
Proceedings of the 2021 Conference on Empirical Methods in Natural Language Processing, pages 10558–10569
November 7–11, 2021. c©2021 Association for Computational Linguistics

10558

Efficient Sampling of Dependency Structures

Ran Zmigrod Tim Vieira Ryan Cotterell ,

University of Cambridge Johns Hopkins University ETH Zürich
rz279@cam.ac.uk tim.f.vieira@gmail.com

ryan.cotterell@inf.ethz.ch

Abstract

Probabilistic distributions over spanning trees
in directed graphs are a fundamental model
of dependency structure in natural language
processing, syntactic dependency trees. In
NLP, dependency trees often have an addi-
tional root constraint: only one edge may em-
anate from the root. However, no sampling
algorithm has been presented in the literature
to account for this additional constraint. In
this paper, we adapt two spanning tree sam-
pling algorithms to faithfully sample depen-
dency trees from a graph subject to the root
constraint. Wilson (1996)’s sampling algo-
rithm has a running time of O(H) where H
is the mean hitting time of the graph. Col-
bourn et al. (1996)’s sampling algorithm has
a running time of O(N3), which is often
greater than the mean hitting time of a directed
graph. Additionally, we build upon Colbourn’s
algorithm and present a novel extension that
can sample K trees without replacement in
O(KN3 + K2N) time. To the best of our
knowledge, no algorithm has been given for
sampling spanning trees without replacement
from a directed graph.1

1 Introduction

Spanning trees in directed graphs2 are fundamental
combinatorial structures in natural language pro-
cessing where they are used to represent depen-
dency structures—especially syntactic dependency
structure (Kübler et al., 2009). Additionally, prob-
abilistic models over spanning trees are common
in the NLP literature with applications primarily
in non-projective dependency parsing (Pei et al.,
2015; Wang and Chang, 2016; Dozat and Manning,
2017; Ma and Hovy, 2017), but also in recovering

1Our implementation of these algorithms is publicly avail-
able at https://github.com/rycolab/treesample.

2Directed spanning trees are known as arborescences in
the graph theory literature (Williamson, 1985). However, we
will simply refer to them as spanning trees.

phylogenic structures (Andrews et al., 2012), and
event extraction (McClosky et al., 2011).

Given the prevalence of such probabilistic mod-
els, efficient dependency tree sampling algorithms
deserve study. Indeed, some work has been done in
transition-based dependency parsing (Keith et al.,
2018) as well as graph-based dependency parsing
(Nakagawa, 2007; Mareček and Žabokrtský, 2011).
Sampling has also been utilized in an abundance
of NLP tasks, such as text generation (Clark et al.,
2018; Fedus et al., 2018), co-reference resolution
(Singh et al., 2012), and language modeling (Mnih
and Hinton, 2007; Logan IV et al., 2020).

The theoretical computer science literature has
several efficient algorithms for sampling directed
spanning trees. These algorithms come in two fla-
vors. First, random walks through Markov chains
have been used to sample spanning trees from both
undirected (Broder, 1989; Aldous, 1990) and di-
rected graphs (Wilson, 1996). The algorithm of
Wilson (1996) is linear in the mean hitting time of
the graph and is currently the fastest sampling algo-
rithm for directed spanning trees. It has been used
in dependency parsing inference by Zhang et al.
(2014a,b). Second, several algorithms have lever-
aged the matrix–tree theorem (MTT; Kirchhoff,
1847; Tutte, 1984). The MTT has been frequently
used to perform inference on non-projective graph-
based dependency parsers (Koo et al., 2007; Mc-
Donald and Satta, 2007; Smith and Smith, 2007;
Zmigrod et al., 2021). This theorem was first
used for sampling by Guénoche (1983) who gave
an O(N5) algorithm which was then improved
by Kulkarni (1990) and Colbourn et al. (1996).
Colbourn et al. (1996) give an O(N3) algorithm
to sample spanning trees from an unweighted di-
rected graph. We generalize their algorithm to the
weighted case.

While directed spanning tree sampling algo-
rithms exist, an important constraint of many de-
pendency tree schemes, such as the Universal De-

mailto:rz279@cam.ac.uk
mailto:tim.f.vieira@gmail.com
mailto:ryan.cotterell@inf.ethz.ch
https://github.com/rycolab/treesample

10559

pendency (UD) scheme (Nivre et al., 2018), is that
a dependency tree may only have one edge em-
anating from the designated root symbol. Algo-
rithms exists for enforcing this constraint in decod-
ing (Gabow and Tarjan, 1984; Zmigrod et al., 2020;
Stanojević and Cohen, 2021) and inference (Koo
et al., 2007; Zmigrod et al., 2021). However, to
the best of our knowledge, no sampling algorithm
exists which enforces the root constraint.

In this paper, we adapt the algorithms of Wilson
(1996) and Colbourn et al. (1996)3 to efficiently
sample directed spanning trees subject to a root
constraint while maintaining the runtime of the
original algorithms. Additionally, we provide a fur-
ther extension to Colbourn et al. (1996)’s algorithm
that allows us to sample trees without replacement.
Sampling without replacement (SWOR) algorithms
are useful when distributions are skewed, which is
often the case in a trained system. To the best of
our knowledge, no SWOR algorithm has been pre-
sented in the literature for directed spanning trees,
though Shi et al. (2020) provides a general frame-
work that enables a SWOR algorithm to be adapted
for particular kinds of sampling algorithms.

2 Distributions over Trees

We consider distributions over spanning trees in
rooted directed weighted graphs (graphs for
short). A graph is denoted byG = (ρ,N , E) where
N is a set of N + 1 nodes including a designated
root node ρ and E is a set of ordered pairs between
two nodes (i→ j). We note that the non-root nodes
Nr{ρ} can be enumerated as [1, . . . , N]. For each
edge (i→ j) ∈ E , we associate a non-negative
weight wi→ j ∈ R≥0. Note that wi→ j = 0 when
(i→ j) 6∈ E .

A directed spanning tree, denoted by t, is a col-
lection of edges in a graph G such that each node
j ∈ N r {ρ} has exactly one incoming edge and t
contains no cycles. Moreover, we specifically ex-
amine distributions over dependency trees, which
are spanning trees with an additional constraint
that exactly one edge must emanate from the root
ρ. This additional constraint is common amongst
most dependency tree annotation schemes, e.g.,

3Note that Colbourn et al. (1996) presents two algorithms
for sampling directed spanning trees. In this work, we focus
on their first algorithm, which runs in O(N3). While the
second algorithm is based on a reduction to fast matrix multi-
plication, which is typically impractical. We did not extend
this algorithm because it is not amendable to sampling without
replacement and it is generally slower than the algorithm of
Wilson (1996).

Universal Dependencies.4 When the type of tree
(spanning or dependency) is clear from context, we
will simply use trees. The set of all spanning trees
of a graph G is given by T (G) and the set of all
dependency trees of a graph G is given by D(G).
Note that D(G) ⊆ T (G). When the graph G is
clear from context, we will refer to these sets T
and D respectively.

The weight of a tree t is the product of its edge
weights:

w(t)
def
=
∏

(i→ j)∈t

wi→ j (1)

The probability of a spanning tree is then given by

p(t)
def
=
w(t)

Z
where Z

def
=
∑
t∈T

w(t) (2)

The normalizing constant in the case of dependency
trees sums over D instead of T .

3 Random Walk Sampling

In this section, we present the spanning tree sam-
pling algorithm of Wilson (1996) and adapt it to
sample dependency trees. The algorithm is based
on a random walk through the nodes of the graph
until a tree is formed. In order to do this, we require
a graph G to be stochastic. A stochastic graph is
such that the weights of all incoming edges to a
node sum to one. That is, for all non-root nodes
j ∈ N r {ρ} we have that∑

i∈N
wi→ j = 1 (3)

Wilson (1996) shows that any graph may be con-
verted into a stochastic graph, by adjusting the edge
weights to be locally normalized along all incom-
ing edges. Therefore, the edge (i→ j) has a weight
w′i→ j defined by

w′i→ j
def
=

wi→ j∑
i′∈N wi′→ j

(4)

We can also define this new weight over a tree
w′(t)

def
=
∏

(i→ j)∈tw
′
i→ j .

Lemma 1. For any tree t ∈ T ,

w′(t) ∝ w(t) (5)
4However, we note that there are exceptions that do not re-

quire the root constraint, such as the Prague Treebank (Bejček
et al., 2013).

10560

1 2 3 4 2 5 ρ

(a) Random walk path from node 1 to ρ .

1 2 5 ρ

(b) Tree path from node 1 to ρ .

Figure 1: Cycle erasure in a random walk of a graph. The associated graph of the above walk has six nodes
(including the root node ρ) and we start the walk at 1 with the tree only containing the root node. The random
walk includes a cycle with nodes 2 , 3 , and 4 , this cycle is erased when we create the path from 1 back up to ρ .
Note that the arrows here mark the path upwards rather than the edges in the tree, the tree edges are reversed (e.g,
ρ → 5).

Proof.

w′(t) =
∏

(i→ j)∈t

w′i→ j (6a)

=
∏

(i→ j)∈t

wi→ j∑
i′∈N wi′→ j

(6b)

=

 ∏
(i→ j)∈t

1∑
i′∈N wi′→ j

 ∏
(i→ j)∈t

wi→ j

=

 ∏
(i→ j)∈t

1∑
i′∈N wi′→ j

︸ ︷︷ ︸

constant

w(t) (6c)

∝ w(t) (6d)

Note that the left-hand term in (6c) is a con-
stant since every non-root node has in incoming
edge in the tree, and so the constant is equal to∏
i∈Nr{ρ}

(∑
i′∈N wi′→ j

)−1. �

A stochastic graph then defines a Markov chain
that we can perform a random walk on. We begin
with a tree that is just composed of the root ρ. Then
while there exists a node connect to the tree, we
start a random walk where we add each edge used
to the tree, until we encounter a node that is con-
nected to the tree. When we have connected to the
tree, we can proceed to start a new random walk
from a node not in the tree.

Of course, during a random walk, we may go
through a cycle. Whenever we walk through a
cycle, we simply forget the cycle as part of the
walk. That is, if we find ourselves visiting node i in
our walk for a second time, we erase the cyclic path
formed at i and continue our walk. This can be seen
visually in Fig. 1. This type of walk is known as
a loop-erased random walk (Lawler, 1979). Given

1. def wilson(G):
2. . Sample a spanning tree from a graph G; re-

quires O(H) time, O(N2) space.
3. t← 0
4. visited← {ρ}
5. . The following for and while loops take O(H)

to execute. More specifically, line 9 is called
O(H) times.

6. for i ∈ N r {ρ} :
7. u← i
8. while u 6∈ visited :
9. Sample v∈N with weight w′v→u

10. tu ← v
11. u← v
12. u← i
13. while u 6∈ visited :
14. visited.add(u)
15. u← v such that tu = v

16. return t

Figure 2: Wilson (1996)’s algorithm to sample span-
ning trees from a graph.

we sample a sequence of edges S in a random walk,
we can split the We can split the edges into those
corresponding to the loop-erased random walk, Ŝ,
and those that do not, S.

Lemma 2. For any sequence of edges S sampled
from a random walk, we have

p(S) = p(Ŝ) p(S) (7)

Proof.

p(S) =
∏

(i→ j)∈S

w′i→ j (8a)

=

 ∏
(i→ j)∈Ŝ

w′i→ j

 ∏
(i→ j)∈S

w′i→ j

10561

= p(Ŝ) p(S) (8b)

�

Pseudocode for Wilson (1996)’s algorithm is
given in Fig. 2. Examining the pseudocode, one
can see it is possible to infinitely encounter cycles.
Fortunately, Wilson (1996) proves that this is not
the case and that the algorithm has a probabilistic
bound of O(H) where H is the mean hitting time
of the graph. The mean hitting time of a Markov
chain is defined as

H
def
=
∑
i,j

πiπjh(i, j) (9)

where π is the stationary distribution of the Markov
chain, and h(i, j) is the expected number of steps to
reach node j starting at node i. Wilson (1996) and
Broder (1989) demonstrate that the mean hitting
time for directed graphs is usually small (some-
times as low as linear in N). We will compare
the empirical runtime of the algorithm against an
O(N3) algorithm in §4.2.

Theorem 1. For any graphG, wilson(G) samples
a directed spanning tree t ∈ T with probability

p(t) ∝
∏

(i→ j)∈t

wi→ j (10)

Furthermore, wilson runs in O(H) time.

Proof. It is clear that if wilson(G) terminates, t
will contain a directed spanning tree. Let S be the
set of edges sampled in line 9 of wilson. As we
sample t using several independent random walks,
by Lemma 2, we sample the edges in t indepen-
dently of the edges in S r t. In particular, we
sample t with probability

p(t) =
∏

(i→ j)∈t

w′i→ j (11)

By Lemma 1, t is a sample from our desired distri-
bution over trees.

Wilson (1996, Theorem 3) proves that line 9 of
wilson executes O(H) times before the program
terminates with tree t. �

3.1 Root Constraint Modification
Wilson (1996)’s algorithm does not ensure that only
one edge emanates from the root. However, a sim-
ple modification to the algorithm allows us to do
this. The original algorithm samples a spanning

1. def wilson_rc(G):
2. . Sample a dependency tree from a graph G;

requires O(H) time, O(N2) space.
3. Sample j with weight wρ→ j

4. t← 0
5. tj ← ρ
6. visited← {j}
7. . The following for and while loops take O(H)

to execute. More specifically, line 11 is called
O(H) times.

8. for i ∈ N r {ρ} :
9. u← i

10. while u 6∈ visited :
11. Sample v∈Nr{ρ}with weightw′v→u

12. tu ← v
13. u← v
14. u← i
15. while u 6∈ visited :
16. visited.add(u)
17. u← v such that tu = v

18. return t

Figure 3: Modification of Wilson (1996)’s algorithm to
sample dependency trees from a graph. The lines that
differ to wilson are highlighted.

tree rooted at ρ for a graph G. Suppose we know
we want the edge (ρ→ j) to be the single edge
emanating from the root. Then we can run Wil-
son’s algorithm on the graph G′, which is G with
node ρ removed and node j defined as the new root.
By adding (ρ→ j) to the newly sampled tree, we
clearly have a dependency tree in G. We can sam-
ple the root edge (ρ→ j) from the root weights ρ
to sample an unbiased dependency tree from the
distribution. The pseudocode for this algorithm is
given as wilson_rc in Fig. 3

Theorem 2. For any graph G, wilson_rc(G)
samples a dependency tree t ∈ D with probability

p(t) ∝
∏

(i→ j)∈t

wi→ j (12)

Furthermore, wilson_rc runs in O(H) in.

Proof. We note that executing lines line 6 to line 18
is equivalent to running wilson on the graph G′

that is rooted at j (and does not have ρ). By
Theorem 1, this results in a tree t′ ∈ T (G′)
and was sampled with probability proportional to∏

(i→ j)∈t′ wi→ j . We sample the edge emanating
from the root (ρ→ j) with probability proportional
to wρ→ j and so t = t′ ∪ {ρ→ j} is a dependency

10562

tree sampled with probability

p(t) ∝
∏

(i→ j)∈t

wi→ j

Furthermore, as line 3 of wilson_rc takes
O(N) which is less than O(H), by Theorem 1,
wilson_rc has a runtime of O(H). �

4 Ancestral Sampling

In this section, we present an extension to the ances-
tral sampling algorithm of Colbourn et al. (1996)
to the weighted graph case. This algorithm re-
lies on the efficient computation of Z using the
MTT (Kirchhoff, 1847; Tutte, 1984), allows us to
compute Z in O(N3) by taking the determinant of
the Laplacian matrix, L ∈ RN×N . We use Koo
et al. (2007)’s adaptation of the MTT to depen-
dency trees.5

Theorem 3 (Proposition 1, Koo et al. (2007)). For
any graph G, the normalization constant Z over
the distribution of dependency trees D is given by
Z = |L| where

Lij =

wρ→ j if i = 1∑
i′∈Nr{ρ,i}

wi′→ j if i = j

−wi→ j otherwise

(13)

We present the algorithm using the above Laplacian
matrix to sample dependency trees rather than span-
ning trees. However, one can easily modify this
algorithm to sample spanning trees.6 The premise
of the algorithm is that we iteratively sample an
incoming edge to a non-root node of the graph until
we have a tree. Without loss of generality, we can
enumerate the edges of any sampled tree t as e1
to eN . Therefore, at time step n of our sampling
algorithm, we will have a subset of our tree

t<n = [e1, . . . , en−1] (14)
5Koo et al. (2007)’s adaptation constructs the Laplacian

matrix without considering edges emanating from the root.
They then arbitrarily replace the first row of the Laplacian ma-
trix with the root edge weights. One can see that the first row
is chosen for convenience by examining the proof of Proposi-
tion 1 in Koo et al. (2007). Indeed, the desired Laplacian can
be obtained by replacing any row by the root edge weights.

6The Laplacian matrix for spanning trees is given by

Lij =

{∑
i′∈Nr{i} wi′ → j if i = j

−wi→ j otherwise

Note that t<1 = ∅ and t<N+1 = t. We can then
express the probability of a tree as

p(t) =
N∏
n=1

p(en | t<n) (15)

We sample the first edge e1 with probability
p(e1). We can find its marginal probability by tak-
ing the derivative of the log partition function log Z
in Theorem 3 which Koo et al. (2007) show to be7

p(i→ j) (16)

=

{
wρ→ jB1j if i = ρ

wi→ j (δj 6=1Bjj − δi 6=1Bij) otherwise

where B = L−> (the transpose of the inverse of
L) and δx = 1 ⇐⇒ x is true, otherwise, δx =
0. Therefore, after computing B once, we can
compute each p(i→ j) in O(1) time. Finding B
requires us to take a matrix inverse, and so runs in
O(N3) time.8

Each subsequent edge that we sample must
be conditioned by all previously sampled edges
(t<n). At the nth step, we have sampled t<n,
and so our final sampled tree t will be such that
t<n ⊆ t. Therefore, sampling en from G is equiv-
alent to sampling en from the subgraph G � t<n,
which is defined as the largest graph such that
t ∈ T (G � t<n) =⇒ t<n ⊆ t. Consequently, if
(i→ j) ∈ t<n, then G � t<n does not contain any
other incoming edges to node j other than (i→ j).9

A correct ancestral sampling algorithm will sam-
ple an edge e for each non-root node from the graph
using (16), and then update graph to be G � e and
repeat. This algorithm will have to recompute B
O(N) times and so will have a runtime of O(N4).
We show a graphical example of the algorithm in
Fig. 4. We give pseudocode for this as colbourn in
Fig. 5. The function sample_edge samples from
the distribution defined in (16) and the function
condition updates B to contain the transpose of
the Laplacian inverse of the conditioned graph. We

7For spanning trees, the marginal probability can be sim-
ilarly derived as p(i→ j) = wi→ j (Bjj − δi 6=ρBij) where
B is the transpose of the inverse of the Laplacian matrix in
footnote 6.

8This runtime is also true by automatic differentiation
(Griewank and Walther, 2008) as finding Z takesO(N3) time.

9When sampling dependency trees, one would think that if
(ρ→ j) ∈ t<n, we would need to remove all outgoing edges
from the root. However, by the construction of our Laplacian,
Z only accounts for dependency trees and so the marginals
already enforce this restriction. Therefore, we only need to
remove all other incoming edges to j.

10563

ρ

1 2

34

e1

(a) G

ρ

1 2

34

e2

e1

(b) G � t<2

ρ

1 2

34

e2

e3e1

(c) G � t<3

ρ

1 2

34

e2

e3
e4

e1

(d) G � t<4

ρ

1 2

34

e2

e3
e4

e1

(e) G � t
Figure 4: Consider sampling a tree from the fully connected graph G given in (a). We do this by sampling an
incoming edge to each non-root node. We first sample an incoming edge to 1 , the possible edges are dashed in
(a). Suppose we sample e1 with probability p(e1), then we have t<2 = {e1}. If we include e1 in our graph as in
(b), and repeat the process, we will sample edge e2 with probability p(e2 | t<2). We now have t<3 = {e1, e2},
and we can sample an incoming edge e3 to 3 with probability p(e3 | t<3) as in (c). We can similarly find t<4 in
d. Finally, in (e), we have t<5 = t = {e1, e2, e3, e4}, which is a tree in T (G). Note T (G � t) = {t}.

describe an efficient procedure for this conditioning
step in the following section.

4.1 Efficiently Computing Marginals
Colbourn et al. (1996) show that we can update the
marginals in O(N2) rather than O(N3) by using
rank-one updates on L. Namely, Colbourn et al.
(1996)’s adds an outer-product uv> to L for some
column vectors u,v ∈ RN for each conditioning
operation. We extend this to the weighted Lapla-
cian for dependency trees.

Lemma 3. For any graph G with Laplacian L and
any edge e = (i→ j) ∈ E , the jth column of the
Laplacian Le of G � e is given by

Le
[:,j] =

{
wρ→ j

−→
11 if i = ρ

wi→ j(δj 6=1
−→
1j − δi 6=1

−→
1i) otherwise

(17)
where

−→
1j is the one-hot vector such that the jth ele-

ment is 1. Furthermore, the kth column Le, where
k 6= j, is equivalent to the kth column of L.

Proof. Consider the column Le
[:,k].

Case k = j: Then the only incoming edge to j
in G � e is (i→ j).

Case i = ρ: Then element Le
1j = wρ→ j by

Koo et al. (2007)’s construction. As there are
no other incoming edges to kj, the remain-
der of the column is filled with zeros ans so
Le

[:,j] = wρ→ j
−→
11.

Case i 6= ρ: Then Le
ij = −wi→ j as long as

i 6= 0. Since i 6= ρ, we also have that Le
jj =

wi→ j as long as j 6= 0. Therefore, we can
represent the jth column by wi→ j(δj 6=1

−→
1j −

δi 6=1
−→
1i).

Case k 6= j: Then all incoming edges to node k
are still in G � e and so Le

[:,k] = L[:,k].
�

Lemma 3 shows that conditioning by an edge
(i→ j) is equivalent to a column replacement for L.
A column replacement is equivalent to a rank-one
update where v =

−→
1j and u = wi→ j(

−→
1j −

−→
1i)−

L[:,j] and L[:,j] is the jth column of L. Performing
such a rank-one update speeds up the conditioning
of L from O(N2) to O(N). More importantly,
it lets us update B in O(N2) using the Sherman–
Morrison formula (Sherman and Morrison, 1950),
which states that for any matrix A ∈ RN×N and
column vectors u,v ∈ RN 10

(A+ uv>)−1 = A−1 −T (18)

where

T =
A−1uv>A−1

1 + v>A−1u
(19)

Recalling that B requires the inverse transpose,
and our choice of v =

−→
1j , we can simplify the

expression for T> to be

T> =

(
L−1u

−→
1j
>
L−1

1 +
−→
1j
>
L−1u

)>
(20a)

=

(
L−1uL−1[j,:]

1 + L−1[j,:]u

)>
(20b)

=
L−>[j,:]u

>L−>

1 + u>L−>[j,:]
(20c)

=
B[j,:]u

>B

1 + u>B[j,:]
(20d)

Therefore, we can update B in O(N2). We give
pseudocode for this efficient update as condition
in Fig. 5.

10The Sherman–Morrison formula can be computed in
O(N2) due to the associativity of matrix multiplication.

10564

Global Variables: L, B

1. def colbourn(G):
2. . Sample a dependency tree from a graph G;

requires O(N3) time, O(N2) space.
3. L← Laplacian(G)
4. B← L−> . O(N3)

5. t← []
6. for j ∈ N r {ρ} :
7. e← sample_edge(j)
8. t.append(e)
9. condition(e)

10. return t
11. def Laplacian(G):
12. . Construct the Laplacian of Koo et al. (2007)

for dependency trees as in (13); requires
O(N2) time, O(N2) space.

13. L← 0
14. for j ∈ N r {ρ} :
15. for i ∈ N r {ρ, j} :
16. Lij ← −wi→ j

17. Ljj +=wi→ j

18. L1j ← wρ→ j

19. . For spanning trees, we can construct the Lapla-
cian in footnote 6 by replacing line 18 with
Ljj +=wρ→ j .

20. return L

21. def sample_edge(j):
22. . Sample an incoming edge to j using global

variable B as in (16); requires O(N) time,
O(N) space.

23. m← 0
24. mρ +=wρ→ jB1j

25. for i ∈ N r {ρ, j} :
26. mi +=wi→ j (δj 6=1Bjj − δi 6=1Bij)

27. . For spanning trees, we can construct the
marginals in footnote 7 by replacing line 24
with mρ +=wρ→ jBjj and line 26 with
mi +=wi→ j(Bjj − Bij).

28. return sample from m

29. def condition(e):
30. . Condition the Laplacian and the transpose of

its inverse to always include e in any tree; re-
quires O(N2) time, O(N2) space.

31. Let e = (i→ j)
32. if i = ρ :
33. u← wρ→ j

−→
11 − L[:,j]

34. else:
35. u← wi→ j(δj 6=1

−→
1j − δi 6=1

−→
1i)− L[:,j]

36. L[:,j] +=u

37. B -= (B[j,:]u
>B) / (1 + u>B[j,:])

Figure 5: Algorithm for sampling dependency trees us-
ing the method of Colbourn et al. (1996). We describe
the changes required to sample spanning trees in the
comments.

Theorem 4. For any graph G, colbourn(G) sam-
ples a dependency tree with probability

p(t) =
1

Z

∏
(i→ j)∈t

wi→ j (21)

Furthermore, colbourn runs in O(N3) time.

Proof. The probability of a tree p(t) can equiva-
lently be written as the product of the conditional
edge marginals as in (15). To prove correctness,
we prove by induction that for all n ≤ N , at the
nth call to sample_edge, B contains the transpose
of the Laplacian inverse of G � t<n and an edge e
with probability p(e | t<n).

Base case: Then n = 1 and t<1 = ∅. B con-
tains the transpose of the Laplacian inverse of G
as expected and so sample_edge will sample an
edge e with probability p(e) as expected.

Inductive step: Then t<n = [e1, . . . , en−1].
At the (n − 1)th call to sample_edge, B con-
tains the transpose of the Laplacian inverse of
G � t<n−1. We then call condition, which by
Lemma 3 and the Sherman–Morrison formula
updates B to be the transpose of the Laplacian
inverse of G � t<n. Therefore, at the nth call
to sample_edge, B contains the correct values
and so sample_edge will sample an edge e with
probability p(e | t<n).
Therefore, colbourn samples a dependency tree

t with the correct probability. We haveN iterations
of the main loop, each call to sample_edge takes
O(N) times and each call to condition takes
O(N2) time. These runtimes are easily observed
from the pseudocode. Therefore, colbourn has a
runtime of O(N3). �

4.2 Runtime Experiment
We conduct a brief runtime experiment for
colbourn and wilson_rc (see §3) whose runtimes
are O(N3) and O(H) respectively. We artificially
generate random complete graphs of increasing
size and measure the average sample time of each
algorithm.11 The results of the experiment are
shown in Fig. 6. We note that despite colbourn be-
ing slower, the best-fit line for colbourn’s runtime
has a slope of 1.42, suggesting it is much faster in
practice than its complexity bound O(N3).12

11The experiment was conducted using an Intel(R)
Core(TM) i7-7500U processor with 16GB RAM.

12We would expect the slope to be ≈ 3 to match the com-
plexity bound.

10565

101 102

N (log-scale)

10−4

10−3

10−2

A
ve

ra
ge

sa
m

pl
e

tim
e

(s
ec

on
ds

;l
og

-s
ca

le
)

colbourn

wilson rc

Figure 6: Runtime experiment for sampling using
wilson_rc and colbourn. For each graph size, we
randomly generated 100 graphs and took 20 samples
from each graph. The best fit lines for colbourn and
wilson_rc have slopes of 1.42 and 1.14 respectively.

5 Sampling Without Replacement

In this section, we present a novel extension to
colbourn that can sample dependency trees with-
out replacement. SWOR algorithms are useful
when we must sample multiple trees from the same
graph. Specifically, when the distribution of trees
over the graph is skewed so that a normal sampling
algorithm frequently samples the same trees. This
is often the case when the edge weights have been
learned using a neural model (Dozat and Manning,
2017; Ma and Hovy, 2017). The SWOR algorithm
we present follows the scheme of Shi et al. (2020).

In order to use colbourn to sample without
replacement, we need an expression of the edge
marginals conditioned on the set of previously
sampled trees. If D is the set of previously sam-
pled trees, then we need to compute the following
marginal probability efficiently

p(i→ j | D) =
1

ZD

∑
t∈DijrD

w(t) (22)

where Dij is the set of all dependency trees that
contain edge (i→ j) and

ZD
def
=
∑

t∈DrD
w(t)= Z−

∑
t∈D

w(t) (23)

Lemma 4. For any graph G, set of trees D, and
edge (i→ j) ∈ E ,

p(i→ j | D) =
1

ZD

Z·p(i→ j)−
∑
t∈Dij

w(t)

(24)

where Dij ⊆ D is the set of trees in D that contain
the edge (i→ j).

Proof.

p(i→ j | D) (25a)

=
1

ZD

∑
t∈DijrD

w(t) (25b)

=
1

ZD

∑
t∈Dij

w(t)−
∑
t∈Dij

w(t)

 (25c)

=
1

ZD

Z p(i→ j)−
∑
t∈Dij

w(t)

 (25d)

�

Lemma 4 then gives a new formula to use for sam-
pling edges by re-weighting the probability of an
edge.13 We can then compute the marginal distribu-
tion for an incoming edges to a node in O(N +K)
time. Note that (24) makes explicit use of Z which
is not needed for the original marginals in (16).
Consequently, as we sample an edge from the tree,
we must condition Z as well as B. Fortunately,
this can be done in O(N) using the matrix deter-
minant Lemma, which states that for any matrix
A ∈ RN×N and column vectors u,v ∈ RN

|A+ uv>| = |A|(1 + v>A−1u) (26)

Furthermore, at each conditioning step, we must
also update D (and ZD), to only include the sam-
pled trees containing the new sampled edge. These
can both be achieved in O(K) time where K is
the number of trees that we sample. The pseu-
docode for the sampling and conditioning steps are
given as sample_edge′ and condition′ in Fig. 7.
The sampling algorithm its self, swor is similar to
colbourn in Fig. 5. However, it samples K depen-
dency trees rather than a single dependency tree
and stores additional variables in order to cache
frequently used values such as the original Z, L,
and B values.

Theorem 5. For any graph G and K > 0,
swor(G,K) samples K dependency trees without
replacement, where t is sampled with probability

p(t | D) =
δt6∈D
ZD

∏
(i→ j)∈t

wi→ j (27)

13Re-weighting has been recently used by Stanojević and
Cohen (2021) to speed-up algorithms for single-root tree de-
coding algorithms.

10566

Global Variables: L, B, D, Z, and ZD

1. def swor(G,K):
2. . Sample K dependency trees without replace-

ment from a graph G; requires O(KN3 +
K2N) time, O(N2 +KN) space.

3. L′ ← Laplacian(G)
4. Z′ ← |L′|; B′ ← L′−> . O(N3)

5. D′ ← []; Z′D ← Z′

6. for k ∈ {1, . . . ,K} :
7. D ← D′; Z← Z′

8. ZD ← Z′D
9. L← L′; B← B′; t← []

10. for j ∈ N r {ρ} :
11. e← sample_edge′(j)
12. t.append(e)
13. condition′(e)

14. D′.append(t); Z′D -=w(t)
15. return D′
16. def sample_edge′(j):
17. . Sample an incoming edge to j using global

variables B, Z, and ZD as in (24); requires
O(N) time, O(N) space.

18. m← 0
19. mρ +=Zwρ→ jB1j −

∑
t∈Tρj w(t)

20. for i ∈ N r {ρ, j} : . O(N)

21. mi +=Zwi→ j (δj 6=1Bjj − δi 6=1Bij)
22. mi -=

∑
t∈Dij w(t)

23. return sample from 1
ZD

m

24. def condition′(e):
25. . Condition the Laplacian, the transpose of the

Laplacian inverse, the partition partition func-
tion, and the set of previously sampled trees
to always include e in any tree; requires
O(N2 +K) time, O(N2) space.

26. Let e = (i→ j)
27. if i = ρ :
28. u← wρ→ j

−→
11 − L[:,j]

29. else:
30. u← wi→ j(δj 6=1

−→
1j − δi 6=1

−→
1i)− L[:,j]

31. L[:,j] +=u

32. Z ∗= 1 + u>B[j,:]

33. B -= (B[j,:]u
>B) / (1 + u>B[j,:])

34. D ← Dij

35. ZD ← Z−∑t∈D w(t)

Figure 7: Algorithm for sampling dependency trees
without replacement.

where D is the set of trees sampled prior to t. Fur-
thermore, swor runs in O(KN3 +K2N) time.

Proof. To prove correctness, we prove by induc-
tion that the K th sampled tree is sampled with the

probability in (27).
Base case: Then K = 1 and so D′ = ∅ and
Z′D = Z′. Therefore, swor executes colbourn
and samples tree t with probability p(t) as ex-
pected.

Inductive step: Assume that D′ contains K − 1
trees, which were each sampled with the correct
probability. Then Z′D = Z′−∑t∈D′ w(t)and so
by Lemma 4, sample_edge′ will sample the first
edge of the new tree with the correct probability.
We can then prove that all edges of the new tree
are sampled with the correct probability using an
inductive proof analogous to Theorem 4.
We require O(N3) to find Z′ and B′. Then for

each of the K sampled trees, we have N iterations
of the main loop. Each call to sample_edge′ takes
O(N+K) times and each call to condition′ takes
O(N2 + K) time. These runtimes are easily ob-
served from the pseudocode. Therefore, swor has
a runtime of O(KN3 +K2N). �

6 Conclusion

We presented two efficient approaches to sample
spanning trees subject to a root constraint, which
were based on prior algorithms by Wilson (1996)
and Colbourn et al. (1996). While Wilson (1996)’s
O(H) algorithm was more rapid, Colbourn et al.
(1996)’s O(N3) algorithm is extendable to a novel
sampling without replacement algorithm. To the
best of our knowledge, not much work has been
done in graph-based dependency parsing to sample
dependency trees, and none has used sampling
without replacement. We hope that this paper
serves as a tutorial for how this can be done and
encourages the use of sampling in future work.

Acknowledgments

We would like to thank all the reviewers for their
invaluable feedback and time spent engaging with
our work. The first author is supported by the
University of Cambridge School of Technology
Vice-Chancellor’s Scholarship as well as by the
University of Cambridge Department of Computer
Science and Technology’s EPSRC.

References
David J. Aldous. 1990. The random walk construc-

tion of uniform spanning trees and uniform labelled
trees. Society for Industrial and Applied Mathemat-
ics Journal of Discrete Mathematics, 3(4):450–465.

https://doi.org/10.1137/0403039
https://doi.org/10.1137/0403039
https://doi.org/10.1137/0403039

10567

Nicholas Andrews, Jason Eisner, and Mark Dredze.
2012. Name phylogeny: A generative model of
string variation. In Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Lan-
guage Processing and Computational Natural Lan-
guage Learning, pages 344–355, Jeju Island, Korea.
Association for Computational Linguistics.

Eduard Bejček, Eva Hajičová, Jan Hajič, Pavlína
Jínová, Václava Kettnerová, Veronika Kolářová,
Marie Mikulová, Jiří Mírovský, Anna Nedoluzhko,
Jarmila Panevová, Lucie Poláková, Magda
Ševčíková, Jan Štěpánek, and Šárka Zikánová.
2013. Prague dependency treebank 3.0.

Andrei Z. Broder. 1989. Generating random spanning
trees. In 30th Annual Symposium on Foundations of
Computer Science, pages 442–447.

Elizabeth Clark, Yangfeng Ji, and Noah A. Smith. 2018.
Neural text generation in stories using entity repre-
sentations as context. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
pages 2250–2260, New Orleans, Louisiana. Associ-
ation for Computational Linguistics.

Charles J. Colbourn, Wendy J. Myrvold, and Eugene
Neufeld. 1996. Two algorithms for unranking ar-
borescences. Journal of Algorithms, 20(2):268–281.

Timothy Dozat and Christopher D. Manning. 2017.
Deep biaffine attention for neural dependency pars-
ing. In Proceedings of the International Conference
on Learning Representations.

William Fedus, Ian J. Goodfellow, and Andrew M. Dai.
2018. MaskGAN: Better text generation via filling
in the _______. In 6th International Conference on
Learning Representations.

Harold N. Gabow and Robert Endre Tarjan. 1984. Effi-
cient algorithms for a family of matroid intersection
problems. Journal of Algorithms, 5(1).

Andreas Griewank and Andrea Walther. 2008. Evaluat-
ing Derivatives–Principles and Techniques of Algo-
rithmic Differentiation, 2 edition. Society for Indus-
trial and Applied Mathematics.

A. Guénoche. 1983. Random spanning tree. Journal
of Algorithms, 4(3):214–220.

Katherine Keith, Su Lin Blodgett, and Brendan
O’Connor. 2018. Monte Carlo syntax marginals for
exploring and using dependency parses. In Proceed-
ings of the 2018 Conference of the North Ameri-
can Chapter of the Association for Computational
Linguistics: Human Language Technologies, Vol-
ume 1 (Long Papers), pages 917–928, New Orleans,
Louisiana. Association for Computational Linguis-
tics.

Gustav Kirchhoff. 1847. Über die auflösung der gle-
ichungen, auf welche man bei der untersuchung
der linearen vertheilung galvanischer ströme geführt
wird. Annalen der Physik, 148(12).

Terry Koo, Amir Globerson, Xavier Carreras, and
Michael Collins. 2007. Structured prediction mod-
els via the matrix-tree theorem. In Proceedings of
the Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Natu-
ral Language Learning.

Sandra Kübler, Ryan T. McDonald, and Joakim Nivre.
2009. Dependency Parsing. Synthesis Lectures
on Human Language Technologies. Morgan & Clay-
pool Publishers.

Vidyadhar G. Kulkarni. 1990. Generating random
combinatorial objects. Journal of Algorithms,
11(2):185–207.

Gregory F. Lawler. 1979. A Self-Avoiding Random
Walk. Ph.D. thesis, Princeton University.

Robert L. Logan IV, Matt Gardner, and Sameer Singh.
2020. On importance sampling-based evaluation
of latent language models. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 2171–2176, Online. As-
sociation for Computational Linguistics.

Xuezhe Ma and Eduard Hovy. 2017. Neural proba-
bilistic model for non-projective MST parsing. In
Proceedings of the Eighth International Joint Con-
ference on Natural Language Processing (Volume 1:
Long Papers), Taipei, Taiwan. Asian Federation of
Natural Language Processing.

David Mareček and Zdeněk Žabokrtský. 2011. Gibbs
sampling with treeness constraint in unsupervised
dependency parsing. In Proceedings of Workshop
on Robust Unsupervised and Semisupervised Meth-
ods in Natural Language Processing, pages 1–8,
Hissar, Bulgaria. Association for Computational Lin-
guistics.

David McClosky, Mihai Surdeanu, and Christopher
Manning. 2011. Event extraction as dependency
parsing for BioNLP 2011. In Proceedings of
BioNLP Shared Task 2011 Workshop, pages 41–45,
Portland, Oregon, USA. Association for Computa-
tional Linguistics.

Ryan McDonald and Giorgio Satta. 2007. On the com-
plexity of non-projective data-driven dependency
parsing. In Proceedings of the Tenth International
Conference on Parsing Technologies, Prague, Czech
Republic. Association for Computational Linguis-
tics.

Andriy Mnih and Geoffrey E. Hinton. 2007. Three new
graphical models for statistical language modelling.
In Machine Learning, Proceedings of the Twenty-
Fourth International Conference (ICML 2007), Cor-
vallis, Oregon, USA, June 20-24, 2007, pages 641–
648.

https://www.aclweb.org/anthology/D12-1032
https://www.aclweb.org/anthology/D12-1032
http://ufal.mff.cuni.cz/pdt3.0
https://doi.org/10.1109/SFCS.1989.63516
https://doi.org/10.1109/SFCS.1989.63516
https://doi.org/10.18653/v1/N18-1204
https://doi.org/10.18653/v1/N18-1204
https://doi.org/10.1006/jagm.1996.0014
https://doi.org/10.1006/jagm.1996.0014
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=Hk95PK9le
https://openreview.net/forum?id=ByOExmWAb
https://openreview.net/forum?id=ByOExmWAb
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1016/0196-6774(84)90042-7
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1137/1.9780898717761
https://doi.org/10.1016/0196-6774(83)90022-6
https://doi.org/10.18653/v1/N18-1084
https://doi.org/10.18653/v1/N18-1084
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://onlinelibrary.wiley.com/doi/abs/10.1002/andp.18471481202
https://www.aclweb.org/anthology/D07-1015
https://www.aclweb.org/anthology/D07-1015
https://doi.org/10.2200/S00169ED1V01Y200901HLT002
https://doi.org/10.1016/0196-6774(90)90002-V
https://doi.org/10.1016/0196-6774(90)90002-V
https://catalog.princeton.edu/catalog/9919418313506421
https://catalog.princeton.edu/catalog/9919418313506421
https://doi.org/10.18653/v1/2020.acl-main.196
https://doi.org/10.18653/v1/2020.acl-main.196
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/I17-1007
https://www.aclweb.org/anthology/W11-3901
https://www.aclweb.org/anthology/W11-3901
https://www.aclweb.org/anthology/W11-3901
https://www.aclweb.org/anthology/W11-1806
https://www.aclweb.org/anthology/W11-1806
https://www.aclweb.org/anthology/W07-2216
https://www.aclweb.org/anthology/W07-2216
https://www.aclweb.org/anthology/W07-2216
https://doi.org/10.1145/1273496.1273577
https://doi.org/10.1145/1273496.1273577

10568

Tetsuji Nakagawa. 2007. Multilingual dependency
parsing using global features. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
952–956, Prague, Czech Republic. Association for
Computational Linguistics.

Joakim Nivre, Mitchell Abrams, Željko Agić, Lars
Ahrenberg, Lene Antonsen, Katya Aplonova,
Maria Jesus Aranzabe, Gashaw Arutie, Masayuki
Asahara, Luma Ateyah, Mohammed Attia, Aitz-
iber Atutxa, Liesbeth Augustinus, Elena Badmaeva,
Miguel Ballesteros, Esha Banerjee, Sebastian Bank,
Verginica Barbu Mititelu, Victoria Basmov, John
Bauer, Sandra Bellato, Kepa Bengoetxea, Yevgeni
Berzak, Irshad Ahmad Bhat, Riyaz Ahmad Bhat, Er-
ica Biagetti, Eckhard Bick, Rogier Blokland, Vic-
toria Bobicev, Carl Börstell, Cristina Bosco, Gosse
Bouma, Sam Bowman, Adriane Boyd, Aljoscha Bur-
chardt, Marie Candito, Bernard Caron, Gauthier
Caron, Gülşen Cebiroğlu Eryiğit, Flavio Massim-
iliano Cecchini, Giuseppe G. A. Celano, Slavomír
Čéplö, Savas Cetin, Fabricio Chalub, Jinho Choi,
Yongseok Cho, Jayeol Chun, Silvie Cinková, Au-
rélie Collomb, Çağrı Çöltekin, Miriam Connor, Ma-
rine Courtin, Elizabeth Davidson, Marie-Catherine
de Marneffe, Valeria de Paiva, Arantza Diaz de Ilar-
raza, Carly Dickerson, Peter Dirix, Kaja Dobrovoljc,
Timothy Dozat, Kira Droganova, Puneet Dwivedi,
Marhaba Eli, Ali Elkahky, Binyam Ephrem, Tomaž
Erjavec, Aline Etienne, Richárd Farkas, Hector
Fernandez Alcalde, Jennifer Foster, Cláudia Fre-
itas, Katarína Gajdošová, Daniel Galbraith, Mar-
cos Garcia, Moa Gärdenfors, Sebastian Garza, Kim
Gerdes, Filip Ginter, Iakes Goenaga, Koldo Go-
jenola, Memduh Gökırmak, Yoav Goldberg, Xavier
Gómez Guinovart, Berta Gonzáles Saavedra, Matias
Grioni, Normunds Grūzı̄tis, Bruno Guillaume, Cé-
line Guillot-Barbance, Nizar Habash, Jan Hajič, Jan
Hajič jr., Linh Hà Mỹ, Na-Rae Han, Kim Harris,
Dag Haug, Barbora Hladká, Jaroslava Hlaváčová,
Florinel Hociung, Petter Hohle, Jena Hwang, Radu
Ion, Elena Irimia, O. lájídé Ishola, Tomáš Jelínek, An-
ders Johannsen, Fredrik Jørgensen, Hüner Kaşıkara,
Sylvain Kahane, Hiroshi Kanayama, Jenna Kan-
erva, Boris Katz, Tolga Kayadelen, Jessica Ken-
ney, Václava Kettnerová, Jesse Kirchner, Kamil
Kopacewicz, Natalia Kotsyba, Simon Krek, Sooky-
oung Kwak, Veronika Laippala, Lorenzo Lam-
bertino, Lucia Lam, Tatiana Lando, Septina Dian
Larasati, Alexei Lavrentiev, John Lee, Phuong
Lê Hồng, Alessandro Lenci, Saran Lertpradit, Her-
man Leung, Cheuk Ying Li, Josie Li, Keying
Li, KyungTae Lim, Nikola Ljubešić, Olga Logi-
nova, Olga Lyashevskaya, Teresa Lynn, Vivien
Macketanz, Aibek Makazhanov, Michael Mandl,
Christopher Manning, Ruli Manurung, Cătălina
Mărănduc, David Mareček, Katrin Marheinecke,
Héctor Martínez Alonso, André Martins, Jan
Mašek, Yuji Matsumoto, Ryan McDonald, Gus-
tavo Mendonça, Niko Miekka, Margarita Misir-
pashayeva, Anna Missilä, Cătălin Mititelu, Yusuke

Miyao, Simonetta Montemagni, Amir More, Laura
Moreno Romero, Keiko Sophie Mori, Shinsuke
Mori, Bjartur Mortensen, Bohdan Moskalevskyi,
Kadri Muischnek, Yugo Murawaki, Kaili Müürisep,
Pinkey Nainwani, Juan Ignacio Navarro Horñiacek,
Anna Nedoluzhko, Gunta Nešpore-Bērzkalne, Lu-
ong Nguyễn Thi., Huyền Nguyễn Thi. Minh, Vitaly
Nikolaev, Rattima Nitisaroj, Hanna Nurmi, Stina
Ojala, Adédayo. Olúòkun, Mai Omura, Petya Osen-
ova, Robert Östling, Lilja Øvrelid, Niko Partanen,
Elena Pascual, Marco Passarotti, Agnieszka Pate-
juk, Guilherme Paulino-Passos, Siyao Peng, Cenel-
Augusto Perez, Guy Perrier, Slav Petrov, Jussi Piitu-
lainen, Emily Pitler, Barbara Plank, Thierry Poibeau,
Martin Popel, Lauma Pretkalnin, a, Sophie Prévost,
Prokopis Prokopidis, Adam Przepiórkowski, Ti-
ina Puolakainen, Sampo Pyysalo, Andriela Rääbis,
Alexandre Rademaker, Loganathan Ramasamy,
Taraka Rama, Carlos Ramisch, Vinit Ravishankar,
Livy Real, Siva Reddy, Georg Rehm, Michael
Rießler, Larissa Rinaldi, Laura Rituma, Luisa
Rocha, Mykhailo Romanenko, Rudolf Rosa, Davide
Rovati, Valentin Ros, ca, Olga Rudina, Jack Rueter,
Shoval Sadde, Benoît Sagot, Shadi Saleh, Tanja
Samardžić, Stephanie Samson, Manuela Sanguinetti,
Baiba Saulı̄te, Yanin Sawanakunanon, Nathan
Schneider, Sebastian Schuster, Djamé Seddah, Wolf-
gang Seeker, Mojgan Seraji, Mo Shen, Atsuko Shi-
mada, Muh Shohibussirri, Dmitry Sichinava, Na-
talia Silveira, Maria Simi, Radu Simionescu, Katalin
Simkó, Mária Šimková, Kiril Simov, Aaron Smith,
Isabela Soares-Bastos, Carolyn Spadine, Antonio
Stella, Milan Straka, Jana Strnadová, Alane Suhr,
Umut Sulubacak, Zsolt Szántó, Dima Taji, Yuta
Takahashi, Takaaki Tanaka, Isabelle Tellier, Trond
Trosterud, Anna Trukhina, Reut Tsarfaty, Francis
Tyers, Sumire Uematsu, Zdeňka Urešová, Larraitz
Uria, Hans Uszkoreit, Sowmya Vajjala, Daniel van
Niekerk, Gertjan van Noord, Viktor Varga, Eric
Villemonte de la Clergerie, Veronika Vincze, Lars
Wallin, Jing Xian Wang, Jonathan North Washing-
ton, Seyi Williams, Mats Wirén, Tsegay Wolde-
mariam, Tak-sum Wong, Chunxiao Yan, Marat M.
Yavrumyan, Zhuoran Yu, Zdeněk Žabokrtský, Amir
Zeldes, Daniel Zeman, Manying Zhang, and Hanzhi
Zhu. 2018. Universal dependencies 2.3. LIN-
DAT/CLARIN digital library at the Institute of For-
mal and Applied Linguistics (ÚFAL), Faculty of
Mathematics and Physics, Charles University.

Wenzhe Pei, Tao Ge, and Baobao Chang. 2015. An
effective neural network model for graph-based de-
pendency parsing. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 313–322, Beijing, China. As-
sociation for Computational Linguistics.

Jack Sherman and Winifred J. Morrison. 1950. Adjust-
ment of an inverse matrix corresponding to a change
in one element of a given matrix. The Annals of
Mathematical Statistics, 21(1):124–127.

https://www.aclweb.org/anthology/D07-1100
https://www.aclweb.org/anthology/D07-1100
http://hdl.handle.net/11234/1-2895
https://doi.org/10.3115/v1/P15-1031
https://doi.org/10.3115/v1/P15-1031
https://doi.org/10.3115/v1/P15-1031
https://www.jstor.org/stable/2236561
https://www.jstor.org/stable/2236561
https://www.jstor.org/stable/2236561

10569

Kensen Shi, David Bieber, and Charles Sutton. 2020.
Incremental sampling without replacement for se-
quence models. In Proceedings of the 37th Inter-
national Conference on Machine Learning, ICML
2020, 13-18 July 2020, Virtual Event, pages 8785–
8795.

Sameer Singh, Michael Wick, and Andrew McCallum.
2012. Monte Carlo MCMC: Efficient inference by
approximate sampling. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natural
Language Processing and Computational Natural
Language Learning, pages 1104–1113, Jeju Island,
Korea. Association for Computational Linguistics.

David A. Smith and Noah A. Smith. 2007. Proba-
bilistic models of nonprojective dependency trees.
In Proceedings of the 2007 Joint Conference on
Empirical Methods in Natural Language Process-
ing and Computational Natural Language Learning
(EMNLP-CoNLL), Prague, Czech Republic. Associ-
ation for Computational Linguistics.

Miloš Stanojević and Shay B. Cohen. 2021. A root
of a problem: Optimizing single-root dependency
parsing. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing
(EMNLP), Online. Association for Computational
Linguistics.

W. T. Tutte. 1984. Graph Theory. Addison-Wesley
Publishing Company.

Wenhui Wang and Baobao Chang. 2016. Graph-based
dependency parsing with bidirectional LSTM. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 2306–2315, Berlin, Germany.
Association for Computational Linguistics.

Stanley G. Williamson. 1985. Combinatorics for Com-
puter Science. Computer Science Press.

David Bruce Wilson. 1996. Generating random span-
ning trees more quickly than the cover time. In Pro-
ceedings of the Twenty-Eighth Annual Association
for Computing Machinery Symposium on the Theory
of Computing, pages 296–303.

Yuan Zhang, Tao Lei, Regina Barzilay, and Tommi
Jaakkola. 2014a. Greed is good if randomized: New
inference for dependency parsing. In Proceedings of
the 2014 Conference on Empirical Methods in Nat-
ural Language Processing (EMNLP), pages 1013–
1024, Doha, Qatar. Association for Computational
Linguistics.

Yuan Zhang, Tao Lei, Regina Barzilay, Tommi
Jaakkola, and Amir Globerson. 2014b. Steps to ex-
cellence: Simple inference with refined scoring of
dependency trees. In Proceedings of the 52nd An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 197–
207, Baltimore, Maryland. Association for Compu-
tational Linguistics.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2020.
Please mind the root: Decoding arborescences for
dependency parsing. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 4809–4819, On-
line. Association for Computational Linguistics.

Ran Zmigrod, Tim Vieira, and Ryan Cotterell. 2021.
Efficient computation of expectations under span-
ning tree distributions. Transactions of the Associ-
ation for Computational Linguistics, 9:675–690.

http://proceedings.mlr.press/v119/shi20a.html
http://proceedings.mlr.press/v119/shi20a.html
https://www.aclweb.org/anthology/D12-1101
https://www.aclweb.org/anthology/D12-1101
https://www.aclweb.org/anthology/D07-1014
https://www.aclweb.org/anthology/D07-1014
https://stanojevic.github.io/papers/EMNLP_2021_Single_Root.pdf
https://stanojevic.github.io/papers/EMNLP_2021_Single_Root.pdf
https://stanojevic.github.io/papers/EMNLP_2021_Single_Root.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002/net.3230160110
https://doi.org/10.18653/v1/P16-1218
https://doi.org/10.18653/v1/P16-1218
https://www.amazon.co.uk/Combinatorics-Computer-Science-Dover-Mathematics/dp/0486420760https://www.amazon.co.uk/Combinatorics-Computer-Science-Dover-Mathematics/dp/0486420760
https://www.amazon.co.uk/Combinatorics-Computer-Science-Dover-Mathematics/dp/0486420760https://www.amazon.co.uk/Combinatorics-Computer-Science-Dover-Mathematics/dp/0486420760
https://doi.org/10.1145/237814.237880
https://doi.org/10.1145/237814.237880
https://doi.org/10.3115/v1/D14-1109
https://doi.org/10.3115/v1/D14-1109
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.3115/v1/P14-1019
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://doi.org/10.18653/v1/2020.emnlp-main.390
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00391/102843
https://direct.mit.edu/tacl/article/doi/10.1162/tacl_a_00391/102843

