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Abstract

This paper describes KIT’submission to the
IWSLT 2021 Offline Speech Translation Task.
We describe a system in both cascaded con-
dition and end-to-end condition. In the cas-
caded condition, we investigated different end-
to-end architectures for the speech recognition
module. For the text segmentation module,
we trained a small transformer-based model on
high-quality monolingual data. For the trans-
lation module, our last year’s neural machine
translation model was reused. In the end-to-
end condition, we improved our Speech Rela-
tive Transformer architecture to reach or even
surpass the result of the cascade system.

1 Introduction

As in previous years, the cascade system’s pipeline
is constituted by an ASR module, a text segmen-
tation module and a machine translation module.
In this year’s evaluation campaign, we investigated
only sequence-to-sequence ASR models with three
architectures. The segmentation module is basi-
cally a monolingual system which translates a dis-
fluent, broken, uncased text (i.e. ASR outputs) into
a more fluent, written-style text with punctuations
in order to match the data conditions of the trans-
lation system. The machine translation module’s
architecture is the same as the previous year’s. For
the end-to-end system, we improved from our last
year’s Speech Relative Transformer architecture
(Pham et al., 2020a). As a result, the end-to-end
system can produce better results on certain test
sets and approach the performance on some others
compared to the cascade system this year, while
the end-to-end system was the dominant approach
last year.

The rest of the paper is organized as followed.
Section 2 describes the data set used to train and
test the system. It is then followed by Section 3
providing the description and experimental results

of both the cascade and the end-to-end system. In
the end, we conclude the paper with Section 4.

2 Data

Speech Corpora. For training and evaluation
of our ASR models, we used Mozilla Common
Voice v6.1 (Ardila et al., 2019), Europarl (Koehn,
2005), How2 (Sanabria et al., 2018), Librispeech
(Panayotov et al., 2015), MuST-C v1 (Di Gangi
et al., 2019), MuST-C v2 (Cattoni et al., 2021) and
Tedlium v3 (Hernandez et al., 2018) dataset. The
data split is presented in the following table 1.

Table 1: Summary of the English data-sets used for
speech recognition

Corpus Utterances Speech data [h]
A: Training Data
Mozilla Common Voice 1225k 1667
Europarl 33k 85
How2 217k 356
Librispeech 281k 963
MuST-C v1 230k 407
MuST-C v2 251k 482
Tedlium 268k 482
B: Test Data
Tedlium 1155 2.6
Librispeech 2620 5.4

Text Corpora. We collected the text parallel
training data as presented in Table 2.

3 Offline Speech Translation

We address the offline speech translation task by
two main approaches, namely cascade and end-to-
end. In the cascade condition, the ASR module
(Section 3.1) receives audio inputs and generates
raw transcripts, which will then pass through a
Segmentation module (Section 3.2) to formulate
well normalized inputs to our Machine Translation
module (Section 3.3). The MT outputs are the final
outputs of the cascade system. On the other hand,
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Table 2: Text Training Data

Dataset Sentences
TED Talks (TED) 220K
Europarl (EPPS) 2.2MK
CommonCrawl 2.1M
Rapid 1.21M
ParaCrawl 25.1M
OpenSubtitles 12.6M
WikiTitle 423K
Back-translated News 26M

the end-to-end architecture is trained to directly
translate English audio inputs into German text
outputs (Section 3.4).

3.1 Speech Recognition

Data preparation and Segmentation tool Af-
ter collecting all audios from all data sets men-
tioned in Section 2, we calculated 40 features of
Mel-filterbank coefficients for ASR training. To
generate labels for the sequence-to-sequence ASR
models, we used the Sentence-Piece toolkit (Kudo
and Richardson, 2018) to train 4000 different byte-
pair-encoding (BPE). The WerRTCVAD toolkit
(Wiseman, 2016) was used to segment the audio in
the testing phase.

Model As in previous years (Pham et al., 2019a,
2020b), we used only sequence-to-sequence ASR
models, which are based on three different net-
work architectures: The long short-term mem-
ory (LSTM), the Transformer and the Conformer.
LSTM-based models (Nguyen et al., 2020) consist
of 6 bidirectional layers for the encoder and 2 uni-
directional layers for the decoder, both encoder and
decoder layers have 1536 units. The Transformer-
based models presented in (Pham et al., 2019b)
have 24 layers for the encoder and 8 layers for
the decoder. The Conformer-based models (Gulati
et al., 2020) comprise 16 layers for the encoder and
6 layers for the decoder. In both the Transformer-
based and the Conformer-based models, the size of
each layer is 512 and the size of the hidden state in
the feed-forward sublayer is 2048. The speech data
augmentation technique was used to reduce overfit-
ting as described in (Nguyen et al., 2020). In order
to train a deep network effectively, we also applied
Stochastic Layers (Pham et al., 2019b) with a drop-
ping layer rate of 0.5 on both Transformer-based
and Conformer-based models.

3.2 Text Segmentation

The text segmentation in the cascaded pipeline
serves as a normalization on the ASR output, which
usually lacks punctuation marks, proper sentence
boundaries and reliable casing. On the other hand,
the machine translation system is often trained on
well-written, high-quality bilingual data. Follow-
ing the idea from (Sperber et al., 2018a), we build
the segmentation as a monolingual translation sys-
tem, which translates from lower-cased, without-
punctuation texts into texts with case information
and punctuation, prior to the machine translation
module.

The monolingual translation for text segmenta-
tion is implemented using our neural speech transla-
tion framework NMTGMinor1(Pham et al., 2020a).
It is a small transformer architecture, consisting of
a 4-layer encoder and 4-layer decoder, in which
each layer’ size is 512, while the inner size of
feed-forward network inside each layer is 2048.
The encoder and decode are self-attention blocks,
which have 4 parallel attention heads. The training
data for that are the English part extracted from
available multilingual corpora: EPPS, NC, Global
Voices and TED talks. We trained the model for 10
epochs, then we fine-tuned it on the TED corpus for
30 epochs more with stronger drop-out rate. Fur-
thermore, to simulate possible errors in the ASR
outputs, a similar model is trained on artificial noisy
data and the final model is the ensemble of the two
models.

The trained model is then utilized to translate the
ASR outputs in a shifting window manner and the
decisions are drawn by a simple voting mechanism.
For more details, please refer to (Sperber et al.,
2018a).

3.3 Machine Translation

For the machine translation module, we re-use the
English→German machine translation model from
our last year’ submission to IWSLT (Pham et al.,
2020b). More than 40 millions sentence pairs being
extracted from TED, EPPS, NC, CommonCrawl,
ParaCrawl, Rapid and OpenSubtitles corpora were
used for training the model. In addition, 26 mil-
lions sentence pairs are generated from the back-
translation technique by a German→English trans-
lation system. A large transformer architecture was
trained with Relative Attention. We adapted to the
in-domain by fine-tuning on TED talk data with

1https://github.com/quanpn90/NMTGMinor

https://github.com/quanpn90/NMTGMinor
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stricter regularizations. The same adapted model
was trained on noised data synthesized from the
same TED data. The final model is the ensemble
of the two.

3.4 End-to-End Model
Corpora This year, the training data consists
of the second version of the MUST-C cor-
pus (Di Gangi et al., 2019), the Europarl cor-
pus (Iranzo-Sánchez et al., 2020), the Speech Trans-
lation corpus and the CoVoST-2 (Wang et al., 2020)
corpus provided by the organizer. The speech fea-
tures are generated with the in-house Janus Recog-
nition Toolkit. The ST dataset is handled with an
additional filtering step using an English speech
recognizer (trained with the its transcripts with the
additional Tedlium-3 training data).

Following the success of generating synthetic
audio utterances, the transcripts in the Tedlium-3
corpus are translated into German using the cascade
built in the previous year’s submission (Pham et al.,
2020b). In brief, the translation process required us
to preserve the audio-text alignment from the origi-
nal data collection and segmentation process. As
a results, we used the Transformer-based punctu-
ation inserting system from IWSLT2018 (Sperber
et al., 2018b) to reconstruct the punctuations for
the transcripts followed by the translation process
that preserves the same segmentation information.
Compared to the human translation from the speech
translation datasets, this translation is relative nois-
ier and incomplete (due to the segmentations are
not necessarily aligned with grammatically correct
sentences).

The end result of the filtering and synthetic cre-
ation process is the complete translation set, as
summarised in Table 3

Table 3: Training data for E2E translation models.

Data Utterances Total time
MuST-C 229K 408h
Europarl 32K 60h
Speech Translation 142K 160h
Tedlium-3 268K 415h
CoVoST 288K 424h

During training, the validation data is the Devel-
opment set of the MuST-C corpus. The reason is
that the SLT testsets often do not have the aligned
audio and translation, while training end-to-end
models often rely on perplexity for early stopping.

Modeling The main architecture is the deep
Transformer (Vaswani et al., 2017) with stochas-
tic layers (Pham et al., 2019b). The encoder self
attention layer uses Bidirectional relative atten-
tion (Pham et al., 2020a) which models the relative
distance between one position and other positions
in the sequence. This modeling is bidirectional
because the distance is distinguished for each direc-
tion from the perspective of one particular position.
The main models use a “Big” configuration with 16
encoder layers and 6 decoder layers, and they are
randomly dropped in training according to the lin-
ear schedule presented in the original work, where
the top layer has the highest dropout rate p = 0.5.
The model size of each layer is 1024 and the in-
ner size is 4096. We experimented with different
activation functions including GELU (Hendrycks
and Gimpel, 2016), SiLU (Elfwing et al., 2018)
and the gated variants similar to the gated linear
units (Dauphin et al., 2017). Also, each transformer
block (encoder and decoder) is equipped with an-
other feed-forward neural network in the begin-
ning (Lu et al., 2019). Our preliminary experiments
showed that GeLU and SiLU provided a slightly
better performance than ReLU, and our final model
is the ensemble of the three configurations that are
identical except the activation functions.

First, the encoders are pretrained using the data
portions containing English texts to make training
SLT stable. With the initialized encoder, the net-
works can be trained with an aggressive learning
rate with 4096 warm-up steps. Label-smoothing
and dropout rates are set at 0.1 and 0.3 respectively
for all models. Furthermore, all speech inputs are
augmented with spectral augmentation (Park et al.,
2019; Bahar et al., 2019). All models are trained
for 200000 steps, each consists of accumulated
360000 audio frames. Using the model setup like
above, we managed to fit a batch size of around
16000 frames to 24 GB of GPU memory.

Speech segmentation As reflected from last
year’s experiments, audio segmentation plays an
important role in the performance of the whole
system, and the end-to-end model unfortunately
does not have control of segmentation, as it is a
prerequisite before training one. During evaluation,
we relied on the WerRTCVAD toolkit (Wiseman,
2016) to cut the long audio files into segments of
reasonable length, and the tool is also able to rule
out silence and events that do not belong to human
speech, such as noise and music.
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Overall, we improved the submission from last
year (Pham et al., 2020b) using stronger models
together with a more accurate segmentation tool.

3.5 Experimental Results
3.5.1 Cascade Offline Speech Translation
Speech Recognition. We tested our ASR sys-
tems on two datasets, Tedlium and Libri test set.
The ensemble of LSTM-based and Conformer-
based sequence-to-sequence model provide the best
results, which are 2.4 and 3.9 WERs respectively
for two test set Table 4.

Table 4: WER on Libri and Tedlium sets

Data Libri Tedlium
Conformer-based 3.0 4.8
Transformer-based 3.2 4.9
LSTM-based 2.6 3.9
Ensemble 2.4 3.9

Machine Translation. We do not train any new
machine translation module but re-use last year’s
model, thus, we do not conduct experiments and
comparisons with different machine translation sys-
tems. We submitted one cascased model with our
audio segmentation.

3.5.2 End-to-end Offline Speech Translation
Our models are tested on two different setups. On
the one hand, we evaluated the model on the tst-
COMMON (2nd version) of the MuST-C corpora.
Due to the incompatibility between the models and
the audio data that requires resegmentation, we
rely on the dev and test sets of MuST-C to evaluate
the ability to translate on “ideal” conditions. As
mentioned above, our ensemble managed to reach
32.4 BLEU points on this test set2.

On the other hand, we used the testsets from
2010 to 2015 to measure the progress from last
year in the condition requiring audio segmentation.
In this particular comparison as shown in Table 5,
we showed that using a stronger model together
with better voice detection not only improves the
SLT results by up to 1.9 BLEU points (in tst2014)
but also outperforms the strong cascade in 2 differ-
ent sets: tst2013 and tst2014, in which the differ-
ence could be even 1 BLEU point. There is still
a performance gap in the last two tests, however,

2Unfortunately the comparison to last year tst-COMMON
(30.6 is not available due to version mismatch.

a strong E2E system can now trade blow with a
strongly tuned cascade. The deciding factor, in our
opinion, is audio segmentation because this is the
sole advantage of the cascade which can recover
from badly cut segments3.

Table 5: ST: Translation performance in BLEU↑ on
IWSLT testsets (re-segmentation required). Progres-
sive results from this year and last year end-to-end
(E2E) and cascades (CD) are provided.

Testset → CD 2020 E2E 2020 E2E 2021

tst2010 26.68 24.27 25.28
tst2013 28.60 28.13 29.62
tst2014 25.64 25.46 27.32
tst2015 24.95 21.82 22.13

4 Conclusion

In this year’s evaluation campaign, the end-to-end
model proves to be a very promising approach
since it can compete or even transcend the best
cascade model in offline speech translation task.
As a note for future work, we would like to investi-
gate two-stage speech translation models (Sperber
et al., 2019) using transformer architectures and
compare them with our recent speech translation
end-to-end models.
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tian Stüker, and Alex Waibel. 2018b. KIT’s IWSLT
2018 SLT Translation System. In ”Proceedings
of the 15th International Workshop on Spoken Lan-
guage Translation (IWSLT 2018)”, Brussels, Bel-
gium.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Changhan Wang, Anne Wu, and Juan Pino. 2020. Cov-
ost 2: A massively multilingual speech-to-text trans-
lation corpus.

John Wiseman. 2016. python-webrtcvad. https://
github.com/wiseman/py-webrtcvad.

http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
http://arxiv.org/abs/2007.10310
https://github.com/wiseman/py-webrtcvad
https://github.com/wiseman/py-webrtcvad

