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Abstract

Multilingual pre-trained models have demon-
strated their effectiveness in many multilingual
NLP tasks and enabled zero-shot or few-shot
transfer from high-resource languages to low-
resource ones. However, due to significant
typological differences and contradictions be-
tween some languages, such models usually
perform poorly on many languages and cross-
lingual settings, which shows the difficulty of
learning a single model to handle massive di-
verse languages well at the same time. To alle-
viate this issue, we present a new multilingual
pre-training pipeline. We propose to generate
language representation from multilingual pre-
trained models and conduct linguistic analy-
sis to show that language representation sim-
ilarity reflect linguistic similarity from mul-
tiple perspectives, including language family,
geographical sprachbund, lexicostatistics and
syntax. Then we cluster all the target lan-
guages into multiple groups and name each
group as a representation sprachbund. Thus,
languages in the same representation sprach-
bund are supposed to boost each other in both
pre-training and fine-tuning as they share rich
linguistic similarity. We pre-train one multi-
lingual model for each representation sprach-
bund. Experiments are conducted on cross-
lingual benchmarks and significant improve-
ments are achieved compared to strong base-
lines.

1 Introduction

The use of pre-trained models is considered a mile-
stone in the development of NLP research. Though
early works (Devlin et al., 2019; Radford et al.,
2019) on monolingual pre-training (pre-training
one model for one language) significantly boosts
the performance on the target language, monolin-
gual pre-training can hardly be generalized to mul-
tilingual settings because of high training cost and

∗ Work is done during internship at Microsoft Research
Asia.

insufficient corpora resources for many languages.
Multilingual pre-training was proposed to re-

solve this issue. By using shared vocabulary across
languages and pre-training with corpora from mul-
tiple languages, multilingual pre-trained models
handle cross-lingual tasks in one model. Large
scale multilingual pre-trained models provide pow-
erful representation for languages worldwide, en-
abling significant advances in various multilingual
tasks. However, existing widely used multilingual
pre-trained models (Lample and Conneau, 2019;
Conneau et al., 2020; Huang et al., 2019) perform
poorly on many languages and some cross-lingual
tasks like zero/few-shot cross-lingual transfer. e.g.
the performance of zero shot transfer on XNLI task
from English data to Urdu language is 15%+ lower
than to English (Conneau et al., 2020). Such a
huge performance gap is the result of cross-lingual
contradictions and differences. This phenomenon
is also recognized as negative transfer in transfer
learning (Wang et al., 2019).

Many existing works in cross-lingual transfer (K
et al., 2020; Pires et al., 2019; Lin et al., 2019) and
machine translation (Dabre et al., 2017; Tan et al.,
2019) have shown that cross-lingual transfer works
best between typologically similar languages. We
believe that utilizing similarity between languages
is potentially beneficial for large-scale multilingual
pre-training. Motivated by this, we propose a new
multilingual pre-training pipeline. First, we de-
sign a fully data-driven end-to-end way to gener-
ate language representation for all languages (108
languages) based on massive multilingual corpora.
We represent each language as a 768-dimension
vector and use cosine similarity as their similarity
measure. With the similarities between languages
quantified by their language representation, we au-
tomatically divide all languages into a small num-
ber of representation sprachbunds. Sprachbund is
a linguistic terminology in German that refers to a
group of close languages (Sprach means language
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and bund means federation in German, so literally it
is “language federation" in English). A representa-
tion sprachbund is defined as a group of languages
with similar language representation. We conduct
extensive linguistic analysis and show that lan-
guages with similar representation are similar and
related from many linguistic perspectives, includ-
ing language family, geographical sprachbund, lex-
icostatistics and syntax typology. We believe that
training with similar languages in pre-training and
fine-tuning are beneficial as they share similar lin-
guistic properties. Second, we train multiple multi-
lingual pre-trained models. Each model is trained
with corpora from one representation sprachbund.
When handling downstream tasks in one specific
language, we fine-tune the model pre-trained with
the corresponding representation sprachbund cor-
pora. We conduct experiments on 8 representa-
tive cross-lingual tasks from XGLUE (Liang et al.,
2020) and XTREME (Hu et al., 2020) including
sentence classification, structure prediction, ques-
tion answering and sentence retrieval. Experiment
results show that our model significantly outper-
forms strong baselines.

Our contributions can be summarized as follows:
i) We propose a way to automatically generate lan-
guage representation from multilingual pre-trained
models and massive multilingual corpora. ii) We
conduct extensive analysis to show language rep-
resentation and representation sprachbunds can re-
flect linguistic language similarity and relatedness
from multiple perspectives, therefore they can be
considered as new paradigm for clustering similar
languages in linguistics. iii) We use representa-
tion sprachbunds in multilingual pre-training to
alleviate the cross-lingual contradiction and differ-
ences, and obtain significant improvements com-
pared with strong baselines.

2 Related Work

Our approach presents a new pipeline of multilin-
gual pre-training. Our representation sprachbund
is inspired by linguistic language clustering. Our
analysis is closely related to methodology in lin-
guistics.

Multilingual Pre-Training Multilingual pre-
training was proposed to pre-train a single model
with hundreds of languages. Many works use a
large amount of multilingual data (e.g., mC4 (Xue
et al., 2020), CCNet (Wenzek et al., 2020)) to pre-
train large multilingual models like XLM (Lam-

ple and Conneau, 2019), XLM-R (Conneau
et al., 2020), Unicoder (Huang et al., 2019) and
mT5 (Xue et al., 2020). Several benchmarks
are proposed to evaluate the cross-lingual abil-
ity of multilingual pre-trained models, including
XGLUE (Liang et al., 2020), XTREME (Hu et al.,
2020) and XTREME-R (Ruder et al., 2021)

Language Clustering in Linguistics The lin-
guists propose to classify languages in several ways
from different perspectives. There are two main
kinds of language clustering: genealogical cluster-
ing and typological clustering. In genealogical clus-
tering, languages are clustered into language fam-
ilies (Durbin, 1985; Marcantonio, 2002) by their
genetic relatedness. Languages in the same lan-
guage family have the same ancestral language. In
typological clustering, languages are clustered by
their typological features, like word order, morphol-
ogy (Dressler, 1986) and lexicostatistics (Hymes,
1960). Geographical sprachbund (Emeneau, 1980)
is also a typological clustering method as it groups
languages according to their similar areal features
coming from geographical proximity.

Language Clustering in Multilingual NLP
Several recent works utilize linguistic knowledge
about language clustering in multilingual pre-
training and machine translation. Tan et al. (2019)
uses language family and language embedding to
cluster languages and train machine translation
model for each cluster. The language embedding
is the language-specific tag added to the input of
encoder. Their approach focuses on 23 relatively
high resource languages. Fan et al. (2020) clus-
ters languages into several groups according to lan-
guage family, cultural connection and geographical
proximity. They do not obtain any language rep-
resentation and their language groups are human
annotated. Kudugunta et al. (2019) reveals the con-
nection between language SVCCA similarity from
NMT models and language family. Their evalua-
tion relies on parallel data. Chung et al. (2020) clas-
sifies languages into groups based on their token
overlap. Only lexical information of languages is
used in their approach. Yu et al. (2021) uses multi-
lingual denoising autoencoder to generate language
embeddings and analyze the clusters derived from
the embeddings. There are also a few earlier works
on generating and analyzing language representa-
tion (Tiedemann, 2018; Östling and Tiedemann,
2017).
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Figure 1: The pipeline of our approach. We first generate language representation for each language with multi-
lingual pre-trained models (XLM-R) and multilingual corpora. We cluster languages into several representation
sprachbunds composed of languages with similar representation. We pre-train one model for each representation
sprachbund with corpora from that representation sprachbund. Best viewed in color.

Compared to existing works, our approach en-
joys the following advantages. First, our approach
requires neither parallel data nor linguistic labeling,
while most existing works on clustering languages
relies on parallel data and linguistic knowledge.
Second, our representation sprachbunds contain
linguistic features from various aspects, while most
existing works focus on language family.

3 Approach

Our proposed pipeline on representation sprach-
bund for multilingual pre-training is illustrated in
Figure 1. Our approach can be divided into two
stages: First, we quantify the similarity between
languages with generated language representation,
and cluster all languages in our corpora into K
clusters based on their similarity. Each cluster
is called one representation sprachbund. K is a
hyper-parameter in our clustering algorithm. Sec-
ond, we separate our corpora into K parts based
on their corresponding representation sprachbund,
and pre-train one model with corpora from each
representation sprachbund.

3.1 Discovering Representation Sprachbund

Suppose we have M languages in our multilin-
gual corpora C denoted as L = {l1, l2, ..., lM}.
The corpora of the ith language is denoted as
Ci. Ci contains ni sentences, denoted as Ci =
{si1, si2, ..., sini}. Note that there is no need
for the sentences {sik}ni

k=1 of language li and
{sjk}

nj

k=1 of lj to be aligned.
Choenni and Shutova (2020) reveals that the sen-

tence representation from the same language gen-
erated by the last layer of multilingual pre-trained
models will be very close and form a relatively in-

dependent cluster in the representation space. Mo-
tivated by this, a centroid of all sentence represen-
tation from the same language can be a reasonable
language representation. We employ a transformer-
based multilingual pre-trained model, denoted as
F . Each language li is represented by language
representation vi. We denote the representation of
the token k of sentence s from the last layer of F
as Fk(s). We then define

vi =
1

ni

ni∑
j=1

F[CLS](sij)

We separate all M languages into K clusters via
clustering algorithm with input features {vi}Mi=1.
The cosine similarity between language representa-
tion vi and vj is used as a similarity metric for the
clustering algorithm. The output K clusters are K
representation sprachbunds.

3.2 Representation Sprachbund for
Multilingual Pre-Training

We denote our K representation sprachbunds as
{L1, L2, ..., LK}, where Lk = {lk1, ..., lkki}. We
have

∑K
j=1 ji = M as our representation sprach-

bund is non-overlapping. The corresponding cor-
pora is denoted as C ′k = {C ′k1, C ′k2, ..., C ′kki}.
Note that the corpora of the ith language for dis-
covering representation sprachbund (Ci) and for
training models (C ′i) may be different. We train K
separate models for K representation sprachbunds.
When fine-tuning, we can use the data in language
{lkj}kij=1 to fine-tune the kth model if the data is
available.



884

Figure 2: Visualization of language representation (reduced to 2-dimension for visualization). All languages are
labeled with ISO 639-1 code. Languages from the same language family are colored the same. We draw ellipse
for 10 main language family covering most languages they include. The distribution of language representation
has great overlap with the language family and several geographical sprachbunds. Best viewed in color.

4 Representation Sprachbund Discovery
and Analysis

4.1 Settings

We collect massive multilingual corpora for dis-
covering representation sprachbund (also for the
following multilingual pre-training). We use
Wikipedia1 corpora (100 languages are included,
total size 101GB) and a clean version of Common
Crawl (CC)2 (89 languages are included, total size
2500GB) following Liang et al. (2020). 108 lan-
guages are included in our multilingual corpora.
Note that we do not use any parallel corpora. The
pre-trained model F we use is XLM-R base model
implemented by HuggingFace3. As the size of the
whole corpora is very large, we use a random sam-
pling strategy to get part of the data for extracting
representation. For those languages with less than
10GB of data, we use all the data for extracting
representation; for those languages with more than

1https://en.wikipedia.org/wiki/Main_
Page

2https://commoncrawl.org/
3https://huggingface.co/

xlm-roberta-base

10GB of data, we sample 10GB out of all the data.
We use the method mentioned in Section 3.1 to
get the language representation. The dimension
of language representation is 768 as in XLM-R
base model each token is represented by a 768-
dimension vector. We reduce the 768-dimension
vectors v1:108 to 2-dimension (denoted as ṽ1:108)
for visualization with the t-SNE algorithm imple-
mented in Scikit-learn Python package 4 with de-
fault parameters. We use min-max normalization to
normalize ṽ1:108 to range [0, 1]. The 2-dimension
language representation are visualized in Figure 2.

4.2 Linguistics Analysis

We find that our representation can reflect linguis-
tic similarity and relatedness between languages
from different perspectives. We link language rep-
resentation with several linguistic language similar-
ity measures, also with some linguistic clustering
methods. We believe that representation sprach-
bund is a new paradigm for clustering similar and
related languages in linguistics. In Figure 2, each
language corresponds to one point (2-dimension

4https://scikit-learn.org/stable/

https://en.wikipedia.org/wiki/Main_Page
https://en.wikipedia.org/wiki/Main_Page
https://commoncrawl.org/
https://huggingface.co/xlm-roberta-base
https://huggingface.co/xlm-roberta-base
https://scikit-learn.org/stable/
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(a) (Subject, Object, Verbal) Order (b) Adjective Position (c) Apposition Position

Figure 3: Visualization of the relationship of our language representation and 3 language syntactic features. lan-
guages with the same syntactic features approximately fall in the same region. i.e., have similar language represen-
tation. Note that syntactic feature data of several languages is not available. Best viewed in color.

vector) on that figure. We label all points with the
ISO 639-1 code5 of their corresponding languages.

Relationship with Language Family We find
that the distribution of language representation has
great overlap and similarity with language family.
In Figure 2, the color of each point indicates the
language family of its corresponding language. 108
languages are categorized into 22 language families
according to Ethnologue6. All 108 languages and
their corresponding language family can be found
in Appendix A. We only label 10 language families
with ellipses for clarity. Though there are some
special cases, languages within the same language
family approximately fall in the same region.

Relationship with Geographical Sprachbund
Geographical sprachbund is a group of similar lan-
guages from geographical proximity and language
contact, while our representation sprachbund is
a group of similar languages from representation
proximity. We find that our language representa-
tion distribution is consistent with many geograph-
ical sprachbunds. In Figure 2, on the top-right,
Romance and Germanic language representation
closeness can be linked with the Western Europe
sprachbund from WHORF (1944); on the bottom-
left, the closeness between Indo-Aryan, Dravidian
and some Sino-Tibetan languages aligns with In-
dian subcontinent sprachbund proposed in Eme-
neau (1956); on the middle, the similar representa-
tion from Turkic, Uralic and Mongolic (mn) also

5http://www.infoterm.info/
standardization/ISO_639.php

6https://www.ethnologue.com/browse/
families

match Altaic sprachbund by BOSWORTH (1962).

Relationship with Lexicostatistics We find that
similarity in language representation also reflects
lexical similarity between languages. We collect
lexical similarity data from Ethnologue on several
languages (en, fr, de, pt, ro, ru, es, ca), denoted as
Simlex. We denote the similarity quantified by our
language representation as Simdata. We find that
Simlex and Simdata are strongly linear correlated,
with Pearson correlation coefficient of 0.83. Lexi-
costatistics is a method to measure lexical similarity
by comparing the percentage of lexical cognates
between languages (Hymes, 1960), which is very
time-consuming. Our language representation can
even further help linguists infer lexical similarity
more easily (e.g. linear regression between rep-
resentation similarity and lexical similarity). The
similarity data is shown in Appendix B.

Relationship with Language Syntax Lan-
guages have diverse syntactic features defined
by linguists and can be classified through these
features. We show that the distribution of our
language representation implies the syntactic
features of corresponding languages. We use the
lang2vec Python package (Littell et al., 2017)
to query the URIEL database7. We choose
three representative syntactic features: (subject,
object, verbal) word order, adjective position
and adposition position. As shown in Figure 3,
we find that languages with the same syntactic
features approximately have similar language
representation.

7http://www.cs.cmu.edu/~dmortens/uriel.
html

http://www.infoterm.info/standardization/ISO_639.php
http://www.infoterm.info/standardization/ISO_639.php
https://www.ethnologue.com/browse/families
https://www.ethnologue.com/browse/families
http://www.cs.cmu.edu/~dmortens/uriel.html
http://www.cs.cmu.edu/~dmortens/uriel.html
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Surprise: Help for Exploring Linguistic Mys-
tery Coincidentally, we find that our language
representation connect with an existing under-
explored linguistic mystery. In Figure 2, Uralic
and Austronesian languages (jv, id, ms) have sim-
ilar language representation. To the best of our
knowledge, only a few linguistic works (Ohnishi,
2006, 2009) discussed their similarity and relat-
edness. The reason for their similarity cannot be
explained by language family (genetic relationship)
or geographical sprachbund (geographical relation-
ship). Their language representation similarity may
be a clue that motivates linguists to find more simi-
larity between them and further explain how their
similarity formed.

With the above linguistic analysis, we show that
our language representation contain rich linguistic
genealogical, geographical, typological, and lexi-
cal features of languages, therefore the similarity
between language representation can be a good met-
ric for clustering languages. With a 768-dimension
vector as numerical feature for each language, we
can implement clustering algorithms to cluster sim-
ilar languages into a representation sprachbund.
Our language representation will be released later.

5 Representation Sprachbund For
Multilingual Pre-training

5.1 Datasets

We collect massive multilingual corpora for pre-
training and use four datasets for downstream task
evaluation. The multilingual corpora has been
described in Section 4.1. We use XNLI (Con-
neau et al., 2018), PAWS-X (Yang et al., 2019),
NER (Pan et al., 2017), Part of Speech Tag-
ging (POS)(Zeman et al., 2019), MLQA (Lewis
et al., 2019), TydiQA (Clark et al., 2020),
XQuAD(Artetxe et al., 2020) and cross-lingual
sentence retrieval (Artetxe and Schwenk, 2019)
as downstream tasks. For cross-lingual sentence
retrieval, we collect 21 language pairs and extract
1000 sentence-pairs for each language-pair from
tatoeba8. This task aims to find the nearest neigh-
bor for each sentence in the other language.

8https://tatoeba.org/eng/downloads

#i is the ith representation sprachbund

#1 af als an ast bar br ca ceb da de en eo es el fr fy ga gd
gl ia it ku lb nds nl nn no oc pt ro scn sco sq sv tl ur war

#2 ar arz bg bs cy fa hi hr id is mg mk ms ps ru sh sl so
sr su sw yi

#3 am as be ckb cs et eu fi he hu ja jv km la lo lt lv mr my
ne or pa pl sa sd sk th uk wuu zh

#4 az bn gu hy ka kk kn ko ky ml mn si ta te tt ug uz vi tr

Table 1: Components of 4 representation sprachbunds

5.2 Settings
We use the XLM-R base model as our base model.
Fairseq9 is used as our pre-training code base. The
Huggingface Transformers10 is used as our fine-
tuning code base. We use the hierarchical cluster-
ing algorithm implemented by Scikit-learn Python
package11 for clustering language representation.
We cluster languages into 4 representation sprach-
bunds. The reason for clustering 4 representation
sprachbunds is shown in Section 5.4. Components
of representation sprachbunds are shown in Ta-
ble 1. We use the shared vocabulary of XLM-R
base model for reusing the pre-trained parameters
and keeping the comparability with the baseline
model.

Pre-training Setting We initialize our model
with the XLM-R base model parameters and run
continual pre-training for 40000 updates on 8
Nvidia V100 GPUs with total batch size 8192. The
experiment takes about 8 days. We use Adam op-
timizer with a linear warm-up and set the learning
rate to 3e-5. We pre-train 4 models according to
our 4 representation sprachbund corpora. We also
randomly create 4 language clusters (each with the
same language number as the representation sprach-
bund). We pre-train 4 models with random lan-
guage clusters as baseline. To evaluate the impact
of continual pre-train corpora, we also continue to
pre-train XLM-R base model with our corpora.

Downstream Task Setting For XNLI, we set the
learning rate to 5e-6 and train 10 epochs with batch
size 32. For POS tagging, we set the learning rate
to 2e-5 and train 20 epochs with batch size 32. For
MLQA, we set the learning rate to 3e-5, train 2
epochs following BERT for SQuAD with batch
size 12. For PAWS-X, NER, TydiQA and XQuAD,
we follow the default settings in XTREME (Hu
et al., 2020).The downstream task performance on

9https://github.com/pytorch/fairseq
10https://huggingface.co/transformers/
11https://scikit-learn.org/stable/

https://tatoeba.org/eng/downloads
https://github.com/pytorch/fairseq
https://huggingface.co/transformers/
https://scikit-learn.org/stable/
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Tasks XNLI(Acc) PAWS-X(Acc) POS(F1) NER(F1) TydiQA(F1) XQuAD(F1) MLQA(F1)
XLM-R 75.0 84.2 79.7 60.8 45.9 70.3 65.0

XLM-R CT 74.8 84.8 79.9 60.9 46.3 70.5 65.4
Random 74.8 84.8 79.4 60.9 47.2 70.2 65.5

Ours 75.7 85.4 80.1 63.5 47.8 70.9 66.3

Table 2: Performance of our model fine-tune with English on 7 cross-lingual understanding tasks. XLM-R: directly
fine-tune on XLM-R model. XLM-R CT: continue to pre-train XLM-R base model with our corpora. Random: pre-
train one model for each random language cluster. Ours: pre-train one model for each representation sprachbund
respectively.

Languages de-en pt-en es-en nl-en tl-en ur-en el-en af-en fr-en it-en nl-de de-it es-pt de-el sv-da da-no fr-de it-ro ar-ru zh-ja pl-cs Avg
XLM-R 89.0 78.7 72.0 77.4 29.9 33.4 54.1 53.1 73.2 65.9 67.0 55.1 75.9 54.5 81.1 89.6 76.0 51.2 43.4 52.6 73.8 64.1
XLM-R CT 85.9 75.5 70.2 77.3 31.4 36.5 52.4 57.9 73.6 63.5 65.4 54.2 73.2 49.9 79.6 89.6 72.3 50.4 46.7 59.6 76.8 63.9
Ours 90.3 80.6 75.3 79.0 32.2 39.8 54.5 57.4 74.6 67.9 68.2 57.8 76.7 55.3 81.0 89.9 77.5 53.3 58.7 61.7 82.1 67.3

Table 3: Performance (Accuracy) of our model on cross-lingual sentence retrieval task without fine-tuning. Lan-
guages in different representation sprachbunds are separated with vertical lines.

one specific language is measured by fine-tuning
the model pre-trained with the corresponding repre-
sentation sprachbund corpora. We select the check-
point with the best performance on the dev set.
The results are averaged over three runs. For cross-
lingual sentence retrieval, we use the cosine similar-
ity of the average middle layer (the 7th layer of our
12-layer model) embedding for retrieval without
fine-tuning.

Evaluation Setting There are three main settings
in the fine-tuning stage. (i) Fine-tune with En-
glish. We fine-tune the model with English la-
beled data of downstream task. (ii) Fine-tune
with every language. e.g. We fine-tune the
model with the French labeled data and test its
performance on the French test set. (iii) Fine-
tune with pivot language. We choose a pivot
language li in its representation sprachbund m
based on similarity with other languages (if i =
argmaxi

∑
lj∈Lm

cos(vi, vj)), and fine-tune the
model with the pivot language labeled data.

5.3 Main Results

We conduct experiments in several settings on dif-
ferent types of tasks. We find that our approach ob-
tains significant improvements over XLM-R base
model and randomly clustered model when applied
in pre-training and downstream tasks.

Improving Pre-Training In Table 2, We find
that our approach significantly outperforms all
baseline models on 7 cross-lingual tasks. The 7
tasks are representative of almost all kinds of cross-
lingual understanding tasks, which shows the uni-
versal effectiveness of our model. The detailed

results of each task and each language are shown
in Appendix C.

Improving Fine-Tuning In Table 4, we also
show that without additional costly continual pre-
training, directly fine-tuning multiple models with
representation sprachbund also improves the per-
formance. We fine-tune each model (XLM-R base)
with the labeled pivot language data on XNLI of
each representation sprachbund. In Table 4, we
find that the improvement is significant (from 75.0
to 76.5). We also show that fine-tuning the model
with the labeled data from each language yields
significantly better results (77.4). We conclude
that fine-tuning with the language similar to target
language is likely to boost the performance.

Improving Multilingual Embeddings In Ta-
ble 3, we show that the performance on cross-
lingual sentence retrieval greatly improves with
our approach. Though our method is not designed
for improving multilingual embeddings, better mul-
tilingual embeddings are generated without addi-
tional fine-tuning.

Task XNLI PAWS-X POS NER TydiQA XQuAD MLQA
High 0.2 0.6 0 1.3 1.9 0.5 1.0
Low 1.2 0.6 1.2 3.1 1.4 0.8 1.5

Table 6: Low resource languages has more significant
gains with our approach. Low indicates the languages
are low resource and isolated.

5.4 Analysis

Gaining More on Low Resource Languages In
Table 6, we show that our approach brings more
gains to those low resource and isolated languages
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Languages en fr es de el ur bg ru ar hi sw tr vi th zh Avg
XNLI fine-tune with English

XLM-R 84.8 78.9 79.2 77.7 76.6 67.0 78.6 76.6 72.3 71.1 66.4 73.3 75.6 72.4 74.7 75.0
XLM-R CT 84.5 78.4 79.5 77.2 76.4 66.8 78.3 76.2 73.0 70.6 65.4 73.3 75.3 72.6 74.2 74.8

Random 84.3 78.0 78.5 77.1 76.5 67.3 78.2 76.2 72.2 70.5 66.4 73.5 75.4 72.8 74.7 74.8
Ours 84.1 78.4 80.0 77.8 77.3 68.2 78.4 76.7 74.5 72.1 68.6 74.9 75.3 74.1 74.6 75.7

XNLI fine-tune with pivot language
XLM-R 83.6 79.5 80.0 79.8 77.4 69.3 80.1 78.4 74.2 73.3 66.9 74.2 78.8 76.1 76.3 76.5

Ours 84.2 80.0 80.4 80.4 77.8 69.9 80.2 78.0 75.5 73.3 70.9 75.0 78.3 76.4 75.7 77.1
XNLI fine-tune with every language

XLM-R 84.6 79.5 80.9 79.8 79.1 67.1 80.2 78.4 75.5 73.9 71.1 77.2 78.8 76.1 78.4 77.4
Ours 84.1 80.4 81.1 80.4 78.9 66.5 80.3 78.0 77.2 74.3 72.6 76.9 78.3 76.4 78.0 77.6

Table 4: Performance (Accuracy) of our model on XNLI dataset on three settings. Note that we do not use the result
in (Conneau et al., 2020), instead we fine-tune the model in our settings. Languages in different representation
sprachbunds are separated with vertical lines. Pivot languages are bold in the first row.

Languages en fr es de el ur bg ru ar hi sw tr vi th zh Avg
XLM-R+All 84.8 81.3 82.0 80.5 80.0 71.7 81.6 79.1 78.2 75.6 73.1 78.1 79.4 77.2 79.8 78.8

XLM-R+RSB 85.3 80.9 81.8 80.6 80.0 71.2 81.3 79.4 77.7 75.9 72.6 77.5 79.0 77.4 78.3 78.6
RSB+ 85.6 81.4 81.7 80.5 80.9 70.9 82.0 79.5 78.0 76.8 73.8 77.6 78.7 77.3 79.7 79.0

Table 5: Downstream task (XNLI) data efficiency of our model. XLM-R+All: use XNLI data in all languages to
fine-tune XLM-R base model. XLM-R+RSB: use XNLI data in the same representation sprachbund to fine-tune
XLM-R base model. RSB+: use XNLI data in the same representation sprachbund to fine-tune the pre-trained
model. Different representation sprachbunds are separated with vertical lines.

(including ur, ar, sw, tr, vi, th, zh, pl, ja, ko, id, fi,
bn, te, tl, af, ms, fa, mr, et, he, jv, eu, yo, my, hu,
ta, ml, kk ,kn, ka) compared with those high re-
source languages (including en, de, es, ru, bg, hi, it,
fr, nl, pt) which will be beneficial for bridging the
large performance gap between high resource and
low resource languages. An intuitive explanation is
that those low resource and isolated languages suf-
fer from more serious cross-lingual contradictions
when trained with those dissimilar high resource
languages. When clustered with similar languages,
those low resource and isolated languages are likely
to benefit a lot.

Achieving Data Efficiency in Downstream
Tasks We show that with the continual pre-
training step with representation sprachbund cor-
pora, less data for downstream tasks is needed
to achieve high accuracy. In Table 5, on XNLI
task, we find that fine-tuning our pre-trained model
with all the downstream task data from each rep-
resentation sprachbund (less than 30% of all the
data) achieves better results than fine-tuning XLM-
R with all the data (from 78.8 to 79.0). We also
find that fine-tuning XLM-R with the representa-
tion sprachbund data achieves results comparable
with fine-tuning using all the data (78.6 and 78.8),
which means that using data from similar languages
(though less) works well.

Choosing the Number of Representation
Sprachbunds We conduct experiments to
choose the number of representation sprachbunds.
We cluster languages into 1,2,4,8 representa-
tion sprachbunds, and pre-train 1,2,4,8 models,
respectively. We evaluate through fine-tuning
with English on the XNLI dataset. As shown
in Figure 4, with the increase of the number of
representation sprachbunds, the performance also
increases. We find that clustering languages into 4
representation sprachbunds is a desirable choice,
as from 4 to 8 little gain is obtained but the cost
doubles.

Figure 4: Impact of the number of representation
sprachbunds on the performance. Performance (Accu-
racy) is measured by fine-tuning with English labeled
data on XNLI task.
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6 Conclusion

To reduce the cross-lingual contradictions in pre-
training one model for all languages, we propose
to merge similar languages into a representation
sprachbund and pre-train one model for each rep-
resentation sprachbund. Results show that our ap-
proach outperforms strong baselines in various set-
tings and tasks. We also identify the relationship
between our representation sprachbund with lin-
guistic theories. Applications of our representation
sprachbund as a paradigm for clustering languages
in linguistics will be explored in subsequent work.
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A Linguistic Language Family of All
Languages

Language Family Languages

Germantic
af,als,bar,cy,da,de,en,fy,gd,is,

lb,nds,nl,nn,no,sco,sv,yi

Greek el
Japonic ja

Sino-Tibetan my,wuu,zh
Turkic az,kk,ky,tr,tt,ug,uz
Uralic et,fi,hu

Austroasiatic km,vi,war
Dravidian kn,ml,ta,te

Slavic
be,bg,bs,cs,hr,lt,lv,mk,

pl,ru,sh,sk,sl,sr,uk

Kartvelian ka
Niger-Congo sw
Austronesian ceb,id,jv,mg,ms,su,tl

Armenian hy
Koreanic ko
Albanian sq
Tai-Kadai lo,th

Romance
an,ast,br,ca,es,fr,gl,
it,la,oc,pt,ro,scn,eu

Constructed eo,ia
Afro-Asiatic am,ar,arz,he,so

Celtic ga

Indo-Aryan
as,bn,ckb,fa,gu,hi,
ku,mr,ne,or,pa,ps

Mongolic sa,sd,si,ur

Table 7: Languages and their corresponding language
family

B Lexical similarity and Embedding
similarity

Languages ca en fr de pt ro ru es
ca 1.00 - 0.85 - 0.85 0.73 - 0.85
en - 1.00 0.27 0.60 - - 0.24 -
fr 0.85 0.27 1.00 0.28 0.75 0.75 - 0.75
de - 0.60 0.28 1.00 - - - -
pt 0.85 - 0.75 - 1.00 0.72 - 0.88
ro 0.73 - 0.75 - 0.72 1.00 0.72 0.71
ru - 0.24 - - - - 1.00 -
es 0.85 - 0.75 - 0.88 0.71 - 1.00

Table 8: Lexical similarity from Ethnologue. Some
data is missing.

Languages ca en fr de pt ro ru es
ca 1.00 0.08 0.76 0.22 0.63 0.56 0.23 0.81
en 0.08 1.00 0.26 0.38 0.28 0.17 0.31 0.00
fr 0.76 0.26 1.00 0.49 0.63 0.65 0.47 0.68
de 0.22 0.38 0.49 1.00 0.47 0.49 0.59 0.26
pt 0.63 0.28 0.63 0.47 1.00 0.61 0.45 0.64
ro 0.56 0.17 0.65 0.49 0.61 1.00 0.48 0.56
ru 0.23 0.31 0.47 0.59 0.45 0.48 1.00 0.24
es 0.81 0.00 0.68 0.26 0.64 0.56 0.24 1.00

Table 9: Language embedding similarity

C Detailed Results of Cross-lingual Tasks

Languages ar hi de en es zh vi Avg
XLM-R 55.3 61.3 62.1 80.0 68.1 61.5 66.9 65.0

XLM-R CT 57.1 61.7 61.9 80.1 68.0 61.5 67.3 65.4
Random 57.2 62.3 62.0 81.0 67.6 61.6 67.2 65.5

Ours 59.2 63.1 62.9 80.4 69.3 61.4 67.6 66.3

Table 10: Performance (F1 score) on MLQA dataset.
We examine the results on MLQA on fine-tuning with
English setting. Languages in different embedding
sprachbunds are separated with vertical lines.

Languages de en es fr ja zh ko Avg
XLM-R 87.5 94.4 88.5 88.5 75.9 80.1 74.7 84.2

XLM-R CT 87.7 94.4 88.8 88.5 77.2 81.1 75.6 84.8
Random 87.0 94.4 88.8 88.9 77.4 80.0 76.7 84.8

Ours 88.4 94.9 89.1 89.6 78.2 80.1 77.2 85.4

Table 11: Performance (F1 score) on PAWS-X dataset.
We examine the results on PAWS-X on fine-tuning with
English setting. Languages in different embedding
sprachbunds are separated with vertical lines.
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Languages ar ru bg hi ur de el en es fr it nl pt th zh pl tr vi Avg
XLM-R 69.5 86.6 88.5 72.2 59.8 92.3 87.6 96.4 88.8 89.3 92.1 88.6 90.0 58.6 59.7 84.0 73.6 56.7 79.7

XLM-R CT 69.4 86.1 88.6 68.2 61.5 91.5 88.5 96.4 89.6 89.8 92.2 88.9 90.0 57.8 62.9 84.0 74.1 57.9 79.9
Random 68.5 86.5 88.6 69.2 59.7 92.3 87.9 96.3 88.1 88.9 92.0 88.4 90.0 58.2 60.5 83.9 72.9 57.1 79.4

Ours 69.3 85.4 88.2 70.8 60.1 92.4 88.6 95.6 89.1 89.4 92.3 88.9 90.9 58.5 63.0 84.7 75.5 58.5 80.1

Table 12: Performance (F1 score) on POS tagging dataset. We examine the results on POS tagging on fine-tuning
with English setting. Languages in different embedding sprachbunds are separated with vertical lines.

Languages en ar ru sw id fi bn ko te Avg
XLM-R 60.7 52.5 50.1 50.2 63.8 51.2 31.1 23.0 30.9 45.9

XLM-R CT 60.1 53.7 50.6 54.5 66.1 52.4 31.0 21.6 26.7 46.3
Random 61.2 52.4 50.1 51.1 65.5 50.1 38.3 22.2 33.5 47.2

Ours 62.8 54.6 51.6 49.3 66.1 50.8 39.1 22.6 33.7 47.8

Table 13: Performance (F1 score) on TydiQA dataset. We examine the results on TydiQA on fine-tuning with
English setting. Languages in different embedding sprachbunds are separated with vertical lines.

Languages en es de el ru hi ar th zh tr vi Avg
XLM-R 83.0 76.1 73.2 72.4 73.3 68.0 66.0 68.0 51.7 67.4 73.8 70.3

XLM-R CT 83.4 75.9 73.4 72.4 73.7 69.2 65.8 68.1 52.8 66.7 74.0 70.5
Random 82.8 76.0 72.8 71.9 73.2 68.9 65.5 67.4 52.6 66.8 74.1 70.2

Ours 82.8 75.5 74.5 73.0 73.4 69.5 67.3 68.0 53.1 68.5 73.8 70.9

Table 14: Performance (F1 score) on XQuAD dataset. We examine the results on XQuAD on fine-tuning with
English setting. Languages in different embedding sprachbunds are separated with vertical lines.

Languages en de el tl af nl ur fr pt es it ar id ms hi fa bg ru sw fa
XLM-R 83.0 74.3 72.5 71.4 74.6 80.4 50.1 76.9 77.9 70.8 77.2 45.1 50.1 56.4 66.1 40.7 77.3 63.6 66.9 40.7

XLM-R CT 82.5 74.2 72.8 70.9 74.8 80.0 53.3 77.0 77.2 71.3 77.4 47.5 47.4 62.2 65.6 42.2 76.6 63.7 65.9 42.2
Random 82.7 74.2 72.6 71.2 74.7 80.2 51.7 77.0 77.6 71.0 77.3 46.3 48.7 59.3 65.9 41.4 77.0 63.7 66.4 41.4

Ours 83.1 76.4 74.2 73.1 78.2 81.8 47.2 78.7 78.2 74.5 78.4 51.1 49.6 68.7 65.2 45.4 78.0 64.1 67.0 45.4
Languages mr et ja zh he jv eu fi yo my hu ta te vi ml tr ko kk bn ka

XLM-R 59.5 72.3 18.3 24.7 52.1 58.5 60.2 75.3 41.5 51.7 76.1 53.7 47.0 65.6 61.3 73.9 49.7 44.6 66.3 65.5
XLM-R CT 60.9 71.7 18.1 21.9 50.8 58.2 60.1 74.5 38.3 51.2 75.2 52.9 48.2 65.7 60.7 74.5 49.0 49.6 66.2 64.7

Random 60.2 72.0 18.2 23.3 51.5 58.3 60.2 74.9 39.9 51.4 75.7 53.3 47.6 65.7 61.0 74.2 49.4 47.1 66.3 65.1
Ours 62.8 73.8 19.4 21.9 53.4 63.2 65.7 76.0 51.6 56.0 76.9 55.6 55.0 66.8 65.0 77.0 53.0 50.8 70.5 67.1

Table 15: Performance (F1 score) on NER dataset. We examine the results on NER on fine-tuning with English
setting. Languages in different embedding sprachbunds are separated with vertical lines.


