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Abstract

In multimodal sentiment analysis (MSA), the
performance of a model highly depends on the
quality of synthesized embeddings. These em-
beddings are generated from the upstream pro-
cess called multimodal fusion, which aims to
extract and combine the input unimodal raw
data to produce a richer multimodal represen-
tation. Previous work either back-propagates
the task loss or manipulates the geometric
property of feature spaces to produce favor-
able fusion results, which neglects the preser-
vation of critical task-related information that
flows from input to the fusion results. In
this work, we propose a framework named
MultiModal InfoMax (MMIM), which hier-
archically maximizes the Mutual Information
(MI) in unimodal input pairs (inter-modality)
and between multimodal fusion result and
unimodal input in order to maintain task-
related information through multimodal fu-
sion. The framework is jointly trained with
the main task (MSA) to improve the perfor-
mance of the downstream MSA task. To ad-
dress the intractable issue of MI bounds, we
further formulate a set of computationally sim-
ple parametric and non-parametric methods
to approximate their truth value. Experimen-
tal results on the two widely used datasets
demonstrate the efficacy of our approach.
The implementation of this work is pub-
licly available at https://github.com/
declare-lab/Multimodal-Infomax.

1 Introduction

With the unprecedented advances in social media
in recent years and the availability of smartphones
with high-quality cameras, we witness an explo-
sive boost of multimodal data, such as movies,
short-form videos, etc. In real life, multimodal
data usually consists of three channels: visual (im-
age), acoustic (voice), and transcribed text. Many
of them often express sort of sentiment, which
is a long-term disposition evoked when a person

encounters a specific topic, person or entity (De-
onna and Teroni, 2012; Poria et al., 2020). Min-
ing and understanding these emotional elements
from multimodal data, namely multimodal senti-
ment analysis (MSA), has become a hot research
topic because of numerous appealing applications,
such as obtaining overall product feedback from
customers or gauging polling intentions from po-
tential voters (Melville et al., 2009). Generally,
different modalities in the same data segment are
often complementary to each other, providing ex-
tra cues for semantic and emotional disambigua-
tion (Ngiam et al., 2011). The crucial part for
MSA is multimodal fusion, in which a model aims
to extract and integrate information from all input
modalities to understand the sentiment behind the
seen data. Existing methods to learn unified repre-
sentations are grouped in two categories: through
loss back-propagation or geometric manipulation
in the feature spaces. The former only tunes
the parameters based on back-propagated gradi-
ents from the task loss (Zadeh et al., 2017; Tsai
et al., 2019a; Ghosal et al., 2019), reconstruction
loss (Mai et al., 2020), or auxiliary task loss (Chen
et al., 2017; Yu et al., 2021). The latter addition-
ally rectifies the spatial orientation of unimodal or
multimodal representations by matrix decomposi-
tion (Liu et al., 2018) or Euclidean measure opti-
mization (Sun et al., 2020; Hazarika et al., 2020).
Although having gained excellent results in MSA
tasks, these methods are limited to the lack of con-
trol in the information flow that starts from raw
inputs till the fusion embeddings, which may risk
losing practical information and introducing unex-
pected noise carried by each modality (Tsai et al.,
2020). To alleviate this issue, different from pre-
vious work, we leverage the functionality of mu-
tual information (MI), a concept from the subject
of information theory. MI measures the depen-
dencies between paired multi-dimensional vari-
ables. Maximizing MI has been demonstrated ef-
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ficacious in removing redundant information irrel-
evant to the downstream task and capturing in-
variant trends or messages across time or differ-
ent domains (Poole et al., 2019), and has been
shown remarkable success in the field of repre-
sentation learning (Hjelm et al., 2018; Veličković
et al., 2018). Based on these experience, we pro-
pose MultiModal InfoMax (MMIM), a framework
that hierarchically maximizes the mutual informa-
tion in multimodal fusion. Specifically, we en-
hance two types of mutual information in repre-
sentation pairs: between unimodal representations
and between fusion results and their low-level uni-
modal representations. Due to the intractability
of mutual information (Belghazi et al., 2018), re-
searchers always boost MI lower bound instead
for this purpose. However, we find it is still dif-
ficult to figure out some terms in the expressions
of these lower bounds in our formulation. Hence
for convenient and accurate estimation of these
terms, we propose a hybrid approach composed
of parametric and non-parametric parts based on
data and model characteristics. The parametric
part refers to neural network-based methods, and
in the non-parametric part we exploit a Gaussian
Mixture Model (GMM) with learning-free param-
eter estimation. Our contributions can be summa-
rized as follows:

1. We propose a hierarchical MI maximization
framework for multimodal sentiment analy-
sis. MI maximization occurs at the input level
and fusion level to reduce the loss of valuable
task-related information. To our best knowl-
edge, this is the first attempt to bridge MI and
MSA.

2. We formulate the computation details in our
framework to solve the intractability prob-
lem. The formulation includes parametric
learning and non-parametric GMM with sta-
ble and smooth parameter estimation.

3. We conduct comprehensive experiments on
two publicly available datasets and gain su-
perior or comparable results to the state-of-
the-art models.

2 Related Work

In this section, we briefly overview some related
work in multimodal sentiment analysis and mutual
information estimation and application.

2.1 Multimodal Sentiment Analysis (MSA)

MSA is an NLP task that collects and tackles data
from multiple resources such as acoustic, visual,
and textual information to comprehend varied hu-
man emotions (Morency et al., 2011). Early fu-
sion models adopted simple network architectures,
such as RNN based models (Wöllmer et al., 2013;
Chen et al., 2017) that capture temporal depen-
dencies from low-level multimodal inputs, SAL-
CNN (Wang et al., 2017) which designed a select-
additive learning procedure to improve the gener-
alizability of trained neural networks, etc. Mean-
while, there were many trials to combine geo-
metric measures as accessory learning goals into
deep learning frameworks. For instance, Hazarika
et al. (2018); Sun et al. (2020) optimized the deep
canonical correlation between modality represen-
tations for fusion and then passed the fusion re-
sult to downstream tasks. More recently, formu-
lations influenced by novel machine learning top-
ics have emerged constantly: Akhtar et al. (2019)
presented a deep multi-task learning framework to
jointly learn sentiment polarity and emotional in-
tensity in a multimodal background. Pham et al.
(2019) proposed a method that cyclically trans-
lates between modalities to learn robust joint rep-
resentations for sentiment analysis. Tsai et al.
(2020) proposed a routing procedure that dynam-
ically adjusts weights among modalities to pro-
vide interpretability for multimodal fusion. Mo-
tivated by advances in the field of domain sepa-
ration, Hazarika et al. (2020) projected modality
features into private and common feature spaces to
capture exclusive and shared characteristics across
different modalities. Yu et al. (2021) designed
a multi-label training scheme that generates ex-
tra unimodal labels for each modality and concur-
rently trained with the main task.

In this work, we build up a hierarchical MI-
maximization guided model to improve the fusion
outcome as well as the performance in the down-
stream MSA task, where MI maximization is re-
alized not only between unimodal representations
but also between fusion embeddings and unimodal
representations.

2.2 Mutual Information in Deep Learning

Mutual information (MI) is a concept from infor-
mation theory that estimates the relationship be-
tween pairs of variables. It is a reparameterization-
invariant measure of dependency (Tishby and Za-
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slavsky, 2015) defined as:

I(X;Y ) = Ep(x,y)
[
log

p(x, y)

p(x)p(y)

]
(1)

Alemi et al. (2016) first combined MI-related op-
timization into deep learning models. From then
on, numerous works studied and demonstrated the
benefit of the MI-maximization principle (Bach-
man et al., 2019; He et al., 2020; Amjad and
Geiger, 2019). However, since direct MI estima-
tion in high-dimensional spaces is nearly impos-
sible, many works attempted to approximate the
true value with variational bounds (Belghazi et al.,
2018; Cheng et al., 2020; Poole et al., 2019).

In our work, we apply MI lower bounds at both
the input level and fusion level and formulate or
reformulate estimation methods for these bounds
based on data characteristics and mathematical
properties of the terms to be estimated.

3 Method

3.1 Problem Definition
In MSA tasks, the input to a model is unimodal
raw sequences Xm ∈ Rlm×dm drawn from the
same video fragment, where lm is the sequence
length and dm is the representation vector di-
mension of modality m, respectively. Particu-
larly, in this paper we have m ∈ {t, v, a}, where
t, v, a denote the three types of modalities—text,
visual and acoustic that we obtained from the
datasets. The goal for the designed model is to ex-
tract and integrate task-related information from
these input vectors to form a unified representa-
tion and then utilize that to make accurate predic-
tions about a truth value y that reflects the senti-
ment strength.

3.2 Overall Architecture
As shown in Figure 1, our model firstly processes
raw input into numerical sequential vectors with
feature extractor (firmware for visual and acous-
tic with no parameters to train) and tokenizer (for
text). Then we encode them into individual unit-
length representations. The model then works in
two collaborative parts—fusion and MI maximiza-
tion, marked by solid and dash lines in Figure
1 respectively. In the fusion part, a fusion net-
work F of stacked linear-activation layers trans-
forms the unimodal representations into the fusion
result Z, which is then passed through a regres-
sion multilayer perceptron (MLP) for final predic-
tions. In the MI part, the MI lower bounds at

two levels—input level and fusion level are esti-
mated and boosted. The two parts work concur-
rently to produce task and MI-related losses for
back-propagation, through which the model learns
to infuse the task-related information into fusion
results as well as improve the accuracy of predic-
tions in the main task.

3.3 Modality Encoding

We firstly encode the multimodal sequential input
Xm into unit-length representations hm. Specif-
ically, we use BERT (Devlin et al., 2019) to en-
code an input sentence and extract the head em-
bedding from the last layer’s output as ht. For vi-
sual and acoustic, following previous works (Haz-
arika et al., 2020; Yu et al., 2021), we employ two
modality-specific unidirectional LSTMs (Hochre-
iter and Schmidhuber, 1997) to capture the tempo-
ral features of these modalities:

ht = BERT
(
Xt; θ

BERT
t

)
hm = sLSTM

(
Xm; θ

LSTM
m

)
m ∈ {v, a}

(2)

3.4 Inter-modality MI Maximization

For a modality representation pair X,Y that
comes from a single video clip, although they
seem to be independent sequences, there is a
certain correlation between them (Arandjelovic
and Zisserman, 2017). Formally, suppose we
have a collection of videos V and assume
that their prior distributions are known. Then
the prior distribution of X and Y can be de-
composed by the sampling process in V as
P (X) =

∫
V P (X|V )P (V ) and P (Y ) =∫

V P (Y |V )P (V ), as well as their joint distribu-
tion P (X,Y ) =

∫
V P (X,Y |V )P (V ). Unless

P (X,Y |V ) = P (X|V )P (Y |V ), i.e., X and Y
are conditionally independent from V , the MI is
never trivially 0.

Since the analysis above, we hope that through
prompting MI between multimodal input we can
filter out modality-specific random noise that is ir-
relevant to our task and keep modality-invariant
contents that span all modalities as much as pos-
sible. As stated before, we boost a tractable lower
bound instead of computing MI directly for this
purpose. We exploit an accurate and straightfor-
ward MI lower bound introduced in Barber and
Agakov (2004). It approximates the truth condi-
tional distribution p(y|x) with a variational coun-
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Figure 1: The overall architecture of the MMIM model.

terpart q(y|x):

I(X;Y ) =Ep(x,y)
[
log

q(y|x)
p(y)

]
+

Ep(y) [KL(p(y|x)‖q(y|x))]
≥Ep(x,y) [log q(y|x)] +H(Y )

,IBA

(3)

where H(Y ) is the differential entropy of Y . This
lower bound is tight, i.e., there is no gap between
the bound and truth value, when q(y|x) = p(y|x).
In our implementation, we optimize the bounds
for two modality pairs— (text, visual) and (text,
acoustic). In each pair, we treat text as X and
the other modality as Y in (3). We do so be-
cause 1) Since we have to train a predictor q(y|x)
to approximate p(y|x), prediction from higher-
dimensional vectors ht ∈ Rdt (dt =768) to lower
ones hv ∈ Rdv and ha ∈ Rda (dv, da ¡ 50) con-
verges faster with higher accuracy; 2) many pre-
vious works (Tsai et al., 2019a; Hazarika et al.,
2020) pointed out that from empirical study the
text modality is predominate, which can integrate
more task-related features than other modalities in
this step. Additionally, we examine the efficacy of
the design choice in the ablation study part. Fol-
lowing Cheng et al. (2020), we formulate q(y|x)
as a multivariate Gaussian distributions qθ(y|x) =
N (y|µθ1(x),σ2

θ2
(x)I), with two neural networks

parameterized by θ1 and θ2 to predict the mean
and variance, respectively. The loss function for

likelihood maximization is:

Llld = −
1

N

∑
tv,ta

N∑
i=1

log q(yi|xi) (4)

where N is the batch size in training, tv, ta means
summing the likelihood of two predictors.

For the entropy term H(Y ), we solve its
computation with the Gaussian Mixture Model
(GMM), a commonly utilized approach for un-
known distribution approximation that can facili-
tate distribution-based estimation (Nilsson et al.,
2002; Kerroum et al., 2010). GMM builds up
multiple Gaussian distributions for different prop-
erty classes. We choose the sentiment polarity
(non-negative/negative), which is a natural prop-
erty in the datasets, as the classification crite-
rion, which can also balance the trade-off between
estimation accuracy (requires more classes) and
computational cost (requires fewer classses). We
build up two normal distributions Npos(µ1,Σ1)
and Nneg(µ2,Σ2) for each class, where µ is the
mean vector and Σ is the covariance matrix. The
parameters are estimated via the maximum like-
lihood method on a sufficiently large sampling
batch Ds ⊂ Dtrain:

µ̂c =
1

Nc

Nc∑
i=1

hic

Σ̂c =
1

Nc

Nc∑
i=1

hic � hic − µ̂Tc µ̂c

(5)

where c ∈ {pos, neg} represents the polarity class
that the sample belongs to, Nc is the number of
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samples in class c and � is component-wise mul-
tiplication. The entropy of a multivariate normal
distribution is given by:

H =
1

2
log
(
(2πe)k det(Σ)

)
=

log(det(2πeΣ))

2
(6)

where k is the dimensionality of the vectors in
GMM and det(Σ) is the determinant of Σ. Based
on the nearly equal frequencies of the two polarity
classes in the dataset, we assume the prior prob-
ability that one data point x = (x1, ..., xk) be-
longs to each is equal, i.e., wpos = p(x ∈ pos) =
wneg = p(x ∈ neg) = 1

2 . Under the assumption
that the two sub-distributions are disjoint, from
Huber et al. (2008) the lower and upper bound of
a GMM’s entropy are:∑

c

wchc ≤ H(Y ) ≤
∑
c

wc(− logwc+hc) (7)

where hc is the entropy of the sub-distribution for
class c. Taking the lower bound as an approxima-
tion, we obtain the entropy term for the MI lower
bound:

H(Y ) =
1

4
[log((det(Σ1) det(Σ2))] (8)

In this formulation, we implicitly assume that the
prior probabilities of the two classes are equal. We
further notice that H(Y ) changes every time dur-
ing each training epoch but at a very slow pace in
several continuous steps due to the small gradients
and consequently slight fluctuation in parameters.
This fact demands us to update parameters timely
to ensure estimation accuracy. Besides, according
to statistical theory, we should increase the batch
size (N∗) to reduce estimation error, but the maxi-
mum batch size is restricted to the GPU’s capacity.
Considering the situation above, we indirectly en-
large Ds by encompassing the data from the near-
est history. In implmentation, we store such data
in a history data memory. The loss function for
MI lower bound maximization in this level is given
by:

LBA = −It,vBA − I
t,a
BA (9)

3.5 MI Maximization in the Fusion Level
To enforce the intermediate fusion results to cap-
ture modality-invariant cues among modalities, we
repeat MI maximization between fusion results
and input modalities. The optimization target is

the fusion network F that produces fusion results
Z = F (Xt, Xv, Xa). Since we already have a
generation path from Xm to Z, we expect an op-
posite path, i.e. to constructs Xm,m ∈ {t, v, a}
from Z. Inspired by but different from Oord et al.
(2018), we use a score function that acts on the
normalized prediction and truth vectors to gauge
their correlation:

Gφ(Z) =
Gφ(Z)

‖Gφ(Z)‖2
, hm =

hm
‖hm‖2

s(hm, Z) = exp

(
hm

(
Gφ(Z)

)T) (10)

where Gφ is a neural network with parameters φ
that generates a prediction of hm from Z, ‖ · ‖2 is
the Euclidean norm, by dividing which we obtain
unit-length vectors. Because we find the model
intends to stretch both vectors to maximize the
score in (10) without this normalization. Then
same as what Oord et al. (2018) did, we incorpo-
rate this score function into the Noise-Contrastive
Estimation framework (Gutmann and Hyvärinen,
2010) by treating all other representations of that
modality in the same batch H̃i

m = Hm \ {him} as
negative samples:

LN(Z,Hm) = −EH

[
log

s(Z, him)∑
hjm∈Hm

s(Z, hjm)

]
(11)

Here is a short explanation of the rationality of
such formulation. Contrastive Predictive Coding
(CPC) scores the MI between context and future
elements “across the time horizon” to keep the
portion of “slow features” that span many time
steps (Oord et al., 2018). Similarly, in our model,
we ask the fusion result Z to reversely predict
representations “across modalities” so that more
modality-invariant information can be passed to
Z. Besides, by aligning the prediction to each
modality we enable the model to decide how much
information it should receive from each modality.
This insight will be further discussed with experi-
mental evidence in Section 5.2. The loss function
for this level is given by:

LCPC = Lz,vN + Lz,aN + Lz,tN (12)

3.6 Training
The training process consists of two stages in
each iteration: In the first stage, we approximate
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Algorithm 1: MultiModal Mutual Information

Maximization (MM-MIM)
Input: Dataset D = {(Xt, Xv, Xa), Y }, α, β,

learning rate ηlld, ηmain, embedding history
memory M

Output: Prediction ŷ
for each training epoch do

Stage 1: Conditional Likelihood Maximization
for minibatch B = {(Xi

t , X
i
v, X

i
a)}Ni=1

sampled from Dsub ⊆ D do
Encode Xi

m to him as (2)
Compute Llld as (4)
Update parameters of predictor q:
θq ← θq − ηlld∇θLlld

end
Stage 2: MI-maximization Joint Training:
for minibatch B = {(Xi

t , X
i
v, X

i
a)}Ni=1

sampled from D do
Encode Xi

m to him as (2)
Estimate the mean vectors and co-variance

matrices in GMM model with M as (5)
Update history M :
M ←M \ {Oldest Hidden Batch}
M ←M ∪ {him}

|B|
i=1,m ∈ {v, a}

Compute LBA as (3), (8), (9)
Produce fusion results
Zi = F (Xi

t , X
i
v, X

i
a) and predictions ŷ

Compute LN , LCPC as (10), (11), (12)
Compute Lmain as (14)
Update all parameters in the model except
q: θk ← θk − ηk∇θLmain

end
end

p(y|x) with q(y|x) by minimizing the negative
log-likelihood for inter-modality predictors with
the loss in (4). In the second stage, hierarchical MI
lower bounds in previous subsections are added to
the main loss as auxiliary losses. After obtaining
the final prediction ŷ, along with the truth value y,
we have the task loss:

Ltask = MAE(ŷ, y) (13)

where MAE stands for mean absolute error loss,
which is a common practice in regression tasks.
Finally, we calculate the weighted sum of all these
losses to obtain the main loss for this stage:

Lmain = Ltask + αLCPC + βLBA (14)

where α, β are hyper-parameters that control the
impact of MI maximization. We summarize the
training algorithm in Algorithm 1.

4 Experiments

In this section, we present some experimental de-
tails, including datasets, baselines, feature extrac-
tion tool kits, and results.

Split CMU-MOSI CMU-MOSEI
Train 1284 16326

Validation 229 1871
Test 686 4659
All 2199 22856

Table 1: Dataset split.

4.1 Datasets and Metrics

We conduct experiments on two publicly
available academic datasets in MSA research:
CMU-MOSI (Zadeh et al., 2016) and CMU-
MOSEI (Zadeh et al., 2018). CMU-MOSI
contains 2199 utterance video segments sliced
from 93 videos in which 89 distinct narrators
are sharing opinions on interesting topics. Each
segment is manually annotated with a sentiment
value ranged from -3 to +3, indicating the po-
larity (by positive/negative) and relative strength
(by absolute value) of expressed sentiment.
CMU-MOSEI dataset upgrades CMU-MOSI by
expanding the size of the dataset. It consists of
23,454 movie review video clips from YouTube.
Its labeling style is the same as CMU-MOSI. We
provide the split specifications of the two datasets
in Table 1.

We use the same metric set that has been consis-
tently presented and compared before: mean abso-
lute error (MAE), which is the average mean abso-
lute difference value between predicted values and
truth values, Pearson correlation (Corr) that mea-
sures the degree of prediction skew, seven-class
classification accuracy (Acc-7) indicating the pro-
portion of predictions that correctly fall into the
same interval of seven intervals between -3 and +3
as the corresponding truths, binary classification
accuracy (Acc-2) and F1 score computed for posi-
tive/negative and non-negative/negative classifica-
tion results.

4.2 Baselines

To inspect the relative performance of MMIM,
we compare our model with many baselines.
We consider pure learning based models, such
as TFN (Zadeh et al., 2017), LMF (Liu
et al., 2018), MFM (Tsai et al., 2019b) and
MulT (Tsai et al., 2019a), as well as ap-
proaches involving feature space manipulation
like ICCN (Sun et al., 2020) and MISA (Haz-
arika et al., 2020). We also compare our model
with more recent and competitive baselines, in-
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models♦
CMU-MOSI CMU-MOSEI

MAE Corr Acc-7 Acc-2 F1 MAE Corr Acc-7 Acc-2 F1

TFN† 0.901 0.698 34.9 - /80.8 - /80.7 0.593 0.700 50.2 - /82.5 - /82.1
LMF† 0.917 0.695 33.2 - /82.5 - /82.4 0.623 0.677 48.0 - /82.0 - /82.1
MFM† 0.877 0.706 35.4 - /81.7 - /81.6 0.568 0.717 51.3 - /84.4 - /84.3
ICCN† 0.862 0.714 39.0 - /83.0 - /83.0 0.565 0.713 51.6 - /84.2 - /84.2
MulT‡ 0.861 0.711 - 81.5/84.1 80.6/83.9 0.580 0.703 - - /82.5 - /82.3
MISA‡ 0.804 0.764 - 80.79/82.10 80.77/82.03 0.568 0.724 - 82.59/84.23 82.67/83.97
MAG-BERT‡ 0.731 0.789 - 82.5/84.3 82.6/84.3 0.539 0.753 - 83.8/85.2 83.7/85.1
Self-MM‡ 0.713 0.798 - 84.00/85.98 84.42/85.95 0.530 0.765 - 82.81/85.17 82.53/85.30

MAG-BERT∗ 0.727 0.781 43.62 82.37/84.43 82.50/84.61 0.543 0.755 52.67 82.51/84.82 82.77/84.71
Self-MM∗ 0.712 0.795 45.79 82.54/84.77 82.68/84.91 0.529 0.767 53.46 82.68/84.96 82.95/84.93
MMIM 0.700\ 0.800\ 46.65\ 84.14\/86.06\ 84.00\/85.98\ 0.526 0.772 54.24\ 82.24/85.97\ 82.66/85.94\

Table 2: Results on CMU-MOSI and CMU-MOSEI;♦: all models use BERT as the text encoder; †: from Hazarika
et al. (2020); ‡: from Yu et al. (2021); ∗: reproduced from open-source code with hyper-parameters provided in
original papers. For Acc-2 and F1, we have two sets of non-negative/negative (left) and positive/negative (right)
evaluation results. Best results are marked in bold and \ means the corresponding result is significantly better than
SOTA with p-value ¡ 0.05 based on paired t-test.

cluding BERT-based model—MAG-BERT (Rah-
man et al., 2020) and Self-MM (Yu et al., 2021),
which works with multi-task learning and is the
SOTA method. Some of the baselines are available
at https://github.com/declare-lab/
multimodal-deep-learning.

The baselines are listed below:
TFN (Zadeh et al., 2017): Tensor Fusion Net-

work disentangles unimodal into tensors by three-
fold Cartesian product. Then it computes the outer
product of these tensors as fusion results.

LMF (Liu et al., 2018): Low-rank Multimodal
Fusion decomposes stacked high-order tensors
into many low rank factors then performs efficient
fusion based on these factors.

MFM (Tsai et al., 2019b): Multimodal Fac-
torization Model concatenates a inference net-
work and a generative network with intermedi-
ate modality-specific factors, to facilitate the fu-
sion process with reconstruction and discrimina-
tion losses.

MulT (Tsai et al., 2019a): Multimodal Trans-
former constructs an architecture unimodal and
crossmodal transformer networks and complete
fusion process by attention.

ICCN (Sun et al., 2020): Interaction Canonical
Correlation Network minimizes canonical loss be-
tween modality representation pairs to ameliorate
fusion outcome.

MISA (Hazarika et al., 2020): Modality-
Invariant and -Specific Representations projects
features into separate two spaces with special lim-
itations. Fusion is then accomplished on these fea-
tures.

MAG-BERT (Rahman et al., 2020): Mul-
timodal Adaptation Gate for BERT designs an
alignment gate and insert that into vanilla BERT
model to refine the fusion process.

SELF-MM (Yu et al., 2021): Self-supervised
Multi-Task Learning assigns each modality a uni-
modal training task with automatically generated
labels, which aims to adjust the gradient back-
propagation.

4.3 Basic Settings and Results
Experimental Settings. We use unaligned raw
data in all experiments as in Yu et al. (2021). For
visual and acoustic, we use COVAREP (Degot-
tex et al., 2014) and P2FA (Yuan and Liberman,
2008), which both are prevalent tool kits for fea-
ture extraction and have been regularly employed
before. We trained our model on a single RTX
2080Ti GPU and ran a grid search for the best set
of hyper-parameters. The details are provided in
the supplementary file.

Hyperparameter Setting We perform a grid-
search for the best set of hyper-parameters: batch
size in {32, 64}, ηlld in {1e-3,5e-3}, ηmain in {5e-
4, 1e-3, 5e-3}, α, β in {0.05, 0.1, 0.3}, hidden dim
in {32, 64}, memory size in {1, 2, 3} batches, gra-
dient clipping value is fixed at 5.0, learning rate for
BERT fine-tuning is 5e-5, BERT embedding size
is 768 and fusion vector size is 128. The hyperpa-
rameters are given in Table 3.

Summary of the Results. In accord with pre-
vious work, we ran our model five times un-
der the same hyper-parameter settings and report

https://github.com/declare-lab/multimodal-deep-learning
https://github.com/declare-lab/multimodal-deep-learning
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Item CMU-MOSI CMU-MOSEI
batch size 32 64
learning rate ηlld 5e-3 1e-3
learning rate ηmain 1e-3 5e-4
α 0.3 0.1
β 0.1 0.05
V-LSTM hidden dim 32 64
A-LSTM hidden dim 32 16
memory size 32 (1 batch) 64 (1 batch)
gradient clip 5.0 5.0

Table 3: Hyperparameters for best performance.

the average performance in Table 2. We find
that MMIM yields better or comparable results to
many baseline methods. To elaborate, our model
significantly outperforms SOTA in all metrics on
CMU-MOSI and in (non-0) Acc-7, (non-0) Acc-
2, F1 score on CMU-MOSEI. For other metrics,
MMIM achieves very closed performance (¡0.5%)
to SOTA. These outcomes preliminarily demon-
strate the efficacy of our method in MSA tasks.

Description MAE Corr Acc-7 Acc-2 F1

MMIM 0.526 0.772 54.24 82.24/85.97 82.66/85.94
Inter-modality MI
It,vBA 0.533 0.763 53.80 80.87/85.08 81.37/85.06
It,aBA 0.538 0.767 53.31 80.26/82.73 80.81/82.00
Iv,aBA 0.545 0.753 53.85 80.40/85.05 80.85/84.95
It,aBA + Iv,aBA 0.536 0.764 53.53 79.40/85.39 80.12/85.47
It,vBA + Iv,aBA 0.534 0.770 54.11 80.62/85.61 81.20/85.64
It,vBA + Iv,aBA + It,aBA 0.527 0.772 54.53 80.02/85.42 80.64/85.44
None 0.541 0.752 53.57 79.60/84.75 80.21/84.76
LCPC loss

w/o Lz,tN 0.535 0.768 53.66 76.46/83.92 77.38/84.04
w/o Lz,vN 0.536 0.766 53.70 82.71/85.86 82.80/85.97
w/o Lz,aN 0.530 0.771 53.44 80.68/85.78 81.18/85.72
w/o Lz,tN ,L

z,v
N ,Lz,aN 0.543 0.759 53.49 78.89/84.37 79.57/84.40

Entropy estimation
w/o history data NaN NaN NaN NaN/NaN NaN/NaN
w/o GMM 0.533 0.768 53.4 79.57/84.94 80.19/84.95

Table 4: Ablation study of MMIM on CMU-MOSEI.
t, v, a, z represent text, visual, acoustic and fusion re-
sults.

4.4 Ablation Study
To show the benefits from the proposed loss func-
tions and the corresponding estimation methods
in MMIM, we carried out a series of ablation ex-
periments on CMU-MOSEI. The results under dif-
ferent ablation settings are categorized and listed
in Table 4. First, we eliminate one or several MI
loss terms, for both the inter-modality MI lower
bound (IBA) and CPC loss (Lz,mN where m ∈
{v, a, t}), from the total loss. We note the man-
ifest performance degradation after removing part
of the MI loss, and the results are even worse when
removing all terms in one loss than only removing

Figure 2: Visualization of loss changing as training
proceeds on CMU-MOSEI.

single term, which shows the efficacy of our MI
maximization framework. Besides, by replacing
current optimization target pairs in inter-modality
MI with single pair or other pair combinations we
can not gain better results, which provides exper-
imental evidence for the candidate pair choice in
that level. Then we test the components for en-
tropy estimation. We deactivate the history mem-
ory and evaluate µ and Σ in (5) using only the
current batch. It is surprising to observe that the
training process broke down due to the gradient’s
“NaN” value. Therefore, the history-based esti-
mation has another advantage of guaranteeing the
training stability. Finally, we substitute the GMM
with a unified Gaussian where µ and Σ are esti-
mated on all samples regardless of their polarity
classes. We spot a clear drop in all metrics, which
implies the GMM built on natural class leads to a
more accurate estimation for entropy terms.

5 Further Analysis

In this section, we dive into our models to explore
how it functions in the MSA task. We first visual-
ize all types of losses in the training process, then
we analyze some representative cases.

5.1 Tracing the Losses

To better understand how MI losses work, we vi-
sualize the variation of all losses during training
in Figure 2. The values for plotting are the av-
erage losses in a constant interval of every 20
steps. From the figure, we can see throughout the
training process, Ltask and LCPC keep decreas-
ing nearly all the time, while LBA goes down in
an epoch except the beginning of that. We also
mark the time that the best epoch ends, i.e., the
task loss on the validation set reaches the mini-
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Text Visual Acoustic szt/szv/sza Pred Truth

(A)
We’ll pick it up from here in
the next video in this series. Smile

Slightly rising tone
Normal volume 0.67/0.96/0.43 +0.6663 +0.6667

(B)
I’d probably only give it a two
out of five stars. Frown Peaceful tone

Normal volume 0.85/0.96/0.36 −1.6642 −1.6667

(C)
So these people are commissioned
to hunt the animals Glance Peaceful & Narrative 0.64/0.93/0.73 −0.0009 0.0000

(D)
I’m sorry, on the scale of one to
five I would give this a five. Turn head High pitch on “five” 0.83/0.71/0.54 −2.0023 +2.6667

Table 5: Representative examples with their predictions and fusion-modality scores in the case study. High scores
(≥ 0.8) are highlighted in bold.

mum. It is notable that LBA and LCPC reach a
relatively lower level at this time while the task
loss on the training set does not. This scenario re-
veals the crucial role that LBA and LCPC play in
the training process—they offer supplemental un-
supervised gradient rectification to the parameters
in their respective back-propagation path and fix
up the over-fitting of the task loss. Besides, be-
cause in the experiment settings α and β are in
the same order and at the end of best epoch LBA
reaches the lowest value, which is synchronized
as the validation loss, but LCPC fails to, we can
conclude that LBA, or MI maximization in the in-
put (lower) level, has a more significant impact
on model’s performance than LCPC , or MI maxi-
mization in the fusion (higher) level.

5.2 Case Study

We display some predictions and truth values,
as well as corresponding input raw data (for vi-
sual and acoustic we only illustrate literally) and
three CPC scores in Table 5. As described in
Section 3.5, these scores imply how much the fu-
sion results depend on each modality. It is noted
that the scores are all beyond 0.35 in all cases,
which demonstrates the fusion results seize a cer-
tain amount of domain-invariant features. We also
observe the different extents that the fusion re-
sults depend on each modality. In case (A), visual
provides the only clue of the truth sentiment, and
correspondingly szv is higher than the other two
scores. In case (B), the word “only” is a piece of
additional evidence apart from what visual modal-
ity exposes, and we find szt achieves a higher level
than in (A). For (C), acoustic and visual help in-
fer a neutral sentiment and thus szv and sza are
large than szt. Therefore, we conclude that the
model can intelligently adjust the information that

flows from unimodal input into the fusion results
consistently with their individual contribution to
the final predictions. However, this mechanism
may malfunction in cases like (D). The remark
“I’m sorry” bewilders the model and meanwhile
visual and acoustic remind none. In this circum-
stance, the model casts attention on text and is
misled to a wrong prediction in the opposite di-
rection.

6 Conclusion

In this paper, we present MMIM, which hierar-
chically maximizes the mutual information (MI)
in a multimodal fusion pipeline. The model ap-
plies two MI lower bounds for unimodal inputs
and the fusion stage, respectively. To address the
intractability of some terms in these lower bounds,
we specifically design precise, fast and robust es-
timation methods to ensure the training can go
on normally as well as improve the test outcome.
Then we conduct comprehensive experiments on
two datasets followed by the ablation study, the
results of which verify the efficacy of our model
and the necessity of the MI maximization frame-
work. We further visualize the losses and display
some representative examples to provide a deeper
insight into our model. We believe this work can
inspire the creativity in representation learning and
multimodal sentiment analysis in the future.
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A Appendix

A.1 Implementation details of history
memory

The workflow of the history embedding memory
comprises two stages, as shown in Figure 3. In the
estimation stage, parameters of the GMM model
is estimated using both history embeddings read-
out from history memory and current batch input,
as shown in (a). Then in the update stage, the old-
est batch of data is driven out of the memory to
leave space for new data, as described in (b). The
memory is implemented as a FIFO queue.

History Memory
(FIFO queue)

Read Out

Current Batch

Past Batch
Used for GMM 
and Entropy 
estimation

(a) Estimation stage

Dequeue

Current Batch

Oldest Batch

Enqueue

History Memory
(FIFO queue)

(b) Update stage

Figure 3: The workflow of a history embedding mem-
ory

A.2 Proof of eq. (7)
Proof. For a GMM model, the marginal probabil-
ity density function of x can be written as

f(x) =
∑
i

f(x|z = i)p(x ∈ Ci) (15)

where z is an indicator that reflects which class x
falls in and Ci is the ith class. Since

∑
i P (x ∈

Ci) = 1 by Jensen’s inequality we have (note
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H(X) =
∫
(−p(x) log p(x))dx =

∫
g(x)dx and

g(x) is a convex function)

H(X) = H

(∑
i

f(x|z = i)p(x ∈ Ci)

)
≥
∑
i

p(x ∈ Ci)H(f(x|z = i))

(16)

In our case we have p(x ∈ C1) = p(x ∈ C2) =
1
2 ,

then

H(X) ≥ 1

2
(H(X;µ1,Σ1) +H(X;µ2,Σ2))

= KL(X)

(17)

Hence we get a lower bound of H(X) as the right
side of the inequality. On the other hand, an upper
bound as proposed in Huber et al. (2008) is

KU (X) = −2× 1

2
× log

1

2
+

1

2
(H(X;µ1,Σ1) +H(X;µ2,Σ2))

= 0.693 +KL(X)

(18)

To summarize

KL(X) ≤ H(X) ≤ KU (X) = 0.693 +KL(X)
(19)

Then through maximizing the lower bound
KL(X) we can maximize H(X).


