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Abstract

Understanding linguistic modality is widely
seen as important for downstream tasks such
as Question Answering and Knowledge Graph
Population. Entailment Graph learning might
also be expected to benefit from attention to
modality. We build Entailment Graphs using
a news corpus filtered with a modality parser,
and show that stripping modal modifiers from
predicates in fact increases performance. This
suggests that for some tasks, the pragmatics of
modal modification of predicates allows them
to contribute as evidence of entailment.

1 Introduction

The ability to recognise textual entailment and para-
phrase is crucial in many downstream tasks, in-
cluding Open Domain Question Answering from
text. For example, if we pose the question “Did
Joe Biden run for President?” and the text states
that “Joe Biden was elected President”, producing
the correct answer (Yes) necessitates understand-
ing that being elected President entails running for
President1.

Entailment Graphs, constructed via unsuper-
vised learning techniques over large text corpora,
provide a solution to this problem. They consist of
nodes representing predicates and directed edges
representing entailment relations between them.
Given the importance of detecting uncertainty for
other downstream NLP tasks such as Information
Extraction (Karttunen and Zaenen, 2005; Farkas
et al., 2010), Information Retrieval (Vincze, 2014),
machine reading (Morante and Daelemans, 2012a),
and Question Answering (Jean et al., 2016) one
might expect that it would also be useful in learning
Entailment Graphs. That is, they would be more
reliable if learned from data in which predications

*Equal contribution
1Assuming a democratic election. We use the typical def-

inition of the premise most likely entailing the hypothesis
(Dagan et al., 2006)

are asserted as actually happening, rather than data
with uncertain predications under scope of various
types of modality. We investigate whether this is
the case.

The Entailment Graph-learning algorithm de-
pends on descriptions of eventualities in the news,
observing directional co-occurrences of typed pred-
icates and their arguments. For example, we ex-
pect to observe all the arguments of being pres-
ident, such as Biden and Obama, also to be en-
countered in a sufficiently large multiply-sourced
body of text as arguments of running for president,
but not the other way around (Hillary Clinton will
run but not be president). However, if all the re-
ports of Clinton might be president are extracted as
be_president(Clinton), one might expect the learn-
ing signal to be confusing to the algorithm.

We use the method of Hosseini et al. (2018)
combined with a modality parser (Bijl de Vroe
et al., 2021) to construct typed Entailment Graphs
from raw text corpora under two different settings.
Modality-aware: modal predications are removed
from the data entirely, and modality-unaware: the
model learns from both asserted and modal predi-
cations. Our contributions are 1) a comparison of
Entailment Graphs learned from modal and non-
modal data, showing (counterintuitively) that ig-
noring modal distinctions in fact improves Entail-
ment Graph-learning, and 2) insights as to whether
this effect applies uniformly across different sub-
domains.

2 Background

Entailment rules specify directional inferences be-
tween linguistic predicates (Szpektor and Dagan,
2008), and can be stored in an Entailment Graph,
whose global structural properties can be used to
learn more accurately (Berant et al., 2011, 2015).
They are defined as a directed graph G = {N,E},
in which the nodes N are typed predicates and
edges E represent the entailment relation. The lex-
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Category Example
∅ Protesters attacked the police
Modal operator Protesters may have attacked the police
Conditional If protesters attack the police...
Counterfactual Had protesters attacked the police...
Propositional Journalists said that
attitude protesters attacked the police

Table 1: Modality categories

ical entailment knowledge stored within them is
useful for Question Answering (McKenna et al.,
2021), as well as other tasks such as email cate-
gorisation (Eichler et al., 2014), relation extraction
(Eichler et al., 2017) and link prediction (Hosseini
et al., 2019).

A subgraph containing predicates of a type-pair
(e.g. PERSON-LOCATION) can be learned in an
unsupervised way from collections of multiply-
sourced text. A vector of argument-pair counts
for every predicate is first machine read from the
corpus. Typically, relation extraction systems used
for reading these corpora ignore modal modifiers,
possibly introducing noise in the graph. Next, a
(directed) similarity score (e.g. DIRT (Lin and Pan-
tel, 2001), Weed’s score (Weeds and Weir, 2003)
or BInc (Szpektor and Dagan, 2008)) is computed
between the vectors, producing a local entailment
score between each predicate pair. Then a globali-
sation process such as the soft constraints algorithm
of Hosseini et al. (2018), which transfers informa-
tion both within and between type-pair subgraphs,
can be used to refine these local scores. When using
the graph in practice, all edges with a score above a
chosen threshold can be considered an entailment.

There are various semantic phenomena a speaker
can use to mark veridicality (see Table 1). Modal
operators, e.g. probably, might, should, need to,
allow the user to indicate their attitude beyond the
propositional content of a phrase, and often don’t
entail that the eventuality occurs (Kratzer, 2012).
The same holds for predications under scope of
conditionals and counterfactuals (Dancygier, 1998;
Lewis, 1973). Propositional attitude, indicated by
verbs such as say, imagine or want, allows the
speaker to attribute thoughts regarding some possi-
ble eventuality to a source (Nelson, 2019).

These phenomena have been investigated for
various NLP tasks, including uncertainty detec-
tion (Vincze, 2014), hedge detection (Medlock
and Briscoe, 2007) and modality annotation (Saurı
et al., 2006). Capturing this information is valuable
to tasks such as Information Extraction, Question

Answering and Knowledge Base Population (Kart-
tunen and Zaenen, 2005; Morante and Daelemans,
2012b).

Early approaches to detecting modality focused
on lexicon design (Szarvas, 2008; Kilicoglu and
Bergler, 2008; Baker et al., 2010), with later ap-
proaches using machine learning over annotated
corpora (Morante and Daelemans, 2009; Rei and
Briscoe, 2010; Jean et al., 2016; Adel and Schütze,
2017). Recently, Bijl de Vroe et al. (2021) de-
signed a parser similar to that by Baker et al. (2010),
to cover a wider range of phenomena, including
conditionality and propositional attitude. While
modality annotation is clearly useful for recognis-
ing entailment from a given text (Snow et al., 2006;
De Marneffe et al., 2006), to our knowledge no re-
search has been conducted on its effect on learning
Entailment Graphs.

3 Methods

We extend relation extraction to pay attention to
modality, so that we can distinguish modal and non-
modal relations in the Entailment Graph mining
algorithm. This allows us to investigate the impact
of modalised predicate data on the accuracy of
learned entailment edges.

We extract binary relations of the form arg1-
predicate-arg2 using MONTEE, an open-domain
modality-aware relation extraction system (Bijl de
Vroe et al., 2021). MONTEE uses the Rotat-
ingCCG parser (Stanojević and Steedman, 2019)
as the basis for extracting binary relations and a
modality lexicon to identify modality triggers. A
relation is tagged as modal (MOD), propositional
attitude (ATT_SAY, ATT_THINK) or conditional
(COND) if the CCG dependency graph contains a
path between a relation node and a node matching
an entry in the MONTEE lexicon. Counterfactu-
als (COUNT) are tagged according to hand-crafted
rules. Since we focus on uncertainty and not nega-
tion, lexical negation (LNEG) tagging is ignored.

In the modality-aware setting, we remove re-
lations tagged by MONTEE as any kind of
modal ({MOD, ATT_SAY, ATT_THINK, COUNT,
COND}). In local learning, learned entailment
edges then have access only to non-modal evidence:
eventualities that were asserted as actually happen-
ing. For example, the edge between win and lose
should now be learned only from non-modal de-
scriptions such as A won today against B or A has
been defeated by B, leaving out modal descriptions
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(A could beat B). The local and globalisation parts
of the algorithm are otherwise unchanged.

4 Experimental Setup

Using MONTEE2, we extract 40,669,812 bi-
nary relation triples from the NewsSpike corpus
(Zhang and Weld, 2013). Of these, 14.57% are
tagged; 10.04% MOD, 3.51% REP_SAY, 0.38%
REP_THINK, 0.61% COND, and 0.03% COUNT.
We then construct three different datasets and build
an Entailment Graph with each. The modality-
unaware baseline, BaselineLarge, is trained on the
complete set of relations with modality tags re-
moved. This corresponds to the data and model in
Hosseini et al. (2018). For the modality-aware As-
serted graph, we extract only the set of 34,744,216
asserted relations (∼85% of the relations), i.e. all
modal relations are excluded. To rule out effects
of data size, we construct BaselineSmall, which
is trained on a random sample of 85% relations
from the total set. Comparing Asserted to Base-
lineLarge shows us whether it is worth filtering out
modal data, and comparing Asserted to BaselineS-
mall shows whether asserted data or mixed data (i.e.
asserted and modal) is more effective for learning
entailment relations.

We follow the example of Hosseini et al. (2018)
and construct typed graphs for all possible type
pairs (e.g. PERSON-LOCATION). Relation ar-
guments are typed by linking to a Named Entity
Freebase identifier (Bollacker et al., 2008) using
the AIDA-light linker (Nguyen et al., 2014), and
mapping these identifiers to a type in the FIGER
hierarchy (Ling and Weld, 2012). The typed rela-
tions become the input to the graph learning step of
the Entailment Graph mining algorithm. Following
previous research, we use the BInc similarity score
(Szpektor and Dagan, 2008) to compute entailment
scores. We first construct local typed Entailment
Graphs and then globalise the scores across graphs
as in Hosseini et al. (2018).

We evaluate the Entailment Graphs on two
datasets. The first is the Levy/Holt Entailment
Dataset, a set of 18,407 entailment pairs for the gen-
eral domain (Levy and Dagan, 2016; Holt, 2018).
As our training method is unsupervised and we
do not tune hyperparameters, we evaluate on the
complete Levy/Holt dataset rather than the dev/test
split. We also evaluate on the Sports Entailment
Dataset (Guillou et al., 2020), focusing on the sub-

2https://gitlab.com/lianeg/montee

Levy/Holt Levy/Holt Sports
all directional

BaselineLarge 0.190 0.163 0.453
BaselineSmall 0.184 0.157 0.422
Asserted 0.171 0.136 0.468

Table 2: AUC scores

Nodes Edges % Levy preds found
all ex. directional

BaselineLarge 334K 72,7M 63.06 70.29
BaselineSmall 277K 58,4M 61.13 69.29
Asserted 254K 46,3M 58.51 67.92

Table 3: Graph size comparison and predicate coverage
for Levy/Holt dataset (all examples) and its directional
portion

Nodes Edges % Sports preds found

BaselineLarge 4,514 1.65M 92.86
BaselineSmall 3,823 1.29M 90.48
Asserted 3,682 1.09M 88.10

Table 4: ORGANISATIONs subgraph size compari-
son and predicate coverage for the Sports Entailment
Dataset

set of 718 examples comprising entailments and
pairs of match outcome predicates (e.g. win, lose,
tie, and their paraphrases) which are always non-
entailments. This subset evaluates whether En-
tailment Graphs can recognise, for example, that
win/lose→ play but win = lose (with similar pat-
terns for other paraphrases of win, play and lose).
We focus on the subgraph of ORGANISATIONs
as all predicates are assumed to apply to sports
teams. Both datasets use binary labels for each
premise/hypothesis pair: entailment (1) and non-
entailment (0).

We used the entGraph3 code developed by Hos-
seini et al. (2018) to construct each of the Entail-
ment Graphs, and the corresponding evaluation
scripts4 to evaluate performance on the Levy/Holt
dataset. Performance on the Sports Entailment
Dataset5 is evaluated using scripts6 developed for
this paper. For details on hyperparameters and com-
putational costs see Appendix A.

3https://github.com/mjhosseini/entGraph
4https://github.com/mjhosseini/entgraph_eval
5https://gitlab.com/lianeg/temporal-entailment-sports-

dataset
6https://gitlab.com/lianeg/sports-entailment-evaluation
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Figure 1: Precision/recall on Levy/Holt dataset Figure 2: Precision/recall on Sports Entailment Dataset

5 Results

Table 2 contains area under the precision/recall
curve (AUC) scores for Asserted, BaselineSmall,
and BaselineLarge on the Levy/Holt dataset (all
examples), the directional portion of the Levy/Holt
dataset (2,414 examples), and the Sports Entail-
ment dataset. The precision-recall curves for the
Levy/Holt (all examples) and Sports Entailment
datasets are displayed in Figures 1 and 2 respec-
tively. Every point on the curve represents a differ-
ent entailment score threshold (higher thresholds
correspond to lower recall and vice versa). We
follow the example of Hosseini et al. (2018) and
compute AUC for precision in the range [0.5, 1].
All three Entailment Graphs cover this range and
predictions with precision higher than random are
important for downstream applications.

On the Levy/Holt dataset (all examples), Base-
lineLarge performs best overall. The strong perfor-
mance of BaselineLarge compared to Asserted is in
itself surprising, and indicates that it is usually not
beneficial to distinguish modality when building
Entailment Graphs. This can be understood as a
data size issue: filtering out data is harmful as it in-
troduces sparsity, and modal data is useful enough
to provide a learning signal.

More counterintuitive, however, is that even
BaselineSmall, which controls for training dataset
size, outperforms Asserted. To understand why,
we measured the size of each graph in terms of
the number of nodes (predicates) and edges (en-
tailment relations) it contained, and the percentage
of predicates in the Levy/Holt dataset that were
present in the graph (see Table 3). This revealed
that BaselineSmall contained more of the predi-
cates present in the Levy/Holt dataset, while also

being larger in terms of both nodes and edges than
Asserted. Thus, Asserted learns with more rela-
tions per predicate, while BaselineSmall has more
predicate nodes overall. This may lead to the in-
crease in recall that we see for the BaselineSmall
graph.

Another explanation might be that this richer
predicate coverage allows BaselineSmall to accu-
rately correlate more of the common paraphrase ex-
amples in the Levy/Holt dataset. To this end we in-
vestigated the directional portion of the Levy/Holt
dataset, which contains 2,414 examples of both the
entailment pair and its reverse, where the entail-
ment is true in one direction and false in the other.
As noted by Hosseini et al. (2018) this task is much
harder than that represented by the original dataset.
However, the baselines both outperform the As-
serted graph on the directional entailment task. We
also observe a similar pattern in the percentage of
predicates covered (see last column in Table 3). In
general, we conclude that modal data is useful even
for learning directional entailments.

Performance on the Sports Entailment dataset
(Figure 2) reveals a different pattern. Base-
lineLarge outperforms BaselineSmall as expected,
but Asserted performs best, despite lower coverage
of the predicates in the Sports Entailment Dataset
(see Table 4 for a size comparison of the ORGANI-
SATIONs subgraph). This supports the suggestion
by Guillou et al. (2020) that excluding modal data
may help to avoid learning entailments between dis-
junctive outcomes, i.e. that winning entails losing,
which is not measured by the Levy/Holt dataset.
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6 Discussion & Future Work

Another appealing intuition for the usefulness of
modal relations is that they might generally be ex-
pressed in text when the prior probability of the
main predicate is already high. This would lead
the distributions for the main predicates to be im-
proved in spite of the uncertainty of the evidence.
Additionally, if the probability of a premise is high
enough to be worth mentioning, then in general
that of its entailments will be too. However, this
may not hold for the sports scenario because the
outcomes are widely speculated upon despite being
highly uncertain.

Indeed it is easy to find examples in the news
corpus to support these intuitions. In the general
domain we observe examples of eventualities ini-
tially being discussed with uncertainty, and later
mentioned as asserted. An example of this is the
acquisition of Dell by Michael Dell: on Febru-
ary 5th, 2013 we observe “... founder and CEO
Michael Dell and investment firm Silver Lake Part-
ners will buy Dell.”, and subsequently, on February
6th, 2013 we read “So Michael Dell and a pri-
vate equity group have bought Dell and taken it
private.”. We also observe the reverse scenario
in the sports domain. For example, on January
10th, 2013 we observe “The popular opinion on
this game seems to be Seattle beating Atlanta be-
cause...", while shortly afterwards we are informed
that “Falcons come back to beat Seahawks". The
latter is likely rather domain-specific, and we may
expect to find a similar effect for other domains
that share the disjunctive outcome property, for
example elections, court cases and battles, where
modals are used when speculating about potential
and counterfactual outcomes.

We will explore ways to leverage this informa-
tion and consider other sub-domains for which it
is useful to retain or remove modal data. This may
involve creating more domain-specific datasets. It
is also worth investigating the effects of negation,
which shares similar properties to modality, on
learning Entailment Graphs.

Relatedly, we could retain predicates under spe-
cific modal modifiers, as these correspond to dif-
ferent prior probabilities of eventualities, carrying
a different epistemic commitment from the writer.
Eventualities that happen “undoubtedly" might be
preferred over those that are “unlikely", for in-
stance, and the modality parser can output specific
categories of modality, allowing us to choose the

subsets that should be kept.
Finally, we will experiment with learning En-

tailment Graphs with modal predicate nodes, by
retaining modal relations with tags attached as in-
put. Many of these entailments are trivial, because
any entailment of a consequence can be repro-
duced under modal scope (if buy→ own, then also
MOD_buy→MOD_own). More notably, we might
recover that following an entailment in the reverse
direction can produce a modal entailment (e.g. if
beat→ play, then we know play→ MOD_beat),
and many preconditions will behave interestingly
(e.g. beat → play, but also MOD_beat → play).
To evaluate this idea, we will design a dataset of
modal entailments, drawing inspiration from previ-
ous research on veridicality in entailment datasets
(Staliūnaitė, 2018).

7 Conclusion

We have investigated the role of modally modified
relations in Entailment Graph mining, and shown
that, contrary to results from other tasks, uncertain
predications actually constitute a valuable learning
signal overall. Further analysis shows that there
are specific predicate domains in which removing
modal data is beneficial.
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A Experimental Settings / Requirements

When using MoNTEE to extract relations we used
the default settings, with the exception of disabling
unary relation extraction (writeUnaryRels=False)
and restricting binary relations to those that include
at least one named entity (acceptGGBinary=False).
When using entGraph to construct Entailment
Graphs we raised the threshold values for infre-
quent predicates (minPredForArgPair=4) and argu-
ment pairs (minArgPairForPred=4), and used the
default values for all other parameters.

All experiments were conducted on a single
server with 330GB RAM, and two Intel Xeon E5-
2697 v4 2.3GHz CPUs (each with 18 cores). The
computational cost of training a single Entailment
Graph is approximately one day for the local learn-
ing step, and eight hours for globalisation.
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