
MOL 2021

The 17th Meeting on the Mathematics of Language

Proceedings of the Meeeting

December 13, 2021
University of Montpellier

Montpellier, France (online)

©2022 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-19-2

Introduction

These are the proceedings of the 17th Meeting on the Mathematics of Language (MOL 2021), held online
on December 13, 2021 as part of the federated conference Mathematical Linguistics (MALIN), which
was hosted by the University of Montpellier and organized by Christian Retoré.

The volume contains six papers, which have been selected from a total of thirteen submissions, using the
EasyChair conference management system.

We would like to express our sincere gratitude to the program committee members and the reviewers for
MOL 2021, and to all who helped with the organization of MALIN.

Henrik Björklund and Frank Drewes (editors)

iii

Organisers:

Program Chairs: Henrik Björklund, Umeå University (Sweden)
Frank Drewes, Umeå University (Sweden)
Organizeing Chair: Christian Retoré, University of Montpellier (France)

Program Committee:

Henrik Björklund, Umeå University (Sweden)
David Chiang, University of Notre Dame (USA)
Alexander Clark, King’s College London (UK)
Philippe de Groote, INRIA Nancy – Grand Est (France)
Frank Drewes, Umeå University (Sweden)
Giorgio Magri, CNRS (University of Paris 8 (France)
Carlos Gómez-Rodríguez, Universidade da Coruña (Spain)
Jeffrey Heinz, Stony Brook University (USA)
Makoto Kanazawa, Hosei University (Japan)
Gegory Kobele, University of Leipzig (Germany)
Andras Kornai, Boston University (USA)
Andreas Maletti, University of Leipzig (Germany)
Jens Michaelis, Universität Bielefeld (Germany)
Nelma Moreira, University of Porto (Portugal)
Glyn Morrill, Universitat Politècnica de Catalunya (Spain)
Larry Moss, Indiana University Bloomington (USA)
Gerald Penn, University of Toronto (Canada)
James Rogers, Earlham College (USA)
Mehrnoosh Sadrzadeh, University College London (UK)
Anssi Yli-Jyrä, University of Helsinki (Finland)

Invited Speakers:

Miloš Stanojević, DeepMind London (UK)
Jane Chandlee, Haverford College (USA)

iv

Table of Contents

A Generative Process for Lambek Categorial Proof Nets . 1
Jinman Zhao and Gerald Penn

German Verb Particle Constructions in CCG . 14
Pablo Lopez Alonso

Strong Learning of some Probabilistic Multiple Context-Free Grammars 23
Alexander Clark

More Efficiently Identifying the Tiers of Strictly 2-Local Tier-Based Functions 38
Phillip Burness and Kevin McMullin

Tier-Based Modeling of Gradience and Distance-Based Decay in Phonological Processes 50
Kevin Mcmullin and Phillip Burness

Embedding Intentional Semantic into Inquisitive Semantics . 64
Philippe de Groote and Valentin D. Richard

v

A Generative Process for Lambek Categorial Proof Nets

Jinman Zhao and Gerald Penn
Department of Computer Science

University of Toronto
Toronto, Canada

{jzhao,gpenn}@cs.toronto.edu

Abstract

In this work, we present a stochastic, generative
model for Lambek categorial proof sequents
(Lambek, 1958). When a set of primitive cat-
egories is provided, this model, called PLC
is able to generate all sequents of categories
that are derivable in the Lambek Calculus with
it. We also introduce a simple method to nu-
merically estimate the parameters of the model
from an annotated corpus. Then we compare
our model with probabilistic context-free gram-
mars (PCFGs). We show that there are several
trade-offs with respect to using PLC in place of
PCFG. Overall, PLC provides a layer of gener-
alization in exposing numerical parameters of
the formalism that is not directly accessible to
PCFGs.

1 Introduction

Stochastic variants of different grammars have been
proposed over the last several decades, and stochas-
tic methods are very important for natural language
processing. For example, stochastic context-free
grammars (Huang and Fu, 1971), also known as
probabilistic context-free grammar(PCFG), assign
a probability to each production rule, normalized
over their left-hand sides. Maximum Likelihood Es-
timation (MLE) and the Inside-Outside algorithm
(Lari and Young, 1991) can be used to estimate
these rule probabilities, given a training set. Other
stochastic models have been proposed for Combi-
natory Categorial Grammar (Osborne and Briscoe,
1997). Bonfante and de Groote (2004) proposed a
stochastic model for Lambek Categorial Grammar.
In their work, probabilities are assigned to each leaf
of a proof net, with the interpretation that a leaf
will appear as the left conclusion of an axiom link
with this probability. Probabilities are not attached
to derivation rules and their model is fully lexical-
ized. It is not, however, generative, in the sense
that it cannot deterministically produce proof nets

from no input. In this respect, it more resembles
a supertagger or an automaton-based probabilistic
model, such as those that have been proposed for
TAG (Bangalore and Joshi, 2010) or dependency
grammar (Kübler et al., 2009). These are very use-
ful for parsing. On the other hand, it would still
be very instructive to have a generative process for
Lambek proof nets more akin to a PCFG.

Pentus proved that both Lambek Grammars and
product-free Lambek Grammars are context-free
(Pentus, 1993, 1997). Using those constructive
proofs, it is possible to convert a PCFG to a gener-
ative model of Lambek sequent derivability. The
conversion takes exponential time as a function of
the original PCFG’s size, however, and what the
numerical parameters of the PCFG correspond to
in terms of proof nets provides little additional illu-
mination. What we propose here is a “native” gen-
erative process defined directly for Lambek proof
nets.

While the incremental enforcement of certain
semantic criteria as necessary side conditions to
proof-net construction (Roorda, 1991) is very diffi-
cult when a candidate sequent is known at the out-
set (leading, in one view, to the NP-completeness
of the sequent derivability problem), in the genera-
tive orientation, it turns out not to be so difficult, as
we show below. We also provide a simple param-
eter estimation method, and compare the results
of training a PLC model through MLE to those of
training a PCFG on an analogous annotated corpus.

2 Preliminaries

2.1 Lambek Calculus

The Lambek calculus was introduced by Lambek
(1958). Given a set of primitive types, Prim =

{p1, p2, p3, ...}, and, in this work, only the two
connectives \, /, we have the following rules:

Proceedings of the 17th Meeting on the Mathematics of Language, pages 1–13, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

1

ΓX → Y
Γ→ Y/X

(/R)

XΓ→ Y
Γ→ X\Y (\R)

Γ→ X ∆YΘ→ Z
∆Y/XΓ→ Z

(/L)

Γ→ X ∆YΘ→ Z
∆ΓX\YΘ→ Z

(\L)

Γ→ X ∆XΘ→ Y
∆ΓΘ→ Y

(CUT)

along with the axioms, pi → pi, for primitive types
only. Note that we use the formulation of Pentus
(1993). His restriction of these axioms to primi-
tives will be important to us below. The primitive
types, together with their closure under the avail-
able connectives, will be called categories.

We take Lambek Categorial Grammar(LCG) to
be a 3-tuple G = (Σ,D, f), where Σ is a finite al-
phabet, D is a distinguished category, and f is a
mapping of members of the alphabet t ∈ Σ to a
single category, where the possible categories have
been derived from the set Prim by induction over
the connectives. Note that this is a departure from
Pentus (1993), in that there is no lexical ambiguity
here, as our input will consist of candidate proof se-
quents, in which a single category is already known
for each word. In general, f (t) is a finite set of
categories. Lambek (1958) did not define lexical
mappings.

2.2 Proof Nets
Roorda (1991) adapted the proof nets of linear logic
to the Lambek calculus. The treatment here is taken
from Penn (2004). A (Lambek) proof net consists
of a lexically unfolded sequence of terminal formu-
lae, a spanning linkage of the resulting sequence of
axiomatic formulae and a variable substitution.

As a running example of how to parse with a
proof net, let us consider the sequent:

S/(NP\S) (NP\S)/NP NP |= S

2.2.1 Labelled Terms
Given a sequent, the first step is to add polarities to
each category. By convention, all LHS categories
receive negative polarity and the RHS category re-
ceives positive polarity. We also label each formula
with a variable. The result on our example would
be:

S/(NP\S)−:a (NP\S)/NP−:b NP−:c S +:d

2.2.2 Lexical Unfolding
We then apply the following substitution rules to
each labelled category from the previous step until
no more rules can be applied:

(A\B)−:t → A+:u B−:tu

(A\B)+:v→ B+:v′ A−:u[v := λu.v′]
(A/B)−:t → A−:tu B+:u

(A/B)+:v→ B−:u A+:v′[v := λu.v′]

Here, we are expanding every labelled category
into a string of labelled categories until only primi-
tive labelled types remain. Note that when positive-
polarity categories unfold, they add new variables,
u and v′. We will refer to v as a lambda node
or lambda variable when this happens, in honour
of the correspondence between these labels and
lambda-terms in the corresponding labelled deduc-
tion system (Roorda, 1991). u and v′ will likewise
be referred to as the daughters of v.

The above example produces:

Note that negative-polarity categories are gener-
ally labelled with strings of variables, not merely
one variable.

2.2.3 Axiomatic Linkage
Next, we must link matching primitives of opposite
polarities together in a half-planar graph. Each
polarized primitive must be linked exactly once.
One possible linkage for the above example is:

The edges of this half-planar graph will be
known as axiom links.

2.3 LC-graph construction
The first two steps in this process are guaranteed
to succeed exactly once. The third step is not —
a half-planar linkage may not exist or more than
one may exist. Furthermore, even if one does exist,

2

the fourth step below, which can be undertaken in
parallel, may fail, requiring the search for more
half-planar linkages to continue.

Given a sequence of axiomatic formulae and
a partial linkage, every link induces the addition
of one or more edges to an LC-graph, in which
every node corresponds to a single variable in the
category labels.

Let the candidate sequent’s LC-graph be a di-
rected graph G = 〈V, E〉, such that V is the set of
all variables that appear in its category labels and
E is the smallest set such that:

• for every v ∈ V , if v is a lambda-variable,
then for both daughter variables of v, u and v′,
(v, u) ∈ E, and (v, v′) ∈ E, and

• for every axiom link matching p+ : u and
p− : t and for every v in the string t, (u, v) ∈ E.

The LG-graph for above linkage and sequence
of axiomatic formulae is:

2.3.1 Integrity Criteria
Penn (2004) proved that an LCG sequent is deriv-
able iff the following three criteria are true of the
LC graph, G, of some axiomatic linkage:

• I(1) there is a unique node in G with in-
degree 0, from which all other nodes are path-
accessible.

• I(2) G is acyclic.

• I(3) for every lambda-node v ∈ V , there is a
path from its plus-daughter, v′, to its minus-
daughter, u.

• I(CT) for every lambda-node v ∈ V , there
is a path in G, v x, such that x labels a
negative-polarity category, x has out-degree 0
and there is no lambda-node v′ ∈ V such that
v v′ → x.

The second criterion can be enforced incremen-
tally. In general, it appears that the others may

result in a violation that would cause backtrack-
ing and the selection of other axiomatic links in
the third step. The value of annotating proof nets
with probabilities inheres in its ability to direct us
towards axiom links that are likely to lead to the
successful construction of a proof net.

3 Generative Process

A generative process is not necessarily just for pars-
ing. It can begin with no input whatsoever, and gen-
erate a derivable sequent, along with a numerical
score that could correspond to the probability of a
corresponding string of words. It can also be made
to backtrack after every output sequent, thereby
enumerating an infinite sequence of derivable se-
quents.

Note that in our formulation of the generative
process here, however, there is no guarantee that a
sequent in fact corresponds to a string of words. To
achieve this, we must condition our process to stop
only at categories that are attested in the lexicon.
What we present here is a generative process for
derivable sequents.

To generate any well-formed sequent, we may
begin only with p → p, for a primitive type p.
Note that p is not required to be D, the distin-
guished category of an intended grammar, and be-
cause there is no requirement that D be primitive,
some choices of D will not be allowed here. Never-
theless, because well-formed proof nets are closed
under cyclic permutations of their polarized prim-
itive categories, we can assume without loss of
generality that the right-hand side of the generated
sequent is a primitive category.

Our generative process proceeds in two phases.
Both expand the proof net as well as its correspond-
ing LC graph. The first phase adds non-lambda
nodes to the LC graph, and the second phase adds
lambda nodes to the LC graph. Corollary 4.14 will
prove that any proof net can be generated in this
fashion: all of the non-lambda nodes first, followed
by all of the lambda nodes.

Adding non-lambda nodes affects the number of
axiomatic formulae; adding lambda nodes does not.
Unlike the method outlined in the previous section
for derivability when an input candidate sequent is
given, the correctness conditions of the LC-graph
will be satisfied throughout the derivation. They
will therefore be satisfied in the final proof net.

We will need the following definition for grow-
ing larger categories from smaller categories:

3

Definition 3.1 (Term tree). Every labelled cate-
gory in a sequent corresponds to a binary tree of
labelled categories. Each subtree in the term tree is
rooted in a labelled category X+/− : v, where X is
a category and v is a sequence of variables. Every
interior subtree has a positive child and a negative
child, and is licensed by one of the rules shown in
Section 2.2.2.

Figure 1 shows the term tree of (A/B)/C− : a as
an example. Unlike Section 2.2.2, we will think
of term trees as corresponding not to top-down
unfoldings of complex categories, but to bottom-
up compositions of more complex categories from
simpler categories.

(A/B)/C−:a

C+:bA/B−:ab

B+:cA−:abc

Figure 1: An example term tree.

3.1 Adding Non-lambda Nodes

This phase of the process consists of the iteration
of the following steps in sequence zero or more
times, until we elect to stop. Each iteration will
add one more link and one more matching pair of
axiomatic primitives (of opposite sign).

Suppose, for example, that we have already de-
rived the following proof net:

We first pick any negative term (not a subterm)
from the existing sequent, e.g., f1 = A− : a, as the
redex. Then we add two new, adjacent polarized
primitives, connected by a new link of distance 1
to the immediate left or immediate right of that
redex. Both new primitives will have a different,
new variable as their labels. The new positive prim-
itive should be the closer of the two to the negative
redex.

We then combine the positive primitive and the
redex to form a new complex, negative category. At
the same time, we give this new complex category
the old semantic label of the redex, and assign the
string consisting of this old label followed by the

fresh variable on the new positive primitive as the
new label of the redex.

In our example, suppose we elect to add the new
primitives to the right of f 1. Then we have:

We add a link to join f 2 and f 3, and create a new
formula f 4 = (A/B)/C− : a. In different words,
we combine f 1 and f 2 into a larger term tree with
the root, f 4.

Then we replace the label on f 1 with ae. We
also replace a with ae in all of the descendants of
f 1’s term tree, if any.

We could have instead added f 3 = C− : f and
f 2 = C+ : e (in this order) on the left of f 1, and
joined f 2 and f 1 with f 4 = (C\A)− : a.

Regardless of the choice of left or right, we must
also modify the corresponding LC-graph:

1. Add new nodes e and f ,

2. for the unique value of x for which there is
already an edge (x, a), add a new edge (x, e),
and

3. add the new edge (e, f).

These measures will retain the correctness cri-
teria in the LC-graph because, in this phase, there
are no lambda nodes yet. So the new sequent will
be derivable in the Lambek calculus if the sequent
that began this iteration was.

We can repeat these steps as many times as we
like in the first phase, and then decide to stop. If we

4

apply zero iterations of the first phase, we cannot
apply any iterations of the second phase either, and
we will be left with the sequent p→ p.

3.2 Adding Lambda Nodes
Like the first phase, the second phase consists of
the iterative application of a sequence of steps that
we may elect to apply any number of times.

Every step in the second phase will preserve
the number of axiomatic primitives and links, but
will add one more lambda node. The following
definition is useful:

Definition 3.2 (Anterior node). An anterior node,
a, in an LC-graph is a positive node for which there
is no lambda node on the path that leads from the
root to a apart from possibly a itself.

Definition 3.3 (Terminal node). A terminal node, t,
in an LC-graph is a node with an out-degree of 0
and in-degree of 1.

In Figure 2, j and i are both lambda nodes, but
only j is an anterior lambda node. a, c, e and g
are all positive non-lambda nodes, but only a, the
root, is anterior. b and d are terminal nodes. f and
h are negative, but not terminal because of their
in-degrees. Terminal nodes are always negative
because of their out-degree. Because of the restric-
tion on their in-degrees, they correspond exactly to
the labels of the LHS categories of the sequent.

Figure 2: An example LC graph.

Figure 3: Running example for adding lambda nodes.

The redex, x1, in each step of this phase will
always be a positive node in the LC-graph that
satisfies two other requirements:

1. x1 is anterior, and

2. x1 has more than one terminal descendant.

Let f 1 be the term or subterm labelled with x1
(i.e. f 1 = X+

1 : x1) in the proof net. We can do
the following to the proof net (take Figure 3 as an
example):

1. Let S be the set of terminal LC-graph nodes
that are path-accessible from x1.

2. Pick x2 ∈ S as an outermost (either leftmost or
rightmost) variable in S , arranged by the order
of the elements in S within the current sequent.
Let f 2 be the (sub)term labelled with x2 (i.e
f 2 = X2− : x2). In the running example, we
choose x2 to be the leftmost variable.

3. Create new formula f 3 = X2\X1+ : x3, with
f 1 as the left child of f 3 and f 2 as the right
child of f 3. Insert f 3 into the unfolding below
f 1.

4. Update the categories in f 3’s ancestors.

5. Replace x1 with x3 in all terms that are de-
scendants of f 3’s parent but not of f 3.

5

In our example, we could have alternatively cho-
sen x2 = d, the rightmost variable in S , in which
case f 3 = X1/X2+ : x3, with f 2 as the left child f 1
as the right child.

With either choice, we then modify the corre-
sponding LC-graph:

1. Add x3 as a new lambda node.

2. If x1 is not the root, then for the unique y such
that (y, x1), replace this edge with (y, x3). If
x1 is the root, do nothing.

3. Add edges (x3, x1) and (x3, x2).

Because x1 was chosen to have more than one
terminal descendant, Lemma 4.2 in the next section
ensures that, after this step, the integrity criteria of
the LC-graph are still satisfied. So the new sequent
will be derivable in LCG.

3.3 End-to-end Example

Figure 4 and Figure 5 depict the first and second
phases, respectively, of a run of the generative pro-
cess.

4 Coverage

Theorem 4.1. Every sequent that is derivable
in the product-free Lambek calculus is derivable
through the PLC generative process.

All derivable sequents are witnessed by a valid
proof net P paired with a corresponding LC-graph
G. We will prove the above theorem in this section,
by induction on the number of nodes in G. The
base case, sequents of the form A |= A, where A is a
primitive, are trivial to generate. In other instances,
it suffices to show that every sequent, consisting of
a valid proof net, P with corresponding LC-graph,
G, can be derived from some other sequent (P′,G′)
by running one more iteration of either the first
phase or the second.

We will consider the following two cases: G
contains lambda nodes, and G contains no lambda
nodes.

(a) initialization.

(b) first phase, first iteration.

(c) first phase, second iteration.

(d) first phase, third iteration.

Figure 4: An example run of non-lambda node genera-
tion.

4.1 LC-graph contains lambda nodes

Lemma 4.2. In any integral LC-graph, for any
anterior lambda node v, there must be at least one
terminal node v′ such that v v′.

Proof. Every lambda node has two immediate de-
scendants, one positive and one negative, and only
these negative immediate descendants have in-
degrees of more than 1 (specifically, 2). If all neg-
ative nodes v′ such that v v′ had indegrees of
2, then they would all be negative immediate de-
scendants of lambda nodes. Because v is anterior,
those lambda nodes cannot be ancestors of v, and
therefore must be v itself or descendants of v, and
thus the x implied by I(CT) does not exist. �

Lemma 4.3. If x, y are positive, w is negative, x
w and y w, then either x y or y x.

Proof. If w is the negative immediate descendant
of a lambda node, z, then it is possible that one of
x, y reaches w via z, and the other reaches it via the
positive sibling of w, q, by I(3). But z→ q, and so
the result holds.

If w is not the negative immediate descendant
of a lambda node, then its in-degree is 1 and its
ancestors are all positive, with in-degrees of 1. So
again the results holds. �

6

(a) second phase, first iteration.

(b) second phase, second iteration.

Figure 5: An example run of lambda node generation.

Lemma 4.4. In any integral LC-graph, G, for any
nodes a, b, c ∈ G, if a 6 b and b 6 a, then there
is no c such that a c and b c.

Proof. The only nodes with in-degrees greater than
1 (i.e., negative immediate descendants of lambda
nodes) have out-degrees of 0. Thus if there were
such a c, it would need to be a negative immediate
descendant of some lambda node, d, itself. But
even in this case, either a d b or b d a
because of I(3). �

Lemma 4.5. For each term tree T in P, if f 2 =

F2+/− : y is a subterm of f 1 = F1− : x in T such
that |y| = 1 and there is no positive subterm of
f 1 of which f 2 is a proper subterm, then for any
ancestor, w, of x in G, w y in G.

Proof. If f 1 = f 2, then x = y. Otherwise, the
action of the negative unfolding rules on f 1 guar-
antees that the primitive negative term label that
reflects x will also reflect y, and so any node in G
that leads to x through an axiom link also leads to
y. We may consider the case when x is the neg-
ative immediate descendant of a lambda node, z,
to be exceptional, because z points directly to x
as a result of the action of the positive unfolding
rules. But even in this case, by I(3), z x through
its positive immediate descendant, and thus also
through an axiom link. �

Lemma 4.6. For each term tree T in P, if f 2 =

F2+/− : y is a subterm of f 1 = F1+ : x in T , where
x is a lambda node and |y| = 1 (a variable), then
x y in G.

Proof. If f 1 = f 2, then x = y. Otherwise, because
x is a lambda node, it has a positive immediate
descendant, a, and negative immediate descendant,
b, in G. b, in particular, corresponds to the negative
immediate subterm of f 1, f 3 = F3− : b. If f 2 = a
or f 2 = b, the lemma follows from the action of
the positive unfolding rules.

Otherwise, we can obtain the result by induction
on the number n of positive subterms of f 1, q, for
which f 2 is a proper subterm of q. In the base case,
n = 1, f 2 is nested inside exclusively negative
subterms of f 3, and so by Lemma 4.5, x y.

If n > 1, then let f 4 = F4+ : z be the smallest
positive subterm containing f 2 other than possibly
f 2. By induction, x z in G. Because f 4 contains
f 2, F4 is not primitive, and so z is a lambda node.
Thus again by induction, z y. �

Lemma 4.7. For each term tree T in P, if f 2 =

F2+/− : y is a proper subterm of f 1 = F1− : x in
T , if |y| = 1 (a variable), then for any ancestor, w,
of x in G, w y in G.

Proof. Proof by induction on the number n of pos-
itive subterms of f 1, q, such that f 2 is a proper
subterm of q. The base case, n = 0, follows by
Lemma 4.5.

Otherwise, n > 0. Again, let f 3 = F3+ : z be
the smallest positive subterm of T containing f 2
except possibly f 2. By induction, every ancestor
of x, w z in G. Because f 3 contains f 2, F3 is
not primitive, and so z is a lambda node. Thus the
result follows by Lemma 4.6. �

Lemma 4.8. For every sequent with a primitive
right-hand side p+ : r, the axiom link emanating
from p+ : r is incident to the axiomatic reflection
of the label of some left-hand side term, i.e., r → b
in G, for some left-hand side term, B− : b.

Proof. The axiom link must be incident to a
negative-polarity primitive in the unfolding, which
is either labelled with a string that includes the la-
bel of some left-hand side term, or with a string
that includes the negative immediate descendant of
some lambda node. In the latter case, the negative
immediate descendant would be cut off from its
positive immediate descendant sibling, in violation

7

of I(3), because p is primitive (and so there are no
paths that would transit to b via r). �

Lemma 4.9. Let X be the set of all axiomatic for-
mulae of P, v be an anterior lambda node in G,
and D(v) be the set of terminal nodes w in G for
which v w in G. Given a set of nodes, V,
let Q(V) = X ∩ { f | there exists a formula f 1
with a label in V and f as one of its subterms
in some term tree}. Divide X into two subsets:
X1 = Q({v}) ∪ Q(D(v)) and X2 = X\X1. There
is no axiomatic link connecting one formula in X1
with another one in X2.

Proof. If v is the root of G, then X1 = X and
X2 = φ. Otherwise, suppose there is such a link
connecting x1 ∈ X1 and x2 ∈ X2. Let A−/+ : a be
the root of the term tree that contains x2.

Case 1: a is positive. A must be a primitive,
otherwise, a would be a lambda node, and thus
the only anterior node in G would be a itself. So
x2 = A+ : a. By Lemma 4.8, there exists a negative
node b that labels the root of some term tree in G
such that a→ b. Let R− : r be the root of the term
tree that contains x1. If b = r, then by Lemma 4.7,
b is the label of both x1 and its witness, f 1. b , v
(wrong polarity), and so b ∈ D(v), v b, and
because b is terminal, v a, which would mean
that G has a cycle. Thus b , r, but then b labels the
root of a different term tree, and so x2 = a 9 x1
after all. But a is the root of G, and so x19 a = x2
either.

Case 2: a is negative, and so it labels a left-hand-
side term in the sequent, and thus it is terminal. So
there exists a unique node b such that b → a in
G. Because a dominates x2 ∈ X2, v 6 a, and so
v 6 b. Furthermore, every node in the label of
x1 is accessible from v. If x1 ∈ Q({v}), then this
follows from Lemma 4.6. If x1 ∈ Q(D(v)), then
it follows from Lemma 4.7 and the definition of
D(v).

Case 2a: b 6 v either. By Lemma 4.4, there is
no node v′ in G such that v v′ and b v′. A
link between x1 and x2 will guarantee that there is
such a v′, however, because, by Lemma 4.7, every
node in the label of x2 is accessible from b.

Case 2b: b v. First, we begin by noting that
x2 cannot simultaneously be negative and contain
a in its label, or else the label of x1 is a single node
that points to a, and hence v a. So there must
be a positive C+ : c subterm of A− : a which in
turn contains x2 as a subterm. Choose the highest

such subterm. Then because c is in the negative
reflection of a, b→ c. Furthermore, either c is the
label of x2 or, by Lemma 4.6, every node of x2 is
accessible from c.

Let w be the negative member of {x1, x2} and
the target of the link between them. The nodes
labelling w are accessible from both v (via x1) and
c (via x2). By Lemma 4.3, either v c or c v.

If v c, then recall that both b→ c and, by as-
sumption, b v, which means either v = b, which
contradicts v 6 a, or v = c, which contradicts
x2 ∈ X2. If c v, then because v is anterior, c is
the label of x2, which is positive, and therefore the
source of the link between x1 and x2. As a result,
the nodes of x1 are accessible from v, and imme-
diately accessible from x2. Similar to the proof of
Lemma 4.3, This might happen if x1 is the negative
immediate descendant of some lambda node, z, but
now we know that x1 and x2 are connected by an
axiom link, and so v z and, by I(3), z x2 = c.
Thus v = c, which is again a contradiction. �

Lemma 4.10. For every anterior lambda node v in
G, the LHS terms labelled by each of v’s accessible
terminal nodes must be contiguous in the sequent.

Proof. This follows from Lemma 4.9. The terms
that are labelled by each of the D(v) are not con-
nected by axiom links to the other terms, with the
exception of the term that contains v itself, and
even then only to the subterm rooted at v. If some
of these other terms were interspersed among the
former, then either the linkage would not be half-
planar, or the underlying LC-graph would not be
connected. Even the term that contains v itself can-
not appear between two terms labelled by members
of D(v), because either v itself, which is positive,
is the label of the term, and so must be the RHS
category of the sequent, or it is not, in which case
part of that term resides in X2, leading to the same
contradiction. �

Theorem 4.11. If G contains at least one lambda
node, then (P,G) could have been generated in
PLC from a proof net with any arbitrary anterior
lambda node removed.

Proof. Suppose v is the variable of the anterior
lambda node in G, b is its negative immediate de-
scendant in G and a, its positive immediate descen-
dant.

8

(a) Case 1. (b) Case 2.

(c) Case 3. (d) Case 4.

Figure 6: Four cases of the respective ordering of f 2, f 3 and the contiguous subsequence of terms labelled with
accessible terminal nodes, as given by Lemma 4.10 (depicted with a rectangle).

Let f 1 be the formula labeled with v, f 2 be the
formula labeled with b and f 3 be the formula la-
beled with a. In the parlance of Lemma 4.9, X1
consists of f 2, f 3, and the subsequence of terms
labelled by the accessible terminal nodes of v. By
Lemma 4.10, this subsequence is contiguous. By
Lemma 4.9, the axiom links that have one side in-
cident to any of these have both sides incident to
these. There are therefore 2 × 2 × 2 = 8 possible
combinations: (1) whether f 2 occurs to the left or
right of f 3, (2) whether the leftmost (resp. right-
most) axiomatic reflection of f 2 connects to f 3 or
to a reflection within the contiguous subsequence
and (3) whether the contiguous subsequence oc-
curs to the left or right of f 1. For brevity, Figure 6
shows the four possible cases in which we choose
“left” for (3) — the other four are the symmetric
duals of these.

In each case, such a derivation exists through a
single iteration of the second phase of the genera-
tive process, as shown in Figure 6.

Note: the contiguous subsequence is, in fact,
the left-hand side of the subsequent that derives
f 1. �

4.2 LC-graph does not have lambda nodes
Lemma 4.12. For an arbitrary valid proof net P
with its corresponding LC-graph G, if G does not
contain any lambda node, then the sequent must be
one of:

A |= A

or
..., φ/A, A... |= ...

or
..., A, A\φ.... |= ...

where A is a primitive and φ is any category.

Proof. By structural induction on the proof of the
sequent. We will refer to A as a reduction point in
the sequent. �

Theorem 4.13. If G has at least three nodes and
contains no lambda nodes, then (P,G) could have
been generated in PLC from a proof net with any
arbitrary reduction point removed.

Proof. If G contains only two nodes, then the se-
quent must be A |= A. According to Lemma 4.12,
in the second case, a reduction point exists, and
corresponds to the result of a non-lambda-node ad-
dition step in PLC, as shown in Figure 7. Note that

9

the term trees involving the reduction point must
be adjacent in the sequent.

Figure 7: Formula f , f1 and f2 in proof net.

The third case is symmetric to the second. �

Corollary 4.14. Any proof net and its correspond-
ing LC-graph can be generated by starting with
p→ p, followed by a sequence of steps of adding
non lambda nodes then followed by a sequence of
steps of adding lambda nodes.

Proof. by Thm 4.11 and Thm 4.13, we can always
put steps of adding non lambda nodes before the
steps of adding lambda nodes. �

5 Adding Probability

Maximum likelihood parameter estimation can like-
wise be accomplished by separately parameterizing
the two phases.

5.1 Phase 1: Adding Non-lambda Nodes
The first phase iteratively picks a category A and
expands it to either A/P · P or P · P\A for some
primitive P. So for all primitives P, we must assign
a probability to these two expansion schemes, as
well as to A → A, which means that A has been
skipped with no expansion. The estimates are then
simply the relative frequencies with which these
rules have been chosen in this phase.

Below is a tiny example corpus with only two
proof nets and one primitive:

p1 : N1/N2 N3 |= N4
axiom links : (1, 4), (2, 3)
p2 : N1/N2 N3 N4\N5 |= N6
axiom links : (3, 4), (2, 5), (1, 6)

Here, the primitive category is N, and the numbers
index the instances of it within the sequent.

For p1, we start from N1 |= N4, and proceed
with these steps:

1. N1→ N1/N2 N3

2. N1/N2→ N1/N2 (no expansion)

3. N3→ N3 (no expansion)

For p2, we start from N1 |= N6, and follow with
these steps:

1. N1→ N1/N2 N5

2. N5→ N3 N4\N5

3. N1/N2→ N1/N2 (no expansion)

4. N3→ N3 (no expansion)

5. N4\N5→ N4\N5 (no expansion)

Between the two derivations, there are a total of 8
steps, and so we can conclude that:

1. P(A→ A/N N) = 2
8

2. P(A→ A) = 5
8

3. P(A→ N N\A) = 1
8

Using this distribution, we know that:

P(p1) = 2
8 × 5

8 × 5
8 = 25

256
P(p2) = 2

8 × 1
8 × 5

8 × 5
8 × 5

8 = 125
16384 .

5.2 Phase 2: Adding Lambda Nodes
Once every category has been touched with a deci-
sion not to expand, it is time to start adding lambda
nodes in the second phase. Let us modify the above
corpus so that it requires a second phase, and yet
can be derived through an identical sequence of
steps as in the first phase:

p1 : N1/N2 |= N4/N3
axiom links : (1, 4), (2, 3)
p2 : N1/(N3\N2) N4\N5 |= N6
axiom links : (3, 4), (2, 5), (1, 6)

Both p1 and p2 contain one lambda node. During
the second phase, we must first determine the place
to add a lambda node, and then select either (\R) or
(/R). p1 applies (/R) once and p2 applies (\R) once.
So, for this corpus, P(/R) = P(\R) = 1

1+1 = 1
2 .

The only remaining problem is how to determine
where to add lambda nodes. Once this problem is
solved, then:

P(p1) = 25
256 × P(pick positions in p1) × P(/R)

P(p2) = 125
16384 × P(pick positions in p2) × P(\R)

Now we will present our method for selecting
places to add lambda nodes.

Definition 5.1 (Breakable). A node v in an integral
LC-graph is breakable iff we can first:

10

1. if v is not the root, add a lambda node a be-
tween the edge u→ v, or

2. if v is the root, add a lambda node a such that
a→ v,

then pick a terminal node w such that v w, then
add (a,w), and the integrity of the LC-graph is
preserved.

If v can be picked as x1 in Section 3.2, then it is
breakable, but the inverse may not be true.

Lemma 5.1. An LC-graph satisfies I(CT) iff for
every lambda node v:

| {u | u lambda node & v u} |
< | {w | w negative & v w} | .

Proof. Every lambda node u points to its positive
immediate descendant. So:

| {u | u lambda node & v u} |
≤ | {w | w negative & v w} | .

And the node x asserted by I(CT) is a negative node
that is not accessible from any lambda node. So
the inequality is strict. �

Lemma 5.2. A node v is breakable iff:

| {u | u lambda node & v u) + 1} |
< | {w | w negative & v w} | .

Proof. This readily follows from Lemma 5.1. �

Theorem 5.3. If a node v is breakable, then picking
it as x1 during Section 3.2 will not change the
breakability of any node u such that v 6 u.

Proof. If u 6 v, the constraints of breakability
in Lemma 5.2 will not be changed. If u v,
then the constraints of Lemma 5.2 must have been
satisfied both before and after adding the lambda
node. So in both cases, the breakability of u will
not change. �

So in the second phase, we will add lambda
nodes from bottom to top. So we first gather all
breakable nodes into a set denoted as S . During
each iteration, we find the subset U ⊆ S with max-
imum depth. We then either apply Section 3.2 by
picking nodes in U or reject U as candidates and
jump to the next lower lower depth. Thus, we need
a probability p that a given breakable node will be
selected. Eventually S will be empty. Here is the
algorithm:

Algorithm 1: Redex selection during the
second phase.

Result: proofnet and LC-graph
1 S = all breakable nodes;
2 while S is not empty do
3 MaxDepth = max depth o f node in S ;
4 U = {u|u ∈ S , u′s depth = MaxDepth};
5 S = S \U;
6 while U is not empty do
7 u = pick node f rom U uni f ormly;
8 f lag = S ample f rom Bernoulli(p);
9 if flag==1 then

10 let u be x1 and add lambda node a;
11 U = U − u;
12 if a is breakable then
13 U = U + a;
14 end
15 else
16 U = U − u;
17 end
18 end
19 end

The set U is finite, so lines 6–18 will eventually
terminate. During each iteration of line 2–19, the
size of S strictly decreases, so the entire algorithm
eventually terminates.

At line 4, @u, v ∈ U such that u , v and u v.
During lines 6–18, denote U i as the U at line 6 and
at iteration i. For all u ∈ U i, all v ∈ U i+1, u 6
v. Theorem 5.3 ensures that lines 9–17 will not
change the breakability of the nodes in U i+1. Also,
if we denote U i as the U in line 4, the nodes in
U i+1 have smaller depth, so for all u ∈ U, all v ∈
U i+1, u 6 v. Theorem 5.3 also ensures lines 3–18
will not change the breakability of the nodes in
U i+1.

Returning to our tiny corpus, during the second
phase, p1 traverses lines 10–14 once and line 16
zero times, while p2 traverses lines 10–14 once
and line 16 once. Therefore p= 2

3 . Thus:

P(p1) = 25
256 × 2

3 × 1
2 = 25

768
P(p2) = 125

16384 × 2
3 × 1

3 × 1
2 = 125

147456 .

6 Experimental Investigation

6.1 Dataset
We trained and tested our probabilistic generative
model on LCGbank (Fowler, 2016), a conversion of
CCGbank (Hockenmaier and Steedman, 2007) to
LCG. CCGbank is in turn a conversion based upon
the Penn TreeBank (Marcus et al., 1993). We use
LCGbank section 23, which contains 2416 proof
nets as the test set. For the training set, we use
sections 1-22 and 24 which contain 44870 proof

11

nets. LCGbank uses the 5 primitives, ”S”, ”NP”,
”N”, ”conj” and ”PP”. The number of tokens is
slightly different between CCGbank and PTB for
the following two reasons:

• Some tokens like punctuation do not have cat-
egories in CCGbank. So we ignore those to-
kens in both LCGbank and PTB.

• Tokens like ”interest-rate” count as one token
in CCGbank but count as three in PTB.

6.2 Comparison with Probabilistic Context
Free Grammar

Since our model uses MLE, we also estimate the
parameters for a PCFG using MLE on the PTB (us-
ing the same sections as the training and test set).
Also, we exclude the lexica for both the PCFG and
PLC. For the PCFG, the task is merely to gener-
ate sequences of POS tags, and for PLC, it is to
generate sequents with the right-hand side of S .

Our model can generate every sequence in the
test set because all primitives in the test set had
been seen in the training set. Thus it can also as-
sign a positive probability to every proof net in
the test set. Some production rules in the PTB
test set, however, never appear in the training set,
and so PCFG fails to assign a non-zero probability
to some sentences in the test set. Table1 shows
that 260 sentences have zero probability in the re-
sulting PCFG. On the other hand, the majority of

PCFG PLC
P ≥ 0 2144 2416
P = 0 272 0

Table 1: Number of sentences receiving positive and
zero probabilities.

sentences assigned a non-zero probability by both
PLC and PCFG are assigned a lower probability
by PLC than by PCFG. Table2 shows the number
of cases (excluding zero-probability cases) that re-
ceive larger and smaller probabilities using PCFG.
Table 3 shows the log probability of the entire test
set (sum of log probability of each sentence) di-
vided by the number of tokens. This evidence is
consistent with the conclusion that PLC spreads
probabilities more evenly across the seen and un-
seen category sequences induced by the set of prim-
itives, at the expense of the data likelihood of the
corpus.

Positive Negative
1964 180

Table 2: Number of sentences for which p(PCFG) −
p(PLC) is positive and negative, respectively.

PCFG PLC
-2.95 -4.06

Table 3: Log probability of test set normalized by the
number of tokens.

7 Conclusion and Future work

In this work, we have presented a probabilistic
generative model for sequent derivability in the
Lambek calculus. Any sequent that is derivable
in the Lambek Calculus can be generated by our
model. We also compared PLC with PCFG using
MLE, both trained and tested on comparable cor-
pora. The results show a trade-off to using PLC, in
which the probabilities are more evenly distributed.

This probabilistic model may be used to parse
with Lambek Grammar, although further investi-
gation of early stopping when categories expand
outside the coverage of the lexicon is still needed.

Another advantage of numerically parametrizing
a grammar is to improve the speed of parsing, typi-
cally by forcing early failures. This is a direction
that we have not yet pursued.

References
S. Bangalore and A. Joshi, editors. 2010. Supertagging:

Using Complex Lexical Descriptions in Natural Lan-
guage Processing. MIT Press.

G. Bonfante and P. de Groote. 2004. Stochastic lambek
categorial grammars. Electronic Notes in Theoretical
Computer Science, 53:34–40.

T. A. Fowler. 2016. Lambek Categorial Grammars
for Practical Parsing. Ph.D. thesis, University of
Toronto.

J. Hockenmaier and M. Steedman. 2007. CCGbank: A
corpus of CCG derivations and dependency structures
extracted from the Penn Treebank. Computational
Linguistics, 33(3):355–396.

T. Huang and K.S. Fu. 1971. On stochastic context-free
languages. Information Sciences, 3(3):201–224.

S. Kübler, R. McDonald, and J. Nivre. 2009. Depen-
dency Parsing. Synthesis Lectures on Human Lan-
guage Technologies. Morgan & Claypool.

12

J. Lambek. 1958. The mathematics of sentence
structure. The American Mathematical Monthly,
65(3):154–170.

K. Lari and S.J. Young. 1991. Applications of stochas-
tic context-free grammars using the inside-outside
algorithm. Computer Speech & Language, 5(3):237–
257.

M. P. Marcus, B. Santorini, and M. A. Marcinkiewicz.
1993. Building a large annotated corpus of En-
glish: The Penn Treebank. Computational Linguis-
tics, 19(2):313–330.

M. Osborne and T. Briscoe. 1997. Learning stochastic
categorial grammars. In Proc. CoNLL, pages 80–87.

G. Penn. 2004. A graph-theoretic approach to sequent
derivability in the lambek calculus. Electronic Notes
in Theoretical Computer Science, 53:274–295.

M. Pentus. 1993. Lambek grammars are context free. In
[1993] Proceedings Eighth Annual IEEE Symposium
on Logic in Computer Science, pages 429–433.

M. Pentus. 1997. Product-free lambek calculus and
context-free grammars. J. Symb. Log., 62:648–660.

D. Roorda. 1991. Resource Logics: Proof-Theoretical
Investigations. Ph.D. thesis, Universiteit van Amster-
dam.

13

German Verb Particle Constructions in CCG

Pablo Lopez Alonso
Department of Linguistics
Stony Brook University

Stony Brook, NY
al.pablo20@gmail.com

Abstract

As a theory of grammar, CCG (Steedman,
2000) is said to keep theory closely linked to
psychological and computational mechanisms,
to model how child or computer can learn
any language (Steedman, 2017). In this pa-
per, I test a Combinatory Categorial Grammar
(CCG) against German Verb Particle Construc-
tions (VPCs). Following previous work on
English VPCs (Constable and Curran, 2009)
and a German CCGbank (Hockenmaier, 2006),
I analyze three types of German VPC con-
structions in CCG – main clauses, embedded
clauses, and coordination clauses. Problems
with modeling these sentences using CCG are
discussed, and an alternative to deriving coor-
dination sentences is presented in the Minimal-
ist framework.

1 Introduction

An effective grammar formalism must represent the
computational and psychological reality of natural
language. To do so, it must be able to account ele-
gantly and easily for natural language phenomena.
Its mechanisms should correctly accommodate em-
pirical data and make the correct predictions and
rule out incorrect ones.

The central goal of this paper is to test Combina-
tory Categorial Grammar (CCG) (Steedman, 2000)
against a set of compound verbs known as Verb
Particle Constructions (VPCs), which present two
possible orders:

(1) Continuous Order
a. The police tracked down the thief.

b. Anna looked up the book.

(2) Discontinuous Order
a. The police tracked the thief down.

b. Anna looked the book up.

VPCs have been extensively studied, but their
syntactic status remains controversial (Dehé, 2015),
(Haiden, 2017). They form a single semantic unit
composed by two lexemes that show paradoxical
behavior – they behave as both a word and a phrase.
The analysis in this paper consists of two parts:
first, we look at CCG’s ability to deal with these
verbs in German in simple main and embedded
clauses. Then, we look at how effective this for-
malism is at dealing with a more complex structure,
namely coordination. Crucially, we want CCG to
deal with three types of VPC coordination – coor-
dination of two different verb stems, coordination
of one verb stem with two different particles, and
dual valency coordination. This latter one involves
a verb that is both a regular standalone verb and a
verb that is part of a VPC.

The approach I follow here, borrows directly
from Constable and Curran’s (Constable and Cur-
ran, 2009) analysis of VPCs in CCGBank for En-
glish, as well as from Hockenmaier’s (Hocken-
maier, 2006) CCG Bank for German. I build on
both approaches by adding Constable and Curran’s
new label for particles in VPCs to Hockenmaier’s
feature-rich German CCG to derive the correct Ger-
man word order.

My proposal indicates that the approach used for
English by Constable and Curran can account for
some, but not all, German VPC sentences in CCG.
Crucially, embedded sentences pose a challenge as
VPCs in German have a different configuration in
these constructions than they do in English. Fur-
thermore, Across the Board Movement (ATB) in
Minimalist Syntax is better able to capture dual
valency VPC coordination constructions.

The paper proceeds as follows. Section 2
presents the preliminaries of German Syntax. Ex-
amples of VPCs in main and embedded clauses are
presented, as well as those of coordination with
VPCs with dual valency. Section 3 presents a brief

Proceedings of the 17th Meeting on the Mathematics of Language, pages 14–22, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

14

introduction to CCG, as well as Hockenmaier’s
CCG rules for a German CCGBank. Section 4
delves into the analysis of VPC constructions in
CCG. First, I summarize Constable and Curran’s
approach for VPCs in English, then I present my
own analysis combining their analysis with Hock-
enmaier’s. This section contains the bulk of the
paper, and presents the problematic cases of VPCs
for the proposed German CCG. In the last section,
I discuss how Minimalist Syntax is better equipped
to deal with cases of dual valency coordination.

2 German Syntax

2.1 Word order
German has three different word orders depending
on the sentence type. Main clauses are verb sec-
ond (V2) (3), embedded and relative clauses are
verb final (4), and interrogatives and imperatives
are verb-initial (5) (examples from (Hockenmaier,
2006)).

(3) a. Peter gibt Maria das Buch

’Peter gives Mary the book.’
b. ein Buch gibt Peter Maria.
c. dann gibt Peter Maria das Buch.

(4) a. dass Peter Maria das Buch gibt.
b. das Buch, das Peter Maria gibt.

(5) a. Gibt Peter Maria das Buch?
b. Gib Maria das Buch!

For the purposes of this paper, we look only at
VPCs in the context of V2 and verb-final sentences.

2.2 VPCs in German
VPCs in German must follow the same word order
outlined in section 2.1:

(6) a. Ich
I

stehe
stand

auf.
PRT

’I stand up.’
b. Ich

I
höre
hear

dir
you.DAT

zu.
PRT

’I listen to you.’

In a main clause (6), the verb appears in its usual
V2 position and the particle remains stranded in
the final position. However, in an embedded clause
(7), the verb and particle form one lexical unit and
both appear in the final position.

(7) a. dass
that

ich
I

aufstehe.
PRT.stand

’that I stand up.’

b. dass
that

ich
I

dir
you.DAT

zuhöre.
PRT.hear

’that I listen to you.’

Embedded sentences, in particular, pose a chal-
lenge for dealing with VPCs in CCG as they dis-
play idiosyncratic behavior. I take this issue up in
section 4.2.

3 CCG

3.1 Combinatory Categorial Grammar
Combinatory Categorial Grammar (Steedman,
2000) is a highly lexicalized grammar formalism.
In CCG, every word is associated with a syntactic
type made up of atomic categories and directional
slashes. A category of the type X/Y is a functor
that takes a type Y to the right and returns
type X after application. CCG uses function
application to combine different constituents;
however, other types of functions are also available.

Application:
σ/τ τ 7→ σ
τ σ\τ 7→ σ

Composition (B):
σ/τ τ/ρ 7→ σ/ρ
τ\ρ σ\τ 7→ σ\ρ

Crossing Composition (Bx):
σ/τ τ\ρ 7→ σ\ρ
τ/ρ σ\τ 7→ σ/ρ

Type-Raising (T):
τ 7→ σ/(σ\τ)
τ 7→ σ\(σ/τ)

As a theory of grammar, CCG keeps the syntax
and semantics closely linked together. It also pur-
ports to be consistent with linguistic facts, keeping
the theory as close as possible to computational
and psychological mechanisms, allowing any lan-
guage to be learned by both child and computer
(Steedman, 2017).

CCG deals elegantly with certain linguistic phe-
nomena like conjunction (Steedman and Baldridge,
2006). However, it has been noted that CCG
Bank (Hockenmaier and Steedman, 2007), the
main corpus for CCG-related work, which uses
the formalism’s combinatory rules, has several
flaws. For example, it struggles to deal with com-
plement/adjunct distinctions, compound nouns, and

15

Figure 1: Standard main clause in Hockenmaier’s German CCG

Figure 2: Embedded clause in Hockenmaier’s German CCG

phrasal verbs or Verb Particle Constructions (Con-
stable and Curran, 2009). I discuss this issue further
in section 4.

3.2 A CCG for German

A first step to analyzing German VPCs in CCG is
to capture the German word order. Hockenmaier
(Hockenmaier, 2006) creates a CCG Bank for Ger-
man, in which she advocates for augmenting CCG
Bank with features to derive the correct word order
(see Fig.1 and Fig.2 above). Features such as S[v1]
and S[vlast] are introduced to capture the correct
word order for V2 in main clauses and verb-final
embedded clauses, for example. Other features
such as [n], [a], and [d] are introduced for nouns
inflected for case.

Admittedly, contrary to Steedman (Steedman,
2000), Hockenmaier assumes that German is verb-
initial (whence the [v1] feature). This notion, how-
ever, runs counter to the literature on German verb
headedness (Harbert, 2006), (Haider, 2010).

3.3 CCG Treatment of VPCs

CCGBank (Hockenmaier and Steedman, 2007), as
mentioned in section 3.1, is the primary corpus
for CCG-related work. It has been noted that it
varies in its management of particles, but it tends
to treat them as adverbial modifiers (Constable and
Curran, 2009). This notion is problematic since
particles are a core part of the VPC construction.
Similarly, current German CCG tools do not seem
to have a clear way to handle particles or VPCs
(German CCG Bank, (Hockenmaier, 2006)) or they

only deal with them in their sentence-final position
(CCGWeb, (Evang et al., 2019)).

At least one attempt has been made to remedy
this problem for English (Constable and Curran,
2009). Constable and Curran add a new atomic cat-
egory RP to the existing set (N, NP, S, PP). This ap-
proach adds the particle directly into the verb’s sub-
categorization and ensures the particle is a required
part of the construction instead of an adverbial mod-
ifier. Admittedly, this model tends to over-generate,
and it cannot rule out ungrammatical VPCs with a
pronominal object in the split configuration (*she
took away it). Moreover, Constable and Curran
observed a decrease in performance when parsing
using this new mechanism. Nonetheless, the model
is more consistent with linguistic facts than previ-
ous treatments of VPCs in CCG. As such, I take it
up and use it to augment Hockenmaier’s German
CCG Bank rules in the next section.

My analysis is presented in contrast to Steed-
man’s (personal communication, 2019) proposal
that verbs such as geben ’give’ and its VPC coun-
terpart zugeben ’to admit’ are ”accidental homo-
phones.” Steedman assumes that these verbs are
two distinct lexical units – a regular verb and a light-
verb that combines with a particle. This proposal
weakens the semantic connection between the two
verbal constructions that intuitively we know exists
(cf. stehen ’stand’ v. aufstehen ’stand up’).

4 German VPCs in CCG

In this section I analyze some VPC sentences in
German CCG. First, I look at both intransitive and

16

Figure 3: Main clause VPC sentence in German CCG

Figure 4: Transitive VPC construction in German CCG (dative object)

transitive VPCs in a main clause. Then, I move
on to embedded sentences, and finally I look at
examples of VPC coordination and verbs with dual
valency.

4.1 Main Clauses

The combined approach I proposed in section 3.3,
deals with intransitive sentences easily (Fig. 3).
Following Hockenmaier’s rules for German CCG
Bank, the subject is type raised to be able to com-
bine with the VPC. Similarly, here the Particle must
type raise to combine with the verb. Unlike Con-
stable and Curran (Constable and Curran, 2009), I
have chosen to make the verb select for the particle
first, and only then select for its other arguments.
This decision was based on two facts: first, it allows
us to more closely follow Hockenmaier’s rules for
German CCG derivations, and second, it captures
the notion that the verb and particle form one unit
despite their distance in the sentence.

This approach easily handles main clauses with
transitive VPCs as well. Two examples are pre-
sented here, one with a dative object (Fig.4 above)
and one with an accusative object (Fig.5 below).

Both examples follow the same template. First,
the verb combines with its object (accusative or
dative) through crossing composition, then with
the particle through the same process. Lastly, the
subject selects for the rest of the sentence, giving a
declarative sentence as a result.

4.2 Embedded Clauses

Dealing with embedded VPC clauses in CCG
presents the biggest challenge. As mentioned in
section 2.2, VPCs in German show as a single lexi-
cal unit in the final position in embedded clauses.
Since we know in a main clause the verb behaves
as two separate lexical units, this leaves us with
two options in CCG.

First, we could assume that the verb is one word
only (Fig.6). In this approach we switch the func-
tionality of the functor and make the verb select
for the subject to its left. This is in line with what
Hockenmaier (Hockenmaier, 2006) does for em-
bedded clauses as well.

The second option is to split the verb into the
particle and verb stem, much like we have done for
the main clause (Fig. 7).

None of the previous approaches are without
fault. The first approach requires that we stipulate
that the main clause VPC and the embedded clause
VPC have two different lexical categories. This is
problematic as it increases the category ambiguity
of the words by introducing a new category for each
instance of the verb. In principle, CCG opposes
this type of variation as it prefers to handle those
differences by using combinatory rules.

The second approach allows us to keep the cate-
gory of the verb consistent across main and embed-
ded clauses by keeping the verb-particle split. How-
ever, in this instance, there is no mechanism that
would prevent us from allowing adjuncts to come
between the verb and the particle. It overgenerates

17

Figure 5: Transitive VPC construction in German CCG (accusative object)

Figure 6: Embedded clause with VPC as a single lexical unit

Figure 7: Embedded clause with VPC as a phrase

Figure 8: Failed CCG derivation for an embedded transitive VPC

Figure 9: Fully derived VPC CCG derivation; verb category has changed

18

Figure 10: CCG derivation for particle sharing conjunction

Figure 11: CCG derivation for verb sharing conjunction

for ungrammatical words like *aufgesternstehen
’PRT-yesterday-stand’. At the moment, I do not
have a solution for this problem, but if solved it
would make CCG able to handle VPCs in embed-
ded sentences.

Transitive VPCs in embedded clauses present
even more of a challenge (Fig.8). In addition to the
issue of whether the verb should be split from the
particle or not, the verb has to select for an object.

It is impossible to derive this sentence and keep
the verb category consistent with that of the main
clause. Here again, changing the category assigned
to the verb could give us a fully derived sentence.
However, as mentioned above this is undesirable
as it increases category ambiguity, thus assuming
that the main clause verb and the embedded clause
verb are two different lexical items. I present one
possible derivation here for illustration purposes
(Fig.9). Note, however, that this is an undesirable
CCG derivation within our framework.

4.3 Coordination

VPC coordination presents even more of a chal-
lenge for CCG. Three types of sentences were ana-
lyzed for coordination – particle sharing conjunc-
tion, verb sharing conjunction, and dual valency
conjunction. The first type of coordination involves
two different verb stems in each conjunct associ-
ated with the same particle. The second type of
coordination involves a verb stem that is associ-
ated with two different particles. The last type is a
clause where the verb acts as both an intransitive

and transitive across the conjuncts.
Particle sharing instances are easily handled

(Fig.10). The verbs combine with one another first,
then with the particle, and last with the subject.
One elegant feature of this type of derivation is
that the verb types remain the same as those for
the regular main clause sentences, thus keeping the
design simplified for the formalism.

Instances of verb sharing are handled much like
Steedman and Baldridge (Steedman and Baldridge,
2006) handle some instances of Across The Board
(ATB) movement (Fig. 11). First, we combine the
two object conjuncts, and then we compose them
with the verb. Last, by application we derive the
full declarative sentence.

Once again, this example allows us to keep the
category of the verb ((S[v1]/RP)/NP [a])/NP [n]

consistent with that of the main clause verb keeping
the formalism simple.

Although CCG handles verb and particle sharing
easily, it is unable to handle dual valency coordina-
tion at all (Fig.12). Crucially, the verb stem needs
to select for an object for one conjunct, but for no
object for the other. That is to say, the verb needs
to be both transitive and intransitive. There is no
formal mechanism to assign the verb two different
categories.

As a transitive VPC, the verb must have the
category ((S[v1]/RP)/NP[a])/NP[n]. However,
as an intransitive verb, it needs the category
S[v1]/RP/NP[n]. Since CCG deals with these
surface variations only through combinatory rules,

19

Figure 12: Failed CCG derivation for dual valency conjunction

there is no way to assign both valencies to the verb,
and the derivation is impossible.

As a grammar formalism, CCG is unable to han-
dle VPCs in a cohesive and consistent manner. In
this section I have highlighted only two problems
that are readily apparent – embedded clauses and
coordination. Embedded clauses present two prob-
lems. In their intransitive configuration the verb
has to be categorized as a lexical unit with the parti-
cle or as a phrasal one. This problem is not unique
to CCG and remains unresolved in the literature
(Haiden, 2017; Dehé, 2015). However, in contrast
to other analyses, both approaches are too powerful.
The lexical approach is too restrictive and presents
no mechanism for verb inflection. The phrasal
approach is too permissive in that it allows for un-
grammatical derivations of the verb. The second
problem of German VPCs in CCG is that of coor-
dination. Intransitive and transitive coordination
fare decently under the formalism, however, dual
valency coordination is impossible. The coordina-
tion problem receives a simpler analysis under the
Minimalist Program (Chomsky, 1995). In the next
section I discuss those analyses as an alternative to
CCG.

5 VPC Coordination in Minimalism

Within the Minimalist Program (Chomsky, 1995),
VPCs have received considerable attention (cf.
(Haiden, 2017) for a general review and (Dehé,
2002) for VPCs in English). The syntactic sta-
tus of VPCs as either complex heads or small
clauses remains unresolved. Wurmbrand (Wurm-
brand, 2000) provides an analysis that splits the
complex head/small clause debate along semantic
lines and which I follow here. The coordination
problem, however, remains, to my knowledge, un-
adressed. As such, in this section, I make use of
Wurmbrand’s approach to show how Minimalism
is better equipped to deal with the coordination
cases mentioned in section 4.3.

Wurmbrand’s analysis splits VPCs into trans-
parent and idiomatic VPCs. Transparent VPCs re-
ceive a small clause treatment, while idiomatic ones
receive a complex head treatment. This analysis

Figure 13: Transparent VPC (left) vs. (Semi-)idiomatic
VPC structures (right)

easily accounts for different properties of VPCs in
Germanic languages such as topicalization (Fig.13)

The transparent/idiomatic distinction is not al-
ways clear-cut, however, and as such is largely
ignored here. Note that for our purposes this dis-
tinction does not affect the analysis proposed here.
Under Wurmbrand’s analysis a main clause VPC
looks as follows.

Figure 14: Minimalist derivation for Ich stehe auf ’I
stand up’

I follow Haider (Haider, 2010) in assuming that
no functional heads in German are head-final, only
the verb is head-final. Canonically, the verb raises
to the T head before reaching its final position in
the C head for its V2 position in main clauses. The
subject must then raise to Spec C in order to de-
rive the correct word order. Crucially, the particle
remains in its base position giving rise to particle
stranding in German VPCs.

Coordination cases are easily accommodated by

20

this analysis (Fig.15). For intransitive cases of
particle sharing, the derivation starts with the VPC
conjunction aufgebe und aufstehe. Through ATB
movement the particle moves to a position above
the coordination and the verbs must move out of
the coordination to reach their V2 position as well.
Just how this mechanism would fully work is out
of the scope of this paper, but it would follow some
type of sideward movement like that proposed in
(Torr and Stabler, 2016).

Figure 15: Verb stem coordination in Minimalism

Crucially, Minimalism has no difficulty in deal-
ing with cases of dual valency mentioned in section
4.3.

Figure 16: Dual valency coordination

The derivation starts with the conjunction of the
two VPCs aufgeben and meine Schuld zugeben.

Through ATB the verb follows its canonical move-
ment to the T head and then to the C head to land in
its V2 position. This operation results in the correct
word order and the fully derived sentence. ATB
in Minimalism avoids the problem CCG has of as-
signing two different categories to the same lexical
item and thus creating ambiguity in the formalism.
It remains to be seen if the minimalist approach
would overgenerate, however, I leave that work for
future research.

6 Conclusion

The account proposed in this paper draws from
Constable and Curran (Constable and Curran,
2009) and Hockenmaier (Hockenmaier, 2006) to
derive an analysis for German VPCs in CCG. The
analysis presented here is able to accommodate
VPCs in their main clause configuration, but fails at
deriving the embedded clause counterparts. CCG is
unable to capture distinctions such as the complex
head/small clause analysis that has been proposed
for VPCs in the literature. We are forced to choose
one of the two analyses and the formalism becomes
too powerful. Either it overgenerates for ungram-
matical sentences under the small clause account or
extremely restricts the verb under the complex head
account, disallowing verbal inflection. In instances
of embedded clauses with transitive VPCs, CCG
seems completely unable to derive these clauses
as the combinatory rules do not allow any possible
combination of the constituents. Steedman’s (p.c.)
account for VPCs in CCG is equally unsatisfactory
as it hinges on the idea that the verb in the VPC is a
light-verb equivalent of a regular verb. At best, this
analysis weakens a semantic connection between
the verbs and at worst it completely denies it. Ad-
ditionally, as a language formalism, CCG is unable
to deal with examples of coordination such as dual
valency.

While the question of the syntactic status of
VPCs remains open, it is clear that as a theory
of grammar, CCG offers no new insights to this
matter. If we are to embrace this formalism as a
theory of grammar that enables any child or com-
puter to learn any language, further work needs to
occur to refine the formalism in a manner that can
better account for syntactic constructions such as
the ones examined here.

21

References
Noam Chomsky. 1995. The Minimalist Program. MIT

Press, Cambridge, Massachussets.

James Constable and James Curran. 2009. Integrat-
ing verb-particle constructions into CCG parsing.
In Proceedings of the Australasian Language Tech-
nology Association Workshop 2009, pages 114–118,
Sydney, Australia.

Nicole Dehé. 2002. Particle Verbs in English: Syn-
tax, Information Structure, and Intonation (Linguis-
tik Aktuell/Linguistics Today 59).

Nicole Dehé. 2015. Particle verbs in germanic. In
Peter O. Müller, editor, Word-Formation : an In-
ternational Handbook of the Languages of Europe
; vol. 1, number 40,1 in Handbücher zur Sprach-
und Kommunikationswissenschaft, pages 611–626.
De Gruyter Mouton, Berlin; Boston.

Kilian Evang, Lasha Abzianidze, and Johan Bos. 2019.
CCGweb: a new annotation tool and a first quadrilin-
gual CCG treebank. In Proceedings of the 13th
Linguistic Annotation Workshop, pages 37–42, Flo-
rence, Italy. Association for Computational Linguis-
tics.

Martin Haiden. 2017. Verb Particle Constructions. The
Wiley Blackwell Companion to Syntax.

Hubert Haider. 2010. The Syntax of German. Cam-
bridge Syntax Guides. Cambridge University Press.

Wayne Harbert. 2006. The Germanic Languages.
Cambridge Language Surveys. Cambridge Univer-
sity Press.

Julia Hockenmaier. 2006. Creating a CCGbank and a
wide-coverage CCG lexicon for German. In Pro-
ceedings of the 21st International Conference on
Computational Linguistics and 44th Annual Meet-
ing of the Association for Computational Linguistics,
pages 505–512, Sydney, Australia. Association for
Computational Linguistics.

Julia Hockenmaier and Mark Steedman. 2007. CCG-
bank: A corpus of CCG derivations and dependency
structures extracted from the Penn Treebank. Com-
putational Linguistics, 33(3):355–396.

M. Steedman and Jason Baldridge. 2006. Combinatory
categorial grammar. Encyclopedia of Language Lin-
guistics, 2.

Mark Steedman. 2000. The Syntactic Process. MIT
Press, Cambridge, MA, USA.

Mark Steedman. 2017. Combinatory categorial gram-
mar: An introduction.

John Torr and Edward P. Stabler. 2016. Coordina-
tion in Minimalist Grammars: Excorporation and
across the board (head) movement. In Proceedings
of the 12th International Workshop on Tree Adjoin-
ing Grammars and Related Formalisms (TAG+12),
pages 1–17, Düsseldorf, Germany.

Susi Wurmbrand. 2000. The structure (s) of particle
verbs. Ms., McGill University.

22

Strong learning of some Probabilistic Multiple Context-Free Grammars

Alexander Clark
Department of Philosophy, Linguistics and Theory of Science,

University of Gothenburg
alexsclark@gmail.com

Abstract
This paper presents an algorithm for strong
learning of probabilistic multiple context free
grammars from a positive sample of strings
generated by the grammars. The algorithm is
shown to be a consistent estimator for a class of
well-nested grammars, given by explicit struc-
tural conditions on the underlying grammar, and
for grammars in this class is guaranteed to con-
verge to a grammar which is isomorphic to the
original, not just one that generates the same
set of strings.

1 Introduction
A fundamental theoretical goal of linguistics is
to characterise a set of possible human languages
that is sufficiently large and expressive to describe
the attested natural languages while sufficiently re-
stricted that it is learnable given information plau-
sibly available to the child learner in the course of
first language acquisition. There is a broad con-
sensus. modulo some concerns about copying (Ko-
bele, 2006), that a class of mildly context-sensitive
grammars may be descriptively adequate (Stabler,
2013). Such grammars can generate a rich class of
structural descriptions (trees) that serve as latent
variables for the syntax/semantics interface, but
the acquisition of such richer grammars is harder
than the acquisition of simpler formalisms such as
context-free grammars (CFGs). Yoshinaka (2009)
showed how ideas of distributional learning for
CFGs (Clark and Eyraud, 2007) could be extended
to these mildly context-sensitive grammar formal-
ism using multiple context free grammars (MCFGs)
(Seki et al., 1991). However these algorithms, and
their extensions (Yoshinaka, 2010) are only weak
learning algorithms, that converge only to a gram-
mar that is weakly equivalent to — generates the
same set of strings as — the original target gram-
mar. For the purposes of theoretical linguistics this

is inadequate (Berwick et al., 2011), as we want a
grammar that is strongly equivalent to — generates
the same set of trees as — the original grammar.
Moreover from a probabilistic perspective weakly
equivalent grammars are insufficient (Scicluna and
de la Higuera, 2016). Recently Clark and Fijalkow
(2020) presented a strong learning algorithm for
probabilistic context-free grammars (PCFGs), using
only a sample of strings generated by the grammar
(Horning, 1969). In this paper we extend that ap-
proach to a class of (probabilistic) MCFGs; or rather
to several different classes. The approach of Clark
and Fijalkow (2020) relies on the existence of what
they call, following Stratos et al. (2016), anchors,
which are terminal symbols that are unambiguously
generated by a single nonterminal. On this assump-
tion, the distribution of the terminal will be equal to
the distribution of the nonterminal and with some
ancillary technical conditions, this suffices to es-
tablish identifiability of the class of grammars and
thence their learnability.

It is natural to extend this idea to the MCFG case,
where some nonterminals generate not strings but
tuples of strings; pairs of strings only in this paper.
We can therefore define the anchoring condition for
nonterminals which generate pairs of strings — of
dimension 2 — as saying that there are a pair of
terminals a, b which are generated only by a single
production from a nonterminal of dimension 2.

However there is a significant technical problem
to be overcome: the distribution of this pair may
be much larger than the distribution of the non-
terminal it anchors since we may have more than
one occurrence of each symbol. For example if
we have the string aabb, then we know that there
must be two occurrences of the anchoring produc-
tion in any derivation of this string but we don’t
know which pairs of a and b "match". We will
state this problem more formally in section 3, but
what is necessary is some way of restricting the

Proceedings of the 17th Meeting on the Mathematics of Language, pages 23–37, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

23

distribution of the substring in some way, and we
will present a method that works with well-nested
MCFGs (Kanazawa et al., 2011), Moreover the addi-
tional power of the formalism introduces new sorts
of structural indeterminacy of the derivation trees
which need to be handled carefully.

This is the first strong learning algorithm for
these sorts of grammars and the goal of this paper
is not to provide a complete solution to the problem
but rather to identify the key difficulties and get an
understanding of some of the ways in which these
difficulties can be overcome. Nonetheless the class
of grammars that can be learned, though descrip-
tively inadequate in several important ways, have
some interesting properties which we discuss at the
end, and can represent the sorts of cross-serial de-
pendencies that motivated the development of these
mildly context-sensitive formalisms (Joshi, 1985).
2 Definitions
We assume some familiarity withMCFGs, or equiva-
lent formalisms, and standard definitions of formal
languages, as for example Yoshinaka et al. (2010).
We assume a finite alphabet Σ; Σ∗ is the set of finite
strings of elements of Σ. We use � for the empty
string, since we need � for another purpose. We
write concatenation of two strings as uv and occa-
sionally as u ⋅ v when we want to emphasize it. We
will write n(u;w) for the number of times u occurs
in w, where u,w ∈ Σ∗, and we write |w| for the
length of a string.

We need to deal with various types of string; tu-
ples of strings, like ordered pairs, and strings with
gaps in. We will do this by using two additional
symbols, □ which represents a gap, and | which
represents a boundary. We write � for Σ ∪ {□, |}.
Define Skg to be the set of strings with k− 1 bound-aries and g gaps.
Skg = {w ∈ �

∗ ∣ n(□;w) = g, n(|;w) = k − 1}
This represents a k-tuple of strings with g gap sym-
bols occurring somewhere. Notationally we will
use w for elements of (Σ ∪ {□, |})∗ and w for ele-
ments of Σ∗. We will occasionally write the bound-
ary symbol as a comma where there is no risk of
confusion.
In this paper we consider k ∈ {1, 2} and g ∈

{0, 1, 2}. The vast majority of the time we are just
going to be using Sk0 and S1k for k ∈ {1, 2}. Theseare k-tuples of strings, and contexts of k-tuples of
strings; so things like u,u|v, l□r and l□m□r.

The gap symbols represent variables, or spaces
to be filled and so elements of Skg represent sim-
ple functions from (Σ∗)g → (Σ∗)k. In particular a
S11 like l□r represents a function from strings to
strings that we might write as f (x) = lxr, and an
S12 like l□m□r represents f (x, y) = lxmyr. As
functions,□ and□|□ are the identities on strings
and pairs of strings.
More generally and formally we can combine

an element of Sij with one of Sjk to get one of Sik,defined by u⊙ v in the natural way by replacing all
of the gap symbols in u with corresponding tuple
elements of v; we lift this to sets in the natural way.

We now define the distribution of a set of k-tuples
of strings, U ⊆ Sk0 , in a language L as

U⊳ = {c ∈ S1k ∣ c⊙k U ⊆ L}

Conversely for C ⊆ S1k

C⊲ = {u ∈ Sk0 ∣ C⊙k u ⊆ L}

For singleton sets {w}, we will just write w⊳.
2.1 Grammars
We now define the class of grammars that we use,
which are a restricted subclass of MCFGs (Seki et al.,
1991) of dimension 2.
Definition 1. An MCFG, a grammar, is a tuple
⟨Σ, V , S, P ⟩ where Σ is an unranked finite set of
terminal symbols, V is a finite nonempty ranked
set of nonterminal symbols of ranks 1 or 2, which
we call the dimension of the nonterminal. We write
V (1) and V (2) for the sets of dimensions 1 and 2
respectively. S ∈ V (1) is a distinguished start sym-
bol and P is a set of productions which we define
below.
We only consider non-deleting, non permuting,

�-free productions so we can use a slightly lighter
notation than is normal. We have a countably infi-
nite set of variables indexed by a pair of positive
integers, = {xi,j ∣ i ∈ ℕ+, j ∈ {1, 2}}. The vari-
able xi,j refers to the jth component of the tuple
generated by the ith nonterminal on the right hand
side of the production. We will abbreviate x1,j as
xj and x2,j as yj and x1 as x and y1 as y. A pro-
duction, �, is a triple ⟨f,A, �⟩ written A → f (�),
where A ∈ V , � ∈ V ∗ and f is a finite string of
variables, terminals and boundary symbols. A is
the left hand side of the production, � is the right
hand side of the production, and f represents a
function which constructs a tuple of strings from

24

a tuple of tuple of strings, via substitution of the
variables. If � = � then we omit the brackets and
writeA→ f . In this case f is just a tuple of strings,
which represents a leaf node in the derivation. The
rank of a production is defined as rank(�) = |�|,
and dim(�) = dim(A).

We need to restrict the function f in various ways
to make � a well-formed MCFG rule, and further
to put it in a restricted normal form. We assume
that terminals are introduced by special lexical or
bilexical rules. Possible values of f are as follows:

• The rank is 0 and either dim(A) = 1 and f = a
for some a ∈ Σ, or dim(A) = 2 and f = a|b
for some a, b ∈ Σ. We call these lexical or
bilexical rules, and we can write them as A→
a.

• Alternatively the rank is nonzero, and f con-
tains no terminal symbols. If dim(A) = 1,
then f contains only variables and if dim(A) =
2 then it contains one occurrence of the bound-
ary symbol. If there is a boundary symbol
then it cannot occur at the beginning or end
of the string (the production is �-free). f con-
tains exactly one occurrence each of variables
corresponding to the nonterminals in �; So
if � = B1…Bk then for each i there is ex-
actly one occurrence of the variable xi,j for
1 ≤ j ≤ dim(Bi), and no other variables.
Moreover if dim(Bi) = 2 then xi,1 occurs be-
fore xi,2, (non-permuting) and if i < j, then
xi,1 occurs before xj,1.

Given a particular f then, the rank is fixed, as
are the dimensions of all nonterminals in the pro-
duction. We will typically assume that the dimen-
sions of all nonterminals are compatible with f .
We say that a production A→ f (B1…Bk) is non-
well-nested if there are two nonterminals on the
right hand side Bi, Bj both of dimension 2, such
that f = … xi,1… xj,1… xi,2… xj,2… . It is well-
nested if it is not non-well-nested. A grammar is
well-nested if all of its productions are well-nested.

We will also use a Horn clause notation for pro-
ductions (Kanazawa, 2009) when we want to dis-
cuss particular productions: For example, a CFG
production like A → BC would be written in that
notation as A(xy) ← B(x)C(y), and would be for-
mally the triple A → x1,1x2,1(BC). If the right
hand side is empty then we write the production as
A(a) or A(a, b) or A(b). See Clark (2014) for an in-
troduction to this notation and toMCFGs more gener-

ally. Other rules are for example the rank 1 produc-
tion A(x1x2) ← B(x1, x2); which takes a dimen-
sion 2 production, and concatenates the two com-
ponents, and A(x1y1, y2x2)← B(x1, x2), C(y1, y2)
which is a well-nested production which combines
two dimension 2 nonterminals.
We assume further that S cannot appear on the

right hand side of any productions, nor can it appear
on the left hand side of any lexical productions. We
do allow unary productions with S on the left hand
side, S(x)→ A(x); which are not allowed with any
other nonterminal on the left hand side. Otherwise
the only rank 1 production allowed is of the form
A(x1x2)← B(x1, x2).
We define S and to be the sets of possible

well-nested functions for productions with S on the
left hand side, and with some other nonterminal on
the left hand side, respectively, that satisfy these
conditions. If we restrict the functions to these
sets then we define a normal form for the class of
well-nested MCFGs of dimension 2; in the sense
that for every language generated by a well-nested
MCFG of dimension 2, there is a grammar in this
class that generates the same language, that uses
only productions with functions in these sets, as
can be demonstrated using standard techniques (e.g.
Kanazawa et al. (2011)), adapted from the standard
approaches for converting CFGs into Chomsky nor-
mal form. Indeed although we allow in this paper
productions of rank greater than 2, restricting pro-
ductions to those of rank 2 does not change the set
of languages generated as these well-nested gram-
mars can be binarised.

2.2 Derivation trees
We will give a tree based semantics for this formal-
ism, since we are interested in learning these trees
and defining probability distributions over trees. A
derivation tree for a grammar uses the set of pro-
ductions as a ranked alphabet, where the rank of
each production is equal to the number of nontermi-
nals on the right hand side. For each nonterminal
A we define an additional symbol □A of rank 0.
This symbol represents a hole or gap where an A is
needed. The sort of a tree is the left hand side of
the production labeling the root of the tree, or A if
the tree is□A.
These trees must satisfy the condition that if �

is a production of rank k, then the sort of the nth
child of a node it labels must be equal to the nth
nonterminal on the right hand side of �. Obviously

25

if the production is of rank 0, then the node has no
children and the condition is vacuous. Let T (G) be
the set of all these trees. These include degenerate
trees which just have a single node labeled with
a rank 0 symbol; we won’t use a special symbol
for these. Given such a tree �, we can count the
number of occurrences of a label in the tree using
the notation n(�; �) or n(□A; �).
Let Ω(G,A) be the set of such trees of sort A,

and which have no occurrences of any gap symbols.
Let Ξ(G,A) be the set of such trees of sort S where
there is exactly one occurrence of a gap symbol
which is □A. We can combine an element � of
Ξ(G,A) with an element � of Ω(G,A) to get an
element ofΩ(G,S) by replacing the single element
of□A in � with �. We call the result �⊕�. We will
also lift this in the natural way to sets: for example
Ξ(G,A)⊕Ω(G,A) is the set of all derivation trees
with at least one production of sort A in. Note that
since S can only occur on the left hand side of a
production, Ξ(G,S) is a set consisting of a single
tree with one node labeled□S .
We can map trees and derivation contexts into

strings and string contexts using a string yield func-
tion (sy). A tree inΩ(G,A) has a string yield which
is an element of Sdim(A)0 . A derivation context in
Ξ(G,A) has a string yield which is in S1dim(A). Thefunction string f represents a function: when we
want to evaluate the function we will use the no-
tation f̃ ; this occurs by substituting the variable
xi,j for the jth component of the ith argument and
concatenating the results. We can define the string
yield function recursively bottom up as follows:

IfA is of dimension 1, then sy(□A) = □ and if it
is of dimension 2 then sy(□A) = □|□. Otherwise:
if the production is A→ f (B1,… , Bk), then

sy(�(�1,… , �K)) = f̃ (sy(�1),… , sy(�K))

This also covers the case of a rank 0 production:
the string yield of such a production (A → f) is
just the constant f , which takes no arguments.
For a set U ⊆ Sdim(A)0 , we define Ω(G,A,U) =

{� ∈ Ω(G,A) ∣ sy(�) ∈ U}, and likewise
for derivation contexts. Where appropriate we
will omit G, and the set brackets so for example,
Ω(A,w) is shorthand for {� ∈ Ω(G,A) ∣ sy(�) =
w}. Given the restrictions on the grammars we
have imposed, Ω(G,A,w) is always finite.
Given this we define

(G,A) = {sy(�) ∣ � ∈ Ω(G,A)}

and the set of contexts of a nonterminal as
(G,A) = {sy(�) ∣ � ∈ Ξ(G,A)}.

The language defined by the grammar, (G), is
then (G,S). Note of course that for every context
c ∈ (G,A) and every stringw ∈ (G,A), c⊙w ∈(G).
We assume that every production occurs in at

least one element of Ω(S). Under this assumption
it’s enough to give the list of productions to specify
a MCFG, as the nonterminals and terminals can be
read off the productions, and the start symbol is
the unique nonterminal that occurs only on the left
hand side of a production.
2.3 Examples
We give some trivial examples including one with
cross-serial dependencies as seen in some natural
languages (Huybrechts, 1984; Shieber, 1985)
Example 1. V (1) = {S},V (2) = {A}, Σ =
{a, a′, b, b′} and we have productions: �A =
A(a, a′),�B = A(b, b′), and

�S = S(x1x2)← A(x1, x2)
�X = A(x1y1, y2x2)← A(x1, x2), A(y1, y2).

This defines the language

L1 = {aa′, abbb′b′a′, baa′b′,…}

Note this grammar is ambiguous: abbb′b′a′ for
example has two parse trees, as shown in fig. 1.
If we change �X to

A(x1y1, y2x1)← A(x1, x2), A(y1, y2)

this gives us a non-context-free language, with
a non well-nested MCFG, LCOPY, which contains
{aa′, abba′b′b′, aba′b′,…}. This is again ambigu-
ous and the two trees above now both have the yield
abba′b′b′.

Finally we give a well-nested grammar that gen-
erates a non context-free language.
Example 2. A(a, b),C(c), D(d),
E(e),F (f),C(c′), D(d′), E(e′),F (f ′) and

S(x1x2)← A(x1, x2)
A(x1y, x2z)← A(x1, x2), C(y), E(z)
A(x1y, x2z)← A(x1, x2), D(y), F (z)

Note this grammar is unambiguous, well nested,
and generates a non-context-free language, LSWISS
related to the Swiss German example of Shieber
(1985), which contains strings like accd′beef , of
the form aubv where u and vmust contain matching
sequences.

26

�S

�X

�A �X

�B �B

�S

�X

�X

�A �B

�B

�S

�X

�A �X

�B �B

= �S

�X

�A □X

⊕ �X

�B �B

Figure 1: Sample derivation trees from example 1 and a
decomposition. On the top we have two derivation trees
both of which have yield abbb′b′a′. In the bottom we
decompose the first of these trees at the boxed node into
a context � ∈ Ξ(G,X), where sy(�) = a□□a′, and a
tree � ∈ Ω(G,X)where sy(�) = bb|b′b′. If we combine
themwe have sy(�⊕�) = a□□a′⊙bb|bb′ = abbb′b′a′.

3 The problem
Clark and Fijalkow (2020) present a learning algo-
rithm for PCFGs using distributional learning based
on anchors. In the CFG case an anchor is a terminal
which is derived uniquely from a single nontermi-
nal: in the notation of this paper, a is an anchor for
A ∈ Σ(1), if A(a) is the unique production involv-
ing a in the grammar. In this case of course, the
observable distribution of the terminal a is equal to
the unobserved distribution of the nonterminal A:

a⊳ = (G,A)
Moreover for any context c ∈ a⊳,

Ω(S, c⊙ a) = Ξ(A, c)⊕A(a)

These two properties allow one to infer the param-
eters of productions, indeed the very existence of
productions, using distributional analysis.
We can then naturally extend this to define an

anchor for a nonterminal of dimension 2, A, as
being a pair of distinct terminals (a, a′) such that
A(a, a′) is the only production using a or a′. But
now neither of these two properties hold in gen-
eral. For example, suppose we have the language

LCOPY. If we let a = a, a′ which is an anchor for
A, and consider the string w = aaa′a′, then there
are not 2 but 4 contexts c such that c ⊙ a = w,
namely {□a□a′,□aa′□, a□□a′, a□a′□} only
two of which are in (G,A). So a⊳ ⊋ (G,A).
This is because we don’t know which pairs of a, a′
are being generated in the same production.
We will say that a context c ∈ a⊳, is an unam-

biguous context of a, when it is a context of A (i.e.
in (A)) and additionally satisfies Ω(S, c ⊙ a) =
Ξ(A, c)⊕A(a). For the approach to work, we need
some way of restricting the observed contexts of
2-anchors to their unambiguous contexts. Note that
all contexts of 1-anchors are unambiguous contexts
in this sense.
4 Dyck contexts
Before we describe the key element of our solu-
tion, we need to recall the Dyck language (Gins-
burg, 1966) and some of its properties. The Dyck
language over the two letter alphabet p, q is de-
fined by the unambiguous context-free grammar
S → �, S → SpSq; we write this language as. We say two occurrences of p and q match in
an element of if they are derived in the same
step. Equivalently we can define the Dyck lan-
guage as the set of all strings w in {p, q}∗ such
that n(p;w) = n(q;w) and where for every prefix v
of w, n(p; v) ≥ n(q; v).
Suppose that we have a language L defined by

an MCFG where the nonterminal A is anchored by
a, a′. Then clearly in every string w ∈ L, we have
that n(a;w) = n(a′;w), since every time we in-
troduce an a we also introduce an a′. Moreover,
the occurrences of a will always precede the corre-
sponding occurrences of a′ since the productions
are non permuting, so if u is a prefix of w then
n(a; u) ≥ n(a′; u). It is therefore clear that in such a
language, the occurrences of a, a′ will form a sub-
set of the Dyck language if we ignore all the other
terminals. Let us formalise this precisely now.
For distinct terminals a, a′ define the string ho-

momorphism ℎa,a′ via:

ℎa,a′(b) =
⎧
⎪⎨⎪⎩

p if b = a
q if b = a′
� otherwise

(1)

Definition 2. A pair of distinct terminals (a, a′)
is a Dyck pair in a language L if for all w ∈ L,
ℎa,a′(w) ∈ .

27

Lemma 1. If A is anchored by a, a′ in an MCFG
defining the language L then a, a′ is a Dyck pair.
Consider L1: here the nonterminal A is an-

chored by a, a′ which is a Dyck pair; ℎa,a′(LCOPY) =
{pnqn ∣ n ≥ 0} ⊂ .
The converse is not true: it is not the case

that in general the Dyck pairs will correspond
to the anchors. There are two issues: first we
might have productions like A(xy) ← B(x)C(y)
where B and C only generate b and c respectively,
and only occur on the right hand side of this
particular rule. A similar situation can occur with
any production with two distinct dimension 1
nonterminals on the right hand side. Secondly,
we might have the situation where we have two
(or more) productions like A(c, c′) and B(c, c′)
and no other productions using c or c′. In this
case c, c′ will form a Dyck pair but will clearly
not be an anchor. This latter case can be handled
exactly the way we handle ambiguity for dimension
1 nonterminals, but the former requires some
additional assumptions. At its most fundamental
the problem is this: suppose we have a language
which consists only of the single length two string
cd. We can represent this in two obvious ways.
A(x1x2)← B(x1, x2)

B(x1, x2)

A(xy)← C(x), D(y)

C(c) D(d)

We need to resolve this structural indeterminacy in
some way, if we want strong learning to be possible.
There are a number of ways to proceed here:
here we assume that every nonstart dimension
1 nonterminal must have two anchors. This is
unnecessarily strong for this particular case, but it
also serves to rule out some other problems later
on.
Definition 3. A grammar G is doubly anchored if
for every A ∈ V there are two terminals a, a′ such
that if dim(A) = 2 then A(a, a′) is the only produc-
tion using either, and if dim(A) = 1 then A(a) and
A(a′) are the only productions using either.
For instance, example 2 is doubly anchored.

Lemma 2. Suppose G is a doubly anchored MCFG.
If a, a′ is a Dyck pair then a and a′ can occur only
in a production of the form A(a, a′).

Proof. Suppose a occurred in a derivation tree �
using a production � of sortB. We can replace a sin-
gle occurrence of � with �′, a anchoring production
of B that does not contain a to get a tree �′. Since

the yield of �′must havematching numbers of a and
a′, � must be either B(a, a′) or B(a′, a). Suppose
� = B(a′, a). This can’t be the only production for
this Dyck pair, or ℎa,a′ would always start with a′,
so there is some anchor for �. Replace all other
occurrences of � with some other anchor for B to
obtain a tree �′. Then ℎa,a′(sy(�′)) = qp ∉ ,
which is a contradiction.

Let us suppose now that we have some a, a′
which are anchors for a nonterminal A. We can
say that an occurrence of a and a′ in a string w =
lama′r match if there is a derivation of w where
they are generated by the same production A(a, a′);
in other words if their context l□m□r ∈ (G,A).
Nowwe cannot in general determine in such a string
the matching pairs as discussed above. But if the
grammar is well-nested then the matching is always
determined, even if the string is ambiguous; indeed
they are generated by the same production iff their
images match in the Dyck language.

Let PAIRS(L) be the set of Dyck pairs of the lan-
guage L and define
L = {w ∈ Σ∗ ∣ ∀a ∈ PAIRS(L), ℎa(w) ∈ }
Clearly L ⊆ L. We define the following four

sets:
D10 = L

D20 = {u|v ∈ S20 ∣ u ⋅ v ∈ L}
D11 = {l□r ∈ S11 ∣ l ⋅ r ∈ L}
D12 = {l□m□r ∈ S12 ∣ m ∈ L, l ⋅ r ∈ L}

Note that by the properties of the Dyck language,
D12⊙D20 ⊆ L, andD11⊙D10 ⊆ L. The crucial ob-
servation here is the following lemma, which means
that for these grammars it is enough to consider the
subsets D and not the whole sets S.
Lemma 3. IfG is well-nested and double anchored,
then for all nonterminals A ∈ V (k), (G,A) ⊆ Dk0
and (G,A) ⊆ D1k.

Proof. By induction on Ω(G,A) in the first case,
and in the second case on Ξ(G,A) based on the
path from the root of the tree to the gap symbol,
□A.
Lemma 4. IfG is well-nested and double anchored,
and a is an anchor for A, then a⊳ ∩ D1dim(A) =(G,A), and all of these contexts are unambiguous
contexts.

28

We now define for U ⊆ Sk0

U► = U⊳ ∩ D1k

and for C ⊆ S1k

C◄ = C⊲ ∩ Dk0

These form a pair of Galois connections between
Dk0 and D1k, which obey the usual identities, which
we use below. So for example U► = U►◄►.

Crucially, these Galois connections also satisfy
a fundamental lemma, analogous to the CFG con-
dition that for all sets of strings X, Y (X ⋅ Y)⊳⊲ =
(X⊳⊲ ⋅ Y ⊳⊲)⊳⊲.
Lemma 5. Suppose f is a well-nested function
of rank r, and let L be some language. Then for
all Xi ∈ Dki0 which are sets of tuples of strings of
suitable dimension,

f (X1,… ,Xr)►◄ = f (X►◄1 ,… ,X►◄r)►◄

Proof. Clearly the left is a subset of the right, since
Xi ⊆ X►◄i . Let di be the arity of Xi. Suppose
c ∈ f (X1,… ,Xr)►; if not then it will trivially
true.
This means that c ⊙ f (X1,… ,Xr) ⊆ L. So

c ⊙ f (□d1 ,… ,Xr) ⊆ X►1 , since f is well-nested.
And X►1 = X►◄►1 . So c ⊙ f (□d1 ,… ,Xr) ⊆
X►◄►1 . So c ⊙ f (X►◄1 ,… ,Xr) ⊆ L. Therefore
c ∈ f (X►◄1 ,… ,Xr)►. Repeating for X2 etc.:

f (X1,… ,Xr)► ⊆ f (X►◄1 ,… ,X►◄r)►

Therefore
f (X1,… ,Xr)►◄ ⊇ f (X►◄1 ,… ,X►◄r)►◄

This restricted distribution is well-behaved so
we can redefine the standard notion of validity to
use this. Since S cannot be anchored, and to avoid
handling it as a special case, we can stipulate that we
have a special terminal symbol s where s⊳ = {□},
which is of course equal to (G,S), since the start
symbol can occur only at the root of a derivation
tree.
Definition 4. Suppose we have a well nested doubly
anchored grammar, where A,B1,…Bk are nonter-
minals anchored by a,b1,…bk, respectively. Let
� = A → f (B1,… , Bk) be a production we say
that it is valid if a► ⊆ f̃ (b1,… ,bk)►.

Note that this is now well-defined (independent
of the choice of anchors) by lemma 5. Clearly
all productions in the grammar are valid, since
f̃ (b1,… ,bk) ∈ (G,A). We can also show some-
thing that is approximately the converse.
Lemma 6. Suppose G = ⟨Σ, N, S, P ⟩ generates
the language L; Let G′ = ⟨Σ, N, S, P ′⟩ and where
P ′ ⊇ P , and all of � ∈ P ′ are valid with respect to
L.
If a is an anchor of A, then (G′, A) ⊆ a►◄.
Note that this then implies that (G′) = (G),

since s►◄ = L.
Proof. Proof by induction on the derivation trees
in Ω(G′, A).
Base case:suppose � = � = A(b), so sy(�) = b.

Then since this production is valid a► ⊆ b► and
so a►◄ ⊇ b►◄, and since b ∈ b►◄, b ∈ a►◄.
Now do inductive step: suppose topmost pro-

duction is � = A → f (B1,…Bk) and � =
�(�1,… , �k). By the inductive hypothesis sy(�i) ∈
b►◄i . So sy(�) ∈ f (b►◄1 ,… ,b►◄k), and so
sy(�) ∈ f (b►◄1 ,… ,b►◄k)►◄
By lemma 5, sy(�) ∈ f (b1,… ,bk)►◄. So

sy(�)► ⊇ f (b1,… ,bk)►. Validity of � says that
a► ⊆ f (b1,… ,bk)►. Therefore sy(�)► ⊇ a►. So
sy(�)►◄ ⊆ a►◄, and sy(�) ∈ a►◄.
5 Other conditions
Beyond the anchoring condition we need two ad-
ditional conditions which are essentially the same
as in Clark (2021a); the first is a bound on the am-
biguity, which will allow for identifiability of the
parameters.
Definition 5. A MCFG G is locally unambiguous
(LUA) if for every production � in the grammar
of the form A → f (B1…Br), there is a string w
in the language which can be decomposed into a
c ∈ D1dim(A), and a sequence of tuples u1,…ur, so
c⊙k f̃ (u1,…ur)) = w, such that:

Ω(S,w) = Ξ(A, c)⊕ �(Ω(B1,u1),… ,Ω(Br,ur))

Note that this is a generalisation of the definition
of an unambiguous context earlier: If A(a) is an an-
choring production then the unambiguous contexts
are just the ones that satisfy this LUA condition.

The second condition is based on lemma 6; as a
result of this lemma, we can see that adding valid
productions to a grammar will not increase the set

29

of strings generated. This means that we can stip-
ulate that the grammar must contain all valid pro-
ductions. However this may lead to excessive am-
biguity, which will then violate the LUA condition.
Accordingly we want to eliminate "redundant" pro-
ductions.
We can combine two productions into another:

�1 = A → f (�B) and �2 = B → g(�) can
be combined to get �3 = A → ℎ(��) where ℎ
is the suitable function formed from f and g; we
will skip the formal definition since it is obvious
but fiddly since we need to renumber the variables.
Clearly rank(�3) = rank(�2)+rank(�1)−1. So for
example A(x1x2) ← B(x1, x2) and B(x1y, x2) ←
C(x1, x2), D(y) can be combined to A(x1yx2) ←
C(x1, x2), D(y). Intuitively, if we already have the
first two, we don’t also need the third.
We fix a maximal rank r and define and S

to be all well-nested productions of rank at most
r. We order the productions so that if rank(f1) <
rank(f2) then f1 precedes f2, and such that dimen-
sion 2 functions precede dimension 1 functions. For
the case of r = 2, we give the explicit sets:
 = ⟨x1x2, x|y, x|y1y2, xy1|y2, x1|x2y, x1|yx2,

x1x2|y, x1y|x2, x1|x2y1y2, x1|y1y2x2, x1x2|y1y2,
x1y1|y2x2, x1x2y1|y2, x1y1y2|x2, xy, x1x2y,

x1yx2, xy1y2, x1x2y1y2, x1y1y2x2, ⟩
and

S = ⟨x, x1x2, xy, xy1y2, x1x2y, x1yx2,
x1x2y1y2, x1y1y2x2⟩

Note that these are ordered so that if we compose
two productions to form a third, the first two will
precede the others in these lists. We need to define
the notion of a possible production now: given an
anchored grammar G with alphabet Σ and nonter-
minals V , we define P (G, ,S) to be the union
of these sets:

{A(b) ∣ A ∈ V (1) ⧵ {S}, b ∈ Σ}
{A(b, c) ∣ A ∈ V (2), b, c ∈ Σ}

{A→ f (B1,…Bk) ∣ A,Bi ∈ V ⧵ {S}, f ∈ }
{S → f (B1,…Bk) ∣ Bi ∈ V ⧵ {S}, f ∈ S}

where the dimensions of the nonterminals in the last
two are restricted to those matching the dimensions
of f .
Definition 6. Given an anchored MCFG G, a
valid production is redundant wrt ,S if it is

the composition of two other valid productions in
P (G, ,S).
Definition 7. (Clark, 2021a) An MCFG is com-
plete wrt ,S if the set of productions is those in
P (G, ,S) that are valid and not redundant.
This definition then means that the set of pro-

ductions is determined by the language given the
anchored nonterminals. Together these definitions
mean that the grammar itself, the nonterminals and
the set or productions and of course the terminals
are determined by the language, which we prove in
the next section.
5.1 Identifiability of Well-Nested Class
We define the class of grammars Gr to be all dou-
bly anchored MCFGs where the functions are well
nested of rank at most r and which are complete.
Theorem 1. Suppose G and G′ are inGr such that(G) = (G′). Then G is isomorphic to G′.

Proof. Let L = (G). Suppose that a is a Dyck
pair; andA(a) is in the grammar. Let b be an anchor
for A. Then b► ⊆ a►. Therefore consider the
set of distributions {a► ∣ a is a Dyck pair}. The
minimal elements of this ordered by set inclusion
will correspond to the dimension 2 nonterminals
via (G,A) = a►; by completeness we cannot
have more than one nonterminal for each of these
minimal elements. Consider now the set of bilexical
productions: by completeness, these must consist
of exactly those productions A(b), where if a is
an anchor for A, a► ⊆ b►. Therefore the set of
bilexical productions is defined by L. Consider
now the set of all terminals, T , that do not occur
in any bilexical productions. Consider the set of
distributions {a⊳ ∣ a ∈ T }. The minimal elements
of this set must correspond to the nonterminals of
dimension 1, via the correspondance a⊳ = (A).
Again the lexical productions must be exactly the
set of all valid productions; namely those where
a⊳ ⊆ b⊳, where a is an anchor for A.
There is therefore a bijection � between the

nonterminals of G and G′ where �(A) = A′ if(G,A) = (G′, A′).
It remains to be shown that the set of produc-

tions is uniquely determined given these produc-
tions. The set of valid productions is clearly de-
termined by the language; the only issue then is
to verify that given this set there is a unique set of
non-redundant productions. If a production � is
formed by the composition of two productions �1

30

and �2 then we can see that functions of �1 and �2
will strictly precede the function of �. This ensures
uniqueness.

6 Weighted MCFGs and Probabilistic
MCFGs

The learning paradigm we use is probabilistic so
we start by defining the probabilistic grammars that
we use. A stochastic language is a probability dis-
tribution over Σ∗, wrtten ℙ, and this will be defined
by a probabilistic MCFG, (Levy, 2005; Kato et al.,
2006; Kallmeyer and Maier, 2013) which we de-
fine via a slightly more general formalism called
weighted MCFGs. We use two different parameter-
isations, the top-down which corresponds to the
stochastic MCFGs studied by Kato et al. (2006) and
the bottom-up introduced in the CFG case by Clark
and Fijalkow (2020) which is useful from a learn-
ability perspective. The presentation here follows
that in that paper.
Definition 8. A weighted MCFG ⟨G; �⟩ is a MCFG
together with a parameter function �, from produc-
tions to positive real numbers.

� ∶ P → ℝ+.

We define a weight function w ∶ T (P) → ℝ+.
For each such tree � we define:

w(�) =
∏
�∈P

�(�)n(�;�)

Note that for � ∈ Ξ(G,A) and � ∈ Ω(G,A),
w(� ⊕ �) = w(�)w(�)

The weight of a set of trees Ω, is w(Ω) =∑
�∈Ωw(�). For a nonterminalA define two quanti-

ties which are normalization constants, the sums of
the inside and outside probabilities to use the CFG
terminology (Eisner, 2016):

I(A) = w(Ω(G,A))
O(A) = w(Ξ(G,A))

The quantity I(S) is called the partition function
in the case of PCFGs (Nederhof and Satta, 2008). If
I(S) = 1 this then defines a probability distribu-
tion overΩ(G,S) and via that a stochastic language
whose support is (G), by summing over all deriva-
tion trees with a given yield as follows:
w(u) =

∑
�∈Ω(G,S)∶sy(�)=w

w(�) = w(Ω(G,S, {w}))

(2)

Given such a weighted MCFG, with I(S) = 1,
for every production �, we can define E(�) the ex-
pected number of times that the production � occurs
in a tree. This is

E(�) =
∑

�∈Ω(G)
w(�)n(�; �) (3)

We can define the expectation of a nonterminal
as the sum of expectations of all productions with
that nonterminal on the left hand side.

E(A) =
∑

A→f (�)∈P
E(A→ f (�)) (4)

We assume throughout that the expected length
of strings under these distributions,∑a∈Σ E(a), isfinite, which implies that all these expectations are
finite too. We can see that for all nonterminals A,

I(A)O(A) = E(A)

Note that E(S) = 1 under these assumptions, as
it occurs exactly once in every tree in Ω(G,S), at
the root; indeed clearly I(S) = O(S) = 1, since
Ξ(G,A) has one element,□S , which has weight 1.
There is an indeterminacy in these parameters

in that one can always pick some nonterminal that
isn’t S, say A, and scale the parameters of produc-
tions with A→ f (B1,… , Br) on the left hand side
by some � > 0, and scale all productions with A
on the right hand side B → f (C1,… , Cr) by �−n
where n is the number of times A occurs on the
right hand side, and the distribution over trees will
remain unchanged. There are two natural ways of
resolving this, two parameterisations: one where
we stipulate that for allA,O(A) = 1 (and as a result
I(A) = E(A)) and one where we stipulate that for
all A, I(A) = 1, and therefore O(A) = E(A). The
latter gives us the regular probabilistic top down
generative process. The former gives us the bottom
up parameterisation, which is crucial to the success
of these primal distributional learning algorithms.
Note that for any production � = A →

f (B1,… , Br)

E(�) = O(A)�(�)
∏
i
I(Bi)

Therefore in the bottom up parameterization, where
O(A) = 1 and I(A) = E(A) this gives us

E(�) = �(�)
∏
i
E(Bi)

and so
�(�) = E(�)∏

i E(Bi)
(5)

31

6.1 Anchored grammars with bottom-up
parameters

Given a stochastic language ℙ, for a terminal a we
define E(a) = ∑

c∈a⊳ ℙ(c⊙a). This is the expectednumber of times the terminal a will appear in a
random string. Now suppose that a = a, a′ is a
Dyck pair; clearlyE(a) = E(a′) so we defineE(a) =
E(a).
Then if a is an anchor for A then in the bottom

up parameterisation
�(A(a)) = E(a)

Suppose a context c ∈ a►. Then
Ω(G,S, c⊙ a) = Ξ(G,A, c)⊕A(a)

So
ℙ(c⊙ a) = w(Ξ(G,A, c))�(A(a))

Therefore
w(Ξ(G,A, c)) = ℙ(c⊙ a)

E(a)
Consider some other tuple of terminals b; not

necessarily an anchor, and a context c ∈ a►. Then
Ω(G,S, c⊙ b) ⊇ Ξ(G,A, c)⊕A(b)

Therefore:
ℙ(c⊙ b) ≥ w(Ξ(G,A, c))�(A(b))

So:
�(A(b)) ≤ ℙ(c⊙ b)E(a)

ℙ(c⊙ a)
Since this is true for all contexts c ∈ a► we have:

�(A(b)) ≤ inf
c∈a►

ℙ(c⊙ b)E(a)
ℙ(c⊙ a)

(6)
More generally, suppose that � = A →

f (B1,… , Br) is some production with A,Bi an-
chored by a,bi. Then again for any unambiguous
context c, writing u = c⊙ f (b1,… ,br)

ℙ(u) ≥ w(Ξ(G,A, c))�(�)
∏
i
�(Bi(bi))

Rearranging and minimizing with respect to c:
�(�) ≤ inf

c∈a►
ℙ(c⊙ f (b1,… ,br))E(a)

ℙ(c⊙ a)∏i E(bi))
(7)

Importantly the right hand sides of eqs. (6)
and (7) do not depend on the grammar, but only
on the distribution over strings. If the grammar is
LUA, then in these two equations the minimum will
be attained, and we will have an equality.1

1Proving this is a little involved as we need to verify that the
context is still LUA when all of the subtrees are just anchoring
productions, which requires verifying some properties of (⋅)►.

7 Algorithm
Given the identifiability of the classGr from strings,
and the parameter identities above it is straightfor-
ward to design an algorithm which will learn this
class from a sample of strings generated by the tar-
get grammar; we define the convergence criterion
below in theorem 2.

The algorithm takes as input a sample of strings,
and hyperparameters , S ; these implicitly define
an upper bound r on the rank of the productions.
It outputs a weighted MCFG, which can then be
converted into a probabilistic MCFG (Clark and Fi-
jalkow, 2020). The grammar will uses tuples of
terminal symbols, i.e. anchors, directly as nonter-
minals — with this grammar format there is no
need to distinguish the terminal and nonterminal
symbols; but it’s important to remember that we
use f̃ to denote the application of a function f . So
we might have a production a → f (b, c) where
f = xy, and a, b, c ∈ Σ are anchors that represent
nonterminals. f̃ (b, c) is then the application of that
concatenation function to b, c taken as terminals,
namely the string bc. The start nonterminal will be
a special distinguished symbol s as discussed.
7.1 Estimators
We start by defining some naive plug in estima-
tors (Clark and Fijalkow, 2020). Assume we have
a sample of N strings w1,… , wN . Let Σ̂ be the
observed terminal symbols. For a string w ∈ Σ̂∗,
let N(w) be the number of times w = wi, and
ℙ̂(w) = N(w)∕N . For a ∈ Σ̂ define

Ê(a) = 1
N

∑
i
n(a;wi)

If a = a1, a2
Ê(a) = Ê(a1)

Lemma 7. All of these estimators are consistent;
ℙ̂(w) is a consistent estimator for ℙ(w) and Ê(a)
is a consistent estimator for E(a), and if a is a Dyck
pair, then Ê(a) is a consistent estimator for E(a).

For a k-tuple a define the frequent contexts to be
F (a) = {c ∈ a► ∶ N(c⊙ a) >

√
N}

For a suitable linear function f , and tuples of ap-
propriate arity, a,b1,… ,br:

�̂(a→ f (b1,… ,br)) =
Ê(a)∏r
i=1 Ê(bi)

min
c∈F (a)

ℙ̂(c⊙ f̃ (b1,… ,br))
ℙ̂(c⊙ a)

(8)

32

For tuples of the same dimension a,b, we will write
the estimate for the rank 0 production as a �̂(a→ b).
Lemma 8. Suppose the strings are generated by
a weighted MCFG, G; � where grammar G ∈ Gr;
given a production �∗ = A → f (B1,… , Br), let
� be the result of replacing all nonterminals with
their anchors.
If � is not valid, then for any � > 0, there is an

N such that with probability greater than 1 − �,
�̂(�) = 0.
If �∗ ∈ P , then for any � > 0, � > 0, there is

anN such that with probability greater than 1 − �,
|�̂(�) − �(�∗)| < �.
Proof. Since it is not valid there is some c ∈ a►,
such that c ⊙ f̃ (b1,… ,bk) ∉ (G). Let N be
sufficiently large that c ∈ F (a) with probability at
least 1 − �, and the result follows.
7.2 Algorithm
Given these estimators we define the following al-
gorithm.

• Let Σ be the observed alphabet and let s be an
additional symbol. P ← ∅,B ← ∅

• We first compute the set of possible Dyck pairs
D ⊆ Σ × Σ.

• We use Algorithm FindExtremal with D as
input to identify a set of 2-anchors, V2.

• For every pair b ∈ Σ × Σ, and every a =
(a1, a2) ∈ V2: if �̂(a → b) > 0, then P ←
P ∪{a(b)}with parameter �̂(a→ b) andB ←
B ∪ {a1, a2}.

• We use Algorithm FindExtremal with Σ ⧵ B
as input, and initial symbol s to identify a set
of 1-anchors, V1.

• For every b ∈ Σ and a ∈ V1 ⧵ {s}, if �̂(a →
b) > 0, P ← P ∪{a(b)}with parameter �̂(a →
b).

• For every f ∈ , if r is the rank of f then for
every A,B1,…Br in V1 or V2 of appropriate
dimension, let � = a → f (b1,… ,br). If
� is not redundant wrt P then let � = �̂(�),
If � > 0 then add this production to P with
parameter �,

• Do the same for every f ∈ S where A is
restricted to be s.

• Construct a weightedMCFG with nonterminals
of dimension 2, V2, of dimension 1, V1 ∪ {s},
start symbol s, set of productionsP , with these
associated parameters.

• Convert the weighted MCFG to a probabilis-
tic MCFG via one iteration of the expectation-
maximisation algorithm.

This algorithm is polynomial in the size of the
input data. The only computationally nontrivial
part of this is the final conversion step, which is of
the same complexity as parsing (Eisner, 2016). In
the case of well-nested MCFGs, the grammars can
be binarised and complexity is (|wi|6) (Gómez-
Rodríguez et al., 2010). This step can be omitted if
all that is needed is the conditional distribution of
trees given strings.
Input: Strings w1, w2,… , wN , and

k-tuples A, optional initial symbol s
Output: A set of k-anchors Ak ⊆ A
Ak ← ∅ or {s};
for a ∈ A do

if ∀b ∈ A, �̂(a→ b) > 0 or �̂(b→ a) =
0 then

if ∀b ∈ Ak, �̂(b→ a) = 0 then
Ak ← Ak ∪ {a};

end
end

end
return AkAlgorithm FindExtremal: Find extremal ele-

ments of a set of tuples, of dimension 1 or 2.

8 Correctness
We will now prove the correctness of the algorithm
for a certain class of probabilistic grammars that we
will now define as Pr. For clarity we will gather
together the various conditions that we require in
one place.

• First, we have the normal form restrictions
defined in section 2.1. These restrict the lan-
guages generated to those generated by well-
nested MCFGs of dimension 2, a well studied
class, except for the empty string which is not
generated by any of these grammars.

• Double anchoring (definition 3): this requires
that for each nonterminal we have some repre-
sentative structures that are generated only by
those nonterminals.

33

• Local unambiguity (definition 5): a weak con-
dition on the ambiguity of the grammar.

• Completeness: the requirement that all pro-
ductions that are valid either are in the gram-
mar or can be derived from other productions:
definition 7

We define the classPr to be the set of probabilis-
tic grammars ⟨G; �⟩ where G satisfies the condi-
tions above, and where � is a top down parameteri-
sation of finite expected length.2 We claim that the
algorithm is a consistent estimator forPr, as stated
in the following theorem.
Theorem 2. For any ⟨G∗; �∗⟩ ∈ Pr for any � >
0, � > 0, there is an N such that if the grammar
is provided with at least N samples then it out-
puts a probabilistic MCFG ⟨Ĝ; �̂⟩ such that, with
probability at least 1 − �, Ĝ is isomorphic to G∗
and for all productions � in the original grammar
|�∗(�) − �̂(�̂)| < �, where �̂ is the production in Ĝ
isomorphic to �.

Proof. (Sketch)
The backbone of the proof is Theorem 1; here

we just need to show that we can derive this proba-
bilistically. The outline of the proof is that we make
a series of assumptions that will hold probabilisti-
cally. We can then bound the probability of an error
in each case by some fraction of �; using a union
bound we can then bound the probability of any
of them being false. Let D be the set of observed
strings.

• We assume every element of the original al-
phabet occurs in some string in D.

• We assume that the Dyck pairs of the language
are equal to the Dyck pairs of D.

• We assume that for every two Dyck pairs a,b
a► ⊆ b► iff �̂(a→ b) > 0.

• We assume that if a is a 1-anchor and b is any
other terminal, then a► ⊆ b► iff �̂(a → b) >
0, and b► ⊆ a► iff �̂(b → a) > 0.

Under these assumptions, the nonterminals in the
hypothesis grammar will correspond to the original
nonterminals where a corresponds to A iff a► =(G∗, A).

• We assume that for every possible production
�; � is valid iff �̂(�) > 0.

2For all nonterminals A, I(A) = 1 and O(A) is finite.

• We assume that for every possible production
� that does correspond to a production �∗ in
the original grammar: |�̂(�) − �(�∗)| ≤ �′.

Under these assumptions, we will construct
only the productions that are valid and non redun-
dant, and the convergence of the parameters to
the bottom-up parameters follows. We can then
show that the conversion to the probabilistic MCFG
gives bounded errors using some elementary analy-
sis.

The conditions stated are merely sufficient condi-
tions for the learnable class: the actual class learned
is larger. For example the finite language {a} is not
problematic, but violates the requirement that each
dimension 1 nonterminal has two anchors.
9 Discussion
First, note that the strings themselves are enough
to infer the "movement" structure but only when
there is a fairly explicit clue in at least some of the
strings that exhibit this structure. Secondly, well-
nestedness (Kuhlmann and Möhl, 2007; Kanazawa
et al., 2011) seems to make things a lot simpler; this
tends to support Kanazawa et al. (2011)’s arguments
for well-nestedness as a condition onmildly context-
sensitive language formalisms to go with the pars-
ing efficiency arguments (Gómez-Rodríguez et al.,
2010) and the corpus based arguments of, among
others, Kuhlmann and Nivre (2006). Note that for
example MIX (Kanazawa and Salvati, 2012) is not
in the class of languages defined; the strong learning
classes are much more restricted in linguistically
significant ways that the weak learning algorithms
considered in Hao (2019).
Finally, we don’t use the additional MCFG ma-

chinery only in those cases where it is strictly re-
quired. Rather some context-free languages, and
indeed even some finite languages will have nonter-
minals of dimension 2; in this approach, all long dis-
tance dependencies must be handled by the mildly
context-sensitive part even if they could be handled
by some regular or CFG component.

The plugin estimators are computationally trivial
but very slow to converge: but this can be improved
using standard NLP techniques as is shown by Clark
and Fijalkow (2020). The algorithm is relativised
to a set of admissible production types . It is
not the case that increasing the set of types will
strictly increase the set of grammars learned: typi-
cally there will be some languages/grammars that

34

will no longer be complete in the larger class. This
approach then defines a family of different learnable
classes.

The approach is quite close to the (weak) primal
distributional learning approach for MCFGs devel-
oped in Yoshinaka (2010).

Language Acquisition The learning model here
is highly idealised: the learner only has access, pas-
sively, to a sample of strings generated from the
grammar. The child learner of course normally
has access to much additional information derived
from the situational context via other modalities,
and additionally is an active participant, being able
to interact and produce utterances of their own. The
model is therefore highly pessimistic in the assump-
tions about the information available to the child;
the positive result we are able to obtain in this model
is thus correspondingly strengthened. Nonetheless,
the classic term, the primary linguistic data cor-
rectly highlights the importance of this data in lan-
guage acquisition since it is the only data source that
is essential in the sense that when it is unavailable,
language acquisition fails, see Clark and Lappin
(2011) for discussion. At least in the early phases
of language acquisition, this seems a reasonable
assumption. However when we consider the acqui-
sition of mildly context-sensitive grammars as we
do here, we are considering fairly subtle properties
of adult syntax which may only emerge later.
The anchoring condition is clearly unrealistic:

natural languages to a certain extent have one di-
mensional anchors but they simply don’t have the
two dimensional anchors at least if we consider ter-
minal symbols to be undisambiguated sequences
of acoustic features. But the model we use here
does not rely on this assumption about the terminal
words. In parameter setting models of language ac-
quisition (Yang and Roeper, 2011) it is common to
assume that the input is a sequence of more abstract
grammatical categories. If we consider the input
data then to be sequences of some sort of shallow
chunks, or non recursive phrases, then the double
anchoring assumption starts to seem more realistic.
In summary, from a modeling perspective it is a
bit naive to attempt to model all of syntax learning
using only the strings as input, even if it is cleaner
from the mathematical perspective we adopt in this
paper: some additional information derived from
semantic constraints is certainly active in language
acquisition.

Future work That said, there are no in principle
reasons why this approach couldn’t be extended to
grammars that are only partially or approximately
anchored. It’s more realistic to remove productions
like A(a, b) entirely, and introduce lexical items
only via dimension 1 nonterminals.

However a lot of the problems are becauseMCFGs
themselves are inadequate representationally: we
need a formalism with a little more structure. Alter-
natively one can learn some simpler constituent
structure, and then subsequently learn a richer
movement structure (Rogers, 2003) on top of that
as in Clark (2021b). Again this seems to require
the restriction to the well-nested class.
Unary rules like A(x) ← B(x) and the 2-

dimensional analogue, seem straightforward to in-
troduce but will add some algorithmic complex-
ity as in Clark (2021a). Moving to well-nested
MCFGs of higher dimension seems straightforward,
though the corresponding anchoring assumption
is still less plausible: the corresponding generali-
sation of a Dyck language is, in the dimension 3
case that given by S → SpSqSr, → �. In contrast
the extension to non well-nested MCFGs has many
technical difficulties; it is not clear whether this
approach can be extended beyond the well-nested
class. Moving from dimension 2 to dimension 3
seems particularly tricky then because the appro-
priate generalisation of the Dyck language, D3, is
poorly understood (Moortgat, 2014).
Conclusion This paper has presented a family
of algorithms for strong learning of a representa-
tive mildly context-sensitive grammar formalism,
using only strings as input, with good theoretical
guarantees. A realistic learning model, a repre-
sentationally adequate grammar formalism, and a
sufficiently strong convergence criterion: these are
all good, but the class of grammars is still too small,
and the grammars are too big, as the MCFG formal-
ism itself is not succinct enough.

Acknowledgments
I am grateful to the reviewers for their helpful com-
ments.

References
Robert C. Berwick, Paul Pietroski, Beracah Yankama,

and Noam Chomsky. 2011. Poverty of the stimulus
revisited. Cognitive Science, 35:1207–1242.

35

Alexander Clark. 2014. An introduction to multiple
context free grammars for linguists. Unpublished
manuscript.

Alexander Clark. 2021a. Beyond Chomsky normal form:
Extending strong learning algorithms for PCFGs. In
Proceedings of the Fifteenth International Confer-
ence on Grammatical Inference, volume 153 of Pro-
ceedings of Machine Learning Research, pages 4–17.
PMLR.

Alexander Clark. 2021b. Strong learning of probabilistic
tree adjoining grammars. Proceedings of the Society
for Computation in Linguistics, 4(48).

Alexander Clark and Rémi Eyraud. 2007. Polynomial
identification in the limit of substitutable context-free
languages. Journal of Machine Learning Research,
8:1725–1745.

Alexander Clark and Nathanaël Fijalkow. 2020. Con-
sistent unsupervised estimators for anchored PCFGs.
Transactions of the Association for Computational
Linguistics, 8:409–422.

Alexander Clark and Shalom Lappin. 2011. Linguistic
Nativism and the Poverty of the Stimulus. Wiley-
Blackwell, Malden, MA.

Jason Eisner. 2016. Inside-outside and forward-
backward algorithms are just backprop (tutorial pa-
per). In Proceedings of the Workshop on Structured
Prediction for NLP, pages 1–17.

Seymour Ginsburg. 1966. The Mathematical Theory of
Context-Free Languages. McGraw-Hill, Inc., New
York, NY, USA.

Carlos Gómez-Rodríguez, Marco Kuhlmann, and Gior-
gio Satta. 2010. Efficient parsing of well-nested linear
context-free rewriting systems. In Human Language
Technologies: The 2010 Annual Conference of the
North American Chapter of the Association for Com-
putational Linguistics, pages 276–284.

Yiding Hao. 2019. Learnability and overgeneration in
computational syntax. Proceedings of the Society for
Computation in Linguistics, 2(1):124–134.

James Jay Horning. 1969. A study of grammatical infer-
ence. Ph.D. thesis, Computer Science Department,
Stanford University.

Riny A .C. Huybrechts. 1984. The weak inade-
quacy of context-free phrase structure grammars. In
G. de Haan, M. Trommelen, and W. Zonneveld, edi-
tors, Van Periferie naar Kern. Foris, Dordrecht, Hol-
land.

Aravind K. Joshi. 1985. Tree adjoining grammars: How
much context-sensitivity is required to provide rea-
sonable structural descriptions? In David R. Dowty,
Lauri Karttunen, and Arnold M. Zwicky, editors, Nat-
ural Language Parsing: Psychological, Computa-
tional, and Theoretical Perspectives, Studies in Natu-
ral Language Processing, page 206–250. Cambridge
University Press.

Laura Kallmeyer and Wolfgang Maier. 2013. Data-
driven parsing using probabilistic linear context-
free rewriting systems. Computational Linguistics,
39(1):87–119.

Makoto Kanazawa. 2009. The pumping lemma for well-
nested multiple context-free languages. In Develop-
ments in Language Theory, pages 312–325. Springer.

Makoto Kanazawa, Jens Michaelis, Sylvain Salvati, and
Ryo Yoshinaka. 2011. Well-nestedness properly sub-
sumes strict derivational minimalism. In Sylvain
Pogodalla and Jean-Philippe Prost, editors, Logical
Aspects of Computational Linguistics, volume 6736
of Lecture Notes in Computer Science, pages 112–
128. Springer Berlin Heidelberg.

Makoto Kanazawa and Sylvain Salvati. 2012. MIX is not
a tree-adjoining language. In Proceedings of the 50th
Annual Meeting of the Association for Computational
Linguistics: Long Papers-Volume 1, pages 666–674.
Association for Computational Linguistics.

Yuki Kato, Hiroyuki Seki, and Tadao Kasami. 2006.
Stochastic multiple context-free grammar for RNA
pseudoknot modeling. In Proceedings of the Eighth
International Workshop on Tree Adjoining Grammar
and Related Formalisms, pages 57–64.

Gregory M. Kobele. 2006. Generating Copies: An in-
vestigation into structural identity in language and
grammar. Ph.D. thesis, University of California Los
Angeles.

Marco Kuhlmann and Mathias Möhl. 2007. Mildly
context-sensitive dependency languages. In Proceed-
ings of the 45th Annual Meeting of the Association of
Computational Linguistics, pages 160–167.

Marco Kuhlmann and Joakim Nivre. 2006. Mildly non-
projective dependency structures. In Proceedings
of the COLING/ACL 2006 main conference poster
sessions, pages 507–514.

Roger Levy. 2005. Probabilistic models of word order
and syntactic discontinuity. Ph.D. thesis, Stanford
university.

Michael Moortgat. 2014. A note on multidimensional
Dyck languages. In Categories and Types in Logic,
Language, and Physics, pages 279–296. Springer.

Mark-Jan Nederhof and Giorgio Satta. 2008. Computing
partition functions of PCFGs. Research on Language
and Computation, 6(2):139–162.

James Rogers. 2003. Syntactic structures as multi-
dimensional trees. Research on Language and Com-
putation, 1(3-4):265–305.

James Scicluna and Colin de la Higuera. 2016. Gram-
matical inference of PCFGs applied to language mod-
elling and unsupervised parsing. Fundamenta Infor-
maticae, 146(4):379–402.

36

Hiroyuki Seki, Takashi Matsumura, Mamoru Fujii, and
Tadao Kasami. 1991. On multiple context-free gram-
mars. Theoretical Computer Science, 88(2):229.

Stuart M. Shieber. 1985. Evidence against the context-
freeness of natural language. Linguistics and Philos-
ophy, 8:333–343.

Edward P Stabler. 2013. The epicenter of linguis-
tic behavior. In Montserrat Sanz, Itziar Laka, and
Michael K. Tanenhaus, editors, Language Down the
Garden Path: The Cognitive and Biological Basis of
Linguistic Structures, pages 316–323. Oxford Univer-
sity Press.

Karl Stratos, Michael Collins, and Daniel Hsu. 2016.
Unsupervised part-of-speech tagging with anchor hid-
den markov models. Transactions of the Association
for Computational Linguistics, 4:245–257.

Charles Yang and Tom Roeper. 2011. Minimalism and
language acquisition. In Cedric Boeckx, editor, Ox-
ford Handbook of Linguistic Minimalism, chapter 24,
pages 551–573. Oxford University Press, Oxford.

RyoYoshinaka. 2009. Learningmildly context-sensitive
languages with multidimensional substitutability
from positive data. In International Conference on Al-
gorithmic Learning Theory, volume 5809 of Lecture
Notes in Computer Science, pages 278–292. Springer.

Ryo Yoshinaka. 2010. Polynomial-time identification
of multiple context-free languages from positive data
and membership queries. In Proceedings of the In-
ternational Colloquium on Grammatical Inference,
pages 230–244.

Ryo Yoshinaka, Yuichi Kaji, and Hiroyuki Seki. 2010.
Chomsky-Schützenberger-type characterization of
multiple context-free languages. In International
Conference on Language and Automata Theory and
Applications, pages 596–607.

37

More efficiently identifying the tiers of strictly 2-local tier-based functions

Phillip Burness
University of Ottawa

pburn036@uottawa.ca

Kevin McMullin
University of Ottawa

kevin.mcmullin@uottawa.ca

Abstract

String-to-string functions that consider purely
local information have proven useful for mod-
elling local phonological processes, and sim-
ilar modelling of long-distance processes is
possible when the assessment of locality is rel-
ativized to subsets of the segment inventory
(usually called tiers). Such tier-based func-
tions can be learned in quadratic time and data
when the tier(s) are known in advance, but
existing methods for inducing the tier(s) run
in quintic time. Current algorithms tailored
specifically to learn tier-based functions are
thus much slower overall than the cubic upper
bound established for learning the superclass
of subsequential functions. We show that the
bottlenecks responsible for this comparatively
inefficient runtime can be circumvented by ju-
diciously using a Prefix Tree Transducer when
inducing the tier(s). Doing so brings us down
to a quadratic upper bound on overall runtime.

1 Introduction

It is generally accepted that the regular region of
the Chomsky hierarchy (Chomsky, 1956) is suf-
ficiently expressive to describe the attested range
of human phonological patterns (Johnson, 1972;
Kaplan and Kay, 1994). Equally well-established,
though, is that regular languages are not learnable
in the limit from positive data alone (Gold, 1967).
Accordingly, various subsets of the regular lan-
guages and functions (i.e., subregular classes) have
been explored as alternatives.

Local phonotactics and processes enjoy particu-
larly strong learning results in this regard, as they
can respectively be modelled using Strictly Local
languages (see for example Rogers and Pullum,
2011; Rogers et al., 2013) and Strictly Local func-
tions (see for example Chandlee and Heinz, 2018).
Strictly Local languages are those that ban partic-
ular contiguous sequences from appearing in raw

strings, and the runtime of their associated learning
algorithm is linearly proportional to the size of the
sample (Garcia et al., 1990). For their part, Strictly
Local functions are those where the transformation
of an input segment depends only on its immedi-
ately surrounding material in the raw string, and the
runtime of their associated learning algorithms is
quadratically proportional to the size of the sample
(Chandlee et al., 2014, 2015).

Non-local phonotactics also enjoy strong learn-
ing results, since they can be modelled as Tier-
based Strictly Local languages (see for example
McMullin and Hansson, 2016). These are essen-
tially relativized versions of Strictly Local lan-
guages that prohibit contiguous sequences after the
raw strings have been projected onto a tier (Heinz
et al., 2011; Lambert and Rogers, 2020). The run-
time of their associated learning algorithm is linear
in the size of the sample when the tier is known
beforehand, but is quadratic when the tier must
be identified (Jardine and McMullin, 2017). As
for non-local processes, they have commonly been
modelled as subsequential functions (Heinz and
Lai, 2013; Luo, 2017; Payne, 2017) which can be
learned in cubic time (Oncina et al., 1993).

A separate line of recent work, however, shows
that non-local processes can equally be modelled
using the weaker class of Tier-based Strictly Local
functions, which extend Tier-based Strictly Local
languages to functions in the same way that Strictly
Local functions extend Strictly Local languages
(see for example Andersson et al., 2020; Burness
et al., 2021). Previous work on learning tier-based
functions found that, while a transducer comput-
ing the function could be constructed in quadratic
time when the tier is known in advance, learning
the tier itself (where this is possible) took quintic
time (Burness and McMullin, 2019). This had the
odd consequence of making it less efficient to learn
a Tier-based Strictly Local function than a subse-

Proceedings of the 17th Meeting on the Mathematics of Language, pages 38–49, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

38

quential function, even though the former class
is strictly less expressive than the latter. In this
paper, we amend this discrepancy, showing that
inefficiencies in the existing tier induction meth-
ods can be eliminated by manipulating a Prefix
Tree Transducer, a data structure commonly used
in grammatical inference. Doing so reduces time
complexity by three polynomial degrees, making it
possible to identify a tier in quadratic time.

The rest of the paper is organized as follows. Sec-
tion 2 outlines notation and definitions to be used
throughout; it also provides formal background
on tier-based functions and important properties
thereof. Next, Section 3 discusses the first portion
of Burness and McMullin’s (2019) learning algo-
rithm which extracts particular information from
the training sample necessary for subsequent steps;
we identify the bottleneck responsible for the rel-
ative inefficiency of this procedure and show that
it can be avoided using a Prefix Tree Transducer.
Then, Section 4 discusses the portion of Burness
and McMullin’s (2019) algorithm that identifies the
target function’s tier; this procedure faces a similar
bottleneck to the preceding one which is also avoid-
able by using a Prefix Tree Transducer. Finally,
Section 5 concludes and discusses directions for
future research.

2 Preliminaries

2.1 Notation

Given a string w made of symbols from some al-
phabet Σ, we write |w| to denote the length of that
string. Below, strings will frequently be flanked by
the special non-alphabet symbols o and n, which
denote the start and end of a string, respectively.
Given an alphabet Σ, we write Σ∗ to denote all pos-
sible strings made from that alphabet. The unique
string of length 0 (i.e. the empty string) is written
as λ. Given two strings u and v, we write u · v to
denote their concatenation, though when context
allows, we will save space by simply writing uv.

A suffix of some string w is any string s such
that w = x · s and x, s ∈ Σ∗. Similarly, a prefix of
some string w is any string p such that w = p · x
and p, x ∈ Σ∗. Note that any string is a prefix and
a suffix of itself, and that the empty string λ is a
prefix and a suffix of every string. When |w| ≥ n,
suffn(w) denotes the unique suffix of w with a
length of n; when |w| < n, it simply denotes w
itself. Similarly, when |w| ≥ n, prefn(w) denotes
the unique prefix of w with a length of n; when

|w| < n, it simply denotes w itself. We also write
pref∗(w) to denote the set of all prefixes of any
length in w.

A string-to-string function pairs every w ∈ Σ∗

with one y ∈ ∆∗, where Σ and ∆ are the input
alphabet and output alphabet respectively. Given a
set of input strings I ⊆ Σ∗, f(I) =

⋃
i∈I{f(i)}

is the set of all outputs associated to at least one
of the inputs. Given a set of strings S, we write
lcp(S) to denote the longest common prefix of S,
which is the string u such that u is a prefix of every
w ∈ S, and there exists no other string v such that
|v| ≥ |u| and v is also a prefix of every w ∈ S.

An important concept is that of the tails of
an input string w with respect to a function f .
In words, tailsf (w) pairs every possible string
y ∈ Σ∗ with the portion of f(wy) that is directly
attributable to y. Stated differently, tailsf (w)
describes the effect that w has on the output of
any subsequent string of input symbols. When
tailsf (w1) = tailsf (w2) we say that w1 and
w2 are tail-equivalent with respect to f .

Definition 1. Tails (Oncina and Garcia 1991)
Given a function f and an input w ∈ Σ∗:

tailsf (w) = {(y, v) | f(wy) = uv ∧
u = lcp(f(wΣ∗))}

Throughout the rest of this paper, we will need
to be able to pick out the portion of the output
that corresponds to actual input material. Given a
transducer representation of the relevant function,
this boils down to a distinction between the writing
that occurs while reading segments from sigma Σ
and any writing that occurs when the end of the
word is reached (i.e., when n is read). To make
this distinction, Chandlee et al. (2015) defined the
prefix function fp associated with a subsequential
function f as below. An example where f(w) and
fp(w) differ would be a function that appends a
to the end of every input string. In this case, fp is
simply the identity map, so fp(abc) = abcwhereas
f(abc) = abca.

Definition 2. Prefix function (Chandlee et al.
2015)
Given a function f , its associated prefix function
fp is such that:

fp(w) = lcp(f(wΣ∗))

Finally, a useful concept related to tails, tail-
equivalency, and prefix functions is the contribu-
tion of a symbol σ ∈ Σ relative to a string w ∈ Σ∗

with respect to a function f . In words, for an input

39

string x that has the prefix wσ, the contribution of
the σ in wσ is the portion of f(x) that is uniquely
and directly attributable to that instance of σ. We
also define a special case for the word-end symbol
n that is not part of Σ. The notation x−1 · w rep-
resents the string w with x removed from its front,
so a−1 · aba = ba for example.

Definition 3. Contribution
Given a function f and some w ∈ Σ∗:

• For σ ∈ Σ:
contf (σ,w) = fp(w)−1 · fp(wσ) =
lcp(f(wΣ∗))−1 · lcp(f(wσΣ∗))

• For n /∈ Σ:
contf (n, w) = fp(w)−1 · f(w) =
lcp(f(wΣ∗))−1 · f(w)

2.2 Single-tiered functions
Where a Strictly Local (SL) function divides Σ∗

into tail-equivalence classes based on suffixes of
raw strings (Chandlee, 2014; Chandlee et al., 2014,
2015), a Tier-based Strictly Local (TSL) function’s
tail-equivalence classes are based on suffixes of
strings after masking irrelevant elements (Burness
and McMullin, 2019; Hao and Andersson, 2019;
Hao and Bowers, 2019). Relevant elements are
those that belong to the specified tier (a subset of
the alphabet) and the masking is accomplished with
an erasure function, sometimes also called a tier
projection.

Definition 4. Erasure function
Given a tier T ⊆ Σ, the erasure function applied
by T on Σ∗ is such that:

eraseT (λ) = λ
eraseT (w) = eraseT (u) · σ if

w = u · σ ∧ σ ∈ T
eraseT (w) = eraseT (u) if

w = u · σ ∧ σ /∈ T
SL and TSL functions are really divided into

two types. On the one hand are the the Input (Tier-
based) Strictly Local or I(T)SL functions which
care about suffixes of the input string. On the other
hand are the Output (Tier-based) Strictly Local or
O(T)SL functions which care about suffixes of the
output string. For reasons of space, we focus on the
output-oriented OTSL functions in this paper, but
the results herein are easily extended to the input-
oriented ITSL case. As indicated in the following
formal definition, the OTSL functions are further
subdivided based on the length of suffix that is be-
ing tracked, although the learning results below ap-

ply only for k = 2. Note that we write suffnT (w)
as shorthand for suffn(eraseT (w)).

Definition 5. Output Tier-based Strictly k-Local
Functions (Burness and McMullin, 2019)
A function f is OTSLk if there is a tier T ⊆ ∆ such
that for all w1, w2 in Σ∗:

suffk−1
T (fp(w1)) = suffk−1

T (fp(w2)) =⇒

tailsf (w1) = tailsf (w2)

The tier-induction strategy of Burness and Mc-
Mullin (2019), which we optimize in this paper,
relies on some important properties of OTSL2 func-
tions. First, many OTSL2 functions can be de-
scribed using a variety of tiers (e.g., the identity
map can be described using any subset of the out-
put alphabet), but taking the union of two potential
tiers will always result in another potential tier (i.e.,
potential tiers can be freely combined).

Lemma 1. Free combination of tiers
Given an OTSL2 function f , if A ⊆ ∆ and B ⊆ ∆
are both tiers for f , then Ω = A ∪B is also a tier
for f .

Proof. See the proof of Lemma 4 in Burness and
McMullin (2019).

The above Lemma implies the existence of a
unique largest tier for any OTSL2 function that is
a superset of its other possible tiers (if any others
exist). Following Burness and McMullin (2019),
we call this the canonical tier for f .

Definition 6. Canonical tier
Given an OTSL2 function f , the tier T ⊆ ∆ is the
canonical tier for f if and only if there is no other
tier Ω ⊆ ∆ for f such that |Ω| ≥ |T |.

Burness and McMullin (2019) go on to show
that, if one attempts to describe an OTSL2 function
using a superset of its canonical tier, then there
will always be at least one input-output pair which
acts as evidence that one of the superfluous tier
elements cannot be a member of any tier for f .

Lemma 2. Absolute non-tier status
Let f be an OTSL2 function where T ⊆ ∆ is the
canonical tier. For every Ω such that T ⊂ Ω
there will exist a ∈ (Ω − T), w1, w2 ∈ Σ∗,
and x ∈ Σ ∪ {n} such that suff1

Ω(fp(w1)) =
suff1

Ω(fp(w2)) = a and contf (x,w1) 6=
contf (x,w2).

Proof. See the proof of Lemma 5 in Burness and
McMullin (2019).

40

Taking advantage of Lemma 1 and Lemma 2
together, we can begin by hypothesizing that the
canonical tier is equal to the entire output alphabet
∆ and whittle this hypothesis down as needed until
we converge on the canonical tier. To do so, we
look through our sample for evidence that some el-
ement cannot be on the tier, and if such an element
is found, we remove it from the hypothesized tier.
When no elements can be flagged for removal, we
will have found the canonical tier.

2.3 Multi-tiered functions

With a TSL function, we are limited to a single
tier. This is not necessarily an issue when we are
considering isolated long-distance processes, but
it severely limits our capacity to describe fuller
phonological systems. Burness and McMullin
(2021) address this issue at least partially by defin-
ing a class of Multi-Tiered Strictly Local (MTSL)
functions that tracks multiple independent tier pro-
jections in parallel. The class they develop imposes
a particular relationship between the tiers and the
input alphabet. Namely, the contribution (see Def-
inition 3) of a given input element can always be
linked back to the effects of a set tier, although
different input elements can be affected by differ-
ent tiers. Viewed another way, each input element
specifies a tier to which it pays exclusive attention.

In light of space limitations, and in order to cut
down on redundancy in the proofs below, we hence-
forth stick to single-tiered functions, noting that
the results herein are straightforwardly extended
to Burness and McMullin’s (2021) strongly target-
specified MTSL functions just described. The ma-
jor motivation behind this particular type of MTSL
function was that Burness and McMullin’s (2019)
method for learning the single tier of a TSL func-
tion readily generalizes to the “one tier per input el-
ement” case. Our changes to the single-tier learner
below do not affect any of the properties that al-
lowed for Burness and McMullin’s (2021) general-
ization to such multiple independent tiers.

3 Estimating the prefix function

Identifying the tier of a target function is done by
comparing contributions and checking for any that
do not match when the current hypothesis says they
should. Calculating contributions requires knowl-
edge of the target function’s associated prefix func-
tion fp, so the first step in the tier-learning pipeline
is to extract as much knowledge as possible about

fp from the given sample. Burness and McMullin
(2019) devised a method of doing so whose worst-
case run time is in O(|S|4), where |S| is the size
of the training sample. The relative inefficiency of
this method comes from the fact that it must read
through the sample once for each prefix in the sam-
ple, and must calculate the longest common prefix
of the set returned by each of these nested reads.
We present an alternative method in this section
whose worst-case run time is inO(|S|2) and which
also allows us to greatly improve the efficiency of
later learning steps. By creating and manipulating
an auxiliary data structure, we completely elimi-
nate the need for the problematic nested reads.

3.1 Building an onward PTT
We start with what is known as a Prefix Tree
Transducer (PTT), defined in Definition 7 which
is adapted from Chandlee et al. (2014). The PTT
corresponding to a sample of input-output pairs
effectively generates all and only the pairs in the
sample, writing the entire output in one fell swoop
after reading the entire input. For example, the
PTT corresponding to {(s, s), (ss, ss), (sS, ss), (so,
so), (sos, sos), (soSo, soso), (sooS, soos)} is shown
in Figure 1. To avoid visual clutter, all transitions
landing in the designated final state (qf) are incor-
porated into the label of their origin state.

Definition 7. Prefix Tree Transducer (adapted
from Chandlee et al. 2014)
A Prefix Tree Transducer (PTT) for the finite
set D of pairs (w,w′) from some function f is
PTT (D) = (Q, q0, qf ,Σ,∆, δ) where:

• Q =
⋃

(w,w′)∈D{pref∗(w)}

• (∀u ∈ Σ∗)(∀a ∈ Σ)
[u, ua ∈ Q⇐⇒ (u, a, λ, ua) ∈ δ]

• (w,w′) ∈ D ⇐⇒ (w,n, w′, qf) ∈ δ

• (q0,o, λ, λ) ∈ δ
In this initial form, a PTT is maximally lazy,

waiting as late as possible before writing any out-
put. For tier learning, we need to modify the PTT
so that it is minimally lazy, producing as much out-
put as it can as early as it can. To perform such
a conversion, we can perform a depth-first parse
of the sample working backwards from the leaves
of the prefix tree towards the root. For each state
along the way, we calculate the longest common
prefix of the output edges on its outgoing transi-
tions, pushing that string onto the output edge of its

41

q0 λ
s

n:s
so

n:so

sS
n:ss

ss
n:ss

soS

sos
n:sos

soo

soSo
n:soso

sooS
n:soos

o:λ s:λ o:λ

s:λ

S:λ

o:λ

s:λ

S:λ

o:λ

S:λ

Figure 1: The PTT for the sample {(s, s), (ss, ss), (sS, ss), (sa, sa), (sas, sas), (saSa, sasa), (saaS, saas)}

lone incoming transition (de la Higuera, 2010, pp.
377-379). We use the term onward PTT to refer to
such a converted PTT and write onward(M) to
denote the process being applied to M . For the full
details of how to build a PTT and make it onward,
see chapter 18 of de la Higuera (2010). Figure 2
shows the result of onwarding the PTT in Figure 1.

Onward PTTs are used by the Onward Subse-
quential Transducer Inference Algorithm (OSTIA)
of Oncina et al. (1993) and are used by the learn-
ing algorithm for ISL functions (Chandlee et al.,
2014) but not the one for OSL functions (Chandlee
et al., 2015). Interestingly, both OSTIA and the ISL
function learning algorithm obtain a transducer rep-
resentation of the target function by applying a
process of state merging to an onward PTT. In con-
trast, the learning algorithm in this paper merely
uses an onward PTT as a sort of oracle, consult-
ing it for essential pieces of information without
modifying it in any way.

3.2 Extracting useful information
A PTT that has been made onward exhibits some
important properties that will be exploited below.
First, given a state q ∈ Q that has an outgoing tran-
sition for all x ∈ Σ ∪ {n}, we will have produced
exactly fp(q) so far when we enter the state q. We
call such a state a supported state. Assuming that
Σ = {s, o, S }, the supported states in Figure 2 are
‘s’ and ‘so’.

Definition 8. Supported state
Given an onward PTT P = (Q, q0, qf ,Σ,∆, δ),
the state q ∈ Q is supported if and only if:

(∀x ∈ Σ ∪ {n})[∃(q, x, y, q′) ∈ δ]

Lemma 3. Let P be the onward PTT constructed
according to sample S drawn from function f .
Given a supported state q ∈ Q, it is the case that
we will have written exactly fp(q) upon entering q
after starting in q0.

Proof. Since q is supported, it is the case that
(∀x ∈ Σ ∪ {n})[∃(q, x, y, q′) ∈ δ]. This in turn
means that we have (q, f(q)) ∈ S and for each
a ∈ Σ we have (qab, f(qab)) ∈ S for some
b ∈ Σ∗. An onward PTT is deterministic and
acyclic, so inputs will only pass through q if they
have q as a prefix, and all such inputs in S are guar-
anteed to do so. Let the set Mq (for ”matching q”)
be this subset of the inputs in S. Because all and
only the inputs in S that are also in Mq will pass
through q, the process of making the PTT onward
will push lcp(f(Mq)) past q towards the root such
that exactly this lcp will have been written when
q is entered after starting in q0. Now recall that
fp(w) = lcp({u | u = f(wy) ∧ y ∈ Σ∗}). It
is sufficient to use a set containing f(w) and at
least one f(wv) = f(wab) for each a ∈ Σ (where
b ∈ Σ∗) because every v ∈ Σ∗ is either λ or begins
with some a ∈ Σ. The set Mq fulfills this criterion
and so lcp(f(Mq)) = fp(q).

The other crucial property of an onward PTT fol-
lows from the first: given a transition (q, x, y, q′) ∈
δ such that q is a supported state and q′ is either
another supported state or qf , the string y is guaran-
teed to be equal to contf (x, q) provided that f is
a subsequential function. The transitions meeting
these criteria in Figure 2 are (s, n, λ, qf), (s, o, o,
so) and (so, n, λ, qf).

42

q0 λ
s

n:λ
so
n:λ

sS
n:λ

ss
n:λ

soS

sos
n:λ

soo

soSo
n:λ

sooS
n:λ

o:s s:λ o:o

s:s

S:s

o:os

s:s

S:so

o:λ

S:λ

Figure 2: The onward version of Figure 1

Remark 1. Let P be the onward PTT constructed
according to a sample drawn from function f . A
corollary of Lemma 3 is that, given a supported q:

• (q,n, u, qf) is such that u = contf (n, q) =
fp(q)−1 · f(q)

• (q, σ, v, r) for σ ∈ Σ is such that v =
contf (σ, q) = fp(q)−1 · fp(qσ) if r is also
supported.

The procedure estimate fp shown in Algo-
rithm 1 sends a sample S once through its onward
PTT and returns all pairs (q, fp(q)) such that q
is a supported state. This set will be exploited
along with the PTT when inducing the tier; the
tier-learning algorithm below essentially treats this
PTT and the constructed set as a sort of oracle that
it can consult for information about fp. We close
this section by showing that extracting information
about fp from a sample using Algorithm 1 takes
quadratic time in the worst case.

Lemma 4. Quadratic time (estimate fp)
For any sample S of input-output pairs, Algorithm
1 runs in O(|S|2 · |Σ|) time.

Proof. Let l =
∑

(w,u)∈S |w| be the summed
lengths of all inputs in the sample, let o =
max{|u| : (w, u) ∈ S} be the longest output
length in the sample, and let s be the number of
pairs in the sample. These magnitudes are all linear
in the size of the sample.

Constructing P = PTT (S) requires a single
read through S, taking l steps. Making this P on-
ward takes at most ol steps (for details, see chapter
18 of de la Higuera, 2010). There are at most l non-
initial/non-final states in P and estimate fp

starts by checking each of these once. For each,
it verifies whether all possible |Σ| + 1 outgoing
transitions exist. There are at most l + s tran-
sitions in P , meaning that checking whether a
transition exists takes at most l + s steps. The
first portion of estimate fp thus takes at most
l((l+s)(|Σ|+ 1)) steps. The second portion sends
the sample through P one input letter at a time,
checking on each step whether the landing state is
inA. Checking whether a state is inA takes at most
l steps, so the second portion of estimate fp
takes at most l2 steps. Taken together, the run time
is inO(l+ol+ l(l+s)|Σ|+ l2), which is quadratic
in the size of S and linear in the size of Σ.

4 Identifying tier(s)

4.1 Overview of the process

The full tier induction process is shown in Algo-
rithm 2. This algorithm adapts the overall strategy
from Burness and McMullin (2019) so that it can
be used with the PTT objects described above. In
their original implementation of the strategy, the
learner had to (1) sift through the sample for pairs
meeting a certain criterion and (2) calculate con-
tributions relative to each member of the collected
subset. The latter step requires an additional scan
through the sample for each pair acting as the basis
of comparison, and like above, this nested reading
of the sample creates a significant bottleneck which
ultimately makes the process run in O(|S|5) time.

The key insight in this paper is that certain tran-
sitions in an onwarded PTT will be equal to their
corresponding contribution. Remark 1 tells us that
these are easily identified by checking them against
the set of pairs (q, fp(q)) produced by the revised

43

Data: A sample S
Result: An onward PTT P and the set A

containing the pair (q, fp(q)) for
each supported q ∈ Q

Function estimate fp(S):
P ← PTT (S) = (Q, q0, qf ,Σ,∆, δ);
P ← onward(P);
A← ∅;
B ← ∅;
for q ∈ Q do

if ∀x ∈ Σ ∪ {n},
∃(q, x, y, q′) ∈ δ then

B ← B ∪ {q}
for each (x, y) ∈ S do

a← λ;
b← z such that (q0,o, z, λ) ∈ δ;
if a ∈ B then

A← A ∪ {(a,b)};
for n from 1 to |x| do

r← the n-th letter of x;
w← u such that
(a,r, u, q) ∈ δ;
a← q such that
(a,r,w, q) ∈ δ;
b← b · w;
if a ∈ B then

A← A ∪ {(a,b)};
return A,P

Algorithm 1: Prefix function estimation

estimate fp. Instead of calculating and re-
calculating contributions to find mismatches, then,
we can simply cycle through the list of transitions
in the onwarded PTT, sorting them into bins based
on the current tier hypothesis. Doing so eliminates
the problematic nesting and accordingly reduces
the upper bound on runtime by three polynomial
degrees to O(|S|2).

This reduction in the degree of nesting is simi-
lar to how the ISL learning algorithm’s quadratic
time complexity relates to OSTIA’s cubic time com-
plexity. Both learning algorithms take an onward
PTT and merge pairs of states until they terminate.
Where n is the number of states in the provided
PTT, the number of possible merges performed by
OSTIA is in O(n2) since it can reject and undo
merges (Oncina et al., 1993); in contrast, the num-
ber of possible merges performed by the ISL learn-
ing algorithm is in O(n) since it cannot reject and
undo merges (Chandlee et al., 2014). For each
state merging, both algorithms apply operations

that run in O(|S|), and as a result, the overall com-
plexity of OSTIA and the ISL learning algorithm
are cubic and quadratic in the size of the sample,
respectively.1

We start by hypothesizing that T = ∆ (i.e., that
all members of the output alphabet are on the tier).
Then, for each transition (q, x, y, r) in the onward
PTT, the algorithm checks whether q is a supported
state (i.e., whether there is a pair in A associated
to it) and whether r is a supported state or qf . If
both of these conditions hold, then the output edge
y of the transition is equal to contf (x, q). Ac-
cordingly, the algorithm takes (q, fp(q)) ∈ A, cal-
culates t = suff1

T (fp(q)), and adds y to the bin
Cx,t (the set of contributions for x when the tier
suffix is t) if it is not already there. If t is on the
function’s canonical tier, the cardinality of this bin
should always be equal to or less than 1 since the
target function is OTSL2 and so the contribution
should be the same whenever the output tier suffix
is equal to t.

After scanning through all transitions in the on-
ward PTT, the algorithm looks for any constructed
bins of contributions Cx,t with cardinality greater
than 1. If none of the bins associated with a specific
t ∈ T has cardinality greater than 1, the element t
will get added to the auxiliary set K (for ”keep”)
containing elements that are safe to keep on the tier
for now. If any of the bins associated to t ∈ T have
cardinality greater than 1, the element t is removed
from the tier hypothesis since it cannot possibly be
a member of the function’s canonical tier. If at any
point some symbol gets removed from T , the setK
is immediately emptied. The algorithm repeatedly
alternates between scanning the PTT transitions
and checking the cardinality of contribution sets
until every t in the current hypothesis for T gets
added to the set K, in which case it has found the
canonical tier of the target function.

4.2 Proofs of correctness/efficiency

In this subsection, we establish that our revision of
Burness and McMullin’s (2019) algorithm achieves
the same result in much less time.

Lemma 5. Quadratic time (get tier)
For any input sample S, get tier(S) produces
a tier T in O(|S|2 · |Σ| · |∆|2) time.

1The quadratic time complexity of the OSL learning al-
gorithm, for its part, comes from repeatedly calculating the
longest common prefix of stringsets lifted from the sample
(Chandlee et al., 2015).

44

Data: A sample S
Result: A tier T ⊆ ∆
Function get tier(S):

A,P ← estimate fp(S);
T ← ∆;
K ← ∅;
while K 6= T do

for each t ∈ T do
for each x ∈ Σ ∪ {n} do

Cx,t = ∅;
for each (q, x, y, r) ∈ δ from P do

if [∃(q, a) ∈ A] ∧ [[r =
qf] ∨ [∃(r, b) ∈ A]] then
t← suff1

T (a);
Cx,t ← Cx,t ∪ {y};

for each t ∈ T do
for each x ∈ Σ ∪ {n} do

if |Cx,t| > 1 then
T ← T − {t};
K ← ∅;

if t ∈ T then
K ← K ∪ {t}

return T
Algorithm 2: Single tier induction

Proof. Let l =
∑

(w,u)∈S |w| be the summed
lengths of all inputs in the sample, let o =
max{|u| : (w, u) ∈ S} be the longest output
length in the sample, let i = max{|w| : (w, u) ∈
S} be the longest input length in the sample, and
let s be the number of pairs in the sample. These
are all linear in the size of the sample.

The first step is to run estimate fp on the
sample which Lemma 1 already established as run-
ning inO(|S|2). Following that, the while loop can
run up to |∆| times. The first for loop initializes
the contribution sets that will be constructed, of
which there are at most |∆| · |Σ|. Then, for each
of the up to l + s transitions in P , the second for
loop it searchesA up to two times to check whether
the origin is supported and whether the destination
is supported or final. A single search of A take
at most l steps, and if both conditions are met we
calculate the relevant output tier suffix, taking at
most o steps. Finally, the third for loop inspects
all the transitions in P , we check the cardinality of
each contribution set, which takes at most |∆| · |Σ|
steps. The overall run time of get tier(S) is
thus in O(|∆|2|Σ| + |∆|(l + s)(l + o)), which is
quadratic in the size of S, linear in the size of Σ
and quadratic in the size of ∆.

The remaining lemmata of this section will show
that for each total OTSL2 function f , there is a
finite kernel of data consistent with f that is a char-
acteristic set for the algorithm (i.e., if the training
set subsumes this kernel, the algorithm is guaran-
teed to succeed). The OTSLk functions divide Σ∗

into a finite number of equivalence classes accord-
ing to sets of tails, meaning that the OTSLk func-
tions are also subsequential functions. Oncina and
Garcia (1991) show how the finite partition of Σ∗

lets us build the smallest finite-state transducer that
computes a given subsequential function. Given
a state q in this canonical transducer F , we write
wq to denote the length-lexicographically earliest
input string that reaches the state q, and define the
characteristic set as follows. Note that this same
characteristic set is used by Burness and McMullin
(2021) for their multi-tier learner; they showed that
its size is in O(|F|2).

Definition 9. Characteristic set
A sample S contains a characteristic set iff it con-
tains the following for each state q in F:

1. The input-output pair (wq, f(wq)).

2. For all triples a, b, c ∈ Σ:

i. some pair (wqa, f(wqa)),
ii. some pair (wqab, f(wqab)), and

iii. some pair (wqabcv, f(wqabcv)),
where v ∈ Σ∗

Lemma 6. Quadratic data
There exists a characteristic set whose size is in
O(|F|2).

Proof. See the proof of Lemma 17 in Burness and
McMullin (2021).

Lemma 7. Evidence availability
If a learning sample S contains a characteristic
set and P is the onward PTT for S then for all
w ∈ Σ∗ and all pairs x, y ∈ Σ there is at least
one transition in P corresponding to each of the
following that (1) leaves a supported state and (2)
ends in qf or a supported state:

• contf (x,w)

• contf (n, w)

• contf (y, wx)

• contf (n, wx)

45

Proof. For any input string w ∈ Σ∗, reading w
will lead to some non-initial and non-final state q
in F . The target function is subsequential which
means that that either w = wq or else can be re-
placed thereby since subsequentiality implies that
contf (i, w) = contf (i, wq) for any i ∈ Σ∪{n}.
By the definition of the seed, for every state q in F
and for every triple x, y, z ∈ Σ, the learner will see
wq, wqx, wqxy, and wqxyzv where v ∈ Σ∗. This
means that the states wq, wqx, and wqxy in P are
all supported. As Remark 1 notes, Lemma 3 then
implies that:

• (wq, x, a1, wqx) in P is such that a1 =
fp(wq)

−1 · fp(wqx) = contf (x,wq)

• (wq,n, a2, qf) in P is such that a2 =
fp(wq)

−1 · f(wq) = contf (n, wq)

• (wqx, y, a3, wqxy) in P is such that a3 =
fp(wqx)−1 · fp(wqxy) = contf (y, wqx)

• (wqx,n, a4, qf) in P is such that a2 =
fp(wqx)−1 · f(wqx) = contf (n, wqx)

Lemma 8. Tier convergence
Given a learning sample S that contains a char-
acteristic sample, get tier(S) will produce the
canonical tier of f .

Proof. Let T be the canonical tier of f , and let
H be the tier constructed by the algorithm. The
algorithm begins with H = ∆, and so either
H = T already, or else H ⊃ T . The algorithm
is designed to consider all and only the transitions
(q, x, y, r) in P = onward(PTT (S)) such that q
is a supported state and r is a supported state or
qf . As Remark 1 notes, Lemma 3 implies that
y = contf (x, q) for all such transitions. For
each considered transition (q, x, y, r) in P , the al-
gorithm sorts y into the bin associated simultane-
ously with x and with z = suff1

H(p), where p
is equal to the output produced upon reading q in
P . Note that the algorithm has easy access to the
string p because it is paired with q in the auxiliary
set A. Note also that since q is a supported state,
Lemma 3 tells us that p = fp(q).

Now, we know from Lemma 2 that if H ⊃ T ,
there will exist a pair of input strings w1 and
w2 in the domain of f such that contf (x,w1)
6= contf (x,w2) even though suff1

H(fp(w1)) =
suff1

H(fp(w2)) = a for some a ∈ (H − T) and

some x ∈ Σ ∪ {n}. Furthermore, Lemma 7 tells
us that for all non-initial/non-final states s in the
minimal FST F producing f , each transition along
every possible sequence of two or fewer steps out
of s will have at least one equivalent transition in
P that is considered by the algorithm. If the first
transition along one of these paths produces any
elements not in T , we stand the chance of incor-
rectly binning the second transition when H ⊃ T .
Since we see all possible paths of two transitions,
at least one pair of unequal contributions (which
should be placed into two different bins linked to
two different members of T , since f is OTSL2)
will be placed together into a bin that should not
exist (because that bin is linked to a non-member
of T) when H ⊃ T .

Accordingly, at least one of the bins associated
with some b ∈ (H − T) will have a cardinal-
ity greater than 1 (assuming repeated strings are
counted only once) when H ⊃ T . The algorithm
will thus flag and remove at least one b ∈ (H − T)
when H ⊃ T . Conversely, there will be no pair
of input strings w3 and w4 in the domain of f
such that contf (x,w3) 6= contf (x,w4) when
suff1

H(fp(w3)) = suff1
H(fp(w4)) = c for any

c ∈ T and any x ∈ Σ ∪ {n}. Consequently, none
of the bins associated with any c ∈ T will ever sur-
pass a cardinality of 1 (assuming repeated strings
are counted only once). When H = T , then, the
algorithm will add all d ∈ H to K, at which point
K = H = T .

Theorem 1. get tier identifies the canonical
tier of any total OTSL2 function in O(|S|2) time
and O(|F|2) data.

Proof. Immediate from Lemmata 5, 6, and 8.

The sample and the tier returned by
get tier(S) can then be fed to the trans-
ducer building algorithm from Burness and
McMullin (2019), which is a generalization of
the transducer building algorithm from Chandlee
et al. (2015) and whose worst-case runtime is
also in O(|S|2). Since all three components of
the tier-based function learning pipeline now
have a quadratic upper bound on runtime, the
overall process from start to finish now also has a
quadratic upper bound.

5 Discussion and conclusion

SL functions, aside from closely approximating the
typology of local processes (Chandlee and Heinz,

46

2018), are highly useful from a learnability stand-
point. With their quadratic upper bounds on run-
time, it can be preferable to use the SL function
learning algorithms (Chandlee et al., 2014, 2015)
over the Onward Subsequential Transducer Infer-
ence Algorithm (OSTIA) of Oncina et al. (1993).
While OSTIA can learn all the same functions as
the SL function learners and more (since the sub-
sequential functions properly contain the SL func-
tions), its run time is cubic in the worst case. Sac-
rificing expressiveness, in this case, is offset by a
gain in efficiency, making it worthwhile in appro-
priate circumstances.

Prior to this paper, the same tradeoff was only
true for TSL and MTSL functions when the learner
already knew the necessary tier(s). Such advance
knowledge permits basic generalizations of the SL
learning algorithms that preserve their complexity
bounds (Burness and McMullin, 2019). Of course,
it is not realistic for a learner to come equipped
with foreknowledge of the relevant tier(s), so a fo-
cus of research on tier-based functions has been
whether and how tiers can be identified from posi-
tive examples drawn from the target function. Ini-
tial methods from this enterprise were limited in
that they (i) only work for functions with a win-
dow length (the parameter k) of 2 and (ii) are less
efficient than OSTIA by two polynomial degrees,
with a quintic worst-case runtime. Accordingly, the
fact that some tiers could be learned from positive
data was effectively a technical curiosity from the
perspective of learning performance.

Practically speaking, a learner was better off
attempting to build a subsequential function than
a TSL or MTSL function when an SL function
was not sufficient. Our contribution here was to
show that the inefficiencies of tier learning could
be overcome by manipulating a Prefix Tree Trans-
ducer (a data structure also used by OTSIA and
the ISL learning algorithm) rather than just ma-
nipulating the sample. Doing so circumvents the
need for nested reading of the sample, which we
identified as the major bottleneck of previous meth-
ods. Our revision of the methods from Burness and
McMullin (2019, 2021) reduces their upper bound
on runtime by three polynomial degrees. As was
the case for the SL functions, then, the sacrifice
in expressiveness from eschewing a subsequential
function in favour of a TSL2 function (or a strongly-
target specified MTSL2 function; Burness and Mc-
Mullin, 2021) is offset by an appreciable gain in

efficiency.
While we have focused mainly on concerns of

practicality in this paper, we do note that there are
also conceptual grounds for using TSL and MTSL
functions over subsequential functions as models
of long-distance phonological process. It is well-
established that subsequential computation is suf-
ficiently expressive to model non-local vowel har-
mony (Heinz and Lai, 2013), consonant harmony
(Luo, 2017), and consonant dissimilation (Payne,
2017) with a handful of exceptions in the form of
unbounded circumambience (Jardine, 2016; Mc-
Collum et al., 2020). That being said, the rela-
tivized locality underpinning tier-based functions
has been shown to more intuitively capture attested
long-distance behaviours (Andersson et al., 2020;
Burness et al., 2021), while excluding some patho-
logical behaviours like modulo counting which
are otherwise amenable to a subsequential anal-
ysis (Burness et al., 2021). Combining this work
with the learnability results in the current paper
solidifies the appropriateness of TSL and MTSL
functions as models of long-distance phonological
processes.

Several hurdles, however, still remain to be over-
come in the area of tier-based function learning.
First and foremost, the results herein require a
window size (k) of 2; the properties exploited by
the learner do not hold for larger window sizes.
This is in stark contrast to tier-based languages,
whose tiers are efficiently learnable for arbitrary
window sizes (Jardine and McMullin, 2017; Lam-
bert, 2021). Second, the learner developed above is
a batch learner (as are OSTIA and the SL learners),
making it unlikely as a model of real human phono-
logical learning. In this regard as well, the existing
work on languages outpaces the work on functions,
since an online learner was recently developed for
TSL languages (Lambert, 2021). Finally, the way
in which we manipulate the PTT during tier learn-
ing assumes that the function is total. To learn
partial functions, it may be necessary to provide
the learner with some additional information, like
how Oncina and Varó (1996) and Castellanos et al.
(1998) augment OSTIA by giving it access to do-
main and range information, respectively.

References

Samuel Andersson, Hossep Dolatian, and Yiding Hao.
2020. Computing vowel harmony: The generative

47

capacity of search and copy. In Proceedings of the
2019 Annual Meeting on Phonology.

Phillip Burness and Kevin McMullin. 2019. Efficient
learning of Output Tier-Based Strictly 2-Local func-
tions. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 78–90. Associa-
tion for Computational Linguistics.

Phillip Burness and Kevin McMullin. 2021. Learning
multiple independent tier-based processes. In Pro-
ceedings of the Fifteenth International Conference
on Grammatical Inference, volume 153 of Proceed-
ings of Machine Learning Research, pages 66–80.
PMLR.

Phillip Burness, Kevin McMullin, and Jane Chandlee.
2021. Long-distance phonological processes as tier-
based strictly local functions. Glossa, 6.

Antonio Castellanos, Enrique Vidal, Miguel A. Varó,
and José Oncina. 1998. Language understanding
and subsequential transducer learning. Computer
Speech and Language, 12:193–228.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Doctoral dissertation, University of
Delaware.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning Strictly Local subsequential func-
tions. Transactions of the Association for Computa-
tional Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output Strictly Local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MOL 2015), pages 112–125.

Jane Chandlee and Jeffrey Heinz. 2018. Strict Locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Noam Chomsky. 1956. Three models for the descrip-
tion of language. IRE Transactions on Information
Theory, 2:113–124.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge Uni-
versity Press, New York.

Pedro Garcia, Enrique Vidal, and José Oncina. 1990.
Learning Locally Testable languages in the strict
sense. In Proceedings of the Workshop on Algorith-
mic Learning Theory, pages 325–338. Japanese So-
ciety for Artificial Intelligence.

E. Mark Gold. 1967. Language identification in the
limit. Information and Control, 10:447–474.

Yiding Hao and Samuel Andersson. 2019. Unbounded
stress in subregular phonology. In Proceedings of
the 16th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology and Mor-
phology, pages 135–143, Florence, Italy. Associa-
tion for Computational Linguistics.

Yiding Hao and Dustin Bowers. 2019. Action-sensitive
phonological dependencies. In Proceedings of the
16th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology and Morphol-
ogy, pages 218–228, Florence, Italy. Association for
Computational Linguistics.

Jeffrey Heinz and Regine Lai. 2013. Vowel harmony
and subsequentiality. In Proceedings of the 13th
Meeting on the Mathematics of Language (MOL 13),
pages 52–63, Sofia, Bulgaria. Association for Com-
putational Linguistics.

Jeffrey Heinz, Chetan Rawal, and Herbert G. Tan-
ner. 2011. Tier-based strictly local constraints for
phonology. In Proceedings of the 49th Annual Meet-
ing of the Association for Computational Linguistics,
pages 58–64, Portland, OR. Association for Compu-
tational Linguistics.

Adam Jardine. 2016. Computationally, tone is differ-
ent. Phonology, 33:247–283.

Adam Jardine and Kevin McMullin. 2017. Efficient
learning of Tier-Based Strictly k-Local languages.
In International Conference on Language and Au-
tomata Theory and Applications (LATA 2017), pages
64–76.

C. Douglas Johnson. 1972. Formal Aspects of Phono-
logical Description. Mouton, The Hague.

Ronald M. Kaplan and Martin Kay. 1994. Regular
models of phonological rule systems. Computa-
tional Linguistics, 20:331–378.

Dakotah Lambert. 2021. Grammar interpretations and
learning TSL online. In Proceedings of the Fifteenth
International Conference on Grammatical Inference,
volume 153 of Proceedings of Machine Learning Re-
search, pages 81–91. PMLR.

Dakotah Lambert and James Rogers. 2020. Tier-Based
Strictly Local stringsets: Perspectives from model
and automata theory. In Proceedings of the Society
for Computation in Linguistics (SCiL) 2020, pages
330–337, New Orleans, Louisianna.

Huan Luo. 2017. Long-distance consonant agreement
and subsequentiality. Glossa: A Journal of General
Linguistics, 2:1–25.

Adam G. McCollum, Eric Baković, Anna Mai, and
Eric Meinhardt. 2020. Unbounded circumambi-
ent patterns in segmental phonology. Phonology,
37:215–255.

Kevin McMullin and Gunnar Ólafur Hansson. 2016.
Long-distance phonotactics as Tier-Based Strictly 2-
Local Languages. In Proceedings of the 2014 An-
nual Meeting on Phonology, Washington, DC. Lin-
guistic Society of America.

José Oncina and Pedro Garcia. 1991. Inductive learn-
ing of subsequential functions. Technical Report
DSIC II-34, University Politecnia de Valencia.

48

José Oncina, Pedro Garcia, and Enrique Vidal.
1993. Learning subsequential transducers for pat-
tern recognition tasks. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 15:448–
458.

José Oncina and Miguel A. Varó. 1996. Using do-
main information during the learning of a subsequen-
tial transducer. In Laurent Miclet and Colin de la
Higuera, editors, Grammatical Interference: Learn-
ing Syntax from Sentences, number 1147 in Lec-
ture Notes in Artificial Intelligence, pages 301–312.
Springer, Berlin.

Amanda Payne. 2017. All dissimilation is computa-
tionally subsequential. Language, 93:353–371.

James Rogers, Jeffrey Heinz, Margaret Fero, Jeremy
Hurst, Dakotah Lambert, and Sean Wibel. 2013.
Cognitive and sub-regular complexity. In Formal
Grammar, number 8036 in Lecture Notes in Artifi-
cial Intelligence, pages 90–108. Springer.

James Rogers and Geoffrey K. Pullum. 2011. Aural
pattern recognition experiments and the subregular
hierarchy. Journal of Logic, Language and Informa-
tion, 20:329–342.

49

Tier-based modeling of gradience and distance-based decay in
phonological processes

Kevin McMullin
University of Ottawa

kevin.mcmullin@uottawa.ca

Phillip Burness
University of Ottawa

pburn036@uottawa.ca

Abstract

Current computational approaches to long-
distance phonological processes use string-to-
string function classes that operate over phono-
logical tiers, but these are necessarily deter-
ministic devices and are thus limited to enforc-
ing categorical application. We show that prob-
abilistic relations that act like a tier-based func-
tion (aside from being non-deterministic) per-
form well as models of gradient long-distance
processes. In particular, they offer a cogni-
tively plausible characterization of distance-
based decay (Zymet, 2015) with other desir-
able properties, exemplified by two case stud-
ies. The first, examining rounding dissimila-
tion in Malagasy, demonstrates that tier-based
models of decay can be made sensitive to pho-
netic similarity in interesting ways. The sec-
ond, examining Hungarian backness harmony,
demonstrates that tier-based models of decay
can handle scenarios where a process is obliga-
tory at short distances but vanishingly unlikely
at increasing distances.

1 Introduction

Taking inspiration from foundational results in Au-
tosegmental Phonology (e.g., Goldsmith 1976),
recent computational work has shown that long-
distance phonological processes can be fruitfully
modelled using string-to-string function classes
that operate according to a relativized notion of
strict locality. These classes include the Tier-based
Strictly Local (TSL) functions explored by Bur-
ness and McMullin (2019), Hao and Andersson
(2019), Hao and Bowers (2019), and Andersson
et al. (2020), as well as the Multi-tiered Strictly
Local (MTSL) functions (Burness and McMullin,
2020). While these functions have offered valu-
able insights into the computational characteristics
of non-local phonology, they are limited in that
they assume every input has exactly one output.
Consequently, these functions can only describe

either mandatory application or mandatory non-
application of a process. Real language data is,
however, not always this clean; many phonologi-
cal processes apply optionally, and long-distance
processes are no exception to this fact. This paper
will explore how the requirement of determinism
can be relaxed in order to describe the probabilistic
application of a process, while still maintaining the
advantages of (tier-based) strict locality. In partic-
ular, by augmenting the tier-based structures with
duplicate transitions for non-tier elements, we are
able to model phonological processes with a well-
known property of distance-based decay, wherein
the probability that a long-distance process applies
will exponentially diminish as more and more trans-
parent segments intervene between the trigger and
target (Zymet, 2015).

The paper is structured as follows. First, Section
2 provides the necessary background on tier-based
functions and their automata-theoretic character-
ization. Then, Section 3 looks at some optional
long-distance patterns and shows how strategically
adding transitions to a TSL or MTSL FST and
weighting them can describe the desired probabilis-
tic distribution of output forms for a given input.
After that, Section 4 considers distance-based de-
cay, and proposes that weighted transducers built
according to a TSL or MTSL template can de-
rive distance-based decay in a cognitively plausible
manner. Section 5 concludes.

2 Categorical tier-based functions

We begin this section with a modicum of notation
and definitions An alphabet is a set of elements
from which strings can be built. The concatenation
of two strings u and v is written as u · v, although
this is shortened to uv when context permits. Given
an alphabet Σ, we write Σ∗ to denote the set of
all strings of any length (including 0) that can be

Proceedings of the 17th Meeting on the Mathematics of Language, pages 50–63, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

50

constructed using Σ. Here and throughout, we use
λ to denote the unique empty string, which has a
length of 0 and satisfies λ · w = w · λ = w. Given
an alphabet Σ of input elements and an alphabet
Γ of output elements, a (partial) string-to-string
function is a mapping from Σ∗ to Γ∗ where each
w ∈ Σ∗ is paired with (at most) one string in Γ∗.

We will mainly demonstrate and discuss tier-
based functions (and their probabilistic variants)
with reference to the finite-state transducers (FSTs)
that compute them. A (one-way) FST produces an
output string incrementally by reading an input
string one element at a time in a single direction.
Such a machine consists of a finite set of states
(which can be thought of as a primitive sort of
memory) and a finite set of transitions between
these states (which are the machine’s instructions
for what to write at each step). The machine begins
in a designated initial state, and traverses a path
through the state space by following transitions in
response to the input that it reads. Each state is
given a (potentially empty) final string which is
appended to the output when the machine lands in
that state after consuming the whole input string.
Figure 1 presents a visual diagram of an FST. States
are represented using circles and the initial state is
marked with an unlabeled incoming arrow. Transi-
tions are represented with labelled arrows between
states; a label ‘a:b’ is an instruction to take that tran-
sition when reading ‘a’ from the input and write ‘b’
to the output. Final strings are shown underneath
the state label, formatted like a transition label for
the special end-marker n. The transducer in Figure
1 operates over the input alphabet {a, b}, transform-
ing all odd-numbered positions to ‘a’, transforming
all even-numbered positions to ‘b’, and appending
‘b’ to the end if it runs out of input after writing
‘a’ (i.e., if it ends in the state labelled ‘1’). For
example it maps /bab/ to [abab] and maps /aabbab/
to [ababab].

0
n:λ

1
n:a

a:a

b:a

a:b

b:b

Figure 1: A simple finite-state transducer

The tier-based functions expanded upon in this
paper are themselves extensions of the Strictly Lo-

cal functions (Chandlee, 2014; Chandlee et al.,
2014, 2015, 2018; Chandlee and Heinz, 2018). A
Strictly k-Local (SLk) FST operates according to a
memory window with a fixed and finite maximum
size k, the state labels acting as a record of this
window’s contents. When the window pays atten-
tion to the input string we say that the function is
Input Strictly k-Local (ISLk) and the label of the
currently occupied state always corresponds to the
most recent (up to) k − 1 elements read. Similarly,
when the window pays attention to the output string
we say that the function is Output Strictly k-Local
(OSLk) and the label of the currently occupied state
always corresponds to the most recent (up to) k− 1
elements written. Input Tier-based Strictly k-Local
(ITSLk) and Output Tier-based Strictly k-Local
(OTSLk) FSTs operate exactly like their ISLk and
OSLk cousins except that only a subset of the rel-
evant alphabet (the function’s tier) is allowed to
occupy space in the memory window. Restricting
the transducers attention in this manner permits
the modelling of non-local processes where the dis-
tance between trigger and target can be arbitrarily
large.

To demonstrate, consider the process of regres-
sive sibilant harmony in Slovenian. The Slovenian
process is optional, though we will assume for the
purposes of this section that it is categorical, post-
poning a discussion of its optionality to Section
3. The Slovenian pattern causes a sibilant to be-
come [−anterior] if it is followed at any distance by
another [−anterior] sibilant unless a coronal stop
intervenes (Jurgec, 2011, pp. 329-333). Examples
of successful sibilant harmony are provided in (1a-
b) and examples of blocked sibilant harmony are
provided in (1c-d) with the second singular suffix
acting as the potential trigger in each case.

(1) Slovenian sibilant harmony, blocking by
coronal stops (Jurgec, 2011, pp. 330-331)

a. /spi-S/ [Spi-S] ‘sleep-2SG’
b. /pozabi-S/ [poZabi-S] ‘forget-2SG’
c. /stoji-S/ [stoji-S] ‘stand-2SG’
d. /zida-S/ [zida-S] ‘build-2SG’

The transducer in Figure 2 shows what an ideal-
ized and mandatory version of the Slovenian pat-
tern would look like as an OTSL2 function oper-
ating relative to the tier {s, S, z, Z, t, d}. Since
the process is regressive, the machine reads input
strings from right to left. State labels are enclosed
in square brackets to highlight the fact that this
transducer tracks the output string. To save on

51

space, states with the same behaviour are collapsed
into a single circle with multiple labels and tran-
sitions that share an origin and a destination are
collapsed into a single arrow with multiple labels.
Note that transitions labelled ‘*:*’ represent an ar-
bitrary non-tier segment mapping faithfully to itself.
An input [+anterior] sibilant (i.e., /s/ or /z/) will
map faithfully to itself if no tier-elements have been
produced thus far, if the most recently produced tier
element was a coronal stop, or if the most recently
produced tier element was another [+anterior] sibi-
lant. On the other hand, if the most recently pro-
duced tier element was a [−anterior] sibilant (i.e.,
[S] or [Z]), an input [+anterior] sibilant will in-
stead palatalise to become its [−anterior] equiv-
alent. Palatalization will happen no matter how
many non-tier elements (i.e., non-sibilants other
than [t] or [d]) intervene between the [−anterior]
trigger and the [+ anterior] target, because produc-
ing such an element never causes a change of state
in this machine.

[λ]
[t]
[d]

[s]
[z]

[S]
[Z]

:
t:t
d:d

s:s
z:z

S:S
Z:Z

:
s:s
S:s
z:z
Z:z

t:t
d:d

:
s:S
S:S
z:Z
Z:Z

t:t
d:d

Figure 2: An OTSL2 transducer that produces manda-
tory sibilant harmony

ITSLk and OTSLk functions are equipped with
just one tier, which works well for many cases, but
some patterns require multiple memory windows
that each track a different tier. By allowing for
multiple tiers in this way we delve into the class of
Multi-Tiered Strictly k-Local functions (Burness
and McMullin, 2020). All of the MTSLk trans-
ducers that will appear in this paper adhere to a
restriction which Burness and McMullin (2020)
call target-specification. The restriction states that
(i) each input element is associated with a set of
tiers that on their own can fully determine what
the element is mapped to on a given step and (ii)

this target-specified set of tiers must form a strict
superset-subset hierarchy. Target-specified MTSL
functions essentially track multiple, related sources
of information when deciding how to process a
particular input element. Tiers that are not part of
a input element’s specified set are ignored when
reading that input element, since they provide ei-
ther irrelevant or redundant information.

3 Probabilistic variants

In the previous section, we mentioned that the
Slovenian process of sibilant harmony was op-
tional. When the transducer in Figure 2 reads an
input like /pozabiS/ from right to left, it will be
in the [−anterior] state as it goes to read /z/, and
the corresponding transition will enforce harmony.
We want, however, to have the possibility of faith-
fully producing [z] for /z/ while in the [−anterior]
state, since harmony is optional in Slovenian (Ju-
rgec, 2011). We can create the possibility of op-
tional faithfulness by adding transitions from the
[−anterior] state to the [+anterior] state labelled
‘s:s’ and ‘z:z’ and transitions from the [+anterior]
state to the [−anterior] state labelled ‘S:S’ and ‘Z:Z’.
Figure 3 shows the resulting transducer, which
aside from the added non-determinism, exhibits all
the required behaviour of an OTSL2 transducer (i.e.,
all transitions still land in the state corresponding
to the most recently written tier element). For clar-
ity, the harmony-enforcing transitions are shown
as dotted lines and the harmony-ignoring (faithful)
transitions are shown as dashed lines.

[λ]
[t]
[d]

[s]
[z]

[S]
[Z]

:
t:t
d:d

s:s
z:z

S:S
Z:Z

:
s:s
z:z

t:t
d:d

S:S
Z:Z

S:s
Z:z

:
S:S
Z:Z

t:t
d:d

s:S
z:Z

s:s
z:z

Figure 3: A quasi-OTSL2 transducer that produces op-
tional sibilant harmony

52

Now we have two transitions out of the
[−anterior] state for the input /z/, one that enforces
harmony and one that enforces faithfulness. As-
suming that we choose randomly between the two
available transitions, the /z/ in /pozabiS/ then has
a 50% chance of harmonizing with the nearby [S].
It is very important that the new faithful transition
leads to the [+anterior] state rather than looping
back to the [−anterior] state. This is because, while
the new faithful transition does not produce har-
mony, it nonetheless produces a tier element. By
ensuring that any additional transitions all lead to
the state associated with the most recently produced
tier element, we maximally preserve the intuitions
of the TSL functions, even though we are aban-
doning determinism and thus no longer meet the
definition of a TSL function. We instead have a
quasi-TSL relation, where the set of possible out-
puts at a given step is directly determined by the
most recently produced tier element.

Of course, we may want to achieve a rate of
harmony higher than 50% while still allowing for
the possibility of faithfulness. To do so, we can
assign a numerical weight to each transition in the
machine (Vidal et al., 2005a). When more than
one transition could be followed at a given step
in the derivation, the probability that we choose a
given member from that set of transitions is pro-
portional to its share of the summed weights of the
set. For ease of interpretation, we assume that the
weight of a transition is equal to the probability
that it is followed, meaning that given a state q and
an input symbol a, the weights of all transitions
leaving q for the input a must add up to 1. Suppose
now that the harmony-ignoring (dashed) transitions
are weighted 0.2, the harmony-enforcing (dotted)
transitions are weighted 0.8, and the remaining
transitions are weighted 1. The input /sapozabiS/
has three possible outcomes whose probabilities
sum to 1: a fully faithful candidate [sapozabiS], a
single harmony candidate [sapoZabiS], and a full
harmony candidate [SapoZabiS]. The fully faithful
candidate has a probability of 0.2 ∗ 1 = 0.2 since
the probability of the /z/ remaining faithful is 0.2,
and if it does so, the /s/ is guaranteed to be faith-
ful. The remaining output probabilities can be cal-
culated in a similar manner: the single harmony
candidate has a probability of 0.8 ∗ 0.2 = 0.16,
and the full harmony candidate has a probability
of 0.8 ∗ 0.8 = 0.64. More generally, a weighted
transducer set up in the above manner produces a

conditional distribution over a finite set of output
strings for each possible input string. The number
of output possibilities as well as their shape and
share of the probability can of course change from
input to input and from transducer to transducer,
but the distributions so-defined are crucially related
to and dictated by tier-based strict locality.

A particularly interesting case of optionality in
a long-distance process comes from Bukusu. In
this language, underlying /l/ becomes output [r] if
the nearest leftward surface liquid is [r] (de Blois,
1975; Odden, 1994; Hansson, 2010). The pattern of
liquid harmony affects the applicative suffix /-ila/,
exemplified by the data in (2). The suffix’s under-
lying /l/ surfaces faithfully when the root contains
no liquids as in (2a) or when the only liquids in
the root are all instances of /l/ as in (2b). When
the base contains an /r/, though, the liquid in the
applicative suffix alternates to obey harmony. This
happens across a single vowel as in (2c) and at
further distances as in (2d).

(2) Bukusu liquid harmony (Odden, 1994)
a. xam-ila ‘milk-APPL’
b. lim-ila ‘cultivate-APPL’
c. kar-ira ‘twist-APPL’
d. rum-ira ‘send-APPL’

Importantly, harmony is obligatory across a
single vowel (i.e., in transvocalic contexts) but
becomes optional at further distances (Hansson,
2010). For example, /ruk-ila/ ‘plait-APPL’ may
surface as [ruk-ila] without harmony or as [ruk-ir-
a] with harmony. Another long-distance pattern
that is cited as being obligatory in transvocalic con-
texts but optional at further distances would be the
sibilant harmony in Kinyarwanda (Kimenyi, 1979;
Coupez, 1980; Hansson, 2010; Walker and Mpi-
ranya, 2006; Walker et al., 2008). Such a transvo-
calic / beyond-transvocalic dichotomy is not possi-
ble to describe using a probabilistic quasi-OTSL2

transducer as we did for Slovenian sibilant har-
mony above, but is possible to describe using a
probabilistic quasi-OMTSL2 transducer.

Consider the transducer in Figure 4, where ‘V’
stands for an arbitrary vowel and ‘C’ stands for
an arbitrary non-liquid consonant. Ignoring the
dashed transition for now (but including the dot-
ted transitions), this machine represents a target-
specified OMTSL2 function that computes a fully
obligatory version of the Bukusu pattern over a tier
of liquid consonantsA = {r, l} and a tier of all con-
sonants B = {r, l, C}. The left and right symbol

53

of each state label correspond respectively to the
suffix on A (i.e., the most recently produced liquid
consonant) and B (i.e., the most recently produced
consonant). Reaching the [r, r] state can be inter-
preted to mean that the most recent consonant we
have seen is an [r] (since it is on both the liquid
and consonantal tiers). Compare this to being in
the [r, C] state, which means that the most recent
consonant we have seen is a non-liquid, and that
this consonant is preceded by an [r]. In a trans-
ducer that does not contain the dashed transition,
both of these states enforce the harmonic /l/ →
[r] change, as indicated by the dotted transitions.
However, by adding the dashed transition, harmony
becomes optional just in those cases where [r] is
the most recently produced liquid but not the most
recently produced consonant. In a language like
Bukusu with mostly open CV syllables, these two
states more-or-less reflect the difference between a
transvocalic and beyond-transvocalic distance from
the most recent liquid consonant. In particular it
is the superset-subset relationship imposed onto
the tierset by target specification (Burness and Mc-
Mullin, 2020) that allows us to have harmony be
obligatory across 0 non-liquid consonants and be
optional across 1+ non-liquid consonants.

An important question arises when we model
optional processes using probabilistic transduc-
ers. Namely, how do we determine the transition
weights that best reflect the target pattern? This
type of optimization problem is well-studied in the
literature on Probabilistic Finite-state Acceptors
(PFAs) which are exactly like probabilistic trans-
ducers except that rather than taking an input string
and producing an output string, they take an in-
put string and return a value reflecting the input’s
well-formedness. The Slovenian and Bukusu trans-
ducers above can be reinterpreted as acceptors if
we think of their transition labels as atomic ele-
ments of an alphabet and rewrite input-output pairs
as a string of such “transducer actions”. Conve-
niently, reinterpreting the Slovenian and Bukusu
transducers in this manner makes them determin-
istic since, while a given input string can follow
potentially multiple paths through the transducers
to produce different outputs, a given input-output
pair can only be achieved by following a single,
specific path through the transducers. Finding the
transition weights for a given deterministic PFA
that maximise the probability of a set of training
data has a well-known, simple, and efficient solu-

tion. For each transition,1 we calculate the number
of times it was followed when reading the sam-
ple and divide this number by the total number of
times its origin state was visited when reading the
sample (Vidal et al., 2005a,b; de la Higuera, 2010).
One small modification is needed for our purposes
since the weights resulting from the above method
will describe a single distribution over input-output
pairs, rather than a separate distribution over output
strings for each input. This is because the weights
of all transitions out of a given state will sum to
1, whereas we want all transitions out of a given
state for a given input element to sum to 1. To rem-
edy this, we can normalize the transducer by taking
each combination of state and input symbol, adding
together the weights of all transitions leaving that
state for that input element, then dividing each of
the implicated transition weights by this sum.

4 Distance-based decay

The analyses of the Slovenian and Bukusu cases
above are relatively simplistic in that the proba-
bility with which the process applies remains con-
stant. In many cases, however, we see that the
probability of application is inversely correlated
to the distance between trigger and target. This
phenomenon is known as distance-based decay
(Zymet, 2015) and can be observed in Malagasy
vowel rounding dissimilation (Zymet, 2015), Hun-
garian backness vowel harmony (Hayes and Londe,
2006; Hayes et al., 2009), Latin liquid dissimila-
tion (Zymet, 2015), and Navajo sibilant harmony
(Martin, 2005), among others. Current descriptions
of the phenomenon are couched within stochastic
constraint-based frameworks like Noisy Harmonic
Grammar (Coetzee and Pater, 2011) and Maximum
Entropy grammar (Goldwater and Johnson, 2003;
Hayes and Wilson, 2008). These descriptions pro-
pose that the weight of a process-enforcing con-
straint is scaled down proportionally to the distance
between trigger and target (Kimper, 2011; Zymet,
2015). Distant trigger-target pairs incur smaller
penalties than more local pairs, and as a result, the
process applies at a lower probability in the dis-
tant pair than in the more local pair (Kimper, 2011;
Zymet, 2015). Focusing on Malagasy and Hungar-
ian, we will show how distance-based decay can
equally be captured through minor modifications

1The final strings associated to states are treated as transi-
tions for the purposes of this optimization, effectively acting
as a transitions that lead to a dedicated “stopping” state with
no associated string of its own.

54

[λ, λ]
n:λ

[λ, C]
n:λ

[l, l]
n:λ

[r, r]
n:λ

[r, C]
n:λ

[l, C]
n:λ

V:V

C:C

l:l

r:r

V:V
C:C

l:l

r:r

V:V
l:l

C:C

r:r

V:V
C:C

l:l

r:r

V:V
r:r

C:C

l:r

V:V
C:Cr:r

l:r

l:l

Figure 4: A quasi-OMTSL2 transducer that computes Bukusu liquid harmony

to a TSL or MTSL transducer.

4.1 Malagasy

Malagasy has a process of vowel rounding dissimi-
lation whereby the passive imperfective suffix /-u/
becomes [-i] when preceded by an [u], as can be
seen in /babu-u/ → [babu-i] ‘plunder-PASS.IMP’.
Front vowels are opaque to the process as can be
seen with /turi-u/ → [turi-u] ‘preach-PASS.IMP’
and /ure-u/ → [ure-u] ‘massage-PASS.IMP’. In
contrast, the vowel /a/ is transparent to dissimila-
tion, as can be seen with /gurabah-u/→ [gurabah-i]
‘splutter-PASS.IMP’. If we ignore its dashed tran-
sition (discussed further below), the OTSL2 trans-
ducer in Figure 5 captures a mandatory version of
the Malagasy pattern just described. Dissimilation
specifically affects the passive imperative suffix
rather than /u/ in general (Zymet, 2020), so for con-
venience we assume that this transducer only ever
reads verb stems and adds the appropriate suffix
allomorph upon reaching the end of the base.

Malagasy dissimilation is not categorical, how-
ever, and exhibits distance-based decay. According
to Zymet’s (2015) survey of de la Beaujardière’s
(2004) online Malagasy dictionary, the probability
of dissimilation is 0.99 (989/993) when the trigger
and target are in adjacent syllables, 0.51 (201/397)

[λ]
n:u

[i], [e]
n:u

[u]
n:i

C:C

u:u

i:i
e:e

a:a

C:C

u:u

i:i
e:e

a:a

a:a

a:a

u:u

i:i
e:e

C:C

Figure 5: A quasi-OTSL2 transducer that produces
Malagasy dissimilation

when they are separated by one transparent sylla-
ble, 0.13 (4/32) when they are separated by two
transparent syllables, and 0 (0/4) when they are
separated by three transparent syllables. Due to the
language’s mostly open-syllable nature, the num-
ber of transparent syllables corresponds with how
many transparent vowels fall between the trigger
and target, and the probability of dissimilation is
roughly 1/2x, where x represents the number of

55

intervening transparent vowels. This opens an in-
teresting route to deriving the distance-based decay
using the structure of the transducer in Figure 5:
whenever the transducer reads /a/ and produces [a]
while in the [u] state, it has a roughly 50% chance
to “forget” that it previously produced an instance
of [u]. In this case, the transducer will follow the
dashed transition which returns to the [λ] state in-
stead of looping back to the [u] state, and will con-
sequently fail to dissimilate the passive imperative
suffix. As more transparent vowels are encountered
while in the [u] state, the machine is exponentially
less likely to remember that it encountered a dissim-
ilation trigger, giving us the negative exponential
curve in the probability of dissimilation. A cog-
nitive interpretation of forgetful transitions would
be that the memory of the most recent tier element
decays over time.

Two related questions arise when modelling
distance-based decay by augmenting a TSL trans-
ducer with forgetfulness parameters. First, how
do we decide which forgetful transitions should
be added to the TSL transducer? Any transition
that fails to produce an element from the tier can
presumably be given a forgetful version, but includ-
ing too many or too few of these could negatively
impact the accuracy of our model. Second, given a
fixed set of forgetful transitions, how do we deter-
mine their optimal weights? We answer the latter
question first, since its solution will be considered
when approaching the former question.

Recall from Section 3 that to optimize the
weights of a deterministic acceptor, it is sufficient
to read through the provided sample once and count
the number of times that each transition is followed.
Unfortunately, even after reinterpreting a forgetful
quasi-TSL transducer as an acceptor, it is still non-
deterministic. Given an input-output pair we can
generally tell whether forgetting did or did not oc-
cur, but we cannot tell exactly where the forgetting
took place when there is a sequence of more than
one transparent element. Because we cannot al-
ways know the exact path that an input-output pair
followed through the machine, we cannot accu-
rately count the number of times each transition
get traversed when the sample is read. It is, how-
ever, possible to estimate these counts given the
machine’s current transition weights using what are
called forward and backward probabilities. Con-
sider the element x in the string w = u · x · v.
For a transition labeled x leaving state q and land-

ing in state q′ we can calculate the probability that
we are in state q after having read u (the forward
probability) and the probability that we produce v
when starting in state q′ (the backward probabil-
ity).2 Multiplying the current weight of a given
transition by its forward and backward probability
and then dividing by the probability of the whole
string gives us the probability that we actually tra-
versed the transition on that reading step (de la
Higuera, 2010, pp. 362-363).

By using estimated traversal probabilities as our
traversal counts, we can calibrate the weights of a
non-deterministic acceptor using the same division
operations as for a deterministic acceptor. If we
cycle through the estimation and calibration pro-
cesses just described, the parameter weights will
get adjusted by smaller and smaller amounts until
they converge. This is known as the Baum-Welch
algorithm,3 originally developed by Baum et al.
(1970) and Baum (1972). It is a type of maximum
likelihood estimation (MLE) that, metaphorically,
climbs the “hill” of sample probabilities by adjust-
ing the available parameter values, and stops when
it reaches a peak and cannot increase the sample
probability any further.

The algorithm is guaranteed to converge on such
an optimum, but non-deterministic machines can
have multiple optima in addition to the global op-
timum, and the algorithm may get trapped in one
of these (Vidal et al., 2005b; de la Higuera, 2010).
Returning to the hill metaphor, there can be mul-
tiple peaks of varying heights and we want the
algorithm to find the highest one, but it cannot tell
whether the peak it reaches is actually the highest,
it simply stops once it finds any peak. The only
guaranteed way around this is to try several times
with different starting values, and then pick the re-
sult that gives the best probability, in the hope that
the chosen iteration found the global optimum (de
la Higuera, 2010, p. 323). Luckily, this was not
a serious issue during the tests described further
below. Whenever a transducer needed optimizing,
the optimization process was run several times with
random initializations of the transducer’s transition
weights, and each machine always achieved the
same approximate log-likelihood no matter its ini-
tialization, suggesting that (at least in these cases)
there were no local optima in which the optimizer

2Chapter 5 of de la Higuera (2010) shows how to efficiently
calculate forward and backward probabilities.

3See chapter 17 of de la Higuera (2010) for a more thor-
ough presentation.

56

could get trapped. The results reported for each
machine below are relative to the optimization that
achieved the best log-likelihood.

Moving on to the question of which forgetful
transitions to include, we could take the stance that
we want only the forgetful transitions that signifi-
cantly affect model performance. So long as the set
of forgetful transitions in one optimized transducer
are a strict superset of the forgetful transitions in
another optimized transducer, it is in theory pos-
sible to perform a log-likelihood ratio test to as-
sess whether the additional transitions significantly
improve model performance. Given a calibrated
transducer, we calculate its log-likelihood by run-
ning the training sample through it. For each input-
output pair (x, y) we calculate the probability that
the machine produces y given x, which is equal to
the sum of the probability of all paths through the
machine that produce y given x. This might seem
difficult to do efficiently since the number of possi-
ble paths through a non-deterministic transducer is
in the worst-case exponentially proportional to the
length of the input string, but we can bypass this
issue by calculating forward probabilities (which
takes just one pass through the string) and summing
over those instead (de la Higuera, 2010, pp. 90-92).
If we then take the log of each pair’s probability,
adding them up gives us the model’s log-likelihood.
One way to find the best set of forgetful transi-
tions, then, would be to take a forwards selection
approach. Starting with no forgetful parameters,
we iteratively add the one that would contribute
the most until we cannot significantly improve our
model any more.

To test the effectiveness of the FST decay model,
we created custom Python code that implements
the Baum-Welch algorithm and log-likelihood cal-
culation procedures described above, then ran it
against the Malagasy data from Zymet (2015). Cal-
ibrating the base model affects only the proba-
bility that dissimilation occurs while in the [u]
state, and the optimal value of 83.73% gives a
log-likelihood of −633.30. Most additional for-
getful transitions significantly improved model fit
on their own,4 but ‘a’ had by far the strongest con-
tribution, increasing log-likelihood all the way to
−315.34 (χ2

1 = 635.93, p = 2.57× 10−140). The

4Only ‘v’ (χ2
1 = 3.58, p = 0.06), ‘t’ (χ2

1 = 2.66, p =
0.1), ‘f’ (χ2

1 = 0.49, p = 0.48) and ‘h’ (χ2
1 = 0, p = 1) did

not. The last case is particularly interesting in that the optimal
weight for a lone forgetful ‘h’ transition was 0, equivalent to
the absence of such a transition.

next highest contribution came from ‘l’, which in-
creased log-likelihood to −609.67 (χ2

1 = 47.27,
p = 6.2 × 10−12). A second round of tests using
the ‘a’ model only found two additional forgetful
transitions to be significant: these were ‘dZ’ (χ2

1 =
3.85, p = 0.050) and ‘z’ (χ2

1 = 3.93, p = 0.048).
This might seem odd considering how most were
highly significant on the first round of tests. Look-
ing at the largely CV syllable structure of Malagasy,
though, the presence of an intervening ‘a’ heavily
implies the presence of an intervening consonant.
Significant contributions from the lone consonan-
tal parameters may thus have been indirect inheri-
tances from instances of ‘a’. Because forgetful ‘dZ’
and ‘z’ transitions are just barely significant given
a threshold of p < 0.05, we opted not to include
either and stop further testing, leaving us with just
a forgetful ‘a’ transition. One reason that ‘a’ may
have near-exclusive entitlement to a forgetful tran-
sition is its high similarity to the tier elements, all
of which are vowels. Encountering a non-tier ele-
ment that is highly similar to elements on the tier
would intuitively interfere with the maintenance
of a tier suffix in long-term memory, although we
leave the confirmation of this hypothesis for future
research.

[λ]
n:u

[i], [e]
n:u

[u]
n:i 0.996
n:u 0.004

C:C

u:u

i:i
e:e

a:a

C:C

u:u

i:i, e:e

a:a 0.495

a:a 0.505

a:a

u:u

i:i
e:e

C:C

Figure 6: An optimized quasi-OTSL2 transducer for
Malagasy

The optimized Malagasy transducer is shown in
Figure 6; all transitions without a displayed weight
have a weight of 1. Earlier we mentioned that, as
reported by (Zymet, 2015), the probability of dis-
similation is 0.996(989/993) when the trigger and

57

target are in adjacent syllables, 0.506(201/397)
when they are separated by one transparent syllable,
0.125(4/32) when they are separated by two trans-
parent syllables, and 0.00(0/4) when they are sep-
arated by three transparent syllables. A single for-
getful transition for [a] pretty faithfully reproduces
the probability of adjacent dissimilation (0.996)
and dissimilation across one transparent syllable
(0.996 ∗ 0.495 = 0.493), but modestly overesti-
mates the probability of dissimilation across two
intervening syllables (0.996 ∗ 0.4952 = 0.244)
and three intervening syllables (0.996 ∗ 0.4953 =
0.121). Zymet’s (2015) constraint-based model
more closely reproduces the latter two probabil-
ities, but this may be an instance of overfitting,
considering how few forms in the corpus contain
2+ intervening syllables. In any case, the model
with a forgetful [a] transition drastically outper-
forms the base model, which predicts dissimilation
with a probability of 0.837 at any distance.

4.2 Hungarian
Including forgetfulness parameters into a single-
tiered transducer is sufficient for the Malagasy case,
but not all cases of distance-based decay are so easy.
Take for instance the backness vowel harmony in
Hungarian, to which [i], [e], and [E] are transparent
(Hayes and Londe, 2006; Hayes et al., 2009; Kim-
per, 2011; Ozburn, 2019). While it is generally true
that a higher number of transparent vowels between
trigger and target will exponentially diminish the
probability of harmony, there is an important excep-
tion: harmony remains nearly obligatory across a
single transparent vowel (Hayes and Londe, 2006;
Hayes et al., 2009; Kimper, 2011; Ozburn, 2019).
For example, the [O] in [pOpi:r] ‘paper’ always trig-
gers the back variant of the dative suffix ([pOpi:r-
nOk] ‘paper-DAT’) since it is followed by only one
transparent vowel, but the [O] in [Ospirin] ‘aspirin’
only optionally triggers the back variant since it is
followed by two transparent vowels ([Ospirin-nOk]
∼ [Ospirin-nEk] ‘aspirin-DAT’).

This is impossible to model using a single-tiered
transducer, even with forgetful transitions. To see
why, consider the transducer fragment in Figure
7, which determines the appropriate allomorph of
the dative suffix /-nEk/ for bases containing only
high vowels.5 The underspecified suffix vowel /E/
must harmonize while in either the /u/ or /y/ state,

5We are assuming here for simplicity that harmony only
affects underspecified suffix vowels, and that all base-internal
vowels are fully specified in underlying forms.

and defaults to front while in the [λ] state. The
vowel /i/ is transparent to harmony and so each
of these states has a looping transition labelled
‘i:i’. We could try modelling the distance-based
decay using the forgetful transitions marked with
dashed lines, but these do not distinguish between
having one transparent vowel and having two or
more transparent vowels between trigger and target.
We want forgetfulness to begin applying only in
the latter case, but there is no way to set such a
threshold on the required number of transparent
segments in a single-tiered transducer. In such a
transducer, a transparent segment either always or
never has the opportunity to cause forgetfulness.

/λ/
n:nEk

/y/
n:nEk

/u/
n:nOk

y:y

u:u

i:i

C:C

y:y

u:u

i:i
C:C

i:i
y:y

u:ui:i
C:C

i:i

Figure 7: A quasi-ITSL2 transducer fragment that en-
forces Hungarian suffixal harmony

Interestingly, the desired 2+ threshold can be
modelled using a multi-tiered transducer as the
base. Suppose we have one tier V that tracks
all vowels (i.e., including the transparent [i], [e],
and [E]), and another tier H that tracks only the
harmony-triggering vowels (i.e., excluding the
transparent [i], [e], and [E]). This allows us to dis-
tinguish cases where the most recently produced
vowel is a harmony trigger (i.e., the suffixes on V
and H coincide) and cases where the most recently
produced vowel is transparent but is itself preceded
by a harmony trigger (i.e., the suffixes on V and H
do not coincide). These two cases constitute two
different states in the corresponding multi-tiered
transducer, and by ensuring that forgetful transi-
tions only originate from states where the two tier
suffixes do not coincide, harmony will be obliga-
tory across a single transparent vowel, although any
additional transparent vowels will cause distance-

58

based decay.

Consider now the transducer fragment in Table 1,
which again determines the appropriate allomorph
of the dative suffix /-nEk/ for bases containing only
high vowels. Drawing the transducer in a legible
manner is tricky, so we have opted to represent it as
a collection of tables where each row corresponds
to a transition. Rows are organized according to
their origin state, and a label /a, b/ corresponds to
having /a/ as the suffix on H (the tier of harmonic
vowels) and /b/ as the suffix on V (the tier of all
vowels). Notice how the /u,u/ and /u,i/ states both
enforce harmony, but only the latter has a forgetful
transition labelled ‘i:i’ (i.e. it has two rows for in-
put /i/ in the table). Being in the /u,u/ state means
that we have not read any transparent vowels after
reading the most recent harmony-triggering vowel,
while being in the /u,i/ state means that we have
read at least one transparent vowel after reading
the most recent harmony-triggering vowel. The
transition labelled ‘i:i’ leaving /u,u/ and landing in
/u,i/ does not have a forgetful counterpart, and so
harmony remains obligatory across this one trans-
parent vowel. The transition labelled ‘i:i’ leaving
/u,i/ and looping back to /u,i/ does, however, have
a forgetful counterpart. There is thus a chance that
reading a second transparent vowel (and third, and
fourth, etc.) will cause us to forget having read
/u/. Forgetting that we read /u/ will bring us to the
/λ,i/ state, which corresponds to thinking that we
have not read a harmony trigger yet (or at the very
least, not remembering the identity of the most re-
cent harmony trigger). The decaying probability of
harmony then results from the fact that it is increas-
ingly unlikely to remain in the harmony-enforcing
/u,i/ state as we read more and more transparent
vowels.

Hayes and Londe (2006) and Hayes et al.
(2009) collected a corpus of Hungarian noun bases
(available at https://linguistics.ucla.edu/

people/hayes/HungarianVH/index.htm), mark-
ing the percentage of times each base appears with
the back versus front allomorph of the dative suffix
(determined using Google search results). To as-
certain whether and how much an MTSL model of
decay outperforms a TSL model, we optimized a
TSL-like transducer and an MTSL-like transducer
against this corpus using a modified Baum-Welch
algorithm. Unlike for the Malagasy tests above,
we are not trying to maximize the probability of
each datum in the sample, but trying to replicate

the indicated probability of each datum as closely
as possible. Each ‘base + allomorph’ combination
with greater than 0 probability was thus treated
as a separate datum, and the amount contributed
by a reading step in that datum to a transition’s
estimated traversal count was multiplied by the
datum’s probability. Essentially, this would treat
a training datum with an indicated probability of,
for example, 0.75 as being 75% of a datum (i.e.,
a datum that was observed 0.75 times). Conse-
quently, the optimization procedure is maximizing
a weighted version of model log-likelihood rather
than the regular log-likelihood. Where P (o | i)
is the probability of the input-output pair (i, o) as
indicated in the sample S, and where P̂ (o | i) is
the probability of the input-output pair (i, o) pre-
dicted by the model M , regular and weighted log-
likelihood can be expressed as in (3). There were
only ever up to two output possibilities o1 and o2
for a given input string i,6 and their observed prob-
abilities P (o1 | i) and P (o2 | i) always summed to
1, as did their predicted probabilities P̂ (o1 | i) and
P̂ (o2 | i). Maximizing the weighted log-likelihood
ensures that we are on average minimizing the dis-
tance between the points 〈P̂ (o1 | i), P̂ (o2 | i)〉 and
〈P (o1 | i), P (o2 | i)〉 for the input strings in the
sample.

(3) Regular model log-likelihood:

L(M | S) =
∑

(i,o)∈S
log(P̂ (o | i))

Weighted model log-likelihood:

LW (M | S) =
∑

(i,o)∈S
log(P̂ (o | i))·P (o | i)

The TSL-like transducer had three states: /λ/
when there was no known preceding harmonic
vowel, /F/ when the most recent harmonic vowel
was front, and /B/ when the most recent harmonic
vowel was back. It had forgetful transitions for /i:/,
/i/, /e/, and /E/ leading to the /λ/ state out of the
/B/ state. The /F/ state had no forgetful transitions
since Hayes and Londe (2006) found that trans-
parent vowels never block front harmonic vowels
from imposing a front allomorph. The MTSL-like
transducer had the 7 states listed in (4). The states
/Bi:/, /Bi/, /Be/, and /BE/ were kept separate, rather
than having a single ‘back + transparent’ state since

6The one with the front allomorph of the dative suffix and
the one with the back allomorph of the dative suffix.

59

Origin Input Output Landing Origin Input Output Landing
/λ,λ/ /C/ [C] /λ,λ/ /λ,i/ /C/ [C] /λ,i/
/λ,λ/ /i/ [i] /λ,i/ /λ,i/ /i/ [i] /λ,i/
/λ,λ/ /y/ [y] /y,y/ /λ,i/ /y/ [y] /y,y/
/λ,λ/ /u/ [u] /u,u/ /λ,i/ /u/ [u] /u,u/
/λ,λ/ /n/ [nEk] NA /λ,i/ /n/ [nEk] NA

Origin Input Output Landing Origin Input Output Landing
/y,y/ /C/ [C] /y,y/ /u,u/ /C/ [C] /u,u/
/y,y/ /i/ [i] /y,i/ /u,u/ /i/ [i] /u,i/
/y,y/ /y/ [y] /y,y/ /u,u/ /y/ [y] /y,y/
/y,y/ /u/ [u] /u,u/ /u,u/ /u/ [u] /u,u/
/y,y/ /n/ [nEk] NA /u,u/ /n/ [nOk] NA

Origin Input Output Landing Origin Input Output Landing
/y,i/ /C/ [C] /y,i/ /u,i/ /C/ [C] /u,i/
/y,i/ /i/ [i] /y,i/ /u,i/ /i/ [i] /u,i/
/y,i/ /i/ [i] /λ,i/ /u,i/ /i/ [i] /λ,i/
/y,i/ /y/ [y] /y,y/ /u,i/ /y/ [y] /y,y/
/y,i/ /u/ [u] /u,u/ /u,i/ /u/ [u] /u,u/
/y,i/ /n/ [nEk] NA /u,i/ /n/ [nOk] NA

Table 1: A quasi-IMTSL2 transducer fragment that enforces Hungarian suffixal harmony

Hayes and Londe (2006) found that the height of
the most recent transparent vowel has a significant
effect on the probability of a back allomorph. Each
of the states /Bi:/, /Bi/, /Be/, and /BE/ had forgetful
transitions for /i:/, /i/, /e/, and /E/ leading to the state
/N/.

(4) States in the MTSL-like Hungarian trans-
ducer

• /λ/ = no preceding vowel OR the most
recent vowel is transparent with no
known preceding harmonic vowel

• /F/ = the most recent harmonic vowel is
front

• /BB/ = the most recent vowel is back
• /Bi:/ = the most recent harmonic vowel

is back but the most recent vowel is i:

• /Bi/ = the most recent harmonic vowel
is back but the most recent vowel is i

• /Be:/ = the most recent harmonic vowel
is back but the most recent vowel is e

• /BE/ = the most recent harmonic vowel
is back but the most recent vowel is E

Unfortunately, a log-likelihood ratio test cannot
compare the two models because their parameters
are not strictly nested; none of their forgetful transi-
tions originate from equivalent states. Accordingly,
their relative performance was assessed using their

Akaike Information Criterion (AIC). Lower AIC
values are preferred, and a model’s AIC is equal
to 2 times its number of free parameters minus 2
times its log-likelihood. The TSL-like model had a
weighted log-likelihood of −266.90 and had 7 free
parameters, so its AIC is 547.8. For its part, the
MTSL-like model had a weighted log-likelihood of
−249.73 and had 23 free parameters, so its AIC is
545.46. Going from the TSL model to the MTSL
model reduces AIC by 2.34, which is not substan-
tial, but nonetheless favours the MTSL model.

A reviewer points out that the closely related
Bayesian Information Criterion (BIC) will likely
heavily favor the TSL model as opposed to the
MTSL model, even though both criteria tend to
favour the same models in practice. The BIC more
harshly penalizes parameter count: it is obtained
by multiplying number of free parameters by the
natural logarithm of the sample size and then sub-
tracting 2 times the log-likelihood. There were
9427 input-output pairs in the training sample, so
the TSL model has a BIC of 597.86 and the MTSL
model has a BIC of 709.94; the reviewer thus cor-
rectly speculates that BIC vastly prefers the TSL
model over the MTSL one. We are unsure of how
to reconcile the discrepancy between the opposite
preferences of AIC and BIC in this case, but we
lean towards siding with the BIC’s preference since
it is much stronger. Nevertheless, it is worth ex-

60

amining where the MTSL model’s higher accuracy
comes from, since it may be worthwhile in other
cases.

Visual inspection of the weights in the optimized
transducers suggests that the greater accuracy of
the MTSL model comes from the fact that it can
distinguish between spans of 1 versus 2+ transpar-
ent vowels, a distinction not possible in the TSL
model. For example, the MTSL model assigns a
probability of about 0.97∗0.55 = 0.53 to the form
[Ospirin-nOk] ‘aspirin-DAT’ since the probability
of harmony while in the state /Bi/ (i.e., across a sin-
gle instance of /i/) is about 0.97 and the probability
of /i/ not causing forgetfulness out of the state /Bi/
is about 0.55. Compare this to the TSL transducer
which assigns the same form a probability of about
0.99 ∗ 0.932 = 0.86 since the probability of har-
mony while in the state /B/ is about 0.99 and the
probability of /i/ not causing forgetfulness out of
the state /B/ is about 0.93. The actually observed
frequency of harmony for this noun is 0.21 and so
the MTSL transducer, while still a fair ways off, is
much closer than the TSL transducer.

Consistent with this interpretation of the mod-
els’ differing performance, Table 2 compares the
observed average probability of harmony against
the average probabilities predicted by the TSL and
MTSL models, broken down by the number of in-
tervening transparent syllables. Taking every noun
for which back a back allomorph is possible (i.e.,
whose rightmost harmonic vowel is back), we find
that adjacent harmony has an average probability
of 0.99 (5317 eligible nouns), harmony across a
single transparent vowel has an average probability
of 0.67 (370 eligible nouns), harmony across two
transparent vowels has an average probability of
0.18 (63 eligible nouns) and harmony across three
transparent vowels has an average probability of
0.00 (8 eligible nouns). In particular, we see that
the TSL model overestimates the probability of har-
mony across two transparent vowels, whereas the
MTSL model closely matches the observed proba-
bilities in all cases.

Interestingly, both the trained TSL model and the
trained MTSL model reproduce an additional as-
pect of Hungarian harmony whereby vowel height
gradiently affects the degree to which a front un-
rounded vowel is transparent. Specifically, lower
front unrounded vowels are “less transparent” than
higher front unrounded vowels (Hayes and Londe,
2006; Hayes et al., 2009; Kimper, 2011; Rebrus and

Transparent Observed TSL MTSL
syllables average average average

0 0.99 0.99 0.99
1 0.67 0.64 0.67
2 0.18 0.33 0.19
3 0.00 0.03 0.01

Table 2: Average probability of Hungarian harmony by
number of transparent syllables

Törkenczy, 2016; Ozburn, 2019). In the optimized
TSL model, the forgetfulness parameters out of
state /B/ for /i/, /i:/, /e:/, and /E/ are weighted 0.065,
0.11, 0.23, and 0.91 respectively, so lower vow-
els cause more forgetfulness than higher vowels.
In the optimized MTSL model, the probability of
appending the back allomorph upon ending in the
/Bi/, /Bi:/, /Be:/ and /BE/ states is respectively 0.97,
0.99, 0.80, and 0.11, so backness harmony is more
likely across a higher vowel than a lower vowel.
The same height effect is also somewhat appar-
ent in the MTSL model’s forgetfulness parameters:
the parameters for /i:/, /e:/, and /E/ have average
weights of 0.51, 0.78, and 0.91 respectively, mim-
icking the trend in the TSL model’s forgetfulness
parameters. The mimicking is not perfect, however,
as the average forgetful weight for the vowel /i/
is unexpectedly high at 0.8. This mismatch could
perhaps be because back vowels are only uncom-
monly followed by a chain of multiple front un-
rounded vowels, making the weights of the MTSL
model’s forgetfulness parameters a less reliable re-
flection of the height effect. Indeed, there were
cases where the forgetful and non-forgetful transi-
tions for the same vowel out of the same state both
had a weight of 0, meaning that neither transition
was ever crossed by the sample. These transitions
effectively do not exist and were not considered
when calculating the average weights.

5 Conclusion

In the existing computational work that models
long-distance phonological processes using tiers,
there is the tacit and convenient assumption that
the processes are an all or nothing affair, but long-
distance processes are often optional in reality. We
showed here that probabilistic tier-based transduc-
ers with a structure similar to that of their categor-
ical counterparts can capture gradient application
while maintaining the relative computational sim-
plicity afforded to us by tier-based strict locality.

61

In particular, we demonstrated that distance-based
decay can be modeled by strategically adding du-
plicate non-tier transitions that make the transducer
forget the identity of the most recent tier-element,
in a sense causing the machine’s memory to deteri-
orate over time. Using established techniques for
optimizing the weights of probabilistic automata,
we found that these models performed well rela-
tive to two real-language data sets. The Malagasy
case study suggested that the presence and strength
of forgetful transitions might be tied to similarity.
For its part, he Hungarian case study showed that
an MTSL model can distinguish between spans
of 1 versus 2+ transparent elements, which may
be a useful ability for some patterns. Finally, it
should be said that all of the simulations presented
above assume that the necessary tiers are known
in advance, although phonological learning ideally
involves as little a priori knowledge as possible.
Methods exist for learning the tier of a TSL2 func-
tion efficiently from positive data (Burness and
McMullin, 2019), although it remains to be seen
whether they can be adapted to probabilistic cases.

References
Samuel Andersson, Hossep Dolatian, and Yiding Hao.

2020. Computing vowel harmony: The generative
capacity of search and copy. In Proceedings of the
2019 Annual Meeting on Phonology.

Leonard E. Baum. 1972. An inequality and associated
maximization technique occurring in the statistical
estimation for probabilistic functions of Markov pro-
cesses. Inequalities, 3:1–8.

Leonard E. Baum, Ted Petrie, George Soules, and Nor-
man Weiss. 1970. A maximization technique occur-
ring in the statistical analysis of probabilistic func-
tions of Markov chains. The Annals of Mathemati-
cal Statistics, 41:164–171.

Phillip Burness and Kevin McMullin. 2019. Efficient
learning of Output Tier-Based Strictly 2-Local func-
tions. In Proceedings of the 16th Meeting on the
Mathematics of Language, pages 78–90. Associa-
tion for Computational Linguistics.

Phillip Burness and Kevin McMullin. 2020. Multi-
tiered strictly local functions. In Proceedings of the
17th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology, and Morphology,
pages 245–255. Association for Computational Lin-
guistics.

Jane Chandlee. 2014. Strictly Local Phonological
Processes. Doctoral dissertation, University of
Delaware.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz.
2014. Learning Strictly Local subsequential func-
tions. Transactions of the Association for Computa-
tional Linguistics, 2:491–503.

Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output Strictly Local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MOL 2015), pages 112–125.

Jane Chandlee and Jeffrey Heinz. 2018. Strict Locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Jane Chandlee, Jeffrey Heinz, and Adam Jardine.
2018. Input strictly local opaque maps. Phonology,
35:171–205.

Andries Coetzee and Joe Pater. 2011. The place of vari-
ation in phonological theory. In John Goldsmith, Ja-
son Riggle, and Jason Yu, editors, The Handbook of
Phonological Theory, 2nd edition, pages 401–431.
Blackwell.

André Coupez. 1980. Abrège de Grammaire Rwanda.
Institut National de Recherche Scientifique, Butare.

Kornelis F. de Blois. 1975. Bukusu Generative Phonol-
ogy an Aspects of Bantu Structure. Number 85 in
Annales. Musée Royal de l’Afrique Centrale, Ter-
vuren.

Jean-Marie de la Beaujardière. 2004. Malagasy dictio-
nary and encyclopedia of Madagascar.

Colin de la Higuera. 2010. Grammatical Inference:
Learning Automata and Grammars. Cambridge Uni-
versity Press, New York.

John Goldsmith. 1976. Autosegmental Phonology.
Ph.D. thesis, MIT.

Sharon Goldwater and Mark Johnson. 2003. Learning
OT constraint rankings using a maximum entropy
model. In Proceedings of the Workshop on Varia-
tion within Optimality Theory, pages 111–120.

Gunnar Ólafur Hansson. 2010. Consonant Harmony:
Long-Distance Interaction in Phonology. Number
145 in University of California Publications in Lin-
guistics. University of California Press, Berkeley,
CA.

Yiding Hao and Samuel Andersson. 2019. Unbounded
stress in subregular phonology. In Proceedings of
the 16th SIGMORPHON Workshop on Computa-
tional Research in Phonetics, Phonology and Mor-
phology, pages 135–143, Florence, Italy. Associa-
tion for Computational Linguistics.

Yiding Hao and Dustin Bowers. 2019. Action-sensitive
phonological dependencies. In Proceedings of the
16th SIGMORPHON Workshop on Computational
Research in Phonetics, Phonology and Morphol-
ogy, pages 218–228, Florence, Italy. Association for
Computational Linguistics.

62

Bruce Hayes and Zsuzsa Londe. 2006. Stochastic
phonological knowledge: The case of Hungarian
vowel harmony. Phonology, 23:59–104.

Bruce Hayes and Colin Wilson. 2008. A maximum en-
tropy model of phonotactics and phonological learn-
ing. Linguistic Inquiry, 39:379–440.

Bruce Hayes, Kie Zuraw, Peter Siptar, and Zsuzsa
Londe. 2009. Natural and unnatural constraints in
Hungarian vowel harmony. Language, 85:822–863.

Peter Jurgec. 2011. Feature Spreading 2.0: A Unified
Theory of Assimilation. Doctoral dissertation, Uni-
versity of Tromso.

Alexandre Kimenyi. 1979. Studies in Kinyarwanda
and Bantu Phonology. Linguistic Research, Carbon-
dale, IL.

Wendell A. Kimper. 2011. Competing Triggers: Trans-
parency and Opacity in Vowel Harmony. Doctoral
dissertation, University of Massachusetts Amherst.

Andrew Martin. 2005. The Effects of Distance on Lex-
ical Bias: Sibilant Harmony in Navajo Compounds.
Master’s thesis, University of California, Los Ange-
les.

David Odden. 1994. Adjacency parameters in phonol-
ogy. Language, 70:289–330.

Avery Ozburn. 2019. A target-oriented approach to
neutrality in vowel harmony: Evidence from Hun-
garian. Glossa, 4:1–36.

Péter Rebrus and Miklós Törkenczy. 2016. A non-
cumulative pattern in vowel harmony: A frequency-
based account. In Proceedings of the 2015 Annual
Meeting on Phonology.

Enrique Vidal, Franck Tollard, Colin de la Higuera,
Francisco Casacuberta, and Rafael Carrasco. 2005a.
Probabilistic finite-state machines - Part I. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 27(7):1013–1025.

Enrique Vidal, Franck Tollard, Colin de la Higuera,
Francisco Casacuberta, and Rafael Carrasco. 2005b.
Probabilistic finite-state machines - Part II. IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence, 27(7):1026–1039.

Rachel Walker, Dani Byrd, and Fidèle Mpiranya. 2008.
An articulatory view of Kinyarwanda coronal har-
mony. Phonology, 25:499–535.

Rachel Walker and Fidèle Mpiranya. 2006. On triggers
and opacity in coronal harmony. In Proceedings of
the 31stth Annual Meeting of the Berkeley Linguis-
tics Society, University of California, Berkeley.

Jesse Zymet. 2015. Distance-based decay in long-
distance phonological processes. In Proceedings
of the 32nd West Coast Conference on Formal Lin-
guistics, pages 72–81, Sommerville, MA. Cascadilla
Press.

Jesse Zymet. 2020. Malagasy ocp targets a single affix:
Implications for morphosyntactic generalization in
learning. Linguistic Inquiry, 51:624–634.

63

Embedding Intensional Semantics into Inquisitive Semantics

Philippe de Groote
LORIA, UMR 7503

Université de Lorraine, CNRS, Inria
54000 Nancy, France

philippe.degroote@loria.fr

Valentin D. Richard
LORIA, UMR 7503

Université de Lorraine, CNRS, Inria
54000 Nancy, France

valentin.richard@loria.fr

Abstract

Ciardelli, Roelofsen, and Theiler (2017) have
shown how a Montague-like semantic frame-
work based on inquisitive logic allows for a uni-
form compositional treatment of both declara-
tive and interrogative constructs. In this setting,
a natural question is the one of the relation be-
tween the intensional and the inquisitive inter-
pretation of a declarative sentence. We tackle
this problem by defining an embedding of inten-
sional semantics into inquisitive semantics, in
the spirit of de Groote’s and Kanazawa’s (2013)
intensionalization procedure. We show that the
resulting inquisitivation procedure preserves
intensional validity and entailment.

1 Introduction

Inquisitive semantics (Ciardelli et al., 2013, 2018)
provides a semantic framework for analysing the
information conveyed by linguistic utterances. It is
based on a formal notion of issue that is reminiscent
of alternative semantics and that allows several
linguistic constructs to be assigned a meaning. In
particular, it offers a uniform treatment of both
declarative and interrogative forms.

Taking advantage of this new semantic frame-
work, Ciardelli, Roelofsen, and Theiler (2017) have
introduced a typed inquisitive logic, based on the
simply typed λ-calculus, that can be used to pro-
vide a compositional semantics to fragments of
language that contain interrogative constructs. This
opens the door to Montague grammars based on
inquisitive logic, but raises the question of the re-
lation between the intensional and the inquisitive
interpretation of a declarative utterance. If one
sticks to the case of first-order logic, the question
can be easily settled. This, unfortunately, is not
sufficient. Indeed, a Montague grammar typically
contains higher-order constructs, as in the follow-
ing example that might correspond to the lexical

semantic of the word seek:

λos. s (λx. try x (λx. o (λy.findx y)))

In the above λ-term, constant try is assigned the
following type:

e→ (e→ s→ t)→ s→ t

Then, the question we must answer is the following
one: which inquisitive interpretation should we
assign to constant try so that the intended meaning
of seek is preserved?

In order to solve this problem, we propose an
inquisitivation procedure akin to de Groote’s and
Kanazawa’s (2013) intensionalization. This proce-
dure is based on an embedding of the intensional
interpretations of the types into their inquisitive
interpretations. We then prove that our inquisiti-
vation procedure is adequate in the sense that it
preserves validity and entailment.

The rest of our paper is organized as follows:

• Section 2 contains a brief introduction to inquisi-
tive semantics.

• In Section 3, we present the necessary mathemat-
ical preliminaries, and we fix the type-theoretic
setting in which we are working. In particular,
we remind one of the definition of the simply
typed λ-calculus, and we give its intensional in-
terpretation.

• In Section 4, we define an embedding of inten-
sional semantics into inquisitive semantics, and
we provide the simply typed λ-calculus, with an
inquisitive interpretation.

• Section 5, contains the proof that our inquisitiva-
tion procedure preserves validity and entailment.

• In Section 6, we compare the inquisitive interpre-
tations of the logical connectives, as defined in

Proceedings of the 17th Meeting on the Mathematics of Language, pages 64–75, Montpellier (online),
December 13, 2021. © 2021 Association for Computational Linguistics

64

inquisitive semantics, with their inquisitive inter-
pretations, as resulting from the inquisitivation
procedure. We then propose a syntactic transla-
tion that allows inquisitive logic to be used as
object language.

• In Section 7, we discuss briefly the inquisitiva-
tion of modal operators.

2 Inquisitive semantics

Montague semantics, in its original formulation
(Montague, 1970, 1973), is only concerned with
declarative sentences. To remedy this situation,
Hamblin (1973) introduced alternative semantics,
which allows for a treatment of interrogative sen-
tences. Hamblin’s idea is to interpret a question
as the set of its possible answers. Hence, if an an-
swer is modeled by a proposition, a question, in
turn, must be modeled by a set of propositions. At
the semantic level, a proposition being interpreted
as a set s of possible worlds, a question is then
interpreted as a set of sets of possible worlds.

This different treatment of declarative vs. in-
terrogative propositions has some disadvantages
though. Traditional set-theoretic operations cannot
be used on interrogative propositions to interpret
common semantic coordination, e.g. conjunction.
Moreover, alternatives fail to predict even basic
declarative entailments such as John walks |= John
moves (Groenendijk and Stokhof, 1984).

Inquisitive semantics (Ciardelli et al., 2013,
2018) elaborates on the idea of alternative seman-
tics and circumvents some of its drawbacks.

Technically, in inquisitive logic, a proposi-
tion (also known as an issue) is defined to be a
non-empty set of sets of possible worlds that is
downward-closed with respect to set inclusion. As
a consequence, conjunction, disjunction, and en-
tailment can be defined in a standard way, i.e., as
intersection, union, and inclusion, respectively. Let
us illustrate this by an example.

Consider a discourse universe with three indi-
viduals, namely, Mary, John, and Ash, and assume
a situation where it is known that exactly one of
them is sleeping. Accordingly, we define a set of
possible worlds, W = {M, J, A}, where each possi-
ble world corresponds respectively to the fact that
Mary, John, or Ash is sleeping. Then, the propo-
sition φ1 that Mary sleeps and the proposition φ2

that John sleeps are interpreted as follows:

Jφ1K = {{M},∅}
Jφ2K = {{J},∅}

Then, the inquisitive disjunction of φ1 and φ2 is
interpreted as the union of their interpretations:

Jφ1 ∨ φ2K = {{M}, {J},∅}

This disjunction does not correspond to a proposi-
tion asserting that either Mary or John is sleeping,
but rather to the question whether it is Mary or John
who sleeps. The mere assertion, φ3, that Mary or
John is sleeping is interpreted in a different way:

Jφ3K = {{M, J}, {M}, {J},∅}

The proposition, φ4 asserting that Mary does not
sleep is interpreted as follows:

Jφ4K = {{J, A}, {J}, {A},∅}

Then, the inquisitive disjunction of φ1 and φ4 cor-
responds to the polar question whether Mary is
sleeping:

Jφ1 ∨ φ4K = {{J, A}, {M}, {J}, {A},∅}

In inquisitive semantics, a proposition has both
an informative and an inquisitive content. For
instance, the informative content of proposition
φ1 ∨ φ2 is that Ash is not sleeping, and its inquis-
itive content is the issue whether Mary or John is
sleeping. The proposition may then be paraphrased
as follows: knowing that Ash does not sleep, one
wonders whether Mary or John is sleeping. A mere
assertion such as φ1 has a trivial inquisitive con-
tent. Its paraphrase would be: knowing that Mary
is sleeping, one wonders whether she is sleeping.
Similarly, a mere question such as φ1 ∨ φ4 has
a trivial informative content: knowing that Mary
sleeps or does not sleep, one wonders whether she
is sleeping. Inquisitive semantics features two pro-
jection operators, ! and ?, that respectively trivialize
the inquisitive content and the informative content
of a proposition. Then, for any proposition φ, one
has:

φ = !φ ∧ ?φ

We end this short introduction to inquisitive se-
mantics by presenting first-order inquisitive logic.

Let ⟨F ,R⟩ be the signature of a first-order lan-
guage, where F is the set of function symbols, and

65

R is the set of relation symbols. From this signa-
ture together with a set X of first-order variables,
the notions of terms and of first-order formulas are
defined in the standard way.

The notion of a model does not differ from the
one used for intensional logic. A model is a triple
⟨D,W, I⟩, whereD is the domain of interpretation,
W is the set of possible worlds, an I is the symbol
interpretation function such that:1

I(F) ∈ DDn
for F ∈ F of arity n

I(R) ∈P(W)D
n

for R ∈ R of arity n

Given a valuation ξ from X into D, the interpre-
tation JtKξ of a term t is defined as usual, and the
interpretation of a first-order formula is given by
the following equations:

JR(t1, . . . , tn)Kξ = P(I(R)(Jt1Kξ, . . . , JtnKξ))
J¬φKξ = {s | ∀t ∈ JφKξ. s ∩ t = ∅}

Jφ ∧ ψKξ = JφKξ ∩ JψKξ
Jφ ∨ ψKξ = JφKξ ∪ JψKξ

Jφ→ ψKξ =
{s | ∀t ⊆ s. t ∈ JφKξ → t ∈ JψKξ}

J∀x. φKξ =
⋂

d∈DJφKξ[x:=d]

J∃x. φKξ =
⋃

d∈DJφKξ[x:=d]

As for the projection operators ! and ?, they may
be added as defined connectives:

!φ = ¬¬φ
?φ = φ ∨ ¬φ

3 Type-theoretic setting

Since Montague (1973), it is usual in the field of
natural language semantics to use the simply typed
λ-calculus as an object language to express the
compositional semantics of linguistic constructs.
In this paper, we adhere to this tradition, and we
take advantage of the present section to remind the
reader of some notions related to the simply typed
λ-calculus, in order to fix the notations.

We take for granted the notions of (untyped)
λ-term, β-redex, β-reduction, and β-equivalence.
The notations we use, when they are not explicitly
introduced, are taken from (Barendregt, 1984). In

1For the sake of simplicity, we use rigid models, i.e., mod-
els in which the interpretation of a term does not vary from
one possible world to the other. This assumption does not
affect the results we establish in this paper.

particular, we write t →→β u for the relation of
β-reduction.

A λ-term that does not contain any β-redex is
called β-normal (or normal, for short). This notion
can be explicitly defined in a syntactic way.

Definition 1. The notions of a neutral λ-term and
of a normal λ-term are defined by mutual recursion
as follows:

1. every λ-variable is a neutral λ-term;

2. every constant is a neutral λ-term;

3. if t a neutral λ-term and u a normal λ-term, then
t u is a neutral λ-term.

4. every neutral λ-term is a normal λ-term;

5. if t a normal λ-term, so is λx. t.

The object language we consider comprises two
atomic types: IND (the type of individuals) and
PROP (the type of proposition).2 Accordingly, the
definition of a simple type is the following one.

Definition 2. The set of simple types T is induc-
tively defined as follows:

1. IND, PROP ∈ T ;

2. if α, β ∈ T then (α→ β) ∈ T .

We provide the λ-terms with a type system à la
Church. To this end, we consider a pairwise disjoint
family of countable sets of λ-variables, (Xα)α∈T ,
and a pairwise disjoint family of countable sets
of constants, (Cα)α∈T . Given these two families
of sets, the notion of a simply-typed lambda-term
obeys the next definition.

Definition 3. The family of sets (Λα)α∈T of
simply-typed λ-terms of type α is inductively de-
fined as follows:

1. For all α ∈ T , Xα ⊆ Λα;

2. For all α ∈ T , Cα ⊆ Λα;

3. For all α, β ∈ T , if t ∈ Λα→β and u ∈ Λα

then (t u) ∈ Λβ;

4. For all α, β ∈ T , if x ∈ Xα and t ∈ Λβ then
(λx. t) ∈ Λα→β .

We usually let x range over λ-variables, c over
constants, and t, u (possibly with subscripts) over
λ-terms. If t ∈ Λα, we say that the term t is of type
α, or that α is the type of t. In order to stress the

2 IND and PROP are reminiscent of Montague’s e and t,
respectively. It is not the case, however, that PROP will be
semantically interpreted as the set {0, 1}.

66

type of a term, we sometimes decorate it with types,
using an exponent like notation. For instance, we
write (λxα. tβ) when (λx. t) ∈ Λα→β .

The simply-typed λ-terms enjoy several interest-
ing properties, in particular, the subject-reduction
property and the normalisation-property. The first
one says that the sets (Λα)α∈T are closed by β-
reduction. The second one says that every simply-
typed λ-term has a normal form. We state them
explicitly because we will use them in the sequel.

Proposition 4 (Subject Reduction). Let t and u
be two λ-terms such that t →→β u. If t ∈ Λα then
u ∈ Λα.

Proposition 5 (Normalization). Let t ∈ Λα. Then
there exists a β-normal form u ∈ Λα such that
t→→β u.

We end this section by providing the simple
types and the simply-typed λ-terms with their set-
theoretic semantic interpretation.

In order to give a semantic interpretation to the
types, we posit two sets, D and W , that are used
to give an interpretation to the atomic types. D,
the domain of interpretation, is the semantic coun-
terpart of type IND. As for W , the set of possible
worlds, it is used to provide a semantic interpreta-
tion to type PROP.

Definition 6. The semantic interpretation [α]i of a
simple type α is inductively defined by the follow-
ing equations.

[IND]i = D

[PROP]i = P(W)

[α→ β]i = [β]i
[α]i

According to the above definition, a type α→ β
is interpreted in standard3 way as the set of set-
theoretic functions from the interpretation of α into
the interpretation of β. The interpretation of type
PROP, however, is not the set of Booleans, {0, 1},
but the powerset of the set of possible worlds. This
corresponds to an intensional (or modal) interpreta-
tion, where a proposition is interpreted as a subset
of the set of possible worlds (hence, the subscript i
in the notation).

We now turn to the interpretation of the λ-terms.
To this end, we introduce the notion of a model.

3We use the so-called standard interpretation just to keep
the definition of a model simple. In fact, everything we do in
this paper could be done in the more general setting of Henkin
models (Henkin, 1950).

Definition 7. A modelM = ⟨D,W, I⟩ consists
of:

1. a set D, called the domain of interpretation;

2. a set W , called the set of possible worlds;

3. a family I = (Iα)α∈T of interpretation func-
tions Iα from Cα into [α]i.

From now on and throughout the rest of this
paper, we consider that a such a model M =
⟨D,W, I⟩ is given.

The third component of the model, namely I,
allows the constant to be given an interpretation.
We need a similar notion in order to interpret the
λ-variables. Accordingly, we define a valuation
ξ = (ξα)α∈T to be a family of functions ξα from
Xα into [α]i. Let ξ = (ξα)α∈T be such a valuation,
and let x ∈ Xα and a ∈ [α]i. Then, ξ[x:=a] stands
for the valuation (ξ′α)α∈T such that:

1. ξ′α(x) = a;

2. for every y ∈ Xα, if y ̸= x then ξ′α(y) = ξα(y);

3. for every β ∈ T , if β ̸= α then ξ′β = ξβ .

We are now in a position of defining the interpre-
tation of the λ-terms.
Definition 8. Let ξ = (ξα)α∈T be a valuation.
The interpretation JtKi ξ of a λ-term t is inductively
defined by the following equations:

JxαKi ξ = ξα(x)

JcαKi ξ = Iα(c)
Jtα→β uαKi ξ = Jtα→βKi ξ(JuαKi ξ)
Jλxα. tβKi ξ = a ∈ [α]i 7→ JtβKi ξ[xα:=a]

The semantic interpretation of Definition 8 is
sound with respect to β-equivalence. We state this
proposition explicitly because we will use it later
on.
Proposition 9 (Soundness). Let α ∈ T , t, u ∈ Λα,
and ξ be any valuation. If t =β u then JtKi ξ =
JuKi ξ.

The interpretation JtKi ξ of a closed λ-term t does
not depend upon the valuation ξ. Accordingly,
when t is a closed term, we simply write JtKi to
denote its interpretation.

A closed λ-term of type PROP is called a formula.
Let φ be a formula. We say that φ is valid, and we
write |=i φ, if and only if JφKi =W . Similarly, we
say that a sequence of formulas φ1, . . . , φn entails
a formula φ, which we write φ1, . . . , φn |=i φ, if
and only if Jφ1Ki ∩ · · · ∩ JφnKi ⊆ JφKi .

67

4 Inquisitivation

Definitions 6 and 8 provide to the types and the
terms of the object language an intensional inter-
pretation. As explained in the introduction, our
objective is to built from this intensional interpreta-
tion an inquisitive one.

A first step towards this goal is to provide the
type system with an inquisitive interpretation. This
consists mainly in interpreting type PROP as the set
of inquisitive propositions, i.e., as the set of sets
of sets of possible worlds. This motivates the next
definition.

Definition 10. The inquisitive semantic interpreta-
tion [α]i of a simple type α is inductively defined
by the following equations.

[IND]q = D

[PROP]q = P(P(W))

[α→ β]q = [β]q
[α]q

The next step would be to adapt Definition 8 to
the inquisitive case. This adaptation seems almost
straightforward, except for the constants. Indeed,
the interpretation function of the model interprets
a constant of type α as an element of [α]i, not as
an element of [α]q. Consequently, what we need
is a way of transforming an element of [α]i into an
element of [α]q, while preserving the information
it carries.

In other words, what we need for each type α is
an embedding Eα from [α]i into [α]q. At the level
of type PROP, such an embedding exists. Indeed,
if A ⊆ W is an intensional proposition, P(A) is
an inquisitive proposition that is purely informative
and that carries the same informative content as A.

Now, in order to lift up this embedding at every
type, we also need projection operators, Pα, from
[α]q onto [α]i. Again, at the level of type PROP,
such a projection exists. It consists of the opera-
tion that takes the union of all the elements of a
set of sets. Indeed, for every set A, we have that⋃

P(A) = A. It remains to lift up this embedding-
projection pair at every type. This is achieved by
the next definition.

Definition 11. The family of embeddings
(Eα)α∈T and the family of projections (Pα)α∈T

are defined by mutual recursion over the types as

follows:

EIND(a) = a

EPROP(p) = P(p)

Eα→β(f)(a) = Eβ(f(Pα(a)))

PIND(a) = a

PPROP(p) =
⋃
p

Pα→β(f)(a) = Pβ(f(Eα(a)))

The operators Eα are what we need to give an
inquisitive version of Definition 8. First, let us
define an inquisitive valuation to be a family of
functions ξ = (ξα)α∈T from Xα into [α]q. The
inquisitive interpretation of a λ-term is then defined
as follows.

Definition 12. Let ξ = (ξα)α∈T be an inquisitive
valuation. The inquisitive interpretation JtKq ξ of
a λ-term t is inductively defined by the following
equations:

JxαKq ξ = ξα(x)

JcαKq ξ = Eα(Iα(c))
Jtα→β uαKq ξ = Jtα→βKq ξ(JuαKq ξ)

Jλxα. tβKq ξ = a ∈ [α]q 7→ JtβKq ξ[x:=a]

It turns out that inquisitivation is a particular
case of de Groote (2015).4

The proof of Proposition 9 does not depend on
the interpretation of the constants. Consequently, it
also holds for Definition 12.

Proposition 13 (Soundness). Let α ∈ T , t, u ∈
Λα, and ξ be any inquisitive valuation. If t =β u
then JtKq ξ = JuKq ξ.

As for the notions of inquisitive validity and
of inquisitive entailment, they are defined as ex-
pected: |=q φ if and only if JφKq = P(W), and
φ1, . . . , φn |=q φ if and only if Jφ1Kq ∩ · · · ∩
JφnKq ⊆ JφKq .

5 Preservation of validity and entailment

In this section, we prove that our inquisitivation pro-
cedure preserves the validity of the propositions,
that is, a proposition is valid according to its in-
tensional interpretation, if and only if it is valid
according to its inquisitive interpretation. We also
establish a similar result for entailment.

4In our case, the operators of de Groote (2015) are instan-
tiated so: Tα = α, U t = t, t • u = t u and C t = t

68

We start by showing that the operators of em-
bedding and projection are indeed embedding-
projection pairs, i.e., that Pα ◦Eα is the identity for
every type α.

Lemma 14. Let α ∈ T be any type. For all a ∈
[α]i, Pα(Eα(a)) = a.

Proof. The proof proceeds by induction on the
structure of α.
1. α = IND.

PIND(EIND(a)) = EIND(a)

= a

2. α = PROP.

PPROP(EPROP(a)) =
⋃

EPROP(a)

=
⋃

P(a)

= a

3. α = α1 → α2. For all x ∈ [α1]i, we have:

Pα1→α2(Eα1→α2(a))(x)

= Pα2(Eα1→α2(a)(Eα1(x)))

= Pα2(Eα2(a(Pα1(Eα1(x)))))

= a(Pα1(Eα1(x))) by induction hypothesis

= a(x) by induction hypothesis

It is not the case that Eα(Pα(a)) = a for
every a ∈ [α]q. For instance, at type PROP,
EPROP(PPROP(a)) = P(

⋃
a), which is different

from a, in general. In fact, the only inquisitive
propositions for which EPROP(PPROP(a)) = a holds
are those propositions that are equal to P(b) for
some b ⊆W . These propositions are called purely
informative because they do not raise any issue.
We generalize this notion by defining an element
a ∈ [α]q to be purely informative if and only if
there exists some b ∈ [α]i such that a = Eα(b).

Lemma 15. Let α ∈ T be any type, and let a ∈
[α]q. Eα(Pα(a)) = a if and only if a is purely
informative.

Proof. If Eα(Pα(a)) = a then a is purely informa-
tive, by definition.

Now suppose that a is purely informative, i.e.,
that there exists b ∈ [α]i such that a = Eα(b).
Then, we have:

Eα(Pα(a)) = Eα(Pα(Eα(b)))

= Eα(b) by Lemma 14

= a

We are now in a position of stating and proving
the main technical lemma of this section, from
which we will derive conservativity results. We first
introduce some additional vocabulary and notation.

Let ξ = (ξα)α∈T be an inquisitive valuation.
We say that ξ is purely informative if and only if
for every α ∈ T and x ∈ Xα, ξα(x) is a purely
informative element of [α]q.

For ξ = (ξα)α∈T an inquisitive valuation,
we write P ◦ ξ for the intensional valuation
(Pα ◦ ξα)α∈T , i.e., the intensional valuation ξ′ =
(ξ′α)α∈T such that ξ′α(x) = Pα(ξα(x)).

Lemma 16. Let t ∈ Λα be any λ-term of type α,
and let ξ be an inquisitive valuation that is purely
informative.

(a) If t is neutral, JtKq ξ = Eα(JtKi P◦ξ).

(b) If t is normal, Pα(JtKq ξ) = JtKi P◦ξ.

Proof. We prove both (a) and (b) by a simultaneous
induction on the structure of t.
1. t = x.

(a) JxKq ξ = ξα(x)

= Eα(Pα(ξα(x))) by Lemma 15
= Eα(JxKi P◦ξ)

(b) Follows from (a), by Lemma 14.

2. t = c.

(a) JcKq ξ = Eα(Iα(c))
= Eα(JcKi P◦ξ)

(b) Follows from (a), by Lemma 14.

3. t = t1 t2, with t1 ∈ Λβ→α and t2 ∈ Λβ , for
some type β.

(a) Jt1 t2Kq ξ = Jt1Kq ξ(Jt2Kq ξ)

= Eβ→α(Jt1Ki P◦ξ)(Jt2Kq ξ)

by induction hypothesis (a)
= Eα(Jt1Ki P◦ξ(Pβ(Jt2Kq ξ)))

= Eα(Jt1Ki P◦ξ(Jt2Ki P◦ξ))
by induction hypothesis (b)

= Eα(Jt1 t2Ki P◦ξ)
(b) Follows from (a), by Lemma 14.

4. t = λx. t1, with x ∈ Xα1 and t1 ∈ Λα2 , for
some types α1 and α2.

(a) Holds vacuously beause t is not neutral.

(b) For every a ∈ [α1]i, we have:

69

Pα1→α2(Jλx. t1Kq ξ)(a)

= Pα2(Jλx. t1Kq ξ(Eα1 a))

= Pα2((a 7→ Jt1Kq ξ[x:=a])(Eα1(a)))

= Pα2(Jt1Kq ξ[x:=Eα1 (a)]
)

= Jt1Ki (P◦(ξ[x:=Eα1 a]))

by induction hypothesis (b)
= Jt1Ki P◦ξ[x:=Pα1 (Eα1 (a))]

= Jt1Ki P◦ξ[x:=a] by Lemma 14
= (a 7→ Jt1Ki P◦ξ[x:=a])(a)

= Jλx. t1Ki P◦ξ(a)

We may now establish our main result as an
immediate consequence of Lemma 16.

Proposition 17. Let φ be a proposition. Then,
JφKi = a if and only if JφKq = P(a).

Proof. Suppose JφKi = a. Since φ is a simply-
typed λ-term, it has a β-normal form φ′, which is
of type PROP by Proposition 4. Then, φ′ being a
normal form of atomic type, it is neutral. Hence:

JφKq = Jφ′Kq by Proposition 13

= EPROP(Jφ′Ki) by Lemma 16(a)

= EPROP(JφKi) by Proposition 9

= EPROP(a)

= P(a)

Conversely, if JφKq = P(a), we obtain the
expected result in a similar way, using Lemma
16 (b).

As a particular case of Proposition 17, we ob-
tain that our inquisitivation procedure preserves
validity.

Corollary 18. Let φ be a proposition. Then, |=q φ
if and only if |=i φ.

Finally, observing that A ⊆ B if and only if
P(A) ⊆ P(B), and that P(A) ∩ P(B) =
P(A ∩B), we obtain that entailment is also pre-
served.

Corollary 19. Let φ,φ1, . . . , φn be proposi-
tions. Then, φ1, . . . , φn |=q φ if and only if
φ1, . . . , φn |=i φ.

6 Using inquisitive logic as the object
language

Our inquisitivation procedure, as defined by Defini-
tions 11 and 12, leaves the treatment of the logical
connectives completely implicit. Somehow, we

assumed that the set of constants CPROP→PROP con-
tains a constant corresponding to negation, that
CPROP→PROP→PROP contains constants correspond-
ing to conjunction, disjunction, and implication,
and that C(IND→PROP)→PROP contains constants cor-
responding to the quantifiers. In addition, we also
assumed family I = (Iα)α∈T of interpretation
functions assigns to the logical connectives their
standard intensional meaning. That is:

IPROP→PROP(¬) = a 7→W \ a
IPROP→PROP→PROP(∧) = a b 7→ a ∩ b
IPROP→PROP→PROP(∨) = a b 7→ a ∪ b
IPROP→PROP→PROP(→) = a b 7→ (W \ a) ∪ b
I(IND→PROP)→PROP(∀) = p 7→ ⋂

d∈Dp(d)

I(IND→PROP)→PROP(∃) = p 7→ ⋃
d∈Dp(d)

Then, according to Definition 12, our inquisitive
interpretation of the logical connectives is given
by E ◦ I, not by their very inquisitive meaning as
defined at the end of Section 2. Spelling it out, our
inquisitive interpretation of the logical connectives
is as follows:

J¬Kq = a 7→P(W \ (⋃ a))

J∧Kq = a b 7→P((
⋃
a) ∩ (

⋃
b))

J∨Kq = a b 7→P((
⋃
a) ∪ (

⋃
b))

J→Kq = a b 7→P((W \ (⋃ a)) ∪ (
⋃
b))

J∀Kq = p 7→P(
⋂

d∈D(
⋃
p(d)))

J∃Kq = p 7→P(
⋃

d∈D(
⋃
p(d)))

Let us call the above interpretation of the logical
connectives their weak inquisitive interpretation.
By contrast, let us call the very inquisitive inter-
pretation of the connectives, as given at the end
of Section 2, their strong inquisitive interpretation.
Then, given an inquisitive valuation ξ, let us define
the strong inquisitive interpretation JtKsq ξ of a λ-
term t as in Definition 12, except for the logical
connectives that are assigned their strong inquisi-
tive interpretation.

We now wonder whether the weak and the strong
interpretations of the connectives coincide. For
negation, this is indeed the case.

Lemma 20.

J¬Ksq = J¬Kq

70

Proof.

J¬Ksq (a) = {s | ∀t ∈ a. s ∩ t = ∅}
= {s | ∀w ∈ s. ∀t ∈ a.w ̸∈ t}
= {s | ∀w ∈ s. w ̸∈ ⋃

a}
because a is downward-closed

= P(W \ (⋃ a))

= J¬Kq (a)

For the other connectives, the weak and the
strong interpretations do not coincide in gen-
eral. Let us exhibit some counterexamples. Let
W = {w, v}, D = {1, 2}, and Define a to be
{{w}, {v},∅}. For conjunction, we have:

J∧Ksq (a)(a) = a ∩ a = a

which is different from:

J∧Kq (a)(a) = P((
⋃
a) ∩ (

⋃
a))

= P(W)

For implication, define b to be P(W). Then, we
have:

J→Ksq (b)(a)
= {s | ∀t ⊆ s. t ∈ b→ t ∈ a}
= a

which is different from:

J→Kq (b)(a) = P((W \ (⋃ b)) ∪ (
⋃
a))

= P(W)

For universal quantification, define p to be
{(1, a), (2, a)}. We then obtain a counterexample
similar to the one for conjunction, with J∀Ksq (p) =
a, which is different from J∀Kq (p) = P(W).

For disjunction, define c to be {{w},∅}, and d
to be {{v},∅}. Then we have:

J∨Ksq (c)(d) = c ∪ d
= {{w}, {v},∅}

which is different from

J∨Kq (c)(d) = P((
⋃
c) ∪ (

⋃
d))

= P(W)

For existential quantification, one obtains a coun-
terexample similar to the one for disjunction by
defining q to be {(1, c), (2, d)}. Then we have that

J∃Ksq (q) = {{w}, {v},∅}, and that J∃Kq (q) =
P(W).

Because of the non-coincidence of the weak and
the strong inquisitive interpretations of the logical
connective, we do not have, in general, that for any
formula φ:

JφKq = JφKsq (1)

Consequently, Proposition 17 in which J·Kq would
be replaced by J·Ksq does not hold.

In order to circumvent this problem, we will
introduce a syntactic translation of the λ-terms, · ,
such that for every formula φ, JφKsq = JφKq . With
such a translation, the picture of our inquisitivation
process is as follows:

Λ Λ

M M

·

J·Ki J·Kq J·Ksq

E

Remark, however, that an exact coincidence be-
tween the weak and the strong interpretation of
the connectives is not needed in order to have that
Equation 1 holds. What is needed is that the weak
and the strong interpretations coincide on the im-
age of the embedding E, that is that they coincide
for the purely informative elements. For conjunc-
tion, implication, and universal quantification, this
is the case, as shown by the next lemma.

Lemma 21. Let a, b ∈ [PROP]q, and p ∈
[IND → PROP]q be purely informative elements.

(a) J∧Ksq (a)(b) = J∧Kq (a)(b)

(b) J→Ksq (a)(b) = J→Kq (a)(b)

(c) J∀Ksq (p) = J∀Kq (p)

Proof.

(a) Conjunction. Remark that a being purely in-
formative, we have that a = P(

⋃
a), and sim-

ilarly for b. Then, we have:

J∧Ksq (a)(b) = a ∩ b
= P(

⋃
a) ∩P(

⋃
b)

= J∧Kq (a)(b)

71

(b) Implication.

J→Ksq (a)(b)
= {s | ∀t ⊆ s. t ∈ a→ t ∈ b}
= {s | ∀t ⊆ s. t ∈P(

⋃
a)→ t ∈P(

⋃
b)}

= {s | ∀t ⊆ s. ∀w ∈ t. w ∈ (
⋃
a)→ w ∈ (

⋃
b)}

= {s | ∀w ∈ s. w ∈ (W \ (⋃ a)) ∪ (
⋃
b)}

= P((W \ (⋃ a)) ∪ (
⋃
b))

= J→Kq (a)(b)

(c) Universal quantification. This case is similar
to conjunction.

As for disjunction and existential quantification,
their strong and weak interpretations do not coin-
cide, even for the purely informative elements. This
is shown, indeed, by the above counterexamples.
Nevertheless, we may simulate the weak interpre-
tations of these connective using the projection
operator !.

Lemma 22. Let φ,ψ ∈ ΛPROP, υ ∈ ΛIND→PROP,
and ξ be an inquisitive valuation.

(a) If JφKq ξ = JφKsq ξ and JψKq ξ = JψKsq ξ then
Jφ ∨ ψKq ξ = J!(φ ∨ ψ)Ksq ξ.

(b) If for all d ∈ S, JυKq ξ[x:=d] = JυKsq ξ[x:=d]

then J∃x. υKq ξ = J!(∃x. υ)Ksq ξ

Proof.

(a) Disjunction. Remark that for every inquisi-
tive proposition a ∈ P(P(W)), J!Ksq (a) =
P(

⋃
a).

Jφ ∨ ψKq ξ = P((
⋃ JφKq ξ) ∪ (

⋃ JψKq ξ))

= P(
⋃
(JφKq ξ ∪ JψKq ξ))

= P(
⋃

(JφKsq ξ ∪ JψKsq ξ))

= P(
⋃ Jφ ∨ ψKsq ξ)

= J!(φ ∨ ψ)Ksq ξ

(b) Existential quantification. This case is han-
dled similarly.

Taking advantage of the above lemma, we define

the syntactic translation · as follows:

x = x

¬φ = ¬φ
φ ∧ ψ = φ ∧ ψ
φ ∨ ψ =!(φ ∨ ψ)
φ→ ψ = φ→ ψ

∀x. φ = ∀x. φ
∃x. φ =!(∃x. φ)

c = c for the other constants

t u = t u

λx. t = λx. t

Finally, we obtain the following proposition.

Proposition 23. For any λ-term u, and any inquis-
itive valuation ξ that is purely informative,

JuKq ξ = JuKsq ξ

Proof. By induction over the λ-terms, using Lem-
mas 20, 21, and 22.

7 Application to an epistemic modality

Epistemic modalities are logical operators that can
be added to intensional logic to model natural lan-
guage expressions involving the knowledge of an
agent. In epistemic logic (Hintikka, 1962), the se-
mantics of know that + declarative subclause uses
an operator named K.

Ciardelli and Roelofsen (2015) developed a new
operator Kq in view of 1. adapting K to inquisitive
semantics and 2. modeling the semantics of know
+ interrogative subclause.

Let us take the following sentences as illustra-
tions:

(1) a. Kj (sleepm) . (John knows that
Mary sleeps)

b. Kj (? (sleepm)) . (John knows
whether Mary sleeps)

c. Kj (∃x. sleep x) . (John knows who
sleeps)

These last two λ-terms of Λsq have to be interpreted
by the strong inquisitive interpretation so that ∃
generates an alternative for every d ∈ D. Similarly,
we must interpret K as the inquisitive epistemic
operator of Ciardelli and Roelofsen (2015).

This raises the question whether the strong in-
quisitive interpretation of (1-a) is still consistent

72

with the one obtained by embedding the intensional
version of K.

This section investigates to which group of logi-
cal constants K belongs.

7.1 Traditional modal knowledge
We expose here the traditional treatment of know
in modal logic (Kripke, 1959).

To interpret K we need an accessibility relation
indexed by individuals d ∈ D:

σd :W →P(W)

in any modelM. In particular, w σd v iff agent d
cannot distinguish worlds w and v by her knowl-
edge.

Then we can define for every xIND and proposi-
tion φPROP,

JK xφKi ξ = {w ∈W | σJxKi ξ(w) ⊆ JφKi ξ}

Embedding this operation yields

JK xφKq ξ = P({w | σJxKq ξ
(w) ⊆ ⋃ JφKq ξ})

7.2 Inquisitive knowledge
We can see σd as a function from worlds to in-
tensional propositions. The idea of Ciardelli and
Roelofsen (2015) is to extend it to a function
Σd : W → P(P(W)), mapping worlds to in-
quisitive propositions, called the inquisitive states
of agent d. This way, the inquisitive knowledge
modality can take inquisitive propositions as in-
puts.

The intensional counterpart of Σd can be re-
trieved by taking the truth set of the inquisitive
state at world w:

σd(w) =
⋃

(Σd(w))

Σd(w) represents the issue P that agent d en-
tertains at world w. The informational content of
P is where d locates the current world, so what d
knows. The inquisitive content of P is related to
what d wonders. Therefore, to interpret knowledge,
we only need to use

⋃
Σd(w), i.e. σd(w).

The strong inquisitive interpretation of the
knowledge operator is

JK xφKsq ξ = {s | ∀w ∈ s. σJxKsq ξ
(w) ∈ JφKsq ξ}

For K xφ to be true at s, the knowledge of agent
x at every world w of s has to settle the proposi-
tion expressed by φ. This way, K can be used to
interpret both know that + declarative and know +
interrogative in a single formulation.

7.3 Inquisitivation of K

The modality K belongs to group 2: JKKsq ξ coin-
cides with JKKq ξ) on the image of E.

Let us first provide a counterexample against
their coicidence in the general case.

Again, take the model having W = {w, v},
D = {d} and Σd(w) = Σd(v) = {{w}, {v},∅}.
Therefore, σd(w) = σd(v) =W . Set Q = Σd(w).
Then,

JKKsq ξ(d)(Q) = P({w | σd(w) ∈ Q}) = {∅}

whereas

JKKq ξ(d)(Q) = P({w | σd(w) ⊆
⋃Q}) = P(W)

Proposition 24. Let P be a purely informative
issue and d ∈ D.

JKKsq ξ(d)(P) = JKKq ξ(d)(P)

Proof. The derivation goes like this

JKKsq ξ(d)(P) = {s | ∀w ∈ s. σd(w) ∈P(
⋃P)}

= {s | ∀w ∈ s. σd(w) ⊆
⋃P}

= P({w | σd(w) ⊆
⋃P})

= JKKq ξ(d)(P)

This proves that the inquisitive epistemic modal-
ity is indeed a “natural” extension of traditional K,
as suggested in Ciardelli and Roelofsen (2015).

8 Conclusion

We designed a transformation that creates inquisi-
tive lexical representations out of intensional lex-
ical interpretations. This transformation, called
inquisitivation, can be used as a procedure to em-
bed an intensional interpretation into the inquisitive
world, where more operations are available, e.g. to
express questions.

We proved that inquisitivation preserves validity
and entailment.

73

We classified logical connectives into three
groups w.r.t. how their inquisitivation coincides
with their counterparts defined by inquisitive logic.
Group 1 includes negation and exhibits an exact
coincidence. In group 2, connectives (e.g. con-
junction) exhibit a coincidence on the image of
inquisitivation (i.e. on purely informative issues).
The connectives of group 3 (e.g. disjunction) do
not coincide in general. But they are definable by
their inquisitive counterpart.

We finally showed that the knowledge opera-
tor K shares properties with its adaptation to in-
quisitive logic defined by Ciardelli and Roelofsen
(2015). As such, it belongs to group 2.

Inquisitivation offers a tool to easily transfer any
system based on intensional semantics to inquisi-
tive semantics. Future works may focus on other
such systems, like dynamic semantics.

It would also be interesting to try to emulate an
inquisitive logic out of another basis than inten-
sional semantics. For example, events may have a
rich enough structure to allow an inquisitive logic
based on (set of) events instead of information
states.

References
Henk Barendregt. 1984. The Lambda Calculus. Its Syn-

tax and Semantics, 2 edition, volume 103 of Studies
in Logic and the Foundations of Mathematics. North
Holland.

Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelof-
sen. 2013. Inquisitive Semantics: A New Notion
of Meaning. Language and Linguistics Compass,
7(9):459–476.

Ivano Ciardelli, Jeroen Groenendijk, and Floris Roelof-
sen. 2018. Inquisitive Semantics. Oxford Surveys in
Semantics and Pragmatics. Oxford University Press,
Oxford, New York.

Ivano Ciardelli and Floris Roelofsen. 2015. Inquisitive
dynamic epistemic logic. Synthese, 192(6):1643–
1687.

Ivano Ciardelli, Floris Roelofsen, and Nadine Theiler.
2017. Composing alternatives. Linguistics and Phi-
losophy, 40(1):1–36.

Philippe de Groote. 2015. On Logical Relations and
Conservativity. In EPiC Series in Computing, vol-
ume 32, pages 1–11. EasyChair.

Philippe de Groote and Makoto Kanazawa. 2013. A
Note on Intensionalization. Journal of Logic, Lan-
guage and Information, 22(2):173–194.

Jeroen Groenendijk and Martin Stokhof. 1984. Studies
on the Semantics of Questions and the Pragmatics of
Answers. Ph.D. thesis, University of Amsterdam.

Charles Leonard Hamblin. 1973. Questions in Mon-
tague English. Foundations of Language, 10(1):41–
53.

Leon Henkin. 1950. Completeness in the Theory of
Types. The Journal of Symbolic Logic, 15(2):81–91.

Jaakko Hintikka. 1962. Knowledge and Belief: An
Introduction to the Logic of the Two Notions. Studia
Logica, 16:119–122.

Saul A. Kripke. 1959. A Completeness Theorem
in Modal Logic. The Journal of Symbolic Logic,
24(1):1–14.

Richard Montague. 1970. English as a Formal Lan-
guage. De Gruyter Mouton.

Richard Montague. 1973. The Proper Treatment of
Quantification in Ordinary English. In K. J. J. Hin-
tikka, J. M. E. Moravcsik, and P. Suppes, editors,
Approaches to Natural Language: Proceedings of
the 1970 Stanford Workshop on Grammar and Se-
mantics, Synthese Library, pages 221–242. Springer
Netherlands, Dordrecht.

74

	Proceedings of the 17th Meeting on the Mathematics of Language
	ISBN
	Preface
	Programme Committee
	Table of Contents
	A Generative Process for Lambek Categorial Proof Nets
	German Verb Particle Constructions in CCG
	Strong Learning of some Probabilistic Multiple Context-Free Grammars
	More Efficiently Identifying the Tiers of Strictly 2-Local Tier-Based Functions
	Tier-Based Modeling of Gradience and Distance-Based Decay in Phonological Processes
	Embedding Intentional Semantic into Inquisitive Semantics

