
Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies, pages 2736–2746

June 6–11, 2021. ©2021 Association for Computational Linguistics

2736

Continual Learning for Text Classification with Information
Disentanglement Based Regularization

Yufan Huang∗, Yanzhe Zhang∗1, Jiaao Chen, Xuezhi Wang2, Diyi Yang
Georgia Institute of Technology, 1Zhejiang University, 2Google
{yhuang704, jiaaochen, dyang888}@gatech.edu

1z_yanzhe@zju.edu.cn, 2xuezhiw@google.com

Abstract
Continual learning has become increasingly
important as it enables NLP models to
constantly learn and gain knowledge over
time. Previous continual learning methods
are mainly designed to preserve knowledge
from previous tasks, without much empha-
sis on how to well generalize models to new
tasks. In this work, we propose an infor-
mation disentanglement based regularization
method for continual learning on text classifi-
cation. Our proposed method first disentangles
text hidden spaces into representations that are
generic to all tasks and representations spe-
cific to each individual task, and further regu-
larizes these representations differently to bet-
ter constrain the knowledge required to gen-
eralize. We also introduce two simple auxil-
iary tasks: next sentence prediction and task-id
prediction, for learning better generic and spe-
cific representation spaces. Experiments con-
ducted on large-scale benchmarks demonstrate
the effectiveness of our method in continual
text classification tasks with various sequences
and lengths over state-of-the-art baselines. We
have publicly released our code at https:
//github.com/GT-SALT/IDBR.

1 Introduction

Computational systems in real world scenarios face
changing environment frequently, and thus are of-
ten required to learn continually from dynamic
streams of data building on what was learnt before
(Biesialska et al., 2020). For example, a tweeter
classifier needs to deal with trending topics which
are constantly emerging. While being an intrinsic
nature of human to continually acquire and trans-
fer knowledge throughout lifespans, most machine
learning models often suffer from catastrophic for-
getting: when learning on new tasks, models dra-
matically and rapidly forget knowledge from previ-
ous tasks (McCloskey and Cohen, 1989). As a re-
sult, Continual Learning (CL) (Ring, 1998; Thrun,
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1998) has received more attention recently as it can
enable models to perform positive transfer (Perkins
et al., 1992) as well as remember previously seen
tasks.

A growing body of research has been conducted
to equip neural networks with the ability of con-
tinual learning abilities (Kirkpatrick et al., 2017;
Lopez-Paz and Ranzato, 2017; Aljundi et al., 2018).
Existing continual learning methods on NLP tasks
can be broadly categorized into two classes: purely
replay based methods (de Masson d'Autume et al.,
2019; Sun et al., 2019) where examples from previ-
ous tasks are stored and re-trained during the learn-
ing of the new task to retain old information, and
regularization based methods (Wang et al., 2019;
Han et al., 2020) where constraints are added on
model parameters to prevent them from changing
too much while learning new tasks. The former
usually stores an extensive amount of data from old
tasks (de Masson d'Autume et al., 2019) or trains
language models based on task identifiers to gen-
erate sufficient examples (Sun et al., 2019), which
significantly increases memory costs and training
time. While the latter utilizes previous examples
efficiently via the constraints added on text hidden
space or model parameters, it generally views them
as equally important and regularize them to the
same extent (Wang et al., 2019; Han et al., 2020),
making it hard for models to differentiate informa-
tive representation that needs to be retained from
ones that need a large degree of updates. How-
ever, we argue that when learning new tasks, task
generic information and task specific information
should be treated differently, as these generic rep-
resentation might function consistently while task
specific representations might need to be changed
significantly.

To this end, we propose an information disen-
tanglement based regularization method for con-
tinual learning on text classification. Specifically,
we first disentangle the text hidden representation
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space (e.g., the output representation of BERT (De-
vlin et al., 2019)) into a task generic space and a
task specific space using two auxiliary tasks: next
sentence prediction for learning task generic infor-
mation and task identifier prediction for learning
task specific representations. When training on
new tasks, we constrain the task generic represen-
tation to be relatively stable and representations of
task specific aspects to be more flexible. To further
alleviate catastrophic forgetting without much in-
creases of memory and training time, we propose
to augment our regularization-based methods by
storing and replaying only a small amount of repre-
sentative examples (e.g., 1% samples selected by
memory selection rules like K-Means (MacQueen
et al., 1967)). To sum up, our contributions are
threefold:

• We propose an information disentanglement
based regularization method for continual text
classification, to better learn and constrain
task generic and task specific knowledge.

• We augment the regularization approach with
a memory selection rule that requires only a
small amount of replaying examples.

• Extensive experiments conducted on five
benchmark datasets demonstrate the effective-
ness of our proposed methods compared to
state-of-the-art baselines.

2 Related work

Continual Learning Existing continual learn-
ing research can be broadly divided into four
categories: (i) replay-based method, which re-
mind models of information from seen tasks via
experience replay (de Masson d'Autume et al.,
2019), distillation (Rebuffi et al., 2017), representa-
tion alignment (Wang et al., 2019) or optimiza-
tion constraints (Lopez-Paz and Ranzato, 2017;
Chaudhry et al., 2019) using examples sampled
from previous tasks (Rebuffi et al., 2017; de Mas-
son d'Autume et al., 2019) or synthesized with gen-
erative models (Shin et al., 2017; Sun et al., 2019);
(ii) regularization-based method, which constrains
model’s output (Li and Hoiem, 2018), hidden space
(Rannen et al., 2017), or parameters (Lopez-Paz
and Ranzato, 2017; Zenke et al., 2017; Aljundi
et al., 2018) from changing too much to retain
learned knowledge; (iii) architecture-based method,
where different tasks are associated with differ-
ent components of the overall model to directly

minimize the interference between new tasks and
old tasks (Rusu et al., 2016; Mallya and Lazebnik,
2018); (iv) meta-learning-based method, which
directly optimizes the knowledge transfer among
tasks (Riemer et al., 2019; Obamuyide and Vla-
chos, 2019), or learns robust data representations
(Javed and White, 2019; Holla et al., 2020; Wang
et al., 2020) to alleviate forgetting.

Among these different approaches, replay-based
methods and regularization-based methods have
been widely applied to NLP tasks to enable large
pre-trained models (Devlin et al., 2019; Radford
et al., 2019) to continually acquire novel world
knowledge from streams of textual data without
forgetting the already learned knowledge. For in-
stance, replaying examples have shown promis-
ing performance for text classification (de Mas-
son d'Autume et al., 2019; Sun et al., 2019; Holla
et al., 2020), relation extraction (Wang et al., 2019)
and question answering (de Masson d'Autume et al.,
2019; Sun et al., 2019; Wang et al., 2020). How-
ever, they often suffer from large memory costs or
considerable training time, due to the requirements
of storing an extensive amount of texts (de Mas-
son d'Autume et al., 2019) or training language
models to generate a sufficient number of exam-
ples (Sun et al., 2019). Recently, regularization-
based methods (Wang et al., 2019; Han et al.,
2020) have also been applied to directly constrain
knowledge deposited in model parameters with-
out abundant rehearsal examples. Despite better
efficiency compared to replay-based methods, cur-
rent regularization-based approaches often fail to
generalize well to new tasks as they treat and con-
strain all the information equally and thus limit the
needed updates for parameters that are specific to
different tasks. To overcome these limitations, we
propose to first distinguish hidden spaces that need
to be retained from those that need to be updated
substantially through information disentanglement,
and then regularize different spaces separately, to
better remember previous knowledge as well as
transfer to new tasks. In addition, we enhance our
regularization method by replaying only a limited
amount of examples selected by K-means as the
memory selection rule.

Textual Information Disentanglement Our
work is related to information disentanglement for
text data, which has been extensively explored
in generation tasks like style transfer (Fu et al.,
2017; Zhao et al., 2018; Romanov et al., 2019; Li
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et al., 2020), where text hidden representations
are often disentangled into sentiment (Fu et al.,
2017; John et al., 2019), content (Romanov et al.,
2019; Bao et al., 2019) and syntax (Bao et al.,
2019) information through supervised learning
from pre-defined labels (John et al., 2019) or
unsupervised learning with adversarial training
(Fu et al., 2017; Li et al., 2020). Building on these
prior works, we differentiate task generic space
from task specific space via supervision from two
simple yet effective auxiliary tasks: next sentence
prediction and task identifier prediction.

Related Learning Paradigms There exists
some other learning paradigms also dealing with
multiple tasks, such as multi-task learning (Yu et al.,
2020) and transfer learning (Houlsby et al., 2019;
Pfeiffer et al., 2021). However, neither can fit in
the scenario of learning multiple tasks sequentially.
The former could be adapted to dynamic environ-
ments by storing all seen training data and retrain-
ing the model after the arrival of new tasks, which
highly decreases efficiency and is impractical in
deployment. The latter only focuses on the target
tasks and ignores catastrophic forgetting on the
source tasks. A more thorough discussion can be
found in Biesialska et al. (2020).

3 Problem Formulation

In this work, we focus on continual learning for
a sequence of text classification tasks {T1, ...Tn},
where we learn a model fθ(.), θ is a set of pa-
rameters shared by all tasks and each task Ti con-
tains a different set of sentence-label training pairs,
(xi1:m, y

i
1:m). After learning all tasks in the se-

quence, we seek to minimize the generalization
error on all tasks (Biesialska et al., 2020) :

R(fθ) =

n∑
i=1

E(xi,yi)∼TiL(fθ(x
i), yi)

We use two commonly-used techniques for this
problem setting in our proposed model:

• Regularization: in order to preserve knowl-
edge stored in the model, regularization is
a constraint added to model output (Li and
Hoiem, 2018), hidden space (Zenke et al.,
2017) and parameters (Lopez-Paz and Ran-
zato, 2017; Zenke et al., 2017; Aljundi et al.,
2018) to prevent them from changing too
much while learning new tasks.

• Replay: when learning new tasks, Experi-
ence Replay (Rebuffi et al., 2017) is com-
monly used to recover knowledge from pre-
vious tasks, where a memory buffer is first
adopted to store seen examples from previous
tasks and then the stored data is replayed with
the training set for the current task. Formally,
after training on task t − 1 (t ≥ 2), γ|St−1|
examples are randomly sampled from the t-th
training set St−1 into the memory bufferM,
where 0 ≤ γ ≤ 1 is the store ratio. Data from
M is then merged with the t-th training set St
when learning from task t.

4 Method

In continual learning, the model needs to adapt
to new tasks quickly while maintaining the ability
to recover information from previous tasks, hence
not all information stored in the hidden represen-
tation space should be treated equally. In previ-
ous work like style transfer (John et al., 2019) and
controlled text generation (Hu et al., 2017), cer-
tain information (such as content and syntax) is
extracted and shared among different categories
and other information (such as style and polarity)
is manipulated for each specific category. Similarly,
in our continual learning scenario, there is shared
knowledge among different tasks as well while the
model needs to learn and maintain specific knowl-
edge for each individual task in the learning pro-
cess. This key observation motivates us to propose
an information-disentanglement based regulariza-
tion for continual text classification to retain shared
knowledge while adapting specific knowledge to
streams of tasks (Section 4.1). We also incorporate
a small set of representative replay samples to al-
leviate catastrophic forgetting (Section 4.3). Our
model architecture is shown in Figure 1.

4.1 Information Disentanglement (ID)

This section describes how to disentangle sentence
representations into task generic space and task spe-
cific space, and how separate regularizations are
imposed on them for continual text classification.
Formally, for a given sentence x, we first use a
multi-layer encoder B(.), e.g., BERT (Devlin et al.,
2019), to get the hidden representations r which
contain both task generic and task specific infor-
mation. Then we introduce two disentanglement
networks G(.) and S(.) to extract the generic rep-
resentation g and specific representation s from r.
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Figure 1: Our proposed model architecture. We disentangle the hidden representation into a task generic space and
a task specific space via different induction biases. When training on new tasks, different spaces are regularized
separately. Also, a small portion of previous data is stored and replayed.

For new tasks, we learn the classifiers by utilizing
information from both spaces, and we allow dif-
ferent spaces to change to different extents to best
retain knowledge from previous tasks.

Task Generic Space Task generic space is the
hidden space containing information generic to dif-
ferent tasks in a task sequence. During switching
from one task to another, the generic information
should roughly remain the same, e.g., syntactic
knowledge should not change too much across the
learning process of a sequence of tasks. To extract
task generic information g from hidden represen-
tations r, we leverage the next sentence prediction
task (Devlin et al., 2019) 1 to learn the generic in-
formation extractor G(.). More specifically, we
insert a [SEP] token into each training example
during tokenization to form a sequence pair labeled
IsNext, and switch the first sequence and the second
sequence to form a sentence pair labeled NotNext.
In order to distinguish IsNext pairs and NotNext
pairs, extractor G(.) needs to learn the context de-
pendencies between two segments, which is bene-
ficial to understand every example and generic to
any individual task.

Denote x̃ as the NotNext example corresponding
to x (IsNext), and l ∈ {0, 1} as the label for next
sentence prediction. We build a sentence relation

1Note that the word "sentence" here refers to an arbitrary
span of continuous text (Devlin et al., 2019), it could be several
linguistic sentences or part of a linguistic sentence.

predictor fnsp on the generic feature extractorG(.):

Lnsp = Ex∈St∪M(L(fnsp(G(B(x)), 0)

+L(fnsp(G(B(x̃)), 1))

whereL is the cross entropy loss,M is the memory
buffer and St is the t-th training set.

Task Specific Space Models also need task spe-
cific information to perform well over each task.
For example, on sentiment classification words like
“good” or “bad” could be very informative, but they
might not generalize well for tasks like topic clas-
sification. Thus we employ a simple task-identifier
prediction task on the task specific representation s,
which means for any given example we want to dis-
tinguish which task this example belongs to. This
simple auxiliary setup will encourage s to embed
different information from different tasks. The loss
for task-identifier predictor ftask is:

Ltask = E(x,z)∈St∪ML(ftask(S(B(x)), z)

where z is the corresponding task id for x.

Text Classification To adapt to the t-th task,
we combine the task generic representation g =
G(B(x) and task specific representation s =
S(B(x)) to perform text classification, where we
minimize the cross entropy loss:

Lcls = E(x,y)∈St∪ML(fcls(g ◦ s), y))

Here y is the corresponding class label for x, fcls(.)
is the class predictor. ◦ denotes the concatenation
of the two representations.
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4.2 ID Based Regularization
To further prevent severe distortion when training
on new tasks, we employ regularization on both
generic representations g and specific representa-
tions s. Different from previous approaches (Li and
Hoiem, 2018; Wang et al., 2019) which treat all the
spaces equally, we allow regularization to different
extents on g and s as knowledge in different spaces
should be preserved separately to encourage both
more positive transfer and less forgetting. Specif-
ically, before training all the modules on task t,
we first compute the generic representations and
specific representations of all sentences x from
the training set St of current task t and memory
buffer Mt. Using the trained Bt−1(.), Gt−1(.)
and St−1(.) from previous task t− 1, for each ex-
ample x we calculate the generic representation
as Gt−1(Bt−1(x)), and the specific representation
as St−1(Bt−1(x)) to hoard the knowledge from
previous models. The computed generic and spe-
cific representations are saved. During the learning
from training pairs from task t, we impose two
regularization losses separately:

Lgreg = Ex∈St∪Mt‖Gt−1(Bt−1(x))−G(B(x))‖2
Lsreg = Ex∈St∪Mt‖St−1(Bt−1(x))− S(B(x))‖2

4.3 Memory Selection Rule
Since we only store a small number of examples
as a way to balance the replay as well as the extra
memory cost and training time, we need to care-
fully select them in order to utilize the memory
bufferM efficiently. Considering that if two stored
examples are very similar, then only storing one
of them could possibly achieve similar results in
the future. Thus, those stored examples should be
as diverse and representative as possible. To this
end, after training on t-th task, we employ K-means
(MacQueen et al., 1967) to cluster all the examples
from current training set St: For each x ∈ St, we
utilize its embedding B(x) as its input feature to
conduct K-means. We set the numbers of clusters
to γ|St| and only select the example closest to each
cluster’s centroid, following Wang et al. (2019);
Han et al. (2020).

4.4 Overall Objective
We can write the final objective for continual learn-
ing on text classification as the following:

L = Lcls + Lnsp + Ltask
+λgLgreg + λsLsreg

(1)

We set the coefficient of the first three loss terms to
1 for simplicity and only introduce two coefficients
to tune: λg and λs. In practice, Ltask and Lcls are
also conducted on each generated NotNext exam-
ple x̂, Lgreg and Lsreg are only optimized starting
from the second task. The full information disen-
tanglement based regularization (IDBR) algorithm
is shown in Algorithm 1.

Algorithm 1 IDBR
Input Training sets {S1, ..., Sn}, Replay Fre-
quency β, Store ratio γ, Coefficients λg, λs
Output Optimal models B, G, S, fnsp, ftask, fcls
M = {} . Initialize memory buffer
Initialize B using pretrained BERT
Initialize G,S, fnsp, ftask, fcls
for t = 1, . . . , n do

if t ≥ 2 then
Store G(B(x)), S(B(x)), ∀x ∈ St∪M
for batches ∈ St do

Optimize L in Equation 1
if step mod β = 0 then . Replay

Sample t− 1 batches fromM
Optimize L in Equation 1

end if
end for

else . No regularization on 1st task
for batches ∈ St do

Optimize L = Lcls + Lnsp + Ltask
end for

end if
C = K-Means(St, nclusters=γ|St|) . C :

centroid
C′ = { Examples closest to centers ∈ C }
M←M∪ C′ . Add to memory

end for
return B, G, S, fnsp, ftask, fcls

5 Experiment

5.1 Datasets
Following MBPA++ (de Masson d'Autume et al.,
2019), we use five text classification datasets
(Zhang et al., 2015; Chen et al., 2020) to evalu-
ate our methods, including AG News (news clas-
sification), Yelp (sentiment analysis), DBPedia
(Wikipedia article classification), Amazon (senti-
ment analysis), and Yahoo! Answer (Q&A classi-
fication). A summary of the datasets is shown in
Table 1. We merge the label space of Amazon and
Yelp considering their domain similarity, with 33
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Dataset Class Type Train Test
AGNews 4 News 8000 7600
Yelp 5 Sentiment 10000 7600
Amazon 5 Sentiment 10000 7600
DBPedia 14 Wikipedia 28000 7600
Yahoo 10 Q&A 20000 7600

Table 1: Dataset statistics we used for Setting (Sam-
pled). Type means the domain of task classification.
Note that the size of the validation set is the same as
the size of the training set.

classes in total.

5.2 Experiment Setup
Due to the limitation of resources, for most of our
experiments, we create a reduced dataset by ran-
domly sampling 2000 training examples and 2000
validation examples per class for every task. See
Table 1 for the train/test size of each dataset. We
name this setting Setting (Sampled). We tune all
the hyperparameters on the basis of Setting (Sam-
pled). Beyond that, to have a comparison with pre-
vious State-of-the-art, we also conduct experiments
on the same training set and test set as MbPA++
(de Masson d'Autume et al., 2019) and LAMOL
(Sun et al., 2019), which contains 115,000 training
examples and 7,600 test examples for each task.
For every task, we randomly hold out 500 exam-
ples per class from training examples for validation
purpose. We name the latter Setting (Full). Dur-
ing training, we evaluate our model on validation
sets from all seen tasks, following Kirkpatrick et al.
(2017).

Our experiments are mainly conducted on the
task sequences shown in Table 2. To minimize the
effect of task order and task sequence length on the
results, we examine both length-3 task sequences
and length-5 task sequences in various orders. The
first 3 task sequences are a cyclic shift of ag�
yelp� yahoo, which are three classification tasks in
different domains (news classification, sentiment
analysis, Q&A classification). The last four length-
5 task sequences follows de Masson d'Autume et al.
(2019).

5.3 Baselines
We compare our proposed model with the follow-
ing baselines in our experiments:

• Finetune (Yogatama et al., 2019): fine-
tune BERT model sequentially without the
episodic memory module and any other loss.

Order Task Sequence
1 ag� yelp� yahoo
2 yelp� yahoo� ag
3 yahoo� ag� yelp
4 ag� yelp� amazon� yahoo� dbpedia
5 yelp� yahoo� amazon� dbpedia� ag
6 dbpedia� yahoo� ag� amazon� yelp
7 yelp� ag� dbpedia� amazon� yahoo

Table 2: Seven random different task sequences used
for experiments. The first 6 are used in Setting (Sam-
pled). The last 4 are used in Setting (Full).

• Replay (Wang et al., 2019; de Mas-
son d'Autume et al., 2019): Finetune model
augmented with an episodic memory. Replay
examples from old tasks while learning new
tasks.

• Regularization: On top of Replay, with an
L2 regularization term added on the hidden
state of the classifier following BERT.

• MBPA++ (de Masson d'Autume et al., 2019):
augment BERT model with an episodic mem-
ory module and store all seen examples.
MBPA++ performs experience replay at train-
ing time, and uses K-nearest neighbors to se-
lect examples for local adaptation at test time.

• LAMOL (Sun et al., 2019): train a language
model that simultaneously learns to solve the
tasks and generate training samples, the latter
is for generating pseudo samples used in ex-
perience replay. Here the text classification is
performed in Q&A formats.

• Multi-task Learning (MTL): The model is
trained on all tasks simultaneously, which can
be considered as an upper-bound for continual
learning methods since it has access to data
from all tasks at the same time.

5.4 Implementation Details
We use pretrained BERT-based-uncased from Hug-
gingFace Transformers (Wolf et al., 2020) as our
base feature extractor. The task generic encoder
and task specific encoder are both one linear layer
followed by activation function Tanh, their output
size are both 128 dimensions. The predictors built
on encoders are all one linear layer followed by
activation function softmax.

All experiments are conducted on NVIDIA RTX
2080 Ti with 11GB memory with the batch size of
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8 and the maximum sequence length of 256 (use
the first 256 tokens if one’s length is beyond that).
We use AdamW (Loshchilov and Hutter, 2019)
as optimizer. For all modules except the task id
predictor, we set the learning rate lr = 3e−5; for
task id predictor, we set its learning rate lrtask =
5e−4. The weight decay for all parameters are 0.01.

For experience replay, we set the store ratio
γ = 0.01, i.e. we store 1% of seen examples
into the episodic memory module. Besides, we
set the replay frequency β = 10, which means we
do experience replay once every ten steps.

For information disentanglement, we mainly
tune the coefficients of the regularization loss. For
batches from memory bufferM, we set λg to 2.5,
select best λs from {1.5, 2.0, 2.5}. For batches
from current training set S, we set λg to 0.25, se-
lect best λs from {0.15, 0.20, 0.25}.

6 Results and Discussion

We evaluate models after training on all tasks and
report their average accuracies on all test sets as our
metric. Table 3 summarizes our results in Setting
(Sampled). While continual finetuning suffered
from severe forgetting, experience replay with 1%
stored examples achieves promising results, which
demonstrates the importance of experience replay
for continual learning in NLP. Beyond that, sim-
ple regularization turns out to be a robust method
on the basis of experience replay, which shows
consistent improvements on all 6 orders. Our pro-
posed Information Disentanglement Based Regu-
larization (IDBR) further improves regularization
consistently under all circumstances.

Table 4 compares IDBR with previous SOTA:
MBPA++ and LAMOL in Setting (Full). Note
that although we use the same training/testing data,
there is some inherent differences between our set-
tings and previous SOTA methods. Despite the fact
that MBPA++ applies local adaptation when test-
ing, IDBR still outperforms it by an obvious margin.
We achieve comparative results with LAMOL, de-
spite that LAMOL requires task identifiers during
inference which makes its prediction task easier.

6.1 Impact of the Lengths of Task Sequences

Comparing results of length-3 sequences and
length-5 sequences in Table 3, we found that the
gap between IDBR and multi-task learning became
bigger when the length of task sequence changed
from 3 to 5. To better understand how IDBR grad-

(a) Task Generic Space (b) Task Specific Space

Figure 2: t-SNE visualization of task generic hidden
space and task specific hidden space of IDBR.

ually forgot, we followed Chaudhry et al. (2018)
to measure forgetting Fk after trained on task k as
follows:

Fk = Ej=1...t−1f
k
j ,

fkj = max
l∈{1...k−1}

al,j − ak,j

where al,j is the is the model’s accuracy on task
j after trained on task l. On order 4, 5 and 6, we
calculate the forgetting every time after IDBR was
trained on a new task and summarize them in Ta-
ble 5. For continual learning, we hypothesize that
the model is prone to suffer from more severe for-
getting as the task sequence becomes longer. We
found that although there was some big drop af-
ter training on the 3rd task, IDBR maintained sta-
ble performance as the length of task sequence
increased, especially after training on 4-th and 5-th
task, the forgetting increment was relatively small,
which demonstrated the robustness of IDBR.

6.2 Visualizing Disentangled Spaces
To study whether our task generic encoder G tends
to learn more generic information and task specific
encoder S captures more task specific information,
we used t-SNE (van der Maaten and Hinton, 2008)
to visualize the two hidden spaces of IDBR, using
the final model trained on order 2, and the results
are shown in Figure 2, where Figure 2a visualizes
task generic space and Figure 2b visualizes task
specific space. We observe that compared with task
specific space, generic features from different tasks
were more mixed, which demonstrates that the next
sentence prediction helped task generic space to be
more task-agnostic than task specific space, which
was induced to learn separated representations for
different tasks. Considering we only employed two
simple auxiliary tasks, the effect of information
disentanglement was noticeable.
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Model Length-3 Task Sequences Length-5 Task Sequences
Order 1 2 3 Average 4 5 6 Average
Finetune 25.79 36.56 41.01 34.45 32.37 32.22 26.44 30.34
Replay 69.32 70.25 71.31 70.29 68.25 70.52 70.24 69.67
Regularization 71.50 70.88 72.93 71.77 72.28 73.03 72.92 72.74
IDBR 71.80 72.72 73.08 72.53 72.63 73.72 73.23 73.19
MTL 74.16 74.16 74.16 74.16 75.09 75.09 75.09 75.09

Table 3: Summary of results on Setting (Sampled) using averaged accuracy after training on the last task. All
results are averaged over 3 runs. The p-values of paired t-test between nine numbers of Regularization and IDBR
are 0.018 on Length-3 and 0.009 on Length-5, demonstrating the significant differences.

Model TT TI LA PM Length-5 Task Sequences
Order 4 5 6 7 Average
MBPA++ † X BERT 70.7 70.2 70.9 70.8 70.7
MBPA++ †† X BERT 74.9 73.1 74.9 74.1 74.3
LAMOL †† X X GPT-2 76.1 76.1 77.2 76.7 76.5
IDBR X BERT 75.9 76.2 76.4 76.7 76.3

Table 4: Summary of results on Setting (Full) using averaged accuracy after training on the last task. Our results
are averaged over 2 runs. † means we fetch numbers from de Masson d'Autume et al. (2019). †† means we fetch
numbers from Sun et al. (2019). TT: whether task-id is available during training. TI: whether task-id is available
during inference. LA: whether need local adaptation during inference. PM: pretrained models used for continual
learning.

Order 4 5 6 Average
After 2 tasks 0.64 1.63 0.07 0.78
After 3 tasks 3.18 2.56 1.56 2.43
After 4 tasks 3.60 2.17 2.20 2.66
After 5 tasks 3.46 2.33 2.88 2.89

Table 5: Forgetting measure (Chaudhry et al., 2018)
calculated every time after finishing training on a new
task. All results are averaged over 3 runs.

Model Accuracy
Regularization 73.03
IDBR w/o Lnsp 73.17
IDBR w/o Ltsk 73.29
IDBR 73.72

Table 6: Comparison among using task-id prediction
only, next sentence prediction only and both of them.
All results are averaged over 3 runs.

6.3 Ablation Studies

Effect of Disentanglement In order to demon-
strate that each module of our information disentan-
glement helps the learning process, we performed
ablation study on the two auxiliary tasks using or-
der 5 as a case study. The results are summarized
in Table 6. We found that both task-id prediction
and next sentence prediction contribute to the final

Model 4 5 6 Avg
Reg only on s 72.05 72.54 72.61 72.40
Reg only on g 72.01 72.98 72.73 72.57
Reg on both 72.63 73.72 73.23 73.19

Table 7: Comparison among using regularization on
task specific space only, task generic space only and
both of them. All results are averaged over 3 runs.

performance. Furthermore, the performance gain
was much larger by combing these two auxiliary
tasks together. Intuitively, the model needs both
tasks to disentangle the representation well, since
it is easy for the model to ignore one of the spaces
if the constraint is not imposed appropriately. The
results show that the two tasks are likely compli-
mentary to each other in helping the model learn
better disentangled representations.

Impact of Regularization To study the effect of
regularization on task generic hidden space g and
task specific hidden space s, we performed an ab-
lation study which only applied regularization on
g or s, and compared the results with regulariza-
tion on both in Table 7. We found that regulariza-
tion on both spaces results in a much better per-
formance than regularization on one of them only,
which demonstrates the necessity of both regulariz-
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Rules 1 2 3 Average
Random 71.52 72.60 73.03 72.38
K-Means 71.80 72.72 73.08 72.53

Table 8: Comparison between different selection rules:
select stored examples randomly or select by K-Means.
All results are averaged over 3 runs.

ers. While we may expect to give more tolerance
to specific space for changing, we found that no
regularization on it would lead to severe forgetting
of previously learnt good task specific embeddings,
hence it is necessary to add a regularizer over this
space as well. Beyond that, we also observed that
under most circumstances, adding regularization
on the task generic space g results in a more sig-
nificant gain than adding regularization on the task
specific space s, consistent with our intuition that
task generic space changes less across tasks and
thus preserving it better helps more in alleviating
catastrophic forgetting.

Impact of K-Means To demonstrate our hypoth-
esis that when the memory budget is limited, se-
lecting the most representative subset of examples
is vital to the success of continual learning, we
performed an ablation study on order 1,2,3 using
IDBR with and without K-Means. The result is
shown in Table 8. From the table, we found that us-
ing K-Means helps boost the overall performance.
Specifically, the improvement brought by K-Means
was larger on those challenging orders, i.e. orders
on which IDBR had worse performance. This is
because for these challenging orders, the forgetting
is more severe and the model needs more exam-
ples from previous tasks to help it retain previous
knowledge. Thus with the same memory budget
constraint, diversity across saved examples will
help the model better recover knowledge learned
from previous tasks.

7 Conclusion

In this work, we introduce an information disentan-
glement based regularization (IDBR) method for
continual text classification, where we disentangle
the hidden space into task generic space and task
specific space and further regularize them differ-
ently. We also leverage K-Means as the memory
selection rule to help the model benefit from the
augmented episodic memory module. Experiments
conducted on five benchmark datasets demonstrate
that IDBR achieves better performances compared

to previous state-of-the-art baselines on sequences
of text classification tasks with various orders and
lengths. We believe the proposed approach can be
extended to continual learning for other NLP tasks
such as sequence generation and sequence labeling
as well, and plan to explore them in the future.
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