je ‘I’) are not currently found in the
corpus. This may reflect the natural usage, but it is
also possible that the original search query should
be improved. Example 2 shows an example of a
Dialect tweet (the English translation is ’Now
you know how I’ve felt for a few years’) where the
dialectal words have been highlighted in red and
marked words , which are not necessarily dialec-

tal, but which often help with classification, have
been highlighted in green.

(2) Nå vet du åssen æ har hatt

det i noen år

5 Experiments

We propose baseline experiments on a 80/10/10
split for training, development and testing and use
a Multinomial Naive Bayes (MNB) and a linear
SVM. As features, we use tf–idf word and char-
acter (1-5) n-gram features, with a minimum doc-
ument frequency of 5 for words, and 2 for char-
acters. We use MNB with alpha=0.01, and SVM
with hinge loss and regularization of 0.5 and use
grid search to identify the best combination of pa-
rameters and features.

We also compare two Norwegian BERT mod-
els: NorBERT3 (Kutuzov et al., 2021) and NB-
BERT4 (Kummervold et al., 2021), which use
the same architecture as BERT base cased (De-
vlin et al., 2019). NorBERT uses a 28,600 entry
Norwegian-specific sentence piece vocabulary and
was jointly trained on 200M sentences in Bokmål
and Nynorsk, while NB-BERT uses the vocabu-
lary from multilingual BERT and is trained on 18
billion tokens from a variety of sources5, including
historical texts, which presumably contain more
examples of written dialect. We use the hugging-
face transformers implementation and feed the fi-
nal ‘[CLS]’ embedding to a linear layer, followed
by a softmax for classification. The only hyper-
parameter we optimize is the number of training
epochs. We use weight decay on all parameters
except for the bias and layer norms and set the
learning rate for AdamW (Loshchilov and Hutter,
2019) to 1e−5 and set all other hyperparameters to
default settings. We train the model for 20 epochs,

3https://huggingface.co/ltgoslo/
norbert

4https://huggingface.co/NbAiLab/
nb-bert-base

5See https://github.com/NBAiLab/notram.

Precision Recall F1

D
E

V

MNB 0.70 0.67 0.68
SVM 0.87 0.69 0.73
NorBERT 0.73 0.72 0.72
NB-BERT 0.89 0.90 0.89

T
E

ST

MNB 0.60 0.61 0.60
SVM 0.86 0.67 0.69
NorBERT 0.73 0.72 0.72
NB-BERT 0.81 0.78 0.79

Table 3: Precision, recall, and macro F1 for each
model, on the dev and test sets.

BK NN DI MIX

BK
NN

DI
M

IX

36 0 0 2

0 28 3 0

2 1 32 0

0 0 4 2

Figure 1: Confusion matrix of NB-BERT on
Bokmål (BK), Nynorsk (NN), Dialect (DI), and
Mixed (MIX).

and keep the model that achieves the best macro
F1 on the dev set.

Table 3 shows the results for all models. MNB
is the weakest model on both dev and test on all
metrics. Despite the fact that it usually gives good
results for dialect identification, it is quite clear
that it does not fit our dataset. We think that this
might mainly be due to the large vocabulary over-
lap between the classes, especially in the Mixed
class. SVM has the best precision on test (0.86),
while recall is lower (0.67). NB-BERT has the
best recall on both dev and test (0.90/0.78), best
precision on dev (0.89), and is the best overall
model on test F1 (0.79), followed by NorBERT.

6 Error analysis

Figure 1 shows a confusion matrix of NB-BERT’s
predictions on the test data. The main three cate-
gories (Bokmål, Nynorsk, and Dialect) are
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generally well predicted, while Mixed is cur-
rently the hardest category to predict. This is ex-
pected, as the Mixed class comprises all of the
three other forms. The model has a tendency to
predict Nynorsk or Mixed for Dialect and
struggles with Mixed, predicting either Bokmål
or Dialect. The same observations apply to
NorBERT, MNB, and SVM classifiers.

Given that our main interest lies in the ability
to predict future Dialect tweets, we compute
precision, recall, and F1 on only this label. The
NB-BERT model achieves 0.82, 0.91, and 0.86,
respectively while NorBERT follows with 0.84,
0.77, and 0.81. The SVM model achieves 0.80,
0.69, and 0.74 respectively, while MNB obtains
slightly less scores with respectively 0.77, 0.66,
and 0.71. This suggests that future experiments
should consider using NB-BERT.

7 Conclusion and Future Work

In this paper we have described our first annota-
tion effort to create a corpus of dialectal variation
in written Norwegian. In the future, we plan to
use our trained models to expand the corpus in a
semi-supervised fashion by refining our searches
for tweets with dialectal traits in order to have a
larger corpus of dialectal tweets, effectively pur-
suing a high-precision low-recall path. In parallel,
we will begin to download large numbers of tweets
and use our trained models to automatically anno-
tate these (low-precision, high-recall). At the same
time we plan to perform continuous manual eval-
uations of small amounts of the data in order to
identify a larger variety of dialectal tweets, which
we will incorporate into the training data for future
models.

Second, we would like to annotate these dialec-
tal tweets with their specific dialect. To avoid col-
lecting too many tweets from overrepresented di-
alects, we will first annotate the current dialectal
tweets with their dialect, and perform a balanced
search to find a similar number of tweets for each
dialect.

Finally, we would like to incorporate texts from
different sources which contain rich dialectal vari-
ation, as e.g. books, music, poetry.
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2018. Norsk språkhistorie, volume 3. Novus, Oslo.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Susan Gal. 2017. Visions and revisions of minority
languages: Standardization and its dilemmas. In
Pia Lane, James Costa, and Haley de Korne, editors,
Standardizing Minority Languages: Competing Ide-
ologies of Authority and Authenticity in the Global
Periphery, pages 222–242. Routledge.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019a. Discriminating between Mandarin
Chinese and Swiss-German varieties using adaptive
language models. In Proceedings of the Sixth Work-
shop on NLP for Similar Languages, Varieties and
Dialects, pages 178–187, Ann Arbor, Michigan. As-
sociation for Computational Linguistics.

Tommi Jauhiainen, Krister Lindén, and Heidi Jauhi-
ainen. 2019b. Language model adaptation for lan-
guage and dialect identification of text. Natural
Language Engineering, 25(5):561–583.

Janne Bondi Johannessen, Joel James Priestley, Kristin
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A Appendix

Bokmål terms: ‘jeg har’, ‘de går’, ‘jeg skal’, ‘jeg
blir’, ‘de skal’, ‘jeg er’, ‘de blir’, ‘de har’, ‘de er’,
‘dere går’, ‘dere skal’, ‘dere blir’, ‘dere har’, ‘dere
er’, ‘hun går’, ‘hun skal’, ‘hun blir’, ‘hun har’,
‘hun er’, ‘jeg går’.

Nynorsk terms: ‘eg har’, ‘dei går’, ‘eg skal’,
‘eg blir’, ‘dei skal’, ‘eg er’, ‘dei blir’, ‘dei
har’, ‘dei er’, ‘de går’, ‘dykk går’,’de skal’,’dykk
skal’,’de blir’,’dykk blir’,’de har’,’dykk har’,’de
er’,’dykk er’, ‘ho gaar’, ‘ho skal’, ‘ho blir’, ‘ho
har’, ‘ho er’, ‘eg går’.

Dialect terms: ‘e ha’, ‘æ ha’, ‘æ har’, ‘e har’,
‘jæ ha’, ‘eg har’, ‘eg ha’, ‘je ha’, ‘jæ har’, ‘di går’,
‘demm går’, ‘dem går’, ‘dæmm går’, ‘dæm går’,
‘dæi går’, ‘demm gå’, ‘dem gå’, ‘di går’, ‘domm
gå’, ‘dom gå’, ‘dømm går’, ‘døm går’, ‘dæmm
gå’, ‘dæm gå’, ‘e ska’, ‘æ ska’, ‘jæ ska’, ‘eg ska’,
‘je ska’, ‘i ska’, ‘ei ska’, ‘jæi ska’, ‘je skæ’, ‘e bli’,
‘æ bli’, ‘jæ bli’, ‘e bi’, ‘æ blir’, ‘æ bi’, ‘je bli’, ‘e
blir’, ‘i bli’, ‘di ska’, ‘dæmm ska’, ‘dæm ska’, ‘dæi
ska’, ‘demm ska’, ‘dem ska’, ‘domm ska’, ‘dom
ska’, ‘dømm ska’, ‘døm ska’, ‘dæ ska’, ‘domm
ska’, ‘dom ska’, ‘æmm ska’, ‘æm ska’, ‘eg e’, ‘æ
e’, ‘e e’, ‘jæ æ’, ‘e æ’, ‘jæ ær’, ‘je æ’, ‘i e’, ‘æg e’,
‘di bi’, ‘di bli’, ‘dæi bli’, ‘dæmm bli’, ‘dæm bli’,
‘di blir’, ‘demm bli’, ‘dem bli’, ‘dæmm bi’, ‘dæm
bi’, ‘dømm bli’, ‘døm bli’, ‘dømm bi’, ‘døm bi’,
‘di har’, ‘di ha’, ‘dæmm ha’, ‘dæm ha’, ‘dæmm
har’, ‘dæm har’, ‘dæi he’, ‘demm har’, ‘dem har’,
‘demm ha’, ‘dem ha’, ‘dæi ha’, ‘di he’, ‘dæmm
e’, ‘dæm e’, ‘di e’, ‘dæi e’, ‘demm e’, ‘dem e’,
‘di æ’, ‘dømm æ’, ‘døm æ’, ‘demm æ’, ‘dem æ’,
‘dei e’, ‘dæi æ’, ‘dåkk går’, ‘dåkke går’, ‘dåkke
gå’, ‘de går’, ‘dåkk ska’, ‘dere ska’, ‘dåkker ska’,
‘dåkke ska’, ‘di ska’, ‘de ska’, ‘åkk ska’, ‘røkk
ska’, ‘døkker ska’, ‘døkk bli’, ‘dåkker bi’, ‘dåkke
bli’, ‘dåkker har’, ‘dåkker ha’, ‘dere ha’, ‘dåkk
ha’, ‘de har’, ‘dåkk har’, ‘dere har’, ‘de ha’, ‘døkk
ha’, ‘dåkker e’, ‘dåkk e’, ‘dåkke e’, ‘di e’, ‘dere
ær’, ‘dåkk æ’, ‘de e’, ‘økk e’, ‘døkk æ’, ‘ho går’,
‘hu går’, ‘ho jenng’, ‘ho gjenng’, ‘u går’, ‘o går’,
‘ho jænng’, ‘ho gjænng’, ‘ho jenngg’, ‘ho gjen-
ngg’, ‘ho jennge’, ‘ho gjennge’, ‘ho gå’, ‘ho ska’,
‘hu ska’, ‘a ska’, ‘u ska’, ‘o ska’, ‘hu skar’, ‘honn
ska’, ‘ho sjka’, ‘hænne ska’, ‘ho bli’, ‘ho bi’, ‘o
bli’, ‘ho blir’, ‘hu bli’, ‘hu bler’, ‘hu bi’, ‘ho bir’,
‘a blir’, ‘ho ha’, ‘ho har’, ‘ho he’, ‘hu har’, ‘hu ha’,
‘hu he’, ‘o har’, ‘o ha’, ‘hu e’, ‘ho e’, ‘hu e’, ‘ho
æ’, ‘hu æ’, ‘o e’, ‘hu ær’, ‘u e’, ‘ho ær’, ‘ho er’,
‘e går’, ‘æ går’, ‘eg går’, ‘jæ gå’, ‘jæ går’, ‘æ gå’,

‘jæi går’, ‘e gå’.

451



The Swedish Winogender Dataset

Saga Hansson1 Konstantinos Mavromatakis1
Yvonne Adesam2 Gerlof Bouma2 Dana Dannélls2
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Abstract

We introduce the SweWinogender test set,
a diagnostic dataset to measure gender bias
in coreference resolution. It is modelled
after the English Winogender benchmark,
and is released with reference statistics
on the distribution of men and women be-
tween occupations and the association be-
tween gender and occupation in modern
corpus material. The paper discusses the
design and creation of the dataset, and
presents a small investigation of the sup-
plementary statistics.

1 Introduction

Winogender (Rudinger et al., 2018) is a diagnostic
dataset designed to detect gender bias in English
language coreference resolution systems, inspired
by the Winograd Schema Challenge (Levesque
et al., 2012). It is also found as part of SuperGlue, a
set of benchmark tasks for evaluating Natural Lan-
guage Understanding models (Wang et al., 2019).1

Unlike Winograd-style test sets, Winogender is not
meant to be a particularly challenging pronoun res-
olution test set per se, but to lay bare a specific type
of gender bias in systems.

Sentences in the Winogender test set contain pro-
nouns whose interpretation is fully determined by
causal reasoning. Each sentence contains two noun
phrases that could, as far as syntax is concerned,
serve as antecedents for the pronoun, one introduc-
ing a referent by their occupation, and the other a
further participant, which alternatively is referred
to with an indefinite pronoun. Furthermore, the sen-
tences are given in several variants, with pronouns
with different gender agreement properties (he, she,
[singular] they). Examples 1 and 2 are illustrative
of the type of sentences in the Winogender test set.
Coreferents are in bold.

1https://super.gluebenchmark.com/

(1) The paramedic performed CPR on the
passenger/someone even though she/he/they
knew it was too late.

(2) The paramedic performed CPR on the
passenger/someone even though
she/he/they was/were already dead.

A crucial aspect of the Winogender sentences is
that their interpretation does not depend on the
form of the pronoun. So, from common sense rea-
soning alone – and the assumption that no further
entities are relevant – one can conclude that the
three alternative pronouns in (1) should all refer to
the paramedic, whereas the three alternative pro-
nouns in (2) refer to the other participant (that is,
the passenger/someone). In particular, the extent
to which the mentioned occupation is perceived as
associated with men or women does not influence
the interpretation of the pronoun.

By inspecting the performance of a pronoun
resolution system on the different sentence vari-
ants, we can assess the gender-occupation bias
inherent in the system. For an unbiased system,
there should not be a difference in performance be-
tween the pronominal forms. In addition, Rudinger
et al. (2018) look at the correlation of model pre-
diction with measures of the binary gender as-
sociation of the occupations in the test set. For
three pronoun resolution systems, the comparisons
show clear over-tendencies to resolve the pronoun
she to female-associated occupations, and under-
tendencies to resolve she to male-associated occu-
pations.

In this paper, we introduce SweWinogender, a
Swedish pronoun resolution test set modelled on
the Winogender resource. The test set includes
Swedish sentences of the type exemplified above.
In addition, we provide occupation-gender associ-
ation statistics relevant to the Swedish language
and the Swedish society. Following Rudinger et al.
(2018), we supply real-world statistics as well as
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corpus-based statistics. The dataset is made avail-
able under an open license.2

For English, several other studies and bench-
marks consider gender-bias in pronoun resolution
systems. Zhao et al. (2018, WinoBias) and Lu et al.
(2020) use constructed, templatic test items like
Winogender, and also investigate ways to mitigate
the observed biases. The latter paper presents a
slightly different methodology, as bias is not as-
sessed through model predictions, but by looking
at model scores. Webster et al. (2018) and Cao
and Daumé III (2020) present curated test sets com-
piled from attested material, with items that lack
distinguishing gender-related cues. In addition, the
latter moves beyond a binary perspective on gen-
der, and includes a discussion of the harm gender
biases in pronoun resolution systems may cause.
Beyond English, however, not much directly re-
lated work exists. Stanovsky et al. (2019) use the
English Winogender and WinoBias sets to probe
gender bias in machine translation systems. We are
unaware of any previous work that specifically tar-
gets gender-bias in coreference resolution systems
for languages other than English.

The rest of this paper is structured as follows.
We start by presenting the approach taken to create
the resource (Section 2). We then describe our real-
world occupational gender statistics (Section 3)
for Sweden. We continue by exploring gender in
the Swedish Culturomics Gigaword corpus (Sec-
tion 4) and end with conclusion and pointers to
future work.

2 Creating SweWinogender

The English Winogender sentences were formu-
lated with the intent that changing the gender of
a pronoun should not affect its resolution. The
causal/logical structures of the sentences are care-
fully crafted such that pronoun interpretation is as
unambiguous as possible for humans. A Mechani-
cal Turk experiment confirmed that the sentences
were indeed unambiguous (Rudinger et al., 2018).
To avoid having to reinvent scenarios that have this
property, we modelled the SweWinogender collec-
tion on the English original.

The English templates were loosely translated
into Swedish templates, which then each give rise
to twelve similar Swedish sentences: two contin-
uations that force different readings × two ways

2https://spraakbanken.gu.se/en/
resources/swewinogender

of referring to the participant (using a descriptive
noun or using någon ‘someone’) × three pronouns
(han ‘he’, hon ‘she’, hen ‘(singular) they’ – or
object/possessive forms where appropriate). The
Swedish dataset contains 624 sentences in total. Ex-
amples 3 and 4 below are taken from the Swedish
Winogender dataset. The two sentences each con-
tain three mentions: the occupation läkaren ‘the
physician’, the participant patienten ‘the patient’,
and the pronoun hen. In the first example the pro-
noun corefers with the participant, in the second
with the occupation. Each such sentence occurs six
times, three with the specific participant and each
of the three pronouns to be resolved, and three with
the generic participant någon ‘someone’ and each
of the three pronouns to be resolved.

(3) Läkaren
The physician

sa till
told

patienten
the patient

att
that

hen
they

behövde
needed

mer
more

vila.
rest.

(4) Läkaren
The physician

sa till
told

patienten
the patient

att
that

hen
they

inte kunde skriva ut
could not prescribe

en högre läkemedelsdos.
a higher dose of medicine.

Sometimes the English occupation was not easily
translated to Swedish, because of differences be-
tween the American and Swedish contexts. Since
our goal was not to create an exact translation,
we chose other roles to fit the logic in the dis-
courses. In a number of cases we had to reformu-
late Swedish sentences due to linguistic differences
between Swedish and English. A problematic class
of sentences contained possessive pronouns, that
potentially corefered with the closest subject. In
Swedish, subject coreferring possessives are reflex-
ive possessives, and these are unmarked for gender
of the referent, which makes them unsuitable as a
diagnostic for gender bias. A second problem with
possessives is that regular possessives alternate
with reflexive possessives depending on whether
there is coreference with the nearest subject or not.
This means that even regular possessives may be
syntactically unambiguous, making them unsuit-
able for a diagnostic that relies on syntactic – but
not pragmatic – ambiguity. This alternation is illus-
trated in the following sentence:

(5) X
X

träffade
met

Y
Y

för att
to

diskutera
discuss

sinaX /
POSS-REFL

hansY/hennesY/hensY
his/her/their

framsteg
progress
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Finally, there is the issue of the inclusion of
a gender-neutral neutral pronoun in the test
items. English has a relatively well-established
gender-neutral pronoun in the form of (singular)
they/them/their. For Swedish, there has been quite
a lot of public debate in the last decade or so about
the gender-neutral hen/hens. It is not common to
introduce new pronouns in a language, but hen ap-
pears to have weathered out objections. Since 2015
it is even included in the glossary published by
the Swedish Academy (SAOL). Unlike they, hen
is unambiguously singular. We have used it for
SweWinogender, but considering its rise in use is
only recent, it may not be as useful for systems
based on older texts.

3 Real-world statistics
on gender and occupation

An important part of the diagnostic potential of the
Winogender test set is the availability of statistics
on the distribution of gender across occupations.
It allows a more fine-grained investigation of the
correlation of system behaviour with gender biases,
by seeing if system predictions follow the distri-
bution of genders for the occupation in a test item.
Statistics on gender and occupation also highlight
a subset of the Winograd sentences as particularly
worthy of close scrutiny, namely those for which
the gender bias strongly goes against the intended
interpretation of the pronoun. We refer the reader
to the original Winogender and WinoBias papers
for worked-out examples of the diagnostic method-
ology (Rudinger et al., 2018; Zhao et al., 2018).
The methodological question of how to collect and
use statistics that let us move away from a binary
gender division is as yet unsolved. The statistics
introduced in this section (real-world data) and the
next section (corpus-based data) will therefore be
binary gender statistics.

To create our first statistical reference, we re-
trieved real-world statistics about the distribution
of men and women across different professions,
from Statistics Sweden (SCB).3 These data were
matched against the 43 occupations that occur in
our diagnostic sentences. In some cases, we al-
lowed many to one mappings, because the SCB
classification was more finegrained than the oc-
cupation names in our data. For instance lärare

3https://www.statistikdatabasen.scb.
se/pxweb/sv/ssd/START__AM__AM0208_
_AM0208E/YREG50/table/tableViewLayout1/

‘teacher’ in our dataset can be mapped to SCB’s
förskollärare ‘preschool teacher’, grundskollärare
‘primary school teacher’, gymnasielärare ‘high
school teacher’, högskolelärare ‘college teacher’,
and trafiklärare ‘driving instructor’. In these cases,
the SCB statistics were summed together before
calculating the female-male ratio. This strategy
inevitably influences the results since there is no
guarantee that the different SCB occupations have
similar female-male ratios.

Looking at our compiled statistics, we see that
the occupations in SweWinogender are spread out
fairly evenly, covering the whole spectrum from
female-dominated (more than two thirds registered
female practitioners), through neutral (between one
third and two thirds female), to male-dominated
professions (less than one third female). Table 1 in
Appendix A gives the occupations in SweWinogen-
der sorted after the proportion of registered female
practitioners.

4 Gender and occupation
as seen from a corpus

Another way to look at occupations as female- or
male-dominated is not through work-place statis-
tics, but through the lens of a corpus. We can ask:
do people read/write about a certain occupation as
associated with men or with women? We could
speculate that this correlates much better with pre-
conceptions that people hold than the actual em-
ployment statistics. More importantly, however, in
the context of evaluating NLP systems: the con-
struction of such systems typically involves corpus
data. It therefore makes sense to also investigate the
relation between system performance and corpus-
based gender and occupation associations.

In Rudinger et al. (2018), the noun gender and
number dataset from Bergsma and Lin (2006)
is used to this end, cited as a frequently used
source of this type of information in actual pro-
noun resolution systems. This list was created
using antecedent-pronoun patterns, defined on an
automatically parsed corpus, which were used to
extract highly likely cases of co-reference in an
unsupervised manner. The proportion of she (etc)
vs he (etc) references to a noun is then used to
place it on a scale from feminine to masculine. A
counterpart to such a list does not exist for Swedish.
Moreover, following the same methodology to cre-
ate such a list is non-trivial in Swedish: First, it
depends on having a parsed corpus of Swedish of
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sufficient size and quality. At the time of writing,
we have no such corpus readily available. Secondly,
several of the patterns used as high-precision coref-
erence patterns by Bergsma and Lin are not useful
as sources of information about referential gender
in Swedish, because they would involve reflexives
or reflexive possessives, which have the same form
independent of referential gender.

We therefore follow a less direct approach to ex-
tracting occupation-gender associations from cor-
pora, by viewing them as collocative. We assume
that a prevalence of definitionally or culturally
female-gendered words in the context of mention
of a profession, points towards a profession being
viewed as female-coded, and correspondingly for
male-gendered words. Our approach is reminis-
cent of the word sense disambiguation method of
Yarowsky (1995), and it has been inspired by the
application to gendered words in Caren (2013).

As our data source, we use the most recent fif-
teen years of the Swedish Culturomics Gigaword
corpus (Eide et al., 2016), which contains 57M
sentences of social media, news text and scientific
prose from 2000 to 2015. We use three sets of
gendered collocates to classify sentence-level con-
texts as male- or female-associated: The small set
uses only forms of the pronouns hon/han ‘he/she’.
The medium set also includes a list of definition-
ally gendered nouns, such as flicka/pojke ‘girl/boy’,
mamma/pappa, maka/make ‘wife/husband’, sys-
ter/bror ‘sister/brother’, etc., in total 31 nouns for
the male and 25 nouns for the female set.4 In the
large set, we include the items from small and
medium sets, and in addition a set of culturally
gendered items: all female and male proper names
with more than 1000 bearers in Sweden.5 The large
set contains 585 female- and 543 male-gendered
words. A sentence is classified according to the
majority of collocates it contains – sentences that
do not contain any collocates are ignored. For each
profession in our dataset, we then calculate the
number of sentences classified as female or male
that mention this profession. This gives us a way
to quantify how strong an occupation is associated
with a gender in the corpus.

In many cases, the gender-association assigned
4The prototypical pair man/kvinna ‘man/woman’ is not

included, because man ‘man’ is homonymic with the frequent
pronoun ‘one’.

5This data is also obtained from SCB, at https:
//www.statistikdatabasen.scb.se/sq/99310
and https://www.statistikdatabasen.scb.se/
sq/99311.

to an individual context aligns well with the way
an individual referent is presented in the text. This
is for instance the case if the decisive collocate in a
context happens to be a pronoun that corefers, or
is the subject of predication, as in (6) – collocate
is in bold, occupation in italics. In these cases,
the classification happens to coincide with what
Bergsma and Lin’s method would yield.

(6) Istället blir han börsmäklare på Wall Street.
‘Instead he becomes a stock broker on Wall
Street.’

But the approach also gives a classification in situa-
tions where it makes less sense, for instance in (7),
where the context is classified as female because
of two collocates from the female set, but where a
direct relation to the denotation of the occupation
noun is missing.

(7) Monica [. . . ] säger att hon hoppas kunna
göra en studie för att undersöka hur
exempelvis kassapersonal påverkas.
‘Monica says she hopes to be able to study
how for example cashiers are affected.’

This type of behaviour is to be expected from a
collocational approach. As we will see below, com-
parison of the corpus results to the SCB data sug-
gests that the approach nevertheless yields usable
statistics.

In Figure 1 we plot the real-world SCB data
against our corpus-derived measure of gender as-
sociation, for each of the three collocate sets. Ir-
respective of the collocate set used, our method
generally underestimates the female percentages:
most points fall below the diagonal in each plot.
This effect is clearly stronger in the small collo-
cate set than in the large set. However, this way of
looking at the data ignores the fact that the corpora
are biased towards classifying sentences as male-
associated in general, not just in the context of a
profession. The convex curves in the graphs show
what a perfect correspondence would look like if
we adjust for this corpus-wide bias.6 Now we see
that in each plot, about half of the points fall above,
and half fall below the curve. We conclude that the
underestimation of female association of occupa-
tions is the result of overall corpus characteristics
and not directly related to how people write about

6The curves show the line y = qx/(qx+(1− q)(1−x)),
where q is the overall proportion of sentences classified as
female in the corpus.
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Figure 1: Relation between SCB-based real-world statistics and corpus-based estimations of gender
balance in occupations, using small (left), medium (middle), and large collocate sets (right). Curved lines
show hypothetical perfect correspondences if we correct for the inherent bias of the method towards male
associations. The dashed horizontal lines divide the y-axis in three equal zones male-dominated, neutral,
female-dominated, again after correcting for the general bias.

the different professions. However, we can also see
a clear pattern in the deviations: points on the left
hand-side of the plots generally lie above the curve,
whereas those on the right lie below. This means
that, compared to the SCB data, the corpus method
tends to underestimate male or female domination
in the occupations; the estimates shy away from
the extremes. This can also be seen by looking
at the division of the data into three zones: male-
dominated, neutral, and female-dominated. With
respect to the SCB data (x-axes) the data points
are equally divided between these zones (cf. our
remarks in Section 3). However, in the corpus esti-
mates (y-axis), after correction for the overall bias,
the neutral professions are over-represented.

On the basis of the overall correlation with the
real-world data, we conclude that our method of ex-
tracting gender biases for occupations yields mean-
ingful estimates of these biases. We would like to
add two further considerations as to why we think
our approach makes good sense. Empirically, we
note that the pattern that Rudinger et al. (2018) find
in the relation between the corpus data and real-
world data is (visually) very similar to the patterns
discussed above (cf. their figure reproduced here
in Appendix B), in spite of what could be expected
to be a more precise corpus method. Furthermore,
it seems likely that NLP systems that rely on some
kind of word embeddings, effectively use colloca-
tional information. In those cases, our method may
be a much better fit for any biases in such a system
than pronoun-resolution-derived estimates.

5 Conclusion

We have presented the freely available SweWino-
gender test set. It is based on the English Wino-
gender resource and we consider it a starting point
which should be expanded upon.

In our data release, the test items themselves
will be accompanied by real-world statistics about
gender ratios for occupations and by corpus-based
gender-occupation associations. These reference
data are a core part of making the Winogender idea
work as an effective diagnostic.

We have proposed an alternative way of extract-
ing gender-occupation statistics from corpus data,
ultimately based on the venerable Distributional
Hypothesis. We have argued that the resulting data
gives us a perspective on gender and occupation
that is relevant to Winogender. Nevertheless, the
strengths and weaknesses of this approach need to
be further explored. For future work, we will also
consider creating further statistical reference sets,
for instance in the style of Bergsma and Lin (2006).

We hope that the existence of a SweWinogen-
der will help stimulate the further development,
exploration and scrutiny of natural language under-
standing systems for Swedish.

Acknowledgments

This work has been funded by Nationella
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Appendix A Occupational Gender
Statistics

Occupation % Female SCB % Female Corpus # Corpus Hits

tandhygienist ‘dental hygienist’ 95.88 93.75 42
nutritionist ‘nutritionist’ 94.97 80.00 90
dietist ‘dietician’ 94.97 73.68 250
terapeut ‘therapist’ 90.81 54.76 1413
sköterska ‘nurse’ 90.51 64.57 3173
juristassistent ‘paralegal’ 89.26 100.00 1
frisör ‘hairdresser’ 85.36 52.26 868
apotekare ‘pharmacist’ 84.10 20.38 404
receptionist ‘receptionist’ 81.03 63.74 166
veterinär ‘veterinarian’ 79.53 49.57 2139
lärare ‘teacher’ 77.02 28.99 16029
bibliotekarie ‘librarian’ 76.25 23.37 1061
psykolog ‘psychologist’ 73.41 34.25 5078
kassapersonal ‘cashier’ 70.62 25.00 5

utredare ‘investigator’ 64.27 25.24 2271
revisor ‘accountant’ 58.47 21.06 888
läkare ‘physician’ 54.43 34.31 16999
kemist ‘chemist’ 53.09 15.56 1088
rättsläkare ‘forensic pathologist’ 50.95 36.75 205
specialistläkare ‘medical specialist’ 50.95 31.43 84
bartender ‘bartender’ 48.66 24.71 264
ambulanssjuksköterska ‘paramedic’ 43.62 80.00 38
forskare ‘researcher’ 42.31 24.71 8070
rådgivare ‘adviser’ 41.61 18.90 3253
försäljare ‘sale person’ 39.34 21.26 1139
advokat ‘lawyer’ 38.67 21.58 10929
arkitekt ‘architect’ 35.29 13.02 10744
polis ‘police’ 34.26 23.05 47411

bagare ‘baker’ 31.25 28.28 361
byggnadsinspektör ‘building inspector’ 30.99 0.00 18
ingenjör ‘engineer’ 23.82 13.37 4938
operatör ‘operator’ 20.92 25.79 851
köksmästare ‘chef’ 20.33 14.81 119
programmerare ‘programmer’ 19.58 16.30 176
vaktmästare ‘janitor’ 19.25 15.38 463
tekniker ‘technician’ 18.95 20.74 1080
börsmäklare ‘stockbroker’ 17.74 16.67 60
maskinist ‘machine engineer’ 16.84 10.71 126
målare ‘painter’ 9.16 13.22 3755
mekaniker ‘mechanic’ 5.02 10.73 418
vägarbetare ‘road worker’ 3.58 0.00 17
elektriker ‘electrician’ 2.78 10.71 224
rörmokare ‘plumber’ 1.35 4.48 103

Table 1: Occupational Gender Statistics. The smallest set of collocates (only pronouns) was used for the
second and third columns
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Appendix B Relation between
corpus-based noun gender
and Bureau of Labor
Statistics data

Graph and caption reprinted from Rudinger et al.
(2018), (c) ACL, CC BY 4.0
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Abstract

We present an open-source toolkit for
Danish natural language processing
(NLP), enabling easy access to Danish
NLP’s latest advancements. The toolkit
features wrapper functions for loading
models and datasets in a unified way using
third-party NLP frameworks. The toolkit
is developed to enhance community
building, understanding the need from
industry and knowledge sharing. As
an example of this, we present Angry
Tweets: An Annotation Game to increase
Danish NLP awareness and create a new
sentiment-annotated dataset.

1 Introduction

Danish is the official language in Denmark. It is
mainly spoken by the approximately 6M people in
Denmark1. In natural language processing (NLP),
Danish is considered a medium-resource language
(Joshi et al., 2020). There is, however, limited
availability of Danish models and tools (Kirkedal
et al., 2019). We believe to increase the availabil-
ity of NLP resources, we need to engage academia
and industry to leverage synergy effects.

In this demonstration paper, we present an
open-source, Danish NLP toolkit: DaNLP. It con-
tains trained models for named entity recognition
(NER), part-of-speech (PoS) tagging, sentiment
analysis, parsing, coreference resolution as well
as word embeddings and datasets. It is devel-
oped in close collaboration with industry and aca-
demic partners and aims at strengthening knowl-
edge sharing and community building.

∗Rasmus Hvingelby carried out this work while affiliated
with the Alexandra Institute.

1“Danish” refers to standard Danish. The minority lan-
guages and dialects of Denmark are not within the scope of
this project.

The toolkit makes recent advances in Danish
NLP more available and applicable. It is a single
entry for accessing Danish NLP resources through
a consistent interface. The toolkit consists of re-
sources developed by others and new models and
datasets developed within the project guided by
what is presently relevant for industry. In the same
spirit, we ensure industry-friendly licences, i.e.,
the resources are licensed for commercial use, ide-
ally without copyleft restrictions. The toolkit em-
ploys a unified syntax for loading and applying
models inspired by frameworks like scikit-learn
(Buitinck et al., 2013) and spaCy (Honnibal et al.,
2020).

The overall scope of the DaNLP project is to en-
gage a community of professionals from academia
and industry around Danish NLP. As a way of
showcasing what is needed concerning annotation
and to engage people in the development of Dan-
ish NLP tools, a crowdsourcing game is launched
as part of the project. This paper’s main contri-
bution is to demonstrate a resource enabling in-
dustry’s adoption of NLP for a medium-resource
language.

2 Related Work

There are several NLP tools for Danish which we
will not review here, but extensive lists exist such
as the one by Finn Årup Nielsen.2

We consider an NLP toolkit to be a collection
of resources that spans several NLP tasks in one
unified framework. This section provides a brief
overview of NLP toolkits for Danish and a non-
exhaustive selection of comparable languages.

Derczynski et al. (2014) presented an open-
source information extraction toolkit for Danish
supporting tokenization, named entity recognition
(NER) and part-of-speech (PoS) tagging. How-

2http://www2.imm.dtu.dk/pubdb/edoc/
imm6956.pdf

460



ever, they are released with a copyleft or non-
commercial licence, making them less appealing
for industry.

Several multilingual toolkits have some support
for Danish, e.g., the Natural Language ToolKit
(Loper and Bird, 2002), Polyglot (Al-Rfou et al.,
2013), SpaCy (Honnibal et al., 2020), Stanza (Qi
et al., 2020), UDPipe (Straka et al., 2016), and
Apache OpenNLP (Apache Software Foundation,
2014).

For other medium-resource Germanic lan-
guages, language-specific toolkits exist, e.g., Ice-
landic (Þorsteinsson et al., 2019; Loftsson and
Rögnvaldsson, 2007) and Dutch (Bosch et al.,
2007; Bouma et al., 2001).

3 The DaNLP toolkit

The DaNLP toolkit contains wrapper functions
utilising well-maintained third-party NLP frame-
works such as spaCy (Honnibal et al., 2020), Flair
(Akbik et al., 2018), Gensim (Řehůřek and Sojka,
2010) and Transformers (Wolf et al., 2020).

The documentation3 for the toolkit provides an
overview of the resources with credits to develop-
ers, benchmark results, training details, and code
snippets for loading and using the models and
datasets.

The resources available through the toolkit in-
clude both resources developed by others and
resources developed specifically as part of the
DaNLP project. Therefore, in the following sub-
sections, a † indicates that a resource was created/
trained/annotated as part of the DaNLP project. In
the opposite case, a reference is supplied.

3.1 Datasets

This subsection provides an overview of available
datasets through the DaNLP toolkit.

The Danish Dependency Treebank (DDT)
(Buch-Kromann, 2003) consists of texts from the
Danish PAROLE corpus (Keson, 1998). The tree-
bank has several layers of annotations but those
currently relevant for the models in the toolkit are
the Universal Dependency(UD) conversion (Jo-
hannsen et al., 2015) and the coreference anno-
tation. The treebank was additionally annotated
with named entities and released as the DANE
dataset† (Hvingelby et al., 2020).

3https://danlp-alexandra.readthedocs.
io

NER Besides the DDT annotation (described
above), the toolkit also supports the Danish part of
WikiANN (Pan et al., 2017) containing Wikipedia
articles.

Sentiment Different small sentiment datasets
are included: The lcc-sentiment4 which contains
manual annotated sentences from the Leipzig Cor-
pora Collection (Quasthoff et al., 2006), europarl-
da-sentiment5, Europarl Sentiment2†, and Twitter
Sentiment† described in §4.

Word similarity For evaluating word repre-
sentations, DaNLP includes two-word similarity
datasets: the Danish Similarity Dataset (Schnei-
dermann et al., 2020) and WordSim-353 (Finkel-
stein et al., 2001).

DanNet (Pedersen et al., 2009), a Danish Word-
Net (lexical database), is implemented in DaNLP
with functions for finding synonyms, hypernyms,
etc.

3.2 Models

This section provides an overview of the best per-
forming models6 integrated into the toolkit.

NER The best NER model† is fine-tuned
on a Danish pre-trained BERT model (De-
vlin et al., 2019)7 and benchmarked on the
DaNE annotation† (Hvingelby et al., 2020) using
the Transformers architecture from Huggingface
(Wolf et al., 2020).

PoS-tagging The best PoS model† implemented
in the toolkit is trained using the Flair framework.
It is trained and tested on the Danish UD treebank
(Johannsen et al., 2015).

Sentiment The toolkit includes sentiment
models for three-way polarity†, subjectivity-
objectivity detection†, and eight-way emotion
detection†. The best polarity and subjectivity-
objectivity detection models are trained and
benchmarked on Twitter Sentiment† and Europarl
Sentiment2† by fine-tuning the Danish BERT
model. The polarity models are additionally

4https://github.com/fnielsen/lcc-
sentiment

5https://github.com/fnielsen/europarl-
da-sentiment

6based on the most common evaluation metric for the
task.

7https://github.com/botxo/nordic_bert
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benchmarked on lcc-sentiment and europarl-
da-sentiment. The Emotion detection model is
trained on social media data by fine-tuning the
Danish BERT model; however, it was impossible
to open-source the data, see §5.

Coreference Resolution The best coreference
model† is the AllenNLP (Gardner et al., 2018) im-
plementation of Lee et al. (2018) fine-tuned using
XLM-Roberta (Conneau et al., 2019) instead of
static word embeddings, in line with Joshi et al.
(2019). Models are benchmarked on the DDT
(Buch-Kromann, 2003).

Dependency Parsing and Chunking We sup-
port dependency parsing through the spaCy frame-
work using a model† trained on the DDT dataset.
We also provide wrapper-code for deducing noun-
phrase chunks from predicted dependency trees.

3.3 Text representation
The toolkit contains static word embeddings pre-
trained by third-parties8 with word2vec (Bo-
janowski et al., 2017) and fastText (Mikolov et al.,
2013). Dynamic word embeddings†, trained using
the Flair architecture (Akbik et al., 2018) are also
available in the toolkit, as well as embeddings de-
rived from the Danish BERT language model.9

3.4 DaNLP: Selected examples of usage
The goal of the DaNLP project is to make datasets
and models easily accessible through a unified
syntax. Therefore, the package provides consis-
tent functions for loading datasets through promi-
nent frameworks such as spaCy or Flair – e.g., for
training purposes – or in standard datatypes or for-
mats such as DataFrames10 or CoNLL-U11. Below
is an example of several possibilities for loading
the DDT:

#Danish Dependency Treebank
from danlp.datasets import DDT
ddt = DDT()

spacy_corpus= ddt.load_with_spacy()

flair_corpus = ddt.load_with_flair()

conllu_format = ddt.load_as_conllu()

8https://loar.kb.dk/handle/1902/329,
https://fasttext.cc/docs/en/crawl-
vectors.html, https://github.com/danish-
stance-detectors/RumourResolution

9https://github.com/botxo/nordic_bert
10https://pandas.pydata.org/
11https://universaldependencies.org/

format.html

Models can also be loaded with a unified syn-
tax. However, there are differences in applying
them based on the framework they are trained
with, though most of them are provided with sim-
ple prediction functions that take a sentence as in-
put. Below is an example of how to load and use
the Emotion detection model:

# Emotion Detect ion
from danlp.models import (
load_bert_emotion_model )

clf = load_bert_emotion_model()

clf.predict("Jeg ser frem til det")

4 Angry Tweets: An Annotation Game

To advance the field of Danish NLP, there is a
need for task-specific annotated corpora for train-
ing and benchmarking models. (Kirkedal et al.,
2019; Sprognævn, 2019). The DaNLP project has
previously annotated a corpus using a traditional
approach, i.e., with a few trained annotators. How-
ever, such annotations are expensive and time-
consuming. Therefore, we propose collaborative
crowdsourcing, designed as a game. A similar ap-
proach is previously seen in Öhman et al. (2018).
Like their gamified emotion annotation setup, we
also asked participants to annotate a few gold-
annotated sentences as well as sentences previ-
ously annotated by other crowd annotators in order
to assess the annotation. The main motivation, be-
sides creating a new Twitter sentiment corpus for
the toolkit, was engaging professionals and other
people interested in the development of Danish
NLP and communicating what is needed in terms
of annotation work. The game was, therefore, an-
nounced through social media, a blog post, and
the Danish medium Data Tech.12 The hope was
to motivate volunteer participants to contribute to
the development of Danish NLP. The gamification
element (failing is an option, and there was also
a possibility to win a symbolic prize) is meant to
peak people’s interest and motivate them to sup-
ply high-quality annotations. We made an effort to
keep a light and fun tone with a storyline including
a swan, the project logo.

The game interface The game consists of eight
rounds with four tweets per round. Figure 1 shows

12https://pro.ing.dk/datatech/article/
angry-tweets-vaer-med-til-bygge-
datasaet-over-foelelsesladede-tweets-
9496
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Figure 1: One annotation page in Angry Tweets.

one round. The tweets are annotated with three-
class sentiment (positive, neutral, negative). As a
part of a defensive task design (Sabou et al., 2014),
participants were on every second page asked to
annotate one gold-annotated tweet, and on each
round, the completion time was measured. Not
passing any of these checks triggered game over.
In each round, participants annotated one sentence
already annotated by another annotator and was
rewarded with a point if their annotation matched
the previous annotation.

Statistics The game was completed 114 times.
82% of players completing the game submitted a
contact email to participate in the competition for
a prize, indicating that some participants were not
motivated by the prize. The tweets are collected
through a list of commonly used Danish hashtags
and posted between January and May 2019. The
corpus consists of 4921 annotated tweets, where
1266 is double annotated with an inter-annotator
agreement of 65%. The majority is annotated
through the game, but 1727 was annotated by one
trained annotator.

5 Knowledge In Knowledge Out

The development of DaNLP is industry-focused.
Therefore, the DaNLP team is in dialogue with
Danish companies and government agencies to
understand their needs. The project also shares
knowledge and disseminates.

Throughout the project, there have been dia-
logues with around 35 companies consisting of
both start-ups and larger tech companies, as well
as eight different government agencies. There is
a large spread in the maturity of using and under-
standing NLP across organisations. Some compa-
nies are pushing the field of Danish NLP forward,
and their requests are generally more data; large,
raw text corpora and annotated corpora. Other

companies are new to the field and mostly driven
by curiosity, and a third category consists of com-
panies with a more task-oriented desire. Here, we
especially noted a need for better performing mod-
els for NER and sentiment analysis. Therefore,
these tasks were the initial focus of the toolkit. To
stay in close contact with industry, two collabora-
tions with companies were constituted: One with
a media monitoring company, Infomedia A/S, to
improve their existing NER system for news arti-
cles. The other collaboration was with the Danish
Broadcasting Corporation to monitor the mood on
their social media platform.

The knowledge-sharing part is aimed at making
more people and companies aware of the possibil-
ities of NLP. Therefore the project includes a blog
on Danish NLP13, NLP introduction talks, and a
demonstration page to show some of the models
in action.14

6 A community for Danish NLP

The toolkit has so far benefited from bug reports,
bug fixes, and suggestions for improvements from
contributors through our GitHub repository.15 The
ambition is to have an even stronger community
contributing to the toolkit with new models and
datasets. The ambition is that the toolkit in time
becomes more community-driven.

It is also within the project’s scope to contribute
to NLP frameworks to enable Danish’s direct sup-
port. Before DaNLP, spaCy did not support Dan-
ish since an open-source NE dataset was lacking.
However, with DaNE, (Hvingelby et al., 2020) this
was fulfilled and is now part of spaCy.16 The Flair
tagging models for PoS and NER trained as part
of DaNLP are now also available directly trough
Flair.17

Nevertheless, the need for improving Danish
NLP goes beyond a toolkit. It seems like the tim-
ing is opportune; currently, parties from academia
and industry in Denmark are starting collabora-
tion. Examples are recent, open-source mod-
els released by companies18 and a large cross-

13https://medium.com/danlp
14https://danlp-demo.alexandra.dk
15https://github.com/alexandrainst/

danlp
16https://spacy.io/models/da
17https://github.com/flairNLP/flair/

blob/master/resources/docs/TUTORIAL_2_
TAGGING.md

18https://github.com/sarnikowski/
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collaboration on a large Danish text corpus named
Gigaword by Strømberg-Derczynski et al. (2020).
To strengthen the community around Danish NLP,
the DaNLP project have gathered both companies
in front of the field and researchers from Danish
Universities (the Danish Technical University, the
University of Copenhagen, and the IT University
of Copenhagen) for network meetings to discuss
and collaborate on Danish NLP 19. One of the ma-
jor identified challenges is how to gather and share
data safely concerning privacy and GDPR.20

7 Concluding remarks

DaNLP is a new toolkit to make Danish NLP more
applicable to industry. With this aim, the DaNLP
project has been engaged in dialogues with indus-
try, knowledge sharing and community building
with academia and professionals. The hope is to
continue working with a stronger community and
inspire similar projects in other low to medium re-
source languages.
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Abstract

This paper describes a freely available
web-based demonstrator called HB Deid.
HB Deid identifies so-called protected
health information, PHI, in a text writ-
ten in Swedish and removes, masks,
or replaces them with surrogates or
pseudonyms. PHIs are named entities
such as personal names, locations, ages,
phone numbers, dates. HB Deid uses a
CRF model trained on non-sensitive an-
notated text in Swedish, as well as a
rule-based post-processing step for finding
PHI. The final step in obscuring the PHI is
then to either mask it, show only the class
name or use a rule-based pseudonymisa-
tion system to replace it.

1 Introduction

Electronic patient records and other health data
contain information that can identify a patient.
These data need to be washed, for both legal and
ethical reasons before they can be re-used for var-
ious purposes as research or machine learning.

This paper presents a machine learning-based
demonstrator called HB Deid, Health Bank De-
Identification tool. It is a tool for automatic de-
identification and pseudonymisation of protected
health information, PHI. PHIs are information
that can identify a patient. PHIs are similar to
named entities and encompass for example per-
sonal names, locations, phone numbers, dates,
ages, etc. PHIs can be present both in structured
and unstructured clinical data such as free text. In
structured data PHIs are easily identifiable, the ta-
ble information informs of the category of the data
the whole table can be removed or obscured. In the
free clinical text there is a greater effort to identify

HideText, http://www.hidetext.se is the plat-
form where HB Deid is commercialised.

a PHI since, for example, the PHI entity Parkin-
son is difficult to classify whether it is a disease
name or a personal name. Similarly, Sjögren’s
in Sjögren’s syndrome may be mistaken for a pa-
tient’s name. In this paper, we focus on PHIs1 in
free text in electronic patient records.

A demonstrator is a pedagogical instrument to
show a system or an idea and let a broader audi-
ence explore - in our case - a research system or
pilot system.

The process of de-identifying text typically uses
two steps. Firstly, a PHI is identified through
named entity recognition. Secondly, the PHI is ob-
scured. Strategies for hiding information may be
masking the information or replacing it with a sur-
rogate through a process called pseudonymisation.
Pseudonymisation makes the text more fluent to
read and when also removing the annotation tags
it inconceives the identification of potentially re-
maining sensitive data in plain sight and protects
the identification of PHIs. This method is called
Hiding in Plain Sight (HIPS), (Carrell et al., 2012).

A substantial amount of studies have been pub-
lished on the de-identification of text (Meystre
et al., 2010; Stubbs et al., 2015). While most of
these studies have focused on English, research
have been carried out for French (Grouin and
Névéol, 2014), Spanish (Marimon et al., 2019),
Danish (Pantazos et al., 2016) and Swedish (Berg
and Dalianis, 2019) as well as Japanese (Kajiyama
et al., 2020).

Generally, high recall is preferred over high pre-
cision in de-identification research as the privacy
of the individuals describe is of paramount impor-
tance. It is therefore important to not miss any
sensitive information.

With regards to pseudonymisation, there are
fewer studies. One of the first was a study by
Sweeney (1996), which described a system for

1PII, Personally identifying information, is a more general
term which includes other domains.
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identifying PHI and then replacing them with sur-
rogates, but not how this process was carried out.
In another study by Douglass et al. (2004) this
pseudonymisation process is described elaborated
such as that dates were shifted, personal names
were shifted to other personal names in the Boston
area. Locations were shifted randomly, and hospi-
tals were given fictitious names.

For de-identification and pseudonymisation for
English there is yet another study (Deleger et al.,
2014). For pseudonymisation for Swedish, there
is a system described in (Dalianis, 2019).

While there are plenty of demonstrators of
Named Entity Recognition systems the only avail-
able one for de-identification, to our knowledge, is
the HitzalMed demonstrator (Lopez et al., 2020).
The HitzalMed demonstrator is constructed for
de-identification and pseudonymisation of Span-
ish electronic patient records. To try it out a regis-
tration must be carried out here2. The system iden-
tifies and categorizes entities into different cate-
gories, as: first name, last name, location, phone
number, age, date and health care unit. While the
system is intended for Spanish, this part works rel-
atively well for English and Swedish. The system
then either masks or replaces the sensitive infor-
mation with surrogates - which are in Spanish.

2 The HB Deid demonstrator

The HB Deid demonstrator3, see Figure 1, is an at-
tempt to show the possibilities of de-identification
and pseudonymisation techniques for electronic
patient records written in Swedish. The system is
based on the work carried out by Berg and Dalia-
nis (2019) for de-identification and by Dalianis
(2019) for the pseudonymisation.

The data used to train HB Deid is not the orig-
inal set of annotated sensitive electronic patient
records in Swedish - the Stockholm EPR PHI Cor-
pus, but the corpus is indirectly used since its
trained model is used to improve the public avail-
able Swedish news corpora called Webbnyheter
2012 that are semi-manually annotated for the
NER classes PER and LOC and ORG and MISC4.
Webbnyheter 2012 was machine annotated using
the original sensitive trained model from Stock-
holm EPR PHI Corpus and then it was corrected

2HitzalMed registration, https://snlt.
vicomtech.org/hitzalmed/demo/help

3HB Deid, http://hbdeid.dsv.su.se
4Swedish NER Corpus, https://github.com/

klintan/swedish-ner-corpus

manually, using both the manual annotations and
the machine annotations to decide on the correct
annotation. This effort was carried out to avoid
using the sensitive Stockholm EPR PHI Corpus di-
rectly.

The bootstrapped model in the HB Deid demon-
strator has not yet been evaluated, but the original
sensitive model has been evaluated and the results
reported in (Berg and Dalianis, 2019).

2.1 The HB Deid classes

The HB Deid demonstrator identifies the follow-
ing PHI classes: First name, last name, location,
phone number, age, date, health care unit, organi-
sation and personal number (social security num-
ber).

2.2 Programming languages and machine
learning environment

HB Deid is developed in the programming lan-
guage Python and is machine learning-based
with a rule-based post-processing step, (Berg and
Dalianis, 2019). It uses the CRF Conditional Ran-
dom Fields algorithm (Lafferty et al., 2001) as im-
plemented in CRFSuite (Okazaki, 2007) with a
sklearn-crfsuite wrapper5.

The pseudonymiser is completely rule-based
and uses dictionaries to generate surrogates in a
fashion similar to (Dalianis, 2019). Compared to
the pseudonymiser in (Dalianis, 2019) personal
names are replaced with greater variation. While
common names are replaced with other common
names, uncommon names are replaced with un-
common names. The uncommon names in the dic-
tionaries are 123,000 female first names, 121,000
male first names and 35,000 last names.

The web interface for the HB-demo is written in
Flask6 that in turn is coded in Python.

2.3 Interface

The Flask web interface for HB Deid uses encryp-
tion according to the HTTPS protocol. Nothing
processed is saved on the web-server.

See Figure 1 for all the possible menu choices
and below for a detailed description:

• Ersättare - Replacer. Decides the shapes of
the processed text, see the following choices.

5sklearn-crfsuite, https://github.com/
TeamHG-Memex/sklearn-crfsuite

6Flask, https://flask.palletsprojects.
com/en/1.1.x/
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Figure 1: The interface of HB Deid (In Swedish) with the various choices. The text shown is fictitious.

– Ersätt inte - Do not replace. Tag the PHI
with the class name.

– Annat ord - Other word. Replace the
PHI with a surrogate or pseudonym.

– Klass - Class. Replace the PHI with the
class name.

– Mask. Mask the PHI with XXX.

• Vikter - Weights. Increases the recall in three
steps.

• + Regler - Rules uses a post-processing step
utilising rules, mainly controlling the output
from the machine learning tool but also uses
regular expressions to find personal numbers
and phone numbers.

The output from HB Deid can be seen in Figure
2.

The interface and the functionality of the HB
Deid demonstrator have not been evaluated yet,
since one bottleneck is that the demonstrator must
either be installed at the hospital or be set up in-
side the Health Bank7 infrastructure laboratory en-
vironment at the university to be evaluated by clin-
icians.

3 Conclusion

We have shown how to train and construct an auto-
matic de-identification and pseudonymisation tool
for clinical text in Swedish. We have also used a
bootstrapped language model that is privacy pro-
tected. Finally, we have made a user friendly and
freely available web interface to the demonstrator
called HB Deid.

The demonstrator has been presented in the
7Health Bank, https://dsv.su.se/healthbank
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Figure 2: The output from HB Deid in form of a de-identified and pseudonymised text. The various
colours represent the different classes. Moving the mouse pointer over an identified coloured entity will
display the corresponding class name.

Swedish trade magazine Computer Sweden,
(Lindström, 2020).

We have also been contacted by many users that
had asked us about HB Deid and given us feed-
back on how to improve the system. They have
also asked us if they can use HB Deid for other
purposes as de-identification of transcribed inter-
views.

One more proposal was to have the possibility
to correct wrong predictions by re-annotate them
directly in the HB Deid interface to re-learn HB
Deid.

We plan to let Stockholm Regional Council and
Karolinska University Hospital test HB Deid on
their electronic patient record texts with the future
aim to de-identify them before they are handed out
to researchers or for machine learning purposes.
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Finland. Linköping Electronic Press.

Louise Deleger, Todd Lingren, Yizhao Ni, Megan
Kaiser, Laura Stoutenborough, Keith Marsolo,
Michal Kouril, Katalin Molnar, and Imre Solti.
2014. Preparing an annotated gold standard cor-
pus to share with extramural investigators for de-
identification research. Journal of Biomedical In-
formatics, 50:173–183.

Margaret Douglass, Gari D. Clifford, Andrew Reis-
ner, George B. Moody, and Roger G. Mark. 2004.
Computer-assisted de-identification of free text in
the MIMIC II database. In Computers in Cardiol-
ogy, 2004, pages 341–344. IEEE.

Cyril Grouin and Aurélie Névéol. 2014. De-
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