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Abstract

Ontology Alignment is an important research
problem applied to various fields such as data
integration, data transfer, data preparation, etc.
State-of-the-art (SOTA) Ontology Alignment
systems typically use naive domain-dependent
approaches with handcrafted rules or domain-
specific architectures, making them unscal-
able and inefficient. In this work, we pro-
pose VeeAlign, a Deep Learning based model
that uses a novel dual-attention mechanism
to compute the contextualized representation
of a concept which, in turn, is used to dis-
cover alignments. By doing this, not only
is our approach able to exploit both syntac-
tic and semantic information encoded in on-
tologies, it is also, by design, flexible and
scalable to different domains with minimal ef-
fort. We evaluate our model on four differ-
ent datasets from different domains and lan-
guages, and establish its superiority through
these results as well as detailed ablation stud-
ies. The code and datasets used are available
at https://github.com/Remorax/VeeAlign.

1 Introduction

Ontology alignment is the task of establishing
correspondences between semantically related el-
ements (i.e. classes and properties) from differ-
ent ontologies. It is useful for many applications,
particularly for data integration and data migra-
tion. The problem has been extensively studied
in the past decade, and the solutions have ranged
from simple rule based systems (Faria et al., 2013;
Jiang et al., 2016) to the ones incorporating ex-
ternal knowledge (Hertling and Paulheim, 2012;
Algergawy et al., 2011), as well as the most recent
ones that use sophisticated deep learning based sys-
tems (Kolyvakis et al., 2018; Wang et al., 2018;
Jiménez-Ruiz et al., 2020; Xue et al., 2021). A
common limitation of these systems is their inabil-
ity to generalize to new data - rule based systems
are based on handcrafted rules which may not cover

all data scenarios in all datasets. On the other hand,
the Deep Learning (DL) based systems (Kolyvakis
et al., 2018; Wang et al., 2018) proposed so far,
often have strong dependencies on domain-specific
external knowledge bases such as lexicons and the-
sauri. Moreover, they also underperform as com-
pared to their rule-based counterparts. One of the
primary reasons for this and in fact, also the depen-
dency of DL architectures on external background
knowledge is the lack of sufficient, usable training
data. Ground truth alignments are typically very
scarce in number, especially for smaller ontologies,
making supervised training difficult. Moreover,
the small number of “positive” alignment pairs as
compared to the “negative” ones (i.e entity pairs
that contain an alignment versus those that do not)
leads to a class imbalance and further adds to the
difficulties of supervised learning based solely on
the reference alignments. For example, the con-
ference dataset (Zamazal and Svátek, 2017), used
for experimentation in this paper, has 305 positive
and 122588 negative alignments. As a result of
both sparsity and class imbalance, even moderately
complex DL architectures (that contain only a few
parameters) overfit and therefore, perform poorly.
Given these challenges and the weaknesses of the
previous approaches, our goal in this paper is two
fold: a) to build a generic, domain-independent
model that leverages the intrinsic semantic and
structural information encoded in ontologies with
no requirement of external, domain-specific knowl-
edge and b) a model that uses a parametrically-light
architecture to strike the right balance between the
model expressivity (uses training data well) and
model complexity (does not overfit).

Despite significant research, ontology alignment
still remains a challenging task. Figure 1 provides
an illustration highlighting this challenge. The
task is to determine alignment between the con-
cept Attendee in Ontology-1 and the concept Lis-
tener in Ontology-2. Current approaches that com-

https://github.com/Remorax/VeeAlign
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Figure 1: An Example illustrating concept alignment and
dependency on the surrounding context

pute concept similarity or context similarity at the
label level will fail to capture the alignment be-
tween these two concepts, since these concepts do
not have high lexical or even semantic similarity.
While there is a common concept (i.e. Person) in
the neighbouring context of both concepts, there
are several other concepts in their respective con-
texts that are not similar. This example shows that
not only is it important to consider neighbouring
concepts, it is also important to model them in such
a way that while computing similarity, the rele-
vant neighbouring concepts have higher weights
than the irrelevant ones. In this particular exam-
ple, ancestor nodes should be given higher weights
than children and concepts connected by object and
datatype properties respectively.

Driven by this intuition and the need to address
the limitations of the current approaches, this pa-
per presents a novel ontology alignment system,
referred to as VeeAlign1, that exploits both syntac-
tic (context surrounding the concepts) as well as
semantic (label-based similarity) aspects of an on-
tology to compute alignment. We present a novel
way of modelling context, where the context is
split into multiple facets based on the type of con-
textual concepts it contains2. More specifically,
we split the context into four facets, where each
facet contains contextual concepts that have a dif-
ferent relationship with the central concept. This
includes facets containing ancestors, children, con-
textual concepts connected by object properties and
those connected by datatype properties respectively.
Such a multi-faceted context, however, poses a new
challenge because not all of these facets contribute
equally in the relatedness of the concepts. More-

1https://github.com/Remorax/VeeAlign
2A facet is a set of concepts belonging to same category.

oever, each of these facets consist of paths which,
in turn, are composed of nodes. Therefore, the
challenge here lies in developing a mechanism that
weighs the relevant parts of the context (be it facets,
or paths, or nodes, in increasing order of granular-
ity), more than the less relevant ones. In order to
deal with this challenge, we propose a novel dual
attention mechanism comprising of a) path-level at-
tention and b) node-level attention. The path-level
attention combines all the path representations in a
facet based on their importance (to the alignment
of the central concept) to compute an aggregated
path representation. Similarly, the node-level at-
tention combines all node representations in the
aggregated path based on their importance to re-
turn an aggregated node representation. We apply
these attention mechanisms sequentially on each
facet to obtain its representation. The final context
representation is obtained using a weighted sum
of these facet representations, where the weights
are proportional to their importance. We also note
that the term “dual attention" is rather overloaded
in prior literature, so we distinguish its usage in
this work from that of prior works (Fu et al., 2019;
Nam et al., 2017; Yan et al., 2019; Liu et al., 2019).
In these works, dual attention has either referred to
the parallel application of separate attention mech-
anisms or simultaneous application on two or more
different features. Our usage of dual attention lies
in the sequential application of attention on the
same features, first at the path level and then at the
node level. The main contributions of this paper
are, therefore, as follows:

• We model the task of ontology alignment to de-
termine similarity between two concepts, with a
major focus on context. We introduce the notion
of multi-faceted context, and model it using a
novel dual attention mechanism.

• We show through an ablation study the effect
of dual attention over single attention and no
attention, and the effect of different facets on
model performance.

• To demonstrate the applicability of our approach
on diverse data sources in terms of language, do-
main, and size, we evaluate the proposed model
on four different datasets: Conference, Lebens-
mittel, Freizeit, and Web Directory. We show that
our approach of context modelling outperforms
SOTA baselines on all datasets, sometimes by a
significant margin, and in particular, significantly
increases recall of the positive alignments.

https://github.com/Remorax/VeeAlign
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2 Related Work

Related work mainly spans two broad areas: ontol-
ogy and Knowledge Graph (KG) alignment.

Ontology Alignment There is a large body of
work on ontology alignment (Euzenat et al., 2007;
Otero-Cerdeira et al., 2015; Niepert et al., 2010;
Schumann and Lécué, 2015), primarily driven
by the Ontology Alignment Evaluation Initiative
(OAEI). OAEI has been organising ontology align-
ment challenges since 2004 where multiple datasets
belonging to different domains are released along
with a public evaluation platform to evaluate differ-
ent systems. Among all systems submitted to the
challenge, AgreementMakerLight (AML) (Faria
et al., 2016) and LogMap2 (Jiménez-Ruiz et al.,
2020) have consistently outperformed other sys-
tems for the past several years. Despite their high
performance on OAEI datasets, these systems have
two identifiable weaknesses: a) For comparing
concept labels, string similarity measures are used
which do not address semantic similarity, and b)
While these systems use neighbour alignment as
a guiding factor for calculating alignments, they
do not attempt to compute context similarity us-
ing a rigorous neighbourhood representation. In
addition, while they have been engineered over
the years to give the best performance on OAEI
datasets, their performance is less impressive on
non-OAEI datasets (refer Section 4), indicating
poor scalability. Wiktionary (Portisch et al., 2020)
is another top performing ontology alignment sys-
tem, especially in the multilingual space. However,
it relies heavily on the Wiktionary knowledge base
which again presents scalability issues.

The few systems proposed outside OAEI, partic-
ularly Deep Learning based systems, have strong
dependencies on background knowledge sources,
thus limiting their use. A good example of this
is OntoEmma (Wang et al., 2018), a neural net-
work based ontology alignment system for the
Biomedical domain. It enriches ontological en-
tities with aliases from the ontology, definitions
from Wikipedia, and usage contexts from domain-
specific medical papers; and uses this additional
information for ontology alignment. Similarly,
DeepAlign (Kolyvakis et al., 2018) also requires
synonyms and antonyms extracted from external
sources such as WordNet & PPDB in order to re-
fine word vectors using synonymy and antonymy
constraints, which are then used for alignment. Fi-

nally, the recently proposed SNN-OM technique
(Xue et al., 2021) uses, among others, WordNet-
dependent similarity features for aligning sensor
ontologies.

A recent work attempting to combine the tradi-
tional and modern DL-based approaches proposed
a Machine Learning-based extension to traditional
ontology alignment systems, using distant super-
vision, ontology embeddings and Siamese Neural
Networks (Chen et al., 2021). While this was useful
in incorporating richer semantics and outperform-
ing the traditional systems, it was still reported to
underperform as compared to VeeAlign.

KG Alignment While Deep Learning-based re-
search in ontology alignment has been rather lim-
ited, there has been quite a lot of work exploring en-
tity alignment in Knowledge Graphs, particularly in
the last 2 years (Zhang et al., 2021). Sun et al. (Sun
et al., 2017) proposed the DBP15K dataset that
provided cross-lingual entity alignments between
Japanese-English, French-English and Chinese-
English versions of DBPedia respectively. This
work has led to the proposal of various entity align-
ment systems (Sun et al., 2017, 2020; Mao et al.,
2020; Liu et al., 2021a; Nguyen et al., 2020a; Liu
et al., 2021b; Lu et al., 2021; Qi et al., 2021) that,
given a pair of Knowledge Graphs (KGs), seek to
discover an injective mapping between the entities
of the corresponding KGs. The common approach
used by these systems involves ranking the most
similar entities in KG-2 for each entity in KG-1.
These systems have achieved remarkable success
in entity alignment in KGs, with EMGCN (Nguyen
et al., 2020b) emerging as the best-performing
system on the leaderboards for DBP15K Zh-en
(PapersWithCode, 2021c), DBP15K Fr-en (Paper-
sWithCode, 2021a) as well as DBP15K Ja-en (Pa-
persWithCode, 2021b). EMGCN uses an unsu-
pervised entity alignment framework that exploits
various aspects of KG-specific data and combines
them via a late-fusion mechanism. Despite the
success of these systems in KG entity alignment,
particularly in DBPedia, applying these systems
for ontology alignment presents certain significant
problems. Firstly, they assume that for each en-
tity in the source KG, there would be a match-
ing entity in the target KG. Some systems, like
DGMC (Liu et al., 2021a), additionally also em-
ploy the principle of ‘neighborhood consensus’ to
train their systems: neighbours of aligned entities
must also contain corresponding alignments in their
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neighbourhoods. PRASE (Qi et al., 2021), which
combines probabilistic reasoning and semantic em-
bedding for entity and relation alignment, uses a
similar technique for obtaining seed alignments
using its PARIS-based reasoning system. These
assumptions of neighbourhood similarity are intu-
itive and effective while aligning linguistic variants
sourced from the same KG, such as En-Fr DB-
Pedia. However, these assumptions are less valid
and effective while aligning differently-sourced on-
tologies possessing dissimilar structures. More im-
portantly, the KG entity alignment systems require
large amounts of training data. The large number of
interlingual alignments present in DBP15K dataset
can satisfy this constraint. In addition, DBPedia
provides additional training data due to its richness
and denseness. For instance, EMGCN trains on the
diverse, numerous attributes of DBPedia concepts
while EVA (Liu et al., 2021b) trains on the stored
images for computing visual embeddings used dur-
ing alignment. These methods, while suitable for
large KGs, may not be very suitable for ontology
alignment datasets, where the alignments are typi-
cally sparse and much fewer in number. In addition,
small-medium size ontologies often do not possess
significant concept-level information, resulting in
substantially lesser training data for complex DL
architectures.

In this work, we attempt to resolve drawbacks
present in both rule-based Ontology Alignment sys-
tems that require extensive manual effort, as well
as DL-based complex KG entity alignment systems
requiring extensive training data. VeeAlign uses a
light and robust DL architecture that both increases
expressivity over Ontology Alignment systems and
also minimises training data required.

3 Approach

In this section, we describe our system VeeAlign
including its underlying dual attention mechanism.

3.1 Preliminaries

Let Os and Ot be the source and target ontologies
with the corresponding concepts {cs1, cs2, . . . csM}
and {ct1, ct2, . . . ctN}, respectively. Ontology align-
ment in its most general form involves finding dif-
ferent kinds of relationships between concept pairs,
including complex relationships such as transfor-
mation (Thiéblin et al., 2020) or inference (Zhou,
2018). The focus of this work is to discover the
equivalence relationship between concepts, primar-

ily because they are of the most interest to the
community. Terminologically, we refer to concepts
being compared for alignment as central concepts,
and the concepts surrounding a central concept as
contextual concepts (or context as a whole). Our
approach for finding semantically equivalent con-
cepts involves computing the representations of the
central concept and its context, and then combining
them for discovering alignments.

3.2 Concept Representation
We illustrate VeeAlign’s architecture in Figure 2.
Since VeeAlign is a supervised model, it requires
training data in the form of both positive (aligned)
and negative (non-aligned) concept pairs. So, for a
given source and target ontology, we have a train-
ing set T consisting of concept pairs (e.g. (csi , c

t
j))

along with their labels (L(csi , c
t
j)), where label is

1 when csi and ctj are semantically equivalent and
0 otherwise. VeeAlign computes the concept rep-
resentation using pre-trained language model (e.g.
Universal Sentence Encoder). The key difference
however lies in its method of capturing the multi-
faceted context and computing a contextualized
concept representation which is explained below.

3.3 Context Representation
Our hypothesis is that the context plays a critical
role in alignment, therefore, it is important to model
the context in a principled manner. The context of
a central concept consists of all the surrounding
concepts referred as contextual concepts. For a
concept ci, let ui be its d-dimensional distributed
representation obtained using the Universal Sen-
tence Encoder (Cer et al., 2018). Each contextual
concept has a role and influences the alignment of
the central concept, therefore we categorize con-
textual concepts into 4 facets: ancestral concepts,
child concepts, concepts connected through an ob-
ject property and concepts connected through a
datatype property.

Sifting through several ontologies and their ref-
erence alignments, we observed that two concepts
align not only on the basis of their one-hop neigh-
bours but also on the similarity of their “ancestral
concepts". In other words, while comparing two
concepts, we consider not only their immediate
parents but also the long-range ancestral concepts
that lie on the path (also referred to as lineage path)
from the central concept all the way to the root
concept. We thus enumerate all lineage paths from
the central concept to the root and use them for
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Figure 2: VeeAlign Architecture

context representation. Concepts that link to the
central concept using a direct SUBCLASS-OF rela-
tionship are known as child concepts. In order to
follow consistent terminology, we also represent
these as a path, however, each path in this case con-
tains only one concept. The contextual concepts
that link to the central concept through datatype
and object properties are represented in the same
manner as child concepts, i.e. we only consider
one-hop neighbours linked to the central concept
through either of the two properties. Also, for the
sake of uniformity with subclass relations, we only
consider the neighbours linked through these prop-
erties while computing representations and not the
properties themselves.

3.4 Dual Attention

Attention (Bahdanau et al., 2015) in deep learning
can be broadly interpreted as a vector of weights
denoting relative importance. Here, attention com-
putes weights for contextual concepts that deter-
mine its directly proportional influence on the
alignment of the central concept. To compute the
weights, we use a dual attention mechanism that
consists of two steps: i) Path-level attention and
ii) Node-level attention. The goal of the first step
is to assign higher weights to the most influen-
tial path(s), and then using weighted average to
compute a unified path representation, whereas in
second, the goal is to assign higher weights to the
nodes in the computed unified path that are most
influential in the alignment of the central concept.

Path-level Attention As mentioned, the path
level attention aims to find the most important
paths in each facet. The weight of each path is
computed as the sum of its node weights, and
this is detailed as follows. Among the four dif-
ferent facets, let us first consider the facet con-
taining ancestral concepts and specifically, the
lineage paths, which are essentially paths of an-
cestral concepts from the central concept to the
root. For the central concept ci, let it contain
n lineage paths Pi1, Pi2, . . . Pij , . . . , Pin. Let
cij1, cij2, . . . cijk, . . . , cijt be the t concepts in jth

path of length t. Here i, j, and k are indices for the
central node, its neighboring paths, and concepts
in those paths respectively. Now, let the maximum
length among all n neighbouring paths be l. Here,
t ≤ l, so all the paths are padded with null concepts
(represented using zero vectors) appropriately, so
as to ensure each path is of length l. The attention
weights for each concept in each path are then cal-
culated as a dot product of the central concept and
the path concept, i.e:

wijk = uTi uijk (1)

These are then summed to obtain the overall
weight of a path i.e.,

wij =
∑
k

wijk. (2)

Once the relative importance of each path is com-
puted, the next step involves obtaining a unified
path representation as a weighted average of all
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the paths. Let wi1, wi2, wij . . . be the relative im-
portance of all the lineage paths obtained from (2),
then

Rik =
∑
j

wijuijk (3)

HereRik is the d-dimensional representation of the
kth node on the unified path representation of ith
central concept. The unified path representation
for the ith central concept is, therefore, the stacked
l ∗ d-dimensional matrix Ri where:

Ri = [Ri1, Ri2, . . . , Rik, . . . , Ril] (4)

Node-level Attention Each node (or contextual
concept) in the path contributes towards the central
concept’s alignment proportional to its importance,
which is determined by the node-level attention.
Thus in this second step of attention, node weight
is determined as:

wik = Softmax(uTi Rik) (5)

After computing node-level attention, these node
weights are then used to compute the final repre-
sentation of a facet as follows:

Fi =
∑
k

θk wik Rik (6)

where Fi is the d-dimensional final representation
vector of a facet. θ_k is a scalar introduced to pro-
vide importance to each contextual concept based
on its distance/positional index (k in this case) from
the central concept. This is driven by the intuition
that immediate ancestors play a more important
role in alignment than the distant ones.

Thus in this way, we follow a sequential dual
attention approach to compute the representation
of each facet in the context. The computations for
learning the representations of ancestral concepts
and the other three facets of concepts is same, ex-
cept that, for the other three facets the path length is
one. Again, appropriate padding with null concepts
is done to ensure that all paths, be it lineage paths
or the paths connecting one-hop neighbours, are of
the same length.

Final Context Representation Having com-
puted the representation for each facet, we now
proceed to calculate final context representation.
Let Fia, Fic, Fio, and Fid be the facet representa-
tions obtained using equation 6 for ancestral con-
cepts, child concepts, concepts connected through

object properties and those connected through the
datatype properties respectively. The final context
representation is obtained as a weighted sum of the
facet representations as follows:

vi = fwaFia + fwoFio + fwcFic + fwdFid

s.t. fwa + fwo + fwc + fwd = 1
(7)

Where fwa, fwo, fwc, fwd are the weights for
the corresponding facet representations respec-
tively.

Training Layer This context representation vi is
concatenated with the central concept representa-
tion ui, and then passed to a feedforward Neural
Network for dimensional reduction as

f(ci) =W ∗ [ui, vi]. (8)

Here f(ci) is the final contextualized representation
of the central concept ci.

For the property alignment, we do not use con-
text and simply use semantic representations of the
property name. For a given property pi, g(pi) is the
d-dimensional representation provided by the em-
bedding layer. A candidate alignment pair consists
of elements of similar type (concepts with concepts
and properties with properties) from both source
and target ontologies. The aforementioned com-
putations are performed for both source and target
elements by passing them both through a Siamese
Network (Bromley et al., 1994) (refer Figure 2) and
then computing the confidence score of the align-
ment by taking a cosine similarity between the two
contextualized representations, i.e.

H(csi , c
t
j) = cos(f(csi ), f(c

t
j))

H(psi , p
t
j) = cos(g(psi ), g(p

t
j))

(9)

Denoting concept and property pairs as element
pairs (esi , e

t
j), an element pair is considered a pos-

itive alignment when the similarity score is more
than a threshold parameter Θ, i.e. L̂(esi , e

t
j) = 1

when H(esi , e
t
j) > Θ and 0 otherwise. For the

training, we use mean squared error,

L =
1

T

∑
(esi ,e

t
j)∈T

(
H(esi , e

t
j)− L(esi , e

t
j)
)2

whereH(esi , e
t
j) is obtained using equation (9), and

T is total number of training examples. L(esi , e
t
j)

denotes the ground truth label which is 1 if esi ≡ etj
and 0 otherwise. The architecture has a relatively
small parameter footprint with learnable parame-
ters being used only in equations (7) and (8) which
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is 307204. This is by design and is driven to bal-
ance the trade-off between model complexity and
expressivity.

4 Experiments

This section provides experiment details, i.e. the
datasets used, baseline models, experimental setup,
results, and their analysis including ablation study.

4.1 Datasets

We evaluate the performance of our model on four
benchmark datasets used in several prior studies
for the ontology alignment task ((Euzenat et al.,
2011; Peukert et al., 2010)). Table 1 shows the
number of concepts in each ontology along with
the total number of ground truth positive align-
ments. The Conference (Zamazal and Svátek,
2017) dataset is an English language dataset from
the conference organization domain. The other
three datasets are in German Language. Lebens-
mittel (Peukert et al., 2010) is from Food domain,
whereas Freizeit (Peukert et al., 2010) and Web
directory (Massmann and Rahm, 2008) are from
online shopping domain.

Dataset Ontology #Concepts #Ground Truth
Alignments

Conference

cmt 29

305

conference 59
confOf 38
edas 103
ekaw 73
iasted 140
sigkdd 49

Lebensmittel Google 58 32web 52

Freizeit dmoz 70 67Google 66

Web directory

dmoz 745

2051Google 727
web 417
Yahoo 1132

Table 1: Datasets used in the experiments

4.2 Hyperparameters

We optimised hyperparameters through grid-search.
The word vectors were initialized with 512-
dimension Universal Sentence Encoder (USE) (Cer
et al., 2018) for the conference dataset and its mul-
tilingual variant(Yang et al., 2020) for the three
German-language datasets. The model was con-
verged using MSE loss and Adam optimizer with
a learning rate of 0.001 and a batch size of 32.
Model training was stopped after a maximum of 50
epochs. For obtaining unified path representation

using equation 2, we experiment with weighted
sum and max pooling, and report the best results.
Finally, the dimension of the final output layer was
set to 300. For reproducibility, all randomizations
were seeded with 0, and the system was run only
once. More details on the experimental setup in-
cluding computing infrastructure is provided in Ap-
pendix A.

4.3 Data Preprocessing and Evaluation
Methodology

VeeAlign needs both positive and negative align-
ment pairs, and since datasets only come with posi-
tive pairs, all other possible non-positive pairs are
considered as negative alignment pairs. To prevent
class imbalance due to the high number of neg-
ative alignment pairs compared to positive ones,
the positive pairs are oversampled to match the
negative ones. The entire data (positive and neg-
ative pairs) is split into training, validation and
test sets in 70:20:10 ratio using the K-fold “slid-
ing window" method. To ensure sufficient training
data despite the varied size of the datasets, we use
K = 7 in conference and K = 5 in the other 3
datasets. Further details are provided in Appendix
A. The validation set is used for optimizing hyper-
parameters including the classification threshold.
Precision, recall and F1-score of the positive class
are used as evaluation metrics.

4.4 Results and Discussion
Tables 2, 3, 4 and 5 show the evaluation results
on Conference, Lebensmittel, Freizeit and Web
directory datasets, respectively. We evaluate the
performance of VeeAlign by comparing it with
the following top performing baselines from dif-
ferent areas: AML(Faria et al., 2016), LogMap2
(Jiménez-Ruiz et al., 2020), Wiktionary(Portisch
et al., 2020), DeepAlign (Kolyvakis et al., 2018)
and the KG alignment system EMGCN (Nguyen
et al., 2020b). These baselines were selected based
on their performance (both, top performers in OAEI
and outside OAEI), open-source availability and
in an effort to cover both DL and non-DL based
methods. Particularly, AML and LogMap have
consistently been top performers for several years
in OAEI, and continue to retain their standing. Re-
cently, the Deep Learning-based system DeepAlign
beat AML on the conference dataset, while Wik-
tionary has emerged as a close competitor to AML
and LogMap, particularly in multilingual tasks.
EMGCN is a leaderboard topper among the KG
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entity alignment systems. For more details on these
baselines, refer to Section 2.

While we attempted to run all baselines on all
datasets using their original setting, some baselines
failed to produce results in some datasets. In partic-
ular, AML timed out on the Web directory dataset,
possibly due to its large size and the unoptimized
nature of string computations on large non-OAEI
datasets. It finishes in time for the relatively much
smaller Lebensmittel and Freizeit datasets, but
only outputs instance alignments and fails to dis-
cover any concept alignments. Additionally, since
DeepAlign employs external English-language lex-
icons for refining word vectors, it could not be run
on German-language datasets. Lastly, EMGCN
could not be run on the conference dataset. This
is because the current implementation of EMGCN,
that involves message-passing GCNs, cannot sup-
port ontologies with disconnected concepts, such
as those present in conference dataset.

System P R F
AML 0.802 0.651 0.700
LogMap2 0.821 0.654 0.701
Wiktionary 0.685 0.608 0.629
DeepAlign 0.631 0.586 0.567
VeeAlign 0.774 0.741 0.748

Table 2: Results on the Conference dataset

From the results in Tables 2, 3, 4 and 5, VeeAlign
outperforms the baselines on all four datasets, of-
ten by a huge margin. On comparison against the
second best performing baseline in Conference,
Lebensmittel, Freizeit, and Web Directory, there
are improvements of 6.7%, 52.8%, 0.11%, and
14.4%, respectively. Note that the results in Ta-
ble 3 have a slightly wider range of values which
is primarily due to the relatively small number of
alignment pairs in this dataset.

System P R F
AML 0.000 0.000 na
EMGCN 0.011 0.273 0.020
LogMap2 1.000 0.300 0.437
Wiktionary 1.000 0.300 0.437
VeeAlign 0.889 0.540 0.668

Table 3: Results on the Lebensmittel dataset

These results lead us to the following four con-
clusions: i) The superior performance of VeeAlign
on all 4 datasets indicates the efficacy and robust-
ness of our algorithm, irrespective of size, domain

System P R F
AML 0.000 0.000 na
EMGCN 0.013 0.196 0.023
LogMap2 0.925 0.747 0.821
Wiktionary 0.803 0.969 0.878
VeeAlign 0.814 0.970 0.879

Table 4: Results on the Freizeit dataset

System P R F
AML Timed out Timed out Timed out
EMGCN 0.001 0.030 0.002
LogMap2 0.778 0.542 0.638
Wiktionary 0.503 0.665 0.573
VeeAlign 0.746 0.741 0.730

Table 5: Results on the Web Directory dataset

or language of the dataset. ii) Though AML has
long been the SOTA in ontology alignment, its inap-
plicability to non-OAEI baselines, namely in terms
of execution time and lack of detection of concept
alignments, indicates lack of scalability as a po-
tential (and major) weakness. DeepAlign in turn,
which was the previous SOTA in DL alignment
systems, requires synonymy and antonymy infor-
mation provided as background knowledge, which
too can lead to scalability issues due to unavailabil-
ity of the same. iii) EMGCN performs poorly on
all 3 German datasets. This is likely caused by a
variety of reasons. Firstly, the ontologies in the Ger-
man datasets are sparsely connected and possess
low node degree (1.8) as compared to the average
DBPedia degree3 (18.85). Secondly, DBPedia is
much richer in terms of attributes: the number of
attributes in the provided DBPedia KGs (4̃000) and
the number of attribute triples (200,000-300,000)
far outweigh the number of attributes (2-3) and at-
tribute triples (150-200) in these ontologies respec-
tively. As the provision of relations and attributes is
crucial to structural and representational training of
EMGCN respectively, the model is possibly highly
undertrained. iv) It is also interesting to note that
in most cases, Deep Learning (DL) based systems
enjoy a higher degree of recall, while rule-based
matchers enjoy higher precision. This is intuitive
given rule-based matchers deploy rules that always
work for certain scenarios, generating high preci-
sion, but DL isn’t bound by such rules and is thus
able to cover relatively more scenarios.

3http://konect.cc/networks/dbpedia-link/
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P R F
No Context 0.775 0.608 0.670
Context + single attention 0.678 0.728 0.697
Context + dual attention 0.774 0.741 0.748

Table 6: Effect of context in single and dual attention

4.5 Ablation Study

We now perform ablation studies to evaluate the
effect of context, dual attention and types of facets
on alignment respectively.

Effect of Context and Attention We first ana-
lyze the effect of context, and attention on model
performance, namely in: i) the absence of context;
ii) the presence of context but only single attention
(i.e no path level information, only node-level in-
formation from neighbours) and iii) the presence
of context with dual attention i.e., using both path-
level and node-level information. Results in Table 6
indicate that adding context helps in improving per-
formance. Furthermore, the superior performance
of dual attention over single attention also proves
the utility of dual attention in obtaining better con-
textual representations.

Facets P R F
Ancestor Concepts 0.747 0.707 0.719
Child Concepts 0.634 0.750 0.678
Object Properties 0.647 0.740 0.681
Data Properties 0.640 0.750 0.681
All combined 0.774 0.741 0.748

Table 7: Effect of Facets on VeeAlign

Effect of Facets We now proceed to discover the
importance of each facet in deciding alignment of
the central concept. Accordingly, we evaluate the
performance using information from only ancestor
concepts, child concepts, datatype property neigh-
bours and object property neighbours and compare
this against the VeeAlign model that uses all four
of them together (Table 7). These results indicate
that ancestor concepts are the most useful facet
whereas the child concepts are least useful. How-
ever the best alignment results are obtained when
we combine all four facets.

4.6 Time Complexity

Our algorithm has a run time complexity ofO(mn)
where m and n are the size of source and target
ontologies respectively. Empirically, for the largest
ontology pair (yahoo-dmoz) from web-directory
dataset with m = 1132 and n = 745, it took 93

seconds to run. While the algorithm is able to run in
reasonable time for ontologies of moderate size, it
becomes challenging for large ontologies given its
quadratic complexity. One of the future works is to
reduce this quadratic complexity by an intelligent
selection of target candidates for alignment, thus
reducing the search space from n to a constant k.

5 Conclusion

This paper presents a general purpose ontology
alignment system that does not require any external
or background knowledge. It is based on a light and
robust DL architecture that utilises a novel multi-
faceted context representation approach for exploit-
ing the structural aspects of an ontology. A novel
dual attention mechanism is proposed for focusing
on the parts of the context that are most crucial for
alignment. Our experiments on 4 different datasets
from 2 different languages and 3 different domains
show that the proposed method outperforms the
SOTA methods by a significant margin. Ablation
study examines the effect of context splitting and
dual attention, and validate them as the right factors
behind the performance improvement.
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A Appendix

A.1 Dataset split
For the conference dataset, we do 7-fold cross val-
idation, so out of 21 ontology pairs, 6 folds (18
pairs) are used for training, 1 fold for validation
and testing (2 pairs from 1 fold for validation and 1
pair for testing). For the Lebensmittel, Freizeit and
Web directory datasets, we perform 5-fold cross
validation, in which 70% of the concept pair align-
ments are used for training, 10% for validation
and 20% for testing. Since the conference dataset
consists of 21 pairs of small ontologies, we split
them at the ontology-pair level. Whereas, since
Lebensmittel, Freizeit and Web Directory datasets
consist of 1, 1 and 6 pairs of ontology alignments
respectively, we split them at the concept-pair level
in order to obtain reasonable amounts of training
data for facilitating the training process.

A.2 Parameters chosen
There are several parameters that are input to our
algorithm. Some of those parameters come from
the data characteristics, some are design choices
(and therefore fixed), and some are fixed based on
prior experience. However there are few param-
eters which are variable, and we conduct exper-
iments over different values of these parameters
and report the best results (in terms of the best
F1-score) after performing K-fold sliding window
evaluation. These parameters are listed in Table 8.
Among the variable parameters, the first parameter,
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BAG_OF_NEIGHBOURS is what determines how
we represent the concept’s one-hop neighbours. We
have two options for this, either consider them as
a path of length one, or bag them together. In the
case of the former, we further experiment over the
optimal number of paths by using a wide range
of values from 1 to the maximum number of paths
possible, which is 38 for conference, 16 for Lebens-
mittel, 12 for Freizeit and 49 for the web directory
datasets respectively. Then, to determine optimal
length of path, we experiment from 1 to maximum
possible length of the path, which is 8 for confer-
ence, 7 for Lebensmittel, 6 for Freizeit and 8 for
web-directory.

Overall, our model has approximately 307K
trainable parameters.

If we consider one-hop neighbours (children,
datatype property neighbours and object property
neighbours) as a bag, we get paths that are longer
in length but fewer in number. In this case, the
maximum number of paths are 2 for conference
and 1 for the other 3 datasets. We take all the paths
available as maximum number of paths, while for
path length, we experiment from 1 to maximum
length available which is 38 for conference, 16
for Lebensmittel, 12 for Freizeit and 49 for web-
directory.

Another parameter denotes how we aggregate
different path representations. There are two ways
of doing this aggregation, by either applying a
weighted sum or passing the path weights through
a max-pool layer.

Package Version
Numpy 1.18.5

Requests 2.22.0
Scipy 1.4.1

Tensorflow 2.3.0
Tensorflow-hub 0.9.0
Tensorflow-text 2.3.0

Torch 1.6.0

Table 9: Packages used and their versions

A.3 Computing Infrastructure and Training
Time

We conduct all experiments on our internal GPU
cluster, which runs on the Red Hat Enterprise Linux
Server 7.6 (Maipo) operating system. Our CPU
model is Intel(R) Xeon(R) CPU E5-2690 v3 @
2.60GHz and the GPU model is Nvidia Tesla K80.

For all the experiments, we request 2 cores of the
CPU with total memory of 40GB. The relevant
software infrastructure required, including libraries
and their versions used, are shown in Table 9.

With our configuration, the model took approxi-
mately 50 minutes to train on Conference dataset,
6 minutes on Lebensmittel, 10 minutes on Freizeit
and 2 hours on Web Directory dataset.
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Parameter Type Confe-
rence

Leben-
smittel

Fre-
izeit

Web-
directory

Description

Language Fixed
(As per
dataset)

en de de de Language of
dataset

K Fixed
(Design
choice)

7 5 5 5 Value of K used
in K-fold sliding
window

ontology_split Fixed
(Design
choice)

True False False False Split training data
at ontology level
(True) or on ele-
ment level (False)

max_false_examples Fixed pa-
rameter

150000 150000 150000 150000 Max number of
false (dissimilar)
examples to take
while training

has_spellcheck Fixed pa-
rameter

True False False False Whether or not
to use an English
spelling checker
while preprocess-
ing.

lr Fixed pa-
rameter

0.001 0.001 0.001 0.001 Learning rate

num_epochs Fixed pa-
rameter

50 50 50 50 Number of epochs

weight_decay Fixed pa-
rameter

0.001 0.001 0.001 0.001 Weight decay

batch_size Fixed pa-
rameter

32 32 32 32 Batch size

max_paths Var
hyperpa-
rameter

5
(3-6)

6
(1-16)

1
(1-12)

1 (1-49) Max number of
paths to consider

max_pathlen Var
hyperpa-
rameter

6
(2-26)

5
(1-7)

4
(1-6)

5 (1-8) Max length of the
path to consider

bag_of_neighbours Var
hyperpa-
rameter

False
(True,
False)

False
(True,
False)

False
(True,
False)

True
(True,
False)

Determines
whether one-hop
neighbors are
bagged or consid-
ered as path of
length 1

weighted_sum Var
hyperpa-
rameter

False
(True,
False)

False
(True,
False)

False
(True,
False)

False
(True,
False)

Determines
whether unified
path is obtained
using weighted
sum, or max
pooling

Table 8: Hyperparameter chart displaying optimal values chosen. Parantheses indicate range of values tried


