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Abstract
This paper introduces semantic frame fore-
cast, a task that predicts the semantic frames
that will occur in the next 10, 100, or even
1,000 sentences in a running story. Prior
work focused on predicting the immediate fu-
ture of a story, such as one to a few sen-
tences ahead. However, when novelists write
long stories, generating a few sentences is not
enough to help them gain high-level insight
to develop the follow-up story. In this paper,
we formulate a long story as a sequence of
“story blocks,” where each block contains a
fixed number of sentences (e.g., 10, 100, or
200). This formulation allows us to predict
the follow-up story arc beyond the scope of
a few sentences. We represent a story block
using the term frequencies (TF) of semantic
frames in it, normalized by each frame’s in-
verse document frequency (IDF). We conduct
semantic frame forecast experiments on 4,794
books from the Bookcorpus and 7,962 scien-
tific abstracts from CODA-19, with block sizes
ranging from 5 to 1,000 sentences. The re-
sults show that automated models can fore-
cast the follow-up story blocks better than
the random, prior, and replay baselines, in-
dicating the task’s feasibility. We also learn
that the models using the frame representa-
tion as features outperform all the existing ap-
proaches when the block size is over 150 sen-
tences. The human evaluation also shows that
the proposed frame representation, when visu-
alized as word clouds, is comprehensible, rep-
resentative, and specific to humans. Our code
is available at: https://github.com/
appleternity/FrameForecasting.

1 Introduction

Writing a good novel is hard. Creative writers can
get stuck in the middle of their drafts and struggle
to develop follow-up scenes. Writing support sys-
tems, such as Heteroglossia (Huang et al., 2020a),
generate paragraphs or ideas to help writers figure
out the next part of the ongoing story. However,

Figure 1: The semantic frame forecast is a task that
predicts the semantic frames that will occur in the next
part of a story based on the texts written so far.

little literature focuses on plot prediction for long
stories. Much prior work focused on predicting the
immediate future of a story, i.e., one to a few sen-
tences later. For example, the Creative Help system
used a recurrent neural network model to generate
the next sentence to support writing (Roemmele
and Gordon, 2015); the Scheherazade system uses
crowdsourcing and artificial intelligence techniques
to interactively construct the narrative sentence by
sentence (Li and Riedl, 2015); Clark et al. (2018)
study machine-in-the-loop story writing where the
machine constantly generates a suggestion for the
next sentence to stimulate writers; and Metapho-
ria (Gero and Chilton, 2019) generates metaphors,
an even smaller unit, to inspire writers based on
an input word by searching relations and ranking
distances on ConceptNet (Liu and Singh, 2004).

Generating a coherent story across multiple sen-
tences is challenging, even with cutting-edge pre-
trained models (See et al., 2019). To generate coher-
ent stories, researchers often first generate a high-
level representation of the story plots and then use
it as a guide to generate a full story. For example,
Martin et al. (2018) propose an event representa-
tion that uses an SVO tuple to generate story plots;
Plan-and-write (Yao et al., 2019) uses the RAKE
algorithm (Rose et al., 2010) to extract the keyword
in each sentence to form a storyline and treat it as
an intermediate representation; Fan et al. (2019)

https://github.com/appleternity/FrameForecasting
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use predicate-argument pairs annotated by seman-
tic role labelers to model the structure of stories;
and Zhang et al. (2020) take words with a certain
part-of-speech tag as anchors and show that using
anchors as the intermediate representation can im-
prove the story quality. However, these projects
all focused on short stories: The event representa-
tion is developed on a Wikipedia movie plot sum-
mary dataset (Bamman et al., 2013), where a sum-
mary has an average of 14.52 sentences; Plan-and-
write uses the ROCStories dataset (Mostafazadeh
et al., 2016), where each story has only 5 sentences;
Fan et al. test their algorithm on the Writing-
Prompts dataset (Fan et al., 2018), where stories
have 734 words (around 42 sentences) on average;
and Zhange et al.’s anchor representation is de-
veloped on the VIST dataset (Huang et al., 2016),
where a story has 5 sentences.

All the existing intermediate representations are
generated on a sentence basis, meaning that the
length of the representations increases along with
the story length. That is, when applying these repre-
sentations to novels that usually have more than
50,000 words (as defined by the National Novel
Writing Month (wik, 2020)), it is not likely that
such representations can still work. We thus intro-
duce a new Frame Representation that compiles
semantic frames into a fixed-length TF-IDF vec-
tor and a Semantic Frame Forecast task that aims
to predict the next frame representation using the
information in the current story block (see Fig-
ure 1). Two different datasets are built to examine
the effectiveness of the proposed frame represen-
tation: one from Bookcorpus (Zhu et al., 2015),
a fiction dataset; and one from CODA-19 (Huang
et al., 2020b), a scientific abstract dataset. We
establish several baselines and test them on differ-
ent story block sizes, up to 1,000 sentences. The
result shows that the proposed frame representa-
tion successfully captures the story plot informa-
tion and helps the semantic frame forecast task,
especially for story blocks with more than 150 sen-
tences. To enable humans to perceive and compre-
hend frame representations, we further propose a
process that visualizes a vector-based frame rep-
resentation as word clouds. Human evaluations
show that word clouds represent a story block with
reasonable specificity, and our proposed model pro-
duces word clouds that are more representative than
that of BERT.

2 Related Work

Automated Story Generation. Classic story
generation focuses on generating logically coher-
ent stories, plot planning (Riedl and Young, 2010;
Li et al., 2013), and case-based reasoning (Gervás
et al., 2004). Recently, several neural story gen-
eration models have been proposed (Peng et al.,
2018; Fan et al., 2018), even including massive
pretrained models (Radford et al., 2019; Keskar
et al., 2019). However, researchers realize that
word-by-word generation models cannot efficiently
model the long dependency across sentences (See
et al., 2019). Models using intermediate repre-
sentations as guidance to generate stories are then
proposed (Yao et al., 2019; Martin et al., 2018;
Ammanabrolu et al., 2020; Fan et al., 2019; Zhang
et al., 2020). These works are developed toward
short stories and thus are insufficient for modeling
novels (See Section 1).

Automated Story Understanding. Story under-
standing is a longstanding goal of AI (Roemmele
and Gordon, 2018). Several tests were proposed
to evaluate AI models’ ability to reason the event
sequence in a story. Roemmele et al. (2011) pro-
posed the Choice of Plausible Alternatives (COPA)
task, focusing on commonsense knowledge related
to identifying causal relations between sequences.
Mostafazadeh et al. (2016) proposed the Story
Cloze Test, in which the model is required to se-
lect which of two given sentences best completes
a particular story. Ippolito et al. (2019) proposed
the Story Infilling task, which aims to generate the
middle span of a story that is coherent with the
foregoing context and will reasonably lead to the
subsequent plots. Under the broader umbrella of
story understanding, some prior work aimed to pre-
dict the next event in a story (Granroth-Wilding
and Clark, 2016) or to identify the right follow-up
line in dialogues (Lowe et al., 2016).

3 Semantic Frame Forecast

As shown in Figure 1, we formulate a long story as
a sequence of fixed-length story blocks. Each story
block (Figure 2 (1)) has a set of semantic frames
(Figure 2 (2)) (Baker et al., 1998). We convert a
story block into the Frame Representation (Fig-
ure 2 (3)), a TF-IDF vector over semantic frames,
by computing the term frequency in that story block
and the inverse document frequency over all the
story blocks in the corpus. FrameNet (Baker et al.,
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Figure 2: The steps to generate the frame representa-
tion for story blocks. The human-readable word clouds
are generated to illustrate the conceptual meaning of
the frame representation.

1998) defined a total of 1,221 different semantic
frames, so the generated TF-IDF has 1,221 dimen-
sions. The Semantic Frame Forecast is then de-
fined as a task to predict the frame representation of
the n+1-th story block using the foregoing content,
namely the n-th story block.

Evaluation Metric. We use Cosine Similarity
between the predicted vector and the gold-standard
vector (complied from the human-written story
block) for evaluation. Many other metrics, such as
Mean-Squared Error (MSE), also exist to measure
the distance between two vectors.

4 Data

We build the dataset from the existing Bookcor-
pus dataset (Zhu et al., 2015) and CODA-19
dataset (Huang et al., 2020b). This section de-
scribes how we preprocess the data, remove unde-
sired content, and build the final dataset.

Bookcorpus Dataset. We obtain a total of
15, 605 raw books and their corresponding meta
data. To get high-quality fictional content, we re-
move books using the following heuristic rules:
(i) short books whose size is less than 10KB;
(ii) books that contain HTML code; (iii) books
that are in the epub format (an e-book file for-
mat); (iv) books that are not in English; (v) books
that are in the “Non-Fiction” genre; (vi) books
that are in the “Anthologies” genre; (vii) books
that are in the “Graphic Novels & Comics” genre.
Since most books contain book information, au-
thor information, and some nonfictional content
at the beginning and end of the book, we use
regular expressions to match the term “Chapter”
to locate the chapter title. Only the contents be-
tween the first chapter title and the last chapter
title are kept. The last chapter is also removed
as there are no certain boundaries to identify the
story ending. Books whose chapter titles are un-
locatable are also removed. After removing all
the unqualified books, a total of 4, 794 books were
used in our dataset. We transliterate all non-ASCII
characters into ASCII characters using Unide-
code (https://pypi.org/project/Unidecode/) to fulfill
the requirement of Open-SESAME (Swayamdipta
et al., 2017). Open-SESAME is then used to parse
the semantic frames for each sentence.

The books are split into training/validation/test
sets following a 70/10/20 split, resulting in 3, 357,
479, and 958 books, respectively. To measure the
effect of frame representation for different context
lengths, we vary the story block length, using 5,
10, 20, 50, 100, 150, 200, 300, 500, and 1, 000
sentences. When creating instances, we first split
a book into story blocks with the specified length
and extract all the consecutive two story blocks
as instances when context window size (see Fig-
ure 1) is set to 1. The IDF of the semantic frame
is then computed over the story blocks using all
the training sets. Combining with the TF value
in each story block, we convert story blocks into
frame representations. We use scikit-learn’s imple-
mentation (Pedregosa et al., 2011) of TF-IDF but
with a slight modification on IDF: Scikit-learn uses
idf(t) = log( n

df(t)+1) to compute a smoothing IDF,
but we use idf(t) = log( n

df(t)). The detailed statis-
tic information is shown in Table 1.

CODA-19 Dataset. We envision a broader def-
inition of “creativity” in writing and attempt to
apply story arc prediction technologies to the do-
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Block Size 5 10 20 50 100 150 200 300 500 1000

# Words Mean 71.7 143.5 286.9 717.2 1433.9 2149.8 2865.3 4293.7 7142.5 14212.3
# Frames Mean 17.5 35.0 69.9 174.5 348.6 522.1 695.4 1040.7 1727.3 3417.2
# Events Mean 10.0 20.0 39.9 99.8 199.4 298.9 398.2 596.4 991.2 1967.1
# Train 3,744,948 1,869,947 932,464 369,941 182,479 119,967 88,720 57,455 32,469 13,749
# Valid 574,840 287,054 143,166 56,838 28,073 18,466 13,672 8,881 5,035 2,166
# Test 1,054,816 526,687 262,625 104,198 51,396 33,776 24,987 16,178 9,138 3,861

Table 1: The statistic of Bookcorpus dataset in ten different story block lengths. We use Open-Sesame to parse the
semantic frame for each sentence. The Events represents the SVO tuples (Martin et al., 2018).

Block Size 1 3 5

# Words Mean 26.3 77.3 124.7
# Frames Mean 6.0 17.5 27.6
# Events Mean 1.2 3.5 5.6
# Train 48,489 9,858 2,739
# Valid 5,615 1,146 334
# Test 5,238 1,047 287

Table 2: The statistic of CODA-19 dataset in three dif-
ferent story block lengths. We use Open-Sesame to
parse the semantic frame for each sentence. The Events
represents the SVO tuples (Martin et al., 2018).

mains outside novels, for example, scholarly arti-
cles. As an earlier exploration, we choose to use a
smaller set of human-annotated abstracts (CODA-
19 (Huang et al., 2020b)) rather than machine-
extracted full text (CORD-19 (Wang et al., 2020a))
in our proof-of-concept study, avoiding formatting
issues (e.g., reference format, parsing errors) and in-
tensive data cleaning effort. The original CODA-19
dataset contains 10, 966 human-annotated English
abstracts for five different aspects: Background,
Purpose, Method, Finding/Contribution, and Other.
We remove sentences that are annotated as “Other,”
an aspect for sentences that are not directly re-
lated to the content (e.g., terminology definitions
or copyright notices.) Abstracts that contain Uni-
code characters are also removed. A total of 7, 962
abstracts are used in our dataset. We then use Open-
SESAME to parse the semantic frames for each sen-
tence. We adopt CODA-19’s original split, where
the training set, validation set, and testing set have
6, 509, 737, and 716 abstracts, respectively. Three
different lengths of story block are used: 1, 3, and
5. We then create instances and compute TF-IDF
as described above. Table 2 shows the details.

5 Models

We implement two naive baselines, an information
retrieval baseline, two machine learning baselines,
two deep learning baselines, an existing model and

a text generation baseline.

Replay Model. For each instance, the replay
model takes the frame representation in the n-th
story block as the prediction, i.e., the same frames
will occur again.

Prior Model. The prior model computes the
mean of the frame representation over the training
set and uses it as the prediction for all the testing
instances.

Information Retrieval with Frame Representa-
tion. For each instance, the information retrieval
model searches for the most similar story block in
the training set and takes the frame representation
from its next story block as the prediction. In this
setting, we adopt the cosine similarity on frame
representations to measure the story similarity. For
block size 5 in the Bookcorpus dataset, there are
around 3.7 million instances in the training set,
which is infeasible to finish.

Random Forest with Frame Representation.
The foregoing story block’s frame representation
is used as the feature for prediction. We use scikit-
learn’s implementation of Random Forest Regres-
sor (Pedregosa et al., 2011) with a max depth of 3
and 20 estimators. For block sizes that have more
than one million training instances (5 and 10 in
the Bookcorpus dataset), we randomly sample one
million instances to train the model.

LGBM with Frame Representation. This is
the same as the previous setup but trained using
the LGBM Regressor model (Ke et al., 2017) with
the max depth 5, the number of leaves 5, and the
number of estimators 100. For block sizes that have
more than one million training instances (5 and 10
in the Bookcorpus dataset), we randomly sample
one million instances to train the model.

DAE with Frame Representation. This is the
same as the previous setting but trained with the
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Denoising Autoencoder architecture (Bengio et al.,
2013). We feed in the foregoing story block’s frame
representation and output the frame representation
for the follow-up story block. Thirty percent of the
input is dropped randomly. The model is optimized
using the cosine distance (1− cosine similarity).
Both the encoder and decoder are created via five
dense layers with a hidden size of 512. We use a
learning rate of 1e-5 and a batch size of 512 and
train the model with the early stopping criteria of
no improvement for 20 epochs. The best model on
the validation set is kept for testing.

Event Representation Model (Event-Rep). We
use Martin et al.’s event representation (2018) on
the foregoing story block as the feature. An event
tuple is defined as 〈s, v, o,m〉, where s is the sub-
ject, v is the verb, o is the object, and m is the verb
modifier. We extract the dependency relation using
the Stanza parser (Qi et al., 2020). Unlike Martin el
al.’s implementation, where the empty placeholder
∅ only replaces unidentified objects and modifiers,
we find that the subjects can also be frequently
missing in fiction books. For example, in ““Come
out?” Zack asked. “Come out of where?””. In
both cases here, the verb “come” does not have
a subject. In “Fine, follow me.”, “follow” has an
object but does not have a subject. Therefore, we
allow s to have a ∅ placeholder in our implementa-
tion. All words are stemmed by NLTK (Loper and
Bird, 2002).

After extracting the event representation, the se-
quence of event tuples in the foregoing story block
is fed into a five-layer LSTM model (Hochreiter
and Schmidhuber, 1997) to predict its follow-up
frame representation. Note that the length of the
event tuple sequence changes along with the block
size. We thus set the maximum length of the se-
quence to the 95th percentile of the length in the
training set. Sequences longer than the maximum
length are left-truncated. The model is trained with
a hidden size of 512, a learning rate of 3e-5, a
dropout rate of 0.05, and a batch size of 64. We
optimize the model using the cosine distance and
apply the early stopping criteria of no improvement
for three epochs. The best model on the validation
set is kept for testing.

BERT. We take the pure text in the foregoing
story block as the feature and apply the pretrained
BERT model (Devlin et al., 2019). BERT has a
token length limitation, so we set the maximum

length of tokens to 500 for Bookcorpus and 300 for
CODA-19. Sentences with more than 500 tokens
are truncated from the left. We take the [CLS]
token representation from the last layer and add
a dense layer on top of it to predict the follow-up
frame representation. The model is trained with a
learning rate of 1e-5 and a batch size of 32. We
optimize the model using the cosine distance and
apply the early stopping when no improvement for
five epochs. The model with the best score on the
validation set is kept for testing.

SciBERT (For CODA-19 Only). This is the
same as the previous setting but is trained using the
pretrained SciBERT model (Beltagy et al., 2019).
We only test this approach on the CODA-19 dataset
since it is from the scientific domain.

GPT-2 (For Bookcorpus Only). We also in-
clude a text generation model, GPT-2 (gpt2-xl)
(Radford et al., 2019) with block sizes of 5, 10,
20, and 50. Since GPT-2 is computationally ex-
pensive, we conduct the experiment on a subset of
the dataset, where 1,000 instances are randomly
selected. We feed the text in the latest story block
(n) into GPT-2 and generate 70, 150, 300, and 700
words for block sizes 5, 10, 20, and 50, respec-
tively (5 sentences ≈ 70 words; 10 sentences ≈
150 words in Bookcourpus, etc). For stories that
exceed the GPT-2’s word limit, we truncate the text
from the left. Stories with block size larger than
100 would have more than 1400 words which by
itself exceed the GPT-2’s word limit. Generated
stories are then parsed by Open-SESAME to ex-
tract the semantic frames and turned into frame
representations as the predictions.

6 Experimental Results and Analysis

Table 3 and Table 4 show the experimental results.
In this section, we summarize the main findings.

Predicting forthcoming semantic frames is re-
markably challenging yet possible. Machine-
learning models outperform the two naive base-
lines for different story lengths. In the Bookcorpus
dataset, BERT performs the best for story blocks
under 100 sentences, while LGBM performs the
best for story blocks over 150 sentences. In the
CODA-19 dataset, SciBERT performs the best for
block sizes of 1 and 3, while DAE performs the
best for a block size of 5. While the task is very
challenging, these results shed light on the seman-
tic frame forecast task. However, the improvement
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Feature Model Block Size
5 10 20 50 100 150 200 300 500 1000

- Replay Baseline .0654 .0915 .1237 .1737 .2163 .2448 .2665 .3000 .3462 .4155
- Prior Baseline .2029 .2435 .2857 .3389 .3754 .3962 .4105 .4302 .4528 .4776
Frame IR Baseline - .0631 .0851 .1290 .1841 .2085 .2262 .2536 .2859 .3321
Frame Random Forest .2037 .2448 .2881 .3427 .3807 .4025 .4184 .4402 .4659 .4966
Frame LGBM .2072 .2506 .2967 .3564 .3995 .4255 .4441 .4711 .5048 .5510
Frame DAE .2082 .2515 .2966 .3547 .3976 .4223 .4400 .4598 .4898 .5280
Event Event-Rep .2111 .2541 .2994 .3532 .3929 .4126 .4280 .4453 .4626 .4792
Text BERT .2172 .2611 .3073 .3637 .4012 .4229 .4371 .4559 .4779 .5057
Text GPT-2 .0519 .0739 .0990 .1402 - - - - - -

DELTA .0142 .0176 .0216 .0249 .0257 .0293 .0336 .0409 .0520 .0734

Table 3: Baseline result for Bookcorpus dataset. BERT and Event-Rep work better in smaller block sizes, while
models using frame representation perform better in larger block sizes. DELTA represents the difference between
the best model and the prior baseline — an extremely simple but strong baseline — in that specific block size. The
small value of DELTA shows that semantic frame forecast is challenging yet possible.

Feature Model Block Size
1 3 5

- Replay Baseline .0524 .0971 .1363
- Prior Baseline .1573 .2067 .2288
Frame IR Baseline .0315 .0601 .0752
Frame Random Forest .1581 .2081 .2278
Frame LGBM .1561 .2024 .2094
Frame DAE .1611 .2155 .2380
Event Event-Rep .1595 .2118 .2332
Text BERT .1660 .2202 .2353
Text SciBERT .1675 .2219 .2339

DELTA .0102 .0152 .0092

Table 4: Baseline result for CODA-19 dataset. SciB-
ERT performs the best in block size 1 and 3. Using the
frame representation as the feature, DAE performs the
best for block size 5. DELTA shows the difference be-
tween the best model and the prior baseline in that spe-
cific block size. The small value of DELTA shows that
semantic frame forecast is challenging yet possible.

is not big, as shown in the DELTA row, suggesting
that semantic frame forecast requires more investi-
gation and understanding.

“Prior” is a robust and strong baseline. In
both the Bookcorpus dataset and the CODA-19
dataset, the prior baseline is strong. As the story
gets longer, the performance also increases. This
suggests that when the story block gets bigger,
more and more frames will constantly occur.

Replay baseline shows the relation of consecu-
tive story blocks. The replay baseline assumes
that the events that happen now will likely happen
again shortly. The results in Table 3 and Table 4
partially confirm this assumption. To understand
more about the assumption, we use the replay base-
line to predict the n+i-th story block from the n-th
story block in the Bookcorpus dataset. Figure 3

Figure 3: Using the replay baseline to predict the n+i-
th story block from the n-th story block (story block
size = 5, 10, · · · , 1000.) Things that happen in the cur-
rent story block are more likely to happen again shortly.

shows the results. We can see that things that hap-
pen now will be more likely to happen in the near
future compared to story blocks farther from the
current one.

Event-Rep works better in short stories. In the
Bookcorpus dataset, event representation works
better than the frame representation in small block
sizes (5, 10, and 20). However, starting from a
block size of 50, the model cannot perform as well
as the other models. We thus conclude that event
representation works better in short stories. The
main reason is that event representations are gen-
erated on a sentence-by-sentence basis and will
create overwhelming information on long stories.
The existing intermediate representations (see Sec-
tion 1) are mostly generated from sentences and
will likely have the same issue as the event repre-
sentation. Compared to the existing works, the pro-
posed frame representation encodes a story block,
no matter how long it is, into a fixed-length vector
and therefore performs better on longer stories.
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Feature Model Block Size
5 10 20 50 100 150 200

- Prior .2029 .2435 .2856 .3388 .3754 .3962 .4105
Frame IR .0401 .0615 .0900 .1368 .1775 .2051 .2262
Frame RF .2030 .2440 .2871 .3418 .3801 .4025 .4184
Frame LGBM .2033 .2472 .2935 .3540 .3980 .4248 .4441
Frame DAE .2058 .2482 .2929 .3507 .3926 .4178 .4400
Event Event-Rep .2046 .2470 .2905 .3454 .3799 .4069 .4171
Text BERT .2088 .2529 .2981 .3550 .3949 .4178 .4371

Table 5: Result of the downsampling experiment. Al-
though all the performance drops, the observations we
find are still true. Therefore, the conclusions are not
merely caused by the effect of data size.

BERT performs very well in short stories. The
results of BERT and SciBERT in Table 3 and Ta-
ble 4 show that textual information is helpful in
predicting story blocks. BERT performs better
when the block size is under 100 in the Bookcorpus
dataset and below 3 in CODA-19. However, han-
dling long texts remain challenging for BERT, as
its computational complexity scales with the square
of the token length. Researchers started reducing
the computation complexity for transformer-based
models to allow modeling on long texts such as
Linformer (Wang et al., 2020b), Longformer (Belt-
agy et al., 2020), Reformer (Kitaev et al., 2020),
and BigBird (Zaheer et al., 2020). However, these
models still require a lot of computation power and
are not yet ready for general use.

The good performance does not merely come
from the number of instances. Deep learning
methods often require more instances for training.
To show that the result in Table 3 is not mainly
caused by the number of instances, we conduct
the same experiment in Bookcorpus dataset using
88, 720 training instances for block sizes ranging
from 5 to 200. Table 5 shows the results. The per-
formance is affected, but the conclusions we make
above still stand, showing that the number of in-
stances is not the main factor for our observations.
Meanwhile, we find that BERT is affected more
than LGBM. In Table 5 the performance of BERT
drops by−0.0092 to−0.0051 compared to Table 3,
but LGBM only drops −0.0039 to −0.0007. Al-
though this suggests that the number of instances
can cause the difference, it also shows that the
frame representation can be used with fewer in-
stances.

GPT-2 is not effective. GPT-2 is not effective in
predicting the story flow even though it can gener-
ate reasonable sentences. Even the naive Replay

window Feature Model Block Size
20 50 100

2 Frame LGBM .2989 .3590 .4029
Text BERT .3081 .3625 .4002

5 Frame LGBM .2989 .3617 .4065
Text BERT .3082 .3618 .3985

Table 6: Results of using 2 or 5 foregoing story blocks
to predict the n+1-th story block. LGBM improves fur-
ther when using more context but BERT fails to model
the longer context, and its performance even gets hurt.

Frame Lexical Units
Most Important Frames (Out of 50)

Kinship father, mother, son, daughter
Biological_urge tired, sleepy, randy, hungry
Connectors ribbon, rope, thread, string
Firefighting fight, battle, control, tackle
Origin Chinese, American, Vietnamese,

origin

Least Important Frames (Out of 50)
Proper_reference proper, self
Cause_to_start spark, generate, arouse, bring about
Friction grate, squeal, scrunch, screech
Dominate_competitor dominate, domination, dominant,

strongman
State_continue remain, stay, rest

Table 7: The most and least important five frames (from
50 random frames) identified in the ablation study.

baseline outperforms the GPT-2 baseline in predict-
ing the story block. We hypothesize that GPT-2 is
not good at maintaining the coherence among sen-
tences or events, especially in the creative writing
domain. Similar phenomenons are also observed
by others and used to motivate the need for guided
generation models or progressive generation mod-
els (Wang et al., 2020c; Tan et al., 2020).

6.1 Using a Larger Context Window

This paper focuses on using 1 story block to fore-
cast the next one, i.e., window size = 1 (see Fig-
ure 1.) As a proof of concept, we use 2 and 5 blocks
(window size = 2 and 5) for prediction, respectively.
We use two models: LGBM with frame representa-
tion, and BERT with text. For LGBM, we simply
concatenate the frame representation from the input
story blocks to create the input vector. For BERT,
we put the event tuple and the text together as the
input. Table 6 shows the results. While BERT does
not benefit from using more contexts, LGBM’s per-
formance improves, suggesting the potentials of
using a larger context window. More research is
required to understand the effects.
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6.2 Which Semantic Frames Affect the
Follow-Up Story More?

Different frames may contribute differently to the
prediction of the follow-up story. To understand
which frame plays a more important role in the
story, we conduct an ablation study by investigating
the LGBM model on block 150. We obliterate
one frame from the input frame representation and
record the performance change, where a higher
performance deduction means the frame removed
is more important. A total of 50 frames are selected
randomly for the ablation study. Table 7 shows the
top and bottom five frames. We hypothesize that
the more generic frames, such as “State_continue”
and “Proper_reference,” might be less important
to the follow-up stories, but it will require more
research to understand the impacts fully.

7 Human Evaluation

We further evaluate the proposed method with hu-
mans. We first visualize the vector of semantic
frames into word clouds so that humans can per-
ceive and comprehend it. We then use online crowd
workers to test the (i) representativeness and (ii)
the specificity of the produced word clouds.

Visualizing Semantic Frame Vectors into Word
Clouds. Figure 4 shows the workflow of gener-
ating word clouds based on a frame representa-
tion (i.e., a TF-IDF vector). In FrameNet, “lexi-
cal units” are the terms that can trigger a specific
frame. Compared to showing the name and defini-
tion of a frame, lexical units are easier for people
to read and comprehend. Therefore, we use the
top 30 frames (ranked by their TF-IDF weights)
and randomly select up to three lexical units for
each frame to form a word cloud. The size and
color of the lexical unit is computed according to
the frame’s TF-IDF weight, where a higher TF-IDF
value will result in a larger font and darker color.
Finally, we arrange the lexical units into three word
clouds on nouns, verbs, and adjectives using their
POS tags. All the word clouds are generated using
d3-cloud (Davies, 2016).

7.1 Representativeness

This task evaluates which model can generate the
most representative word cloud for a story block.

Task Setups. In this Human Intelligence Task
(HIT), we show a story block (n + 1) and two or
three [noun, verb, adjective] word clouds (n+ 1)

produced by different models based on the previous
story block (n). The goal is to measure, from the
users’ perspective, how much the generated word
clouds represent the actual human-written follow-
up stories. We display the actual next story block
(n+ 1) and the word clouds produced by different
models based on the latest story block (n). The
workers from Amazon Mechanical Turk (MTurk)
are asked to read the story and select the word
cloud that better represents the story block. In the
worker interface, we set up a 3-minutes lock for
submission and a reach-to-the-bottom lock for the
story panel to make sure the workers read the story.
Nine different workers are recruited for each task1.
We empirically estimate the working time to be
less than 6 minutes per HIT and set the price to
$0.99/HIT (hourly wage = $10).

We choose block size 150 to compare two mod-
els: LGBM with frame representation and BERT
with text. Ground-truth word clouds are also added
to some of the HITs to check the validity of the task.
A total of 150 instances are randomly selected from
Boocorpus testing set. For each instance, the fore-
going story block is feed into LGBM and BERT to
predict the frame representation of the follow-up
story block. Out of 150 instances, 50 instances are
conducted with ground truth, where a total of three
word clouds are shown. Another 100 instances are
used for comparing LGBM against BERT directly.

Results. Over the 50 HITs where ground truth is
included, (ground truth, LGBM, BERT) wins (32,
15, 16) HITs, respectively (ties exist.) Nine assign-
ments are recruited from 9 workers for each HIT.
Regarding to the assignment voting, (ground truth,
LGBM, BERT) gets (199, 131, 120) votes, respec-
tively. The result suggests that humans can cor-
rectly perceive the word clouds’ conceptual mean-
ing as the ground truth is rated the best.

Over the 100 HITs where LGBM and BERT are
compared directly, (LGBM, BERT) wins (59, 41)
HITs. Regarding the assignment voting, (LGBM,
BERT) gets (472, 428) votes, respectively. The
result shows that LGBM is better than BERT in a
block size of 150, which aligns with our automatic
evaluation results using cosine similarity (see Sec-
tion 6.)

1Four built-in worker qualifications are used: HIT Ap-
proval Rate (≥98%), Number of Approved HITs (≥ 3000),
Locale (US Only), and Adult Content Qualification.
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Figure 4: The workflow to visualize the word clouds from frame representation. The top semantic frames are used
where each is illustrated by a maximum of three corresponding lexical units. The size and the color of the lexical
units are computed according to the TF-IDF value.

7.2 Specificity

This task evaluates whether using the proposed
word cloud to represent a story block is specific
enough for humans to distinguish the correct story
from the distractor.

Task Setups. In this HIT, we show two story
blocks (n) and one set of [noun, verb, adjective]
word clouds (n). Note that the current story block
(n) and its ground-truth word cloud (n) are used to
examine if humans can correctly perceive the se-
mantic information from word cloud visualization.
One story block is the answer that is referred to
by the word clouds and the other one is a distrac-
tor. Workers are asked to read the two story blocks
and select the story block that is referred to by the
word clouds. Nine different workers are recruited
for each HIT. We use the same worker interface
design and built-in worker qualifications as that of
Section 7.1. A HIT takes estimatedly 2.33 minutes
and is priced at $0.38.

We choose block size 20 and use the ground-
truth word clouds for this experiment. Fifty in-
stances from 50 different books are randomly se-
lected from Bookcorpus testing set. We also ran-
domly select a 20-sentences story block from a
different book as the distractor.

Results. Of the 450 assignments, 63.8% of the
answers were correct. When aggregating the as-
signments using majority voting, 74% of 50 HITs
were answered correctly. We thus believe that it is
reasonably specific for humans to represent a story
block using the proposed word clouds.

8 Conclusion

This paper proposes a semantic frame forecast task
that aims to forecast the semantic frames in the
next 10, 100, or even 1,000 sentences of a story.
A long story is formulated as a sequence of story
blocks that contain a fixed number of sentences.
We further introduce a frame representation that
can encode a story block into a fixed-length TF-

IDF vector over semantic frames. Experiments on
both the Bookcorpus dataset and CODA-19 dataset
show that the proposed frame representation helps
semantic frame forecast in large story blocks. By
visualizing the frame representation as word clouds,
we also show that it is comprehensible, representa-
tive, and specific to humans. In the future, we will
introduce the frame representation into story gener-
ation models to ensure coherence when generating
long stories. We will also explore the possibility
of supporting writers to develop the next part of
their stories by generating semantic frames as clues
using semantic frame forecast.
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