
Findings of the Association for Computational Linguistics: ACL-IJCNLP 2021, pages 103–119
August 1–6, 2021. ©2021 Association for Computational Linguistics

103

SyGNS: A Systematic Generalization Testbed
Based on Natural Language Semantics

Hitomi Yanaka1,2, Koji Mineshima3, and Kentaro Inui4,2
1The University of Tokyo, 2RIKEN, 3Keio University, 4Tohoku University

hyanaka@is.s.u-tokyo.ac.jp, minesima@abelard.flet.keio.ac.jp,
inui@ecei.tohoku.ac.jp

Abstract

Recently, deep neural networks (DNNs) have
achieved great success in semantically chal-
lenging NLP tasks, yet it remains unclear
whether DNN models can capture composi-
tional meanings, those aspects of meaning that
have been long studied in formal semantics.
To investigate this issue, we propose a Sys-
tematic Generalization testbed based on Natu-
ral language Semantics (SyGNS), whose chal-
lenge is to map natural language sentences to
multiple forms of scoped meaning representa-
tions, designed to account for various semantic
phenomena. Using SyGNS, we test whether
neural networks can systematically parse sen-
tences involving novel combinations of logi-
cal expressions such as quantifiers and nega-
tion. Experiments show that Transformer and
GRU models can generalize to unseen combi-
nations of quantifiers, negations, and modifiers
that are similar to given training instances in
form, but not to the others. We also find that
the generalization performance to unseen com-
binations is better when the form of meaning
representations is simpler. The data and code
for SyGNS are publicly available at https:
//github.com/verypluming/SyGNS.

1 Introduction

Deep neural networks (DNNs) have shown im-
pressive performance in various language under-
standing tasks (Wang et al., 2019a,b, i.a.), in-
cluding semantically challenging tasks such as
Natural Language Inference (NLI; Dagan et al.,
2013; Bowman et al., 2015). However, a number
of studies to probe DNN models with various NLI
datasets (Naik et al., 2018; Dasgupta et al., 2018;
Yanaka et al., 2019; Kim et al., 2019; Richardson
et al., 2020; Saha et al., 2020; Geiger et al., 2020)
have reported that current DNN models have some
limitations to generalize to diverse semantic phe-
nomena, and it is still not clear whether DNN mod-

Training Sentences

One wild dog ran

All dogs ran

One dog did not run

Generalization Test

All wild dogs ran

All dogs did not run

MODIFIER

QUANTIFIER

NEGATION

Multiple meaning representations

MR1: ∀x.(dog↓(x) ∧wild↓(x)) → (run↑(x))

MR2: ALL AND DOG WILD RUN

MR3:
x1

wild(x1)
dog(x1)

⇒ run(x1)

Evaluation methods
Exact matching: G = P ?

Theorem Proving: G ⇔ P ?

Polarity: {dog↓,wild↓, run↑}

Clausal form:

b1 IMP b2 b3
b2 REF x1
b2 wild x1
b2 dog x1
b3 run x1

Figure 1: Illustration of our evaluation protocol using
SyGNS. The goal is to map English sentences to mean-
ing representations. The generalization test evaluates
novel combinations of operations (modifier, quantifier,
negation) in the training set. We use multiple meaning
representations and evaluation methods.

els obtain the ability to capture compositional as-
pects of meaning in natural language.

There are two issues to consider here. First, re-
cent analyses (Talmor and Berant, 2019; Liu et al.,
2019; McCoy et al., 2019) have pointed out that
the standard paradigm for evaluation, where a test
set is drawn from the same distribution as the train-
ing set, does not always indicate that the model
has obtained the intended generalization ability for
language understanding. Second, the NLI task of
predicting the relationship between a premise sen-
tence and an associated hypothesis without asking
their semantic interpretation tends to be black-box,
in that it is often difficult to isolate the reasons why
models make incorrect predictions (Bos, 2008).

To address these issues, we propose SyGNS
(pronounced as signs), a Systematic Generaliza-
tion testbed based on Natural language Semantics.
The goal is to map English sentences to various
meaning representations, so it can be taken as a
sequence-to-sequence semantic parsing task.

https://github.com/verypluming/SyGNS
https://github.com/verypluming/SyGNS


104

Figure 1 illustrates our evaluation protocol us-
ing SyGNS. To address the first issue above, we
probe the generalization capability of DNN mod-
els on two out-of-distribution tests: systematic-
ity (Section 3.1) and productivity (Section 3.2),
two concepts treated as hallmarks of human cog-
nitive capacities in cognitive sciences (Fodor and
Pylyshyn, 1988; Calvo and Symons, 2014). We
use a train-test split controlled by each target con-
cept and train models with a minimally sized train-
ing set (Basic set) involving primitive patterns
composed of semantic phenomena such as quan-
tifiers, modifiers, and negation. If a model learns
different properties of each semantic phenomenon
from the Basic set, it should be able to parse a sen-
tence with novel combination patterns. Otherwise,
a model has to memorize an exponential number
of combinations of linguistic expressions.

To address the second issue, we use multi-
ple forms of meaning representations developed
in formal semantics (Montague, 1973; Heim and
Kratzer, 1998; Jacobson, 2014) and their respec-
tive evaluation methods. We use three scoped
meaning representation forms, each of which
preserves the same semantic information (Sec-
tion 3.3). In formal semantics, it is gener-
ally assumed that scoped meaning representations
are standard forms for handling diverse semantic
phenomena such as quantification and negation.
Scoped meaning representations also enable us to
evaluate the compositional generalization ability
of the models to capture semantic phenomena in
a more fine-grained way. By decomposing an out-
put meaning representation into constituents (e.g.,
words) in accordance with its structure, we can
compute the matching ratio between the output
representation and the gold standard representa-
tion. Evaluating the models on multiple mean-
ing representation forms also allows us to explore
whether the performance depends on the complex-
ity of the representation forms.

This paper provides three main contributions.
First, we develop the SyGNS testbed to test model
ability to systematically transform sentences in-
volving linguistic phenomena into multiple forms
of scoped meaning representations. The data and
code for SyGNS are publicly available at https:
//github.com/verypluming/SyGNS. Second, we
use SyGNS to analyze the systematic generaliza-
tion capacity of two standard DNN models: Gated
Recurrent Unit (GRU) and Transformer. Experi-

ments show that these models can generalize to
unseen combinations of quantifiers, negations, and
modifiers to some extent. However, the generaliza-
tion ability is limited to the combinations whose
forms are similar to those of the training instances.
In addition, the models struggle with parsing sen-
tences involving nested clauses. We also show that
the extent of generalization depends on the choice
of primitive patterns and representation forms.

2 Related Work

The question of whether neural networks obtain
the systematic generalization capacity has long
been discussed (Fodor and Pylyshyn, 1988; Mar-
cus, 2003; Baroni, 2020). Recently, empirical
studies using NLI tasks have revisited this ques-
tion, showing that current models learn undesired
biases (Glockner et al., 2018; Poliak et al., 2018;
Tsuchiya, 2018; Geva et al., 2019; Liu et al., 2019)
and heuristics (McCoy et al., 2019), and fail to
consistently learn various inference types (Rozen
et al., 2019; Nie et al., 2019; Yanaka et al., 2019;
Richardson et al., 2020; Joshi et al., 2020). In
particular, previous works (Goodwin et al., 2020;
Yanaka et al., 2020; Geiger et al., 2020; Yanaka
et al., 2021) have examined whether models learn
the systematicity of NLI on monotonicity and
veridicality. While this line of work has shown
certain limitations of model generalization capac-
ity, it is often difficult to figure out why the NLI
model fails and how to improve it, partly because
NLI tasks depend on multiple factors, including
semantic interpretation of target phenomena and
acquisition of background knowledge. By focus-
ing on semantic parsing rather than NLI, one can
probe to what extent models systematically inter-
pret the meaning of sentences according to their
structures and the meanings of their constituents.

Meanwhile, datasets for analysing the compo-
sitional generalization ability of DNN models in
semantic parsing have been proposed, including
SCAN (Lake and Baroni, 2017; Baroni, 2020),
CLUTRR (Sinha et al., 2019), and CFQ (Keysers
et al., 2020). For example, the SCAN task is to
investigate whether models trained with a set of
primitive instructions (e.g., jump → JUMP) and
modifiers (e.g., walk twice → WALK WALK) gen-
eralize to new combinations of primitives (e.g.,
jump twice → JUMP JUMP). However, these
datasets deal with artificial languages, where the
variation of linguistic expressions is limited, so it

https://github.com/verypluming/SyGNS
https://github.com/verypluming/SyGNS


105

is not clear to what extent the models systemati-
cally interpret various semantic phenomena in nat-
ural language, such as quantification and negation.

Regarding the generalization capacity of DNN
models in natural language, previous studies have
focused on syntactic and morphological general-
ization capacities such as subject-verb agreement
tasks (Linzen et al., 2016; Gulordava et al., 2018;
Marvin and Linzen, 2018, i.a.). Perhaps closest
to our work is the COGS task (Kim and Linzen,
2020) for probing the generalization capacity of se-
mantic parsing in a synthetic natural language frag-
ment. For instance, the task is to see whether mod-
els trained to parse sentences where some lexical
items only appear in subject position (e.g., John
ate the meat) can generalize to structurally related
sentences where these items appear in object posi-
tion (e.g., The kid liked John). In contrast to this
work, our focus is more on semantic parsing of
sentences with logical and semantic phenomena
that require scoped meaning representations. Our
study also improves previous work on the compo-
sitional generalization capacity in semantic pars-
ing in that we compare three types of meaning rep-
resentations and evaluate them at multiple levels,
including logical entailment, polarity assignment,
and partial clause matching (Section 3.3).

3 Overview of SyGNS

We use two evaluation concepts to assess the sys-
tematic capability of models: systematicity (Sec-
tion 3.1) and productivity (Section 3.2). In evalu-
ating these two concepts, we use synthesized pairs
of sentences and their meaning representations to
control a train-test split (Section 3.4). The main
idea is to analyze models trained with a minimum
size of a training set (Basic set) involving prim-
itive patterns composed of various semantic phe-
nomena; if a model systematically learns primitive
combination patterns in the Basic set, it should
parse a new sentence with different combination
patterns. We target three types of scoped meaning
representations and use their respective evaluation
methods, according to the function and structure
of each representation form (Section 3.3).

3.1 Systematicity

Table 1 illustrates how we test systematicity, i.e.,
the capacity to interpret novel combinations of
primitive semantic phenomena. We generate Ba-
sic set 1 by combining various quantifiers with sen-

Pattern Sentence
Train

Primitive quantifier One tiger ran
Basic 1 EXI A tiger ran

NUM Two tigers ran
UNI Every tiger ran

Basic 2 ADJ One small tiger ran
ADV One tiger ran quickly
CON One tiger ran or came

Test
EXI+ADJ A small tiger ran
NUM+ADV Two tigers ran quickly
UNI+CON Every tiger ran or came

Table 1: Training and test instances for systematicity.

tences without modifiers. We also generate Basic
set 2 by setting an arbitrary quantifier (e.g., one)
to a primitive quantifier and combining it with var-
ious types of modifiers. We then evaluate whether
models trained with Basic sets 1 and 2 can parse
sentences involving unseen combinations of quan-
tifiers and modifiers. We also test the combination
of quantifiers and negation in the same manner;
the detail is given in Appendix D.

To provide a controlled setup, we use three
quantifier types: existential quantifiers (EXI), nu-
merals (NUM), and universal quantifiers (UNI).
Each type has two patterns: one and a for EXI, two
and three for NUM, and all and every for UNI. We
consider three settings where the primitive quanti-
fier is set to the type EXI, NUM, or UNI.

For modifiers, we distinguish three types — ad-
jectives (ADJ), adverbs (ADV), and logical con-
nectives (CON; conjunction and, disjunction or)
— and ten patterns for each. Note that each modi-
fier type differs in its position; an adjective appears
inside a noun phrase (e.g., one small tiger), while
an adverb (e.g., quickly) and a coordinated phrase
with a logical connective (e.g., or came) appears
at the end of a sentence. Although Table 1 only
shows the pattern generated by the primitive quan-
tifier one and the noun tiger, the noun can be re-
placed with ten other nouns (e.g., dog, cat, etc.) in
each setting. See Appendix A for more details on
the fragment of English considered here.

3.2 Productivity

Productivity refers to the capacity to interpret an
indefinite number of sentences with recursive oper-
ations. To test productivity, we use embedded rela-
tive clauses, which interact with quantifiers to gen-



106

Pattern Sentence
Train (Basic 1: depth 0, Basic 2: depth 1)

Basic 1 NON Two dogs loved Ann
Basic 2 PER Bob liked a bear [that chased

all polite cats]
CEN Two dogs [that all cats

kicked] loved Ann
Test (examples: depth 2)

PER+PER Bob liked a bear
[that chased all polite cats
[that loves Ann]]

PER+CEN Two dogs [that a bear
[that chased all polite cats]
kicked] loved Ann

Table 2: Training and test instances for productivity.

erate logically complex sentences. Table 2 shows
examples. We provide two Basic sets; Basic set 1
consists of sentences without embedded clauses
(NON) and Basic set 2 consists of sentences with a
single embedded clause, which we call sentences
with depth one. We then test whether models
trained with Basic sets 1 and 2 can parse a sentence
involving deeper embedded clauses, i.e., sentences
whose depth is two or more. As Table 2 shows,
we consider both peripheral-embedding (PER) and
center-embedding (CEN) clauses.

3.3 Meaning representation and evaluation
Overview To evaluate generalization capacity
in semantic parsing at multiple levels, we use
three types of scoped meaning representations:
(i) First-Order Logic (FOL) formulas, (ii) Dis-
course Representation Structures (DRSs; Kamp
and Reyle, 1993), and (iii) Variable-Free (VF) for-
mulas (Baader et al., 2003; Prat-Hartmann and
Moss, 2009). DRSs can be converted to clausal
forms (van Noord et al., 2018a) for evaluation. For
instance, the sentence (1) is mapped to the FOL
formula in (2), the DRS in (3a), its clausal form in
(3b), and the VF formula in (4).

(1) One white dog did not run.

(2) ∃x1.(white(x1)∧dog(x1)∧¬run(x1))

(3) a.

x1
white(x1)

dog(x1)

¬ run(x1)

b.

b1 REF x1
b1 white x1
b1 dog x1
b1 NOT b2
b2 run x1

(4) EXIST AND WHITE DOG NOT RUN

Using these multiple forms enables us to analyze
whether the difficulty in semantic generalization

depends on the format of meaning representations.
Previous studies for probing generalization ca-

pacity in semantic parsing (e.g., Lake and Baroni,
2017; Sinha et al., 2019; Keysers et al., 2020; Kim
and Linzen, 2020) use a fixed type of meaning
representation, with its evaluation method limited
to the exact-match percentage, where an output
is considered correct only if it exactly matches
the gold standard. However, this does not prop-
erly assess whether models capture the structure
and function of meaning representation. First,
exact matching does not directly take into ac-
count whether two meanings are logically equiv-
alent (Blackburn and Bos, 2005): for instance,
schematically two formulas A ∧ B and B ∧ A
are different in form but have the same meaning.
Relatedly, scoped meaning representations for nat-
ural languages can be made complex by includ-
ing parentheses and variable renaming mechanism
(the so-called α-conversion in λ-calculus). For in-
stance, we want to identify two formulas which
only differ in variable naming, e.g., ∃x1.F (x1)
and ∃x2.F (x2). It is desirable to compare ex-
act matching with alternative evaluation methods,
and to consider alternative meaning representa-
tions that avoid these problems. Having this back-
ground in mind, below we will describe each type
of meaning representation in detail.

FOL formula FOL formulas are standard forms
in formal and computational semantics (Blackburn
and Bos, 2005; Jurafsky and Martin, 2009), where
content words such as nouns and verbs are rep-
resented as predicates, and function words such
as quantifiers, negation, and connectives are rep-
resented as logical operators with scope relations
(cf. the example in (2)). To address the issue
on evaluation, we consider two ways of evalu-
ating FOL formulas in addition to exact match-
ing: (i) automated theorem proving (ATP) and (ii)
monotonicity-based polarity assignment.

First, FOL formulas can be evaluated by check-
ing the logical entailment relationships that di-
rectly consider whether two formulas are logically
equivalent. Thus we evaluate predicted FOL for-
mulas by using ATP. We check whether a gold for-
mula G entails prediction P and vice versa, using
an off-the-shelf FOL theorem prover1. To see the
logical relationship between G and P , we measure
the accuracy for unidirectional and bidirectional

1We use a state-of-the-art FOL prover Vampire available
at https://github.com/vprover/vampire

https://github.com/vprover/vampire


107

One dog↑ ran↑: ∃x.(dog↑(x) ∧ run↑(x))

All dogs↓ ran↑: ∀x.(dog↓(x) → run↑(x))

All dogs↓ did not run↓: ∀x.(dog↓(x) → ¬run↓(x))

Table 3: Examples of monotonicity-based polarity as-
signments for FOL formulas.

entailment: G ⇒ P , G ⇐ P , and G ⇔ P .
Second, the polarity of each content word ap-

pearing in a sentence can be extracted from the
FOL formula using its monotonicity property (van
Benthem, 1986; MacCartney and Manning, 2007).
This enables us to analyze whether models can
correctly capture entailment relations triggered by
quantifier and negation scopes. Table 3 shows
some examples of monotonicity-based polarity as-
signments. For example, existential quantifiers
such as one are upward monotone (shown as ↑)
with respect to the subject NP and the VP, because
they can be substituted with their hypernyms (e.g.,
One dog ran ⇒ One animal moved). These po-
larities can be extracted from the FOL formula be-
cause ∃ and ∧ are upward monotone operators in
FOL. Universal quantifiers such as all are down-
ward monotone (shown as ↓) with respect to the
subject NP and upward monotone with respect to
the VP. Expressions in downward monotone po-
sition can be substituted with their hyponymous
expressions (e.g., All dogs ran ⇒ All white dogs
ran). The polarity can be reversed by embedding
another downward entailing context like negation,
so the polarity of run in the third case in Table 3
is flipped to downward monotone.2 For evaluation
based on monotonicity, we extract a polarity for
each content word in a gold formula and a predic-
tion and calculate the F-score for each monotonic-
ity direction (upward and downward).

DRS A DRS is a form of scoped meaning repre-
sentations proposed in Discourse Representation
Theory, a well-studied formalism in formal se-
mantics (Kamp and Reyle, 1993; Asher, 1993;
Muskens, 1996). By translating a box notation as
in (3a) to the clausal form as in (3b), one can evalu-
ate DRSs by COUNTER3, which is a standard tool
for evaluating neural DRS parsers (Liu et al., 2018;
van Noord et al., 2018b). COUNTER searches for
the best variable mapping between predicted DRS
clauses and gold DRS clauses and calculates an

2We follow the surface order of NPs and take it that the
subject NP always take scope over the VP.

3https://github.com/RikVN/DRS_parsing

F-score over matching clause, which is similar to
SMATCH (Cai and Knight, 2013), an evaluation
metric designed for Abstract Meaning Represen-
tation (AMR; Banarescu et al., 2013). COUNTER

alleviates the process of variable renaming and
correctly evaluates the cases where the order of
clauses is different from that of gold answers.

VF formula FOL formulas in our fragment
have logically equivalent forms in a variable-
free format, which does not contain parenthe-
ses nor variables as in the example (4). Our
format is similar to a variable-free form in De-
scription Logic (Baader et al., 2003) and Natural
Logic (Prat-Hartmann and Moss, 2009). VF for-
mulas alleviate the problem of parentheses and
variable renaming, while preserving semantic in-
formation (cf. Wang et al., 2017). Due to the
equivalence with FOL formulas, it is possible to
extract polarities from VF formulas. See Ap-
pendix A for more examples of VF formulas.

3.4 Data generation
To provide synthesized data, we generate sen-
tences using a context-free grammar (CFG) as-
sociated with semantic composition rules in the
standard λ-calculus (see Appendix A for details).
Each sentence is mapped to an FOL formula and
VF formula by using the semantic composition
rules specified in the CFG. DRSs are converted
from the generated FOL formulas using the stan-
dard mapping (Kamp and Reyle, 1993). To gen-
erate controlled fragments for each train-test split,
the CFG rules automatically annotate the types of
semantic phenomena involved in sentences gener-
ated. We annotate seven types: the positions of
quantifiers (subject or object), negation, adjectives,
adverbs, conjunction, disjunction, and embedded
clause types (peripheral or center embedding).

To test systematicity, we generate sentences us-
ing the CFG, randomly select 50,000 examples,
and then split them into 12,000 training examples
and 38,000 test examples according to a primitive
quantifier. To test productivity, we apply up to four
recursive rules and randomly select 20,000 exam-
ples for each depth.

4 Experiments and Analysis

Using SyGNS, we test the performance of Gated
Recurrent Unit (GRU; Cho et al., 2014) and
Transformer (Vaswani et al., 2017) in an encoder-
decoder setup. These are widely used models

https://github.com/RikVN/DRS_parsing


108

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
primitive quantifier: existential quantifier one

EXI 96.1 99.5 99.9 99.7 99.9 99.8 99.9 100.0
NUM 7.6 12.7 86.0 37.0 18.1 96.9 99.7 20.7
UNI 3.1 4.4 56.8 39.5 8.3 2.2 74.2 17.7
Valid 98.2 99.7 100.0 99.6 100.0 100.0 100.0 100.0

primitive quantifier: numeral two
EXI 11.6 42.1 91.4 45.3 34.0 84.5 98.3 10.5
NUM 59.5 83.6 98.7 42.8 99.9 97.4 99.8 80.9
UNI 2.5 1.8 68.6 39.2 0.0 0.1 72.3 90.9
Valid 84.3 99.7 100.0 98.9 100.0 100.0 100.0 100.0

primitive quantifier: universal quantifier every
EXI 1.6 0.3 43.8 61.3 2.1 0.2 70.8 20.8
NUM 1.4 0.3 75.9 69.3 0.1 0.1 76.8 99.7
UNI 33.8 96.5 99.4 100.0 100.0 100.0 100.0 99.9
Valid 93.4 100.0 100.0 99.3 100.0 100.0 100.0 99.9

primitive quantifiers: one, two, every
EXI 99.7 99.0 100.0 100.0 100.0 100.0 100.0 100.0
NUM 91.2 96.4 99.2 99.3 100.0 100.0 100.0 100.0
UNI 95.7 97.6 99.4 100.0 99.9 100.0 100.0 100.0
Valid 98.4 100.0 100.0 99.3 100.0 100.0 100.0 100.0

Table 4: Accuracy by quantifier type. “DRS (cnt)” columns show the accuracy of predicted DRSs by COUNTER,
and “Valid” rows show the validation accuracy. Each accuracy is measured by exact matching, except for “DRS
(cnt)” columns.

to perform well on hierarchical generalization
tasks (McCoy et al., 2018; Russin et al., 2020).

4.1 Experimental setup

In all experiments, we trained each model for 25
epochs with early stopping (patience = 3). We per-
formed five runs and reported their average accu-
racies. The input sentence is represented as a se-
quence of words, using spaces as a separator. The
maximum input and output sequence length is set
to the length of a sequence with maximum depths
of embedded clauses. We set the dropout proba-
bility to 0.1 on the output and used a batch size
of 128 and an embedding size of 256. Since in-
corporating pre-training would make it hard to dis-
tinguish whether the models’ ability to perform se-
mantic parsing comes from training data or from
pre-training data, we did not use any pre-training.

For the GRU, we used a single-layer encoder-
decoder with global attention and a dot-product
score function. Since a previous work (Kim and
Linzen, 2020) reported that unidirectional models
are more robust regarding sentence structures than
bi-directional models, we selected a unidirectional
GRU encoder. For the Transformer, we used a
three-layer encoder-decoder, a model size of 512,

and a hidden size of 256. The number of model pa-
rameters was 10M, respectively. See Appendix B
for additional training details.

4.2 Results on systematicity

Generalization on quantifiers Table 4 shows
the accuracy by quantifier type. When the exis-
tential quantifier one was the primitive quantifier,
the accuracy on the problems involving existential
quantifiers, which have the same type as the primi-
tive quantifier, was nearly perfect. Similarly, when
the universal quantifier every was the primitive
quantifier, the accuracy on the problems involv-
ing universal quantifiers was much better than that
on the problems involving other quantifier types.
These results indicate that models can easily gener-
alize to problems involving quantifiers of the same
type as the primitive quantifier, while the models
struggle with generalizing to the others. We also
experimented with larger models and observed the
same trend (see Appendix C). The extent of gen-
eralization varies according to the primitive quan-
tifier type and meaning representation forms. For
example, when the primitive quantifier is the nu-
meral expression two, models generalize to prob-
lems of VF formulas involving universal quanti-



109

fiers. This can be explained by the fact that VF
formulas involving universal quantifiers like (5b)
have a similar form to those involving numerals
as in (6b), whereas FOL formulas involving uni-
versal quantifiers have a different form from those
involving numerals as in (5c) and (6c).

(5) a. All small cats chased Bob
b. ALL AND CAT SMALL EXIST BOB

CHASE

c. ∀x1.(cat(x1) ∧ small(x1)

→ ∃x2.(bob(x2) ∧ chase(x1, x2)))

(6) a. Two small cats chased Bob
b. TWO AND CAT SMALL EXIST BOB

CHASE

c. ∃x1.(two(x1) ∧ cat(x1) ∧ small(x1)

∧ ∃x2.(bob(x2) ∧ chase(x1, x2)))

We also check the performance when three quanti-
fiers one, two, and every are set as primitive quanti-
fiers. This setting is easier than that for the system-
aticity in Table 1, since the models are exposed to
combination patterns of all the quantifier types and
all the modifier types. In this setting, the models
achieved almost perfect performance on the test
set involving non-primitive quantifiers (a, three,
all).

Generalization on modifiers Table 5 shows the
accuracy by modifier type where one is set to the
primitive quantifier (see Appendix C for the re-
sults where other quantifier types are set to the
primitive quantifier). No matter which quantifier
is set as the primitive quantifier, the accuracy for
problems involving logical connectives or adverbs
is better than those involving adjectives. As in
(8), an adjective is placed between a quantifier and
a noun, so the position of the noun dog with re-
spect to the quantifier every in the test set changes
from the example in the training (Basic) set in (7).
In contrast, adverbs and logical connectives are
placed at the end of a sentence, so the position of
the noun does not change from the training set, as
in (9). This suggests that models can more easily
generalize in problems involving unseen combina-
tions of quantifiers and modifiers where the posi-
tion of the noun is the same between the training
and test sets.

(7) Every dog ran Train (Basic set)

(8) Every large dog ran Test (ADJ)

(9) Every dog ran and cried Test (CON)

Table 5 also shows that the accuracy is nearly the
same regardless of the existence of negation. Ba-
sic set contains examples involving negation, and
this indicates that the existence of complex phe-
nomena like negation does not affect generaliza-
tion performance of models on modifiers so long
as such phenomena are included in the training set.

Meaning representation comparison Compar-
ing forms of meaning representations, accuracy by
exact matching is highest in the order of VF formu-
las, DRS clausal forms, and FOL formulas. This
indicates that models can more easily generalize to
unseen combinations where the form of meaning
representation is simpler; VF formulas do not con-
tain parentheses nor variables, DRS clausal forms
contain variables but not parentheses, and FOL for-
mulas contain both parentheses and variables.

4.3 Model comparison

Regarding the generalization capacity of models
for decoding meaning representations, the left two
figures in Figure 2 show learning curves on FOL
prediction tasks by quantifier type. While GRU
achieved perfect performance on the same quanti-
fier type as the primitive quantifier, where the num-
ber of training data is 2,500, Transformer achieved
the same performance when the number of train-
ing data is 8,000. The right two figures in Fig-
ure 2 show learning curves by modifier type. The
GRU accuracy is unstable even when the number
of training examples is maximal. In contrast, the
Transformer accuracy is stable when the number
of training data exceeds 8,000. These results indi-
cate that GRU generalizes to unseen combinations
of quantifiers and modifiers with a smaller training
set than can Transformer, while the Transformer
performance is more stable than that of GRU.

ATP-based evaluation Table 6 shows the ATP-
based evaluation results on FOL formulas. For
combinations involving numerals, both GRU and
Transformer achieve high accuracies for G ⇒ P
entailments but low accuracies for G ⇐ P entail-
ments. Since both models fail to output the formu-
las corresponding to modifiers, they fail to prove
G ⇐ P entailments. Regarding combinations in-
volving universal quantifiers, the GRU accuracy
for both G ⇒ P and G ⇐ P entailments is low,
and the Transformer accuracy for G ⇐ P entail-
ments is much higher than that for G ⇒ P entail-
ments. As indicated by examples shown in Table 7,



110

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
ADJ 18.9 20.1 78.1 42.3 26.8 59.1 91.3 27.6
ADJ+NEG 18.8 20.2 80.5 39.7 23.1 59.5 93.6 27.5
ADV 20.1 47.7 87.5 58.4 36.2 67.3 97.6 50.7
ADV+NEG 26.9 62.7 92.7 67.2 50.7 69.4 97.3 62.1
CON 28.9 58.3 84.7 72.9 54.3 66.8 88.3 65.9
CON+NEG 33.6 62.8 86.6 74.9 60.1 65.1 89.9 69.1
Valid 98.2 99.7 100.0 99.6 100.0 100.0 100.0 100.0

Table 5: Accuracy by modifier type (primitive quantifier: existential quantifier one). +NEG indicates problems
involving negation. Each accuracy is measured by exact matching, except for “DRS (cnt)” columns.

Figure 2: Learning curves on FOL formula generalization tasks (primitive quantifier: one).

Test
GRU Transformer

G ⇒ P G ⇐ P G ⇔ P G ⇒ P G ⇐ P G ⇔ P

EXI 99.8 100.0 99.8 100.0 100.0 100.0
NUM 77.1 19.0 10.4 91.3 21.1 12.4
UNI 7.1 18.7 2.7 21.1 83.4 12.3

Table 6: ATP-based evaluation results on FOL formu-
las (primitive quantifier: one).

Input Every wild cat escaped and ran
Gold ∀x.((cat↓(x) ∧wild↓(x)) → (escape↑(x) ∧ run↑(x)))

GRU ∀x.(cat↓(x) → (escape↑(x) ∧ run↑(x)))

Trans ∀x.(cat↓(x) → wild↑(x) ∧ (escape↑(x) ∧ run↑(x)))

Table 7: Examples of typical errors.

Test
GRU Transformer

Up Down Up Down
EXI 99.9 100.0 100.0 100.0
NUM 84.8 96.8 88.1 97.5
UNI 90.9 40.7 94.9 73.4

Table 8: Monotonicity-based evaluation results on FOL
(primitive quantifier: one). “Up” and “Down” columns
show upward and downward accuracy, respectively.

GRU tends to fail to output the formula for a mod-
ifier, e.g., wild(x) in this case, while Transformer
fails to correctly output the position of the implica-
tion (→). The ATP-based evaluation results reflect
such differences between error trends of models in
problems involving different forms of quantifiers.

Monotonicity-based evaluation Table 8 shows
accuracies for the monotonicity-based polarity as-
signment evaluation on FOL formulas. The accu-
racies were higher than those using exact match-
ing (cf. Table 4). Monotonicity-based evaluation
captures the polarities assigned to content words
even for the problems that exact-matching judges
as incorrect because of the differences in form. Ta-
ble 7 shows examples of predicted polarity assign-
ments. Here both models predicted correct polari-
ties for three content words, cat↓, escape↑, run↑.
Exact-matching cannot take into account such par-
tial matching. The downward monotone accura-
cies for problems involving universal quantifiers
are low (40.7 and 73.4 in Table 8). In Table 7,
both models failed to predict the downward mono-
tonicity of wild↓. The results indicate that both
models struggle with capturing the scope of univer-
sal quantifiers. Appendix C shows the evaluation
results on the polarities of VF formulas.

4.4 Results on productivity
Table 9 shows very low generalization accuracy
for both GRU and Transformer at unseen depths.
Although the evaluation results using COUNTER

on DRS prediction tasks is much higher than those
by exact matching, this is due to the fact that
COUNTER uses partial matching; both models
tended to correctly predict the clauses in the sub-
ject NP that are positioned at the beginning of the



111

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
Dep2 0.36 0.41 55.5 0.32 0.61 0.61 64.6 0.58
Dep3 0.04 0.07 45.6 0.04 0.11 0.12 46.6 0.12
Dep4 0.00 0.01 38.0 0.00 0.02 0.02 37.6 0.02
Valid 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 9: Accuracy for productivity. “Dep” rows show embedding depths, “DRS (cnt)” columns show accuracy
of predicted DRSs by COUNTER, and “Valid” row shows the validation accuracy. Each accuracy is measured by
exact matching, except for “DRS (cnt)” columns.

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
Dep1 22.1 21.9 81.9 48.9 96.6 77.1 96.5 97.5
Dep2 3.52 3.89 59.1 12.3 76.3 54.6 90.5 85.4
Dep3 0.15 0.12 43.3 0.31 24.9 4.5 70.4 37.0
Dep4 0.08 0.15 37.7 0.46 4.4 1.6 60.3 5.57
Valid 94.3 94.9 100.0 96.0 97.6 98.1 100.0 97.8

Table 10: Evaluation results for systematicity involving embedding quantifiers. “Dep” rows show embedding
depths.

sentence (see Appendix E for details).
We checked whether models can generalize to

unseen combinations involving embedded clauses
when the models are exposed to a part of training
instances at each depth. We provide Basic set 1 in-
volving non-embedding patterns like (10), where
Q can be replaced with any quantifier. This Basic
set 1 exposes models to all quantifier patterns. We
also expose models to Basic set 2 involving three
primitive quantifiers (one, two, and every) at each
embedding depth, like (11) and (12). We provide
around 2,000 training instances at each depth. We
then test models on a test set involving the other
quantifiers (a, three, and all) at each embedding
depth, like (13) and (14). If models can distinguish
quantifier types during training, they can correctly
compose meaning representations involving differ-
ent combinations of multiple quantifiers. Note that
this setting is easier than that for productivity in Ta-
ble 2, in that models are exposed to some instances
at each depth.

(10) Q dog(s) liked Bob

(11) One dog liked Bob [that loved two rats]

(12) One dog liked Bob [that loved two rats
[that knew every pig]]

(13) A dog liked Bob [that loved three rats]

(14) A dog liked Bob [that loved three rats
[that knew all pigs]]

Table 10 shows that both models partially gen-
eralize to the cases where the depth is 1 or 2. How-
ever, both models fail to generalize to the cases

where the depth is 3 or more. This suggests that
even if models are trained with some instances at
each depth, the models fail to learn distinctions be-
tween different quantifier types and struggle with
parsing sentences whose embedding depth is 3 or
more.

5 Conclusion

We have introduced an analysis method using
SyGNS, a testbed for diagnosing the systematic
generalization capability of DNN models in se-
mantic parsing. We found that GRU and Trans-
former generalized to unseen combinations of
semantic phenomena whose meaning representa-
tions are similar in forms to those in a training set,
while the models struggle with generalizing to the
others. In addition, these models failed to general-
ize to cases involving nested clauses. Our analyses
using multiple meaning representation and evalu-
ation methods also revealed detailed behaviors of
models. We believe that SyGNS serves as an effec-
tive testbed for investigating the ability to capture
compositional meanings in natural language.

Acknowledgement

We thank the three anonymous reviewers for their
helpful comments and suggestions. This work
was partially supported by JSPS KAKENHI Grant
Number JP20K19868.



112

References
Nicholas Asher. 1993. Reference to Abstract Objects

in Discourse. Springer.

Franz Baader, Diego Calvanese, Deborah McGuinness,
Peter Patel-Schneider, Daniele Nardi, et al. 2003.
The Description Logic Handbook: Theory, Imple-
mentation and Applications. Cambridge University
Press.

Laura Banarescu, Claire Bonial, Shu Cai, Madalina
Georgescu, Kira Griffitt, Ulf Hermjakob, Kevin
Knight, Philipp Koehn, Martha Palmer, and Nathan
Schneider. 2013. Abstract Meaning Representation
for sembanking. In Proceedings of the 7th Linguis-
tic Annotation Workshop and Interoperability with
Discourse, pages 178–186, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Marco Baroni. 2020. Linguistic generalization and
compositionality in modern artificial neural net-
works. Philosophical Transactions of the Royal So-
ciety B, 375(1791):20190307.

Johan van Benthem. 1986. Essays in Logical Seman-
tics. Springer.

Patrick Blackburn and Johan Bos. 2005. Representa-
tion and Inference for Natural Language: A First
Course in Computational Semantics. Center for the
Study of Language and Information.

Johan Bos. 2008. Let’s not argue about seman-
tics. In Proceedings of the Sixth International
Conference on Language Resources and Evaluation
(LREC’08), Marrakech, Morocco. European Lan-
guage Resources Association (ELRA).

Samuel R. Bowman, Christopher Potts, and Christo-
pher D. Manning. 2015. Recursive neural networks
can learn logical semantics. In Proceedings of the
3rd Workshop on Continuous Vector Space Models
and their Compositionality, pages 12–21.

Shu Cai and Kevin Knight. 2013. Smatch: an evalua-
tion metric for semantic feature structures. In Pro-
ceedings of the 51st Annual Meeting of the Associa-
tion for Computational Linguistics (Volume 2: Short
Papers), pages 748–752, Sofia, Bulgaria. Associa-
tion for Computational Linguistics.

Paco Calvo and John Symons. 2014. The Architecture
of Cognition: Rethinking Fodor and Pylyshyn’s Sys-
tematicity Challenge. MIT Press.

Kyunghyun Cho, Bart van Merriënboer, Caglar Gul-
cehre, Dzmitry Bahdanau, Fethi Bougares, Holger
Schwenk, and Yoshua Bengio. 2014. Learning
phrase representations using RNN encoder–decoder
for statistical machine translation. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1724–
1734, Doha, Qatar. Association for Computational
Linguistics.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Ishita Dasgupta, Demi Guo, Andreas Stuhlmüller,
Samuel J. Gershman, and Noah D. Goodman. 2018.
Evaluating compositionality in sentence embed-
dings. In Proceedings of the 40th Annual Confer-
ence of the Cognitive Science Society, pages 1596–
1601.

Jerry A. Fodor and Zenon W. Pylyshyn. 1988. Connec-
tionism and cognitive architecture: A critical analy-
sis. Cognition, 28(1-2):3–71.

Atticus Geiger, Kyle Richardson, and Christopher
Potts. 2020. Neural natural language inference mod-
els partially embed theories of lexical entailment and
negation. In Proceedings of the Third BlackboxNLP
Workshop on Analyzing and Interpreting Neural Net-
works for NLP, pages 163–173, Online. Association
for Computational Linguistics.

Mor Geva, Yoav Goldberg, and Jonathan Berant. 2019.
Are we modeling the task or the annotator? an inves-
tigation of annotator bias in natural language under-
standing datasets. In Proceedings of the 2019 Con-
ference on Empirical Methods in Natural Language
Processing and the 9th International Joint Confer-
ence on Natural Language Processing (EMNLP-
IJCNLP), pages 1161–1166, Hong Kong, China. As-
sociation for Computational Linguistics.

Max Glockner, Vered Shwartz, and Yoav Goldberg.
2018. Breaking NLI systems with sentences that re-
quire simple lexical inferences. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 2: Short Papers),
pages 650–655, Melbourne, Australia. Association
for Computational Linguistics.

Emily Goodwin, Koustuv Sinha, and Timothy J.
O’Donnell. 2020. Probing linguistic systematicity.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
1958–1969, Online. Association for Computational
Linguistics.

Kristina Gulordava, Piotr Bojanowski, Edouard Grave,
Tal Linzen, and Marco Baroni. 2018. Colorless
green recurrent networks dream hierarchically. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1 (Long Papers), pages 1195–1205, New
Orleans, Louisiana. Association for Computational
Linguistics.

Irene Heim and Angelika Kratzer. 1998. Semantics in
Generative Grammar. Blackwell.

Pauline Jacobson. 2014. Compositional Semantics: An
Introduction to the Syntax/Semantics Interface. Ox-
ford University Press.

https://www.aclweb.org/anthology/W13-2322
https://www.aclweb.org/anthology/W13-2322
http://www.lrec-conf.org/proceedings/lrec2008/pdf/721_paper.pdf
http://www.lrec-conf.org/proceedings/lrec2008/pdf/721_paper.pdf
https://www.aclweb.org/anthology/P13-2131
https://www.aclweb.org/anthology/P13-2131
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.3115/v1/D14-1179
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/2020.blackboxnlp-1.16
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/D19-1107
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/P18-2103
https://doi.org/10.18653/v1/2020.acl-main.177
https://doi.org/10.18653/v1/N18-1108
https://doi.org/10.18653/v1/N18-1108


113

Pratik Joshi, Somak Aditya, Aalok Sathe, and Mono-
jit Choudhury. 2020. TaxiNLI: Taking a ride up the
NLU hill. In Proceedings of the 24th Conference on
Computational Natural Language Learning, pages
41–55, Online. Association for Computational Lin-
guistics.

Daniel Jurafsky and James H. Martin. 2009. Speech
and Language Processing (2nd Edition). Prentice-
Hall, Inc.

Hans Kamp and Uwe Reyle. 1993. From Discourse to
Logic. Dordrecht: Kluwer Academic Publishers.

Daniel Keysers, Nathanael Schärli, Nathan Scales,
Hylke Buisman, Daniel Furrer, Sergii Kashubin,
Nikola Momchev, Danila Sinopalnikov, Lukasz
Stafiniak, Tibor Tihon, Dmitry Tsarkov, Xiao Wang,
Marc van Zee, and Olivier Bousquet. 2020. Measur-
ing compositional generalization: A comprehensive
method on realistic data. In Proceedings of Inter-
national Conference on Learning Representations
(ICLR).

Najoung Kim and Tal Linzen. 2020. COGS: A com-
positional generalization challenge based on seman-
tic interpretation. In Proceedings of the 2020 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 9087–9105, Online. As-
sociation for Computational Linguistics.

Najoung Kim, Roma Patel, Adam Poliak, Patrick Xia,
Alex Wang, Tom McCoy, Ian Tenney, Alexis Ross,
Tal Linzen, Benjamin Van Durme, Samuel R. Bow-
man, and Ellie Pavlick. 2019. Probing what dif-
ferent NLP tasks teach machines about function
word comprehension. In Proceedings of the Eighth
Joint Conference on Lexical and Computational Se-
mantics (*SEM 2019), pages 235–249, Minneapolis,
Minnesota. Association for Computational Linguis-
tics.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of International Conference on Learning Represen-
tations (ICLR).

Brenden M. Lake and Marco Baroni. 2017. General-
ization without systematicity: On the compositional
skills of sequence-to-sequence recurrent networks.
In Proceedings of International Conference on Ma-
chine Learning (ICML).

Tal Linzen, Emmanuel Dupoux, and Yoav Goldberg.
2016. Assessing the ability of LSTMs to learn
syntax-sensitive dependencies. Transactions of the
Association for Computational Linguistics, 4:521–
535.

Jiangming Liu, Shay B. Cohen, and Mirella Lapata.
2018. Discourse representation structure parsing. In
Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 429–439, Melbourne, Australia.
Association for Computational Linguistics.

Nelson F. Liu, Roy Schwartz, and Noah A. Smith. 2019.
Inoculation by fine-tuning: A method for analyz-
ing challenge datasets. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short
Papers), pages 2171–2179, Minneapolis, Minnesota.
Association for Computational Linguistics.

Bill MacCartney and Christopher D. Manning. 2007.
Natural logic for textual inference. In Proceedings
of the ACL-PASCAL Workshop on Textual Entail-
ment and Paraphrasing, pages 193–200.

Gary Marcus. 2003. The Algebraic Mind: Integrating
Connectionism and Cognitive Science. MIT Press.

Rebecca Marvin and Tal Linzen. 2018. Targeted syn-
tactic evaluation of language models. In Proceed-
ings of the 2018 Conference on Empirical Methods
in Natural Language Processing, pages 1192–1202,
Brussels, Belgium. Association for Computational
Linguistics.

R. Thomas McCoy, Robert Frank, and Tal Linzen.
2018. Revisiting the poverty of the stimulus: hi-
erarchical generalization without a hierarchical bias
in recurrent neural networks. In Proceedings of the
40th Annual Meeting of the Cognitive Science So-
ciety, CogSci 2018, Madison, WI, USA, July 25-28,
2018.

Tom McCoy, Ellie Pavlick, and Tal Linzen. 2019.
Right for the wrong reasons: Diagnosing syntactic
heuristics in natural language inference. In Proceed-
ings of the 57th Annual Meeting of the Association
for Computational Linguistics, pages 3428–3448,
Florence, Italy. Association for Computational Lin-
guistics.

Richard Montague. 1973. The proper treatment of
quantification in ordinary English. In Jaakko Hin-
tikka, Julius M. E. Moravcsik, and Patrick Suppes,
editors, Approaches to Natural Language, pages
189–224. Reidel, Dordrecht. Reprinted in Rich-
mond H. Thomason (ed.), Formal Philosophy: Se-
lected Papers of Richard Montague, 247–270, 1974,
New Haven: Yale University Press.

Reinhard Muskens. 1996. Combining Montague se-
mantics and discourse representation. Linguistics
and philosophy, 19(2):143–186.

Aakanksha Naik, Abhilasha Ravichander, Norman
Sadeh, Carolyn Rose, and Graham Neubig. 2018.
Stress test evaluation for natural language inference.
In Proceedings of the 27th International Conference
on Computational Linguistics, pages 2340–2353,
Santa Fe, New Mexico, USA. Association for Com-
putational Linguistics.

Yixin Nie, Yicheng Wang, and Mohit Bansal. 2019.
Analyzing compositionality-sensitivity of NLI mod-
els. In Proceedings of the AAAI Conference on Arti-
ficial Intelligence, pages 6867–6874.

https://www.aclweb.org/anthology/2020.conll-1.4
https://www.aclweb.org/anthology/2020.conll-1.4
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/2020.emnlp-main.731
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.18653/v1/S19-1026
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.1162/tacl_a_00115
https://doi.org/10.18653/v1/P18-1040
https://doi.org/10.18653/v1/N19-1225
https://doi.org/10.18653/v1/N19-1225
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/D18-1151
https://doi.org/10.18653/v1/P19-1334
https://doi.org/10.18653/v1/P19-1334
https://www.aclweb.org/anthology/C18-1198


114

Rik van Noord, Lasha Abzianidze, Hessel Haagsma,
and Johan Bos. 2018a. Evaluating scoped meaning
representations. In Proceedings of the Eleventh In-
ternational Conference on Language Resources and
Evaluation (LREC 2018), Miyazaki, Japan. Euro-
pean Language Resources Association (ELRA).

Rik van Noord, Lasha Abzianidze, Antonio Toral, and
Johan Bos. 2018b. Exploring neural methods for
parsing discourse representation structures. Trans-
actions of the Association for Computational Lin-
guistics, 6:619–633.

Adam Poliak, Jason Naradowsky, Aparajita Haldar,
Rachel Rudinger, and Benjamin Van Durme. 2018.
Hypothesis only baselines in natural language in-
ference. In Proceedings of the Seventh Joint Con-
ference on Lexical and Computational Semantics,
pages 180–191, New Orleans, Louisiana. Associa-
tion for Computational Linguistics.

Ian Prat-Hartmann and Lawrence S. Moss. 2009. Log-
ics for the relational syllogistic. The Review of Sym-
bolic Logic, 2(4):647–683.

Kyle Richardson, Hai Hu, Lawrence S. Moss, and
Ashish Sabharwal. 2020. Probing natural language
inference models through semantic fragments. In
Proceedings of the AAAI Conference on Artificial In-
telligence.

Ohad Rozen, Vered Shwartz, Roee Aharoni, and Ido
Dagan. 2019. Diversify your datasets: Analyzing
generalization via controlled variance in adversar-
ial datasets. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 196–205, Hong Kong, China. Asso-
ciation for Computational Linguistics.

Jacob Russin, Jason Jo, Randall O’Reilly, and Yoshua
Bengio. 2020. Compositional generalization by fac-
torizing alignment and translation. In Proceedings
of the 58th Annual Meeting of the Association for
Computational Linguistics: Student Research Work-
shop, pages 313–327, Online. Association for Com-
putational Linguistics.

Swarnadeep Saha, Yixin Nie, and Mohit Bansal. 2020.
ConjNLI: Natural language inference over conjunc-
tive sentences. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing (EMNLP), pages 8240–8252, Online. As-
sociation for Computational Linguistics.

Koustuv Sinha, Shagun Sodhani, Jin Dong, Joelle
Pineau, and William L. Hamilton. 2019. CLUTRR:
A diagnostic benchmark for inductive reasoning
from text. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing (EMNLP-IJCNLP), pages
4506–4515, Hong Kong, China. Association for
Computational Linguistics.

Alon Talmor and Jonathan Berant. 2019. MultiQA: An
empirical investigation of generalization and trans-
fer in reading comprehension. In Proceedings of the
57th Annual Meeting of the Association for Com-
putational Linguistics, pages 4911–4921, Florence,
Italy. Association for Computational Linguistics.

Masatoshi Tsuchiya. 2018. Performance impact
caused by hidden bias of training data for recog-
nizing textual entailment. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation (LREC 2018), Miyazaki,
Japan. European Language Resources Association
(ELRA).

Jan Van Eijck. 2005. Natural logic for natural language.
In International Tbilisi Symposium on Logic, Lan-
guage, and Computation, pages 216–230. Springer.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proceedings of Advances in Neural
Information Processing Systems 33: Annual Con-
ference on Neural Information Processing Systems
(NeurIPS), pages 5998–6008.

Alex Wang, Yada Pruksachatkun, Nikita Nangia,
Amanpreet Singh, Julian Michael, Felix Hill, Omer
Levy, and Samuel Bowman. 2019a. SuperGLUE: A
stickier benchmark for general-purpose language un-
derstanding systems. In Proceedings of Advances in
Neural Information Processing Systems 32: Annual
Conference on Neural Information Processing Sys-
tems (NeurIPS), pages 3266–3280.

Alex Wang, Amanpreet Singh, Julian Michael, Fe-
lix Hill, Omer Levy, and Samuel Bowman. 2019b.
GLUE: A multi-task benchmark and analysis plat-
form for natural language understanding. In Pro-
ceedings of the International Conference on Learn-
ing Representations (ICLR).

Mingzhe Wang, Yihe Tang, Jian Wang, and Jia Deng.
2017. Premise selection for theorem proving by
deep graph embedding. In Proceedings of Advances
in Neural Information Processing Systems 30: An-
nual Conference on Neural Information Processing
Systems (NeurIPS), pages 2786–2796.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, and
Kentaro Inui. 2020. Do neural models learn sys-
tematicity of monotonicity inference in natural lan-
guage? In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
pages 6105–6117, Online. Association for Computa-
tional Linguistics.

Hitomi Yanaka, Koji Mineshima, Daisuke Bekki, Ken-
taro Inui, Satoshi Sekine, Lasha Abzianidze, and Jo-
han Bos. 2019. Can neural networks understand
monotonicity reasoning? In Proceedings of the
2019 ACL Workshop BlackboxNLP: Analyzing and
Interpreting Neural Networks for NLP, pages 31–40,
Florence, Italy. Association for Computational Lin-
guistics.

https://www.aclweb.org/anthology/L18-1267
https://www.aclweb.org/anthology/L18-1267
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.1162/tacl_a_00241
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/S18-2023
https://doi.org/10.18653/v1/K19-1019
https://doi.org/10.18653/v1/K19-1019
https://doi.org/10.18653/v1/K19-1019
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/2020.acl-srw.42
https://doi.org/10.18653/v1/2020.emnlp-main.661
https://doi.org/10.18653/v1/2020.emnlp-main.661
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/D19-1458
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://doi.org/10.18653/v1/P19-1485
https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239
https://www.aclweb.org/anthology/L18-1239
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/2020.acl-main.543
https://doi.org/10.18653/v1/W19-4804
https://doi.org/10.18653/v1/W19-4804


115

Hitomi Yanaka, Koji Mineshima, and Kentaro Inui.
2021. Exploring transitivity in neural NLI models
through veridicality. In Proceedings of the 16th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Main Volume, pages
920–934.



116

A Data generation details

Table 12 shows a set of context-free grammar rules
and semantic composition rules we use to gener-
ate a fragment of English annotated with mean-
ing representations in the SyGNS dataset. Each
grammar rule is associated with two kinds of se-
mantic composition rules formulated in λ-calculus.
One is for deriving first-order logic (FOL) for-
mulas, and the other is for deriving variable-free
(VF) formulas. For FOL, semantic composition
runs in the standard Montagovian fashion where
all NPs (including proper nouns) are treated as
generalized quantifiers (Heim and Kratzer, 1998;
Jacobson, 2014). From FOL formulas, we can ex-
tract the polarity of each content word using the
monotonicity calculus (Van Eijck, 2005). Table
13 shows some examples of polarized FOL for-
mulas. The derivation of VF formulas runs in
two steps. To begin with, a sentence is mapped
to a variable-free form by semantic composition
rules. For instance, the sentence a small dog
did not swim is mapped to a variable-free for-
mula EXIST(AND(SMALL,DOG),NOT(SWIM)) by
the rules in Table 12. Second, since this form is
in prefix notation, all brackets can be eliminated
without causing ambiguity. This produces the re-
sulting VF formula EXIST AND SMALL DOG NOT
SWIM. Some other examples are shown in Table
13. DRSs are converted from FOL formulas in the
standard way (Kamp and Reyle, 1993).

B Training details

We implemented the GRU model and the Trans-
former model using PyTorch. Both models were
optimized using Adam (Kingma and Ba, 2015)
at an initial learning rate of 0.0005. The hy-
perparameters (batch size, learning rate, number
of epochs, hidden units, and dropout probability)
were tuned by random search. In all experiments,
we trained models on eight NVIDIA DGX-1 Tesla
V100 GPUs. The runtime for training each model
was about 1-4 hours, depending on the size of the
training set. The order of training instances was
shuffled for each model. We used 10% of the train-
ing set for a validation set.

C Detailed evaluation results

Effect of Model Size The results we report are
from a model with 10M parameters. How does
the number of parameters affect the systematic

Test
GRU Transformer

4M 10M 27M 4M 10M 27M
EXI 96.8 99.9 97.1 99.9 99.8 99.3
NUM 7.1 11.5 10.4 12.3 12.2 12.4
UNI 6.0 4.9 2.9 7.8 5.9 7.9
Valid 97.2 99.9 97.6 100.0 99.8 97.2

Table 11: The effect of model size on generalization
performance (primitive quantifier: existential quantifier
one, representation form: FOL).

generalization performance of models? Table 11
shows the performance of three models of varying
size (large: 27M, medium: 10M, small: 4M). The
number of parameters did not have a large impact
on the generalization performance; all runs of the
models achieved higher than 90% accuracy on the
validation set and the test set involving quantifiers
of the same type as the primitive quantifier, while
they did not work well on the test set involving the
other types of quantifiers.

Modifier type Table 14 shows all evaluation re-
sults by modifier types where two or every is set
to the primitive quantifier. Regardless of prim-
itive quantifier type, accuracies for problems in-
volving logical connectives or adverbs were better
than those for problems involving adjectives.

Monotonicity Table 15 shows all evaluation re-
sults of predicted FOL formulas and VF formulas
based on monotonicity. We evaluate the precision,
recall, and F-score for each monotonicity direction
(upward and downward). Regardless of meaning
representation forms, downward monotone accu-
racy on problems involving universal quantifiers is
low. This indicates that both models struggle with
learning the scope of universal quantifiers.

D Evaluation on systematicity of
quantifiers and negation

We also analyze whether models can generalize to
unseen combinations of quantifiers and negation.
Here, we generate Basic set 1 by setting an arbi-
trary quantifier to a primitive quantifier and com-
bining it with negation. As in (15b), we fix the
primitive quantifier to the existential quantifier one
and generate the negated sentence One tiger did
not run. Next, as in (16a) and (16b), we generate
Basic set 2 by combining a primitive term (e.g.,
tiger) with various quantifiers. If a model has the
ability to systematically understand primitive com-
binations in Basic set, it can represent a new mean-



117

Grammar rules Semantic composition rules: FOL Semantic composition rules: VF
S → NP VP [[S]] = [[NP]]([[VP]]) [[S]] = [[NP]]([[VP]])
S → NP did not VP [[S]] = [[NP]](λx.¬[[VP]](x)) [[S]] = [[NP]](NOT([[VP]]))
NP → PN [[NP]] = [[PN]] [[NP]] = [[PN]]
NP → Q N [[NP]] = [[Q]]([[N]]) [[NP]] = [[Q]]([[N]])
NP → Q ADJ N [[NP]] = [[Q]](λx.([[N]](x) ∧ [[ADJ]](x))) [[NP]] = [[Q]](AND([[N]], [[ADJ]]))
NP → Q N S [[NP]] = [[Q]](λx.([[N]](x) ∧ [[S]](x))) [[NP]] = [[Q]](AND([[N]], [[S]]))
VP → IV [[VP]] = [[IV]] [[VP]] = [[IV]]
VP → IV ADV [[VP]] = λx.([[IV]](x) ∧ [[ADV]](x)) [[VP]] = AND([[IV]], [[ADV]]))
VP → IV or IV′ [[VP]] = λx.([[IV]](x) ∨ [[IV′]](x)) [[VP]] = OR([[IV]], [[IV′]]))
VP → IV and IV′ [[VP]] = λx.([[IV]](x) ∧ [[IV′]](x)) [[VP]] = AND([[IV]], [[IV′]]))
VP → TV NP [[VP]] = λx.[[NP]](λy.[[TV]](x, y)) [[VP]] = [[NP]]([[TV]])
S → that VP [[S]] = [[VP]] [[S]] = [[VP]]
S → that did not VP [[S]] = λx.¬[[VP]](x) [[S]] = NOT([[VP]])
S → that NP TV [[S]] = λy.[[NP]](λx.[[TV]](x, y)) [[S]] = [[NP]](INV([[TV]]))
S → that NP did not TV [[S]] = λy.[[NP]](λx.¬[[TV]](x, y)) [[S]] = [[NP]](NOT(INV([[TV]])))

Q → {every, all, a, one, two, three} [[every]] = [[all]] = λFλG.∀x(F (x) → G(x)) [[every]] = [[all]] = λFλG.ALL(F,G)
[[a]] = [[one]] = λFλG.∃x.(F (x) ∧G(x)) [[a]] = [[one]] = λFλG.EXIST(F,G)
[[two]] = λFλG.∃x.(two(x) ∧ F (x) ∧G(x)) [[two]] = λFλG.TWO(F,G)
[[three]] = λFλG.∃x.(three(x) ∧ F (x) ∧G(x)) [[three]] = λFλG.THREE(F,G)

N → {dog, rabbit, cat, bear, tiger,...} [[dog]] = λx.dog(x) [[dog]] = DOG
PN → {ann, bob, fred, chris, eliott,...} [[ann]] = λF.F (ann) [[ann]] = λF.EXIST(ANN, F )
IV → {ran, walked, swam, danced, dawdled,...} [[ran]] = λx.run(x) [[ran]] = RUN
IV′ → {laughed, groaned, roared, screamed,...} [[laugh]] = λx.laugh(x) [[laugh]] = LAUGH
TV → {kissed, kicked, cleaned, touched,...} [[kissed]] = λyλx.kiss(x, y) [[kissed]] = KISS
ADJ → {small, large, crazy, polite, wild,...} [[small]] = λx.small(x) [[small]] = SMALL
ADV→ {slowly, quickly, seriously, suddenly,...} [[slowly]] = λx.slowly(x) [[slowly]] = SLOWLY

Table 12: A set of context-free grammar rules and semantic composition rules used to generate the SyGNS dataset.

Sentence FOL VF
a small dog did not swim ∃x.(small↑(x) ∧ dog↑(x) ∧ ¬swim↓(x)) EXIST AND SMALL↑ DOG↑ NOT SWIM↓

all tigers ran or swam ∀x.(tiger↓(x) → run↑(x) ∨ swim↑(x)) ALL TIGER↓ OR RUN↑ SWIM↑

ann did not chase two dogs ¬∃x.(two(x) ∧ dog↓(x) ∧ chase↓(ann, x)) EXIST ANN NOT TWO DOG↓ CHASE↓

Table 13: Example of (polarized) FOL formulas and VF formulas.

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
primitive quantifier: numeral two

ADJ 10.7 16.8 74.9 22.8 34.4 58.2 91.6 52.0
ADJ+NEG 10.1 22.3 79.7 24.3 33.4 58.7 94.4 51.0
ADV 12.8 29.3 79.8 46.9 40.3 56.1 89.1 60.5
ADV+NEG 14.1 33.9 83.8 58.6 34.4 56.4 93.3 65.8
CON 18.3 37.9 80.2 64.8 34.3 52.4 83.4 67.2
CON+NEG 24.4 40.6 82.6 68.7 31.3 50.8 88.0 68.5

primitive quantifier: universal quantifier every
ADJ 7.7 19.5 70.6 58.5 20.7 20.5 89.9 62.2
ADJ+NEG 6.9 19.2 75.5 56.8 20.3 20.2 92.2 63.6
ADV 9.2 18.2 82.3 70.1 19.7 19.7 85.1 70.4
ADV+NEG 14.8 18.1 79.4 76.1 22.7 19.8 89.3 75.5
CON 14.7 18.0 70.3 79.6 21.5 19.2 68.8 75.8
CON+NEG 18.3 18.2 80.1 81.2 22.7 19.1 80.5 76.8

Table 14: Accuracy by modifier type where two or every is the primitive quantifier. “DRS (cnt)” columns show
accuracies of predicted DRSs by COUNTER.

Test
GRU Transformer

Exact Upward Downward Exact Upward Downward
Match Prec Rec F Prec Rec F Match Prec Rec F Prec Rec F

FOL formula
EXI 96.1 100.0 99.9 99.9 100.0 100.0 100.0 99.9 100.0 100.0 100.0 100.0 100.0 100.0
NUM 7.6 99.2 75.5 84.8 99.6 94.7 96.8 18.1 100.0 79.5 88.1 100.0 95.6 97.5
UNI 3.1 92.6 89.9 90.9 42.9 39.4 40.7 8.3 97.3 93.4 94.9 79.4 70.0 73.4

VF formula
EXI 99.7 100.0 99.9 99.9 99.9 99.9 99.9 100.0 100.0 100.0 100.0 100.0 100.0 100.0
NUM 37.0 70.2 54.4 59.8 68.6 58.5 62.0 20.7 99.2 77.0 85.4 99.3 95.4 97.0
UNI 39.5 91.1 80.7 84.4 49.0 35.2 39.7 17.7 99.9 97.4 98.4 98.6 72.7 82.3

Table 15: Evaluation results on monotonicity. “Prec”, “Rec”, “F” indicate precision, recall, and F-score.



118

ing representation with different combinations of
quantifiers and negations, like (17a) and (17b).

(15) a. One tiger ran
b. One tiger did not run

(16) a. Every tiger ran
b. Two tigers ran

(17) a. Every tiger did not run
b. Two tigers did not run

Table 16 shows the accuracy on combinations of
quantifiers and negations by quantifier type. Sim-
ilar to the results with unseen combinations of
quantifiers and modifiers, models can easily gener-
alize to problems involving quantifiers of the same
type as the primitive quantifier. Table 17 shows
the accuracy on combinations of quantifiers and
negations by modifier types. Similar to the results
in Table 14, the accuracies on problems involving
logical connectives or adverbs were slightly better
than those on problems involving adjectives.

E Error analysis of predicted DRSs

In the productivity experiments, the evaluation re-
sults using COUNTER on DRS prediction tasks are
much higher than those by exact matching. Ta-
ble 18 shows an example of predicted DRSs for
the sentence all lions that did not follow two bears
that chased three monkeys did not cry. This sen-
tence contains embedded clauses with depth two,
having the following gold DRS:

x1
lion(x1)

¬

x2, x3
two(x2)

bear(x2)
three(x3)
monkey(x3)
chase(x2, x3)
follow(x1, x2))

⇒ ¬ cry(x1)

Both GRU and Transformer tend to correctly pre-
dict some of the clauses for content words, im-
plication, and negation that appear at the begin-
ning of the input sentence, while they fail to
capture long-distance dependencies between sub-
ject nouns and verbs (e.g., all lions ... did not
cry). Also, COUNTER correctly evaluates the
cases where the order of clauses is different from
that of gold answers.



119

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
primitive quantifier: existential quantifier one

EXI 65.9 88.0 98.1 94.5 99.9 96.6 97.6 45.0
NUM 48.4 71.0 96.7 54.5 65.8 86.6 98.8 26.3
UNI 22.3 0.0 52.0 53.1 0.0 0.0 70.2 26.6
Valid 96.6 98.1 100.0 99.8 100.0 100.0 100.0 100.0

primitive quantifier: numeral two
EXI 36.4 63.6 89.8 13.9 14.4 49.6 86.9 11.5
NUM 40.0 66.7 94.1 21.5 33.0 59.1 87.6 14.3
UNI 15.4 0.0 50.7 0.0 0.0 0.0 71.0 12.4
Valid 96.4 97.8 100.0 99.3 100.0 100.0 100.0 100.0

primitive quantifier: universal quantifier every
EXI 12.8 0.0 73.7 78.6 0.8 0.5 52.2 59.4
NUM 17.1 0.0 75.3 78.1 0.0 0.6 59.2 65.1
UNI 91.1 88.3 97.4 94.9 86.6 70.1 92.3 76.6
Valid 98.8 98.1 100.0 98.8 100.0 100.0 100.0 100.0

Table 16: Accuracy on combinations of quantifiers and negation by quantifier type. “DRS (cnt)” columns show
accuracies of predicted DRSs by COUNTER. “Valid” row shows the validation accuracy.

Test
GRU Transformer

FOL DRS DRS (cnt) VF FOL DRS DRS (cnt) VF
primitive quantifier: existential quantifier one

ADJ+NEG 34.6 33.2 68.3 45.8 19.4 45.1 84.1 25.3
ADV+NEG 38.0 36.3 77.9 53.0 43.2 54.8 88.1 37.5
CON+NEG 36.8 33.2 73.2 54.7 47.4 52.4 85.4 37.0

primitive quantifier: numeral two
ADJ+NEG 21.2 18.2 69.3 8.0 11.6 29.3 75.9 1.2
ADV+NEG 26.5 28.5 71.4 10.3 19.3 36.5 81.8 17.8
CON+NEG 21.9 28.1 68.5 9.1 11.7 34.6 78.7 16.3

primitive quantifier: universal quantifier every
ADJ+NEG 26.7 12.4 63.9 60.5 13.9 14.6 58.0 50.7
ADV+NEG 25.9 13.2 69.2 66.1 21.9 15.2 60.9 63.3
CON+NEG 28.5 18.8 71.4 65.9 20.2 14.6 59.7 62.8

Table 17: Accuracy on combinations of quantifiers and negation by modifier type.

(a) Gold answer
b1 IMP b2 b4
b2 REF x1
b2 lion x1
b2 NOT b3
b3 REF x2
b3 REF x3
b3 two x2
b3 bear x2
b3 three x3
b3 monkey x3
b3 chase x3 x2
b3 follow x2 x1
b4 NOT b5
b5 cry x1

(b) GRU
(F: 0.45)

b1 IMP b2 b3
b2 REF x1
b2 lion x1
b2 NOT b3
b3 REF x2
b3 two x2
b3 bear x2
b3 follow x2 x2
b3 REF x3
b3 three x3
b4 monkey x3
b4 like x3 x2
b4 like x1 x2

(c) Transformer
(F: 0.42)

b1 IMP b2 b3
b2 REF x1
b2 lion x1
b2 NOT b3
b3 REF x2
b3 two x2
b3 monkey x2
b3 follow x2 x1
b3 REF x3
b3 john x3
b3 chase x1 x3

Table 18: Error analysis of DRSs for the sentence “all lions that did not follow two bears that chased three monkeys
did not cry”. Clauses in green are correct and those in red are incorrect. “F” shows F-score over matching clause.


