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Abstract 

This paper investigates and reveals the 

relationship between two closely related 

machine learning disciplines, namely 

Active Learning (AL) and Curriculum 

Learning (CL), from the lens of several 

novel curricula. This paper also introduces 

Active Curriculum Learning (ACL) which 

improves AL by combining AL with CL to 

benefit from the dynamic nature of the AL 

informativeness concept as well as the 

human insights used in the design of the 

curriculum heuristics. Comparison of the 

performance of ACL and AL on two public 

datasets for the Named Entity Recognition 

(NER) task shows the effectiveness of 

combining AL and CL using our proposed 

framework. 

1 Introduction 

Modern deep learning architectures predominantly 

need large amounts of labeled data to achieve high 

levels of performance. In the presence of a large 

unlabeled corpus, data points are usually chosen 

randomly to be annotated. However, annotation 

can be a costly task and not all the annotations are 

equally beneficial. Active Learning (AL) aims to 

reduce the number of annotations required to train 

a machine learning model by choosing the most 

“informative” unlabeled data for annotation. The 

informativeness is determined by querying a model 

or a set of models trained on the available 

annotated data (Settles 2012). Algorithm 1 shows 

AL more formally.  

Several categories of informativeness score 

have been developed in the literature. For example, 

uncertainty metrics select unlabeled data for which 

the model has the highest uncertainty of label 

prediction (Settles and Craven 2008). Examples of 

uncertainty measures for a classification task are 

the difference of the probability of prediction for 

the first and second most likely classes (i.e., the 

margin of the prediction probability) and the 

entropy of prediction over all classes (i.e., 

− ∑ 𝑝𝑖 log 𝑝𝑖
𝑐
𝑖=1  where c is the number of classes). 

Lower values of margin and higher values of 

entropy metrics are associated with higher 

uncertainty and consequently informativeness. 

Some other examples of informativeness scoring 

methods for unlabeled data are the amount of 

prediction disagreement in a committee of models 

(Melville and Mooney 2004) and the amount of 

expected change to model weights (Zhang, Lease, 

and Wallace 2017) or loss value (Long et al. 2014). 

Curriculum Learning (CL), on the other hand, 

attempts to mimic how humans learn and uses that 

knowledge to train better models (Bengio et al. 

2009; Soviany et al. 2021). Complex topics are 

taught to humans based on a curriculum which 

takes into account the level of difficulty of the 

material presented to the learner. CL borrows this 

idea and engages the human experts to design a 

metric that is used to sort the annotated training 

data from “easy” to “hard” to be presented to the 

model during training (Bengio et al. 2009). The 
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1. Seed labeled data 𝑫𝑳 = {(x1, y1), …, (xk, yk)} 

2. Unlabeled data 𝑫𝑼 = {xk+1, …, xm} 

3. While the stopping criterion is not met: 

3.1. Fine-tune or train model 𝑴 on 𝑫𝑳  

3.2. 𝑰 ≔  the set of 𝑖  most informative data 

samples in 𝑫𝑼 according to 𝑴 

3.3. 𝑫𝑼 ≔ 𝑫𝑼 \ 𝑰; 𝑫𝑳 ≔ 𝑫𝑳 ∪ 𝑳(𝑰) 

Algorithm 1: Steps of the AL algorithm where 𝐿(𝑰) 

denotes the set 𝑰  after annotation. An example of 

stopping criterion can be a minimum value for accuracy.  

 

  

1. Training data 𝑫𝑻 = {} 

2. Available data 𝑫𝑨 = {(𝑥1, 𝑦1), … , (𝑥𝑛 , 𝑦𝑛)} 

3. Repeat until 𝑫𝑨 is empty: 

3.1. 𝑰: =  the set of 𝒌  easiest examples in 𝑫𝑨 

according to a fixed curriculum 

3.2. 𝑫𝑻: = 𝑫𝑻 ∪ 𝑰; 𝑫𝑨: = 𝑫𝑨 \ 𝑰 

3.3. Fine-tune existing model 𝑴 on 𝑫𝑻  

Algorithm 2: Steps of the CL algorithm. 
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goal of CL is to find a better local optimum faster 

compared to randomly presenting the data to the 

model by smoothing the loss function in early 

stages of training. CL algorithm is presented in 

Algorithm 2. CL has been investigated in computer 

vision (Gui, Baltrusaitis, and Morency 2017), 

Natural Language Processing (NLP) (Rao, 

Anuranjana, and Mamidi 2020), and speech 

recognition (Braun, Neil, and Liu 2016) among 

others (Soviany et al. 2021). Specifically within 

NLP, CL has been used on tasks such as question 

answering (Sachan and Xing 2016), natural 

language understanding (Xu et al. 2020), as well as 

learning word representations (Tsvetkov et al. 

2016). Different curriculum designs has been 

investigated by considering heuristics such as 

sentence length, word frequency, language model 

score, and parse tree depth (Tsvetkov et al. 2016; 

Platanios et al. 2019). 

Other related approaches such as self-paced 

learning (SPL) (Kumar, Packer, and Koller 2010) 

and self-paced curriculum learning (Jiang et al. 

2015) have also been proposed to show the efficacy 

of a designed curriculum which adapts 

dynamically to the pace at which the learner 

progresses. Other attempts at improving an AL 

strategy include self-paced active learning (Tang 

and Huang 2019) in which the authors introduce 

practical techniques to consider informativeness, 

representativeness, and easiness of samples while 

querying for labels. Such methods that only focus 

on designing a curriculum miss, in general, the 

opportunity to also leverage the ability of the 

predictive model which progresses as new labeled 

data becomes available. 

The addition of CL injects human expertise into 

learning manifested in the design of a curriculum. 

This is in contrast with previous studies that 

combined AL with SPL (Tang and Huang 2019; 

Lin et al. 2018). SPL is inspired by CL but, 

similarly to AL, relies on querying the model being 

trained to select instances for labeling. 

Our contributions in this paper are twofold: (i) 

we shed light on the relationship between AL and 

CL by investigating if AL enforces (or follows) a 

curriculum. To this end, we monitor and visualize 

a variety of novel curricula during the AL 

simulation loop; (ii) We propose a novel method 

which we call Active Curriculum Learning (ACL). 

ACL takes advantage of the benefits of both CL 

(i.e., designing a curriculum for the model to 

follow) and AL (i.e., choosing samples based on 

the enhanced ability of the predictive model) at the 

same time to improve AL. Our preliminary 

experiments show that the performance of an AL 

strategy will be improved by deliberately 

combining AL and CL concepts.  

This article presents the foundation of this method 

accompanied by the preliminary results and in our 

future work we will explore its effectiveness more 

extensively by implementing more experiments 

and performing hyper parameter tuning as well as 

exploring other NLP tasks beyond NER.  

2 Novel Curricula 

Other than the most explored curriculum features 

such as sentence length and word frequency some 

other curricula for measuring diversity, simplicity, 

and prototypicality of the samples are proposed in 

(Tsvetkov et al. 2016). Our conjecture is that large-

scale language models and also linguistic features 

can be used to design NLP curricula. We design 

seven novel curricula which assign a score to a 

sentence indicating its level of difficulty for a 

specific NLP task. Then, to acquire a curriculum, 

sentences are sorted by their corresponding scores. 

Other than our 7 novel curricula, we also 

experiment with the following commonly used 

curricula: 

1. SENT_LEN: Number of words in a sentence. 

2. WORD_FREQ: Average of frequency of the 

words in a sentence (e.g., frequency of the 

word A is calculated by 
𝑁𝐴

∑ 𝑁𝑤𝑤∈𝑉
 where V is the 

set of the unique vocabulary of the labeled 

dataset, and 𝑁𝑤  is the number of times the 

word 𝑤 has appeared in the labeled dataset). 

Our seven novel curricula are as follows: 

1. PARSE_CHILD: Average of the number of 

children of words in the sentence parse tree. 

2. GPT_SCORE: Sentence score according to 

the GPT2 language model (Radford et al. 

2019) calculated as follows: ∑ log(𝑝(𝑤𝑘))𝑘  

where 𝑝(𝑤𝑘) is the probability of kth word of 

the sentence according to the GPT2 model. 

3. LL_LOSS: Average loss of the words in a 

sentence from the Longformer language model 

(Beltagy, Peters, and Cohan 2020) 

For the following four novel curricula, we use 

the spaCy library (Honnibal and Montani 2017) to 

replace a word in a sentence with one of its 

linguistic features. The curriculum value for a 

sentence is then calculated exactly in the same way 
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as word frequency but with one of the linguistic 

features instead of the word itself: 

4. POS: Simple universal part-of-speech tag such 

as PROPN, AUX or VERB. 

5. TAG: Detailed part-of-speech tag such as 

NNP, VBZ, VBG. 

6. SHAPE: Shape of the word. For example, 

shapes of “Apple” and “12a.” are “Xxxxx” and 

“ddx.” respectively. 

7. DEP: Syntactic relation connecting the word 

to its parent in the dependency parse tree of the 

sentence (e.g., amod, and compound). 

3 The Relationship between AL and CL 

and the Experimental Setup 

We set out to answer the following question: what 

is the relationship between AL and CL from the lens 

of the nine curricula? To answer this question, we 

simulate two AL strategies as well as random 

strategy and monitor the curriculum metrics on the 

most informative samples (from the unlabeled 

data) chosen for annotation by each sampling 

strategy and compare them. We use the following 

two informativeness measures for unlabeled 

sentences in our AL strategies: (i) min-margin: 

minimum of margin of the prediction probability 

for the sentence tokens is considered as the AL 

score for that sentence. Sentences with lower 

scores are preferred, (ii) max-entropy: maximum 

of entropy of the prediction probability for the 

sentence tokens are considered as the AL score for 

that sentence and sentences with higher scores are 

preferred. 

For the experiments, we use a single layer Bi-

LSTM model (Lample et al. 2016)  with the hidden 

state size of 768, enhanced with a 2-layer feed-

forward network in which the number of hidden 

and output layers’ nodes are equal to the number of 

classes in the dataset. The input to the LSTM 

model is the word2vec embedding (Mikolov et al. 

2013) of sentence words. We use ADAM optimizer 

(Kingma and Ba 2017) with the batch size of 64 

and the learning rate of 5e-4. We experiment with 

two publicly available English-language NER 

datasets: OntoNotes51, and CoNLL 20032 and use 

early stopping on the loss of the provided 

validation sets. Furthermore, we start with 500 

randomly selected sentences as the seed data and 

 
1 Available at https://catalog.ldc.upenn.edu/LDC2013T19 

choose 500 sentences to be labeled in each iteration 

for a total of 15 iterations. 

Figure 1 illustrates the experimental results of 

monitoring GPT score during AL loop. This figure 

clearly shows that GPT score of sentences chosen 

by max-entropy tends to have lower values (i.e., 

more complex sentences) and min-margin tends to 

choose sentences with higher values (i.e., simpler 

sentences) compared to a random strategy. Similar 

figures for other curricula reveal peculiarities of the 

different AL strategies compared to the random 

strategy and other AL strategies. Due to space 

limitations, instead of including such figures for 

different strategies, we calculate the following 

metric which we call Mean Normalized Difference 

(MND) to quantify how an AL selection strategy 

differs from a random strategy in choosing the 

most informative unlabeled data based on a 

curriculum. This metric is defined as follows: 

 𝑀𝑁𝐷 = ∑ ∑
𝑁(𝜓𝐶𝐿(𝑅𝑁𝑖𝑗))−𝑁(𝜓𝐶𝐿(𝐴𝐿𝑖𝑗))

𝑛×𝑘

𝑘
𝑗=1

𝑛
𝑖=1  (1) 

where 𝑛 is the number of iterations where we add 

𝑘  newly labeled sentences to the labeled dataset, 

𝜓𝐶𝐿 calculates the value of the curriculum feature 

for a sentence, 𝑅𝑁𝑖𝑗 and 𝐴𝐿𝑖𝑗  are the 𝑗𝑡ℎ sentence 

out of 𝑘 chosen for annotation in the 𝑖𝑡ℎ step of the 

random and  active strategies, respectively, 𝑁(𝑥): =

𝑥 − 𝑟𝑚𝑖𝑛
𝐶𝐿

𝑟𝑚𝑎𝑥
𝐶𝐿  − 𝑟𝑚𝑖𝑛

𝐶𝐿  , 𝑟𝑚𝑖𝑛
𝐶𝐿 : = min

𝑖 ∈[1,𝑛]

∑ 𝜓𝐶𝐿(𝑅𝑖𝑗)𝑘
𝑗=1

𝑘
 , and 𝑟𝑚𝑎𝑥

𝐶𝐿 : =

max
𝑖 ∈[1,𝑛]

∑
𝜓𝐶𝐿(𝑅𝑖𝑗)

𝑘

𝑘
𝑗=1  . In theory, the MND score can 

take any value. If the MND score of an AL strategy 

for a curriculum is close to zero, it means the 

curriculum values (𝜓𝐶𝐿 ) of the data chosen for 

2 Available at 
https://www.clips.uantwerpen.be/conll2003/ner/ 

 

Figure 1:  Comparison of the mean of GPT score of 

sentences added to training data in each iteration 

between random, min-margin and max-entropy AL 

strategies for the CoNLL dataset (average of 3 runs). 
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annotation are close to that of the random strategy. 

This, however, does not imply that the same 

unlabeled data is chosen by the two techniques. 

Furthermore, large values of the MND score 

indicate that AL chooses unlabeled data for 

annotation that have different curriculum scores 

compared to the random strategy. Since MND is 

normalized, we can compare the MND score of 

any two combinations of AL strategy and 

curriculum score to compare the degree to which 

they diverge from random strategy.  

Experimental Results: Results of the MND 

scores for different curriculum features on the two 

experimental datasets are reported in Table 1. In 

most of these experiments, we observe that there is 

a difference between how random strategy and AL 

choose unlabeled dataset from the lens of MND as 

if AL is mimicking curriculum learning. We also 

observe that not all AL strategies consistently have 

the same MND sign for a curriculum on 

OntoNotes5 and CoNLL 2003 datasets but a 

noticeable divergence from the random strategy is 

evident. Table 1 also shows that the largest 

difference between active and random strategies in 

following curricula in our experiments is 

DEP/Min-Margin combination and the smallest 

difference between them is POS/Max-Entropy 

combination, both for OntoNotes5 dataset. 

4 Active Curriculum Learning (ACL) 

To improve the performance of the AL strategies, 

we introduce a simple yet effective method 

leveraging both advantages of AL and CL which 

we call Active Curriculum Learning (ACL). The 

goal of this proposed method is to benefit from the 

dynamic nature of AL data selection metric while 

utilizing experts’ knowledge in designing a fixed 

curriculum. To this end, in each step of the ACL 

loop, we use the following linear combination of 

the AL and CL scores to choose the most 

informative unlabeled data: 

 𝜓𝐴𝐶𝐿(𝑠, 𝑀𝑖): = 𝛼
𝜓𝐶𝐿(𝑠)

max
𝑠∈𝑫𝒊

𝑈
|𝜓𝐶𝐿(𝑠)|

+ 𝛽
𝜓𝐴𝐿(𝑠,𝑀𝑖)

max
𝑠∈𝑫𝒊

𝑈
|𝜓𝐴𝐿(𝑠,𝑀𝑖)|

  (2) 

where 𝑫𝒊
𝑈 is the set of unlabeled sentences in step 

𝑖 of the ACL loop, 𝛼 and 𝛽 are the two parameters 

that control the combination of AL and CL scores, 

𝜓𝐴𝐿(𝑠, 𝑀𝑖) is the AL score (i.e., informativeness) 

of sentence 𝑠 according to the predictive model 𝑀𝑖 

trained on  𝑫𝒊
𝐿 at step 𝑖.  

The overall steps of the ACL algorithm are 

presented in Algorithm 3. Similar to the AL 

algorithm, the min-margin based strategy favors 

sentences with lower 𝜓𝐴𝐶𝐿  for annotation and the 

opposite is true for the max-entropy based 

approach. 

Experimental Results: We use the training setup 

of section 3 and perform token classification on 

CoNLL 2003 and OntoNotes5 datasets using the 

ACL algorithm. To evaluate the performance of 

ACL, for each AL metric and dataset combination, 

we run 18 ACL experiments where 𝛼 = 1 , 𝛽 =
0.5 or 𝛽 = −0.5 for the 9 curricula, and also one 

AL experiment where 𝛼 = 1 and 𝛽 = 0. Since the 

main focus of this article is to demonstrate if the 

introduction of a curriculum adds value to the 

performance of the active strategies, we select 

these hyper parameters in such a way that the 

effects of the active strategies are still dominant in 

the proposed model.  

In each step of the ACL loop, we measure the 

token-level F1 score (for higher granularity) of the 

provided test set using the trained model in that 

step. Table 2 reports the average of F1 scores for 

the top 5 ACL combinations as well as the active 

learner (α = 1, β = 0) across all runs (3) and steps 

(15). In all of our experiments, the top 5 ACL 

 CoNLL 2003 OntoNotes5 

Min-

Margin 

Max-

Entropy 

Min-

Margin 

Max-

Entropy 

DEP -16.7 2 -66.3 -5.5 

POS -18.2 -0.1 -4.2 -5.9 

SHAPE 4.1 -3 12.5 4.7 

TAG -14.3 0.3 -4.3 -8.7 

GPT_SCORE -3.3 3.5 -9.0 6.3 

LL_LOSS -1.5 1.1 -18.1 1.7 

PARSE_CHILD 3.1 -1.7 18.1 -0.9 

SENT_LEN 4.7 -3.9 10.7 -6.2 

WORD_FREQ 1.9 -2.4 -0.7 -0.1 

Table 1: Mean Normalized Difference of min-

margin and max-entropy for the two datasets CoNLL 

2003 and OntoNotes5 (average of 15 steps and 3 

runs). 

 

 

1. Seed labeled data 𝑫𝑳 = {(𝑥1, 𝑦1), … , (𝑥𝑚 , 𝑦𝑚)} 
2. Unlabeled data 𝑫𝑼 = {𝑥𝑚+1, … , 𝑥𝑛} 
3. While the stopping criterion is not met: 

3.1. 𝑰 ≔  the set of 𝑘  examples in 𝑫𝑼  with the 

best score based on 𝝍𝑨𝑪𝑳} 

3.2. 𝑫𝑼 ≔ 𝑫𝑼 \ 𝑰; 𝑫𝑳 ≔ 𝑫𝑳 ∪ 𝑳(𝑰)  

3.3. Fine-tune or train the model 𝑴𝒊 on 𝑫𝑳 

Algorithm 3. Steps of the ACL algorithm where 𝐿(𝑰) 

denotes the set 𝑰 after annotation.  
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combinations always outperformed AL for that 

dataset.  In particular our curricula based on deep 

language models (GPT_SCORE and LL_LOSS) 

are appearing frequently in Table 2 indicating their 

utility. 

5 Conclusions and Future Work 

To the best of our knowledge, this is the first work 

to investigate and reveal the relationship between 

two closely related machine learning techniques 

namely, AL and CL.  We observed that AL in fact 

follows a curriculum as it progresses through its 

iterations compared to the random strategy. 

This is also the first work to take advantage of 

the benefits of both CL (i.e., designing a 

curriculum for the model to learn) and AL (i.e., 

choosing samples based on the improved ability of 

the predictive model) to improve AL in a unified 

model.  

In our future work, we are interested in 

understanding in detail how CL helps AL, and 

exploring model-based techniques of combining 

AL and CL rather than a fixed set of weights for α 

and β. Another interesting question to investigate is 

to conduct similar experiments for other NLP tasks 

or using multiple curricula together with AL can be 

beneficial in reducing the annotation cost. We are 

also interested in investigating our novel curricula 

on their own in an isolated CL setting. 
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