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Abstract

Documents as short as a single sentence
may inadvertently reveal sensitive information
about their authors, including e.g. their gen-
der or ethnicity. Style transfer is an effective
way of transforming texts in order to remove
any information that enables author profiling.
However, for a number of current state-of-the-
art approaches the improved privacy is accom-
panied by an undesirable drop in the down-
stream utility of the transformed data.

In this paper, we propose a simple, zero-shot
way to effectively lower the risk of author pro-
filing through multilingual back-translation us-
ing off-the-shelf translation models. We com-
pare our models with five representative text
style transfer models on three datasets across
different domains. Results from both an au-
tomatic and a human evaluation show that
our approach achieves the best overall perfor-
mance while requiring no training data. We are
able to lower the adversarial prediction of gen-
der and race by up to 22% while retaining 95%
of the original utility on downstream tasks.

1 Introduction

Data collections of natural language utterances bear
the risk of disclosing sensitive information about
the recorded participants, including their gender,
race, or political preferences. Unlike explicit men-
tions of private information, like a user’s name or
location (Tang et al., 2004; Adelani et al., 2020),
such user traits are often encoded rather subtly in
a user’s speaking or writing style. Nevertheless,
they can be predicted with high accuracy by deep
learning-based classifiers even when they are not
obvious to humans (Elazar and Goldberg, 2018),
enabling third-parties with access to the data sets
to profile users without their knowledge.

A common method to alleviate this problem is
the application of an intermediate transformation
step to remove sensitive information via text style
transfer. While a number of different style transfer

techniques exist (Shen et al., 2017; Fu et al., 2018;
Madaan et al., 2020), they require large amounts
of text data labeled with user trait information to
perform well. Additional annotations need to be
provided for every new user trait that the model
is expected to handle, multiplying the associated
costs and effort. Furthermore, the impact that such
transformations can have on the utility of the re-
sulting data is often overlooked. Conversely, we
argue that the privacy-utility dichotomy should be
at the heart of all research on this topic because it
is fairly easy to consider one of the two but difficult
to improve both at the same time.

In this paper, we explore a simple yet effective
zero-shot text transformation method based on mul-
tilingual back-translation. Back-translation (BT) is
an alternative approach without the prerequisites
of labeled training data. Sensitive user traits can
be significantly obfuscated when translated to an-
other language and back (Rabinovich et al., 2017;
Prabhumoye et al., 2018) since many concepts can-
not easily be mapped across languages. For exam-
ple, in languages such as Japanese and Korean the
speaker’s gender can be inferred from the choice of
certain pronouns. When back-translating them via
an intermediate language that does not make such
differences, such as English, these gender indica-
tors will be largely obfuscated.

Results from extensive experiments show that
our simple zero-shot text transformer has compara-
ble or even better performance than popular style
transfer methods, considering both the privacy and
utility of the transformed texts. In summary, we
make the following contributions:

1. We propose using multilingual back-translation
for hiding users traits. We experiment with using
6 high-resourced languages: German, Spanish,
French, Japanese, Russian, and Chinese as the
pivot language. This provides more opportuni-
ties to pick a language that can hide sensitive
information represented in the original language.
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Our approach is zero-shot without the need for
additional data to train style transfer models.

2. We show that our simple approach is competi-
tive with style transfer models using automatic
metrics, and better performance using human
evaluation in terms of content preservation and
fluency.

3. We perform a comprehensive evaluation on three
datasets with popular style transfer methods.
These methods have been well studied in the
style transfer community, but they have never
been evaluated for both privacy and utility preser-
vation in downstream tasks.

2 Related Work

Attribute information such as gender, age, or race
are being captured in the deep learning models.
Traditional approaches prevented this informa-
tion leakage via lexical substitution of sensitive
words (Reddy and Knight, 2016). In recent years,
many text style transfer techniques have been pro-
posed to control certain attributes of generated text
(e.g., formality or politeness) while preserving the
content. A common paradigm is to disentangle the
content and style in the latent space (Shen et al.,
2017; John et al., 2019; Cheng et al., 2020). An-
other stream of work treats text style transfer as
an analogy of unsupervised machine translation
(Zhang et al., 2018; Lample et al., 2019; Zhao et al.,
2019; He et al., 2020) to rephrase a sentence while
reducing its stylistic properties (Prabhumoye et al.,
2018). Beyond the end-to-end training methods,
the prototype-based text editing approach also at-
tracts lot of attention (Li et al., 2018; Sudhakar
et al., 2019; Madaan et al., 2020), in which at-
tribute markers of input sentences are deleted and
then replaced by target attribute markers. These
techniques have been well studied in the text style
transfer community, but have never been evaluated
for both privacy and utility preservation in down-
stream tasks. Shetty et al. (2018) and Xu et al.
(2019) make use of adversarial training and evalu-
ate on authorship obfuscation. However, they did
not include most recent style transfer methods and
predictors based on pretrained language models.

3 Multilingual Back-Translation

Problem Scenario In understanding human be-
haviors and intents, many machine learning appli-
cations need to infer important information from

Pivot Language Translated Back-translated

DE Danke Papi Thank you daddy
FR merci papi thank you papi
ZH 谢谢你爸爸 Thank you dad

Table 1: Multilingual back-Translation of “thank u papi”
using DE, FR, ZH as pivot languages. User traits can be
obfuscated by choosing the proper pivot language.

users inputs like sentiment, intent, and dialogue act
but there is a need to preserve user privacy. We
consider a scenario where an adversary attempt to
predict demographic attributes of user utterances
using a pre-trained attribute classification model.
We assume that the adversary already has a pre-
trained attribute classification model based on pub-
licly available data. Our goal is to transform the
original user input text X to X ′ such that X ′ (1)
prevents the accurate prediction of user attributes,
(2) maintains the utility of downstream NLP tasks,
(3) maintains the content of X and (4) is a fluent
text itself.

In this paper, we explore a simple, zero-shot
text transformation method through multilingual
back-translation. Our assumption is that, as also
supported in previous research (Rabinovich et al.,
2017; Prabhumoye et al., 2018), text styles can be
significantly obfuscated when being translated to
another language (pivot language) then translated
back. One example is shown in Table 1. The word
“papi” is normally used among Latino Americans
which exposes their race. When translating them
to languages like Chinese then translating back, it
becomes the standard form of “dad” and thereby
protects the user privacy. Specifically, we define
our text transformation function as:

X ′ = TL→en(Ten→L(X))

where L is the pivot language and T is a translation
model. We make use of mBART501 — an off-the-
shelf machine translation model implemented by
HuggingFace (Wolf et al., 2020). We consider 6
high-resourced languages as the pivot, so as to en-
sure a decent quality of machine translation models.
The languages chosen are German (DE), Spanish
(ES), French (FR), Japanese (JA), Russian (RU),
and Chinese (ZH) based on the large amount of
resources they have on OPUS (Tiedemann, 2012)
and Common Crawl corpora 2.

1https://huggingface.co/facebook/
mbart-large-50-many-to-many-mmt

2https://commoncrawl.org/

https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
https://huggingface.co/facebook/mbart-large-50-many-to-many-mmt
https://commoncrawl.org/
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Attribute Utility Style
Dataset Train Train Train Dev Test

DIAL (race) 80K 100K 100K 4K 4K
VerbMobil (gender) 5K 4977 5K 442 1096
Yelp (gender) 2.6M 373K 200K 4K 4K

Table 2: Data splits for DIAL, VerbMobil, and Yelp.
The utility task for Yelp and DIAL is sentiment classifi-
cation while for VerbMobil is dialog act classification.

4 Experiments and Results

4.1 Datasets

In this paper, we conduct experiments on three
datasets: DIAL (Blodgett et al., 2016), VerbMobil
(Weilhammer et al., 2002) and Yelp (Reddy and
Knight, 2016; Shen et al., 2017). These datasets
comprise of a variety of domains with either race or
gender as the sensitive attribute and they also have
annotations for dialog acts and sentiment classifi-
cation that we use to test the utility of downstream
NLP tasks. For Yelp, we find two datasets previ-
ously used in the style transfer literature, one for
gender (YelpGender) (Reddy and Knight, 2016)
and the other for sentiment (YelpSentiment) (Shen
et al., 2017). The texts are from the same source but
each review do not have both gender and sentiment
labels. By automatically comparing each review in
the test set of YelpGender with the YelpSentiment
Dev and Test sets, we created a new Dev set and
Test set with 4K reviews, each with both gender
and sentiment information. This can be used for fu-
ture research to evaluate the utility of Yelp Gender
dataset. The dataset is available on Github3.

Table 2 shows the data splits for three datasets:
Attribute Train, training set for attribute classifi-
cation; Utility Train, training set for a downstream
NLP task; Style Train, training set for style trans-
fer, Dev, the development set, and the Test set. The
detailed data description is in Appendix A.

4.2 Experimental Setup

We train five popular style transfer methods: 1)
CAE (Shen et al., 2017), (2) BST (Prabhumoye
et al., 2018), (3) UNMT (Lample et al., 2019), (4)
DLS (He et al., 2020), and (5) Tag&Gen (Madaan
et al., 2020). CAE and BST are based on latent
representation disentanglement through adversarial
training. UNMT and DLS make use of the unsu-
pervised machine translation objective. Tag&Gen
is based on prototype-based text editing using fre-

3https://github.com/uds-lsv/
author-profiling-prevention-BT

Attr. Util.
Method F1↓ F1↑ METEOR↑ GAR↑ PMean ↑

Original
Test set

88.79 75.13 100 48.40 58.69

BT (DE) 81.37 73.84 47.47 51.83 47.94
BT (ES) 69.44 70.33 32.76 63.50 49.29
BT (FR) 77.72 72.60 41.78 54.88 47.89
BT (JA) 73.77 72.00 34.63 62.22 48.77
BT (RU) 78.81 73.00 42.98 50.38 46.89
BT (ZH) 66.65 71.68 27.61 80.95 53.40

Adv 65.75 65.70 17.03 _ _
SMDSP 74.85 69.88 28.15 _ _

CAE 35.37 61.63 12.84 22.08 40.30
BST 13.99 54.16 5.03 10.60 38.95
UNMT 18.11 64.68 19.95 43.87 52.60
DLS 28.13 66.18 25.04 30.28 48.34
Tag&Gen 44.34 69.74 42.30 23.18 47.72

Table 3: Evaluation on DIAL dataset. Adv and SMDSP
result are from (Xu et al., 2019)

quency ratios method to tag appropriate attribute
markers, and generate replacements with a trans-
former language model. We compare the perfor-
mance of the style transfer models with multilin-
gual BT models based on mBART50. In addi-
tion, we compare with reported results in Xu et al.
(2019) on the DIAL dataset. For the attribute, sen-
timent and dialog act classification, we fine-tune a
BERT-base (Devlin et al., 2019) model end-to-end.

4.3 Evaluation tasks and Metrics

Style transfer models are usually evaluated on three
tasks: Transfer style (or attribute) strength, content
preservation, and fluency (Jin et al., 2021). Al-
though, our desire is for the models to have a very
good transfer attribute strength, other evaluation
tasks are important since there are several down-
stream tasks that would benefit immensely from
fluency and content preservation. For example, con-
tent preservation is critical for question answering
systems, and fluency is desirable for dialog genera-
tion systems since we may not be able to generate
fluent replies with non-fluent inputs.

For Transfer attribute strength, we measure
the success of the transfer by a drop in attribute
F1-score (Attr) on the transformed test set. For
Content preservation, we choose METEOR be-
cause it takes into account word stems, synonyms
and paraphrase leading to better recall. Fluency
measures grammaticality. Following Krishna et al.
(2020), we compute grammaticality acceptance rate
(GAR) using available fine-tuned models4 trained

4https://huggingface.co/textattack/
roberta-base-CoLA

https://github.com/uds-lsv/author-profiling-prevention-BT
https://github.com/uds-lsv/author-profiling-prevention-BT
https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/textattack/roberta-base-CoLA
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VerbMobil Gender Yelp Gender

Attr. Utility Attr. Utility
Method F1↓ F1↑ METEOR↑ GAR↑ PMean↑ F1↓ F1↑ METEOR↑ GAR↑ PMean↑

Original Test set 72.24 59.73 100 61.08 49.78 87.92 97.55 100 86.18 73.95

BT (DE) 67.09 54.19 41.21 68.16 49.12 82.37 95.45 52.42 88.83 63.58
BT (ES) 62.58 50.47 31.38 77.01 49.07 76.51 91.54 38.89 90.37 61.07
BT (FR) 67.98 52.69 36.77 77.28 49.69 76.48 91.80 40.63 91.23 61.80
BT (JA) 65.23 45.52 21.71 87.68 47.42 71.98 92.39 35.47 93.00 62.22
BT (RU) 68.73 52.56 39.27 66.24 47.33 79.11 94.17 45.17 85.88 61.53
BT (ZH) 63.96 51.70 25.80 91.79 51.33 72.85 92.22 34.40 95.57 62.34

CAE 49.71 23.06 6.30 93.70 43.32 68.72 88.37 40.18 60.38 55.05
BST 66.51 18.06 1.69 23.18 19.11 51.00 71.00 24.03 58.45 50.62
UNMT 59.97 29.49 13.95 45.99 32.37 68.92 90.71 45.67 77.65 61.28
DLS 61.42 31.66 17.34 47.81 33.85 50.43 82.99 34.55 77.03 61.03
Tag&Gen 69.66 36.40 7.40 67.79 35.48 33.64 79.49 36.30 55.32 58.93

Table 4: Evaluation on VerbMobil (low-resource scenario) and Yelp. Comparing style transfer models and BT

Method Content preservation Fluency

BT (JA) 4.16 4.76
BT (ZH) 4.19 4.78
DLS 3.42 4.25
Tag&Gen 2.89 3.42

Table 5: Human evaluation of content preservation and
fluency on BT (JA), BT (ZH), DLS, Tag&Gen

Method sentence

Original this hotel seems to be very poorly run.

BT (DE) The hotel seems to be very poorly operated.
BT (JA) This hotel seems to be very poorly managed.
BT (ZH) This hotel looks terrible.

CAE this place is definitely very good.
BST this hotel seems poorly run.
UNMT this hotel seems to be very clean .
DLS i was n’t very impressed with this place.
Tag&Gen this hotel seems to be gorgeous run .

Table 6: Sample sentences for BT (DE), BT (JA), BT
(ZH), CAE, BST, DLS, UNMT, Tag&Gen

on CoLA (Warstadt et al., 2019). Lastly, we in-
troduce a new task, Utility (Util) to measure the
performance of the transformed texts on an avail-
able downstream NLP task. Further details are in
Appendix B. To measure the overall performance
across all tasks, we compute an average of all the
metrics (PMean). For transfer attribute strength,
we subtract attribute F1 from 100 i.e (100−Attr)
because the value is decreasing while others are in-
creasing. We provide more details in Appendix B.

4.4 Results

Automatic Evaluation We compare the perfor-
mance of the style transfer models and back-
translation models in terms of attribute F1, utility
F1, METEOR, and GAR on three datasets (DIAL,
VerbMobil and Yelp). Table 3 shows the perfor-
mance on DIAL dataset. We observe a reduction of

7−22% in attribute F1 by a simple back-translation,
with Chinese (ZH) preserving more privacy while
maintaining 95% of the original utility and highest
score (81%) for fluency. German (DE) has better
METEOR score and utility on average but sacri-
ficed a lot of privacy. The BT (ZH) model has
similar or better performance as the Adversarial
training and SMDSP proposed by (Xu et al., 2019)
in privacy preservation, utility and content preserva-
tion. However, we find style transfer methods have
much better privacy preservation than BT models
with 45− 75% reduction in attribute F1, but they
sacrificed a lot in terms of utility, content preser-
vation (< 30 METEOR except Tag&Gen) and flu-
ency (< 45% GAR), making them not practical for
real-life applications.

Table 4 shows the result on VerbMobil dataset.
The BT models leads to a reduction of 3.5− 9.7%
in attribute F1 while maintaining over 86% of the
original utility F1. We also find them to achieve bet-
ter performance in METEOR and GAR, although
the models are applied in zero-shot settings. The
style transfer models performed terribly since they
typically require massive amounts of data (Li et al.,
2019) and might be skewed in a data-scarcity sce-
nario (5k sentences for VerbMobil). One particular
strength of our approach is that it requires no addi-
tional data and most suited for zero-shot settings.

We also examined the performance of BT mod-
els on Yelp dataset. The style transfer models pre-
serve more gender privacy (19− 54%) than the BT
models (5−16%). However, they have much worse
results in terms of utility and fluency. Overall, the
PMean of BT models is often better than the style
transfer models for all datasets.
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Human Evaluation We further performed hu-
man evaluation for the two best privacy-preserving
BT models (ZH and JA) and style transfer models
(DLS and Tag&Gen) in terms of content preserva-
tion and fluency. We recruited three raters, who
are volunteers from our research lab including au-
thors of the paper to evaluate the models. The three
volunteers rated 100 sentences per model i.e 400
sentences per rater. The volunteers were not paid
for the rating, and were informed that they could in
principle, choose to withdraw from the annotation
without consequences. We provide the annotation
guideline on Github5.

Table 5 shows the average rating by three pro-
fessional speakers of English language on 100 sen-
tences in the Yelp dataset, we found out that ZH
and JA are rated much higher in content preser-
vation – over 4 (on a 1 − 5 Likert scale) while
maintaining near perfect fluency (4.7). The inter-
agreement Krippendorff α of our human raters is
0.69 for both content preservation and fluency. On
the other hand, DLS and Tag&Gen are rated lower
on both evaluation tasks. Although, Tag&Gen pre-
serves privacy more on Yelp according to Table 4.
Table 6 shows an example sentence confirming the
content preservation and fluency of our approach.
We provide more examples in Appendix C.

5 Conclusion

In this paper, we propose a zero-shot way to effec-
tively lower the risk of author profiling through
multilingual BT using off-the-shelf translation
models. We compare our approach with differ-
ent style transfer models, achieving the best over-
all performance using an automatic and a human
evaluation while requiring no additional training
data. In the future, we will (1) analyze how the
language choice and translation quality affects the
privacy preservation in BT, (2) investigate more
on other metrics that can be used to aggregate the
the four evaluation metrics corresponding to trans-
fer attribute strength, content preservation, fluency,
and utility, and (3) extend the zero-shot BT method
with some supervision to improve privacy.

We highlight a few limitations of our work.
First, back-translation transformation remove con-
tent style but does not necessarily replace attribute
markers like style transfer models, for example,
given a text “me and my husband ...”, style trans-

5https://github.com/uds-lsv/
author-profiling-prevention-BT

fer models are more likely to change “husband”
to “wife” but back-translation will not. Second,
our back-translation technique also inherit some
of the problems of machine translation generated
texts like hallucination (Raunak et al., 2021). We
provide examples highlighting these issues in Ap-
pendix C.

6 Broader Impact Statement and Ethics

This paper presents an approach to prevent author
profiling of sensitive user attributes. We understand
there are many ethical concerns around gender and
race, however, our definition and evaluation of user
traits are constrained by the available datasets we
found in the literature. We did not collect any new
data to show the strength of our approach. We
hope our research helps to protect the profiling of
under-represented groups and communities.
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A Data Description

In this paper, we conduct experiments on three
datasets (DIAL, VerbMobil, and Yelp) from Twit-
ter social media, dialog conversations, and business
reviews domains. Each of the datasets have either
race or gender as the sensitive information, and
sentiment classification or dialog act classification
as the downstream NLP task to measure utility. Ta-
ble 2 shows the datasets and their splits: Attribute
Train, training corpus for the attribute classifier;
Utility Train, training corpus for an NLP task;
Style Train, training corpus for style-transfer mod-
els, Dev, the development set, and the Test set.

DIAL created by (Blodgett et al., 2016) for di-
alectal tweets classification of African American
(AAE) and Standard American English (SAE), and
each tweet is assigned a predicted race informa-
tion – AA or White, and sentiment (pos/neg). We
make use of the subset of the tweets (Elazar and
Goldberg, 2018) with over 80% confidence in race
prediction. The final dataset has 180K tweets (90K
each for AA and White race), 80K of the tweets
are used for training the attribute classifier while
the remaining 100K are used for training sentiment
classifier and style transfer models.

VerbMobil corpus (Weilhammer et al., 2002) is
a dialog corpus of human to human telephone con-
versation that are scheduling appointments. The
English VerbMobil has over 10K utterances, with
only 6,538 with gender information and 6,093 with
dialog act (DA) information. We make use of 1,096
utterances with both gender information and DA
as the test set, and others for training and Dev. We
used the same training set for attribute classifica-
tion and style transfer models due to limited data.

Yelp review corpus created by (Reddy and
Knight, 2016) has gender annotation (male and
female), we combined this dataset with another
Yelp review corpus (Shen et al., 2017) with only
sentiment annotation. By automatically comparing
the reviews in the two datasets, we created a Dev
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and Test set with 4K reviews each with both gen-
der and sentiment information. This can be used
for future research to evaluate the utility of Yelp
Gender dataset.

B Evaluation tasks and Metrics

Style transfer models are usually evaluated on three
tasks: Transfer style (or attribute) strength, content
preservation, and fluency (Jin et al., 2021).

1. Transfer attribute strength (Attr): For a bi-
nary attribute, the goal is to generate a sen-
tence of attribute 1 given an initial sentence
with attribute 0. We measure the success of
the transfer by a drop in attribute F1-score on
the transformed test set.

2. Content preservation(METEOR): This is mea-
sured using automatic metrics like BLEU (Pa-
pineni et al., 2002), ROUGE (Lin, 2004), and
METEOR (Banerjee and Lavie, 2005). We
choose METEOR because it has better cor-
relation with human than BLEU that is com-
monly used. Also, it takes into account word
stems, synonyms and paraphrase when com-
puting the score leading to better recall. Re-
cently, it has been popularly adopted by the
style-transfer community.

3. Fluency(GAR): measures grammaticality. In
most cases, this is measured using per-
plexity on the transformed set. However,
Krishna et al. (2020) proposed computing
the grammaticality score from a classifier
trained on Corpus of Linguistic Acceptabil-
ity (CoLA) (Warstadt et al., 2019) instead of
perplexity because it is unbounded and un-
natural sentences with common words may
have low perplexity. We compute grammati-
cality acceptance rate (GAR) using available
fine-tuned models6.

4. Utility(Util): we introduce a new task to
measure the performance of the transformed
texts on an available downstream NLP task.
For example, DIAL dataset that is popularly
used can also be evaluated for sentiment clas-
sification (Xu et al., 2019). Here, we also used
the F1-score.

6https://huggingface.co/textattack/
roberta-base-CoLA

To measure the overall performance across all
tasks, we compute an average of all the metrics
(PMean), because all the metrics range from 0 to
100. For the transfer strength, we use (100-F1)
since the value is decreasing. Specifically, we com-
pute:

PMean =
100−Attr + Util +METEOR+GAR

4

C More Examples:

We provide more examples from the three datasets
we considered: Yelp, VerbMobil and DIAL

Method sentence

Original me and my husband love tokyo lobby !

BT (DE) me and my husband love Tokyo Lobby!
BT (ES) I and my husband love Tokyo Lobby!
BT (FR) I love the Tokyo lobby with my husband!
BT (JA) my husband and i love the Tokyo lobby!
BT (RU) I and my husband love the tokyo lobby!
BT (ZH) My husband and I love Tokyo’s amusement park!

CAE me and my wife loves in san lobby !
BST my wife and i love the tokyo lobby.
UNMT me and my wife love the interior !
DLS it and my wife love this lobby !
Tag&Gen me and my husband earned tokyo lobby !

Table 7: Yelp: Sample sentences for BT and style trans-
fer models

Method sentence

Original Lord , i hope this aint nobody i know !

BT (DE) Sir, I hope this is no one I know!
BT (ES) Lord, I hope that this is not anyone who knows!
BT (FR) Lord, I hope this is not someone I know!
BT (JA) God, I wish there was no one I knew!
BT (RU) God, I hope it’s no one I know!
BT (ZH) Oh, my God, I wish this wasn’t someone I knew!

CAE <unk> is so good
BST ENTITY hope not someone I know!
UNMT Dear God , i hope this is not good ! I miss you
DLS Lord I hope this would be pretty much ! ENTITY
Tag&Gen Lord , i hope this is actually know

Table 8: DIAL: Sample sentences for BT and style
transfer models

https://huggingface.co/textattack/roberta-base-CoLA
https://huggingface.co/textattack/roberta-base-CoLA
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Method sentence

Original that gives us plenty of time to chill out before the morning

BT (DE) this gives us plenty of time to cool off before the morning
BT (ES) The Committee recommends that the State party ...
BT (FR) which gives us a lot of time to cool down before the morning
BT (JA) it gives us enough time to cool down in the morning.
BT (RU) that gives us plenty of time to rest until the morning
BT (ZH) So we can have a good rest before the morning

CAE that is good for me , I am going to be out of town , I am out of town
BST okay , that is fine , I am going to be out of town , I am out of town
UNMT okay what do you say we meet on Monday , around two P M
DLS okay what time what time will you have to go in Trier
Tag&Gen yeah that is fine for me how about the twenty seventh or twenty seventh or twenty seventh

Table 9: VerbMobil: Sample sentences for BT and style transfer models


