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Abstract

Paralinguistics, the non-lexical components of
speech, play a crucial role in human-human
interaction. Models designed to recognize
paralinguistic information, particularly speech
emotion and style, are difficult to train because
of the limited labeled datasets available. In
this work, we present a new framework that
enables a neural network to learn to extract par-
alinguistic attributes from speech using data
that are not annotated for emotion. We as-
sess the utility of the learned embeddings on
the downstream tasks of emotion recognition
and speaking style detection, demonstrating
significant improvements over surface acous-
tic features as well as over embeddings ex-
tracted from other unsupervised approaches.
Our work enables future systems to leverage
the learned embedding extractor as a separate
component capable of highlighting the paralin-
guistic components of speech.

1 Introduction

An effective speech-based AI system is capable
of not only recognizing and interpreting the lin-
guistic content of speech but also recognizing and
interpreting its paralinguistic attributes. While
the linguistic elements of speech encode what
was said (i.e., the content), the paralinguistic el-
ements encode how it was said (i.e., emotion, style,
etc.) (Schuller and Batliner, 2013). The detection
and modeling of paralinguistic attributes have many
potential applications; ranging from affect-aware
Human-Computer Interaction (HCI) systems (Vin-
ciarelli et al., 2015) to the management of mental
health (Karam et al., 2014; Cummins et al., 2015).

One major challenge with building robust par-
alinguistic models is the limited access to large-
scale, labeled datasets that are needed for training
the machine learning models. For instance, a typi-
cal emotion dataset (e.g., IEMOCAP) that is used
for building paralinguistic models contains around
12 hours of speech while a modern dataset used

for building speaker recognition models contains
around 2000 hours of speech (Nagrani et al., 2017).
It is therefore critical that features used in paralin-
guistic tasks distill relevant information from the
original signal to allow the recognizers to effec-
tively detect the target attributes. With this in mind,
new methods that can leverage unlabeled data for
distilling paralinguistic information from speech
should be explored.

In this work, we introduce the Expressive Voice
Conversion Autoencoder (EVoCA), an unsuper-
vised framework that distills paralinguistic at-
tributes from speech without relying on explicit
emotion or style labels. EVoCA is designed to
enable a neural network to learn what it means
for speech to be expressive by treating expressive
speech as a modulation of neutral speech. EVoCA
is trained using parallel speech inputs: one expres-
sive and one neutral. However, these types of paral-
lel paralinguistic corpora are not available at scale.
To address this, we use a large audiobook corpus
(i.e., 200 hours) composed of expressive speech
and artificially generate the parallel neutral, non-
expressive speech using the available transcriptions
(see Figure 1).

We train the EVoCA model to convert between
non-expressive synthetic speech and expressive real
speech, demonstrating how this conversion yields
an embedding that captures paralinguistic attributes
(see Figure 2). The benefit of the EVoCA frame-
work is that once trained, the component respon-
sible for producing the paralinguistic embeddings
can be used as a front-end speech transformer for
a variety of downstream applications. We show
that these learned paralinguistic embeddings can
be used in downstream emotion recognition and
speaking style classification tasks.

In summary, the key contributions of this work
are the following:

• We present the EVoCA framework for learn-
ing speech emotion and style embeddings
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Figure 1: An overview of the parallel data generation
process. We use a speech synthesis model to generate
a synthetic version of each audio sample in the original
audiobook corpus. Synthesized samples lose paralin-
guistic attributes present in the original samples but re-
tain linguistic information. Our goal is to leverage the
resulting real/synthetic sample pairs to learn to extract
paralinguistic features.

from audiobooks without relying on manual
annotations for those attributes.

• We show that the EVoCA framework learns
embeddings that outperform those obtained
using other unsupervised and self-supervised
speech feature learning methods from the lit-
erature.

To the best of our knowledge, ours is the first work
to demonstrate how one can learn paralinguistic fea-
tures by training a neural model to convert between
non-expressive synthetic speech and expressive real
speech.

2 Related Work

Speech emotion recognition applications rely on an
extensive set of acoustic features that have evolved
over the years (Schuller et al., 2009, 2010, 2011,
2013; Eyben et al., 2015). Spectral features are
a crucial component of any emotion feature set
and are included in the widely used ComParE and
eGeMAPs feature sets (Schuller et al., 2013; Ey-
ben et al., 2015). Common surface features that
are derived from the speech spectrum include Mel-
frequency cepstral coefficients (MFCCs) and Mel-
filterbanks (MFBs). In this work, we propose a
framework for learning an MFB transformation
that highlights the paralinguistic content of an ut-
terance; we demonstrate the effectiveness of the
learned transformation over surface MFB features
on emotion and speaking style classification tasks.

Our work also explores the utility of using both
synthetic and real speech to learn paralinguistic
information. Lotfian and Busso have previously

demonstrated how speech synthesizers can be used
to remove emotion from a speech utterance to pro-
vide trained emotion recognizers with a neutral
reference to aid in the recognition of expressive
speech (Lotfian and Busso, 2015). One limitation
with their approach, however, is that it relied on
having access to a real-time speech synthesizer to
generate a neutral version of the input utterance
for use by the emotion recognizer. In contrast, we
use the speech synthesizer only during the data
preparation process (Figure 1) and not during test
time.

Our approach is related to works that focused
on unsupervised and self-supervised speech rep-
resentation learning. Chung et al. introduced two
auto-regressive methods for learning MFB trans-
formations for speech applications without relying
on explicit labels (Chung et al., 2019). Both of
the proposed models were trained to predict future
frames of the input speech sequence in order to
learn global structures represented in the speech
signal. They showed that the resulting transfor-
mation improved performance over surface fea-
tures on speaker verification and phone recogni-
tion tasks. Hsu et al. devised a variational autoen-
coder that is capable of learning hierarchical infor-
mation present in speech data (Hsu et al., 2017).
Their approach disentangled frame-level features
from utterance-level features in order to provide
robust embeddings for both speaker recognition
and automatic speech recognition tasks. Although
several unsupervised learning strategies exist for
learning speech transformations, ours is the only ap-
proach that is targeted at learning transformations
that highlight expressive characteristics in speech.

Recent works in voice conversion have also in-
spired our proposed approach. The goal of voice
conversion is to convert an utterance from one
speaker so that it sounds as if it was spoken by
another speaker (Mohammadi and Kain, 2017). In
other words, a voice converter retains all linguistic
content and only modulates the paralinguistics of
speech. Previous works demonstrated that voice
conversion techniques can be used to convert be-
tween emotional states (Gao et al., 2019; Shankar
et al., 2019a,b). In this work we primarily focus
on the use of parallel voice conversion methods
and future work will explore the trade-offs between
parallel and non-parallel approaches. However, to
the best of our knowledge, our work is the first to
show that the voice conversion task can be adapted



4738

ℒ( ),

Input utterance 
(real-expressive)

Paralinguistic 
Encoder

Voice  
Converter

Paralinguistic 
Embedding

Output utterance 
(converted-expressive)

Input utterance  
(synthetic-neutral)

Figure 2: An overview of the proposed Expressive Voice Conversion Autoencoder (EVoCA). The model takes two
inputs, the expressive and synthetic speech samples, and outputs the reconstructed expressive speech sample. The
paralinguistic encoder extracts an embedding from the expressive speech sample such that it can be used by the
Voice Converter to insert paralinguistics into the synthetic speech input sample. The network is trained with an L2
loss between the generated expressive sample and the original expressive sample. Once the full model is trained,
the paralinguistic encoder is disconnected and used as a general purpose paralinguistic feature extractor.

and incorporated into a framework that enables a
neural network to learn compact embeddings that
capture speech expressiveness.

3 Approach

3.1 Creating Parallel Data using Speech
Synthesis

A sketch of our data generation setup is shown in
Figure 1. Given an audiobook corpus, where both
speech and text modalities are available, we use
the text to create synthetic speech samples using a
speech synthesizer. The created synthetic speech
should lack expressiveness. This provides our sys-
tem with the opportunity to learn how to character-
ize expressiveness and imbue the non-expressive
speech with expressive characteristics. We use the
open-source Festival toolkit1, as previous research
has demonstrated its utility for generating neutral,
non-expressive speech (Lotfian and Busso, 2017).
Once the speech synthesis process finishes, our
data now contain pairs of real (expressive) speech
and synthetic (neutral non-expressive) speech. Our
EVoCA model then leverages the resulting paral-
lel data to learn an embedding transformation that
facilitates the conversion from synthetic to real
speech without relying on any manual emotion or
style labels.

1http://festvox.org/festival/

3.2 Expressive Voice Conversion
Autoencoder Setup

A sketch of EVoCA is shown in Figure 2. The
EVoCA model converts neutral speech to expres-
sive speech. In the process, the paralinguistic en-
coder learns a compact embedding that encodes
paralinguistic elements, including expressiveness.
The paralinguistic embedding and the paired syn-
thetic speech sample are fed into the voice con-
verter, which produces expressive speech. A recon-
struction loss (L2) between the generated expres-
sive speech and the original expressive speech is
computed and used to train the style autoencoder
in an end-to-end fashion. Once trained, the paralin-
guistic encoder can be used as a speech transformer
to create features that highlight the expressive com-
ponents of input speech.

4 Datasets, Features, and Metrics

4.1 Datasets

We use four datasets in this work: Blizzard2013,
IEMOCAP, MSP-IMPROV, and VESUS. Bliz-
zard2013 is used to train the EVoCA model while
the other three datasets are used to test the effective-
ness of the learned embeddings on speech emotion
recognition and speaking style detection.

Blizzard2013. The Blizzard2013 dataset con-
tains around 200 hours from 55 American English
audiobooks read by Catherine Byers. Although
other audiobook-based datasets are publicly avail-
able, we choose the Blizzard2013 corpus due to its
highly expressive and animated nature. This corpus

http://festvox.org/festival/
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was used in previous research to model style and
prosody in speech synthesis applications (Wang
et al., 2018; Zhang et al., 2019c). We use a seg-
mented version of the corpus, which we obtained
from the 2013 Blizzard Challenge website.2

IEMOCAP. The IEMOCAP dataset was created
to explore emotion expression in dyadic interac-
tions (Busso et al., 2008). Pairs of actors, one male
and one female, were recorded while interacting in
scripted and improvised roles that were designed
to elicit emotional expressions. The dataset con-
tains 12 hours of speech from 10 individuals. The
recordings from each interaction were manually
segmented into utterances based on speaker turns
in the dialogue. The resulting utterances were man-
ually labeled by five annotators for both categorical
and continuous emotion labels. We only consider
utterances that had majority agreement among the
annotators and focus on four basic categorical emo-
tions: happy (merged with excited), angry, neutral,
and sad. In addition to emotion labels, the IEMO-
CAP dataset provides spontaneity labels (acted vs.
spontaneous), which we use in our speaking style
detection experiments.

MSP-IMPROV. The MSP-IMPROV dataset
was created to capture naturalistic expressions from
improvised scenarios while partially controlling
for variations in the lexical modality (Busso et al.,
2016). Similar to IEMOCAP, pairs of actors, one
male and one female, were recorded while interact-
ing in improvised scenarios, which included pre-
specified target sentences that actors were asked to
incorporate into their dialogue. The dataset is nine
hours in duration from 12 speakers. The resulting
utterances were manually labeled for emotion us-
ing crowd-sourced annotators. We only consider
utterances whose labels had a majority agreement
among the annotators and focus on four basic emo-
tion labels: happy, angry, neutral, and sad.

VESUS. The VESUS dataset provides around
seven hours of lexically-controlled emotional
data (Sager et al., 2019). In contrast to IEMO-
CAP and MSP-IMPROV where emotion elicitation
and expression happen in improvised scenarios,
actors in the VESUS dataset were asked to read
the same set of 250 semantically neutral phrases
in five different emotions: happy, angry, neutral,
sad, and fearful. The dataset contains around seven
hours of speech from 10 speakers, five males and

2http://www.cstr.ed.ac.uk/projects/
blizzard/

five females. The resulting utterances were labeled
for emotional content by 10 crowd-sourced anno-
tators. In our experiments, we focus on utterances
that achieved at least 50% agreement among the
crowd-sourced annotators with respect to the ac-
tor’s intended emotion.

4.2 Features
We first pre-process speech samples from all
datasets such that they have a sampling rate of 16
kHz and then extract 80-dimensional MFB features
using the Librosa toolkit (McFee et al., 2015)
with a 50 ms Hanning window and a step size of
12.5 ms, consistent with previous research in voice
conversion (Zhang et al., 2019a). We z-normalize
the frequency bins per utterance for the voice con-
verter and mean-normalize the bins per-utterance
for the paralinguistic encoder; consistent with nor-
malization methods used in previous works (Snyder
et al., 2018; Zhang et al., 2019c). Normalization
ensures that the features are robust to variations
that could arise from having different recording
conditions (Benesty et al., 2007).

4.3 Tasks
Voice conversion is a regression task where the
goal is to output the MFB features of an expressive
speech utterance given the MFB features of the
synthesized speech utterance. Emotion recognition
is posed as a multi-class classification task where
the goal is to recognize the target emotion. Lastly,
speaking style detection is posed as a binary classi-
fication task where the goal is to recognize whether
the target data are acted or spontaneous.

4.4 Metrics
We use Mel-cepstral distortion (MCD) and root
mean square error (RMSE) of F0 for evaluating
the quality of the converted speech (Zhang et al.,
2019a) when training the end-to-end model. MCD
and F0 RMSE cannot be directly extracted from
the MFB acoustic features used by our conversion
model. Thus, we use Librosa to invert the MFB
features to audio by first approximating the Short-
time Fourier transform (STFT) magnitude and then
using the Griffin-Lim algorithm to reconstruct the
phase. We extract the F0 and 24-dimensional mel
cepstral coefficients from the waveform using the
WORLD vocoder (Morise et al., 2016) following
(Zhang et al., 2019a,c).

We use unweighted average recall (UAR) and
accuracy for evaluating the performance on the

http://www.cstr.ed.ac.uk/projects/blizzard/
http://www.cstr.ed.ac.uk/projects/blizzard/
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emotion recognition and speaking style detection
tasks, respectively. The UAR metric is used to
account for the class imbalance that is inherent in
the emotion data (Rosenberg, 2012).

5 Experiments

5.1 Experimental Questions

We design our experiments to address the following
four questions regarding the proposed framework
shown in Figure 2:

1. Is the proposed framework capable of insert-
ing expressiveness into synthetic speech?

2. Can the learned paralinguistic embeddings be
used for emotion and style classification?

3. How do changes to the structure of the pro-
posed framework affect both the quality of the
converted speech and the effectiveness of the
extracted embeddings for emotion and speak-
ing style detection tasks?

4. How does the performance of paralinguistic
embeddings in emotion and speaking style
detection tasks compare to those of feature
transformations learned using other unsuper-
vised methods?

5.2 Expressive Voice Conversion
Autoencoder (EVoCA)

The proposed EVoCA consists of two components:
the voice converter and the paralinguistic encoder.
The voice converter consists of a stack of four Bidi-
rectional Long Short-Term Memory (BLSTM) lay-
ers, each with a hidden size of 256, followed by a
1D convolution layer with 80 channels and a kernel
size of one. The paralinguistic encoder we use con-
sists of a stack of two BLSTM layers, each with
a hidden size of 256. The fixed-size embeddings
from the paralinguistic encoder are induced by tak-
ing the mean of the hidden representations from
the last BLSTM layer and then passing the outputs
through a linear layer, which reduces the size by
half. The reasoning for this linear layer is to coun-
teract the bidirectional property of BLSTM which
outputs hidden representations that are twice the
size of the hidden layer. Our voice converter is
inspired by the one used in (Zhang et al., 2019b).
However, in this work we utilize a basic version of
the model that does not include a two-layer fully

connected PreNet, a five-layer 1D convolution Post-
Net, nor an attention module. We opt to use a sim-
ple implementation for voice conversion since our
problem does not follow the sequence-to-sequence
learning paradigm as our input features are pre-
aligned using dynamic time warping (DTW) (Mo-
hammadi and Kain, 2017). Our final style autoen-
coder model has approximately 2.2 million param-
eters.

We investigate how changes to the structure of
the proposed EVoCA affect not only the quality of
the converted speech, but also the quality of the
extracted embeddings. We study the impact that
the paralinguistic embedding and synthetic speech
have on the voice converter by comparing the voice
conversion performance when only one component
is present. We also investigate the effect of reduc-
ing the capacity (i.e., the number of hidden units) of
the paralinguistic encoder and the voice converter
on the converted speech as well as on the extracted
embeddings for downstream classification tasks.
Specifically, we keep the voice converter fixed and
reduce the hidden size of the BLSTM paralinguis-
tic encoder gradually from 256 units to 32 units
(reducing the number of parameters from 2.2 mil-
lion to 1.5 million), noting performance changes
on the two tasks. Then, we keep the paralinguis-
tic encoder fixed and reduce the hidden size of
the BLSTM voice converter from 256 units to 32
units (reducing the number of parameters from 2.2
million to 0.7 million), again noting performance
changes on the two tasks. Note that these hyper-
parameters are not and should not be tuned based
on the performance of the downstream task as the
goal of this experiment is to analyze how these
parameters affect the qualities of the transformed
features and the converted speech.

We split the Blizzard2013 data into training, vali-
dation, and test partitions following a random 90%-
5%-5% split rule. We train our style autoencoder
on the training partition and use the validation par-
tition for loss monitoring and early stopping. Con-
version performance is reported on the test partition
of the data. We construct the network in PyTorch
and train it from scratch with batches of size 128
using the ADAM optimizer for a total of 80 epochs.
We use an initial learning rate of 10−4 and decrease
it exponentially using a decay factor of 0.95 after
each epoch starting from epoch 30. We monitor the
validation loss after each epoch and perform early
stopping if the validation loss does not improve for
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15 consecutive epochs.

5.3 Unsupervised Baselines

The first unsupervised baseline that we consider
is a convolutional autoencoder that is applied to
fixed-length MFB segments of 128 frames. The
autoencoder is similar to the one used in (Eskimez
et al., 2018). The encoder consists of three 2D con-
volution layers, of shape: [32×9×9], [64×7×7],
and [128× 5× 5], followed by a linear layer with
256 units. A [2 × 2] max pooling operation is ap-
plied after each layer to reduce the dimensionality
of the input by two. The decoder consists of a linear
layer with 256 units followed by four 2D convolu-
tion layers of shape: [128 × 5 × 5], [64 × 7 × 7],
[32 × 9 × 9], and [1 × 1 × 1]. A [2 × 2] nearest
neighbor up-sampling operation is applied after
each layer to get back the original size of the input.
Both the encoder and the decoder use Leaky ReLU
activation units and the autoencoder has approxi-
mately 3.9 million parameters.

The second unsupervised baseline that we con-
sider is the Autoregressive Predictive Coding
(APC) model that was introduced in (Chung et al.,
2019). Given an input of MFB features, the APC
model is trained to predict the features n time-steps
in the future. The APC model that we use is similar
to the one used by Chung et al. and it consists of
three LSTM layers, each with a width of 512. We
run our experiments with three values for n: 5, 10,
and 20. Once trained, the outputs from the last
LSTM layer are averaged to obtain fixed-size fea-
tures for downstream tasks. The APC model that
we use has approximately 5.5 million parameters.

We train both the autoencoder and the APC base-
lines on the Blizzard2013 dataset. We use the same
protocol we use for training EVoCA when train-
ing the autoencoder baseline. However, we train
the APC baselines for 100 epochs following the
authors’ recommendation.

5.4 Emotion and Speaking Style Recognition

We test the utility of the learned paralinguistic en-
coder for transforming MFB features to highlight
their paralinguistic attributes in emotion recogni-
tion and speaking style detection tasks. First, we
assess if transforming MFB features provides any
advantage over using surface MFB features on the
two tasks. Then, we compare the learned feature
transformation to those obtained using the unsuper-
vised and supervised baselines.

Table 1: Objective performance measures for the style
voice conversion task with different setups. The base
EVoCA consists of a 256-dimensional paralinguistic
encoder and a 256-dimensional voice converter. Refer-
ence numbers are computed using the synthetic speech
and ground-truth expressive speech. All other numbers
are computed using converted speech and ground-truth
expressive speech.

Setup MCD F0 RMSE
(dB) (Hz)

Reference 24.01 146.20
Base EVoCA 10.71 64.36

w/o synth. ref. +8.33 +106.23
w/o para. enc. +1.90 +79.50

w/ 128-dim para. enc. +0.31 +6.14
w/ 64-dim para. enc. +0.69 +19.41
w/ 32-dim para. enc. +0.97 +31.06

w/ 128-dim converter +1.03 +15.60
w/ 64-dim converter +1.77 +31.73
w/ 32-dim converter +2.61 +61.82

We follow a leave-one-speaker-out evaluation
scheme and report the average performance across
all test speakers on all four downstream tasks.
For each test speaker, we pick the model that
gives the best performance on a held-out valida-
tion set. The hyper-parameters that we optimize
on the validation set include the number of hid-
den layers {1, 2, 3}, the width of each hidden
layer {64, 128, 256}, and the activation unit {Tanh,
ReLU}. We construct the networks in PyTorch
and train them with batches of size 32 using the
ADAM optimizer with learning rate of 10−4 and a
cross-entropy loss function. We train each model
for a maximum of 100 epochs and apply early stop-
ping if the validation loss does not improve for
five consecutive epochs. We repeat each experi-
ment with 30 different random seeds and report the
average and standard deviation to account for per-
formance fluctuation due to random initialization
and training.

6 Results

In this section, we provide the results of our four
experiments (Section 5.1).

Is the proposed framework capable of inserting
expressiveness into synthetic speech? Table 1
shows that we obtain an MCD of 24.01 and an
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Table 2: Performance obtained using different features for emotion recognition and speaking style classification.
Emotion recognition performance is measured using the unweighted average recall (UAR) while speaking style de-
tection performance is measured using accuracy. Performance is evaluated using a leave-one-speaker-out scheme
and the numbers reported are averages (±1 standard deviation) from 30 runs to account for randomness in initial-
ization and training. ∗ indicates that the marked performance is significantly higher than MFBs. † indicates that
the marked performance is significantly higher than best APC model. Significance is assessed at p < 0.05 using
the Tukey’s honest test on the ANOVA statistics.

Emotion (UAR) Style (Accuracy)
Features IEMOCAP MSP-IMPROV VESUS IEMOCAP

Baseline – Surface Features

Chance 25.0 25.0 20.0 52.3
MFBs 53.0± 0.6 43.6± 1.2 36.0± 1.4 67.0± 0.7

Baseline – Unsupervised

Autoencoder 50.6± 0.9 38.7± 1.0 33.6± 1.1 64.2± 0.6
APC (5-steps) 51.7± 0.8 42.2± 0.8 33.5± 1.2 68.3± 0.6
APC (10-steps) 53.9± 0.9 44.6± 0.9 35.5± 1.6 69.7± 0.6
APC (20-steps) 54.3± 0.9 44.1± 0.9 36.1± 1.5 69.7± 0.6

Paralinguistic Embeddings (ours)

Base EVoCA 56.4± 0.6∗† 46.0± 0.6∗† 44.2± 0.9∗† 71.7± 0.5∗†

w/ 128-dim para. enc. 55.4± 0.8∗† 45.3± 0.9∗ 42.6± 1.4∗† 69.6± 0.5∗

w/ 64-dim para. enc. 53.0± 0.6 42.9± 0.8 38.2± 0.9∗† 67.2± 0.5
w/ 32-dim para. enc. 51.7± 0.6 41.0± 0.4 36.0± 1.3 65.7± 0.5

w/ 128-dim converter 57.1± 0.5∗† 46.3± 0.9∗† 43.5± 1.3∗† 70.4± 0.5∗†

w/ 64-dim converter 57.0± 0.7∗† 44.9± 0.9∗ 41.0± 0.9∗† 69.6± 0.6∗

w/ 32-dim converter 54.9± 0.6∗ 44.6± 0.7∗ 38.1± 1.0∗† 68.8± 0.5∗

F0 RMSE of 146.20 when computing the perfor-
mance using the synthetic reference speech and
ground-truth expressive speech. In comparison,
we obtain an MCD of 10.71 and an F0 RMSE of
64.36 when computing the performance using the
converted speech and the ground-truth expressive
speech. This suggests that the proposed EVoCA
framework converts the synthetic speech so that its
closer to the expressive speech. We note that it is
possible to obtain better conversion performance
if we increase the capacity of the model and uti-
lize a more sophisticated vocoder. However, as
the results for question 3 will suggest, increasing
the capacity of the voice converter might not nec-
essarily yield better embeddings for downstream
classification tasks.

Can the learned paralinguistic embeddings be
used for emotion and style classification? Ta-
ble 2 shows that our paralinguistic embeddings
significantly outperform MFB surface features on
both the emotion recognition and the speaking style

detection tasks. This suggests that the paralinguis-
tic encoder learns a feature transformation that
highlights latent paralinguistic attributes in surface
acoustic features.

How do changes to EVoCA’s structure affect
the converted speech quality as well as the
quality of the extracted embeddings for down-
stream tasks? Figure 3 visually demonstrates
the effect of each input on the quality of a con-
verted utterance. Figure 3a shows that the con-
verted speech has higher quality when the paralin-
guistic embedding is provided as an input com-
pared to Figure 3b. Specifically, the harmonic struc-
ture in Figure 3a is well defined and dynamic while
that in Figure 3b is relatively static and not well
separated. Figure 3c shows that the model is un-
able to generate speech solely from paralinguistic
embeddings. We hypothesize that this is due to the
embeddings’ limited capacity to encode both lin-
guistic and paralinguistic information present in the
original signal to allow for accurate reconstruction.
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Figure 3: Sample converted test utterance with three model setups.

Additionally, we believe paralinguistic embeddings
struggle to model time-varying phenomena like
rhythm and speech activity because they are com-
puted using a global average over LSTM outputs.

Table 1 quantitatively shows the effect of each
of these two inputs on the conversion performance.
We find that the synthesized reference input is more
important to the conversion task than the paralin-
guistic embedding is. This is highlighted by the
larger impact that reducing the capacity of the voice
converter has on the converted speech quality com-
pared to the impact of reducing the capacity of the
of the paralinguistic encoder. This can be due to
the fact that the paralinguistic embeddings do not
have enough capacity to encode the linguistic at-
tributes in speech that are necessary for obtaining
good voice conversion performance.

Tables 1 and 2 show the results obtained on the
voice conversion task and the downstream classifi-
cation tasks, respectively. We find that while a high
capacity voice converter improves the quality of the
converted speech, it can also degrade the quality of
the extracted embeddings as measured on the clas-
sification tasks. For instance, we find that reducing
the capacity of the voice converter from 256 to 128
decreases the conversion performance on the voice
conversion task but improves the classification per-
formance on two out of the four downstream tasks.
The results suggest that using a high-capacity voice
converter can reduce EVoCA’s reliance on the par-
alinguistic encoder for providing style and emotion
information, causing the encoder to perform poorly
when used to transform features for downstream
applications.

How does the performance of paralinguistic em-
beddings compare to the embeddings learned
from other unsupervised methods? Table 2
shows that paralinguistic embeddings encode infor-
mation that is more suited to paralinguistic tasks
than those extracted from other unsupervised meth-

ods, namely APC and a traditional autoencoder.
The APC model provides improvements over sur-
face features on all four downstream tasks when us-
ing the 20-step setup and shows improvements over
surface features on three downstream tasks when
using the 10-step setup. In contrast, a standard au-
toencoder fails to provide any improvements over
surface features on all tasks. We believe that the
success of the extracted embeddings from EVoCA
demonstrate the importance of targeted unsuper-
vised tasks.

7 Concluding Remarks

We proposed EVoCA, a framework for learning a
surface feature transformation that highlights par-
alinguistic content needed for detecting emotion
and speaking style. We first showed that speech
synthesizers can be used to strip away paralinguis-
tic attributes from speech while retaining linguistic
information. We demonstrated how a neural voice
conversion model can be adapted to facilitate the
extraction of paralinguistic features by converting
synthetic neutral speech to real expressive speech.
Finally, we showed that these extracted embed-
dings improve performance over surface features
and can outperform other embeddings extracted
from existing unsupervised methods on emotion
recognition and speaking style detection tasks. Fu-
ture work will consider how the choice of the syn-
thesis model, the number of speakers in the training
set, and the architecture used for the encoder affect
the quality of the extracted embeddings.

8 Broader Impact

Potential Benefits. A variety of applications can
benefit from the automatic detection of paralinguis-
tic attributes (e.g., emotion) from speech; some of
these applications include: human-robot interac-
tion, medical applications, and speaker verification
to name a few. The framework that we introduce
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can impact these applications by enabling the uti-
lization of data that are not labeled for paralinguis-
tic attributes when building the detection models
for these domains.

Potential Risks. The behavior and performance
of all data-driven models heavily depend on the
data that are used for building them. Thus, the deci-
sions that these models make will reflect any biases
that exist in the data. Some attributes that can bias
speech data include: age, gender, dialect, accent,
language, recording conditions, and environment.
We encourage the deployment of our framework
with full consideration of these biases and their
consequences on the target application.
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