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Abstract
Improving model generalization on held-out
data is one of the core objectives in common-
sense reasoning. Recent work has shown that
models trained on the dataset with superficial
cues tend to perform well on the easy test set
with superficial cues but perform poorly on the
hard test set without superficial cues. Previous
approaches have resorted to manual methods
of encouraging models not to overfit to super-
ficial cues. While some of the methods have
improved performance on hard instances, they
also lead to degraded performance on easy in-
stances. Here, we propose to explicitly learn a
model that does well on both the easy test set
with superficial cues and hard test set without
superficial cues. Using a meta-learning objec-
tive, we learn such a model that improves per-
formance on both the easy test set and the hard
test set. By evaluating our models on Choice
of Plausible Alternatives (COPA) and Com-
monsense Explanation, we show that our pro-
posed method leads to improved performance
on both the easy test set and the hard test set
upon which we observe up to 16.5 percentage
points improvement over the baseline.

1 Introduction

Pre-trained language models such as BERT (De-
vlin et al., 2019) and RoBERTa (Liu et al., 2019)
have enabled performance improvements on bench-
marks of language understanding (Wang et al.,
2019a). However, improved performance is not
only the result of increased ability to solve the
benchmark tasks as intended, but also due to mod-
els’ increased ability to “cheat” by relying on super-
ficial cues (Gururangan et al., 2018; Sugawara et al.,
2018; Niven and Kao, 2019). That is, even though
models may perform better in terms of benchmark
scores, they often are right for the wrong reasons
(McCoy et al., 2019) and exhibit worse perfor-
mance when prevented from exploiting superficial
cues (Gururangan et al., 2018; Sugawara et al.,
2018; Niven and Kao, 2019).

The woman trembled. 
Why?

a) She was in a 
good mood.

b) She was nervous.
???

A) Inner-loop learning B) Evaluate learning 
(outer-loop learning)

presence of “a” 
implies correct!

presence of 
“a” does not
imply correct!

The woman hummed. 
Why?

a) She was in a 
good mood.

b) She was nervous.

...
presence of “a” 
implies correct!

Figure 1: A modeling learning to be right for the right
reason. A) shows a model wrongly learning that pres-
ence of “a” in the choice implies that the answer choice
is correct. B) The models’ learning is tested after a few
examples and uses this testing error to improve how it
learns in the inner-loop. Hence, learning to learn to be
right for the right reasons.

To analyze reliance on superficial cues and to
evaluate methods that encourage models to be right
for the right reasons, i.e., to solve tasks as intended,
training instances can be divided into two cate-
gories (Gururangan et al., 2018): easy training in-
stances contain easily identifiable superficial cues,
such as a word that strongly correlates with a class
label so that the presence or absence of this word
alone allows better-than-random prediction (Niven
and Kao, 2019). In contrast, hard instances do
not contain easily exploitable superficial cues and
hence require non-trivial reasoning. Models that
exploit superficial cues are characterized by a per-
formance gap: they show high scores on easy in-
stances, but much lower scores on hard ones.

Previous work has aimed at countering superfi-
cial cues. A direct, if drastic, method is to com-
pletely remove easy instances from the training
data via adversarial filtering (Zellers et al., 2018),
which leads to better performance on hard in-
stances, but, as Gururangan et al. (2018) point out,
filtering easy instances may harm performance by
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reducing the data diversity and size. Instead of
completely removing easy instances, Schuster et al.
(2019) propose a loss discounting scheme that as-
signs less weight to instances which likely contain
superficial cues, while Belinkov et al. (2019) use
adversarial training to penalize models for relying
on superficial cues. A different approach, taken by
Niven and Kao (2019) and Kavumba et al. (2019),
is to augment datasets in a way that balances the
distribution of superficial cues so that they become
uninformative. Common to all these approaches is
that reduced reliance on superficial cues is reflected
in degraded performance on easy instances, while
maintaining or increasing scores on hard instances.

Here we propose meta-learning as an alternative
approach to reducing reliance on superficial cues,
which, as we will show, improves performance
on both easy and hard instances. Intuitively, we
see reliance on superficial cues not as a defect of
datasets, but as a failure to learn: If a model learns
to rely on superficial cues, it will not generalize
to instances without such cues, but if the model
learns not to rely on such cues, this generalization
will be possible. Conversely, a model that only
learns how to solve hard instances may perform
poorly on easy instances. Therefore, our meta-
learned model learns how to generalize to both
easy and hard instances. By evaluating our method
on two English commonsense benchmarks, namely
Choice of Plausible Alternatives (COPA) (Roem-
mele et al., 2011) and Commonsense Explanation
(Cs-Ex) (Wang et al., 2019b), we show that meta-
learning improves performance on both easy and
hard instances and outperforms all baselines.

In summary, our contributions are:

1. We propose a meta-learning method that
learns how to generalize to both easy and hard
instances (§ 2),

2. We show that Commonsense Explana-
tion (Wang et al., 2019b) contain superficial
cues that are easy to exploit by models (§ 3),

3. We empirically show that meta-learning a
model to generalise to both easy and hard in-
stances leads to better generalization not only
on hard instances but also on easy instances
(§ 4),

2 Learning to Generalize

2.1 Background
Meta-learning has been successfully applied to
problems such as few-shot learning (Vinyals et al.,
2016; Finn et al., 2017) and continual learn-
ing (Javed and White, 2019; Beaulieu et al., 2020).

A meta-learning or learning to learn procedure
consists of two phases. The first phase, also called
meta-training, consists of learning in two nested
loops. Learning starts in the inner loop where the
models’ parameters are updated using the meta-
training training set. At the end of the inner loop
updates, the models’ inner loop learning of the
task is meta-train tested in outer loop where a sep-
arate meta-training testing set is used. This is
called meta-training testing. Unlike a non-meta-
training process, the meta-training testing error is
also used to update the model parameters, i.e., the
meta-training testing error is used to improve the
inner loop. Thus, learning is performed in both the
inner and the outer loop, hence, learning-to-learn.

The second phase, also called meta-testing, con-
sists only of a single loop. Model parameters are
finetuned on a meta-testing training set and finally
evaluated, only once, on the held out meta-testing
testing set. Note that the meta-testing testing set is
different from the meta-training testing set.

One of the most popular meta-learning algo-
rithms is Model-Agnostic Meta-Learning (MAML)
algorithm (Finn et al., 2017). MAML is a few-shot
optimization-based meta-learning algorithm whose
goal is to learn initial model parameters θ for mul-
tiple related tasks such that a few gradient updates
lead to optimal performance on target tasks. We
choose MAML for our experiments because it is
model agnostic and, hence, widely applicable.

2.2 Meta-Learning to Generalize
Our goal is to learn a model fθ, with parameters θ,
that generalizes well on both easy instances, with
superficial cues, and hard instances, without su-
perficial cues. Specifically, given a large single-
task training set Dtr, we want to be able to train
a model that generalizes well to both the easy test
set Dtest_easy and the hard test set Dtest_hard. To
learn such a model, we require a meta-training test-
ing set,Dtr_test, which contains both easy and hard
instances. Such a meta-training testing set will en-
sure that we evaluate the model generalization to
both easy and hard instances. Optimizing only for
better performance on hard instances can lead to
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poor generalization to easy instances (Gururangan
et al., 2018).

We cannot naively apply the meta-learning
method designed for learning multiple few-shot
tasks to a large dataset. A large dataset presents
three main challenges. First, a naive meta-learning
method would require using the entire training set
during each inner loop update. This would make
training very slow and computationally expensive.
To address this problem, we use small randomly
sampled batches in each inner loop. This is similar
to treating each mini-batch as a single MAML task.

Second, a naive meta-learning method would
require using the entire meta-training testing set
for each outer loop update. This, too, would make
learning very slow when the meta-training testing
set is large. We address this challenge by evaluating
the inner loop learning using only a small batch that
is randomly drawn from the meta-training testing
set.

Third, a naive meta-learning method would re-
quire storing the entire inner loop computation
graph to facilitate second-order gradients’ computa-
tion. However, for large datasets and large models,
such as recent pre-trained language models used
in this paper, this is computationally too expensive
and impractical on current hardware. To address
this problem, we use first-order MAML (Finn et al.,
2017) that uses only the last inner-update.

We call this method of using random meta-
training training batches and meta-training test-
ing batches for meta-updates as Stochastic-Update
Meta-Learning (SUML, Algorithm 1). The hyper-
parameter k is the number of inner loop updates
performed for each outer loop update (i.e., i in Al-
gorithm 1 ranges from 1 to k). Setting the value
of k to 1 would make training unstable, much like
using a batch size of 1 in standard (non-meta) train-
ing. On the other hand, a large value of k would
make training slow.

Effectively, the model is meta-trained to use any
batch in the training set to perform well on both the
easy and the hard instances.

3 Superficial Cues in COPA and
Commonsense Explanation

3.1 Datasets

Here, we briefly describe the English common-
sense datasets that we use in this paper.

Balanced COPA: The Balanced Choice of Plau-
sible Alternatives (Kavumba et al., 2019, Bal-

Algorithm 1 Stochastic-Update Meta-Learning

Require: Dtr: Training set
Require: Dtr_test: Balanced meta-training test set
Require: α: inner-loop step size
Require: β: outer-loop step size

1: θ: LM pretrained parameters
2: while not done do
3: Sample batch Dtr_test

j from Dtr_test

4: for i = 1, 2, 3, ..., k do
5: Sample batch Dtr

i from Dtr

6: Adapt parameters with gradient descent:
θi = θi−1 − α∇θL(fθi−1

, Dtr
i )

7: end for
8: Update θ ← θ − β∇θL(fθk , D

tr_test
j )

9: end while

anced COPA) counters superficial cues in the an-
swer choices of the Choice of Plausible Alterna-
tives (Roemmele et al., 2011, COPA) by balancing
token distribution between correct and wrong an-
swer choices. Balanced COPA creates mirrored
instances for each of the original instance in the
training set. Concretely, for each original COPA
instance shown below:

Premise: The stain came out of the shirt. What
was the CAUSE of this?

a) I bleached the shirt. (Correct)
b) I patched the shirt.

Balanced COPA creates another instance that
shares the same alternatives but a different manu-
ally authored premise. The wrong answer choice
the original question is made correct by the new
premise (refer to App. B for more examples).

Premise: The shirt did not have a hole anymore.
What was the CAUSE of this?

a) I bleached the shirt.
b) I patched the shirt. (Correct)

This counters superficial cues by balancing the to-
ken distribution in the answer choices.
Commonsense Explanation: Commonsense Ex-
planation (Cs-Ex) (Wang et al., 2019b) is a
multiple-choice benchmark that consists of three
subtasks. Here we focus on a commonsense ex-
planation task. Given a false statement such as He
drinks apple., Cs-Ex requires a model to pick the
reason why a false statement does not make sense,
in this case either: a) Apple juice are very tasty and
milk too; or b) Apple can not be drunk (correct); or
c) Apple cannot eat a human.



3893

Model Ensemble Data Easy Hard Overall

SuperGlue Leaderboard Score:
RoBERTa-large + ALBERT-xxLarge yes COPA - - 90.8
RoBERTa-large yes COPA - - 90.6

RoBERTa-large no COPA 90.5 83.9 86.4
RoBERTa-large-adversarial no COPA 70.0 56.5 61.6
RoBERTa-large + Balanced data no B-COPA 90.0 88.1 88.8
RoBERTa-large-meta-learned (ours) no COPA 92.6 89.7 90.8

RoBERTa-base no COPA 80.0 71.3 74.6
RoBERTa-base-adversarial no COPA 76.3 57.0 64.4
RoBERTa-base no B-COPA 78.4 78.1 78.2
RoBERTa-base-meta-learned (ours) no COPA 87.9 78.4 82.0

RoBERTa-large no Cs-Ex 98.0 79.1 93.8
RoBERTa-large-adversarial no Cs-Ex 94.0 59.0 86.2
RoBERTa-large-meta-learned (ours) no Cs-Ex 98.9 87.1 96.2

RoBERTa-base no Cs-Ex 95.0 62.1 87.7
RoBERTa-base-adversarial no Cs-Ex 93.8 54.8 85.2
RoBERTa-base-meta-learned (ours) no Cs-Ex 97.6 78.6 93.4

Table 1: Accuracy on Easy and Hard instances. We report accuracy for models trained on COPA, Balanced COPA
(B-COPA) and Commonsense Explanation (Cs-Ex). We also report SuperGlue (Wang et al., 2019a) leaderboard
scores for single task fine-tuning for reference.

3.2 Superficial cues in Cs-Ex

While COPA has already been shown to contain
superficial cues by Kavumba et al. (2019), Cs-Ex
has not been analyzed yet. Here, we present an
analysis of superficial cues in Cs-Ex.

We fine-tuned RoBERTa-base and RoBERTa-
large with contextless inputs (answers only). This
reveals the models’ ability to rely on shortcuts such
as different token distributions in correct and wrong
answers (Gururangan et al., 2018; McCoy et al.,
2019).

In this setting, we expect the models’ accuracy
to be nearly random if the answer choices have
no superficial cues. But, we find that RoBERTa
performs better than random accuracy of 33.3%.
The above-random performance of RoBERTa-base
(82.1%) and RoBERTa-large (85.4%) indicates that
the answers of Cs-Ex contain superficial cues.

To identify the actual superficial cues a model
can exploit, we collect words/unigrams that are
predictive of the correct answer choice using the
productivity measure introduced by Niven and Kao
(2019, see definition in App. A). Intuitively, the
productivity of a token expresses how precise a
model would be if it based its prediction only on

the presence of this token in a candidate answer.
We found that the word not was highly predictive
of the correct answer, followed by the word to (See
details in App. A).

3.3 Easy and Hard Instances

Following previous work (Gururangan et al., 2018;
Kavumba et al., 2019), we split the test set of Cs-
Ex into an easy and hard subset. The easy subset
consists of all instances (1,572) that RoBERTa-
base solved correctly across three different runs
in the contextless input (answer only) setting. All
the remaining instances, 449, are considered hard
instances. For COPA, we use the easy and hard
subset splits from Kavumba et al. (2019), which
consists of 190 easy and 310 hard instances.

4 Experiments

4.1 Training Details

In our experiments, we used a recent state-of-
the-art large pre-trained language model, namely
RoBERTa (Liu et al., 2019)—an optimized vari-
ant of BERT (Devlin et al., 2019). Specifically,
we used RoBERTa-base and RoBERTa-large with
110M and 355M parameters, respectively, from the



3894

publicly available Huggingface source code (Wolf
et al., 2019). 1 We ran all our experiments on a sin-
gle NVIDIA Tesla V100 GPU with 16GB memory.

We used an Adam optimizer (Kingma and Ba,
2015) with a warm-up proportion of 0.06 and a
weight decay of 0.01. We randomly split the train-
ing data into training data and validation data with
a ratio of 9:1. We trained the models for a maxi-
mum of 10 epochs with early stopping based on
the validation loss (full training details in App. C).

4.2 COPA

To evaluate the effectiveness of meta-learning a
model to be robust against superficial cues, we
compare our model that is meta-trained on 450
original COPA instances and 100 balanced meta-
training testing examples with three different base-
lines. Specifically, we compare to:
1. A model trained on 500 original COPA in-
stances.
2. An adversarial trained model to avoid the an-
swer only superficial cues on 500 original COPA
instances.
3. A model trained on 1000 Balanced COPA in-
stances, manually created to counter superficial
cues. In comparison, our meta-trained model uses
only a small fraction of balanced instances. Effec-
tively, our method replaces the need to have a large
balanced training set with a small, 100 instances,
in this case, meta-training test set.

The results show that the models trained on
the original COPA perform considerably better on
the easy subset (90.5%) than on the hard subset
(83.9%) (Table 1). The models trained on balanced
COPA improves performance on the hard subset
(88.1%) but slightly degrades performance on the
easy subset (90.0%). This indicates that training
on Balanced COPA improves generalization on
the hard instances. As expected, the performance
of the adversarial trained model is lower than the
vanilla baselines. This finding is similar to the re-
sult found in natural language inference (Belinkov
et al., 2019). Comparing our meta-trained mod-
els to the baselines, we see that meta-training im-
proves performance on both the easy subset and
hard subset. Our meta-trained models even out-
perform the models trained on nearly twice the
training data and an ensemble of RoBERT-large. It
even matches an ensemble of RoBERTa-large and

1https://github.com/huggingface/trans
formers

ALBERT-xxlarge (Lan et al., 2019). 2

4.3 Commonsense Explanation

This experiment aims to investigate an automatic
method of creating a meta-training testing set. Here
we assume that there is no budget for manually
creating a small meta-training testing set as in Bal-
anced COPA. We created a meta-training testing
set by randomly sampling 288 hard instances. Gu-
rurangan et al. (2018) pointed out that optimizing
only for hard instance might lead to poor perfor-
mance on easy instance. This observation moti-
vates us to include both easy and hard instances
in the meta-training testing set, with the expec-
tation that this will ensure that performance on
easy instances does not degrade. We augmented
the hard instances with an equal number of ran-
domly sampled easy instances, resulting into the
final meta-training testing set with 576 instances.

The results show that the meta-trained models
perform better than the baselines on both easy and
hard instances (Table 1). For RoBERTa-large we
see 0.9 percentage point improvement on easy in-
stances and eight percentage points improvement
on the hard instances. We see the largest gains
on the RoBERTa-base with 2.6 and 16.5 percent-
age points on easy and hard instances, respectively.
The results indicate that in the absence of a man-
ually authored meta-training testing set without
superficial cues, we can use a combination of easy
and hard instances.

5 Conclusion

We propose to directly learn a model that performs
well on both instances with superficial cues and in-
stances without superficial cues via a meta-learning
objective. We carefully evaluate our models, which
are meta-learned to improve generalization, on two
important commonsense benchmarks, finding that
our proposed method considerably improves per-
formance across all test sets.
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Appendix

A Identifying Superficial Cues

We identify tokens predictive of the correct answer
using productivity, as defined by Niven and Kao
(2019). Let T(i)

j be the set of tokens in the alterna-
tives for data point i with label j. The applicability
αk of a token k counts how often this token occurs
in an alternative with one label, but not the other:

αk =

n∑
i=1

1

[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j

]
The productivity πk of a token is the proportion
of applicable instances for which it predicts the
correct answer:

πk =

∑n
i=1 1

[
∃j, k ∈ T(i)

j ∧ k /∈ T(i)
¬j ∧ yi = j

]
αk

The most productive tokens in Cs-Exshown in
Table 2.

B Dataset

We use English datasets, namely COPA 3 (Roem-
mele et al., 2011), Balanced COPA 4 (Kavumba
et al., 2019), and Commonsense Explana-
tion 5 (Wang et al., 2019b) for all our experiments.

B.1 Balanced COPA

The Balanced Choice of Plausible Alterna-
tives (Kavumba et al., 2019, Balanced COPA) coun-
ters superficial cues in the answer choices by ex-
tending the training set of Choice of Plausible Alter-
natives (Roemmele et al., 2011, COPA) with twin
questions for each of the original COPA instances.
Examples of twin questions are shown below:
Example 1:
Original instance

Premise: My body cast a shadow over the grass.
What was the CAUSE of this?

a) The sun was rising. (Correct)
b) The grass was cut.

Mirrored instance:
3https://people.ict.usc.edu/~gordon/d

ownloads/COPA-resources.tgz
4https://balanced-copa.github.io/
5https://github.com/wangcunxiang/SemE

val2020-Task4-Commonsense-Validation-and
-Explanation

Premise: The garden looked well-groomed..
What was the CAUSE of this?

a) The sun was rising.
b) The grass was cut. (Correct)

Example 2:
Original instance

Premise: The woman tolerated her friend’s diffi-
cult behavior. What was the CAUSE of this?

a) The woman knew her friend was going through
a hard time. (Correct)

b) The woman felt that her friend took advantage
of her kindness.

Mirrored instance:

Premise: The woman did not tolerate her friend’s
difficult behavior anymore.. What was the
CAUSE of this?

a) The woman knew her friend was going through
a hard time.

b) The woman felt that her friend took advantage
of her kindness. (Correct)

B.2 Commonsense Explanation
Commonsense Explanation (Cs-Ex) (Wang et al.,
2019b) is a multiple-choice benchmark that con-
sists of three subtasks. Here we focus on a com-
monsense explanation task. Given a false statement,
Cs-Ex requires a model to pick the reason why a
false statement does not make sense. For example:

FalseStatement: He drinks apple.
a) Apple juice are very tasty and milk too
b) Apple can not be drunk (correct)
c) Apple cannot eat a human

C Training Details

In our experiments, we use a state-of-the-
art recent pre-trained language model, namely
RoBERTa (Liu et al., 2019), an optimized variant
of BERT (Devlin et al., 2019). We use RoBERTa-
base and RoBERTa-large with 110M and 355M
parameters respectively from the publicly available
Huggingface source code (Wolf et al., 2019). 6. We
run all our experiments on a single NVIDIA Tesla
V100 GPU with 16GB memory.

We use Adam (Kingma and Ba, 2015) with a
warm-up proportion of 0.06 and a weight decay
of 0.01. We randomly split the training data into

6https://github.com/huggingface/trans
formers

https://people.ict.usc.edu/~gordon/downloads/COPA-resources.tgz
https://people.ict.usc.edu/~gordon/downloads/COPA-resources.tgz
https://balanced-copa.github.io/
https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation
https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation
https://github.com/wangcunxiang/SemEval2020-Task4-Commonsense-Validation-and-Explanation
https://github.com/huggingface/transformers
https://github.com/huggingface/transformers
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Dataset Word
Train Dev

Prod. Cov. Prod. Cov.

Cs-Ex
not 72 47 59 40
to 35 37 33 43

Table 2: Productivity (Prod.) and Coverage (Cov.)
of the top 2 most productive tokens in each dataset.
We have highlighted the most productive results. In
Commonsense-Explanation, if one always picks an op-
tion with ‘not’ then one can achieve 59% with a cover-
age of 40% data points on the dev set.

training data and validation data with a ratio of 9:1.
We train the models for a maximum of 10 epochs
with early stopping based on the validation loss.

C.1 COPA Baselines

We use grid search for hyperparameter from learn-
ing rates {1e-5, 8e-6, 6e-6, 4e-6, 2e-6, 1e-6}, batch
sizes {4, 8, 16, 32, 64}, gradient accumulation {1,
2, 4, 8}, Adam β2 {0.98, 0.99}, and with gradient
norm clipping of 1 and no gradient norm clipping.
We pick the best performing hyperparameters on
the validation set.

C.2 Commonsense Explanation (Cs-Ex)
Baselines

We test learning rates 1e-5, 8e-6, 6e-6, 4e-6, 2e-6
and 1e-6, Adam β2 0.99, and with gradient norm
clipping of 1. For RoBERTa-base, we use batch
sizes of 64 with gradient accumulation 1, and for
RoBERTa-large, we use a batch size of 32 with gra-
dient accumulation 2. We pick the best performing
hyperparameters on the validation set.

C.3 Adversarial Trained Baseline

We follow the setup defined by Belinkov et al.
(2019). Specifically we optimize the objective func-
tion:

L = Lscorer + λLossLAdv

LAdv = L (cchoice (λEncGRLλ (gC(C)) , y))
Where Lscorer is the loss of the multiple-choice
scorer (or head), GRLλ is the gradient reversal
layer (Ganin and Lempitsky, 2015), λLoss is the
importance of the adversarial loss (LAdv), λEnc is
the scaling factor that multiplies the gradients after
reversing them, cchoice maps the answer choice
representation C to an output y. The goal is to ob-
tain a representation gC(C) so that it is maximally
informative for multiple-choice answering while
simultaneously minimizes the ability of cchoice

to accurately predict the correct choice (refer to
Belinkov et al. (2019) for further details). We use
grid search to tune hyperparameters λEnc {0.1, 0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 } and λLoss {0.1,
0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1 } and report
the best performing results on the development set.

C.4 Meta-Training
In the inner-loop, we pick the maximum batch size
that fits in GPU memory. For all the experiments,
we use vanilla Stochastic Gradient Descent for the
inner-loop with learning rate α 0.01 (it worked well
in the first run therefore we do not modify it for the
rest of the experiments), and Adam for the outer-
loop with learning rate β 1e-5 (based on the best
learning rate for the RoBERTa baseline).


