
Benchmarking down-scaled (not so large) pre-trained language models

Matthias Aßenmacher♠ Patrick Schulze♣

Department of Statistics
Ludwig-Maximilians-Universität

Ludwigstr. 33, D-80539 Munich, Germany
♠{matthias,chris}@stat.uni-muenchen.de, ♣pa.schulze@campus.lmu.de

Christian Heumann♠

Abstract

Large Transformer-based language models are
pre-trained on corpora of varying sizes, for
a different number of steps and with differ-
ent batch sizes. At the same time fundamen-
tal components, such as the pre-training ob-
jective or architectural hyperparameters, are
modified. In total, it is therefore difficult
to ascribe changes in performance to specific
factors. Since searching the hyperparame-
ter space over the full systems is too costly,
we pre-train down-scaled versions of several
popular Transformer-based architectures on a
common pre-training corpus and benchmark
them on a subset of the GLUE tasks (Wang
et al., 2018). Specifically, we systemati-
cally compare three pre-training objectives for
different shape parameters and model sizes,
while also varying the number of pre-training
steps and the batch size. In our experiments
MLM + NSP (BERT-style) consistently out-
performs MLM (RoBERTa-style) as well as
the standard LM objective. Furthermore, we
find that additional compute should be mainly
allocated to an increased model size, while
training for more steps is inefficient. Based
on these observations, as a final step we at-
tempt to scale up several systems using com-
pound scaling (Tan and Le, 2019) adapted to
Transformer-based language models.

1 Introduction

The introduction of the Transformer (Vaswani et al.,
2017) together with the application of transfer
learning (Thrun and Pratt, 1998) has led to major
advances in Natural Language Processing (NLP).
While many different lines of research exist, most
attention is generally paid to the largest systems
which often reach new state-of-the-art (SOTA) re-
sults. The current trend is to scale up such systems
to ever new orders of magnitude: 213M parame-
ters in the Transformer, 300M parameters in BERT

(Devlin et al., 2019), 1.5B parameters in GPT-2
(Radford et al., 2019) and 175B in GPT-3 (Brown
et al., 2020). Since these models are pre-trained on
corpora of widely varying sizes, for a different num-
ber of training steps and with different batch sizes,
comparability suffers (Aßenmacher and Heumann,
2020). At the same time, new systems often apply
fundamentally different methods, such as using a
different pre-training objective or modified archi-
tectural hyperparameters. While altering multiple
components simultaneously can help achieve new
SOTA results, which is an important endeavor, it
is difficult to disentangle the effects of the various
factors. Though there exist various ablation stud-
ies, these often show only a small excerpt from
the broad spectrum of experimental opportunities
and can thus not provide a comprehensive picture.
In this work, we conduct a systematic study of
three Transformer-based architectures with respect
to several pre-training hyperparameters.

2 Related work

One line of research empirically derives generaliza-
tion results for large neural NLP systems. Rosen-
feld et al. (2019) study how the generalization error
of language models (LMs) depends on model and
data set size. Regarding model size, they provide
an approximation of the test loss, assuming that a
LM is scaled with respect to a pre-defined scheme,
such as increasing solely the embedding dimension.
A related but more comprehensive study was con-
ducted by Kaplan et al. (2020), examining power
laws of the test loss when scaling large neural LMs
with respect to a broad variety of different dimen-
sions. These dimensions include architectural hy-
perparameters, model size, data set size, number of
training steps and batch size. A central question in
their work is how these factors can be combined to
attain an optimal performance given a fixed amount
of compute.



Compute efficient training is also investigated
by Li et al. (2020), recognizing that an optimal
allocation of computational resources is crucial
for improving model performance. Considering
Masked Language Modeling (MLM) pre-training,
Li et al. (2020) examine the optimal choice of num-
ber of training steps and batch size in the relation
to the model size. In a large-scale study, Raffel
et al. (2019) cover an even broader variety of mod-
eling scenarios than Kaplan et al. (2020), but train a
much smaller number of systems per scenario. For
instance, they include several variants of the Trans-
former, different pre-training objectives and vari-
ous fine-tuning strategies in their analysis. Finally,
based on their observations, Raffel et al. (2019)
also scale-up a system to 11B parameters.

3 Materials and Methods

Pre-training data We pre-train all models on
WikiText-1031 (Merity et al., 2016), a large-scale
text corpus for training and evaluating language
models on long-range contexts, which has served
as an evaluation data set (Radford et al., 2019; Dai
et al., 2019; Shoeybi et al., 2019) as well as for
pre-training (Howard and Ruder, 2018). We pre-
train all models on the training set of WikiText-103,
which allows for learning long-range dependencies
(Rae et al., 2019). The validation set is employed to
compare different architectures by their validation
loss during pre-training. WikiText-103 is much
smaller than most pre-training corpora of modern
language models. For instance, Devlin et al. (2019)
trained BERT on a 3, 300M words corpus, which is
approximately 32x the size of WikiText-103. Aside
from this, pre-training data sets of different models
often vary considerably in size, which makes fair
comparisons difficult (Aßenmacher and Heumann,
2020). Pre-training on the same corpus allows us
to exclude the amount and quality of pre-training
data as confounding factors when evaluating the
different model components.

Models We compare three different model types:
BERT (Devlin et al., 2019), RoBERTa (Liu et al.,
2019) and GPT-2 (Radford et al., 2019). BERT is a
bidirectional Transformer encoder which is trained
with both MLM as well as Next Sentence Predic-
tion (NSP). Its direct successor RoBERTa relies on
the exact same architecture and differs from BERT
solely in the pre-training procedure. Amongst other

1www.salesforce.com/products/einstein/ai-research/the-
wikitext-dependency-language-modeling-dataset/

changes, Liu et al. (2019) abandoned the NSP ob-
jective and introduced a dynamic masking2 proce-
dure for the MLM objective3. GPT-2 is a Trans-
former decoder, and thus a unidirectional model,
trained with the standard LM objective.

Since we train a multitude of down-scaled ver-
sions for each model type, thus modifying the
specifications of the original models, we intro-
duce the following conventions: We label models
trained with MLM & NSP as BERT-style, models
trained with MLM as RoBERTa-style, and mod-
els trained with LM as GPT-2-style. Alongside
with the pre-training objectives, we also use the
respective tokenizers of the different models. This
means using byte-level BPE (Radford et al., 2019)
for RoBERTa- and GPT-2-style and the WordPiece
algorithm (Schuster and Nakajima, 2012) for BERT-
style models, all of them exhibiting a uniform vo-
cabulary size of 30,000 tokens

Fine-tuning data We fine-tune and evaluate our
systems on GLUE (Wang et al., 2018). We mainly
compare performances on MNLI (Williams et al.,
2017), QQP (Shankar et al., 2017) and QNLI
(Wang et al., 2018), which are the three largest
GLUE tasks, since the results on these tasks are
the most reliable. In particular, we therefore cal-
culate the average score over the validation set
performances of the three tasks, which we denote
by GLUE-Large. For MNLI, we consider only
the matched validation set when calculating this
score. Whenever meaningful results for the two
next largest data sets SST-2 (Socher et al., 2013)
and CoLa (Warstadt et al., 2019) were achieved4,
those will also be reported.

Training details Hyperparameters and the pre-
training/fine-tuning procedure are largely adopted
from the original models (cf. Appendix A and B).

4 Experiments

4.1 Comparison of different Shapes5

In computer vision it has been observed that the per-
formance of a neural network strongly depends on
the choice of architectural hyperparameters, such

2We also use dynamic masking throughout this study.
3There were further alterations, none of which are crucial

for our experiments since we are using fixed pre-training data
sets, batch sizes, learning rates, etc. for better comparability.

4For the smaller model sizes the performance on these
smaller data sets did not significantly differ from zero.

5There exist several other choices, but examining the entire
spectrum of possible shapes is out of the scope of this study.

https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/
https://www.salesforce.com/products/einstein/ai-research/the-wikitext-dependency-language-modeling-dataset/


as width or depth (Tan and Le, 2019). In contrast,
Kaplan et al. (2020) observed a similar LM test loss
over a wide range of shape parameters. Similarly,
for MLMs, Li et al. (2020) found that the valida-
tion loss does not depend strongly on the model
shape. This holds true also for the MNLI validation
accuracy of fine-tuned systems.

In this study, we examine the impact of
three different architectural hyperparameters in
Transformer-based models: depth, width and the
number of attention heads. Depth is given by
the number of layers L. Stacking many layers in
Transformer-based systems can be somewhat inef-
ficient and does not always lead to a considerable
increase in performance (Lan et al., 2019). Width
corresponds to the embedding dimension H . In-
creasing H has in general produced slightly better
results than increasing L in Transformer-based sys-
tems (Lan et al., 2019; Raffel et al., 2019; Li et al.,
2020). Attention Heads are used to discriminate
between different regions of the embedding space.
In most applications of the Transformer, the num-
ber of attention heads A is set in fixed relation to
H , such as H = 64×A. Decreasing performance
has been reported for larger ratios (Vaswani et al.,
2017; Brown et al., 2020).

4.2 Model Size, Training Steps and Batch size
Several recent studies have investigated the prob-
lem of compute efficient training of Transformer-
based systems (Raffel et al., 2019; Li et al., 2020;
Kaplan et al., 2020). The consensus among these
studies is that, under a restricted budget, optimal
performance is achieved by training very large mod-
els and stopping training well before convergence.
Furthermore, additional compute should rather be
used to increase the batch size instead of training
for more steps. To examine convergence character-
istics, we monitor the pre-training validation loss of
several systems and test how this loss corresponds
to different model sizes and shapes. Additionally,
we conduct experiments regarding the effect of the
batch size and the number of training steps. In par-
ticular, we evaluate how the training time and the
model performance depend on both factors.

4.3 Definition of the Model Size
We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
Since the share of embedding parameters decreases
for larger models, similarly to Kaplan et al. (2020)

we expect that discarding the number of embed-
ding parameters allows for better generalization
of our results to large models. Another advantage
of defining the model size as the number of non-
embedding parameters is that it is closely linked
to the number of (non-embedding related) floating
point operations (FLOPs) per input token (Kaplan
et al., 2020). This enables us to design bench-
marking scenarios by training different models of
comparable size, which at the same time require
roughly similar amounts of computation.

Omitting biases and other sub-leading terms, the
number of non-embedding parameters is given by

Nmodel = 12LH2, (1)

assuming that queries, keys and values are all trans-
formed to dimension H

A and the feed-forward di-
mension is 4H . For a more in-depth explanation,
please see Appendix E.

5 Results6

We start by evaluating how varying single shape di-
mensions affects the performance on GLUE-Large
for the three different pre-training objectives (cf.
Sec. 5.1). This aims at investigating whether
the performance gain diminishes after a certain
level, comparing how the performance changes
when scaling different dimensions, and examining
whether models with different pre-training objec-
tives respond differently to single-dimension scal-
ing. Subsequently in Section 5.2, we change multi-
ple shape dimensions simultaneously to investigate
whether the different dimensions depend on each
other. In Sections 5.3 and 5.4 we study how to train
efficiently by varying the model size, the number
of training steps and the batch size. In Section 5.5
we put together our observations from the previous
sections and scale networks to different sizes.

5.1 Scaling Single Shape Dimensions
In this section, we separately scale L and H , while
holding all other dimensions constant. As shown
in Figure 1, BERT-style systems perform signifi-
cantly better than GPT-2-style and RoBERTa-style
systems on GLUE-Large, contrary to the results
of Liu et al. (2019) and in line with the original
findings of Devlin et al. (2019).

Observation 1 The pre-training objective has a
large impact on the performance of a fine-tuned

6Source code: https://github.com/PMSchulze/NLP-
benchmarking

https://github.com/PMSchulze/NLP-benchmarking
https://github.com/PMSchulze/NLP-benchmarking


●

●

●

● ●

H=128

H=192

H=288

H=384 H=544

H=128H=192

H=288

H=384

H=544

H=128

H=192

H=288
H=384 H=544

A=2, L=2

58

60

62

64

66

68

70

72

74

76

78

80

0 1 2 3 4 5 6 7
Non−Embedding Parameters (Millions)

G
LU

E
−

La
rg

e
System

●

BERT−style

RoBERTa−style

GPT−2−style

●

●
● ●

●

L=2

L=5

L=10

L=18

L=36

L=2

L=5

L=10 L=18

L=36

L=2
L=5 L=10 L=18 L=36

A=2, H=128

58

60

62

64

66

68

70

72

74

76

78

80

0 1 2 3 4 5 6 7
Non−Embedding Parameters (Millions)

G
LU

E
−

La
rg

e

System

●

BERT−style

RoBERTa−style

GPT−2−style

Figure 1: Average score on GLUE-Large, when varying H (left) vs. when varying L (right). For detailed perfor-
mance values on the single tasks, see Table 5 and Table 6 in Appendix C.

system. Pre-training with the combination of MLM
& NSP achieves the best results on sentence-pair
tasks7, while pre-training with the unidirectional
LM objective shows in general the worst perfor-
mance.

Furthermore, for BERT-style systems the average
performance is a relatively smooth function of the
model size. Scaling up H results in an increas-
ing performance, which saturates at approximately
72%, while for L we cannot clearly see this satu-
ration (even not at 75%). For RoBERTa-style sys-
tems, the difference between scaling L and H indi-
vidually is much larger. Furthermore, a saturation
(as for BERT-style systems) can not be observed.8

For GPT-2-style systems, the average score slightly
increases when scaling the embedding size, but in-
terestingly, stacking more layers shows no positive
effect at all. This suggests that GPT-2-style sys-
tems require more pre-training data compared to
BERT-style and RoBERTa-style systems.

Observation 2 In most cases, the performance of
a fine-tuned system increases up to a certain level
when scaling either width or depth, but the progres-
sion depends strongly on the pre-training objective.

5.2 Scaling Multiple Shape Dimensions

We next examine whether the performance can be
improved by scaling multiple dimensions at the
same time. First, we increase both H and L and

7Note that this does not necessarily generalize to other
languages or other types of tasks.

8Note that the relatively low average score for the 18-layer
RoBERTa-style system, shown in the right plot of Figure 1, is
due to a weak performance on the QNLI task.

compare the performance with the results from
Section 5.1. Fig. 2 shows that for RoBERTa-style
and BERT-style systems, scaling both dimensions
significantly improves the performance on GLUE-
Large.

Observation 3 Scaling multiple shape dimensions
can lead to a better performance than scaling sin-
gle dimensions.

Therefore, we conclude that the shape dimensions
are not independent of each other. For GPT-2-
style systems, however, we do not observe a perfor-
mance increase, as shown in Table 1.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 77.1
2 256 9 7,077,888 78.6
8 544 2 7,102,464 78.4

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 63.6
2 256 9 7,077,888 63.8
8 544 2 7,102,464 66.0

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large

2 204 7 3,495,744 72.9
2 256 9 7,077,888 75.0
8 544 2 7,102,464 70.9

Table 1: Performance on GLUE-Large when increasing
multiple shape dimensions at the same time.

So far, we did not increase A when scaling H
and observed that, without using more attention
heads, wide systems perform worse than deep sys-
tems (cf. Fig. 1). To evaluate whether a larger num-



●

● ●

(L,H)=(7,204)

(L,H)=(9,256)

(L,H)=(18,128)

(L,H)=(36,128)

(L,H)=(2,128)

(L,H)=(2,384) (L,H)=(2,544)

BERT−Style, A=2

58

60

62

64

66

68

70

72

74

76

78

80

0 1 2 3 4 5 6 7
Non−Embedding Parameters (Millions)

G
LU

E
−

La
rg

e
Scaling Method

●

L & H

L

H

●

●

●

(L,H)=(7,204)

(L,H)=(9,256)

(L,H)=(18,128)

(L,H)=(36,128)

(L,H)=(2,128)

(L,H)=(2,384)

(L,H)=(2,544)

RoBERTa−Style, A=2

58

60

62

64

66

68

70

72

74

76

78

80

0 1 2 3 4 5 6 7
Non−Embedding Parameters (Millions)

G
LU

E
−

La
rg

e

Scaling Method

●

L & H

L

H

Figure 2: Performance on GLUE-Large when increasing multiple shape dimensions.

ber of attention heads can boost the performance of
wide systems, we re-implement our widest systems
with A = 8 attention heads, which corresponds to
H
A = 68. We observe that the score of the widest
system on GLUE-Large improved substantially by
doing so (cf. Fig. 1 and Tab. 1). In particular, when
using A = 8 instead of A = 2, the wide BERT-
style system (A = 8, H = 544, L = 2) performs
even better than the deep BERT-style system of
comparable size (A = 2, H = 128, L = 36). Fur-
thermore, as also shown in Table 1, the wide BERT-
style system (with increased A) performs close to
the balanced one (A = 2, H = 256, L = 9).

Observation 4 The fine-tuning performance can
be similar over a wide range of shapes. For BERT-
style systems, wide systems perform slightly better
than deep systems, if the number of attention heads
is adapted to the embedding dimension.

In contrast to BERT-style systems, deep RoBERTa-
style systems still perform better than wide sys-
tems, even when increasing the number of atten-
tions heads. For GPT-2-style systems, adding more
attention heads hardly increases the performance.

5.3 Monitoring the Validation Loss

In the previous sections, different models were
made comparable by their number of non-
embedding parameters. As stated in section 4.3,
this number is related to the computational cost
when evaluated as the number of FLOPs per to-
ken. Reporting the computational cost in FLOPs
neglects, however, that some operations can be run
in parallel, while others cannot. In order to assess
the speed of convergence, following Li et al. (2020),

we therefore directly report the wall-clock time in
seconds.

Figure 3 shows the validation loss for BERT-
style systems of different shape, when pre-trained
on the short sequences.9. The left plot depicts sev-
eral pre-training loss curves corresponding to the
single-dimension scaling experiments from Section
5.1. Interestingly, when comparing the validation
loss with the GLUE-Large results (cf. Fig. 1), we
find that, although increasing H (while holding
A fixed) results in a lower validation loss than in-
creasing L, the GLUE-Large score shows a higher
increase in the latter case.

Observation 5 The pre-training validation loss is
not necessarily a good indicator for the perfor-
mance of a fine-tuned system.

Dependent on the downstream task some archi-
tectures presumably favor fine-tuning more than
others, which can offset a relatively worse initial-
ization point. This finding suggests that, although
Kaplan et al. (2020) observe similar test losses for
different shapes, benchmarking the corresponding
fine-tuned versions may present a different picture.

In the left plot of Figure 3 we furthermore ob-
serve that shape has a significant effect on the pre-
training time. In particular, stacking many layers
requires much longer pre-training. It is also evident
that increasing the size does not lead to a propor-
tionate increase in the pre-training time. This holds
true especially when scaling multiple dimensions,
as depicted in the right plot of Figure 3. When dou-
bling the number of pre-training parameters, the

9We do pre-training on short and long sequences. For a
detailed description, see Appendix A and Appendix F.



2.0M Parameters

3.5M Parameters

7.1M Parameters

2.0M Parameters

3.5M Parameters

7.1M Parameters

3

4

5

6

7

0 5000 10000 15000 20000 25000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=2, H=288, L=2

A=2, H=384, L=2

A=2, H=544, L=2

A=2, H=128, L=10

A=2, H=128, L=18

A=2, H=128, L=36

3.5M Parameters

7.1M Parameters

3

4

5

6

7

0 5000 10000 15000 20000 25000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=2, H=204, L=7

A=2, H=256, L=9

Figure 3: Loss curves of BERT-Style systems of different shape. All loss curves are associated with the first stage
of pre-training, where we train on short sequences with a of 128 tokens (For the loss curves for the subsequent
training on the long sequences, see Appendix D). The depicted parameter counts refer to the model size Nmodel.

training time only increases from approximately
11, 800 seconds to approximately 14, 400 seconds.
In particular, the loss of the larger system is smaller
at any measured point in time.

Observation 6 Given a fixed time budget, training
large systems for a relatively small number of steps
is more efficient than training small systems for a
large number of steps.

The 9-layer system in the right plot of Figure 3
achieves a notably lower validation loss than the
7-layer system after 10, 000 seconds, which corre-
sponds to approximately 65, 800 and 79, 800 steps,
respectively. Li et al. (2020) made a similar obser-
vation by showing that larger Transformer-based
systems generally reach a lower pre-training valida-
tion perplexity in shorter time. A point of concern
might be that larger systems overfit more easily dur-
ing fine-tuning. However, Li et al. (2020) showed
that, when stopping models of different size at the
same pre-training validation perplexity, large sys-
tems generally achieve comparable downstream
task performances to small systems, which contra-
dicts the overfitting argument.

5.4 Number of Training Steps and Batch Size

The amount of processed data can be increased by
increasing either the number of trainig steps or the
batch size. In Table 2 we compare how halving the
number of steps vs. halving the batch size impacts
model performance. As baseline we use our best
performing system thus far (A = 2, H = 256, L =
9), pre-trained RoBERTa- and BERT-style.

In both cases we find that reducing the number
of training steps is more detrimental to the perfor-
mance than reducing the batch size. Conversely,
it follows that when scaling up a system, a better
model performance can be achieved when doubling
the amount of training steps than when doubling
the batch size, which is consistent with the results
of Raffel et al. (2019). On the other hand, we ob-
serve that the systems with the smaller batch size
were trained for a significantly longer time than
the systems with the reduced number of training
steps. Therefore, increasing the batch size may
result in a more favorable training duration than in-
creasing the number of training steps. The modest
drop in GLUE-Large performance, when halving
the number of training steps is consistent with our
findings from Section 5.3 and provides additional
evidence that training for a large number of steps
is inefficient.
Observation 7 Doubling the number of training
steps marginally increases the downstream task
performance, whereas doubling the batch size sig-
nificantly reduces the average training time of an
input sequence.
As stated, several other studies have shown that
using a larger batch size is in general more efficient
than training for more steps (Kaplan et al., 2020).
This means that the reduction of training time by
using larger batches dominates the marginal perfor-
mance gains resulting from an increased number
of training steps. However, for each specific model
and training configuration there exists a critical
batch size, after which the performance hardly im-



BERT-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 21, 358s 78.6 72.0/72.7 81.2 82.5 83.4
1
2

x steps, 1x batch 10, 736s 77.4 70.2/71.2 80.5 81.5 82.5
1x steps, 1

2
x batch 14, 575s 78.2 71.5/71.9 80.9 82.3 83.9

RoBERTa-Style Validation Set Performance
Training Strategy Total Time GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

Baseline 19, 760s 75.0 68.4/70.9 78.2 78.3 75.0
1
2

x steps, 1x batch 9, 906s 73.7 67.0/69.0 76.7 77.4 83.5
1x steps, 1

2
x batch 13, 101s 75.6 68.2/70.0 79.5 78.9 84.4

Table 2: GLUE results and total pre-training time when halving batch size vs. number of training steps.

proves, if at all (Kaplan et al., 2020; Li et al., 2020).
Our results suggest that this critical size is very
small in our experiments, which we believe is due
to the small size of the pre-training data set, as also
observed by Kaplan et al. (2020).

5.5 Systematic Scaling

In this section we apply a modified version of the
compound scaling method that was used to scale
up EfficientNet (Tan and Le, 2019), a model that
achieved a notably better accuracy on ImageNet
(Deng et al., 2009) than previous approaches using
less compute. For scaling, we only consider BERT-
style systems and propose the following compound
scaling method for Transformer-based systems:

L = αφ, H = βφ, A ≈ H/64,

s.t. αβ2 ≈ 2, with α ≥ 1, β ≥ 1.
(2)

For suitable values of α and β, a system is scaled
up by increasing the compound coefficient φ. Dou-
blingL doublesNmodel, whileH leads to a fourfold
increase. Since Nmodel dominates the amount of
compute in a Transformer, the constraint αβ2 ≈ 2
thus ensures that when scaling the network from
φold to φnew, the amount of compute (which is ap-
prox. independent of A) approximately increases
by the factor 2φnew−φold . Following existing ap-
proaches and using Observation 4, we therefore
set the number of attention heads to A ≈ H/64.

Grid search To determine α and β, we follow
Tan and Le (2019) and perform a grid search over
a set of nine small networks of comparable size
trained only on the short sequences. Subsequently,
we select the three systems with the lowest valida-
tion loss. Based on Observation 5, we then fine-
tune and evaluate these three systems on GLUE-
Large, which leads to the best performing system

having L = 3 and H = 104 (cf. Tab. 7 in Ap-
pendix C). From the constraint in Eq. (2) it fol-
lows that the size of this system corresponds to
a compound coefficient of φ = log2(LH

2) =

14.99 ≈ 15, such that we obtain α = 3
1
15 ≈ 1.076,

β = 104
1
15 ≈ 1.363. Note that the resulting coeffi-

cients favor scaling width over depth. In general,
we believe that this is reasonable, especially in light
of the much longer training times of deep networks
compared to wide networks (cf. Fig. 3). However,
we also want to emphasize that further research
is needed, whether these scaling coefficients are
suitable for BERT-style systems. For GPT-2-style
systems, Kaplan et al. (2020) proposed to scale
such that width/depth remains fixed. Importantly,
however, Kaplan et al. (2020) did not study the
effect of shape parameters on the GLUE-Large per-
formance, but instead only monitored the LM test
loss. In machine translation, on the other hand,
Transformer-based systems are scaled preferably
by increasing width (Shazeer et al., 2018; Li et al.,
2020). Other approaches focus on increasing depth,
while making modifications to the Transformer to
allow for more efficient training (Al-Rfou et al.,
2019).

Scaling Based on Observation 6, we successively
increase the compound coefficient to scale three
systems to larger sizes than all previously trained
systems, but train for less steps. For our smallest
system, we train for 5 epochs on both the long
and the short sequences.10 The results are listed
in Table 4. Furthermore, Table 3 shows a compari-
son of the smallest of the three systems to the best
performing system so far, as well as to a modifica-
tion of this system which fulfills the requirement

10Since validation loss on the long sequences did not further
decrease after 3 epochs, the two larger systems were only
trained for 3 epochs on these sequences (cf. Appendix D).



BERT-Style Validation Set Performance
φ A H L Nmodel Total Time Epochs GLUE-Large Final Loss

NA 2 256 9 7,0778,88 21,358s 6 78.6 3.24
NA 4 256 9 7,0778,88 21,703s 6 78.9 3.29

19.865 7 469 4 10,558,128 20,873s 5 79.4 3.13

Table 3: Verification of the scaling method: The proposed modifications lead to a better GLUE score and a lower
validation loss, while requiring less training time compared to previous best performing models.

BERT-Style Validation Set Performance
φ A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2 CoLA

20.578 9 585 5 20,553,500 80.7 75.3/75.5 83.5 83.4 85.1 16.5
21.716 13 832 5 41,553,440 81.4 75.6/75.9 84.1 84.4 85.8 21.3

Table 4: GLUE results of BERT-style systems, scaled up based on the observations made in the previous sections.

A ≈ H/64. As can be observed, both the perfor-
mance on the large GLUE-Large tasks and the final
validation loss are improved, while requiring less
training time. For the two larger systems, each ob-
tained by approximately doubling the model size,
downstream performance and validation loss are
further improved (cf. Tab. 4). Note that these sys-
tems are rather large compared to the amount of
pre-training data. This demonstrates the remark-
able robustness of these systems with respect to
overfitting on the pre-training data, which is in line
with the results of Kaplan et al. (2020).

6 Conclusion & Future work

Limitations The most severe limitation is the
small pre-training data set. Based on the obser-
vations of Kaplan et al. (2020), systems train faster
if more training examples are used. The small
size of the pre-training data set might also be the
cause of overfitting on smaller tasks. Therefore,
for further experiments, we suggest to expand the
amount of pre-training data. Furthermore, we did
no hyperparameter tuning, but instead adopted the
configurations from the original models. It would
be advisable to adjust the hyperparameters accord-
ingly (Li et al., 2020), especially since we used
different batch sizes as the original models.

Directions for Further Research Kaplan et al.
(2020) studied the effect of the amount of pre-
training data, however, not with regard to down-
stream task performance. Due to the fact that cur-
rent NLP systems are trained on vastly different
amounts of pre-training data, we believe that this
relationship should be explored further.

Although attempts have been made to study the

relationship between different pre-training objec-
tives and the performance on downstream tasks
(Arora et al., 2019), this relation is yet not well
understood. Empirically, contrastive pre-training
objectives, such as replaced token detection (Clark
et al., 2020) have shown very promising results. It
would be interesting to extend the study to such
contrastive objectives. Since we observed that the
NSP task is beneficial for learning sentence-pair
relationships, comparing it to ALBERT’s SOP task
(Lan et al., 2019) could yield further insights.

Finally, by fine-tuning on a larger variety of tasks
we could break down in more detail how different
modeling choices affect the performances on dif-
ferent tasks. We believe that further investigation
of such relationships will open many opportunities
for future research.

Conclusion In our experiments, BERT-style sys-
tems consistently outperform RoBERTa-style and
GPT-2-style systems. We therefore conclude that,
at least in case of a relatively small pre-training
data set, the combination of MLM & NSP is prefer-
able to MLM or LM. Although our experiments
were conducted on a much smaller scale than other
studies, we were able to reproduce many previous
findings. For instance, we observed that, provided
multiple dimensions are scaled, systems with very
different shapes can achieve similar performances.

Consistent with previous studies (Kaplan et al.,
2020; Li et al., 2020) we found that it is in general
inefficient to train until convergence and that train-
ing for more steps improves the performance rather
marginally. Instead, in accordance with Kaplan
et al. (2020), we believe that increasing the batch
size is more beneficial than training for more steps.



More importantly, also consistent with the re-
sults of Kaplan et al. (2020) and Li et al. (2020),
we conclude that the model size is the key factor in
Transformer-based systems. We observed that even
for rather large systems, both the final pre-training
validation loss and the GLUE performance bene-
fit from further increasing the size. At the same
time, the total pre-training time increases at a rather
low rate. In particular, given a fixed time budget,
large systems reach a lower loss than small sys-
tems. Therefore, we believe that additional com-
pute should be allocated mainly to increase the
model size.

Acknowledgements We would like to thank the
three anonymous reviewers for their insightful com-
ments and their feedback on our work.

References
Rami Al-Rfou, Dokook Choe, Noah Constant, Mandy

Guo, and Llion Jones. 2019. Character-level lan-
guage modeling with deeper self-attention. In Pro-
ceedings of the AAAI Conference on Artificial Intel-
ligence, volume 33, pages 3159–3166.

Sanjeev Arora, Hrishikesh Khandeparkar, Mikhail
Khodak, Orestis Plevrakis, and Nikunj Saunshi.
2019. A theoretical analysis of contrastive unsu-
pervised representation learning. arXiv preprint
arXiv:1902.09229.

Matthias Aßenmacher and Christian Heumann. 2020.
On the comparability of pre-trained language mod-
els. In Proceedings of the 5th Swiss Text Ana-
lytics Conference and 16th Conference on Natural
Language Processing, Zurich, Switzerland (Online).
CEUR Workshop Proceedings.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. arXiv preprint arXiv:2005.14165.

Kevin Clark, Minh-Thang Luong, Quoc V Le, and
Christopher D Manning. 2020. Electra: Pre-training
text encoders as discriminators rather than genera-
tors. arXiv preprint arXiv:2003.10555.

Zihang Dai, Zhilin Yang, Yiming Yang, Jaime Car-
bonell, Quoc V Le, and Ruslan Salakhutdinov.
2019. Transformer-xl: Attentive language mod-
els beyond a fixed-length context. arXiv preprint
arXiv:1901.02860.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li,
and Li Fei-Fei. 2009. Imagenet: A large-scale hier-
archical image database. In 2009 IEEE conference
on computer vision and pattern recognition, pages
248–255. Ieee.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Dan Hendrycks and Kevin Gimpel. 2016. Bridging
nonlinearities and stochastic regularizers with gaus-
sian error linear units. OpenReview.net.

Jeremy Howard and Sebastian Ruder. 2018. Univer-
sal language model fine-tuning for text classification.
arXiv preprint arXiv:1801.06146.

Jared Kaplan, Sam McCandlish, Tom Henighan,
Tom B Brown, Benjamin Chess, Rewon Child, Scott
Gray, Alec Radford, Jeffrey Wu, and Dario Amodei.
2020. Scaling laws for neural language models.
arXiv preprint arXiv:2001.08361.

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Zhenzhong Lan, Mingda Chen, Sebastian Goodman,
Kevin Gimpel, Piyush Sharma, and Radu Soricut.
2019. Albert: A lite bert for self-supervised learn-
ing of language representations. arXiv preprint
arXiv:1909.11942.

Zhuohan Li, Eric Wallace, Sheng Shen, Kevin Lin,
Kurt Keutzer, Dan Klein, and Joseph E Gonzalez.
2020. Train large, then compress: Rethinking model
size for efficient training and inference of transform-
ers. arXiv preprint arXiv:2002.11794.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized bert pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Stephen Merity, Caiming Xiong, James Bradbury, and
Richard Socher. 2016. Pointer sentinel mixture mod-
els. arXiv preprint arXiv:1609.07843.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
Blog, 1(8):9.

Jack W Rae, Anna Potapenko, Siddhant M Jayakumar,
and Timothy P Lillicrap. 2019. Compressive trans-
formers for long-range sequence modelling. arXiv
preprint arXiv:1911.05507.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine
Lee, Sharan Narang, Michael Matena, Yanqi Zhou,
Wei Li, and Peter J Liu. 2019. Exploring the limits
of transfer learning with a unified text-to-text trans-
former. arXiv preprint arXiv:1910.10683.

https://arxiv.org/pdf/1902.09229.pdf
https://arxiv.org/pdf/1902.09229.pdf
http://ceur-ws.org/Vol-2624/paper2.pdf
http://ceur-ws.org/Vol-2624/paper2.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2005.14165.pdf
https://arxiv.org/pdf/2003.10555.pdf
https://arxiv.org/pdf/2003.10555.pdf
https://arxiv.org/pdf/2003.10555.pdf
https://arxiv.org/pdf/1901.02860.pdf
https://arxiv.org/pdf/1901.02860.pdf
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://doi.org/10.18653/v1/N19-1423
https://openreview.net/forum?id=Bk0MRI5lg
https://openreview.net/forum?id=Bk0MRI5lg
https://openreview.net/forum?id=Bk0MRI5lg
https://arxiv.org/pdf/1801.06146.pdf
https://arxiv.org/pdf/1801.06146.pdf
https://arxiv.org/pdf/2001.08361.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1412.6980.pdf
https://arxiv.org/pdf/1909.11942.pdf
https://arxiv.org/pdf/1909.11942.pdf
https://arxiv.org/pdf/2002.11794.pdf
https://arxiv.org/pdf/2002.11794.pdf
https://arxiv.org/pdf/2002.11794.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1907.11692.pdf
https://arxiv.org/pdf/1609.07843.pdf
https://arxiv.org/pdf/1609.07843.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://cdn.openai.com/better-language-models/language_models_are_unsupervised_multitask_learners.pdf
https://arxiv.org/pdf/1911.05507.pdf
https://arxiv.org/pdf/1911.05507.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf
https://arxiv.org/pdf/1910.10683.pdf


Jonathan S Rosenfeld, Amir Rosenfeld, Yonatan Be-
linkov, and Nir Shavit. 2019. A constructive predic-
tion of the generalization error across scales. arXiv
preprint arXiv:1909.12673.

Mike Schuster and Kaisuke Nakajima. 2012. Japanese
and korean voice search. In 2012 IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing (ICASSP), pages 5149–5152. IEEE.

Iyer Shankar, Dandekar Nikhil, and Csernai Kornél.
2017. First quora dataset release: Question pairs.
Accessed: 2021-02-01.

Noam Shazeer, Youlong Cheng, Niki Parmar, Dustin
Tran, Ashish Vaswani, Penporn Koanantakool, Peter
Hawkins, HyoukJoong Lee, Mingsheng Hong, Cliff
Young, et al. 2018. Mesh-tensorflow: Deep learning
for supercomputers. In Advances in Neural Informa-
tion Processing Systems, pages 10414–10423.

Mohammad Shoeybi, Mostofa Patwary, Raul Puri,
Patrick LeGresley, Jared Casper, and Bryan Catan-
zaro. 2019. Megatron-lm: Training multi-billion
parameter language models using gpu model paral-
lelism. arXiv preprint arXiv:1909.08053.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Y Ng,
and Christopher Potts. 2013. Recursive deep mod-
els for semantic compositionality over a sentiment
treebank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Mingxing Tan and Quoc V Le. 2019. Efficientnet: Re-
thinking model scaling for convolutional neural net-
works. arXiv preprint arXiv:1905.11946.

Sebastian Thrun and Lorien Pratt. 1998. Learning to
learn: Introduction and overview. In Learning to
learn, pages 3–17. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

Alex Wang, Amanpreet Singh, Julian Michael, Felix
Hill, Omer Levy, and Samuel R Bowman. 2018.
Glue: A multi-task benchmark and analysis platform
for natural language understanding. arXiv preprint
arXiv:1804.07461.

Alex Warstadt, Amanpreet Singh, and Samuel R Bow-
man. 2019. Neural network acceptability judgments.
Transactions of the Association for Computational
Linguistics, 7:625–641.

Adina Williams, Nikita Nangia, and Samuel R Bow-
man. 2017. A broad-coverage challenge corpus for
sentence understanding through inference. arXiv
preprint arXiv:1704.05426.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, Joe Davison, Sam Shleifer, Patrick von Platen,
Clara Ma, Yacine Jernite, Julien Plu, Canwen Xu,
Teven Le Scao, Sylvain Gugger, Mariama Drame,
Quentin Lhoest, and Alexander M. Rush. 2020.
Transformers: State-of-the-art natural language pro-
cessing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing:
System Demonstrations, pages 38–45, Online. Asso-
ciation for Computational Linguistics.

https://arxiv.org/pdf/1909.12673.pdf
https://arxiv.org/pdf/1909.12673.pdf
https://www.quora.com/q/quoradata/First-Quora-Dataset-Release-Question-Pairs
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1909.08053.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1905.11946.pdf
https://arxiv.org/pdf/1804.07461.pdf
https://arxiv.org/pdf/1804.07461.pdf
https://arxiv.org/pdf/1704.05426.pdf
https://arxiv.org/pdf/1704.05426.pdf
https://www.aclweb.org/anthology/2020.emnlp-demos.6
https://www.aclweb.org/anthology/2020.emnlp-demos.6


Appendix

A Pre-training details

Training duration To ensure a fair compari-
son of the different pre-training objectives, we
pre-train RoBERTa-style and GPT-2-style systems
for 10 epochs, and BERT-style systems for 6
epochs, which in all cases equates to approximately
137, 000 total training steps combined over both
partitions.11 Since the data is duplicated when train-
ing with MLM & NSP, it is natural to simply lower
the number of epochs in relation to the amount of
pre-training data. While the amount of pre-training
data of RoBERTa-style and GPT-2-style systems
amounts to more than 60% of the data of BERT-
style systems, we found that, on the other hand, the
average WordPiece token contains slightly more
information than the average byte-level BPE token.

Optimization Apart from the experiments in sec-
tion 5.4, we use a batch size of 64 when training
on the short sequences and a batch size of 16 for
the long sequences. We optimize all systems with
Adam (Kingma and Ba, 2014) using the follow-
ing parameters: β1 = 0.9, β2 = 0.999, ε = 1e-6
and L2 weight decay of 0.01. For BERT-style and
RoBERTa-style systems we use a maximum learn-
ing rate of 1e-4, and for GPT2-style systems the
maximum learning rate is 2.5e-4. In all cases we
use a linear warmup for the first 1000 steps, which
corresponds to approximately 1% of the total steps.
Furthermore, for all systems we employ dropout
with a rate of 0.1 on all layers. The activation func-
tion of all systems is the GELU (Hendrycks and
Gimpel, 2016). The hyperparameters are in gen-
eral chosen as in the original systems, except for
RoBERTa-style systems, because RoBERTa was
trained with significantly larger batches, which re-
quires different hyperparameters. For RoBERTa-
style systems we therefore choose the same hyper-
parameters as for BERT-style systems.

Implementation We pre-train all systems on a
single NVIDIA 16GB V100 GPU, making use of
the Hugging Face transformers library (Wolf et al.,
2020). The same also holds true for fine-tuning.

Short and long sequences With our pre-training
procedure we follow Devlin et al. (2019): The

11In sections where we do not compare the different objec-
tives the number of epochs may differ.

first 90% of the steps on short sequences (128 to-
kens), the remaining 10% on long ones (512 to-
kens). When inspecting the validation loss, we ad-
just the evaluation sequence lengths to the lengths
of the training sequences, so ensure the same distri-
bution for training and validation data. This causes
the validation loss on the long sequences to start at
a slightly higher point than the final validation loss
on the short sequences (cf. Appendix D).

B Fine-tuning details

We follow Devlin et al. (2019) and train for three
epochs on all GLUE tasks. We use a batch size of
16 and a learning rate of 2e-5 for each task. Apart
from these hyperparameter configurations, we ap-
ply the same fine-tuning procedures that were used
by the original systems. For GPT-2-style systems,
we implemented the fine-tuning approach of GPT
(because GPT-2 was not fine-tuned).

However, we do make one small modification
to the original implementations. In contrast to
BERT-style systems, the pre-training objective of
RoBERTa-style and GPT-2-style systems does not
contain a classification task. When performing the
NSP task, in the original BERT the contextualized
representation of the CLS token is obtained by feed-
ing the corresponding final hidden state through a
linear layer with dropout and tanh activation. Sub-
sequently, the contextualized representation is fed
through another linear layer with dropout, which is
the output layer mapping the contextualized repre-
sentation to the class probabilities. Consequently,
when fine-tuning BERT-style systems on a classi-
fication task, there are in fact two linear layers be-
tween the final hidden state and the output classes.
However, RoBERTa and GPT in their original im-
plementation use only one linear layer. In order
to be as consistent as possible, in contrast, we use
two linear output layers for all systems. The first
linear layer is followed by a tanh activation and
both layers are implemented with a dropout rate of
0.1. For more information regarding this issue see
huggingface’s discussion forum.

C Detailed performance values for single
shape dimensions and results for the
grid search

Performance values on GLUE-Large and SST-2
for scaling H (Tab. 5) and for scaling L (Tab. 6).
Table 7 shows the results of the grid search.

https://discuss.huggingface.co/t/what-is-the-purpose-of-the-additional-dense-layer-in-classification-heads/526


BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 192 2 884,736 67.2 62.1/62.8 74.0 65.4 82.6
2 288 2 1,990,656 69.3 63.7/65.2 76.0 68.3 82.0
2 384 2 3,538,944 72.3 65.7/66.6 77.8 73.2 81.1
2 544 2 7,102,464 72.3 66.8/68.1 78.0 72.0 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 192 2 884,736 62.9 58.0/58.4 68.7 61.9 79.7
2 288 2 1,990,656 63.9 58.7/58.7 70.9 62.2 81.7
2 384 2 3,538,944 64.9 59.8/59.6 71.9 63.0 81.2
2 544 2 7,102,464 65.0 59.8/59.7 72.4 62.9 82.5

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 192 2 884,736 60.5 54.4/55.4 65.0 62.0 80.8
2 288 2 1,990,656 63.0 57.5/58.0 68.1 63.4 80.3
2 384 2 3,538,944 64.3 59.4/59.8 69.0 64.6 81.9
2 544 2 7,102,464 66.5 60.2/60.7 72.7 66.5 81.8

Table 5: Performance on GLUE when increasing only the embedding dimension.

BERT-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 65.4 59.0/60.2 72.3 64.8 78.0
2 128 5 983,040 68.9 62.1/64.2 75.0 68.6 79.8
2 128 10 1,966,080 72.0 65.3/66.9 76.7 74.1 81.8
2 128 18 3,538,944 74.2 67.2/68.6 77.8 77.7 82.2
2 128 36 7,077,888 75.9 69.7/70.4 79.7 78.3 83.3

GPT-2-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 61.6 56.3/56.2 66.1 62.3 79.8
2 128 5 983,040 62.4 57.6/56.1 67.4 62.0 80.5
2 128 10 1,966,080 62.0 56.9/57.0 67.7 61.5 81.4
2 128 18 3,538,944 61.8 56.1/56.4 66.8 62.4 80.6
2 128 36 7,077,888 61.4 56.6/56.7 66.6 61.1 80.7

RoBERTa-Style Validation Set Performance
A H L Nmodel GLUE-Large MNLI-(m/mm) QQP QNLI SST-2

2 128 2 393,216 60.1 53.7/55.1 64.7 61.9 79.2
2 128 5 983,040 64.8 59.5/60.6 70.4 64.4 80.2
2 128 10 1,966,080 67.1 60.9/61.9 72.0 68.5 81.7
2 128 18 3,538,944 67.2 62.9/64.3 74.3 64.3 80.0
2 128 36 7,077,888 73.3 67.6/69.1 77.3 75.0 82.6

Table 6: Performance on GLUE when increasing only the number of layers.

BERT-Style Validation Loss (WikiText-103) Validation Performance (GLUE)
A H L Nmodel BERT-Style Loss GLUE-Large
2 128 2 393,216 5.66 66.6
2 104 3 389,376 6.34 68.2
2 90 4 388,800 6.41 67.1
2 74 6 394,272 6.47 -
2 64 8 393,216 6.50 -
2 58 10 403,680 6.54 -
2 52 12 389,376 6.58 -
2 48 14 387,072 6.62 -
2 46 16 406,272 6.62 -

Table 7: Grid search over nine small BERT-style systems.



D Validation loss for scaled-up models

10.6M Parameters

20.6M Parameters

41.6M Parameters

2.5

3.0

3.5

4.0

4.5

5.0

0 5000 10000 15000 20000 25000 30000 35000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=7, H=469, L=4

A=9, H=585, L=5

A=13, H=832, L=5

Figure 4: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the short sequences. The
depicted parameter counts refer to Nmodel.

E Definition of the model size

We follow Kaplan et al. (2020) and use the approx-
imate number of non-embedding parameters to de-
fine the model size, which we denote as Nmodel.
The embedding parameters consist of all token, po-
sition and (if present) segment embeddings. The
number of embedding parameters does not depend
on the network depth, and when scaling width
and/or depth, it is a sub-leading term of the total
number of parameters. Furthermore, the number of
FLOPs related to embedding (and de-embedding)
is also sub-leading term of the total number of
FLOPs. Consistent with this is the observation of
Kaplan et al. (2020) that discarding the number
of embedding parameters when calculating model
size and amount of compute results in significantly
cleaner scaling laws. Since the share of embedding
parameters decreases significantly for larger mod-
els, similarly to Kaplan et al. (2020) we expect that
discarding the number of embedding parameters
allows for a better generalization of our results to
large models. Another advantage of defining the
model size as the number of non-embedding pa-
rameters is that this number is closely linked to the
number of (non-embedding related) FLOPs. This
enables us to design benchmarking scenarios by
training different models of comparable size, which
at the same time require roughly similar amounts
of computation.

10.6M Parameters

20.6M Parameters

41.6M Parameters

2.5

3.0

3.5

4.0

4.5

5.0

0 2000 4000 6000 8000 10000 12000
Wall Clock (Seconds)

V
al

id
at

io
n 

Lo
ss

 B
E

R
T

−
S

ty
le

Shape

A=7, H=469, L=4

A=9, H=585, L=5

A=13, H=832, L=5

Figure 5: Validation loss of scaled-up BERT-style sys-
tems when pre-training on the long sequences. The de-
picted parameter counts refer to Nmodel.

Number of Non-Embedding Parameters
Omitting biases and other sub-leading terms, the
number of non-embedding parameters, which is
our definition of the model size, is given by

Nmodel := 12LH2, (3)

where we have assumed that Hk = Hv = H
A and

Hff = 4H . Therefore, per layer there are approx-
imately 12H2 non-embedding parameters. This
number can be derived from the following three
steps performed in each layer of a Transformer:

1. Input projection For each attention head, the
queries, keys and values of dimension H

A are ob-
tained with the three matrices WQ

i , WK
i , and

W V
i , which are each of size H × H

A . In total, the
input projection thus consists of 3 ·A · H2

A = 3H2

parameters.

2. Output projection First, note that performing
attention on the projected inputs of dimension H

A in-
volves no additional parameters. The concatenated
attention results are projected back to dimension
H with the H × H matrix WO. Therefore, the
output projection involves an additional set of H2

parameters.

3. Feed-forward network The last sub-layer of
each layer consists of applying a feed-forward net-
work to the output projections. There exist H · 4H
connections between the output projections and the
neurons of the inner-layer, and another 4H · H
connections from the inner-layer to the final output
neurons. This step hence involves 8H2 parameters.



Note that the feed-forward network accounts for the
majority of non-embedding parameters, followed
by the input and output projections, respectively.

Relation to FLOPs

As stated, the number of non-embedding param-
eters is closely linked to the number of non-
embedding related FLOPs. We start by deriving
the number of FLOPs per token and forward pass
for GPT-2-style systems, where sub-leading terms
such as biases and layer normalization are again
omitted.

1. Input projection The matrix-vector products
of each per-layer input with WQ

i , WK
i , and W V

i

involve approximately 3 · 2 · H · HA FLOPs per
attention head. Considering all attention heads, the
input projection thus requires approximately 6H2

FLOPs per token.

2. Attention The computation of the attention
operation can be divided into two sub-components:

• Computation of the weights: On average,
Nctx
2 attention weights have to be computed

per input token, since on average half of the
tokens are masked for each input token. Com-
putation of a dot-product attention weight re-
quires approximately 2HA FLOPs per head. In
total, the computation of the attention weights
hence involves approximately NctxH FLOPs
per token.

• Computation of the weighted sum: Since
only half of the tokens are summed on average,
given the attention weights, calculation of the
weighted sum of the values has an average
cost of approximately NctxH FLOPs for each
token.

3. Output projection The vector matrix product
of the attention outputs with WO requires approxi-
mately 2H2 FLOPs for each token.

4. Feed-forward network The feed-forward net-
work consists of two consecutive matrix multiplica-
tions, where each matrix contains 4H2 parameters.
Thus, the feed-forward network requires approxi-
mately 2 · 2 · 4H2 = 16H2 FLOPs per token.

The number of FLOPs per token and forward
pass in GPT-2-style systems, which we denote by

Cforward, can hence be approximated as

Cforward ≈ L(6H2 +NctxH +NctxH

+ 2H2 + 16H2)

= 24LH2 + 2LNctxH

= 2Nmodel + 2LNctxH.

(4)

BERT-style and RoBERTa-style systems require
slightly more FLOPs than GPT-2-style systems,
because these systems have no autoregressive at-
tention mask. Hence, in both steps of the attention
operation above, the computational cost is approx-
imately twice as much, i.e., 2NctxH in each step.
Therefore, BERT-style and RoBERTa-style sys-
tems require approximately 2Nmodel + 4LNctxH
FLOPs per token and forward pass. As mentioned
by Kaplan et al. (2020), if H > Nctx/12, the
context-dependent term in Eq. (4) only accounts
for a relatively small fraction of the compute of
GPT-2-style systems. In particular, when increas-
ing H , the importance of the context-dependent
term diminishes. For BERT-style and RoBERTa-
style systems the context-dependent term becomes
small ifH > Nctx/6. Both constraints are satisfied
by a large margin for all our systems, especially
since we mainly train on rather short sequences.
The backward pass requires approximately twice
as much compute as the forward pass (Kaplan et al.,
2020), such that the total amount of non-embedding
related compute per token and training step can be
approximated as

C := 6Nmodel. (5)

F Sequence characteristics

The following Table 8 provides an overview on the
number of tokens in short and long sequences.

System Partition Number of Tokens
Total Average

BERT-Style Short 110, 888, 186 110.04
Long 43, 274, 856 375.52

RoBERTa-Style Short 70, 025, 709 110.31
Long 27, 692, 351 457.04

GPT-2-Style Short 70, 564, 106 111.16
Long 27, 729, 551 457.65

Table 8: Number of tokens for the short and the long
sequences as well as the average sequence lengths re-
sulting from the different tokenizers.


