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Abstract

An ideal integration of autonomous agents in a
human world implies that they are able to col-
laborate on human terms. In particular, theory
of mind plays an important role in maintain-
ing common ground during human collabora-
tion and communication. To enable theory of
mind modeling in situated interactions, we in-
troduce a fine-grained dataset of collaborative
tasks performed by pairs of human subjects
in the 3D virtual blocks world of Minecraft.
It provides information that captures partners’
beliefs of the world and of each other as an in-
teraction unfolds, bringing abundant opportu-
nities to study human collaborative behaviors
in situated language communication. As a first
step towards our goal of developing embodied
AI agents able to infer belief states of collabo-
rative partners in situ, we build and present re-
sults on computational models for several the-
ory of mind tasks.

1 Introduction
Creating embodied, situated agents able to move
in, communicate naturally about, and collaborate
on human terms in the physical world has been a
persisting goal in artificial intelligence (Winograd,
1972). During communication in such a setting,
agents not only need to ground entities in language
to that of the physical world; efficient and accurate
human-agent collaboration further requires agents
to reason about the progress of the task at hand and
to plan and execute a series of collaborative steps,
whilst maintaining common ground (Clark, 1996)
with collaboration partners, in order to achieve a
certain goal.

Despite recent advances, we are still far away
from fully enabling these desired agent behaviors.
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One key challenge is in an agent’s ability to estab-
lish and maintain common ground in tandem with
human partners, especially in a setting where be-
liefs about the world and of each other may change
on the fly (Popat and Palmer, 2005; Powers et al.,
2005). It is important to understand how changes
in a dynamic, physical world affect agents’ be-
liefs of each other—i.e., theory of mind (Premack
and Woodruff, 1978)—and how such beliefs influ-
ence teamwork and communication in collaborative
tasks. As a first step to address this question, this
paper explores theory of mind modeling (Chan-
drasekaran et al., 2017; Rabinowitz et al., 2018;
Jara-Ettinger, 2019) in situated language communi-
cation (Iwahashi et al., 2009; McGuire et al., 2002)
for collaborative tasks within the 3D virtual blocks
world of Minecraft. Through a novel experimental
setup, we collect a situated dialogue dataset that
demonstrates how collaborative partners with a set
of asymmetric knowledge and skills are able to col-
laborate to achieve joint goals, and how, in particu-
lar, their beliefs of each other evolve and converge
over time. Based on this dataset, we further build
several baseline computational models to explicitly
predict key elements of a collaboration partner’s
mental state from the viewpoint of an agent as a
task unfolds. Our empirical results demonstrate
that while language is certainly important in this
inference, the shared physical environment and the
perceived activities play a greater role in shaping
a partner’s understanding of each other in order to
come to a common ground.

The contributions of this work are threefold.
First, we introduce MINDCRAFT, a task in which
pairs of users collaboratively work to create novel
materials by combining blocks in the 3D virtual
world of Minecraft, with the ultimate objective of
creating a final, goal material. Unlike prior work in
situated collaborative tasks (Liu et al., 2013; Bisk
et al., 2018; Suhr et al., 2019), a key focus of our
work is to facilitate theory of mind modeling—the
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ability to attribute mental states, both of one’s own
and that of others—an important but not yet well-
studied topic in situated collaborative interactions.
Within designed collaborative tasks, we have users
record their beliefs about the state of the game,
and of each other, at periodic intervals. Our data
captures an evolution of the states of mind of our
participants that are true representations of their
beliefs—not simply proxies for the true sequence
of events in a collaborative session. This explicit
modeling of theory of mind sheds light on how
partners strive to align their mental models in order
to achieve common ground during collaboration.

Second, departing from previous Leader-
Follower setups (where one partner explicitly leads
and gives instructions to the other, the follower,
who tries to execute said instructions) (Suhr et al.,
2019), we focus on a setting where partners each
have asymmetric knowledge (Bortolaso et al.,
2019) and skill-sets towards completing a joint
goal. In order to effectively complete the given
tasks, partners need to negotiate their own plans of
action by taking into account what they currently
know and don’t know about their partner, and of
their common understanding of the task at hand.
Our novel, more relaxed setup provides support for
greater diversity in modes of collaboration that are
more representative of that in the real world.

Third, we introduce a set of baseline computa-
tional models to infer fellow player mental states in
situ, as a collaborative agent would, and highlight
some further challenges present in moving towards
building fully realistic agents able to reason about
human mental states in situated environments.

Our platform, data, and models are made
available‡ and will facilitate future work on phys-
ical agents that can effectively collaborate with
humans through situated dialogue.

2 Related Work

Our work builds upon existing efforts within col-
laborative dialogue in understanding the nuances
of human collaboration and in towards building
computational agents that can engage in language
communication and collaborative tasks with hu-
mans in a physical environment.

Situated and task-oriented natural language inter-
actions (Iwahashi et al., 2009; Zarrieß et al., 2016)
have been studied in a variety of environments,

‡https://github.com/sled-group/
MindCraft

including in custom 2D worlds (Liu et al., 2012;
Udagawa and Aizawa, 2020, 2019), in the physi-
cal world with human-robot interactions (McGuire
et al., 2002; Chai et al., 2014, 2018; Thomason
et al., 2020), and in various 3D virtual worlds (Bisk
et al., 2018; Suhr et al., 2019). Most closely, our
environment builds upon recent work by Narayan-
Chen et al. (2019) and Jayannavar et al. (2020),
whereby computational models of user dialogue
prediction and user next-action prediction are in-
vestigated in the setting of a collaborative dia-
logue task within the 3D virtual blocks world of
Minecraft. However, to our knowledge, none of
these previous works explicitly model theory of
mind for dialogue agents.

Theory of mind as a subject, especially in com-
putation (Laird et al., 2017), has gained increased
attention in areas including agent-agent reinforce-
ment learning (Rabinowitz et al., 2018), dialogue
systems (Qiu et al., 2021), human-computer inter-
action (Wang et al., 2021), agent-agent collabora-
tive dialogue (Roman et al., 2020), and explainable
AI (Akula et al., 2021). Worthy of note is the type
of mental state recording we employ: specifically,
we ask players to record their own mental states dur-
ing interaction. Unlike prior work that has largely
utilized external annotators for post-hoc mental
state attribution , we expand on Eicher et al. (2017)
and Wang et al. (2021) by specifically bringing
user self-reported mental states from that of only
the linguistic domain to multimodal situated dia-
logue. Specifically, the novelty in our work exists
in studying and bringing explicit theory of mind
modeling to 3D situated collaborative interactions.

3 Experimental System and Data
Collection

We consider a scenario whereby two agents, sit-
uated in the same environment and able to per-
form actions simultaneously, collaborate to com-
plete a shared goal. Here, unlike traditional Leader-
Follower setups, both agents have asymmetric in-
formation on the steps needed to complete the tar-
get task. In addition, in certain iterations, agents
have asymmetric skill-sets as well: certain steps
may only be completed with specific skills, and
an agent may not be able to complete the target
task by themselves, even with complete knowledge.
Agents are provided a text channel to communicate
in natural language, where they are able to share
knowledge and negotiate on the actions to be per-

https://github.com/sled-group/MindCraft
https://github.com/sled-group/MindCraft
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Figure 1: Diagram of a sample interaction in MINDCRAFT. Two players are tasked to complete a common goal
within the game environment of Minecraft; players communicate using in-game chat, are provided partial views of
the plan needed to create the goal material, and are periodically asked paired questions to probe into their mental
states. Additionally, we record first-person viewpoint videos of the two players’ points of view (POV) as well as a
third-person POV from the shared game environment.

formed by each agent in the process of completing
the target task. Agents can also directly perform ac-
tions in the environment based on their own, albeit
partial plan, and on their current understanding of
the game state. We study this scenario in a modi-
fied blocks world environment of Minecraft with
our custom game, MINDCRAFT. Figure 1 gives an
overview of our experimental system and setup.

3.1 MINDCRAFT

The goal of MINDCRAFT is to create a specific
goal material that is randomly generated for each
game. A set of material blocks are spawned in
the environment when agents enter, serving as the
starting set of materials of the game. Agents have
two macro-actions to create new materials:

• Mining, where agents hit a specific block to
create a new block type. This may be repeated
ad infinitum to create unlimited new blocks of
that type.

• Combining, where agents stack two specific
blocks on top of each other, consuming them

and creating a single block of a new type in
their place.

Note that macro-actions themselves are com-
posed of many fine-grained, atomic actions that
players may perform in-game, such as moving
around, breaking blocks, chatting, jumping, and
more—which utilize the full capability of the
Minecraft game environment.

3.2 Modeling Agent Knowledge and Skills

In the real world, agents that engage in collabo-
rative tasks may each have partial knowledge and
incomplete skill sets. We are particularly inter-
ested in how these agents collaborate and negotiate
with each other to come to a shared plan in order
to achieve a joint goal. To this end, we explic-
itly model agents’ knowledge and skills in MIND-
CRAFT tasks.

Knowledge. Each player is given a knowledge
graph—the recipe—as shown in Figure 1. Recipes
given to players specify a joint goal and a partial
set of macro-actions needed to take place toward
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completing the goal. For example, Player A, from
the initial recipe, knows how to create Yellow
Wool, but they do not know how it would con-
tribute to making the goal material, Emerald
Block. On the other hand, Player B, while they do
not initially know how to create Yellow Wool,
is given the knowledge that doing so would lead
to creating Cobblestone, then used to make the
goal material.

Skill-Sets. In order to stack blocks together,
agents must be able to physically move blocks
around in the virtual environment. This is achieved
by hitting blocks with specific tools; randomly gen-
erated constraints exist in each game that specify
which tools are able to interact with which blocks.
Given randomly to agents at the start of each game,
these tools effectively set constraints on which
agents possess the necessary skills to interact with
certain block types.

Combined, this asymmetry in both knowledge
(recipes) and skill-sets (tools) motivates communi-
cation, as each individual agent does not (1) know
how to create the goal material (2) nor do they have
the skill-set to do so on their own. Furthermore,
as both agents are situated within the environment,
both have only partial observability of the game
state, limited by their first-person field of view in-
game. Players need to collaborate and communi-
cate with each other to achieve the joint goal.

3.3 Belief Modeling and Common Ground

We facilitate theory of mind studies by asking play-
ers to record their beliefs about the progress of the
current game, and of each other, at periodic inter-
vals. As shown in Figure 1, each player is asked
three types of questions:

• Completed Task Status. This asks if a spe-
cific material has been created, by themselves
or by the other player, since the start of the
game, probing into the player’s beliefs about
the current state of the game as influenced by
either themselves or their collaboration part-
ner. For example, as shown in Figure 1, Player
B is prompted with the question “Has the other
player made Blue Wool until now?”

• Player Knowledge. This asks if the player
knows how to create a specific material, or if
they believe that their partner possesses the
knowledge to create it. This probes into a
player’s current knowledge of their own and
of their partner’s current knowledge, as in-

fluenced by the initial knowledge they were
provided and that which has been gained, via
communication with their partner, since the
start of the game. In this example, Player B
is given the question “Do you know how to
make Yellow Wool?”

• Player Current Task. This asks players what
they believe they themselves are making, or
believe their partner to be making, at current
time. For example, Player A is given the ques-
tion “What do you think the other player is
making right now?”

Question Pairing. The three questions received by
players are paired by type; i.e. if one player is asked
a question of their own beliefs, the other player is
asked the same question on what they believe their
partner’s beliefs to be. In the example given, when
Player B is prompted with the question “Has the
other player made Blue Wool until now?”, at the
same time, Player A is prompted with the question
“Have you created Blue Wool?” The game is
paused when players record their answers to the set
of questions and resumed when both players have
completed their answers.

By explicitly soliciting players’ states of mind
during collaboration, we are able to define a quan-
titative measure of common ground: specifically,
we consider common ground to be instances of an-
swer agreement among pairs of players to a given
question.

3.4 Data Collection

With the experimental setup described above, we
collected a dataset totaling 100 games. Pairs of
players participated in the experiments through a re-
mote video conference, where they were instructed
to access a custom Minecraft server using a game
client, as well as a web page interface that we pro-
vided, used to display recipe information and to
collect player beliefs with periodic popups, once
every 75 seconds. Pop-ups ask three questions at
once—one of each type—the content of each being
paired to the corresponding question asked to the
other player. During games, players are only able to
communicate with each other using in-game chat,
and each pair of players played at most 5 games.

From these games, we log their timestamped
dialogue utterances via in-game chat, their ques-
tions and answers to the periodic popups for belief
recordings, an internal game log that stores the
entire game state, and three sets of video record-
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ings, representing each player’s first-person point
of view and a third-person point of view at a high
vantage point with a clear view of the entire game.

In our dataset, there is an average of 20.5 di-
alogue exchanges per game, for a total of 2091
exchanges. Games last between 1 minute and 22
seconds to 27 minutes and 26 seconds, with the
average game lasting 7 minutes and 23 seconds. A
total of 12 hours, 18 minutes, and 33 seconds of
in-game interaction was recorded. On average, 4
popup question pairs appear each game. Between
5 and 10 objects are used in a game, and between 7
and 11 macro steps are necessary in each game to
achieve the goal.

4 Findings and Observations

We further perform an analysis of our dataset to
gain an understanding of collaborative behaviors
between players both in their reasoning and in their
alignment of mental models.

4.1 The Role of Asymmetry in Knowledge
and Skill-Sets

To quantitatively understand how a disparity in
skill-sets and knowledge affects player behavior
in situated collaborative tasks, we perform an ini-
tial pilot study based on four different configura-
tions that vary on whether players share the same,
complete plan (i.e. knowledge) and/or the same
tools (i.e. skills) necessary to complete the task.
In disparate configurations, both players possess
disparate, partial plans and/or tools, with partial
overlap between players. This pilot consists of 32
games to measure key statistics in areas of com-
munication, interaction length, and mutual mental
state agreement, with 8 games per configuration.
Games were played in sets of four between pairs
of players in a round-robin fashion across configu-
rations, mitigating for external factors among pairs
such as player game and mutual familiarity.

As shown in Table 1, within our expectation, a
disparity in both skill-sets and knowledge causes
players to disagree and communicate the most to
a statistically significant degree, and a disparity in
either produces significantly more dialogue utter-
ances than when both are shared. Players in fully
disparate games have the lowest agreement in mu-
tual knowledge and task completion. Despite this,
in fully disparate games, a higher level of agree-
ment is present for beliefs of the current tasks being
performed by either player (e.g., compared to the

shared skills configuration), which we attribute to
players needing to ask for help more, thus commu-
nicating more and being more aware of each other,
in such situations.

4.2 Evolution of Belief States
To understand how the interaction discourse shapes
partners’ beliefs of the tasks and of each other,
we take a closer look at three types of beliefs (as
reflected by our three types of questions) and ex-
amine how they evolve as collaboration and com-
munication unfold. Segmenting individual games
into 10% sections across each game’s duration,
we examine player agreement and disagreement
as games progress. Figure 2 shows the aggregated
results from all games for our three types of beliefs.

On average, player agreement on completed task
status remains high and relatively constant through-
out a game’s progression, averaging around 80 per-
cent, as shown in Figure 2a. However, as each
game progresses, there is a noticeable increase
in the agreement among two players in terms of
what they believe about the other player’s knowl-
edge (Figure 2b). Similarly, beliefs about what the
other player’s current task is also increase notably
in agreement as each game progresses, averaging
around 12 percent at the start, gradually reaching
over 60 percent by the end of the game (Figure 2c).

These results demonstrate that the longer the two
players collaborate with each other in a game, the
more aligned they become in their beliefs about
each other. Furthermore, player understanding of
completed tasks can be acquired by direct obser-
vations from the environment itself, and it’s easier
to reach an agreement (i.e., joint understanding or
common ground) here than an understanding of a
partner’s mental states.

4.3 Dialogue Behavior
To better understand how agreement or disagree-
ment in players’ mutual beliefs affect dialogue be-
havior, we conduct a further analysis by examining
dialogue utterances in a fixed time window of 75
seconds before and after a question is asked for
each question type, separating instances of agree-
ment and disagreement. Figure 3 shows the average
number of dialogue exchanges across all games in
this stratification.

For beliefs about the status of a completed task
(Figure 3a), we observe no difference in dialogue
exchanges before the question is posed between in-
stances of agreement and disagreement in beliefs;
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Skills Knowledge Dialogue Exchanges Duration (minutes) Agreement
Completed Knowledge Current

min avg(std) max min avg(std) max Task Task
Shared Shared 3 10( 7) 27 1:23 4:25(2:55) 11:02 0.706 0.529 0.176
Shared Disparate 2 15(11) 37 2:29 6:52(4:07) 13:46 0.654 0.731 0.231

Disparate Shared 5 22(16) 54 2:49 8:05(5:35) 19:26 0.778 0.593 0.444
Disparate Disparate 6 28(22) 72 2:12 7:49(5:21) 18:15 0.654 0.385 0.308

Table 1: Statistics on games with varying skill and knowledge configurations; minimums (min), averages (avg),
maximums (max), and standard deviations (std) for the number of dialogue exchanges and durations of each game
configuration are shown, as are player agreements for all three question types.

(a) (b) (c)
Figure 2: Histograms of player answer matches (agreement, in blue) and mismatches (disagreement, in orange)
to question pairs on (a) completed task status, (b) player knowledge, and (c) current task status asked at different
relative intervals during games. Red crosses show the ratio of matched answers out of the total questions, and the
red line shows the 3rd order polynomial fit to the crosses.

(a) (b) (c)
Figure 3: Average number of dialogue exchanges before and after a question on (a) completed task status, (b)
player knowledge, and (c) current task status was asked for cases of player agreement (match) and disagreement
(mismatch).

interestingly, however, immediately following a
given question, a significant difference becomes ap-
parent in the number of dialogue exchanges. When
there is agreement between players about the state
of tasks, we observe that they, on average, tend to
communicate more to continue on the course to
further elaborate on their plan.

On the other hand, for beliefs of partner knowl-
edge, we do not observe a change in behavior
before or after a question is asked (Figure 3b),
and, for beliefs that involve a partner’s current task
(Figure 3c), interesting of note is that the average
number of dialogue exchanges leading to disagree-
ment was significantly less than that which led to
agreement. This highlights a potential reason why
disagreement occurred: less communication. We

observe that communication is especially impor-
tant for players to infer what tasks their partner is
currently working on, as it’s difficult to know the
current goal of a partner by only observing their
partial actions without communicating about it, due
to their own incomplete plan.

5 Computational Models for Inferring
Belief States

Based on our dataset, a variety of computational
problems can be formulated, developed, and eval-
uated. In this section, we focus on one key prob-
lem—predicting player belief states of the task and
of a collaborative partner in situ. As a first step,
we implement a straightforward model that, from a
player’s perspective, predicts the state of the task
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Figure 4: Model Architecture. Each time step is sampled once every second, where we take one frame for each
time step. All time steps, shown in light and dark gray boxes, have video frames associated with them, but not all
have dialogue utterances (e.g. in the dark gray time-steps above) or questions, as players might not have chatted
with each other or been prompted with questions at every time step. Player dialogue utterances are shown in blue;
prompted questions are in purple.

as well as the mental states of a partner at any given
time based on historical observations of a rich dis-
course of dialogue and perceived actions in the
shared environment.

Figure 4 shows the overall architecture of our
model. Our dataset is comprised of two time-series-
based modalities: (1) a video stream coming from
either player’s first-person POV, and (2) dialogue
exchanges. We implement a forward sequence-to-
sequence model, such that inferences at any given
time are only able to process inputs that have oc-
curred before it.

Plan Processing. Recall that each player is pro-
vided a partial view of the complete plan. Here,
each plan is stored as a list of tuples, represent-
ing each material present in the plan, associated
with the materials needed to make it and the tool
needed to interact with it. Represented naturally
as a graph, the list of nodes is given as input to a
GRU (Chung et al., 2014) for encoding. In tasks
that involve predicting a partner’s mental state in
situ, only the partial plan associated with the player
(not the partner) is used.

Visual and Dialogue Processing. We en-
code video frames with a Convolutional Neu-
ral Network and encode dialogue utterances with
bert-large-uncased (Devlin et al., 2019).
As dialogue exchanges are a sparse input, a zero-
vector is used when there is no associated dialogue
utterance at a particular time point.

Time Series Processing. We use either an LSTM
(Hochreiter and Schmidhuber, 1997) or a Trans-

former network (Vaswani et al., 2017), masked
such that it only attends to the past, and feed a
sequence of visual frame, plan, and dialogue em-
beddings as aforementioned to produce a latent
representation of game interactions for every step.

Learning and Inference. Questions, together
with each question’s associated game embeddings
(i.e., dialogue utterance embeddings, visual frame
embeddings, and the agent’s own partial plan em-
bedding) at corresponding time steps pass through
a Feed-Forward Network to make predictions of
their answers. Ground truth answers to questions
and cross-entropy loss are used for model training.
The same overall architecture is used for all ques-
tion types; the only difference between them is the
space of their output predictions.

6 Evaluation of Belief State Inference

We randomly partition our dataset into
60%/20%/20% training, validation, and test-
ing splits with the condition that all three partitions
have a similar distribution of game lengths. To
achieve testing in situ, we replace one of the two
players with our model. At every point where
a question is prompted, our model is used to
provide an answer about the other player’s belief
state through inference, using the self-reported
belief state of the other player as ground truth for
evaluation. We present the multi-class average
F1 score weighted by the number of instances in
each class (accounting for class imbalances) in our
results. We perform our experiments by varying
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(a) (b) (c)
Figure 5: Model F1 scores on predicting player belief states. Human performance and random chance performance
are marked by the blue and orange horizontal lines, respectively. Detailed results are given in Appendix Table 2.

the following configurations:
• Neural architecture: LSTM or Transformer,

with the rationale that they have different abil-
ities in capturing long-distance dialogue his-
tory.

• Input: dialogue exchanges only (D), first-
person POV video stream only (V), and both
(V+D), with the intent to understand the role
of both language communication and visu-
ally perceived activities in the environment
towards the task of mental state inference.

6.1 Performance in Situ
Inferring Player Beliefs of Completed Tasks.
Here, we predict player beliefs on the subject of
task completion: whether a designated sub-task has
been completed by their partner, specifically in re-
sponse to questions such as “Has the other player
made an Emerald Block until now?”. Participant
answers can be one of Yes, Maybe, or No. This
experiment aims to gauge an agent’s ability to keep
track of the two player’s progress towards their goal
based on its own knowledge (i.e., the partial plan
available to the agent) and the shared interaction
history. As shown in Figure 5a, we find that the best
performing configuration is the Transformer-based
model that uses only the video modality. This re-
sult seems to suggest that Seeing is believing; in
situated communication, as partners are co-present
in a shared environment, they can observe each
other’s activities and the resulting world state af-
ter participant actions to reason about completed
tasks—collaborators don’t need to use language to
communicate about what has already been accom-
plished. Furthermore, as a large time period may
exist between sub-tasks that have been completed
and their associated belief question prompts, the
Transformer-based model with video inputs only is
able to significantly outperform LSTM-based mod-
els which may be unable to capture such a time
dependency.

Inferring Player Beliefs of Partner Knowledge.
Here, we predict player beliefs of the knowledge
possessed by their partners to achieve designated
sub-goals, specifically in response to questions
such as “Does the other player know how to make
an Emerald Block?”. Participant answers can be
one of Yes, Maybe, or No. Our results in Fig-
ure 5b show that different model configurations
result in similar performance, as players are able to
explicitly ask questions about each other’s knowl-
edge in dialogue exchanges (Figure 1) in addition
to making their own observations from the environ-
ment and inferring directly from the plan they were
given.

Inferring Player Beliefs of Partner Current
Task. Here, we predict player beliefs of their part-
ner’s immediate task, specifically in response to
questions such as “What do you think the other
player is making right now?”. For this question,
participant answers can be one of 21 choices—the
number of total possible material types participants
may create in a game. Compared to the predic-
tions aforementioned, this experiment is more con-
strained in time to the vicinity of the question
prompt. Our results in Figure 5c show that LSTM-
based models seem to outperform transformer-
based models, though only marginally in the video-
only setting, demonstrating that local context seems
to play a more important role in this prediction.

6.2 Analysis of the Evolution of Inferred
Belief States

As we are interested in the evolution of an agent’s
belief as the game progresses, we further plot pre-
diction matches of model-predicted belief states
over every 10% interval of the game, similar to that
of player-belief matches shown prior in Figure 2.
Figure 6 shows the breakdowns from the best per-
forming configuration for each experiment. For
predicting the status of a completed task (Figure
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(a) (b) (c)
Figure 6: Histograms of test-set model-predicted answer matches (agreement, in blue) and mismatches (disagree-
ment, in orange) to question pairs on (a) completed task status, (b) partner knowledge, and (c) current task status
asked at different relative intervals during games. Red crosses show the ratio of matched answers out of the total
questions, and the red line shows the 3rd order polynomial fit to the crosses.

6a), we observe that, similarly to human perfor-
mance, the percentage of matched answers remains
relatively stable, though we do notice a slight de-
crease for predictions later in the game. On the
experiment of predicting the other player’s knowl-
edge, we see a similar increase in the percentage
of matched answers as the game progresses (Fig-
ure 6b) as in Figure 2b. For the experiment of
predicting the other player’s current task (Figure
6c), our model does not match the observations on
human performance: the percentage of matched
answers stays low and relatively constant. This re-
sult demonstrates that it is difficult to predict what
the other player is doing given only interaction
discourse and visual perception. This prediction re-
quires a better understanding of the progress of the
task, which the agent, as construed here, is lacking.
This also points to the utility of actively engaging
in dialogue—for example, explicitly asking what a
partner is doing—to have a better understanding of
their current goal.

7 Conclusion and Future Work

In a real-world collaborative scenario with physi-
cal agents, humans and agents will inevitably have
disparities in their abilities, knowledge, and under-
standing of the shared world. This work specif-
ically stimulates these disparities in a virtual en-
vironment, introducing a new dataset and experi-
mental framework that supports in-depth studies
of theory of mind modeling for situated dialogue
in collaborative tasks. Through a novel implemen-
tation of self-reported belief states during collabo-
rative interactions, our dataset keeps track of part-
ners’ beliefs about the task at hand and of each
other step-by-step and captures how their states
of mind evolve—and, indeed, how their common

ground evolves—as communication and interaction
unfold. To our knowledge, this is the first dataset
in the context of situated dialogue that provides
this fine-grained information for mental modeling.
Our initial analysis of this dataset generates sev-
eral interesting findings that will inform the de-
velopment of computational models for various
problems—for instance, in tracking mental models
and managing dialogue behaviors in collaborative
agents. Our baseline results demonstrate the impor-
tance of interaction discourse and visual experience
in a shared environment on predicting mutual be-
lief states of the task at hand, and of a collaborative
partner, to ensure common ground.

While we have built baseline computational mod-
els to better help in understanding human collabo-
rative behaviors and several theory of mind tasks,
we hope our work further facilitates improvements
in areas like agent planning and decision-making,
computational reasoning, multimodal dialogue gen-
eration, and to move towards fully autonomous
agents that are able to engage with humans in col-
laborative activities, on human terms, both effec-
tively and efficiently in a human world.
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A Appendices

A.1 Detailed Prediction Results

A detailed comparison of the F1 scores on the test-
ing and validation sets may be seen in Table 2.
Each experiment was run 10 times; training each
model for all settings lasts roughly 35 minutes on
average.

A.2 Model Description

A.2.1 Convolutional Neural Network
The parameters for the convolutional network used
in visual processing were primarily constrained
by GPU memory limitations; image frames of
size 96 × 96 were input into a CNN consisting
of four convolutional layers with kernel sizes of
3× 3, 5× 5, 5× 5, and 3× 3, whereby the sizes of
the intermediate inputs were 3, 8, 32, 128, and 512,
respectively. These parameters were chosen under
the consideration that the blocks-world Minecraft
video frames are not as rich in content as that of
a real-world photo setting. A Dropout of 0.2 was
further used between layers, chosen after a parame-
ter sweep in the range of [0, 0.5], which was done
by picking kernel sizes between 3 and 5 and layers
between 3 and 6, taking into account the aforemen-
tioned image input size.

A.2.2 Plan Processing
Recall that each player is provided a partial view
of the complete plan. For processing, each plan is
stored as a list of tuples, representing all materials
present in the plan and their links with (1) the mate-
rials needed to create them and (2) the tools needed
to break them—i.e. nodes (materials) are linked
with their children (composite materials and tools)
as in the graph representation. The goal material,
the root node, is always first in the list. All sub-
sequent nodes are added in a breath first fashion,
except in cases whereby a node has already been
added to the list (as cycles are allowed). Each ma-
terial and tool is given a one-hot encoding; mined
materials have their children represented as zero
vectors, as no other material is needed to make
them. Partial plans and their representations are
generated from the complete plan by hiding the
children of randomly selected nodes—excluding
the goal and mines—to depict a lack in knowledge.
For encoding, each tuple has the one-hot encodings
of (1) the material itself, (2) its parent node, (3) its
children nodes, and (4) its associated tool concate-
nated; the list of tuples are then input to a GRU

(Chung et al., 2014), which takes in an input vector
of size 81 and has a hidden state size of 32. In the
tasks that involve predicting a player’s mental state
from the perspective of the other player, only the
partial plan associated to the other player’s point of
view is used.

A.3 Example Player Interaction

Figure 7a shows a relatively verbose exchange of
dialogue. Note that only a portion of the entire
game’s dialogue (which has 40 exchanges in total)
is shown. Here, we observe that there is a clear self-
assignment of leader and follower roles between
the players: the leader explicitly states every step
they think their partner needs to make, almost to the
point of micro-managing. We also see an example
of slight backtracking happening, where Player 2
realizes that they are further along in the plan than
they initially thought.

In Figure 7b, we see an example of a fairly
straightforward exchange of dialogue. Player
1 notices that they are not aware of the recipe
for Soul Sand, which is needed to create the
goal material, Emerald Block. They then in-
quire with their partner about it, who then states
that they are unaware, instead, of how to make
Black Wool, which is necessary for creating
Soul Sand. Once the information is exchanged,
the intermediate material is created promptly and
both players then proceed to create their goal mate-
rial.

Consider the dialogue exchange in Figure 7c.
The two players are one step away from creat-
ing their goal material, Orange Wool. Player
1 points out that they require a block of Cyan
Wool. Player 1 is pointing this out to Player 2
even though they cannot be sure Player 2 shares the
knowledge as, in order to interact with the neces-
sary materials, an Iron Shovel, which Player
1 does not possess, is required. From Player 2’s
perspective, while they are also aware that a block
of Cyan Wool is required, they do not know how
to make one as the arrows in their plan view are
missing. As such, they inquire with their collabora-
tion partner about the recipe. Player 1 then updates
Player 2 on how to make Cyan Wool and also
points out that one of the materials necessary was
already created. This sample extract of their overall
interaction is an example of grounding to the visual
modality of their dialogue: our dataset provides
much longer sequences of such interactions that
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Task Model Setting Test F1 Score Validation F1 Score

Predicting Completed Task Status

LSTM
D 0.451(±0.016) 0.511(±0.007)

D+V 0.456(±0.016) 0.516(±0.009)
V 0.450(±0.021) 0.519(±0.008)

Transformer
D 0.398(±0.022) 0.486(±0.009)

D+V 0.439(±0.034) 0.512(±0.023)
V 0.536(±0.015) 0.549(±0.009)

Predicting Other Player’s Knowledge

LSTM
D 0.490(±0.010) 0.690(±0.004)

D+V 0.488(±0.009) 0.679(±0.007)
V 0.484(±0.006) 0.675(±0.008)

Transformer
D 0.464(±0.029) 0.670(±0.015)

D+V 0.483(±0.011) 0.673(±0.009)
V 0.491(±0.015) 0.687(±0.007)

Predicting Other Player’s Current Task

LSTM
D 0.081(±0.012) 0.140(±0.006)

D+V 0.070(±0.013) 0.137(±0.005)
V 0.085(±0.013) 0.140(±0.007)

Transformer
D 0.047(±0.013) 0.133(±0.009)

D+V 0.056(±0.006) 0.129(±0.005)
V 0.076(±0.014) 0.149(±0.007)

Table 2: Model F1 scores on predicting player belief states on test and validation; 99% confidence intervals are
provided in parentheses.

are also causally dependant on one another. It is
important to note here that the players are not as-
sumed leader or follower roles; in this situation, the
two participants coordinated entirely on their own
and reached a consensus on who provides informa-
tion and who is to execute the tasks. These roles
switch throughout the game as their disparities in
skills and knowledge change.

These select dialogue exchanges showcase a
small part of the diversity in possible interactions
that happen in our experimental setup, whereby
players are able to negotiate, decide, and execute
their plans of action in a collaborative setting with
relaxed constraints on player roles.
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(a)

(b)

(c)
Figure 7: Example dialogue exchanges, with the two players’ partial plans also shown as context.


