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Abstract

For most language combinations, parallel data is either scarce or simply unavailable. To ad-
dress this, unsupervised machine translation (UMT) exploits large amounts of monolingual
data by using synthetic data generation techniques such as back-translation and noising, while
self-supervised NMT (SSNMT) identifies parallel sentences in smaller comparable data and
trains on them. To date, the inclusion of UMT data generation techniques in SSNMT has not
been investigated. We show that including UMT techniques into SSNMT significantly out-
performs SSNMT and UMT on all tested language pairs, with improvements of up to +4.3

BLEU, +50.8 BLEU, +51.5 over SSNMT, statistical UMT and hybrid UMT, respectively,
on Afrikaans to English. We further show that the combination of multilingual denoising au-
toencoding, SSNMT with backtranslation and bilingual finetuning enables us to learn machine
translation even for distant language pairs for which only small amounts of monolingual data
are available, e.g. yielding BLEU scores of 11.6 (English to Swahili).

1 Introduction

Neural machine translation (NMT) achieves high quality translations when large amounts of
parallel data are available (Barrault et al., 2020). Unfortunately, for most language combina-
tions, parallel data is non-existent, scarce or low-quality. To overcome this, unsupervised MT
(UMT) (Lample et al., 2018b; Ren et al., 2019; Artetxe et al., 2019) focuses on exploiting large
amounts of monolingual data, which are used to generate synthetic bitext training data via var-
ious techniques such as back-translation or denoising. Self-supervised NMT (SSNMT) (Ruiter
et al., 2019) learns from smaller amounts of comparable data –i.e. topic-aligned data such as
Wikipedia articles– by learning to discover and exploit similar sentence pairs. However, both
UMT and SSNMT approaches often do not scale to low-resource languages, for which nei-
ther monolingual nor comparable data are available in sufficient quantity (Guzmán et al., 2019;
España-Bonet et al., 2019; Marchisio et al., 2020). To date, UMT data augmentation techniques
have not been explored in SSNMT. However, both approaches can benefit from each other, as
i) SSNMT has strong internal quality checks on the data it admits for training, which can be
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of use to filter low-quality synthetic data, and ii) UMT data augmentation makes monolingual
data available for SSNMT.

In this paper we explore and test the effect of combining UMT data augmentation with
SSNMT on different data sizes, ranging from very low-resource (∼ 66k non-parallel sentences)
to high-resource (∼ 20M sentences). We do this using a common high-resource language pair
(en–fr), which we downsample while keeping all other parameters identical. We then proceed
to evaluate the augmentation techniques on different truly low-resource similar and distant lan-
guage pairs, i.e. English (en)–{Afrikaans (af ), Kannada (kn), Burmese (my), Nepali (ne),
Swahili (sw), Yorùbá (yo)}, chosen based on their differences in typology (analytic, fusional,
agglutinative), word order (SVO, SOV) and writing system (Latin, Brahmic). We also explore
the effect of different initialization techniques for SSNMT in combination with finetuning.

2 Related Work

Substantial effort has been devoted to muster training data for low-resource NMT, e.g. by
identifying parallel sentences in monolingual or noisy corpora in a pre-processing step (Artetxe
and Schwenk, 2019a; Chaudhary et al., 2019; Schwenk et al., 2021) and also by leveraging
monolingual data into supervised NMT e.g. by including autoencoding (Currey et al., 2017)
or language modeling tasks (Gulcehre et al., 2015; Ramachandran et al., 2017). Low-resource
NMT models can benefit from high-resource languages through transfer learning (Zoph et al.,
2016), e.g. in a zero-shot setting (Johnson et al., 2017), by using pre-trained language models
(Conneau and Lample, 2019; Kuwanto et al., 2021), or finding an optimal path for pivoting
through related languages (Leng et al., 2019).

Back-translation often works well in high-resource settings (Bojar and Tamchyna, 2011;
Sennrich et al., 2016a; Karakanta et al., 2018). NMT training and back-translation have been
used in an incremental fashion in both unidirectional (Hoang et al., 2018) and bidirectional
systems (Zhang et al., 2018; Niu et al., 2018).

Unsupervised NMT (Lample et al., 2018a; Artetxe et al., 2018; Yang et al., 2018) applies
bi-directional back-translation in combination with denoising and multilingual shared encoders
to learn MT on very large monolingual data. This can be done multilingually across several
languages by using language-specific decoders (Sen et al., 2019), or by using additional parallel
data for a related pivot language pair (Li et al., 2020). Further combining unsupervised neural
MT with phrase tables from statistical MT leads to top results (Lample et al., 2018b; Ren et al.,
2019; Artetxe et al., 2019). However, unsupervised systems fail to learn when trained on small
amounts of monolingual data (Guzmán et al., 2019), when there is a domain mismatch between
the two datasets (Kim et al., 2020) or when the languages in a pair are distant (Koneru et al.,
2021). Unfortunately, all of this is the case for most truly low-resource language pairs.

Self-supervised NMT (Ruiter et al., 2019) jointly learns to extract data and translate from
comparable data and works best on 100s of thousands of documents per language, well beyond
what is available in true low-resource settings.

3 UMT-Enhanced SSNMT

SSNMT jointly learns MT and extracting similar sentences for training from comparable cor-
pora in a loop on-line. Sentence pairs from documents in languages L1 and L2 are fed as input
to a bidirectional NMT system {L1, L2} → {L1, L2}, which filters out non-similar sentences
after scoring them with a similarity measure calculated from the internal embeddings.

Sentence Pair Extraction (SPE): Input sentences sL1 ∈ L1, sL2 ∈ L2, are represented by
the sum of their word embeddings and by the sum of the encoder outputs, and scored using the
margin-based measure introduced by Artetxe and Schwenk (2019a). If a pair (sL1, sL2) is top
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Figure 1: UMT-Enhanced SSNMT architecture (Section 3).

scoring for both language directions and for both sentence representations, it is accepted for
training, otherwise it is filtered out. This is a strong quality check and equivalent to system P in
Ruiter et al. (2019). A SSNMT model with SPE is our baseline (B) model.

Since most possible sentence pairs from comparable corpora are non-similar, they are simply
discarded. In a low-resource setting, this potentially constitutes a major loss of usable monolin-
gual information. To exploit sentences that have been rejected by the SSNMT filtering process,
we integrate the following UMT synthetic data creation techniques on-line (Figure 1):

Back-translation (BT): Given a rejected sentence sL1, we use the current state of the SSNMT
system to back-translate it into sBT

L2 . The synthetic pair in the opposite direction sBT
L2 → sL1 is

added to the batch for further training. We perform the same filtering process as for SPE so that
only good quality back-translations are added. We apply the same to source sentences in L2.

Word-translation (WT): For synthetic sentence pairs rejected by BT filtering, we perform
word-by-word translation. Given a rejected sentence sL1 with tokens wL1 ∈ L1, we replace
each token with its nearest neighbor wL2 ∈ L2 in the bilingual word embedding layer of the
model to obtain sWT

L2 . We then train on the synthetic pair in the opposite direction sWT
L2 → sL1.

As with BT, this is applied to both language directions. To ensure sufficient volume of synthetic
data (Figure 2, right), WT data is trained on without filtering.

Noise (N): To increase robustness and variance in the training data, we add noise, i.e. token
deletion, substitution and permutation, to copies of source sentences (Edunov et al., 2018) in
parallel pairs identified via SPE, back-translations and word-translated sentences and, as with
WT, we use these without additional filtering.

Initialization: When languages are related and large amounts of training data is available, the
initialization of SSNMT is not important. However, similarly to UMT, initialization becomes
crucial in the low-resource setting (Edman et al., 2020). We explore four different initialization
techniques: i) no initialization (none), i.e. random initialization for all model parameters, ii)
initialization of tied source and target side word embedding layers only via pre-trained cross-
lingual word-embeddings (WE) while randomly initializing all other layers and iii) initializa-
tion of all layers via denoising autoencoding (DAE) in a bilingual and iv) multilingual (MDAE)
setting.

Finetuning (F): When using MDAE initialization only, the following SSNMT is multilingual,
otherwise it is bilingual. Due to the multilingual nature of the SSNMT with MDAE initializa-
tion, the performance of the individual languages can be limited by the curse of multilinguality
(Conneau et al., 2020), where multilingual training leads to improvements on low-resource lan-
guages up to a certain point after which it decays. To alleviate this, we finetune converged
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Comparable Monolingual

# Art (k) VO (%) # Sent (k) # Tok (k) # Sent (k) # Tok (k)
en–L en L en L en/L en L

en–af 73 7.1 4,589 780 189,990 27,640 1,034 34,759 31,858
en–kn 18 1.4 1,739 764 95,481 30,003 1,058 47,136 35,534
en–my 19 2.1 1,505 477 82,537 15,313 997 43,752 24,094
en–ne 20 0.6 1,526 207 83,524 7,518 296 13,149 9,229
en–sw 34 6.5 2,375 244 122,593 8,774 329 13,957 9,937
en–yo 19 5.7 1,314 34 82,674 1,536 547 17,953 19,370

Table 1: Number of sentences (Sent) and tokens (Tok) in the comparable and monolingual
datasets. For comparable datasets, we report the number of articles (Art) and percentage of
vocabulary overlap (VO) between the two languages in a pair. # Sent of monolingual data
(en/L) is the same for en and its corresponding L due to downsampling of en to match L.

multilingual SSNMT models bilingually on a given language pair L1–L2.

4 Experimental Setting

4.1 Data
MT Training For training, we use Wikipedia (WP) as a comparable corpus and download
the dumps1 and extract comparable articles per language pair (Comparable in Table 1) using
WikiExtractor2. For validation and testing, we use the test and development data from McKellar
and Puttkammer (2020) (en–af ), WAT20213 (en–kn), WAT2020 (en–my) (ShweSin et al.,
2018), FLoRes (en–ne) (Guzmán et al., 2019), Lakew et al. (2021) (en–sw), and MENYO-
20k (en–yo) (Adelani et al., 2021a). For en–fr we use newstest2012 for development and
newstest2014 for testing. As the en–af data does not have a development split, we additionally
sample 1 k sentences from CCAligned (El-Kishky et al., 2020) to use as en–af development
data. The en–sw test set is divided into several sub-domains, and we only evaluate on the TED
talks domain, since the other domains are noisy, e.g. localization or religious corpora.

MT Initialization We use the monolingual Wikipedias to initialize SSNMT. As the mono-
lingual Wikipedia for Yorùbá is especially small (65 k sentences), we use the Yorùbá side of
JW300 (Agić and Vulić, 2019) as additional monolingual initialization data. For each mono-
lingual data pair en–{af ,...,yo}, the large English monolingual corpus is downsampled to its
low(er)-resource counterpart before using the data (Monolingual in Table 1).

For the word-embedding-based initialization, we learn CBOW word embeddings using
word2vec (Mikolov et al., 2013), which are then projected into a common multilingual space
via vecmap (Artetxe et al., 2017) to attain bilingual embeddings between en–{af ,...,yo}. For
the weak-supervision of the bilingual mapping process, we use a list of numbers (en–fr only)
which is augmented with 200 Swadesh list4 entries for the low-resource experiments.

For DAE initialization, we do not use external, highly-multilingual pre-trained language
models, since in practical terms these may not cover the language combination of interest5. We
therefore use the monolingual data to train a bilingual (en+{af ,...yo}) DAE using BART-style

1Dumps were downloaded on February 2021 from dumps.wikimedia.org/
2github.com/attardi/wikiextractor
3lotus.kuee.kyoto-u.ac.jp/WAT/indic-multilingual/index.html
4https://en.wiktionary.org/wiki/Appendix:Swadesh_lists
5This is the case here: MBart-50 (Tang et al., 2020) does not cover Kannada, Swahili and Yorùbá.
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noise (Liu et al., 2020). We set aside 5 k sentences for testing and development each. We use
BART-style noise (λ = 3.5, p = 0.35) for word sequence masking. We add one random mask
insertion per sequence and perform a sequence permutation. For the multilingual DAE (MDAE)
setting, we train a single denoising autoencoder on the monolingual data of all languages, where
en is downsampled to match the largest non-English monolingual dataset (kn).

In all cases SSNMT training is bidirectional between two languages en–{af ,...,yo}, ex-
cept for MDAE, where SSNMT is trained multilingually between all language combinations in
{af ,en,...,yo}.

4.2 Preprocessing
On the Wikipedia corpora, we perform sentence tokenization using NLTK (Bird, 2006). For
languages using Latin scripts (af ,en,sw,yo) we perform punctuation normalization and true-
casing using standard Moses (Koehn et al., 2007) scripts on all datasets. For Yorùbá only, we
follow Adelani et al. (2021b) and perform automatic diacritic restoration. Lastly, we perform
language identification on all Wikipedia corpora using polyglot.6 After exploring different
byte-pair encoding (BPE) (Sennrich et al., 2016b) vocabulary sizes of 2 k, 4 k, 8 k, 16 k and
32 k, we choose 2 k (en–yo), 4 k (en–{kn,my,ne,sw}) and 16 k (en–af ) merge operations
using sentence-piece7 (Kudo and Richardson, 2018). We prepend a source and a target
language token to each sentence. For the en–fr experiments only, we use the data processing
by Ruiter et al. (2020) in order to minimize experimental differences for later comparison.

4.3 Model Specifications and Evaluation
Systems are either not initialized, initialized via bilingual word embeddings, or via pre-training
using (M)DAE. Our implementation of SSNMT is a transformer base with default parameters.
We use a batch size of 50 sentences and a maximum sequence length of 100 tokens. For evalu-
ation, we use BLEU (Papineni et al., 2002) calculated using SacreBLEU8,9 (Post, 2018) and
all confidence intervals (p = 95%) are calculated using bootstrap resampling (Koehn, 2004) as
implemented in multeval10 (Clark et al., 2011).

5 Exploration of Corpus Sizes (en–fr)

To explore which technique works best with varying data sizes, and to compare with the high-
resource SSNMT setting in Ruiter et al. (2020), we train SSNMT on en–fr, with different
combinations of techniques (+BT, +WT, +N) over decreasingly small corpus sizes. The base
(B) model is a simple SSNMT model with SPE.

Figure 2 (left) shows that translation quality as measured by BLEU is very low in the low-
resource setting. For experiments with only 4 k comparable articles (similar to the corpus size
available for en–yo), BLEU is close to zero with base (B) and B+BT models. Only when WT is
applied to rejected back-translated pairs does training become possible, and is further improved
by adding noise, yielding BLEUs of 3.3811 (en2fr) and 3.58 (fr2en). The maximum gain
in performance obtained by WT is at 31 k comparable articles, where it adds ∼ 9 BLEU over
the B+BT performance. While the additional supervisory signal provided by WT is useful in
the low and medium resource settings, up until ∼ 125 k articles, its benefits are overcome by

6https://github.com/aboSamoor/polyglot
7https://github.com/google/sentencepiece
8https://github.com/mjpost/sacrebleu
9BLEU+case.mixed+numrefs.4+smooth.exp+tok.intl+version.1.4.9

10https://github.com/jhclark/multeval
11Note that such low BLEU scores should be taken with a grain of salt: While there is an automatically measurable

improvement in translation quality, a human judge would not see a meaningful improvement between different systems
with low BLEU scores.
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Figure 2: Left: BLEU scores (en2fr) of different techniques (+BT,+WT,+N) added to the base
(B) SSNMT model when trained on increasingly large numbers en–fr WP articles (# Articles).
Right: Number of extracted (SPE) or generated (BT,WT) sentence pairs (k) per technique of
the B+BT+WT model trained on 4 k comparable WP articles. Number of extracted sentence
pairs by the base model is shown for comparison as a dotted line.

the noise it introduces in the high-resource scenario, leading to a drop in translation quality.
Similarly, the utility of adding noise varies with corpus size. Only BT constantly adds a slight
gain in performance of ∼1–2 over all base models, where training is possible. In the high
resource case, the difference between B and B+BT is not significant, with BLEU 29.64 (en2fr)
and 28.56 (fr2en) for B+BT, which also leads to a small, yet statistically insignificant gain over
the en–fr SSNMT model in Ruiter et al. (2020), i.e. +0.1 (en2fr) and +0.9 (fr2en) BLEU.

At the beginning of training, the number of extracted sentence pairs (SPE) of the
B+BT+WT+N model trained on the most extreme low-resource setting (4 k articles), is low
(Figure 2, right), with 4 k sentence pairs extracted in the first epoch. This number drops further
to 2 k extracted pairs in the second epoch, but then continually rises up to 13 k extracted pairs in
the final epoch. This is not the case for the base (B) model, which starts with a similar amount of
extracted parallel data but then continually extracts less as training progresses. The difference
between the two models is due to the added BT and WT techniques. At the beginning of train-
ing B+BT+WT is not able to generate backtranslations of decent quality, with only few (196)
backtranslations accepted for training. Rejected backtranslations are passed into WT, which
leads to large numbers of WT sentence pairs up to the second epoch (56 k). These make all
the difference: through WT, the system is able to gain noisy supervisory signals from the data,
which leads to the internal representations to become more informative for SPE, thus leading
to more and better extractions. Then, BT and SPE enhance each other, as SPE ensures original
(clean) parallel sentences to be extracted, which improves translation accuracy, and hence more
and better backtranslations (e.g. up to 20 k around epoch 15) are accepted.

6 Exploration of Language Distance

BT, WT and N data augmentation techniques are especially useful for the low- and mid-resource
settings of related language pairs such as English and French (both Indo-European). To apply
the approach to truly low-resource language pairs, and to verify which language-specific charac-
teristics impact the effectiveness of the different augmentation techniques, we train and test our
model on a selected number of languages (Table 2) based on their typological and graphemic
distance from English (fusional→analytic12, SVO, Latin script). Focusing on similarities on

12English and Afrikaans are traditionally categorized as fusional languages. However, due to their small morpheme-
word ratio, both English and Afrikaans are nowadays often categorized as analytic languages.
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English Afrikaans Nepali Kannada Yorùbá Swahili Burmese

Typology fusional9 fusional9 fusional agglutinative analytic agglutinative analytic
Word Order SVO SOV,SVO SOV SOV SOV,SVO SVO SOV
Script Latin Latin Brahmic Brahmic Latin Latin Brahmic

sim(L–en) 1.000 0.822 0.605 0.602 0.599 0.456 0.419

Table 2: Classification (typology, word order, script) of the languages L together with their
cosine similarity (sim) to English based on lexical and syntactic URIEL features.

the lexical and syntactic level,13 we retrieve the URIEL (Littell et al., 2017) representations of
the languages using lang2vec14 and calculate their cosine similarity to English. Afrikaans
is the most similar language to English, with a similarity of 0.822, and pre-BPE vocabulary
(token) overlap of 7.1% (Table 1), which is due to its similar typology (fusional→analytic) and
comparatively large vocabulary overlap (both languages belong to the West-Germanic language
branch). The most distant language is Burmese (sim 0.419, vocabulary overlap 2.1%), which
belongs to the Sino-Tibetan language family and uses its own (Brahmic) script.

We train SSNMT with combinations of BT, WT, N on the language combinations en–
{af ,kn,my,ne,sw,yo} using the four different types of model initialization (none, WE, DAE,
MDAE).

Intrinsic Parameter Analysis We focus on the intrinsic initialization and data augmentation
technique parameters. The difference between no (none) and word-embedding (WE) initializa-
tion is barely significant across all language pairs and techniques (Figure 3). For all language
pairs, except en–af , MDAE initialization tends to be the best choice, with major gains of +4.2
BLEU (yo2en, B+BT) and +5.3 BLEU (kn2en, B+BT) over their WE-initialized counterparts.
This is natural, since pre-training on (M)DAE allows the SSNMT model to learn how to gen-
erate fluent sentences. By performing (M)DAE, the model also learns to denoise noisy inputs,
resulting in a big improvement in translation performance (e.g. +37.3 BLEU, af2en DAE)
on the en–af and en–sw B+BT+WT models in comparison to their WE-initialized counter-
parts. Without (M)DAE pre-training, the noisy word-translations lead to very low BLEU scores.
Adding an additional denoising task, either via (M)DAE initialization or via adding the +N data
augmentation technique, lets the model also learn from noisy word-translations with improved
results. For en–af only, the WE initialization generally performs best, with BLEU scores of
52.2 (af2en) and 51.2 (en2af ). For language pairs using different scripts, i.e. Latin–Brahmic
(en–{kn,my,ne}), the gain by performing bilingual DAE pre-training is negligible, as results
are generally low. These languages also have a different word order (SOV) than English (SVO),
which may further increase the difficulty of the translation task (Banerjee et al., 2019; Kim et al.,
2020). However, once the pre-training and MT learning is multilingual (MDAE), the different
language directions benefit from another and an internal mapping of the languages into a shared
space is achieved. This leads to BLEU scores of 1.7 (my2en), 3.3 (ne2en) and 5.3 (kn2en)
using the B+BT technique. The method is also beneficial when translating into the low-resource
languages, with en2kn reaching BLEU 3.3 (B).

B+BT+WT seems to be the best data augmentation technique when the amount of data
is very small, as is the case for en–yo, with gains of +2.4 BLEU on en2yo over the baseline
B. This underlines the findings in Section 5, that WT serves as a crutch to start the extraction
and training of SSNMT. Further adding noise (+N) tends to adversely impact on results on this

13This corresponds to lang2vec features syntax average and inventory average.
14https://pypi.org/project/lang2vec/
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yo
no
ne

WE

DA
E

MD
AE

en
2L

0.3±0.1 0.3±0.1 2.2±0.1 0.0±0.0
0.5±0.1 0.4±0.1 2.9±0.1 0.9±0.0
2.0±0.1 2.3±0.1 2.8±0.1 1.2±0.1
1.7±0.1 1.5±0.1 1.1±0.1 2.0±0.1

af
48.1±0.9 49.0±1.0 1.1±0.1 37.1±0.8
48.1±0.9 51.2±0.9 8.4±0.5 41.7±0.9
44.8±0.9 48.6±0.9 42.3±0.9 38.9±0.9
42.1±0.9 42.1±0.9 36.6±0.9 30.3±0.7

sw
4.2±0.2 6.1±0.2 0.9±0.1 5.6±0.2
4.4±0.2 5.1±0.2 3.0±0.2 7.7±0.3
5.3±0.2 7.2±0.3 4.7±0.2 4.7±0.2
6.5±0.3 7.4±0.3 3.3±0.2 3.4±0.2

B +BT +WT +N

no
ne

WE

DA
E

MD
AE

L2
en

0.5±0.1 0.6±0.1 2.7±0.1 0.2±0.0
0.6±0.1 0.5±0.1 2.5±0.1 0.0±0.0
2.6±0.1 3.0±0.1 3.1±0.1 2.0±0.1
4.6±0.1 4.7±0.1 3.9±0.1 3.5±0.1

B +BT +WT +N

47.9±0.9 51.3±0.9 0.7±0.1 38.6±0.9
48.6±0.9 52.2±0.9 5.8±0.4 43.7±0.9
46.2±0.9 50.4±0.9 43.1±0.9 39.5±0.8
43.1±0.9 42.5±0.9 38.4±0.9 31.9±0.8

B +BT +WT +N

3.6±0.2 5.5±0.3 0.4±0.0 5.0±0.2
3.6±0.2 4.2±0.2 2.1±0.1 6.3±0.2
4.8±0.2 6.8±0.2 5.6±0.2 5.9±0.2
6.8±0.2 7.9±0.3 4.0±0.2 3.5±0.2

Language (L)

In
iti
al
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n
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no
ne
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DA
E

MD
AE

en
2L

0.0±0.0 0.0±0.0 0.1±0.0 0.1±0.0
0.0±0.0 0.0±0.0 0.1±0.0 0.1±0.0
0.1±0.0 0.1±0.0 0.1±0.0 0.0±0.0
0.1±0.0 0.1±0.0 0.1±0.0 0.1±0.0

ne
0.0±0.0 0.0±0.0 0.2±0.0 0.1±0.0
0.0±0.0 0.0±0.0 0.2±0.0 0.1±0.0
0.1±0.0 0.2±0.0 0.1±0.0 0.3±0.0
0.9±0.1 1.0±0.1 0.3±0.1 0.3±0.1

kn
0.0±0.0 0.0±0.0 0.2±0.0 0.1±0.0
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Figure 3: BLEU scores of SSNMT Base (B) with added techniques (+BT,+WT,+N) on low-
resource language combinations en2L and L2en, with L = {af, kn,my, ne, sw, yo}.

language pair. On languages with more data available (en–{af ,kn,my,ne,sw}), +BT tends
to be the best choice, with top BLEUs on en–sw of 7.4 (en2sw, MDAE) and 7.9 (sw2en,
MDAE). This is due to these models being able to sufficiently learn on B (+BT) only (Figure
4), thus not needing +WT as a crutch to start the extraction and MT learning process. Adding
+WT to the system only adds additional noise and thus makes results worse.

Extrinsic Parameter Analysis We focus on the extrinsic parameters linguistic distance and
data size. Our model is able to learn MT also on distant language pairs such as en–sw
(sim 0.456), with top BLEUs of 7.7 (en2sw, B+BT+W+N) and 7.9 (sw2en, B+BT). Despite
being typologically closer, training SSNMT on en–ne (sim 0.605) only yields BLEUs above
1 in the multilingual setting (BLEU 3.3 ne2en). This is the case for all languages using a
different script than English (kn,my,ne), underlining the fact that achieving a cross-lingual
representation, i.e. via multilingual (pre-)training or a decent overlap in the (BPE) vocabulary
(as in en–{af ,sw,yo}) of the two languages, is vital for identifying good similar sentence pairs
at the beginning of training and thus makes training possible. For en–my the MDAE approach
was only beneficial in the my2en direction, but had no effect on en2my, which may be due
to the fact that my is the most distant language from en (sim 0.419) and, contrary to the other
low-resource languages we explore, does not have any related language15 in our experimental
setup, which makes it difficult to leverage supervisory signals from a related language.

When the amount of data is small (en–yo), the model does not achieve BLEUs above
1 without the WT technique or without (M)DAE initialization, since the extraction recall of a
simple SSNMT system is low at the beginning of training (Ruiter et al., 2020) and thus SPE fails
to identify sufficient parallel sentences to improve the internal representations, which would
then improve SPE recall. This is analogous to the observations on the en-fr base model B

15Both Nepali and Kannada share influences from Sanskrit. Swahili and Yorùbá are both Niger-Congo languages,
while English and Afrikaans are both Indo-European.
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Figure 4: Number of extracted (SPE) or generated (BT,WT) sentence pairs (k) per technique
of the best performing SSNMT model (en2L) per language L. Number of extracted sentence
pairs by the base model (B) are shown for comparison as a dotted line.

trained on 4 k WP articles (Figure 2). Interestingly, the differences between no/WE and DAE
initialization are minimized when using WT as a data augmentation technique, showing that it
is an effective method that makes pre-training unnecessary when only small amounts of data are
available. For larger data sizes (en–{af ,sw}), the opposite is the case: the models sufficiently
learn SPE and MT without WT, and thus WT just adds additional noise.

Extraction and Generation The SPE extraction and BT/WT generation curves (Figure 4) for
en–af (B+BT, WE) are similar to those on en–fr (Figure 2, right). At the beginning of training,
not many pairs (32 k) are extracted, but as training progresses, the model internal representa-
tions are improved and it starts extracting more and more parallel data, up to 252 k in the last
epoch. Simultaneously, translation quality improves and the number of backtranslations gener-
ated increases drastically from 2 k up to 156 k per epoch. However, as the amount of data for
en–af is large, the base model B has a similar extraction curve. Nevertheless, translation qual-
ity is improved by the additional backtranslations (+3.1 BLEU). For en–sw (B+BT+WT+N,
WE), the curves are similar to those of en–fr, where the added word-translations serve as a
crutch to make SPE and BT possible, thus showing a gap between the number of extracted sen-
tences (SPE) (∼ 5.5 k) of the best model and those of the baseline (B) (∼1–2 k). For en–yo
(B+BT+WT, WE), the amount of extracted data is very small (∼ 0.5 k) for both the baseline
and the best model. Here, WT fails to serve as a crutch as the number of extractions does
not increase, but instead is overwhelmed by the number of word translations. For en–{kn,ne}
(MDAE), the extraction and BT curves also rise over time. For en–my, where all training setups
show similar translation performance in the en2my direction, we show the extraction and BT
curves for B+BT with WE initialization. We observe that, as opposed to all other models, both
lines are flat, underlining the fact that due to the lack of sufficiently cross-lingual model-internal
representations, the model does not enter the self-supervisory cycle common to SSNMT.

Bilingual Finetuning The overall trend shows that MDAE pre-training with multilingual SS-
NMT training in combination with back-translation (B+BT) leads to top results for low-resource
similar and distant language combinations. For en–afonly, which has more comparable data
available for training and is a very similar language pair, the multilingual setup is less benefi-
cial. The model attains enough supervisory signals when training bilingually on en–af , thus
the additional languages in the multilingual setup are simply noise for the system. While the
MDAE setup with multilingual MT training makes it possible to map distant languages into a
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en–af en–kn en–my en–ne en–sw en–yo
→ ← → ← → ← → ← → ← → ←

Best* 51.2 52.2 0.3 0.9 0.1 0.7 0.3 0.5 7.7 6.8 2.9 3.1
MDAE 42.5 42.5 3.1 5.3 0.1 1.7 1.0 3.3 7.4 7.9 1.5 4.7

MDAE+F 46.3 50.2 5.0 9.0 0.2 2.8 2.3 5.7 11.6 11.2 2.9 5.8

Table 3: BLEU scores on the en2L (→) and L2en (←) directions of top performing SSNMT
model without finetuning and without MDAE (Best*) and SSNMT using MDAE initialization
and B+BT technique with (MDAE+F) and without finetuning (MDAE).

Pair Init. Config. Best Base UMT UMT+NMT Laser TSS #P (k)

en2af WE B+BT 51.2±.9 48.1±.9 27.9±.8 44.2±.9 52.1±1.0 35.3 37
af2en WE B+BT 52.2±.9 47.9±.9 1.4±.1 0.7±.1 52.9±.9 – –

en2kn MDAE B+BT+F 5.0±.2 0.0±.0 0.0±.0 0.0±.0 – 21.3 397
kn2en MDAE B+BT+F 9.0±.2 0.0±.0 0.0±.0 0.0±.0 – 40.3 397

en2my MDAE B+BT+F 0.2±.0 0.0±.0 0.1±.0 0.0±.0 0.0±.0 39.3 223
my2en MDAE B+BT+F 2.8±.1 0.0±.0 0.0±.0 0.0±.0 0.1±.0 38.6 223

en2ne MDAE B+BT+F 2.3±.1 0.0±.0 0.1±.0 0.0±.0 0.5±.1 8.8 –
ne2en MDAE B+BT+F 5.7±.2 0.0±.0 0.0±.0 0.0±.0 0.2±.0 21.5 –

en2sw MDAE B+BT+F 11.6±.3 4.2±.2 3.6±.2 0.2±.0 10.0±.3 14.8 995
sw2en MDAE B+BT+F 11.2±.3 3.6±.2 0.3±.0 0.0±.0 8.4±.3 19.7 995

en2yo MDAE B+BT+F 2.9±.1 0.3±.1 1.0±.1 0.3±.1 – 12.3 501
yo2en MDAE B+BT+F 5.8±.1 0.5±.1 0.6±.0 0.0±.0 – 22.4 501

Table 4: BLEU scores of the best SSNMT configuration (columns 2-4) compared with SSNMT
base, USMT(+UNMT) and a supervised NMT system trained on Laser extractions (columns
5-8). Top scoring systems (TSS) per test set and the amount of parallel training sentences (#P)
available for reference (columns 9-10).

shared space and learn MT, we suspect that the final MT performance on the individual lan-
guage directions is ultimately being held back due to the multilingual noise of other language
combinations. To verify this, we use the converged MDAE B+BT model and fine-tune it using
the B+BT approach on the different en–{af ,...,yo} combinations individually (Table 3).

In all cases, the bilingual finetuning improves the multilingual model, with a major increase
of +4.2 BLEU for en–sw resulting in a BLEU score of 11.6. The finetuned models almost
always produce the best performing model, showing that the process of i) multilingual pre-
training (MDAE) to achieve a cross-lingual representation, ii) SSNMT online data extraction
(SPE) with online back-translation (B+BT) to obtain increasing quantities of supervisory signals
from the data, followed by iii) focused bilingual fine-tuning to remove multilingual noise is key
to learning low-resource MT also on distant languages without the need of any parallel data.

7 Comparison to other NMT Architectures

We compare the best SSNMT model configuration per language pair with the SSNMT baseline
system, and with Monoses (Artetxe et al., 2019), an unsupervised machine translation model
in its statistical (USMT) and hybrid (USMT+UNMT) version (Table 4). Over all languages,
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SSNMT with data augmentation outperforms both the SSNMT baseline and UMT models.
We also compare our results with a supervised NMT system trained on WP parallel sen-

tences extracted by Laser16 (Artetxe and Schwenk, 2019b) (en–{af ,my}) in a preprocess-
ing data extraction step with the recommended extraction threshold of 1.04. We use the pre-
extracted and similarity-ranked WikiMatrix (Schwenk et al., 2021) corpus, which uses Laser
to extract parallel sentences, for en–{ne,sw}. Laser is not trained on kn and yo, thus these
languages are not included in the analysis. For en–af , our model and the supervised model
trained on Laser extractions perform equally well. In all other cases, our model statistically
significantly outperforms the supervised LASER model, which is surprising, given the fact that
the underlying LASER model was trained on parallel data in a highly multilingual setup (93
languages), while our MDAE setup does not use any parallel data and was trained on the mono-
lingual data of much fewer language directions (7 languages) only. This again underlines the
effectiveness of joining SSNMT with BT, multilingual pre-training and bilingual finetuning.

For reference, we also report the top-scoring system (TSS) per language direction based
on top results reported on the relevant test sets together with the amount of parallel training data
available to TSS systems. In case of language pairs whose test set is part of ongoing shared
tasks (en–{kn,my}), we report the most recent results reported on the shared task web-pages
(Section 4). The amount of parallel data available for these TSS varies greatly across languages,
from 37 k (en–af ) to 995 k (often noisy) sentences. In general, TSS systems perform much bet-
ter than any of the SSNMT configurations or unsupervised models. This is natural, as TSS sys-
tems are mostly supervised (Martinus and Abbott, 2019; Adelani et al., 2021a), semi-supervised
(Lakew et al., 2021) or multilingual models with parallel pivot language pairs (Guzmán et al.,
2019), none of which is used in the UMT and SSNMT models. For en2af only, our best con-
figuration and the supervised NMT model trained on Laser extractions outperform the current
TSS, with a gain in BLEU of +16.9 (B+BT), which may be due to the small amount of parallel
data the TSS was trained on (37 k parallel sentences).

8 Discussion and Conclusion

Across all tested low-resource language pairs, joining SSNMT-style online sentence pair ex-
traction with UMT-style online back-translation significantly outperforms the SSNMT baseline
and unsupervised MT models, indicating that the small amount of available supervisory signals
in the data is exploited more efficiently. Our models also outperform supervised NMT sys-
tems trained on Laser extractions, which is remarkable given that our systems are trained on
non-parallel data only, while Laser has been trained on massive amounts of parallel data.

While SSNMT with data augmentation and MDAE pre-training is able to learn MT even
on a low-resource distant language pair such as en–kn, it can fail when a language does not
have any relation to other languages included in the multilingual pre-training, which was the
case for my in our setup. This can be overcome by being conscientious of the importance
of language distance and including related languages during MDAE pre-training and SSNMT
training. We make our code and data publicly available.17
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