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Abstract

Given the diversity of the candidates and com-
plexity of job requirements, and since inter-
viewing is an inherently subjective process, it
is an important task to ensure consistent, uni-
form, efficient and objective interviews that re-
sult in high quality recruitment. We propose
an interview assistant system to automatically,
and in an objective manner, select an opti-
mal set of technical questions (from question
banks) personalized for a candidate. This set
can help a human interviewer to plan for an
upcoming interview of that candidate. We for-
malize the problem of selecting a set of ques-
tions as an integer linear programming prob-
lem and use standard solvers to get a solu-
tion. We use knowledge graph as background
knowledge in this formulation, and derive our
objective functions and constraints from it. We
use candidate’s resume to personalize the se-
lection of questions. We propose an intrin-
sic evaluation to compare a set of suggested
questions with actually asked questions. We
also use expert interviewers to comparatively
evaluate our approach with a set of reasonable
baselines.

1 Introduction

A large multi-national IT company added roughly
70,000 employees in FY2018-19.1 Assuming an
average interview time of 30 minutes, 3 interview-
ers in each interview, and 4 candidates interviewed
for every position, implies approximately 420,000
person-hours were spent in one year just on con-
ducting the interviews. Given the diversity of the
candidates and complexity of job requirements,
and considering that interviewing is an inherently
human and subjective process, it is a mammoth
task to ensure consistent, uniform, efficient and
objective interviews that result in high quality re-

1https://www.tcs.com/content/dam/tcs/investor-
relations/financial-statements/2018-19/ar/annual-report-
2018-2019.pdf

cruitment. AI and ML technologies are increas-
ingly playing important roles in helping improve
recruitment quality, e.g., Faliagka et al. (2012),
Javed et al. (2015), Palshikar et al. (2017), al-
though ethical issues are emerging.2 In this paper,
we consider one particular way to assist human in-
terviewers in improving the quality of their inter-
views and in reducing subjectivity.

Before conducting an interview, an interviewer
typically studies the candidate’s resume, noting
salient points about her education, skills, job his-
tory, roles, projects, tasks handled etc. The inter-
viewer also notes the apparent strengths and weak-
nesses of the candidate, as also the extent to which
she matches (and does not match) the job profile
for which she will be interviewed. In short, the in-
terviewer builds an a priori rough mental profile of
the candidate, and prepares a mental plan of how
to interview her. Such a plan includes preparing
an unordered set of questions that the interviewer
would like to ask the candidate. In this paper, we
propose an interview assistant system to automat-
ically, and in an objective, unbiased manner, build
such a set of questions for a human interviewer,
which can be part of a plan for an upcoming in-
terview. We assume we have question banks from
where questions can be selected.

Note that such a plan is static, and the actual se-
quence of questions asked by an interviewer may
diverge from the static plan, due to dynamic and
contextual reasons observed during the flow of
the interview. Such reasons include (i) mismatch
between the interviewer’s prior impression about
the strengths of the candidate and the quality of
the candidate’s actual answers; (ii) the questions
asked by other interviewers, if they are present.
Nevertheless, such a plan generated by the system
is still useful, as it reduces the cognitive load on
the interviewer, and brings some standardization

2https://hbr.org/2019/04/the-legal-and-ethical-
implications-of-using-ai-in-hiring
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and objectivity to an interview. Having a system-
suggested set of questions, personalized for a par-
ticular candidate, before starting the interview is
useful for the interviewer. The questions help in
getting to a good start and also give ideas about
where to focus during the interview.

The novel contributions of this paper are as fol-
lows. We formalize the problem of selecting a set
of questions as an integer programming optimiza-
tion problem and use standard solvers to get a so-
lution. We use knowledge graph as background
knowledge, and formulate our objective functions
and constraints from it. To our knowledge, this is
the first paper to address the problem of creating
an optimal interview plan. We report experiments
on a real dataset of candidates and interview ques-
tions and compare against a state-of-the-art base-
line using both intrinsic and human study based
evaluation.

The rest of the paper is organized as follows.
Section 2 summarizes related work, Section 3
formulates the optimization problem, Section 4
gives details of our novel evaluation measure, Sec-
tionr̃efsec:nlp describes the use of NLP techniques
to build the requisite resources, Section 6 de-
scribes the baselines used for comparison, Sec-
tion 7 describes the our experimental results, and
Section 8 concludes the paper.

2 Related Work

Work in this paper is close to the field of com-
puterized adaptive testing (CAT) (Van der Linden
and Glas, 2000), where the task is to select ques-
tions (also called items) on-the-fly from a question
bank, depending on how the student has answered
the questions so far (i.e., adjusting to her abil-
ity level), with goals of creating shorter tests that
yield better differentiation among students. CAT
techniques are used in large-scale general online
examinations like GRE, and in specialized medi-
cal licensing or certification examinations, e.g., in
clinical pathology, emergency medicine, and phar-
macy. We are not aware of any work on applying
CAT techniques to interviews.

We first outline the key differences between
our work and CAT, which stem from the obvious
differences between interviews and examinations.
Interviews are not really examinations, but are
human, face-to-face, oral, and two-way interac-
tions among a single candidate and possibly mul-
tiple interviewers. There is no set question paper,

no rigid time-limit and interview questions need
short free-form textual or spoken answers whereas
CAT deals mostly with examinations administer-
ing multiple-choice questions. Unlike an exami-
nation, the interactions are two-way; e.g., the can-
didate can ask for clarification about a question.
Goals of an interview are different from that of an
examination, e.g., assessing fitment for job posi-
tion requiring multiple skills, rather than assess-
ing depth and breadth in a fixed subject. Stu-
dents are anonymous in CAT, whereas interview-
ers have detailed knowledge about the candidate;
e.g., through her resume. CAT is about a dynami-
cally assembled, personalized, sequence of ques-
tions which are dependent on the student’s an-
swers so far, whereas in this paper we deal with
a static one-time selection of interview questions,
with no dynamic adjustment as per the candidate’s
answers i.e., in this paper we cannot estimate the
candidate’s latent abilities, since we do not have
her answers. This prevents a direct comparison of
our work with most CAT techniques.

See Han (2018) for a review of CAT research.
The key aspects of CAT are: item selection cri-
teria, content balancing (ensuring coverage of all
sub-areas in the subject) and item exposure control
(using randomization to prevent excessive item
reuse across multiple examinations). Many item
selection approaches are formulated using item re-
sponse theory and use information-theoretic cri-
teria; e.g., Fisher information (Weiss, 1982), ef-
ficiency balanced information (EBI) (Han, 2012),
Kullback-Liebler information (Chang and Ying,
1996). Various item exposure control methods
have been proposed to reduce overuse of “good”
items; see Stocking and Lewis (2000) for a survey
of early methods.

While some CAT systems use the above 3
aspects separately, the automated test assembly
(ATA) approaches use them together in an opti-
mization framework such as linear programming
or mixed integer programming, where content bal-
ancing criteria are constraints and item selection
criteria are objective functions; e.g., Theunis-
sen (1986), der Linden and Boekkooi-Timminga
(1989), Stocking and Swanson (1993), Swanson
and Stocking (1993). For a comparative analysis
of such optimization approaches, see der Linden
(2005) and Luo (2020). Again, it is difficult to di-
rectly compare our work with these optimization-
based approaches, because of our static setting
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in interviews where no answers are available to
estimate candidate proficiency (unlike CAT). In
most CAT approaches, the information available
for each item is rather limited: subject, sub-area,
difficulty level, discrimination level etc. We have
used knowledge graphs to create a semantically
rich and detailed characterization of questions in
terms of concepts. Our optimization formulation
uses the knowledge graph to generate novel con-
straints (including content balancing) and objec-
tive functions for item selection.

CAT algorithms cannot be directly used as base-
lines, because (i) they output an ordered sequence
of questions (we output an unordered set of ques-
tions); and (ii) they need candidate answers, which
are not available to us.

DuerQuiz (Qin et al., 2019) starts from job de-
scriptions and resumes of candidates, and consid-
ers the problem of recommending a set of ques-
tions using a skill graph. It uses knowledge of re-
sumes of candidates who have been hired in the
past. It additionally considers the task of extract-
ing skills from resumes and job descriptions, and
construction of the skill graph, which are not our
primary focus. For the actual task of question se-
lection for a specific resume, DuerQuiz initializes
weights of concepts based on the job description,
historical resumes and the focus resume, and then
dissipates those weights over descendant concepts
in the skill graph. Finally, the weights determine
the number of questions selected from a concept.
It does not consider the notion of question diffi-
culty, or relations between questions.

3 Problem Formulation

For concreteness, in this paper we focus on can-
didates in the IT domain. We start by noting
that an interviewer asks different types of ques-
tions. Technical questions explore the breadth
and depth of the candidate’s understanding of a
particular technical skill. Other than technical
questions, interviewers also ask techno-experience
questions (e.g. about skills in projects), method-
ological questions, behavioural questions, among
others. For concreteness, in this paper we fo-
cus only on technical questions about skills in the
IT domain. We focus on entry-level candidates
(freshers or those with less than 1 year experi-
ence), because for more experienced candidates
the interviewers tend to move quickly to techno-
experience questions. We also assume the ques-

maximize f1 :

|Q|∑
i=1

xi · |ψ(qi)|+

f2 :

|Q|∑
i=1

|Q|∑
j>i

xi · xj · is_qgraph_edge(qi, qj) +

f3 :

|Q|∑
i=1

|Q|∑
j>i

xi · xj · ¬is_qgraph_path(qi, qj) +

f4 :

|Q|∑
i=1

xi · (ψ(qi) ∩ Φ(WR) 6= ∅) +

f5 :

|Q|∑
i=1

xi · (ψ(qi) ∩ Φ(WJ) 6= ∅)

such that C1 :

|Q|∑
i=1

xi · Tδ(qi)(qi) ≤ T

C2(k) :

|Q|∑
i=1

xi · (δ(qi) == k) ≤ (mk · (
|Q|∑
i=1

xi))

C5 :

|Q|∑
i=1

xi · δ(qi) ≥ h0 ·
|Q|∑
i=1

xi

Figure 1: The integer programming problem

tions are such that they require short answers, typ-
ically containing up to 5-6 sentences.

Given a candidate resume R, a technical skill s,
and a question bank QBs about that skill, the task
we address is: how to select the “best” questions
from QBs, which maximize some objective func-
tions and meet the required constraints? The ques-
tions need to selected from QBs and need to be
highly personalized for the candidate in the sense
that they should be closely related to the candi-
date’s background mentioned in R. The complete
optimization formulation is given in Fig. 1.

We use the term skill to refer to a broad techni-
cal area; examples: Python, Machine_Learning,
Algorithms, Networking etc. Let s denote a given
skill. Let Cs (or just C if the skill is clear) be a
set of concepts related to a given skill. Relation-
ships such as IS-A, HAS-A (inverse of IS-PART-
OF) hold between pairs of concepts; e.g., array
IS-A data_structure and class HAS-A method.
We represent the concepts in a particular skill
and their inter-relationships as a knowledge graph
G = (C,E, η), where the vertices are concepts,
E is the set of directed edges linking pairs of con-
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cepts, and η : E → REL is the edge labeling
function that associates a relationship name with
every edge. Fig. 3 shows a small part of a concept
graph for the skill Python; here, each vertex corre-
sponds to a concept, the edges show relationships
between concepts and the edge label is shown on
each arrow.

Neighbourhood of a concept u ∈ C, denoted
φ(u), is the set of concepts directly connected
to u in the knowledge graph, along with u it-
self. For simplicity, we ignore the edge direction
and edge label when computing φ(u). Example:
φ(11) = {4, 11, 12, 15}. Neighbourhood of a set
of conceptsB = {u1, . . . , uk} is the union of their
neighbourhoods: Φ(B) = φ(u1) ∪ . . . ∪ φ(uk).

We assume we have a question bank, which is
a set of questions about a particular skill, along
with some other information with each question.
Formally, a question bank for a skill s is QBs =
(Q, δ, λ), where Q is a set of questions about s,
the function δ(q) associates a difficulty level with
every question q ∈ Q, and the function λ(q) asso-
ciates a non-empty subset of concepts with every
question q ∈ Q.3 A difficulty level is 0 (easy), 1
(medium), 2 (hard); a more nuanced scale can be
easily incorporated. Fig. 2 shows a small question
bank containing 13 questions for the skill Python;
it also shows the difficulty level and the subset of
concepts (from the knowledge graph of Fig. 3) as-
sociated with each question. In order to prevent
the same subset of questions being identified by
our solution for very similar resumes, we could
either shuffle the questions inQ, or use only a ran-
dom subset of Q as input.

Coverage of a question q, denoted ψ(q), is
the set of concepts λ(q) associated with q, along
with the concepts at 1-hop from each concept in
λ(q). For simplicity, we ignore the edge direction
and edge label when computing ψ(q). Example:
ψ(q2) = {20, 21, 17, 24}. Let xi, 1 ≤ i ≤ |Q|
be the set of Boolean variables, where if xi = 1
the question qi is included in a set of questions,
and not included if xi = 0. Then the first term f1
in our objective function selects a set of questions
which has the maximum coverage.

Different candidates can take different amounts
of time T (q) for answering any particular ques-
tion q in the QB. This time is candidate specific
and unknown a priori. We have a simple model

3A more realistic setting would associate an ordered se-
quence of concepts with a question, ranked in terms of the
decreasing relevance of the concepts to the question.

to accommodate this time: a candidate takes time
Ti(q) minutes to answer a question q having diffi-
culty level δ(q) = i; for concreteness, we assume
T0(q) = 1, T1(q) = 2, T2(q) = 3. This simpli-
fied model predicts the same time, for all candi-
dates, for all questions having a particular diffi-
culty level; a more nuanced approach would be,
for example, to learn the time distribution from
data of past interviews. Interviewers often have
an informal time-limit (budget) T on the time to
spend on a particular skill. So we have constraint
C1: the total estimated time taken to answer the
selected questions must be at most T .

In order to prevent selection of only easy
questions, we introduce constraints {C2(j)} for
j ∈ 0, 1, 2 that force a more equitable user-
specified distribution of difficulty levels in se-
lected questions. The user-specified constants 0 ≤
m0,m1,m2 ≤ 1,m0 + m1 + m2 = 1 give con-
trol to the user to generate questions that “suit” a
particular “style”; e.g., setting m0 = 0.2,m1 =
0.2,m2 = 0.6 will tend to select more hard ques-
tions.

Questions asked in an interview are often re-
lated to another question, indicating exploration
of the depth of a candidate’s knowledge. Given
a set of questions A = {q1, . . . , qk}, we define a
question graph GA, whose vertices are the ques-
tions in A and two questions qi, qj have an undi-
rected edge if λ(qi) ∩ λ(qj) 6= ∅. In general, GA
may be a disconnected graph. A path of length 1
or more indicates a sequence of inter-related ques-
tions. Fig. 4 shows the question graph for the ques-
tions in Fig. 2. A path P in a graph is a longest
path (or chain) if P is not a sub-path of any other
path in the graph. Now we have another term f2 in
our objective function: maximize the sum of the
lengths of all longest paths in GA. Since this is
computationally expensive, we can use as an ap-
proximation the number of edges in GA, since an
edge indicates a sequence of two questions. Note
that this term has a quadratic form, which can be
easily linearized taking advantage of the fact that
the decision variables are all binary (we omit this
reformulation).

Questions asked in an interview are often un-
related to another question, indicating exploration
of the breadth of a candidate’s knowledge. We de-
fine two questions qi, qj as unrelated if there is no
path between them in GA i.e., qi is unreachable
from qj and vice versa. Analogously, we define
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two paths P1, P2 in GA as unrelated if no ver-
tex in P2 is reachable from any vertex in P1 and
vice versa. Now we have another term f3: maxi-
mize the number of pairs of paths which are unre-
lated. Since this is computationally expensive, we
can use as an approximation the number of pairs
of vertices which are unreachable via paths from
each other. Note that this objective also has the
quadratic form, which we linearize.

An interview often includes questions about
concepts related to a given skill which are men-
tioned in the candidate’s resume R. Let WR =
{w1, w2, . . . , w`} denote the ` concepts men-
tioned in the candidate’s resume; e.g., in the de-
scriptions of her jobs, projects, trainings etc. A
reasonable interview must include questions re-
lated to as many concepts in the neighbourhood of
WR as possible, giving us another objective func-
tion term f4. We can further refine this objective
to specifically consider questions directly related
to WR, giving us an additional term fd4 , with WR

instead of Φ(WR) and λ(q) instead of ψ(q). We
could refine this even further, if we could esti-
mate from the resume that the candidate has dif-
ferent proficiency levels in different concepts; e.g.,
if a candidate has worked in Flash in 1 project
of 3 months and in numpy in two projects for 11
months, then she is clearly stronger in numpy than
in Flash.

Analogously, let WJ denote the set of concepts
relevant to a given job description for which the
candidate is being interviewed. A reasonable in-
terview must include questions related to as many
concepts in the neighborhoodWJ as possible, giv-
ing us term f5. As for f4, here as well we consider
a direct version fd5 , withWJ replacing Φ(WJ) and
λ(q) replacing ψ(q).

Suppose we have some idea of the proficiency
level η(s) that a particular candidate has in a given
skill s. This estimate could be generated from the
information in the resume (projects, tasks, train-
ings) or from other sources, such as the scores in
a prior written test. Suppose the estimated profi-
ciency level in a skill is an integer from 0 (does
not know) to 4 (expert). We should take this in-
put into account in order to adjust the difficulty
level of selected questions; e.g., a candidate with
proficiency level η(s) = 3 should be asked fairly
difficult questions. This gives us constraint C5,
which says that the average difficulty level of se-
lected questions should be above a user-specified

Figure 2: A small question bank for the skill Python.

Figure 3: A knowledge (sub)graph for skill Python.

constant h0, which can be derived from the profi-
ciency level η(s) of the candidate in skill s.

We normalize the terms in the objective func-
tion so that these take values in [0, 1]. Further,
we take a weighted sum (instead of the plain
sum) of the terms: w1 · f1 + . . . + w5 · f5,
where w1, . . . , w4, w

d
4 , w5, w

d
5 are user-given pos-

itive real weights. The weights will allow the in-
terviewer to change the relative importance of the
terms.

Interview Plans for a Set of Candidates: The
optimization program discussed so far is useful
to generate an interview plan for one particular
candidate. However, in many situations (such as
campus interviews), there is a sequence of inter-
views for multiple candidates and the system is re-
quired to generate a system plan for each of them.
There are additional constraints on the set of inter-
view plans generated in such a situation. For ex-
ample, the repetition of questions across multiple
candidates should be minimized i.e., different can-
didates (even those having a similar background)
should by-and-large get different sets of questions.

Let N0 denote the number of candidates to
be interviewed in the current campaign. We as-
sume that a single question bank QBs for skill
s (or, just Q for simplicity) will be used to se-
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Figure 4: Question graph for the example questions.

lect questions for each of the N0 candidates. Let
gen_interview_plan denote the above optimiza-
tion program for selecting questions for a given
candidate. Output of this program is a Boolean
vector sol, where sol(i) = 1 if question qi ∈ Q is
to be included in the interview plan for the given
candidate; 0 otherwise. We extend our earlier def-
inition of a question bank by adding another prop-
erty for each question viz., novelty count β(qi),
which is the N0 − count(qi), with count(qi) be-
ing number of times the question qi ∈ Q has
been used so far. Initially count(qi) = 0 and
β(qi) = N0 for each question in Q. We sequen-
tially call gen_interview_plan for each of theN0

candidates and use the output Boolean vector sol
to increment β(qi) for each question in Q; see al-
gorithm gen_interview_plan_set.

input : {R1, . . . , RN0}, Q
output: sol_set
sol_set := ∅;
foreach i in 1 . . . |Q| do

β(qi) := N0;
end
foreach j in 1 . . . N0 do

sol := gen_interview_plan(Rj , Q);
sol_set := sol_set ∪ {(j, sol)};
foreach i in 1 . . . |Q| do

β(qi) := β(qi)− sol(i);
end

end
Algorithm 1: gen_interview_plan_set

The optimization program
gen_interview_plan is same as earlier, ex-
cept that we have added a new term f6 to the
objective function that maximizes the sum of
novelty counts of the questions.

f6 :

|Q|∑
i=1

xi · β(qi) (1)

Again, we normalize this to ensure that the value
is between 0 and 1. Note that the novelty counts
are updated for all questions after each call to the
optimization program.

Integer programming being an NP-Hard prob-
lem, exact solvers often take a lot of time. Instead,
we resorted to the LP rounding approximation,
where we relax the integer constraints xi ∈ {0, 1}
to xi ∈ [0, 1] and used available LP solvers (CBC
solver in python Pulp) to solve the resultant linear
programming problem. Then we rounded the xi
values to {0, 1} using a threshold.

4 Intrinsic Evaluation

While we do use human experts to compare two
sets of questions, here we propose an automated
intrinsic evaluation method to judge the quality of
the set of questions (e.g., selected by our optimiza-
tion model, or by any baseline method discussed
later) for a particular candidate, by comparing this
set with the set of questions actually asked to this
candidate in a real interview. Let Ai denote the
set of actual questions asked to i-th candidate, ig-
noring the order of asking; we can get Ai from
interview transcripts. Let Qi be the set of ques-
tions recommended by some algorithm for the i-th
candidate. In general, |Ai| 6= |Qi|. We assume
that both Qi and Ai are about the given skill s.

Suppose we have a Boolean function is_qsim
(discussed shortly) that returns TRUE if two
given questions are “highly similar” and FALSE
otherwise. In forward evaluation, we compare
each question qj ∈ Qi with questions in Ai and
define a forward Boolean score such that bf (qj) =
1 is there is at least one question ak ∈ Ai such that
is_qsim(qj , ak) = TRUE and 0 otherwise. The
quality of Qi is evaluated based on the number of
questions in Qi having score 1.

qualf (Qi) =
1

|Ai|
·
|Qi|∑
j=1

bf (qj) (2)

Enforcing an additional constraint that a question
in Ai is “matched” to at most one question in Qi,
ensures that score qualf (Qi) is between 0 and 1.

In backward evaluation, we compare each ques-
tion aj ∈ Ai with questions in Qi and define a
backward Boolean score such that bb(aj) = 1 if
there is at least one question qk ∈ Qi such that
isqsim(qk, aj) = TRUE and 0 otherwise. The
quality measure qualb(Ai) is defined analogously.

It remains now to define is_qsim. Several sim-
ilarity measures have been designed in the liter-
ature for short text similarity. For efficiency, we
consider a simple measure: two questions are sim-
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ilar if their coverages share at least a required min-
imum number of concepts k0 (which is a user-
specified constant):

is_qsim(qi, qj) =

{
T if |ψ(qi) ∩ ψ(qj)| ≥ k0
F otherwise

(3)
For example, questions 12 and 13 in Fig. 2 are sim-
ilar (i.e., is_qsim(12, 13) = TRUE), assuming
k0 = 3, since concepts 8, 10, 14 are common in
ψ(12) and ψ(13).

5 NLP for Interview Resource Creation

While natural language processing does not play a
direct role in the optimization formulation for the
selection of interview questions, it is crucial for
the creation of the prerequisite resources.

The first task is the annotation of questions to
identify concepts. These concepts are used to de-
termine question coverage and to construct the
question graph based on their coverage. We also
use these annotations to construct the knowledge
graph for skills, as we explain below. There is
a rich body of literature in both mention detec-
tion and named entity disambiguation (Ferragina
and Scaiella, 2012; Ganea and Hofmann, 2017;
Sakor et al., 2020). Since we focus on skill-graphs
which are largely sub-graphs of DBPedia, we use
the publicly available APIs from TAGME (Ferrag-
ina and Scaiella, 2012). However, this resulted in
two types of errors. Many mentions were anno-
tated with concepts irrelevant for our skills. Sec-
ondly, many mentions relevant for our skills were
left unannotated. We performed manual curation
on the TAGME annotations to correct these two
types of errors.

The second task is extraction of skills from re-
sumes. We use an information extraction sys-
tem called RINX (Pawar et al., 2017), which uses
gazetteer-based, linguistic patterns based machine
learning methods (e.g., CRF, BiLSTM) to ex-
tract mentions of various entity types and rela-
tions from resumes. For example, RINX extracts
mentions of SKILL (e.g., Machine_learning,

Python, CONCEPT (e.g., Activation function,

Maximum margin), ROLE (e.g., Developer, DBA,

Test_Engineer), TASK (e.g., Developed vendor

master, Performance Tuning), among other
entity types. The extracted skills are again anno-
tated according to concepts by using TAGME, and
manually curated to correct errors.

The next task is construction of the knowledge
graph for different skills, based on the concept an-
notation of the questions and the extracted resume
skills. This problem has not received enough at-
tention in the computational linguistics commu-
nity. We first identified a subgraph of DBPedia
(Faralli et al., 2018) using the question concepts
and the resume skill concepts as positive seeds.
We then curated this knowledge graph manually
to correct any errors.

The next task is assigning difficulty levels to
questions. This problem has also received very lit-
tle attention (Padó, 2017). We use the following
simple approach. Use any automatic answer ex-
traction technique to extract an answer text A for
q, from a suitable corpus like Wikipedia or a text-
book. Let λ(A) be the set of concepts associated
with A. The degree d(u) of a concept vertex u in
the knowledge graph, ignoring edge directions, is
a good approximation of the “complexity” of that
concept; a concept is complex, if it is directly re-
lated to many other concepts. Thus the sum of the
complexities of the individual concepts in the an-
swer to a question is a good measure of the com-
plexity of that question: γ(q) =

∑
u∈λ(q) d(u).

We can now write simple rules to assign a diffi-
culty level to each question: if γ(q) ≤ c0 then
δ(q) = 0 else if c0 < γ(q) ≤ c1 then δ(q) = 1
else δ(q) = 2 (c0, c1, c2 are user-specified con-
stants). More complex approaches, such as apply-
ing machine learning to predict difficulty levels for
questions, are possible.

Finally, we identify similar questions for our
evaluation. The is_qsim() function (Eqn.3) uses
overlap between annotated concepts for simplic-
ity. Clearly, there is a need for more sophisticated
approaches, for example using paraphrase detec-
tion (Galbraith et al., 2017).

6 Baselines

To compare against out integer programming ap-
proach (IP), we use the following baselines for se-
lecting questions for a candidate having resumeR:

• BR1: Select nq questions randomly from
QBs, where nq is same as the number of
questions in the optimal plan.

• BR2: Let FR(s) denote the set of concepts
related to skill s mentioned in resume R. Se-
lect nq questions randomly from QBs, where
coverage of each selected question q has at
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least one concept common with the neigh-
bourhood of the concept set FR(s) i.e., ψ(q)∩
Φ(FR(s)) 6= ∅.

• BR3: same as BR2, but ensures even distri-
bution of question difficulty levels.

• DuerQuiz (Qin et al., 2019): discussed in
Section 2. Since no implementation is pub-
licly available, we implemented our own ver-
sion of this baseline. Since we do not use his-
torical resumes or skill graph edge labels in
our framework, we adapted DuerQuiz in the
best possible way for out setting. We ignore
the terms corresponding to historical resumes
in the weight assignment to concepts. We fur-
ther approximate descendants of concepts as
their direct neighbors in the skill graph, both
for weight initialization and weight propaga-
tion.

For our MIP formulation, we use the following
weights and hyper-parameters: w1 = 100, w2 =
100, w3 = 100, w4 = 30, wd4 = 70, w5 = 30,
wd5 = 70, m0 = 0.3, m1 = 0.4, m2 = 0.3, h0 =
0.9 and T = 45. These weights were not fine-
tuned, aside for T for controlling the number of
recommended question. For DuerQuiz, the paper
does not recommend any thumb rule for setting
hyper-parameters. We set the propagation weight
αc = 0.85 by hand-tuning on one resume, and the
smoothing weight βf = 0.001.

7 Experimental Results

In this section, we describe our dataset derived
from real interviews, and the experiments that we
conducted using this dataset. We report compar-
isons of our proposed approach (IP) against the
baselines defined in Section 6 using both actual
interview questions and as well as an user-study
for evaluation. We leave out BR2 and instead use
its stronger version BR3.

All experiments were performed on an Ubuntu
18.04.5 LTS machine with 8-core Intel i7-8550U
1.80GHz processors, and 16 GB memory. For IP,
generation of questions with 45min time budget
(∼ 25 questions) takes 155 secs on average.
Dataset: We constructed a knowledge graph of
714 concepts and 903 edges (avg. degree 2.51)
from Machine Learning and Deep Learning. Our
question bank consists of 549 questions from these
two skills. Each question is annotated with con-
cepts from the knowledge graph (1.18 concepts

per question on average). Finally, we use real re-
sumes of 40 candidates (mostly fresh IT gradu-
ates) interviewed by our organization over the last
year. We identify knowledge graph concepts as-
sociated with their resumes (4.7 concepts per re-
sume on average). For 20 of these candidates, we
also have the actual questions asked to them dur-
ing their interviews. Of these, we consider only
the questions related to our two topics of interest.
The average number of questions per candidate is
5.05.

Intrinsic Evaluation on Real Interviews: In our
first evaluation, we compared the set of suggested
questions with the set of actually asked questions.
Fig. 5 shows a comparison of our optimization for-
mulation with the three baselines, using the for-
ward and backward quality measures (Section 4).

As seen, our approach is clearly better than all
three baselines in both evaluations and for differ-
ent values of k0. The differences are large for
backward evaluation. The improvement against
BR1 shows the importance of focusing on the re-
sume, rather than randomly selecting questions re-
lated to the skill. The improvement against BR3
shows that just focusing on questions related to
the resume is not enough. Finally, the improve-
ment against DuerQuiz, which combines aspects
of both BR1 and BR3, shows the importance of the
additional terms in our objective function. Also,
our analysis shows that DuerQuiz is poor at bal-
ancing between high-degree and low-degree con-
cepts in the knowledge graph. Depending on the
value of its dissipation hyper-parameter (αc), it ei-
ther transfers all the weight of high-degree con-
cepts to their neighbors, or does not transfer any
weight from low-degree concepts to their neigh-
bors. IP’s trade-off using different terms and their
corresponding weights works much better.

We further note that BR1 and BR3 perform bet-
ter than DuerQuiz in terms of forward evaluation,
which indicates that these generate fewer irrel-
evant questions. On the other hand, DuerQuiz
is better than these baselines in terms of back-
ward evaluation. This indicates that the questions
generated by these baselines are more heteroge-
neous and lack diversity when compared against
DuerQuiz to cover all questions asked during a
real interview. Note that IP outperforms DuerQuiz
in both directions.

Human Evaluation: Our second evaluation
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Figure 5: Backward and forward intrinsic evaluations.

compares question sets generated using pairs of
algorithms by 3 experienced human interviewers
E1, E2, E3. We have 3 pairs of algorithms to com-
pare: (IP, BR1), (IP, BR3), (IP, DuerQuiz). Note
that to reduce the load on the human evaluators,
we did not invest in comparing the baselines with
each other. We randomly assign one of these pairs
to each of the N = 20 candidates; e.g., 7 candi-
dates got the pair (LP, BR1) and so forth. For each
candidate, we generated two sets of questions, for
the skill Machine Learning, using the algorithm
pair assigned to it. Hiding the algorithm used to
generate the question sets, we presented the two
sets for the 20 candidates to each of the 3 experts,
along with skills extracted from their resumes. For
each candidate, each human expert gave a compar-
ative ranking, indicating whether set 1 was better
than set 2. We had not suggested any criterion for
this comparison; each expert used her own intu-
ition.

There were 7× 3 = 21 evaluations of (IP, BR1)
pair, out of which IP “won” in 19. Using χ2 test
with 99.9% confidence, we reject the null hypothe-
sis and accept that IP is better than BR1. Similarly,
IP is better than BR3 in 14 out of 21 evaluations
(χ2 85% confidence). Unfortunately, IP is better
than DuerQuiz in only 6 out of 21 evaluations.
However, there was large disagreement among the
experts in this case, and discussions showed that
the experts’ evaluation criteria were considerably
simpler than the objective functions used in IP. For
example, no expert considered the inter-linking of
the questions in her evaluation, nor did they con-
sider duplication of questions across different can-
didates as undesirable; but these are important fac-
tors in IP for choosing questions. In the future, we

intend to perform a larger expert study with a more
nuanced evaluation which compares specific qual-
ity aspects of the question sets.

8 Conclusions and Further Work

We have proposed an interview assistant system
to automatically select an optimal set of technical
questions (from a question bank) personalized for
a candidate. We formalized the problem of select-
ing a set of questions from question banks as an in-
teger programming problem, with multiple terms
in the objective functions and multiple constraints.
We used knowledge graph as background knowl-
edge, and used the candidate’s resume to person-
alize the selection of questions. We proposed a
novel intrinsic evaluation to compare a set of sug-
gested questions with actually asked questions in
real interviews. We also used expert human in-
terviewers to comparatively evaluate our approach
with a set of reasonable baselines. Our compar-
isons against state-of-the-art and ablated baselines
show the usefulness of our proposed approach.
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