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Abstract
Current computational approaches to long-
distance phonological processes use string-to-
string function classes that operate over phono-
logical tiers, but these are necessarily deter-
ministic devices and are thus limited to enforc-
ing categorical application. We show that prob-
abilistic relations that act like a tier-based func-
tion (aside from being non-deterministic) per-
form well as models of gradient long-distance
processes. In particular, they offer a cogni-
tively plausible characterization of distance-
based decay (Zymet, 2015) with other desir-
able properties, exemplified by two case stud-
ies. The first, examining rounding dissimila-
tion in Malagasy, demonstrates that tier-based
models of decay can be made sensitive to pho-
netic similarity in interesting ways. The sec-
ond, examining Hungarian backness harmony,
demonstrates that tier-based models of decay
can handle scenarios where a process is obliga-
tory at short distances but vanishingly unlikely
at increasing distances.

1 Introduction

Taking inspiration from foundational results in Au-
tosegmental Phonology (e.g., Goldsmith 1976),
recent computational work has shown that long-
distance phonological processes can be fruitfully
modelled using string-to-string function classes
that operate according to a relativized notion of
strict locality. These classes include the Tier-based
Strictly Local (TSL) functions explored by Bur-
ness and McMullin (2019), Hao and Andersson
(2019), Hao and Bowers (2019), and Andersson
et al. (2020), as well as the Multi-tiered Strictly
Local (MTSL) functions (Burness and McMullin,
2020). While these functions have offered valu-
able insights into the computational characteristics
of non-local phonology, they are limited in that
they assume every input has exactly one output.
Consequently, these functions can only describe

either mandatory application or mandatory non-
application of a process. Real language data is,
however, not always this clean; many phonologi-
cal processes apply optionally, and long-distance
processes are no exception to this fact. This paper
will explore how the requirement of determinism
can be relaxed in order to describe the probabilistic
application of a process, while still maintaining the
advantages of (tier-based) strict locality. In partic-
ular, by augmenting the tier-based structures with
duplicate transitions for non-tier elements, we are
able to model phonological processes with a well-
known property of distance-based decay, wherein
the probability that a long-distance process applies
will exponentially diminish as more and more trans-
parent segments intervene between the trigger and
target (Zymet, 2015).

The paper is structured as follows. First, Section
2 provides the necessary background on tier-based
functions and their automata-theoretic character-
ization. Then, Section 3 looks at some optional
long-distance patterns and shows how strategically
adding transitions to a TSL or MTSL FST and
weighting them can describe the desired probabilis-
tic distribution of output forms for a given input.
After that, Section 4 considers distance-based de-
cay, and proposes that weighted transducers built
according to a TSL or MTSL template can de-
rive distance-based decay in a cognitively plausible
manner. Section 5 concludes.

2 Categorical tier-based functions

We begin this section with a modicum of notation
and definitions An alphabet is a set of elements
from which strings can be built. The concatenation
of two strings u and v is written as u · v, although
this is shortened to uv when context permits. Given
an alphabet ⌃, we write ⌃⇤ to denote the set of
all strings of any length (including 0) that can be
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constructed using ⌃. Here and throughout, we use
� to denote the unique empty string, which has a
length of 0 and satisfies � · w = w · � = w. Given
an alphabet ⌃ of input elements and an alphabet
� of output elements, a (partial) string-to-string
function is a mapping from ⌃⇤ to �⇤ where each
w 2 ⌃⇤ is paired with (at most) one string in �⇤.

We will mainly demonstrate and discuss tier-
based functions (and their probabilistic variants)
with reference to the finite-state transducers (FSTs)
that compute them. A (one-way) FST produces an
output string incrementally by reading an input
string one element at a time in a single direction.
Such a machine consists of a finite set of states
(which can be thought of as a primitive sort of
memory) and a finite set of transitions between
these states (which are the machine’s instructions
for what to write at each step). The machine begins
in a designated initial state, and traverses a path
through the state space by following transitions in
response to the input that it reads. Each state is
given a (potentially empty) final string which is
appended to the output when the machine lands in
that state after consuming the whole input string.
Figure 1 presents a visual diagram of an FST. States
are represented using circles and the initial state is
marked with an unlabeled incoming arrow. Transi-
tions are represented with labelled arrows between
states; a label ‘a:b’ is an instruction to take that tran-
sition when reading ‘a’ from the input and write ‘b’
to the output. Final strings are shown underneath
the state label, formatted like a transition label for
the special end-marker n. The transducer in Figure
1 operates over the input alphabet {a, b}, transform-
ing all odd-numbered positions to ‘a’, transforming
all even-numbered positions to ‘b’, and appending
‘b’ to the end if it runs out of input after writing
‘a’ (i.e., if it ends in the state labelled ‘1’). For
example it maps /bab/ to [abab] and maps /aabbab/
to [ababab].

0
n:�

1
n:a

a:a

b:a

a:b

b:b

Figure 1: A simple finite-state transducer

The tier-based functions expanded upon in this
paper are themselves extensions of the Strictly Lo-

cal functions (Chandlee, 2014; Chandlee et al.,
2014, 2015, 2018; Chandlee and Heinz, 2018). A
Strictly k-Local (SLk) FST operates according to a
memory window with a fixed and finite maximum
size k, the state labels acting as a record of this
window’s contents. When the window pays atten-
tion to the input string we say that the function is
Input Strictly k-Local (ISLk) and the label of the
currently occupied state always corresponds to the
most recent (up to) k � 1 elements read. Similarly,
when the window pays attention to the output string
we say that the function is Output Strictly k-Local
(OSLk) and the label of the currently occupied state
always corresponds to the most recent (up to) k� 1
elements written. Input Tier-based Strictly k-Local
(ITSLk) and Output Tier-based Strictly k-Local
(OTSLk) FSTs operate exactly like their ISLk and
OSLk cousins except that only a subset of the rel-
evant alphabet (the function’s tier) is allowed to
occupy space in the memory window. Restricting
the transducers attention in this manner permits
the modelling of non-local processes where the dis-
tance between trigger and target can be arbitrarily
large.

To demonstrate, consider the process of regres-
sive sibilant harmony in Slovenian. The Slovenian
process is optional, though we will assume for the
purposes of this section that it is categorical, post-
poning a discussion of its optionality to Section
3. The Slovenian pattern causes a sibilant to be-
come [�anterior] if it is followed at any distance by
another [�anterior] sibilant unless a coronal stop
intervenes (Jurgec, 2011, pp. 329-333). Examples
of successful sibilant harmony are provided in (1a-
b) and examples of blocked sibilant harmony are
provided in (1c-d) with the second singular suffix
acting as the potential trigger in each case.

(1) Slovenian sibilant harmony, blocking by
coronal stops (Jurgec, 2011, pp. 330-331)

a. /spi-S/ [Spi-S] ‘sleep-2SG’
b. /pozabi-S/ [poZabi-S] ‘forget-2SG’
c. /stoji-S/ [stoji-S] ‘stand-2SG’
d. /zida-S/ [zida-S] ‘build-2SG’

The transducer in Figure 2 shows what an ideal-
ized and mandatory version of the Slovenian pat-
tern would look like as an OTSL2 function oper-
ating relative to the tier {s, S, z, Z, t, d}. Since
the process is regressive, the machine reads input
strings from right to left. State labels are enclosed
in square brackets to highlight the fact that this
transducer tracks the output string. To save on
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space, states with the same behaviour are collapsed
into a single circle with multiple labels and tran-
sitions that share an origin and a destination are
collapsed into a single arrow with multiple labels.
Note that transitions labelled ‘*:*’ represent an ar-
bitrary non-tier segment mapping faithfully to itself.
An input [+anterior] sibilant (i.e., /s/ or /z/) will
map faithfully to itself if no tier-elements have been
produced thus far, if the most recently produced tier
element was a coronal stop, or if the most recently
produced tier element was another [+anterior] sibi-
lant. On the other hand, if the most recently pro-
duced tier element was a [�anterior] sibilant (i.e.,
[S] or [Z]), an input [+anterior] sibilant will in-
stead palatalise to become its [�anterior] equiv-
alent. Palatalization will happen no matter how
many non-tier elements (i.e., non-sibilants other
than [t] or [d]) intervene between the [�anterior]
trigger and the [+ anterior] target, because produc-
ing such an element never causes a change of state
in this machine.

[�]
[t]
[d]

[s]
[z]

[S]
[Z]

*:*
t:t
d:d

s:s
z:z

S:S
Z:Z

*:*
s:s
S:s
z:z
Z:z

t:t
d:d

*:*
s:S
S:S
z:Z
Z:Z

t:t
d:d

Figure 2: An OTSL2 transducer that produces manda-
tory sibilant harmony

ITSLk and OTSLk functions are equipped with
just one tier, which works well for many cases, but
some patterns require multiple memory windows
that each track a different tier. By allowing for
multiple tiers in this way we delve into the class of
Multi-Tiered Strictly k-Local functions (Burness
and McMullin, 2020). All of the MTSLk trans-
ducers that will appear in this paper adhere to a
restriction which Burness and McMullin (2020)
call target-specification. The restriction states that
(i) each input element is associated with a set of
tiers that on their own can fully determine what
the element is mapped to on a given step and (ii)

this target-specified set of tiers must form a strict
superset-subset hierarchy. Target-specified MTSL
functions essentially track multiple, related sources
of information when deciding how to process a
particular input element. Tiers that are not part of
a input element’s specified set are ignored when
reading that input element, since they provide ei-
ther irrelevant or redundant information.

3 Probabilistic variants

In the previous section, we mentioned that the
Slovenian process of sibilant harmony was op-
tional. When the transducer in Figure 2 reads an
input like /pozabiS/ from right to left, it will be
in the [�anterior] state as it goes to read /z/, and
the corresponding transition will enforce harmony.
We want, however, to have the possibility of faith-
fully producing [z] for /z/ while in the [�anterior]
state, since harmony is optional in Slovenian (Ju-
rgec, 2011). We can create the possibility of op-
tional faithfulness by adding transitions from the
[�anterior] state to the [+anterior] state labelled
‘s:s’ and ‘z:z’ and transitions from the [+anterior]
state to the [�anterior] state labelled ‘S:S’ and ‘Z:Z’.
Figure 3 shows the resulting transducer, which
aside from the added non-determinism, exhibits all
the required behaviour of an OTSL2 transducer (i.e.,
all transitions still land in the state corresponding
to the most recently written tier element). For clar-
ity, the harmony-enforcing transitions are shown
as dotted lines and the harmony-ignoring (faithful)
transitions are shown as dashed lines.

[�]
[t]
[d]

[s]
[z]

[S]
[Z]

*:*
t:t
d:d

s:s
z:z

S:S
Z:Z

*:*
s:s
z:z

t:t
d:d

S:S
Z:Z

S:s
Z:z

*:*
S:S
Z:Z

t:t
d:d

s:S
z:Z

s:s
z:z

Figure 3: A quasi-OTSL2 transducer that produces op-
tional sibilant harmony
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Now we have two transitions out of the
[�anterior] state for the input /z/, one that enforces
harmony and one that enforces faithfulness. As-
suming that we choose randomly between the two
available transitions, the /z/ in /pozabiS/ then has
a 50% chance of harmonizing with the nearby [S].
It is very important that the new faithful transition
leads to the [+anterior] state rather than looping
back to the [�anterior] state. This is because, while
the new faithful transition does not produce har-
mony, it nonetheless produces a tier element. By
ensuring that any additional transitions all lead to
the state associated with the most recently produced
tier element, we maximally preserve the intuitions
of the TSL functions, even though we are aban-
doning determinism and thus no longer meet the
definition of a TSL function. We instead have a
quasi-TSL relation, where the set of possible out-
puts at a given step is directly determined by the
most recently produced tier element.

Of course, we may want to achieve a rate of
harmony higher than 50% while still allowing for
the possibility of faithfulness. To do so, we can
assign a numerical weight to each transition in the
machine (Vidal et al., 2005a). When more than
one transition could be followed at a given step
in the derivation, the probability that we choose a
given member from that set of transitions is pro-
portional to its share of the summed weights of the
set. For ease of interpretation, we assume that the
weight of a transition is equal to the probability
that it is followed, meaning that given a state q and
an input symbol a, the weights of all transitions
leaving q for the input a must add up to 1. Suppose
now that the harmony-ignoring (dashed) transitions
are weighted 0.2, the harmony-enforcing (dotted)
transitions are weighted 0.8, and the remaining
transitions are weighted 1. The input /sapozabiS/
has three possible outcomes whose probabilities
sum to 1: a fully faithful candidate [sapozabiS], a
single harmony candidate [sapoZabiS], and a full
harmony candidate [SapoZabiS]. The fully faithful
candidate has a probability of 0.2 ⇤ 1 = 0.2 since
the probability of the /z/ remaining faithful is 0.2,
and if it does so, the /s/ is guaranteed to be faith-
ful. The remaining output probabilities can be cal-
culated in a similar manner: the single harmony
candidate has a probability of 0.8 ⇤ 0.2 = 0.16,
and the full harmony candidate has a probability
of 0.8 ⇤ 0.8 = 0.64. More generally, a weighted
transducer set up in the above manner produces a

conditional distribution over a finite set of output
strings for each possible input string. The number
of output possibilities as well as their shape and
share of the probability can of course change from
input to input and from transducer to transducer,
but the distributions so-defined are crucially related
to and dictated by tier-based strict locality.

A particularly interesting case of optionality in
a long-distance process comes from Bukusu. In
this language, underlying /l/ becomes output [r] if
the nearest leftward surface liquid is [r] (de Blois,
1975; Odden, 1994; Hansson, 2010). The pattern of
liquid harmony affects the applicative suffix /-ila/,
exemplified by the data in (2). The suffix’s under-
lying /l/ surfaces faithfully when the root contains
no liquids as in (2a) or when the only liquids in
the root are all instances of /l/ as in (2b). When
the base contains an /r/, though, the liquid in the
applicative suffix alternates to obey harmony. This
happens across a single vowel as in (2c) and at
further distances as in (2d).

(2) Bukusu liquid harmony (Odden, 1994)
a. xam-ila ‘milk-APPL’
b. lim-ila ‘cultivate-APPL’
c. kar-ira ‘twist-APPL’
d. rum-ira ‘send-APPL’

Importantly, harmony is obligatory across a
single vowel (i.e., in transvocalic contexts) but
becomes optional at further distances (Hansson,
2010). For example, /ruk-ila/ ‘plait-APPL’ may
surface as [ruk-ila] without harmony or as [ruk-ir-
a] with harmony. Another long-distance pattern
that is cited as being obligatory in transvocalic con-
texts but optional at further distances would be the
sibilant harmony in Kinyarwanda (Kimenyi, 1979;
Coupez, 1980; Hansson, 2010; Walker and Mpi-
ranya, 2006; Walker et al., 2008). Such a transvo-
calic / beyond-transvocalic dichotomy is not possi-
ble to describe using a probabilistic quasi-OTSL2

transducer as we did for Slovenian sibilant har-
mony above, but is possible to describe using a
probabilistic quasi-OMTSL2 transducer.

Consider the transducer in Figure 4, where ‘V’
stands for an arbitrary vowel and ‘C’ stands for
an arbitrary non-liquid consonant. Ignoring the
dashed transition for now (but including the dot-
ted transitions), this machine represents a target-
specified OMTSL2 function that computes a fully
obligatory version of the Bukusu pattern over a tier
of liquid consonants A = {r, l} and a tier of all con-
sonants B = {r, l, C}. The left and right symbol
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of each state label correspond respectively to the
suffix on A (i.e., the most recently produced liquid
consonant) and B (i.e., the most recently produced
consonant). Reaching the [r, r] state can be inter-
preted to mean that the most recent consonant we
have seen is an [r] (since it is on both the liquid
and consonantal tiers). Compare this to being in
the [r, C] state, which means that the most recent
consonant we have seen is a non-liquid, and that
this consonant is preceded by an [r]. In a trans-
ducer that does not contain the dashed transition,
both of these states enforce the harmonic /l/ !
[r] change, as indicated by the dotted transitions.
However, by adding the dashed transition, harmony
becomes optional just in those cases where [r] is
the most recently produced liquid but not the most
recently produced consonant. In a language like
Bukusu with mostly open CV syllables, these two
states more-or-less reflect the difference between a
transvocalic and beyond-transvocalic distance from
the most recent liquid consonant. In particular it
is the superset-subset relationship imposed onto
the tierset by target specification (Burness and Mc-
Mullin, 2020) that allows us to have harmony be
obligatory across 0 non-liquid consonants and be
optional across 1+ non-liquid consonants.

An important question arises when we model
optional processes using probabilistic transduc-
ers. Namely, how do we determine the transition
weights that best reflect the target pattern? This
type of optimization problem is well-studied in the
literature on Probabilistic Finite-state Acceptors
(PFAs) which are exactly like probabilistic trans-
ducers except that rather than taking an input string
and producing an output string, they take an in-
put string and return a value reflecting the input’s
well-formedness. The Slovenian and Bukusu trans-
ducers above can be reinterpreted as acceptors if
we think of their transition labels as atomic ele-
ments of an alphabet and rewrite input-output pairs
as a string of such “transducer actions”. Conve-
niently, reinterpreting the Slovenian and Bukusu
transducers in this manner makes them determin-
istic since, while a given input string can follow
potentially multiple paths through the transducers
to produce different outputs, a given input-output
pair can only be achieved by following a single,
specific path through the transducers. Finding the
transition weights for a given deterministic PFA
that maximise the probability of a set of training
data has a well-known, simple, and efficient solu-

tion. For each transition,1 we calculate the number
of times it was followed when reading the sam-
ple and divide this number by the total number of
times its origin state was visited when reading the
sample (Vidal et al., 2005a,b; de la Higuera, 2010).
One small modification is needed for our purposes
since the weights resulting from the above method
will describe a single distribution over input-output
pairs, rather than a separate distribution over output
strings for each input. This is because the weights
of all transitions out of a given state will sum to
1, whereas we want all transitions out of a given
state for a given input element to sum to 1. To rem-
edy this, we can normalize the transducer by taking
each combination of state and input symbol, adding
together the weights of all transitions leaving that
state for that input element, then dividing each of
the implicated transition weights by this sum.

4 Distance-based decay

The analyses of the Slovenian and Bukusu cases
above are relatively simplistic in that the proba-
bility with which the process applies remains con-
stant. In many cases, however, we see that the
probability of application is inversely correlated
to the distance between trigger and target. This
phenomenon is known as distance-based decay
(Zymet, 2015) and can be observed in Malagasy
vowel rounding dissimilation (Zymet, 2015), Hun-
garian backness vowel harmony (Hayes and Londe,
2006; Hayes et al., 2009), Latin liquid dissimila-
tion (Zymet, 2015), and Navajo sibilant harmony
(Martin, 2005), among others. Current descriptions
of the phenomenon are couched within stochastic
constraint-based frameworks like Noisy Harmonic
Grammar (Coetzee and Pater, 2011) and Maximum
Entropy grammar (Goldwater and Johnson, 2003;
Hayes and Wilson, 2008). These descriptions pro-
pose that the weight of a process-enforcing con-
straint is scaled down proportionally to the distance
between trigger and target (Kimper, 2011; Zymet,
2015). Distant trigger-target pairs incur smaller
penalties than more local pairs, and as a result, the
process applies at a lower probability in the dis-
tant pair than in the more local pair (Kimper, 2011;
Zymet, 2015). Focusing on Malagasy and Hungar-
ian, we will show how distance-based decay can
equally be captured through minor modifications

1The final strings associated to states are treated as transi-
tions for the purposes of this optimization, effectively acting
as a transitions that lead to a dedicated “stopping” state with
no associated string of its own.
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[�, �]
n:�

[�, C]
n:�

[l, l]
n:�

[r, r]
n:�

[r, C]
n:�

[l, C]
n:�

V:V

C:C

l:l

r:r

V:V
C:C

l:l

r:r

V:V
l:l

C:C

r:r

V:V
C:C

l:l

r:r

V:V
r:r

C:C

l:r

V:V
C:Cr:r

l:r

l:l

Figure 4: A quasi-OMTSL2 transducer that computes Bukusu liquid harmony

to a TSL or MTSL transducer.

4.1 Malagasy

Malagasy has a process of vowel rounding dissimi-
lation whereby the passive imperfective suffix /-u/
becomes [-i] when preceded by an [u], as can be
seen in /babu-u/ ! [babu-i] ‘plunder-PASS.IMP’.
Front vowels are opaque to the process as can be
seen with /turi-u/ ! [turi-u] ‘preach-PASS.IMP’
and /ure-u/ ! [ure-u] ‘massage-PASS.IMP’. In
contrast, the vowel /a/ is transparent to dissimila-
tion, as can be seen with /gurabah-u/ ! [gurabah-i]
‘splutter-PASS.IMP’. If we ignore its dashed tran-
sition (discussed further below), the OTSL2 trans-
ducer in Figure 5 captures a mandatory version of
the Malagasy pattern just described. Dissimilation
specifically affects the passive imperative suffix
rather than /u/ in general (Zymet, 2020), so for con-
venience we assume that this transducer only ever
reads verb stems and adds the appropriate suffix
allomorph upon reaching the end of the base.

Malagasy dissimilation is not categorical, how-
ever, and exhibits distance-based decay. According
to Zymet’s (2015) survey of de la Beaujardière’s
(2004) online Malagasy dictionary, the probability
of dissimilation is 0.99 (989/993) when the trigger
and target are in adjacent syllables, 0.51 (201/397)

[�]
n:u

[i], [e]
n:u

[u]
n:i

C:C

u:u

i:i
e:e

a:a

C:C

u:u

i:i
e:e

a:a

a:a

a:a

u:u

i:i
e:e

C:C

Figure 5: A quasi-OTSL2 transducer that produces
Malagasy dissimilation

when they are separated by one transparent sylla-
ble, 0.13 (4/32) when they are separated by two
transparent syllables, and 0 (0/4) when they are
separated by three transparent syllables. Due to the
language’s mostly open-syllable nature, the num-
ber of transparent syllables corresponds with how
many transparent vowels fall between the trigger
and target, and the probability of dissimilation is
roughly 1/2x, where x represents the number of
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intervening transparent vowels. This opens an in-
teresting route to deriving the distance-based decay
using the structure of the transducer in Figure 5:
whenever the transducer reads /a/ and produces [a]
while in the [u] state, it has a roughly 50% chance
to “forget” that it previously produced an instance
of [u]. In this case, the transducer will follow the
dashed transition which returns to the [�] state in-
stead of looping back to the [u] state, and will con-
sequently fail to dissimilate the passive imperative
suffix. As more transparent vowels are encountered
while in the [u] state, the machine is exponentially
less likely to remember that it encountered a dissim-
ilation trigger, giving us the negative exponential
curve in the probability of dissimilation. A cog-
nitive interpretation of forgetful transitions would
be that the memory of the most recent tier element
decays over time.

Two related questions arise when modelling
distance-based decay by augmenting a TSL trans-
ducer with forgetfulness parameters. First, how
do we decide which forgetful transitions should
be added to the TSL transducer? Any transition
that fails to produce an element from the tier can
presumably be given a forgetful version, but includ-
ing too many or too few of these could negatively
impact the accuracy of our model. Second, given a
fixed set of forgetful transitions, how do we deter-
mine their optimal weights? We answer the latter
question first, since its solution will be considered
when approaching the former question.

Recall from Section 3 that to optimize the
weights of a deterministic acceptor, it is sufficient
to read through the provided sample once and count
the number of times that each transition is followed.
Unfortunately, even after reinterpreting a forgetful
quasi-TSL transducer as an acceptor, it is still non-
deterministic. Given an input-output pair we can
generally tell whether forgetting did or did not oc-
cur, but we cannot tell exactly where the forgetting
took place when there is a sequence of more than
one transparent element. Because we cannot al-
ways know the exact path that an input-output pair
followed through the machine, we cannot accu-
rately count the number of times each transition
get traversed when the sample is read. It is, how-
ever, possible to estimate these counts given the
machine’s current transition weights using what are
called forward and backward probabilities. Con-
sider the element x in the string w = u · x · v.
For a transition labeled x leaving state q and land-

ing in state q
0 we can calculate the probability that

we are in state q after having read u (the forward
probability) and the probability that we produce v

when starting in state q
0 (the backward probabil-

ity).2 Multiplying the current weight of a given
transition by its forward and backward probability
and then dividing by the probability of the whole
string gives us the probability that we actually tra-
versed the transition on that reading step (de la
Higuera, 2010, pp. 362-363).

By using estimated traversal probabilities as our
traversal counts, we can calibrate the weights of a
non-deterministic acceptor using the same division
operations as for a deterministic acceptor. If we
cycle through the estimation and calibration pro-
cesses just described, the parameter weights will
get adjusted by smaller and smaller amounts until
they converge. This is known as the Baum-Welch
algorithm,3 originally developed by Baum et al.
(1970) and Baum (1972). It is a type of maximum
likelihood estimation (MLE) that, metaphorically,
climbs the “hill” of sample probabilities by adjust-
ing the available parameter values, and stops when
it reaches a peak and cannot increase the sample
probability any further.

The algorithm is guaranteed to converge on such
an optimum, but non-deterministic machines can
have multiple optima in addition to the global op-
timum, and the algorithm may get trapped in one
of these (Vidal et al., 2005b; de la Higuera, 2010).
Returning to the hill metaphor, there can be mul-
tiple peaks of varying heights and we want the
algorithm to find the highest one, but it cannot tell
whether the peak it reaches is actually the highest,
it simply stops once it finds any peak. The only
guaranteed way around this is to try several times
with different starting values, and then pick the re-
sult that gives the best probability, in the hope that
the chosen iteration found the global optimum (de
la Higuera, 2010, p. 323). Luckily, this was not
a serious issue during the tests described further
below. Whenever a transducer needed optimizing,
the optimization process was run several times with
random initializations of the transducer’s transition
weights, and each machine always achieved the
same approximate log-likelihood no matter its ini-
tialization, suggesting that (at least in these cases)
there were no local optima in which the optimizer

2Chapter 5 of de la Higuera (2010) shows how to efficiently
calculate forward and backward probabilities.

3See chapter 17 of de la Higuera (2010) for a more thor-
ough presentation.
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could get trapped. The results reported for each
machine below are relative to the optimization that
achieved the best log-likelihood.

Moving on to the question of which forgetful
transitions to include, we could take the stance that
we want only the forgetful transitions that signifi-
cantly affect model performance. So long as the set
of forgetful transitions in one optimized transducer
are a strict superset of the forgetful transitions in
another optimized transducer, it is in theory pos-
sible to perform a log-likelihood ratio test to as-
sess whether the additional transitions significantly
improve model performance. Given a calibrated
transducer, we calculate its log-likelihood by run-
ning the training sample through it. For each input-
output pair (x, y) we calculate the probability that
the machine produces y given x, which is equal to
the sum of the probability of all paths through the
machine that produce y given x. This might seem
difficult to do efficiently since the number of possi-
ble paths through a non-deterministic transducer is
in the worst-case exponentially proportional to the
length of the input string, but we can bypass this
issue by calculating forward probabilities (which
takes just one pass through the string) and summing
over those instead (de la Higuera, 2010, pp. 90-92).
If we then take the log of each pair’s probability,
adding them up gives us the model’s log-likelihood.
One way to find the best set of forgetful transi-
tions, then, would be to take a forwards selection
approach. Starting with no forgetful parameters,
we iteratively add the one that would contribute
the most until we cannot significantly improve our
model any more.

To test the effectiveness of the FST decay model,
we created custom Python code that implements
the Baum-Welch algorithm and log-likelihood cal-
culation procedures described above, then ran it
against the Malagasy data from Zymet (2015). Cal-
ibrating the base model affects only the proba-
bility that dissimilation occurs while in the [u]
state, and the optimal value of 83.73% gives a
log-likelihood of �633.30. Most additional for-
getful transitions significantly improved model fit
on their own,4 but ‘a’ had by far the strongest con-
tribution, increasing log-likelihood all the way to
�315.34 (�2

1 = 635.93, p = 2.57⇥ 10�140). The

4Only ‘v’ (�2
1 = 3.58, p = 0.06), ‘t’ (�2

1 = 2.66, p =
0.1), ‘f’ (�2

1 = 0.49, p = 0.48) and ‘h’ (�2
1 = 0, p = 1) did

not. The last case is particularly interesting in that the optimal
weight for a lone forgetful ‘h’ transition was 0, equivalent to
the absence of such a transition.

next highest contribution came from ‘l’, which in-
creased log-likelihood to �609.67 (�2

1 = 47.27,
p = 6.2 ⇥ 10�12). A second round of tests using
the ‘a’ model only found two additional forgetful
transitions to be significant: these were ‘dZ’ (�2

1 =
3.85, p = 0.050) and ‘z’ (�2

1 = 3.93, p = 0.048).
This might seem odd considering how most were
highly significant on the first round of tests. Look-
ing at the largely CV syllable structure of Malagasy,
though, the presence of an intervening ‘a’ heavily
implies the presence of an intervening consonant.
Significant contributions from the lone consonan-
tal parameters may thus have been indirect inheri-
tances from instances of ‘a’. Because forgetful ‘dZ’
and ‘z’ transitions are just barely significant given
a threshold of p < 0.05, we opted not to include
either and stop further testing, leaving us with just
a forgetful ‘a’ transition. One reason that ‘a’ may
have near-exclusive entitlement to a forgetful tran-
sition is its high similarity to the tier elements, all
of which are vowels. Encountering a non-tier ele-
ment that is highly similar to elements on the tier
would intuitively interfere with the maintenance
of a tier suffix in long-term memory, although we
leave the confirmation of this hypothesis for future
research.

[�]
n:u

[i], [e]
n:u

[u]
n:i 0.996
n:u 0.004

C:C

u:u

i:i
e:e

a:a

C:C

u:u

i:i, e:e

a:a 0.495

a:a 0.505

a:a

u:u

i:i
e:e

C:C

Figure 6: An optimized quasi-OTSL2 transducer for
Malagasy

The optimized Malagasy transducer is shown in
Figure 6; all transitions without a displayed weight
have a weight of 1. Earlier we mentioned that, as
reported by (Zymet, 2015), the probability of dis-
similation is 0.996(989/993) when the trigger and
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target are in adjacent syllables, 0.506(201/397)
when they are separated by one transparent syllable,
0.125(4/32) when they are separated by two trans-
parent syllables, and 0.00(0/4) when they are sep-
arated by three transparent syllables. A single for-
getful transition for [a] pretty faithfully reproduces
the probability of adjacent dissimilation (0.996)
and dissimilation across one transparent syllable
(0.996 ⇤ 0.495 = 0.493), but modestly overesti-
mates the probability of dissimilation across two
intervening syllables (0.996 ⇤ 0.4952 = 0.244)
and three intervening syllables (0.996 ⇤ 0.4953 =
0.121). Zymet’s (2015) constraint-based model
more closely reproduces the latter two probabil-
ities, but this may be an instance of overfitting,
considering how few forms in the corpus contain
2+ intervening syllables. In any case, the model
with a forgetful [a] transition drastically outper-
forms the base model, which predicts dissimilation
with a probability of 0.837 at any distance.

4.2 Hungarian
Including forgetfulness parameters into a single-
tiered transducer is sufficient for the Malagasy case,
but not all cases of distance-based decay are so easy.
Take for instance the backness vowel harmony in
Hungarian, to which [i], [e], and [E] are transparent
(Hayes and Londe, 2006; Hayes et al., 2009; Kim-
per, 2011; Ozburn, 2019). While it is generally true
that a higher number of transparent vowels between
trigger and target will exponentially diminish the
probability of harmony, there is an important excep-
tion: harmony remains nearly obligatory across a
single transparent vowel (Hayes and Londe, 2006;
Hayes et al., 2009; Kimper, 2011; Ozburn, 2019).
For example, the [O] in [pOpi:r] ‘paper’ always trig-
gers the back variant of the dative suffix ([pOpi:r-
nOk] ‘paper-DAT’) since it is followed by only one
transparent vowel, but the [O] in [Ospirin] ‘aspirin’
only optionally triggers the back variant since it is
followed by two transparent vowels ([Ospirin-nOk]
⇠ [Ospirin-nEk] ‘aspirin-DAT’).

This is impossible to model using a single-tiered
transducer, even with forgetful transitions. To see
why, consider the transducer fragment in Figure
7, which determines the appropriate allomorph of
the dative suffix /-nEk/ for bases containing only
high vowels.5 The underspecified suffix vowel /E/
must harmonize while in either the /u/ or /y/ state,

5We are assuming here for simplicity that harmony only
affects underspecified suffix vowels, and that all base-internal
vowels are fully specified in underlying forms.

and defaults to front while in the [�] state. The
vowel /i/ is transparent to harmony and so each
of these states has a looping transition labelled
‘i:i’. We could try modelling the distance-based
decay using the forgetful transitions marked with
dashed lines, but these do not distinguish between
having one transparent vowel and having two or
more transparent vowels between trigger and target.
We want forgetfulness to begin applying only in
the latter case, but there is no way to set such a
threshold on the required number of transparent
segments in a single-tiered transducer. In such a
transducer, a transparent segment either always or
never has the opportunity to cause forgetfulness.

/�/
n:nEk

/y/
n:nEk

/u/
n:nOk

y:y

u:u

i:i

C:C

y:y

u:u

i:i
C:C

i:i
y:y

u:ui:i
C:C

i:i

Figure 7: A quasi-ITSL2 transducer fragment that en-
forces Hungarian suffixal harmony

Interestingly, the desired 2+ threshold can be
modelled using a multi-tiered transducer as the
base. Suppose we have one tier V that tracks
all vowels (i.e., including the transparent [i], [e],
and [E]), and another tier H that tracks only the
harmony-triggering vowels (i.e., excluding the
transparent [i], [e], and [E]). This allows us to dis-
tinguish cases where the most recently produced
vowel is a harmony trigger (i.e., the suffixes on V

and H coincide) and cases where the most recently
produced vowel is transparent but is itself preceded
by a harmony trigger (i.e., the suffixes on V and H

do not coincide). These two cases constitute two
different states in the corresponding multi-tiered
transducer, and by ensuring that forgetful transi-
tions only originate from states where the two tier
suffixes do not coincide, harmony will be obliga-
tory across a single transparent vowel, although any
additional transparent vowels will cause distance-
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based decay.

Consider now the transducer fragment in Table 1,
which again determines the appropriate allomorph
of the dative suffix /-nEk/ for bases containing only
high vowels. Drawing the transducer in a legible
manner is tricky, so we have opted to represent it as
a collection of tables where each row corresponds
to a transition. Rows are organized according to
their origin state, and a label /a, b/ corresponds to
having /a/ as the suffix on H (the tier of harmonic
vowels) and /b/ as the suffix on V (the tier of all
vowels). Notice how the /u,u/ and /u,i/ states both
enforce harmony, but only the latter has a forgetful
transition labelled ‘i:i’ (i.e. it has two rows for in-
put /i/ in the table). Being in the /u,u/ state means
that we have not read any transparent vowels after
reading the most recent harmony-triggering vowel,
while being in the /u,i/ state means that we have
read at least one transparent vowel after reading
the most recent harmony-triggering vowel. The
transition labelled ‘i:i’ leaving /u,u/ and landing in
/u,i/ does not have a forgetful counterpart, and so
harmony remains obligatory across this one trans-
parent vowel. The transition labelled ‘i:i’ leaving
/u,i/ and looping back to /u,i/ does, however, have
a forgetful counterpart. There is thus a chance that
reading a second transparent vowel (and third, and
fourth, etc.) will cause us to forget having read
/u/. Forgetting that we read /u/ will bring us to the
/�,i/ state, which corresponds to thinking that we
have not read a harmony trigger yet (or at the very
least, not remembering the identity of the most re-
cent harmony trigger). The decaying probability of
harmony then results from the fact that it is increas-
ingly unlikely to remain in the harmony-enforcing
/u,i/ state as we read more and more transparent
vowels.

Hayes and Londe (2006) and Hayes et al.
(2009) collected a corpus of Hungarian noun bases
(available at https://linguistics.ucla.edu/

people/hayes/HungarianVH/index.htm), mark-
ing the percentage of times each base appears with
the back versus front allomorph of the dative suffix
(determined using Google search results). To as-
certain whether and how much an MTSL model of
decay outperforms a TSL model, we optimized a
TSL-like transducer and an MTSL-like transducer
against this corpus using a modified Baum-Welch
algorithm. Unlike for the Malagasy tests above,
we are not trying to maximize the probability of
each datum in the sample, but trying to replicate

the indicated probability of each datum as closely
as possible. Each ‘base + allomorph’ combination
with greater than 0 probability was thus treated
as a separate datum, and the amount contributed
by a reading step in that datum to a transition’s
estimated traversal count was multiplied by the
datum’s probability. Essentially, this would treat
a training datum with an indicated probability of,
for example, 0.75 as being 75% of a datum (i.e.,
a datum that was observed 0.75 times). Conse-
quently, the optimization procedure is maximizing
a weighted version of model log-likelihood rather
than the regular log-likelihood. Where P (o | i)
is the probability of the input-output pair (i, o) as
indicated in the sample S, and where P̂ (o | i) is
the probability of the input-output pair (i, o) pre-
dicted by the model M , regular and weighted log-
likelihood can be expressed as in (3). There were
only ever up to two output possibilities o1 and o2

for a given input string i,6 and their observed prob-
abilities P (o1 | i) and P (o2 | i) always summed to
1, as did their predicted probabilities P̂ (o1 | i) and
P̂ (o2 | i). Maximizing the weighted log-likelihood
ensures that we are on average minimizing the dis-
tance between the points hP̂ (o1 | i), P̂ (o2 | i)i and
hP (o1 | i), P (o2 | i)i for the input strings in the
sample.

(3) Regular model log-likelihood:

L(M | S) =
X

(i,o)2S

log(P̂ (o | i))

Weighted model log-likelihood:

LW (M | S) =
X

(i,o)2S

log(P̂ (o | i))·P (o | i)

The TSL-like transducer had three states: /�/
when there was no known preceding harmonic
vowel, /F/ when the most recent harmonic vowel
was front, and /B/ when the most recent harmonic
vowel was back. It had forgetful transitions for /i:/,
/i/, /e/, and /E/ leading to the /�/ state out of the
/B/ state. The /F/ state had no forgetful transitions
since Hayes and Londe (2006) found that trans-
parent vowels never block front harmonic vowels
from imposing a front allomorph. The MTSL-like
transducer had the 7 states listed in (4). The states
/Bi:/, /Bi/, /Be/, and /BE/ were kept separate, rather
than having a single ‘back + transparent’ state since

6The one with the front allomorph of the dative suffix and
the one with the back allomorph of the dative suffix.
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Origin Input Output Landing Origin Input Output Landing
/�,�/ /C/ [C] /�,�/ /�,i/ /C/ [C] /�,i/
/�,�/ /i/ [i] /�,i/ /�,i/ /i/ [i] /�,i/
/�,�/ /y/ [y] /y,y/ /�,i/ /y/ [y] /y,y/
/�,�/ /u/ [u] /u,u/ /�,i/ /u/ [u] /u,u/
/�,�/ /n/ [nEk] NA /�,i/ /n/ [nEk] NA

Origin Input Output Landing Origin Input Output Landing
/y,y/ /C/ [C] /y,y/ /u,u/ /C/ [C] /u,u/
/y,y/ /i/ [i] /y,i/ /u,u/ /i/ [i] /u,i/
/y,y/ /y/ [y] /y,y/ /u,u/ /y/ [y] /y,y/
/y,y/ /u/ [u] /u,u/ /u,u/ /u/ [u] /u,u/
/y,y/ /n/ [nEk] NA /u,u/ /n/ [nOk] NA

Origin Input Output Landing Origin Input Output Landing
/y,i/ /C/ [C] /y,i/ /u,i/ /C/ [C] /u,i/
/y,i/ /i/ [i] /y,i/ /u,i/ /i/ [i] /u,i/
/y,i/ /i/ [i] /�,i/ /u,i/ /i/ [i] /�,i/
/y,i/ /y/ [y] /y,y/ /u,i/ /y/ [y] /y,y/
/y,i/ /u/ [u] /u,u/ /u,i/ /u/ [u] /u,u/
/y,i/ /n/ [nEk] NA /u,i/ /n/ [nOk] NA

Table 1: A quasi-IMTSL2 transducer fragment that enforces Hungarian suffixal harmony

Hayes and Londe (2006) found that the height of
the most recent transparent vowel has a significant
effect on the probability of a back allomorph. Each
of the states /Bi:/, /Bi/, /Be/, and /BE/ had forgetful
transitions for /i:/, /i/, /e/, and /E/ leading to the state
/N/.

(4) States in the MTSL-like Hungarian trans-
ducer
• /�/ = no preceding vowel OR the most

recent vowel is transparent with no
known preceding harmonic vowel

• /F/ = the most recent harmonic vowel is
front

• /BB/ = the most recent vowel is back
• /Bi:/ = the most recent harmonic vowel

is back but the most recent vowel is i:

• /Bi/ = the most recent harmonic vowel
is back but the most recent vowel is i

• /Be:/ = the most recent harmonic vowel
is back but the most recent vowel is e

• /BE/ = the most recent harmonic vowel
is back but the most recent vowel is E

Unfortunately, a log-likelihood ratio test cannot
compare the two models because their parameters
are not strictly nested; none of their forgetful transi-
tions originate from equivalent states. Accordingly,
their relative performance was assessed using their

Akaike Information Criterion (AIC). Lower AIC
values are preferred, and a model’s AIC is equal
to 2 times its number of free parameters minus 2
times its log-likelihood. The TSL-like model had a
weighted log-likelihood of �266.90 and had 7 free
parameters, so its AIC is 547.8. For its part, the
MTSL-like model had a weighted log-likelihood of
�249.73 and had 23 free parameters, so its AIC is
545.46. Going from the TSL model to the MTSL
model reduces AIC by 2.34, which is not substan-
tial, but nonetheless favours the MTSL model.

A reviewer points out that the closely related
Bayesian Information Criterion (BIC) will likely
heavily favor the TSL model as opposed to the
MTSL model, even though both criteria tend to
favour the same models in practice. The BIC more
harshly penalizes parameter count: it is obtained
by multiplying number of free parameters by the
natural logarithm of the sample size and then sub-
tracting 2 times the log-likelihood. There were
9427 input-output pairs in the training sample, so
the TSL model has a BIC of 597.86 and the MTSL
model has a BIC of 709.94; the reviewer thus cor-
rectly speculates that BIC vastly prefers the TSL
model over the MTSL one. We are unsure of how
to reconcile the discrepancy between the opposite
preferences of AIC and BIC in this case, but we
lean towards siding with the BIC’s preference since
it is much stronger. Nevertheless, it is worth ex-
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amining where the MTSL model’s higher accuracy
comes from, since it may be worthwhile in other
cases.

Visual inspection of the weights in the optimized
transducers suggests that the greater accuracy of
the MTSL model comes from the fact that it can
distinguish between spans of 1 versus 2+ transpar-
ent vowels, a distinction not possible in the TSL
model. For example, the MTSL model assigns a
probability of about 0.97⇤0.55 = 0.53 to the form
[Ospirin-nOk] ‘aspirin-DAT’ since the probability
of harmony while in the state /Bi/ (i.e., across a sin-
gle instance of /i/) is about 0.97 and the probability
of /i/ not causing forgetfulness out of the state /Bi/
is about 0.55. Compare this to the TSL transducer
which assigns the same form a probability of about
0.99 ⇤ 0.932 = 0.86 since the probability of har-
mony while in the state /B/ is about 0.99 and the
probability of /i/ not causing forgetfulness out of
the state /B/ is about 0.93. The actually observed
frequency of harmony for this noun is 0.21 and so
the MTSL transducer, while still a fair ways off, is
much closer than the TSL transducer.

Consistent with this interpretation of the mod-
els’ differing performance, Table 2 compares the
observed average probability of harmony against
the average probabilities predicted by the TSL and
MTSL models, broken down by the number of in-
tervening transparent syllables. Taking every noun
for which back a back allomorph is possible (i.e.,
whose rightmost harmonic vowel is back), we find
that adjacent harmony has an average probability
of 0.99 (5317 eligible nouns), harmony across a
single transparent vowel has an average probability
of 0.67 (370 eligible nouns), harmony across two
transparent vowels has an average probability of
0.18 (63 eligible nouns) and harmony across three
transparent vowels has an average probability of
0.00 (8 eligible nouns). In particular, we see that
the TSL model overestimates the probability of har-
mony across two transparent vowels, whereas the
MTSL model closely matches the observed proba-
bilities in all cases.

Interestingly, both the trained TSL model and the
trained MTSL model reproduce an additional as-
pect of Hungarian harmony whereby vowel height
gradiently affects the degree to which a front un-
rounded vowel is transparent. Specifically, lower
front unrounded vowels are “less transparent” than
higher front unrounded vowels (Hayes and Londe,
2006; Hayes et al., 2009; Kimper, 2011; Rebrus and

Transparent Observed TSL MTSL
syllables average average average

0 0.99 0.99 0.99
1 0.67 0.64 0.67
2 0.18 0.33 0.19
3 0.00 0.03 0.01

Table 2: Average probability of Hungarian harmony by
number of transparent syllables

Törkenczy, 2016; Ozburn, 2019). In the optimized
TSL model, the forgetfulness parameters out of
state /B/ for /i/, /i:/, /e:/, and /E/ are weighted 0.065,
0.11, 0.23, and 0.91 respectively, so lower vow-
els cause more forgetfulness than higher vowels.
In the optimized MTSL model, the probability of
appending the back allomorph upon ending in the
/Bi/, /Bi:/, /Be:/ and /BE/ states is respectively 0.97,
0.99, 0.80, and 0.11, so backness harmony is more
likely across a higher vowel than a lower vowel.
The same height effect is also somewhat appar-
ent in the MTSL model’s forgetfulness parameters:
the parameters for /i:/, /e:/, and /E/ have average
weights of 0.51, 0.78, and 0.91 respectively, mim-
icking the trend in the TSL model’s forgetfulness
parameters. The mimicking is not perfect, however,
as the average forgetful weight for the vowel /i/
is unexpectedly high at 0.8. This mismatch could
perhaps be because back vowels are only uncom-
monly followed by a chain of multiple front un-
rounded vowels, making the weights of the MTSL
model’s forgetfulness parameters a less reliable re-
flection of the height effect. Indeed, there were
cases where the forgetful and non-forgetful transi-
tions for the same vowel out of the same state both
had a weight of 0, meaning that neither transition
was ever crossed by the sample. These transitions
effectively do not exist and were not considered
when calculating the average weights.

5 Conclusion

In the existing computational work that models
long-distance phonological processes using tiers,
there is the tacit and convenient assumption that
the processes are an all or nothing affair, but long-
distance processes are often optional in reality. We
showed here that probabilistic tier-based transduc-
ers with a structure similar to that of their categor-
ical counterparts can capture gradient application
while maintaining the relative computational sim-
plicity afforded to us by tier-based strict locality.
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In particular, we demonstrated that distance-based
decay can be modeled by strategically adding du-
plicate non-tier transitions that make the transducer
forget the identity of the most recent tier-element,
in a sense causing the machine’s memory to deteri-
orate over time. Using established techniques for
optimizing the weights of probabilistic automata,
we found that these models performed well rela-
tive to two real-language data sets. The Malagasy
case study suggested that the presence and strength
of forgetful transitions might be tied to similarity.
For its part, he Hungarian case study showed that
an MTSL model can distinguish between spans
of 1 versus 2+ transparent elements, which may
be a useful ability for some patterns. Finally, it
should be said that all of the simulations presented
above assume that the necessary tiers are known
in advance, although phonological learning ideally
involves as little a priori knowledge as possible.
Methods exist for learning the tier of a TSL2 func-
tion efficiently from positive data (Burness and
McMullin, 2019), although it remains to be seen
whether they can be adapted to probabilistic cases.
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Jane Chandlee, Rémi Eyraud, and Jeffrey Heinz. 2015.
Output Strictly Local functions. In Proceedings of
the 14th Meeting on the Mathematics of Language
(MOL 2015), pages 112–125.

Jane Chandlee and Jeffrey Heinz. 2018. Strict Locality
and phonological maps. Linguistic Inquiry, 49:23–
60.

Jane Chandlee, Jeffrey Heinz, and Adam Jardine.
2018. Input strictly local opaque maps. Phonology,
35:171–205.

Andries Coetzee and Joe Pater. 2011. The place of vari-
ation in phonological theory. In John Goldsmith, Ja-
son Riggle, and Jason Yu, editors, The Handbook of
Phonological Theory, 2nd edition, pages 401–431.
Blackwell.
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Rachel Walker and Fidèle Mpiranya. 2006. On triggers
and opacity in coronal harmony. In Proceedings of
the 31stth Annual Meeting of the Berkeley Linguis-
tics Society, University of California, Berkeley.

Jesse Zymet. 2015. Distance-based decay in long-
distance phonological processes. In Proceedings
of the 32nd West Coast Conference on Formal Lin-
guistics, pages 72–81, Sommerville, MA. Cascadilla
Press.

Jesse Zymet. 2020. Malagasy ocp targets a single affix:
Implications for morphosyntactic generalization in
learning. Linguistic Inquiry, 51:624–634.

63


	Proceedings of the 17th Meeting on the Mathematics of Language
	ISBN
	Preface
	Programme Committee
	Table of Contents
	A Generative Process for Lambek Categorial Proof Nets
	German Verb Particle Constructions in CCG
	Strong Learning of some Probabilistic Multiple Context-Free Grammars
	More Efficiently Identifying the Tiers of Strictly 2-Local Tier-Based Functions
	Tier-Based Modeling of Gradience and Distance-Based Decay in Phonological Processes
	Embedding Intentional Semantic into Inquisitive Semantics


