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Abstract
Grammatical error correction (GEC) suffers
from a lack of sufficient parallel data. There-
fore, GEC studies have developed various
methods to generate pseudo data, which com-
prise pairs of grammatical and artificially pro-
duced ungrammatical sentences. Currently, a
mainstream approach to generate pseudo data
is back-translation (BT). Most previous GEC
studies using BT have employed the same ar-
chitecture for both GEC and BT models. How-
ever, GEC models have different correction
tendencies depending on their architectures.
Thus, in this study, we compare the correc-
tion tendencies of the GEC models trained on
pseudo data generated by different BT models,
namely, Transformer, CNN, and LSTM. The
results confirm that the correction tendencies
for each error type are different for every BT
model. Additionally, we examine the correc-
tion tendencies when using a combination of
pseudo data generated by different BT models.
As a result, we find that the combination of dif-
ferent BT models improves or interpolates the
F0.5 scores of each error type compared with
that of single BT models with different seeds.

1 Introduction

Grammatical error correction (GEC) aims to auto-
matically correct errors in text written by language
learners. It is generally considered as a transla-
tion from ungrammatical sentences to grammatical
sentences, and GEC studies use machine transla-
tion (MT) models as GEC models. After Yuan
and Briscoe (2016) applied an encoder–decoder
(EncDec) model (Sutskever et al., 2014; Bahdanau
et al., 2015) to GEC, various EncDec-based GEC
models have been proposed (Ji et al., 2017; Chol-
lampatt and Ng, 2018; Junczys-Dowmunt et al.,
2018; Zhao et al., 2019; Kaneko et al., 2020).

GEC models have different correction tenden-
cies in each architecture. For example, a GEC
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model based on CNN (Gehring et al., 2017) tends
to correct errors effectively using the local con-
text (Chollampatt and Ng, 2018). Furthermore,
some studies have combined multiple GEC models
to exploit the difference in correction tendencies,
thereby improving performance (Grundkiewicz and
Junczys-Dowmunt, 2018; Kantor et al., 2019).

Despite their success, EncDec-based models re-
quire considerable amounts of parallel data for
training (Koehn and Knowles, 2017). However,
GEC suffers from a lack of sufficient parallel data.
Accordingly, GEC studies have developed various
pseudo data generation methods (Xie et al., 2018;
Ge et al., 2018a; Zhao et al., 2019; Lichtarge et al.,
2019; Xu et al., 2019; Choe et al., 2019; Qiu et al.,
2019; Grundkiewicz et al., 2019; Kiyono et al.,
2019; Grundkiewicz and Junczys-Dowmunt, 2019;
Wang et al., 2020; Takahashi et al., 2020; Wang and
Zheng, 2020; Zhou et al., 2020a; Wan et al., 2020).
Moreover, Wan et al. (2020) showed that the cor-
rection tendencies of the GEC model are different
when using (1) a pseudo data generation method
by adding noise to latent representations and (2) a
rule-based pseudo data generation method. Further-
more, they improved the GEC model by combining
pseudo data generated by these methods. There-
fore, the combination of pseudo data generated by
multiple methods with different tendencies allows
us to improve the GEC model further.

One of the most common methods to gener-
ate pseudo data is back-translation (BT) (Sennrich
et al., 2016a). In BT, we train a BT model (i.e., the
reverse model of the GEC model), which generates
an ungrammatical sentence from a given grammati-
cal sentence. Subsequently, a grammatical sentence
is provided as an input to the BT model, generating
a sentence containing pseudo errors. Finally, pairs
of erroneous sentences and their input sentences
are used as pseudo data to train a GEC model.

Kiyono et al. (2019) reported that a GEC model
using BT achieved the best performance among
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other pseudo data generation methods. However,
most previous GEC studies using BT have used the
BT model with the same architecture as the GEC
model (Xie et al., 2018; Ge et al., 2018a,b; Zhang
et al., 2019; Kiyono et al., 2019, 2020). Thus, it
is unclear whether the correction tendencies differ
when using BT models with different architectures.

We investigated correction tendencies of the
GEC model using pseudo data generated by dif-
ferent BT models. Specifically, we used three BT
models: Transformer (Vaswani et al., 2017), CNN
(Gehring et al., 2017), and LSTM (Luong et al.,
2015). The results showed that correction tenden-
cies of each error type are different for each BT
model. In addition, we examined correction tenden-
cies of the GEC model when using a combination
of pseudo data generated by different BT models.
As a result, we found that the combination of dif-
ferent BT models improves or interpolates the F0.5

scores of each error type compared with that of
single BT models with different seeds.

The main contributions of this study are as fol-
lows:

• We confirmed that correction tendencies of the
GEC model are different for each BT model.

• We found that the combination of different
BT models improves or interpolates the F0.5

scores compared with that of single BT mod-
els with different seeds.

2 Related Works

2.1 Back-Translation in Grammatical Error
Correction

Sennrich et al. (2016a) showed that BT can effec-
tively improve neural machine translation. There-
fore, many MT studies focused on BT (Poncelas
et al., 2018; Fadaee and Monz, 2018; Edunov et al.,
2018; Graça et al., 2019; Caswell et al., 2019;
Edunov et al., 2020; Soto et al., 2020; Dou et al.,
2020). Subsequently, BT was applied to GEC. For
example, Xie et al. (2018) proposed noising beam
search methods, and Ge et al. (2018a) proposed
back-boost learning. Moreover, Rei et al. (2017)
and Kasewa et al. (2018) applied BT to a grammat-
ical error detection task.

Kiyono et al. (2019) compared pseudo data gen-
eration methods, including BT. They reported that
(1) the GEC model using BT achieved the best per-
formance and (2) using pseudo data for pre-training
improves the GEC model more effectively than

using a combination of pseudo data and genuine
parallel data. This is because the amount of pseudo
data is much larger than that of genuine parallel
data. This usage of pseudo data in GEC contrasts
with the usage of a combination of pseudo data and
genuine parallel data in MT (Sennrich et al., 2016a;
Edunov et al., 2018; Caswell et al., 2019).

Htut and Tetreault (2019) compared four GEC
models—Transformer, CNN, PRPN (Shen et al.,
2018), and ON-LSTM (Shen et al., 2019)—using
pseudo data generated by different BT models.
Specifically, they used Transformer and CNN as
BT models. It was reported that the Transformer
using pseudo data generated by CNN achieved the
best F0.5 score. However, the correction tenden-
cies for each BT model were not reported. More-
over, although using pseudo data for pre-training
is common in GEC (Zhao et al., 2019; Lichtarge
et al., 2019; Grundkiewicz et al., 2019; Zhou et al.,
2020a; Hotate et al., 2020), they used a less com-
mon method of utilizing pseudo data for re-training
after training with genuine parallel data. Therefore,
we used Transformer as the GEC model and in-
vestigated correction tendencies when using Trans-
former, CNN, and LSTM as BT models. Further,
we used pseudo data to pre-train the GEC model.

2.2 Correction Tendencies When Using Each
Pseudo Data Generation Method

White and Rozovskaya (2020) conducted a compar-
ative study of two rule/probability-based pseudo
data generation methods. The first method (Grund-
kiewicz et al., 2019) generates pseudo data using a
confusion set based on a spell checker. The second
method (Choe et al., 2019) generates pseudo data
using human edits extracted from annotated GEC
corpora or replacing prepositions/nouns/verbs with
predefined rules. Based on the comparison results
of these methods, it was reported that the former
has better performance in correcting spelling er-
rors, whereas the latter has better performance in
correcting noun number and tense errors. In ad-
dition, Lichtarge et al. (2019) compared pseudo
data extracted from Wikipedia edit histories with
that generated by round-trip translation. They re-
ported that the former enables better performance
in correcting morphology and orthography errors,
whereas the latter enables better performance in
correcting preposition and pronoun errors. Simi-
larly, we reported correction tendencies of the GEC
model when using pseudo data generated by three
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Dataset Sents. Refs. Split

BEA-train 564,684 1 train
BEA-valid 4,384 1 valid

CoNLL-2014 1,312 2 test
JFLEG 747 4 test
BEA-test 4,477 5 test

Wikipedia 9,000,000 - -

Table 1: Dataset used in the experiments.

BT models with different architectures.
Some studies have used a combination of pseudo

data generated by different methods for training
the GEC model (Lichtarge et al., 2019; Zhou et al.,
2020a,b; Wan et al., 2020). For example, Zhou
et al. (2020a) proposed a pseudo data generation
method that pairs sentences translated by statistical
machine translation and neural machine translation.
Then, they combined pseudo data generated by it
with pseudo data generated by BT to pre-train the
GEC model. However, they did not report the cor-
rection tendencies of the GEC model when using
combined pseudo data. Conversely, we reported
correction tendencies when using a combination of
pseudo data generated by different BT models.

3 Experimental Setup

3.1 Dataset

Table 1 shows the details of the dataset used in the
experiments. We used the BEA-2019 workshop
official shared task dataset (Bryant et al., 2019) as
the training and validation data. This dataset con-
sists of FCE (Yannakoudakis et al., 2011), Lang-8
(Mizumoto et al., 2011; Tajiri et al., 2012), NUCLE
(Dahlmeier et al., 2013), and W&I+LOCNESS
(Granger, 1998; Yannakoudakis et al., 2018). Fol-
lowing Chollampatt and Ng (2018), we removed
sentence pairs with identical source and target sen-
tences from the training data. Next, we applied
byte pair encoding (Sennrich et al., 2016b) to both
source and target sentences. Here, we acquired
subwords from the target sentences in the training
data and set the vocabulary size to 8,000. Here-
inafter, we refer to the training and validation data
as BEA-train and BEA-valid, respectively.

We used Wikipedia1 as a seed corpus to generate
pseudo data and removed possibly inappropriate
sentences, such as URLs. In total, we extracted 9M
sentences randomly.

1We used the 2020-07-06 dump file at https://dumps.
wikimedia.org/other/cirrussearch/.

3.2 Evaluation

We evaluated the CoNLL-2014 test set (CoNLL-
2014) (Ng et al., 2014), the JFLEG test set (JFLEG)
(Heilman et al., 2014; Napoles et al., 2017), and
the official test set of the BEA-2019 shared task
(BEA-test). We reported M2 (Dahlmeier and Ng,
2012) for the CoNLL-2014 and GLEU (Napoles
et al., 2015, 2016) for the JFLEG. We also reported
the scores measured by ERRANT (Felice et al.,
2016; Bryant et al., 2017) for the BEA-valid and
BEA-test. All the reported results, except for the
ensemble model, are the average of three distinct
trials using three different random seeds2. In the
ensemble model, we reported the ensemble results
of the three GEC models.

3.3 Grammatical Error Correction Model

Following Kiyono et al. (2019), we adopted Trans-
former, which is a representative EncDec-based
model, using the fairseq toolkit (Ott et al., 2019).
We used the “Transformer (base)” settings of
Vaswani et al. (2017)3, which has a 6-layer en-
coder and decoder with a dimensionality of 512 for
both input and output and 2,048 for inner-layers,
and 8 self-attention heads. We pre-trained GEC
models on each 9M pseudo data generated by each
BT model4 and then fine-tuned them on BEA-train.
We optimized the model by using Adam (Kingma
and Ba, 2015) in pre-training and with Adafactor
(Shazeer and Stern, 2018) in fine-tuning. Most of
the hyperparameter settings were the same as those
described in Kiyono et al. (2019). Additionally,
we trained a GEC model using only the BEA-train
without pre-training as a baseline model.

We investigated correction tendencies when us-
ing a combination of pseudo data generated by
different BT models. Therefore, we pre-trained
a GEC model on combined pseudo data and then
fine-tuned it on the BEA-train. Notably, in this ex-
periment, we combined pseudo data generated by
the Transformer and CNN because they improved
the GEC models compared with LSTM in most
cases (Section 4.1). Specifically, we obtained 9M
pseudo data from the Transformer and CNN and
then created 18M pseudo data by combining them.

2To reduce the influence of the BT model’s seed, we pre-
pared BT models trained with the corresponding seed of each
GEC model. Then, we pre-trained each GEC model using
pseudo data generated by the corresponding BT models.

3Considering the limitation of computing resources, we
used “Transformer (base)” instead of “Transformer (big)”.

4See Section 3.4 for details of the BT models.

https://dumps.wikimedia.org/other/cirrussearch/
https://dumps.wikimedia.org/other/cirrussearch/
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CoNLL-2014 JFLEG BEA-test

Back-translation model Pseudo data Prec. Rec. F0.5 GLEU Prec. Rec. F0.5

None (Baseline) - 58.5/65.8 31.3/31.5 49.8/54.0 53.0/53.7 52.6/61.4 42.8/42.8 50.2/56.5
Transformer 9M 65.0/68.6 37.6/37.7 56.7/59.0 57.7/58.3 61.1/66.5 49.8/50.7 58.4/62.6
CNN 9M 64.0/68.1 37.4/37.4 56.0/58.5 57.8/58.4 61.9/67.5 50.7/51.0 59.3/63.4
LSTM 9M 64.7/68.8 36.2/36.4 55.9/58.4 57.0/57.4 61.3/67.1 49.5/49.9 58.5/62.8

Transformer & CNN 18M 65.2/69.1 38.7/39.1 57.3/59.9 57.9/58.5 63.1/67.6 51.1/51.1 60.2/63.5
Transformer & Transformer 18M 65.5/68.3 37.9/38.0 57.2/58.9 57.5/58.0 63.0/67.0 51.0/50.7 60.2/63.0
CNN & CNN 18M 65.6/69.1 38.2/38.7 57.3/59.8 57.9/58.6 61.9/67.1 51.4/51.6 59.5/63.3

Table 2: Results of each GEC model. The left and right scores represent single and ensemble model results,
respectively. The top group delineates the performance of the GEC model using each BT model, and the bottom
group delineates the performance of the GEC model when using combined pseudo data.

To eliminate the effect of increasing the pseudo
data amount, we prepared GEC models that used
a combination of pseudo data generated by single
BT models with different seeds. We provided all
BT models with the same target sentences to focus
on the difference in the pseudo source sentences.
Hence, in the combined pseudo data, the number
of source sentence types increases; however, the
number of target sentence types does not increase.

3.4 Back-Translation Model

Based on the GEC studies that used BT, we se-
lected the Transformer (Vaswani et al., 2017), CNN
(Gehring et al., 2017), and LSTM (Luong et al.,
2015). For all BT models, we used implementa-
tions of the fairseq toolkit and its default settings,
except for common settings5.

Common settings. We used the Adam optimizer
with β1 = 0.9 and β2 = 0.98. We used label
smoothed cross-entropy (Szegedy et al., 2016) as a
loss function and selected the model that achieved
the smallest loss on the BEA-valid. We set the
maximum number of epochs to 40. The learn-
ing rate schedule is the same as that described in
Vaswani et al. (2017). We applied dropout (Srivas-
tava et al., 2014) with a rate of 0.3. We set the beam
size to 5 with length normalization. Moreover, to
generate various errors, we used the noising beam
search method proposed by Xie et al. (2018). In
this method, we add rβrandom to the score of each
hypothesis in the beam search. Here, r is randomly
sampled from a uniform distribution of interval
[0, 1], and βrandom ∈ R≥0 is a hyperparameter that
adjusts the noise scale. In this experiment, βrandom
was set to 8, 10, and 12 for the Transformer, CNN,

5When training each BT model, the argument –arch in the
fairseq toolkit was set to transformer, fconv, and lstm
for the Transformer, CNN, and LSTM, respectively.

and LSTM, respectively6.

Transformer. Our Transformer model was based
on Vaswani et al. (2017), which is a 6-layer encoder
and decoder with 512-dimensional embeddings,
2,048 for inner-layers, and 8 self-attention heads.

CNN. Our CNN model was based on Gehring
et al. (2017), which is a 20-layer encoder and de-
coder with 512-dimensional embeddings, both us-
ing kernels of width 3 and hidden size 512.

LSTM. Our LSTM model was based on Luong
et al. (2015), which is a 1-layer encoder and de-
coder with 512-dimensional embeddings and hid-
den size 512.

4 Results

4.1 Overall Results

Separate pseudo data. The top group in Table
2 depicts the results of the GEC model using each
BT model; the best BT model was different for
each test set. The GEC model using the Trans-
former achieved the best scores in the CoNLL-
2014. In contrast, in the JFLEG and BEA-test, the
GEC model using CNN achieved the best scores.
Moreover, the GEC model using LSTM achieved
a higher F0.5 than that using the Transformer in
the BEA-test. These results suggest that the Trans-
former, which is robust as the GEC model (Kiyono
et al., 2019), is not necessarily a good BT model.

Combined pseudo data. The bottom group of
Table 2 shows the results of the GEC model using
combined pseudo data. As shown in Table 2, a
combination of pseudo data generated by different
BT models consistently improved the performance

6Each βrandom achieved the best F0.5 score on the BEA-
valid in the preliminary experiments.
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Back-translation model

Error type Freq. Baseline Transformer CNN LSTM
Transformer Transformer CNN
& CNN & Transformer & CNN

OTHER 697 22.2±1.77 31.8±0.71 31.7±0.77 30.6±0.16 34.2±1.03 31.8±1.01 31.6±0.74
PUNCT 613 65.6±2.02 64.6±0.42 67.8±0.83 67.3±1.83 65.9±1.51 66.0±0.73 67.8±0.93
DET 607 53.8±0.71 64.8±1.62 65.0±0.41 65.2±0.83 64.8±0.64 66.7±1.15 64.7±0.75
PREP 417 48.2±0.55 58.1±0.76 59.3±0.54 55.2±1.74 61.1±0.43 60.3±0.76 60.3±1.06
ORTH 381 72.7±2.47 77.2±0.50 78.7±1.50 78.0±1.95 79.2±1.25 78.4±1.28 78.8±0.74
SPELL 315 58.3±3.49 71.0±1.71 71.1±1.45 71.6±0.50 73.3±1.03 72.5±0.40 71.1±0.49
NOUN:NUM 263 57.8±2.23 64.4±1.09 63.7±0.90 63.9±1.35 66.2±0.43 66.3±0.61 64.6±1.41
VERB:TENSE 256 43.9±2.35 52.1±1.58 54.6±0.94 52.6±0.50 53.7±1.71 54.6±0.64 54.8±1.27
VERB:FORM 213 62.0±2.26 66.7±2.63 67.1±0.46 66.0±1.60 66.3±0.34 66.9±1.54 66.6±1.01
VERB 196 32.5±3.41 36.0±1.18 36.3±0.91 39.7±3.05 42.7±3.83 39.0±0.76 38.2±0.98
VERB:SVA 157 66.1±1.38 73.7±3.00 75.6±0.86 73.8±2.51 75.1±1.04 76.3±1.20 74.3±0.44
MORPH 155 54.0±2.03 61.9±1.97 63.8±1.23 63.8±0.53 64.5±0.62 66.3±1.26 63.8±2.84
PRON 139 43.8±2.00 53.0±2.79 51.8±0.14 49.6±1.93 53.3±1.10 52.7±2.75 53.3±0.46
NOUN 129 19.7±2.04 31.4±0.62 30.2±2.39 30.5±2.17 35.9±2.90 34.5±1.48 32.8±2.80

Table 3: Each error type’s F0.5 of the single models on the BEA-test. We extracted error types with a frequency of
100 or more. The total frequency of all error types was 4,882. For details of error types, see Bryant et al. (2017).

compared with pseudo data from a single source
(Transformer & CNN > Transformer, CNN). In
contrast, in some of the items in Table 2, the per-
formances of the GEC models using the single
BT models with different seeds were lower than
that using only a single BT model. For example,
when using the Transformer as the BT model, the
F0.5 score of the ensemble model using a single
BT model was 59.0 on the CoNLL-2014, whereas
that using two homogeneous BT models was 58.9
(Transformer & Transformer: 58.9 < Transformer:
59.0). Similarly, for CNN, the F0.5 score of the
ensemble model using only a single BT model was
63.4 on the BEA-test, whereas that using two ho-
mogeneous BT models was 63.3 (CNN & CNN:
63.3 < CNN: 63.4). Hence, the combination of
different BT models enables the construction of a
more robust GEC model than the combination of
single BT models with different seeds.

4.2 Results of Each Error Type

Separate pseudo data. The left side of Table 3
illustrates the F0.5 scores of the single models on
the BEA-test across various error types. When
using the Transformer as the BT model, the perfor-
mance of PRON was high. In contrast, the perfor-
mance of PREP, VERB:TENSE, and VERB:SVA
was high when using CNN, and the performance
of VERB was high when using LSTM, to name a
few. Therefore, it is considered that correction ten-
dencies of each error type are different depending
on the BT model.

In PUNCT, the performance of the GEC model

using the Transformer was lower than that of the
baseline model (Transformer: 64.6 < Baseline:
65.6). Moreover, when using CNN and LSTM
as the BT model, the performance of PUNCT im-
proved by only approximately 2 points in F0.5 from
the baseline model (CNN: 67.8, LSTM: 67.3 >
Baseline: 65.6). It can be seen that this improve-
ment of PUNCT is small compared with that of
other error types. Therefore, when using pseudo
data generated by BT, PUNCT is considered an
error type that is difficult to improve.

Combined pseudo data. The right side of Table
3 shows the F0.5 scores of the single models using
combined pseudo data on the BEA-test across vari-
ous error types. Except for 3 of the 14 error types
shown in Table 3, the GEC model using Trans-
former & CNN yielded the higher F0.5 scores than
using at least either Transformer & Transformer
or CNN & CNN. Therefore, it is considered that
the combination of different BT models improves
or interpolates performance compared with that of
single BT models with different seeds.

In OTHER, the combination of single BT mod-
els with different seeds did not improve the per-
formance of OTHER compared with a single BT
model (Transformer & Transformer: 31.8 = Trans-
former: 31.8 and CNN & CNN: 31.6 < CNN:
31.7). Conversely, the combination of different
BT models improved the performance of OTHER
compared with a single BT model (Transformer &
CNN: 34.2 > Transformer: 31.8, CNN: 31.7). Thus,
by using different BT models, the GEC model is
expected to correct more diverse error types.
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Transformer CNN LSTM

Error type Token Type
F0.5 F0.5 Token Type

F0.5 F0.5 Token Type
F0.5 F0.5

w/ FT w/o FT w/ FT w/o FT w/ FT w/o FT

Overall 64,733,183 12,364,575 58.4 32.7 77,784,638 17,711,223 59.3 31.4 90,205,852 25,502,133 58.5 25.2

OTHER 16,463,382 6,084,184 31.8 10.0 20,237,776 8,453,119 31.7 9.6 29,286,403 13,844,773 30.6 6.3
PUNCT 3,716,117 37,360 64.6 47.1 3,814,449 46,724 67.8 46.1 4,082,594 53,739 67.3 43.1
DET 8,074,615 39,606 64.8 41.5 8,491,264 39,402 65.0 39.2 8,217,106 33,389 65.2 33.0
PREP 6,832,627 19,521 58.1 36.7 7,935,894 23,564 59.3 35.8 8,091,043 25,923 55.2 30.3
ORTH 3,378,022 521,032 77.2 62.7 3,973,439 646,475 78.7 61.4 3,587,805 513,787 78.0 60.0
SPELL 6,620,395 2,795,425 71.0 57.0 11,224,522 4,737,493 71.1 56.3 11,342,223 5,643,091 71.6 50.8
NOUN:NUM 2,241,413 31,939 64.4 45.2 2,149,748 30,205 63.7 43.9 2,177,546 28,226 63.9 41.3
VERB:TENSE 2,585,017 58,935 52.1 27.2 2,599,663 60,266 54.6 26.6 2,418,040 59,207 52.6 22.6
VERB:FORM 1,287,912 47,071 66.7 45.5 1,421,381 48,776 67.1 46.2 1,517,365 48,117 66.0 41.1
VERB 1,821,117 328,147 36.0 18.5 2,201,360 453,181 36.3 17.2 2,704,117 647,785 39.7 12.9
VERB:SVA 761,768 6,564 73.7 52.5 784,762 6,136 75.6 52.8 824,241 6,019 73.8 45.5
MORPH 2,306,204 148,506 61.9 32.5 2,308,793 147,657 63.8 32.6 2,613,870 167,440 63.8 29.2
PRON 810,875 3,642 53.0 14.7 995,686 4,013 51.8 12.7 1,248,554 5,267 49.6 10.9
NOUN 4,402,909 1,888,994 31.4 14.8 6,155,680 2,697,991 30.2 14.4 8,196,758 4,032,482 30.5 9.8

Table 4: Number of edit pair tokens and types in pseudo data generated by each BT model and each error type’s
F0.5 of the single models with and without fine-tuning on the BEA-test. As with Table 3, we extracted error types
with a frequency of 100 or more in the BEA-test. FT denotes fine-tuning.

Effects of different seeds. Here, we consider the
effect of different seeds in the BT model. In some
error types in Table 3, the GEC model using single
BT models with different seeds has the higher F0.5

score than that using different BT models. One of
the reasons for this is that there exists some varia-
tion (i.e., high standard deviation) in the F0.5 score
of each error type, even when changing merely the
seed of the BT model. For example, in the GEC
model using the Transformer, the standard devi-
ation of DET was 1.62, which is relatively high.
Then, the F0.5 score of DET using Transformer
& Transformer was higher than that using Trans-
former & CNN. Thus, in error types with some
variation, using single BT models with different
seeds may improve performance compared with
using different BT models.

5 Discussion

We examined the number of edit pairs in pseudo
data generated by each BT model. We annotated
pseudo data using ERRANT and extracted edit
pairs from the pseudo source sentences and target
sentences. Table 4 shows the number of edit pair to-
kens and types in the pseudo data generated by each
BT model. We expected that the higher the number
of errors in each error type, the better the F0.5 score
of the GEC model for each error type. However,
the results did not show such a tendency. Specifi-
cally, when the number of edit pair tokens and types
was the highest in each error type, only 6 of the
14 error types had the highest F0.5 score (ORTH,
SPELL, NOUN:NUM, VERB:TENSE, VERB, and
MORPH). This fact implies that simply increasing

the number of tokens or types in each error type
may not improve each error type’s performance in
the GEC model.

Moreover, we investigated the performance of
the GEC model with and without fine-tuning. As
shown in Table 4, when fine-tuning was not carried
out (i.e., pre-training only), the GEC model using
the Transformer had the highest F0.5 score, and
there was a 7.5 point difference in F0.5 between the
Transformer and the LSTM (Transformer: 32.7
> LSTM: 25.2). However, interestingly, when
fine-tuning was performed, the GEC model using
LSTM achieved a better F0.5 score than that us-
ing the Transformer (Transformer: 58.4 < LSTM:
58.5). This result suggests that even if the perfor-
mance of the GEC model is low in pre-training, it
may become high after fine-tuning.

6 Conclusions

In this study, we investigated correction tendencies
based on each BT model. The results showed that
the correction tendencies of each error type var-
ied depending on the BT models. In addition, we
found that the combination of different BT models
improves or interpolates the F0.5 score compared
with that of single BT models with different seeds.
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