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Abstract

Spoken dialog systems need to be able to han-
dle both multiple languages and multilingual-
ity inside a conversation (e.g in case of code-
switching). In this work, we introduce new
pretraining losses tailored to learn multilingual
spoken dialog representations. The goal of
these losses is to expose the model to code-
switched language. To scale up training, we
automatically build a pretraining corpus com-
posed of multilingual conversations in five dif-
ferent languages (French, Italian, English, Ger-
man and Spanish) from OpenSubtitles, a
huge multilingual corpus composed of 24.3G
tokens. We test the generic representations on
MIAM, a new benchmark composed of five di-
alog act corpora on the same aforementioned
languages as well as on two novel multilingual
downstream tasks (i.e multilingual mask utter-
ance retrieval and multilingual inconsistency
identification). Our experiments show that our
new code switched-inspired losses achieve a
better performance in both monolingual and
multilingual settings.

1 Introduction

A crucial step in conversational AI is the identifica-
tion of underlying information of the user’s utter-
ance (e.g communicative intent or dialog acts, and
emotions). This requires modeling utterance-level
information (Mitkov, 2014; Williams et al., 2014),
to capture immediate nuances of the user utterance;
and discourse-level features (Thornbury and Slade,
2006), to capture patterns over long ranges of the
conversation. An added difficulty to this modeling
problem is that most people in the world are bilin-
gual (Grosjean and Li, 2013): therefore, progress
on these systems is limited by their inability to pro-
cess more than one language (English being the
most frequent). For example, many people use
English as a “workplace" language but seamlessly
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switch to their native language when the condi-
tions are favorable (Heredia and Altarriba, 2001).
Thus, there is a growing need for understanding
dialogs in a multilingual fashion (Ipsic et al., 1999;
Joshi et al., 2020; Ruder et al., 2019). Additionally,
when speakers share more than one language, they
inevitably will engage in code-switching (Sankoff
and Poplack, 1981; Gumperz, 1982; Milroy et al.,
1995; Auer, 2013; Parekh et al., 2020): switching
between two different languages. Thus, spoken
dialog systems need to be cross lingual (i.e able to
handle different languages) but also need to model
multilinguality inside a conversation (Ahn et al.,
2020).

In this paper, we focus on building generic repre-
sentations for dialog systems that satisfy the afore-
mentioned requirements. Generic representations
have led to strong improvements on numerous nat-
ural language understanding tasks, and can be fine-
tuned when only small labelled datasets are avail-
able for the desired downstream task (Mikolov
et al., 2013; Devlin et al., 2018; Lan et al., 2019;
Liu et al., 2019; Yang et al., 2019). While there has
been a growing interest in pretraining for dialog
(Mehri et al., 2019; Zhang et al., 2019d), the focus
has mainly been on English datasets. Thus, these
works can not be directly applied to our multilin-
gual setting. Additionally, available multilingual
pretraining objectives (Lample and Conneau, 2019;
Liu et al., 2020; Xue et al., 2020; Qi et al., 2021)
face two main limitations when applied to dialog
modeling: (1) they are a generalization of mono-
lingual objectives that use flat input text, whereas
hierarchy has been shown to be a powerful prior
for dialog modeling. This is a reflection of a dialog
itself, for example, context plays an essential role
in the labeling of dialog acts. (2) The pretraining
objectives are applied separately to each language
considered, which does not expose the (possible)
multilinguality inside a conversation (as it is the
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case for code-switching) (Winata et al., 2021)1.

Our main contributions are as follows:
1. We introduce a set of code-switched inspired
losses as well as a new method to automatically
obtain several million of conversations with multi-
lingual input context in different languages. There
has been limited work on proposing corpora with a
sufficient amount of conversations that have multi-
lingual input context. Most of this work focuses on
social media, or on corpora of limited size. Hence,
to test our new losses and scale up our pretraining,
we automatically build a pretraining corpus of mul-
tilingual conversations, each of which comprises
several languages, by leveraging the alignments
available in OpenSubtitles (OPS).
2. We showcase the relevance of the aforemen-
tioned losses and demonstrate that it leads to bet-
ter performances on downstream tasks, that in-
volve both monolingual conversations and multi-
lingual input conversations. For monolingual eval-
uation, we introduce the Multilingual dIalogAct
benchMark (MIAM): composed of five datasets in
five different languages annotated with dialog acts.
Following Mehri et al. (2019); Lowe et al. (2016),
we complete this task with both contextual incon-
sistency detection and next utterance retrieval in
these five languages. For multilingual evaluation,
due to the lack of code-switching corpora for spo-
ken dialog, we create two new tasks: contextual
inconsistency detection and next utterance retrieval
with multilingual input context. The datasets used
for these tasks are unseen during training and auto-
matically built from OPS.
In this work, we follow the recent trend (Lan et al.,
2019; Jiao et al., 2019) in the NLP community that
aims at using models of limited size that can both
be pretrained with limited computational power
and achieve good performance on multiple down-
stream tasks. The languages we choose to work on
are English, Spanish, German, French and Italian.2.
MIAM is available in Datasets (Wolf et al., 2020)
https://huggingface.co/datasets/miam.

1We refer to code-switching at the utterance level, although
it is more commonly studied at the word or span level (Poplack,
1980; Banerjee et al., 2018; Bawa et al., 2020; Fairchild and
Van Hell, 2017)

2Although our pretraining can be easily generalised to 62
languages, we use a limited number of languages to avoid
exposure to the so-called “curse of multilinguality” (Conneau
et al., 2019)

2 Model and training objectives

Notations We start by introducing the notations.
We have a set D of contexts (i.e truncated con-
versations), i.e., D = (C1, C2, . . . , C|D|). Each
context Ci is composed of utterances u, i.e Ci =

(uL1
1 , uL2

2 , . . . , u
L|Ci|
|Ci| ) where Li is the language

of utterance ui3. At the lowest level, each utter-
ance ui can be seen as a sequence of tokens, i.e
uLi
i = (ωi1, ω

i
2, . . . , ω

i
|ui|). For DA classification yi

is the unique dialog act tag associated to ui. In our
setting, we work with a shared vocabulary V thus
ωij ∈ V and V is language independent.

2.1 Related work
Multilingual pretraining. Over the last few years,
there has been a move towards pretraining objec-
tives, allowing models to produce general multilin-
gual representations that are useful for many tasks.
However, they focus on the word level (Gouws
et al., 2015; Mikolov et al., 2013; Faruqui and Dyer,
2014) or the utterance level (Devlin et al., 2018;
Lample and Conneau, 2019; Eriguchi et al., 2018).
Winata et al. (2021) shows that these models obtain
poor performances in presence of code-switched
data.
Pretraining to learn dialog representation. Cur-
rent research efforts made towards learning dialog
representation are mainly limited to the English lan-
guage (Henderson et al., 2019; Mehri et al., 2019;
Chapuis et al., 2020) and introduce objectives at the
dialog level such as next-utterance retrieval, next-
utterance generation, masked-utterance retrieval,
inconsistency identification or generalisation of the
cloze task (Taylor, 1953). To the best of our knowl-
edge, this is the first work to pretrain representa-
tions for spoken dialog in a multilingual setting.
Hierarchical pretraining As we are interested in
capturing information at different granularities, we
follow the hierarchical approach of Chapuis et al.
(2020) and decompose the pretraining objective in
two terms: the first one for the utterance level and
the second one to capture discourse level depen-
dencies. Formally, the global hierarchical loss can
be expressed as:

L(θ) = λu × Lu(θ)︸ ︷︷ ︸
utterance level

+λd × Ld(θ)︸ ︷︷ ︸
dialog level

. (1)

These losses rely on a hierarchical encoder (Chen
et al., 2018a; Li et al., 2018) composed of two

3In practice, we follow (Sankar et al., 2019a) and set the
context length to 5 consecutive utterances.

https://huggingface.co/datasets/miam
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functions fu and fd:

E
u
Li
i

= fuθ (ωi1, . . . , ω
i
|ui|), (2)

ECj = fdθ (E
u
L1
1
, . . . , E

u
L|Cj |
|Cj |

), (3)

where E
u
Li
i

∈ Rdu is the embedding of uLi
i and

ECj ∈ Rdd the embedding of Cj . The encoder is
built on transformer layers.

2.2 Utterance level pretraining
To train the first level of hierarchy (i.e fuθ ), we use a
Masked Utterance Modelling (MUM) loss (Devlin
et al., 2018). Let uLi

i be an input utterance and ũLi
i

its corrupted version, obtained after masking a pro-
portion pω of tokens, the set of masked indices is
denotedMω. The set of masked tokens is denoted
Ω. The probability of the masked token given ũLi

i

is given by:

p(Ω|ũLi
i ) =

∏
t∈Mω

pθ(ω
i
t|ũ

Li
i ). (4)

2.3 Dialog level pretraining
The goal of the dialog level pretraining is to ensure
that the model learns dialog level dependencies
(through fdθ ), i.e the ability to handle multi-lingual
input context.
Generic framework Given Ck an input context, a
proportion pC of utterances is masked to obtained
the corrupted version C̃k. The set of masked utter-
ances is denoted U and the set of corresponding
masked indicesMu. The probability of U given
C̃k is:

p(U|C̃k) =
∏
t∈MU

|ut|−1∏
j=0

pθ(ω
t
j |ωt1:j−1, C̃k). (5)

As shown in Eq. 5, a masked sequence is predicted
one word per step. As an example, at the j-th step,
the prediction of ωtj is made given (ωt1:j−1, C̃k)
where ωt1:j−1 = (ωt1, · · · , ωt1:j−1). In the follow-
ing, we describe different procedures to buildMU
and C̃k used in Eq. 5.

2.3.1 Masked utterance generation (MUG)
The MUG loss aims at predicting the masked ut-
terance from a monolingual input context. As the
vocabulary is shared, this loss will improve the
alignment of conversations at the dialog level. This
loss ensures that the model will be able to handle
monolingual conversations in different languages.

Training Loss We rely on Eq. 5 for MUG. The in-
put context is composed of utterances in the same
language, i.e ∀k,Ck = (uLk

1 , · · · , uLk

|Ck|). The
mask is randomly chosen among all the positions.
Example Given the monolingual input context
given in Tab. 1, a random mask (e.g [0, 3]) is chosen
among the positions [0, 1, 2, 3, 4]. The masked ut-
terances are replaced by [MASK] tokens to obtain
C̃k and a decoder attempts to generate them.

2.3.2 Translation masked utterance
generation (TMUG)

The previous objectives are self-supervised and
cannot be employed with parallel data when avail-
able. In addition, these losses do not expose the
model to multilinguality inside the conversation.
The TMUG loss addresses this limitation using a
translation mechanism: the model learns to trans-
late the masked utterance in a new language.
Training Loss We use Eq. 5 for TMUG with
a bilingual input context Ck. Ck contains two
different languages (i.e L and L′) ∀k,Ck =
(uL1

1 , · · · , uLk

|Ck|) with Li ∈ {L,L′}. The masked
positionsMu are all the utterances in language L′.
Thus C̃k is a monolingual context.
Example Given the multilingual input context
given in Tab. 1, the positions [3, 4] are masked
with sequences of [MASK] and the decoder will
generate them in French. See ssec. 8.1 for more
details on the generative pretraining.

2.3.3 Multilingual masked utterance
generation (MMUG)

In the previous objectives, the model is exposed to
monolingual input only. MMUG aims at relaxing
this constraint by considering multilingual input
context and generating the set of masked utterances
in any possible target language.
Training Loss Given a multi-lingual input con-
text Ck = (uL1

1 , · · · , u
L|Ck|
|Ck| ). A random set of

indexes is chosen and the associated utterances are
masked. The goal remains to generate the masked
utterances.
Example In Tab. 1, the positions [2, 3] are
randomly selected from the available positions
[0, 1, 2, 3, 4]. Given these masked utterances the
model will generate 2 in Italian and 3 in Spanish.
MMUG is closely related to code-switching as it
exposes the model to multilingual context and the
generation can be carried out in any language.
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Index Speaker Monolingual Input Multilingual Input
0 A Good afternoon. Good afternoon.
1 A I’m here to see Assistant Director Harold Cooper. Je suis ici pour voir l’assistant directeurr Harold Cooper.
2 B Do you have an appointment? Do you have an appointment?
3 A I do not. Non.
4 A Tell him it’s Raymond Reddington. Dites lui que c’est Raymond Reddington.

Table 1: Example of automatically built input context from OPS.

2.4 Pretraining corpora

There is no large corpora freely available that con-
tains a large number of transcripts of well seg-
mented multilingual spoken conversation4 with
code switching phenomenon. Collecting our pre-
training corpus involves two steps: the first step
consists of segmenting the corpus into conversa-
tions, in the second step, we obtain aligned conver-
sations.
Conversation segmentation Ideal pretraining cor-
pora should contain multilingual spoken language
with dialog structure. In our work, we focus on
OPS (Lison and Tiedemann, 2016)5 because it is
the only free multilingual dialog corpus (62 differ-
ent languages). After preprocessing, OPS contains
around 50M of conversations and approximately 8
billion of words from the five different languages
(i.e English, Spanish, German, French and Italian).
Tab. 2 gathers statistics on the considered multilin-
gual version of OPS. To obtain conversations from
OPS, we consider that two consecutive utterances
are part of the same conversation if the inter-pausal
unit (Koiso et al., 1998) (i.e silence between them)
is shorter than δT = 6s. If a conversation is shorter
than the context size T , they are dropped and utter-
ance are trimmed to 50 (for justification see Fig. 1).
Obtaining aligned conversations We take advan-
tage of the alignment files provided in OPS. They
provide an alignment between utterances written
in two different languages. It allows us to build
aligned conversations with limited noise (solely
high confidence alignments are kept). Statistics
concerning the aligned conversations can be found
in Tab. 3 and an example of automatically aligned
context can be found in Tab. 1. The use of more ad-
vanced methods to obtain more fine-grained align-
ment (e.g word level alignment, span alignment
inside an utterance) is left as future work.

4Specific phenomena appear (e.g. disfluencies (Dinkar
et al., 2018), filler words (Dinkar et al., 2020)) when working
with spoken language, as opposed to written text.

5http://opus.nlpl.eu/OpenSubtitles-alt-v2018.php

de en es fr it
# movies 46.5K 446.5K 234.4K 127.2K 134.7K

# conversations 1.8M 18.2M 10.0M 5.2M 4.2M
# tokens 363.6M 3.7G 1.9G 1.0G 994.7M

Table 2: Statistics of the processed version of OPS.

de-en de-es de-fr de-it en-es
# utt. 23.4M 19.9M 17.1M 14.1M 63.5M

# tokens. 217.3M 194.1M 167.0M 139.5M 590.9M
en-fr en-it es-fr es-it fr-it

# utt. 44.2M 36.7M 37.9M 31.4M 23.8M
# tokens. 413.7M 347.1M 362.1M 304.6M 248.5M

Table 3: Statistics of the processed version of the align-
ment files from OPS.

3 Evaluation framework

This section presents our evaluation protocol. It
involves two different types of evaluation depend-
ing on the input context. The first group of expe-
riences consists in multilingual evaluations with
monolingual input context and follows classical
downstream tasks (Finch and Choi, 2020; Dziri
et al., 2019) including sequence labeling (Colombo
et al., 2020), utterance retrieval (Mehri et al., 2019)
or inconsistency detection. The second group fo-
cuses on multilingual evaluations with multilingual
context.

3.1 Dialog representations evaluation

3.1.1 Monolingual context
Sequence labeling tasks. The ability to efficiently
detect and model discourse structure is an impor-
tant step toward modeling spontaneous conversa-
tions. A useful first level of analysis involves the
identification of dialog act (DA) (Stolcke et al.,
2000a) thus DA tagging is commonly used to evalu-
ate dialog representations. However, due to the dif-
ficulty to gather language-specific labelled datasets,
multilingual sequence labeling such as DA labeling
remains overlooked.
Next-utterance retrieval (NUR) The utterance re-
trieval task (Duplessis et al., 2017; Saraclar and
Sproat, 2004) focuses on evaluating the ability of an
encoder to model contextual dependencies. Lowe
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et al. (2016) suggests that NUR is a good indicator
of how well context is modeled.
Inconsistency Identification (II) Inconsistency
identification is the task of finding inconsistent
utterances within a dialog context (Sankar et al.,
2019b). The perturbation is as follow: one utter-
ance is randomly replaced, the model is trained to
find the inconsistent utterance.6

3.1.2 Multilingual context

To the best of our knowledge, we are the first to
probe representation for multi-lingual spoken di-
alog with multilingual input context. As there is
no labeled code-switching datasets for spoken dia-
log (research focuses on on synthetic data (Stymne
et al., 2020), social media (Pratapa et al., 2018) or
written text (Khanuja et al., 2020; Tan and Joty,
2021) rather than spoken dialog). Thus we intro-
duce two new downstream tasks with automati-
cally built datasets: Multilingual Next Utterance
Retrieval (mNUR) and Multilingual Inconsistency
Identification (mII). To best assess the quality of
representations, for both mII and mNURwe choose
to work with train/test/validation datasets of 5k con-
versations. The datasets, unseen during training,
are built using the procedure described in ssec. 2.4.
Multilingual next utterance retrieval. mNUR
consists of finding the most probable next utter-
ance based on an input conversation. The evalua-
tion dataset is built as follow: for each conversation
in language L composed of T utterances, a propor-
tion pL′ of utterances is replaced by utterances in
language L′. D utterances that we call distractors7

in language L or L′ from the same movie. For test-
ing, we frame the task as a ranking problem and
report the recall at N (R@N) (Schatzmann et al.,
2005).
Multilingual inconsistency identification. The
task of mII consists of identifying the index of
the inconsistent sentences introduced in the con-
versation. Similarly to the previous task: for each
conversation in language L composed of T utter-
ances, a proportion pL′ is replaced by utterances
in language L′, a random index is sampled from
[1, T ] and the corresponding utterance is replaced
by a negative utterance taken from the same movie.

6To ensure fair comparison, contrarily to Mehri et al.
(2019) the pretraining is different from the evaluation tasks.

7D is set to 9 according to (Lowe et al., 2015)

3.2 Multilingual dialog act benchmark

DAs are semantic labels associated with each ut-
terance in a conversational dialog that indicate
the speaker’s intention (examples are provided in
Tab. 9). A plethora of freely available dialog act
dataset (Godfrey et al., 1992; Shriberg et al., 2004;
Li et al., 2017)) has been proposed to evaluate DA
labeling systems in English. However, constituting
a multilingual dialog act benchmark is challenging
(Ribeiro et al., 2019b). We introduce Multilingual
dIalogue Act benchMark (in short MIAM). This
benchmark gathers five free corpora that have been
validated by the community, in five different Eu-
ropean languages (i.e. English, German, Italian,
French and Spanish). We believe that this new
benchmark is challenging as it requires the model
to perform well along different evaluation axis and
validates the cross-lingual generalization capacity
of the representations across different annotation
schemes and different sizes of corpora.
DA for English For English, we choose to work on
the MapTask corpus. It consists of conversations
where the goal of the first speaker is to reproduce
a route drawn only on the second speaker’s map,
with only vocal indications. We choose this corpus
for its small size that will favor transfer learning
approaches (27k utterances).
DA for Spanish Spanish research on DA recog-
nition mainly focuses on three different datasets
Dihana, CallHome Spanish (Post et al., 2013)
and DIME (Coria and Pineda, 2005; Olguin and
Cortés, 2006). Dihana is the only available cor-
pora that contains free DA annotation (Ribeiro et al.,
2019a). It is a spontaneous speech corpora (Benedı
et al., 2006) composed of 900 dialogs from 225
users. Its acquisition was carried out using a Wiz-
ard of Oz setting (Fraser and Gilbert, 1991). For
this dataset, we focus on the first level of labels
which is dedicated to the task-independent DA.
DA for German For German, we rely on the
VERBMOBIL (VM2) dataset (Kay et al., 1992).
This dataset was collected in two phases: first,
multiple dialogs were recorded in an appointment
scheduling scenario, then each utterance was anno-
tated with DA using 31 domain-dependent labels.
The three most common labels (i.e. inform, suggest
and feedback) are highly related to the planning
nature of the data.
DA for French Freely available to academic and
nonprofit research datasets are limited in the french
language as most available datasets are privately
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owned. We rely on the french dataset from the Lo-
ria Team (Barahona et al., 2012) (LORIA) where
the collected data consists of approximately 1250
dialogs and 10454 utterances. The tagset is com-
posed of 31 tags.
DA for Italian For Italian, we rely on the
Ilisten corpora (Basile and Novielli, 2018).
The corpus was collected in a Wizard of Oz setting
and contains a total of 60 dialogs transcripts, 1, 576
user dialog turns and 1, 611 system turns. The tag
set is composed of 15 tags.
Metrics: There is no consensus on the evaluation
metric for DA labelling (e.g., Ghosal et al. (2019);
Poria et al. (2018) use a weighted F-score while
Zhang et al. (2019c) report accuracy). We follow
Chapuis et al. (2020) and report accuracy.

3.3 Baseline encoders for downstream tasks

The encoders that will serve as baselines can be di-
vided into two different categories: hierarchical en-
coders based on GRU layers (HR) and pretrained
encoders based on Transformer cells (Vaswani
et al., 2017). The first group achieve SOTA re-
sults on several sequence labelling tasks (Lin et al.,
2017; Li et al., 2018). The second group can be
further divided in two groups: language specific
(BERT ) and multilingual BERT (mBERT ) 8 and
pretrained hierarchical transformers from (Zhang
et al., 2019b) (HT ) are used as a common archi-
tecture to test the various pretraining losses.
Tokenizer We will work with both language spe-
cific and multlingual tokenizer. Model with mul-
tilingual tokenizer will be referred with a m (e.g
mBERT as opposed to BERT ).

4 Numerical results

In this section, we empirically demonstrate the ef-
fectiveness of our code-switched inspired pretrain-
ing on downstream tasks involving both monolin-
gual and multilingual input context.

4.1 Monolingual input context

4.1.1 DA labeling
Global analysis. Tab. 5 reports the results of the
different models on MIAM. Tab. 5 is composed of
two distinct groups of models: language specifics
models (with language-specific tokenizers) and
multilingual models (with a multilingual tokenizer

8Details of language specific BERT and on baseline models
can be found in ssec. 8.1 and in ssec. 8.3 respectively.

denoted with a m before the model name). Over-
all, we observe that mMUG augmented with both
TMUG and MMUG gets a boost in performance
(1.8% compared to mMUG and 2.6% compared
to a mBERT model with a similar number of pa-
rameters). This result shows that the model benefits
from being exposed to aligned bilingual conversa-
tions and that our proposed losses (i.e. TMUG
and MMUG) are useful to help the model to bet-
ter catch contextual information for DA labeling.
Language-specific v.s. multilingual models. By
comparing the performances ofHR (with either a
CRF or MLP decoder), we can notice that for these
models on DA labelling it is better to use a multilin-
gual tokenizer. As multilingual tokenizers are not
tailored for a specific language and have roughly
twice as many tokens than their language-specific
counterparts, one would expect that models trained
from scratch using language-specific tokenizers
would achieve better results. We believe this result
is related to the spoken nature of MIAM and further
investigations are left as future work. Recent work
(Rust et al., 2020) has demonstrated that pretrained
language models with language-specific tokenizers
achieve better results than those using multilingual
tokenizers. This result could explain the higher ac-
curacy achieved by the language-specific versions
of MUG compared to mMUG.
We additionally observe that some language-
specific versions of BERT achieve lower results
(e.g Dihana, Loria) than the multilingual ver-
sion which could suggest that these pretrained
BERT might be less carefully trained than the mul-
tilingual one; in the next part of the analysis we
will only use multilingual tokenizers.
Overall, pretrained models achieve better re-
sults. Contrarily to what can be observed in some
syntactic tagging tasks (Zhang and Bowman, 2018),
for DA tagging pretrained models achieve consis-
tently better results on the full benchmark. This
result of multilingual models confirms what is ob-
served with monolingual data (see Mehri et al.
(2019)): pretraining is an efficient method to build
accurate dialog sequence labellers.
Comparison of pretraining losses In Tab. 5 we
dissect the relative improvement brought by the
different parts of the code-switched inspired losses
and the architecture to better understand the rel-
ative importance of each component. Similarly
to Chapuis et al. (2020), we see that the hierar-
chical pretraining on spoken data (see mMUG)
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improves over the mBERT model. Interestingly,
we observe that the monolingual pretraining works
slightly better compared to the multilingual pre-
training when training using the same loss. This re-
sult surprising results might be attributed to the lim-
ited size of our models (Karthikeyan et al., 2019).
We see that in both cases, introducing a loss with
aligned multilingual conversations (MMUG or
TMUG) induces a performance gain (+1.5%).
This suggests that our pretraining with the new
losses better captures the data distribution. By
comparing the results of mMUG+ TMUG with
mMUG, we observe that the addition of cross-
lingual generation during pretraining helps. A
marginal gain is induced when usingMMUG over
TMUG, thus we believe that the improvement of
mMUG+MMUG over mMUG can mainly be
attributed to the cross-lingual generation part. In-
terestingly, we observe that the combination of all
losses out-performs the other models which sug-
gests that different losses model different patterns
present in the data.

4.1.2 Inconsistency Identification

In this section, we follow Mehri et al. (2019) and
evaluate our pretrained representations on II with
a monolingual context. A random guess identifies
the inconsistency by randomly selecting an index
in [1, T ] which corresponds to an accuracy of 20%
(as we have set T = 5). Tab. 4 gathers the results.
Similarly conclusion than in sssec. 4.1.3 can be
drawn: pretrained models achieve better results
and the best performing model is obtained with
mMUG+MMUG+TMUG.

4.1.3 Next utterance retrieval

In this section, we evaluate our representations on
NUR using a monolingual input context. As we
use 9 distractors, a random classifier would achieve
0.10 for R@1, 0.20 for R@2 and 0.50 for R@5.
The results are presented in Tab. 7. When compar-
ing the accuracy obtained by the baselines mod-
els (e.g mBERT, mBERT (4-layers) andHR) and
our model using the contextual losses at the con-
text level for pretraining (i.e MUG, TMUG and
MMUG) we observe a consistent improvement.

Takeaways Across all the three considered tasks,
we observe that the models pretrained with our
losses achieve better performances. We believe it
is indicative of the validity of our pretraining.

4.2 Multilingual input context

In this section, we present the results on the down-
stream tasks with multilingual input context.

4.2.1 Multilingual inconsistency identification
Tab. 6 gathers the results for the mII with bilingual
input context. As previously a random baseline
would achieve an accuracy of 20%. As expected
predicting inconsistency with bilingual context is
more challenging than with a monolingual context:
we observe a drop in performance of around 15%
for all methods including the multilingual BERT.
Our results confirm the observation of Winata et al.
(2021): multilingual pretraining does not guarantee
good performance in code switched data. How-
ever, we observe that the losses, by exposing the
model with bilingual context, obtain a large boost
(absolute improvement of 6% which correspond to
a relative boost of more than 20%). We also ob-
serve that MUG+MMUG+TMUG outperforms
mBERT on all pairs, with fewer parameters.

4.2.2 Multilingual next utterance retrieval
The results on bilingual context for mNUR are pre-
sented in Tab. 8. mNUR is more challenging than
NUR. Overall, we observe a strong gain in perfor-
mance when exposing the model to bilingual con-
text (gain over 9% absolute point in R@5). Take-
aways: These results show that our code-switched
inspired losses help to learn better representations
in a particularly effective way in the case of multi-
lingual input context.

de en es fr it Avg
mBERT 44.6 42.9 43.7 43.5 42.3 43.4

mBERT (4-layers) 44.6 42.1 43.7 42.5 41.4 42.9
mHR 44.1 42.0 40.4 41.3 41.2 41.8
mMUG 45.2 43.5 45.1 43.1 42.7 43.9

mMUG+ TMUG 48.2 42.6 47.7 44.6 44.3 45.5
mMUG+MMUG 49.6 43.8 46.1 46.2 43.3 45.8

mMUG+ TMUG+MMUG 49.1 43.4 46.2 45.9 45.1 46.0

Table 4: Results on the II task with monolingual input
context. On this task the accuracy is reported.

5 Conclusions

In this work, we demonstrate that the new code-
switched inspired losses help to learn representa-
tions for both monolingual and multilingual di-
alogs. This work is the first that explicitly includes
code switching during pretraining to learn multi-
lingual spoken dialog representations. In the fu-
ture, we plan to further work on OPS to obtain
fine-grained alignments (e.g at the span and word
levels) and enrich the definition of code-switching
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Toke. VM2 Map Task Dihana Loria Ilisten Total
BERT lang 54.7 66.4 86.0 50.2 74.9 66.4

BERT - 4layers lang 52.8 66.2 85.8 55.2 76.2 67.2
HR + CRF lang 49.7 63.1 85.8 73.4 75.2 69.4
HR + MLP lang 51.3 63.0 85.6 58.9 75.0 66.8

MUG (Chapuis et al., 2020) lang 54.0 66.4 99.0 79.0 74.8 74.6
mBERT multi 53.2 66.4 98.7 76.2 74.9 73.8

mBERT - 4layers multi 52.7 66.2 98.0 75.1 75.0 73.4
mHR + CRF multi 49.8 65.2 97.6 75.2 76.0 72.8
mHR + MLP multi 51.0 65.7 97.8 75.2 76.0 73.1
mMUG multi 53.0 67.3 98.3 78.5 74.0 74.2

mMUG+ TMUG multi 54.8 67.4 99.1 80.8 74.9 75.4
mMUG+MMUG multi 56.2 67.4 99.0 78.9 77.6 75.8

mMUG+ TMUG+MMUG multi 56.2 66.7 99.3 80.7 77.0 76.0

Table 5: Accuracy of pretrained and baseline encoders on MIAM. Models are divided in three groups: hierarchical
transformer encoders pretrained using our custom losses, baselines (see ssec. 8.3) using either multilingual or
language specific tokenizer. Toke. stands for the type of tokenizer: multi and lang denotes a pretrained tokenizer on
multilingual and language specific data respectively. When using lang tokenizer,MUG pretraining and finetuning
are performed on the same language.

de-en de-es de-fr de-it en-es en-fr en-it es-fr es-it fr-it Avg
mBERT 31.2 28.0 28.0 27.6 28.4 33.0 32.1 35.1 31.0 28.7 30.3

mBERT (4-layers) 30.7 28.7 28.2 27.1 28.7 33.1 30.9 35.1 30.1 28.1 30.1
mHR 28.7 27.9 26.9 27.3 25.5 25.1 30.6 34.3 30.0 26.8 28.3
mMUG 34.5 30.1 30.1 27.7 28.2 33.1 32.1 35.4 32.0 29.5 31.2

mMUG+ TMUG 34.0 32.0 32.2 29.1 28.3 32.9 32.4 35.1 33.0 29.3 31.8
mMUG+MMUG 35.1 33.8 34.0 30.1 29.4 32.8 32.6 36.1 33.9 31.6 32.9

mMUG+ TMUG+MMUG 35.7 34.0 32.5 31.4 30.1 33.6 33.9 36.2 34.0 32.1 33.4

Table 6: Results on the mII task with bilingual input context.

de en es fr it
R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1

mBERT 65.1 27.1 20.1 62.1 26.1 16.8 62.4 24.8 15.3 63.9 22.9 13.4 66.1 27.8 16.9
mBERT (4-layers) 65.1 27.5 20.2 61.4 25.6 15.1 62.3 24.6 15.9 63.4 22.8 12.9 65.6 27.4 15.8

mHR 65.0 27.1 20.0 60.3 25.0 15.2 61.0 23.9 14.7 63.0 22.9 13.0 65.4 27.3 15.8
mMUG 66.9 28.0 20.0 65.9 26.4 16.3 66.7 26.4 16.4 66.2 25.2 17.2 68.9 28.9 17.2

mMUG+ TMUG 67.2 28.2 20.1 68.3 29.8 17.5 69.0 26.9 17.3 67.1 25.4 17.3 69.9 29.4 18.6
mMUG+MMUG 66.9 28.1 20.7 68.1 26.7 18.0 68.7 26.9 17.5 67.2 25.2 17.4 69.7 29.4 18.6

mMUG+ TMUG+MMUG 68.3 27.4 21.2 68.9 27.8 18.3 69.3 27.1 17.9 67.4 25.3 17.4 70.2 30.0 18.7

Table 7: Results on the NUR task with monolingual input context. R@N stands for recall at N .

de-en de-es de-fr de-it en-es
R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1

mBERT 54.4 27.0 11.6 55.9 24.8 11.9 57.9 24.2 12.9 57.5 23.9 13.0 55.4 25.6 13.0
mBERT (4-layers) 54.1 26.5 11.9 55.7 24.8 12.4 57.2 24.1 12.4 57.0 23.5 13.1 55.6 23.1 12.9

mHR 52.1 25.5 12.1 54.9 14.6 10.7 56.1 22.9 11.3 56.9 24.9 13.0 53.9 23.7 12.8
mMUG 59.7 25.2 11.5 61.2 26.2 11.6 60.7 25.3 13.8 61.6 26.4 11.9 62.1 23.9 13.10

mMUG+ TMUG 59.8 26.2 12.1 62.7 29.0 10.7 61.9 27.3 13.9 63.2 26.3 12.6 63.1 28.4 14.0
mMUG+MMUG 59.8 27.2 12.1 62.7 28.1 11.6 60.7 24.8 14.4 62.7 26.1 13.8 63.4 28.2 14.7

mMUG+ TMUG+MMUG 61.0 28.2 13.1 63.2 29.1 11.7 62.1 28.7 14.1 63.4 26.3 12.9 64.3 29.4 15.2
en-fr en-it es-fr es-it fr-it

R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1 R@5 R@2 R@1
mBERT 57.9 25.4 12.3 57.1 23.5 12.1 57.8 27.9 12.2 54.2 22.1 11.2 58.1 22.9 12.5

mBERT (4-layers) 57.8 23.2 12.1 57.1 23.4 11.9 57.1 27.6 12.1 55.1 22.0 11.1 58.9 22.6 12.7
mHR 55.9 20.9 11.6 56.8 22.9 11.8 54.9 27.0 12.0 53.9 21.0 11.6 56.1 21.9 11.4
mMUG 61.9 24.9 12.9 61.4 27.6 11.9 64.6 29.7 13.9 59.0 24.2 13.4 59.7 23.6 12.2

mMUG+ TMUG 62.9 25.2 14.3 62.7 27.8 12.9 64.9 29.9 13.8 60.1 25.1 13.5 61.5 25.8 13.1
mMUG+MMUG 63.9 26.3 14.7 61.5 27.6 13.1 65.0 30.2 13.1 60.1 25.3 12.9 63.1 25.9 13.6

mMUG+ TMUG+MMUG 64.0 26.7 14.1 63.5 28.7 13.7 66.1 31.4 14.5 60.1 25.5 13.6 63.1 25.9 14.2

Table 8: Results on the mNUR task with bilingual input context.
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(currently limited at the utterance level). Lastly,
when considering interactions with voice assistants
and chatbots, users may not be able to express
their intent in the language in which the voice as-
sistant is programmed. Thus, we would like to
strengthen our evaluation protocol by gathering
a new DA benchmark with code-switched dialog
to improve the multilingual evaluation. A possi-
ble future research direction includes focusing on
emotion classification instead of dialog acts (Witon
et al., 2018; Jalalzai et al., 2020), extend our pre-
training to multimodal data (Garcia et al., 2019;
Colombo et al., 2021a) and use our model to ob-
tain better results in sequence generation tasks (e.g
style transfer (Colombo et al., 2021b, 2019), au-
tomatic evaluation of natural language generation
(Colombo et al., 2021c)).
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7 Additional details on evaluation corpus

7.1 MIAM: examples and diversity

In this section we give more details on the MIAM
benchmark. Tab. 9 shows examples extracted from
the benchmark. In Fig. 1 we illustrate the diver-
sity of the gathered corpora through the lens of
utterance length.

Lang. Utterances DA

de

soll ich dann mit dem Hotel
da dann die Buchung vereinbaren

OFFER

ja das ist gut FEED. POS.
das wäre toll ACCEPT

dann kümmere ich mich um die Tickets COMMIT
wunderbar ACCEPT

en

how far underneath the diamond mine ASK
it’s about an inch or so REPLY

right okay five inches right along ACK.
up along to near a r– a ravine stuff thing ASK

no i don’t have the ravine REPLY

es

¿ Qué día desea salir ? ASK
El diez de noviembre . REQUEST

Quiere horarios de trenes a barcelona, CONFIRM
¿ desde zaragoza ? CONFIRM

Sí , por favor . AFF.

fr

Bonjour GREETINGS
Bonjour , je suis Sophia l’opérateur (...). GREETINGS

Enchanté GREETINGS
Qu’est ce que je peux faire pour vous ? ASK

J’ai besoins des informations sur
les composants de la manette.

INFORMER

it

mangio tre volte al giorno STATEMENT
Ti piace mangiare? QUESTION

abbastanza ANSWER
Che cosa hai mangiato per colazione? QUESTION

latte e biscotti STATEMENT

Table 9: Examples of dialogs labelled with DA
taken from MapTask, Dihana, VM2, Loria and
Ilisten. AFF. stands for affirmation, FEED. for
feedback and ACK. for acknowledgement.

7.2 Altering tasks difficulty

One of the interesting properties of II, mII, NUR,
mNUR is the ability to alter the task difficulty in
a controlled manner when sampling the negative
utterances. For example, instead of randomly sam-
pling the false utterances, the most similar to the
true one as measured by a similarity metric (Zhang
et al., 2019a; Celikyilmaz et al., 2020) could be
chosen. This flexibility could allow increasing the
difficulty of the task as models get better.

8 Experimental settings

8.1 Additional details on pretrained models

In this section, we gather additional details on the
pretrained models (e.g architectures, schema, hy-
perparameters).

8.1.1 Pretraining losses
Fig. 2 gives graphical examples for each mono-
lingual and multilingual losses used. Choice of
scaling factor in Eq. 1. In the case of multi-task
setting, different losses may have different scales,
making the optimization perform poorly. In that
case, scaling factors or more advanced techniques
(Sener and Koltun, 2018) can be applied. As we
did not observe such phenomena, all scaling factors
are set to 1.

8.1.2 Pretraining with generation
For both TMUG and MMUG, the model needs to
be aware of the target language. Thus, the first to-
ken fed to the decoder indicates the target language
(e.g in English the corresponding id is 99, in Span-
ish 98). To avoid creating a discrepancy between
pretraining objectives we also add this token for
MUG.

8.1.3 Choice of the multilingual encoder
The two dominant approaches for multilingual sys-
tems involve either using a language-specific en-
coder (Escolano et al., 2020) or one shared encoder
across languages (Feng et al., 2020; Artetxe and
Schwenk, 2019). To reduce the number of learnt
parameters, we rely on the second approach.

8.1.4 Pretraining details
Our model is pretrained on 4 NVIDIA V100
for 2 days (500k iterations) with a batch size of
256. We use AdamW (Kingma and Ba, 2015;
Loshchilov and Hutter, 2017) with 4000 warmups
steps (Vaswani et al., 2017). During this stage, we
do not perform any grid search.

8.2 Additional details on downstream task

In this section, we gather additional details on
downstream tasks (e.g choice of pretrained en-
coders, choice of decoder and further details on
the downstream tasks).

8.2.1 Pretrained encoders baseline
The first group of pretrained encoders are based
on BERT. A concatenation of utterances is fed
to the model to obtain a conversation embedding.
For our language-specific models, we use the Ger-
man BERT9, the original BERT for English, BETO
(Cañete et al., 2020) for Spanish, Flaubert (Le
et al., 2019) for French and Italian BERT Schweter
(2020) for Italian. We rely on the multilingual

9https://deepset.ai/
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Figure 1: Histograms showing the utterance length for OPS (left) and MIAM (right).
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Figure 2: 2a and 2b illustrate pretraining losses using monolingual context. 2b and 2c show two scenarios for the
MMUG loss using multilingual context. Double squares on the figure indicates the randomly selected utterance
to predict.

BERT (mBERT) (Devlin et al., 2018)10 provided
by the transformers library (Wolf et al., 2019) im-
plemented using the pytorch (Paszke et al., 2017)
framework. For pretrained hierarchical transform-
ers, we rely on the work of Chapuis et al. (2020)
and for each considered language, we pretrain a
language-specific encoder.

8.2.2 Decoders
Given the different nature of the proposed down-
stream tasks, we use various type of decoders.
DA classification: Methods to tackle sequence la-
belling on monolingual representations can be di-
vided into two different classes. The first one per-
form classification on each utterance independently
using Bayesian Networks (Keizer et al., 2002),
SVMs (Surendran and Levow, 2006) or HMMs
(Stolcke et al., 2000b). The second class, which
achieves stronger results, leverages the adjacency
utterances by using deep representations (Bothe

10https://github.com/google-
research/bert/blob/master/multilingual.md

et al., 2018; Khanpour et al., 2016). Sequence la-
belling can be improved when sufficiently many
training points are available by modelling inter-tag
dependencies using RNN-based decoders (Hochre-
iter and Schmidhuber, 1997; Chung et al., 2014),
and CRFs (Lafferty et al., 2001; Chen et al., 2018b).
Thus, in this work, we choose to experiment with a
MLP, a CRF and a RNN decoder based on GRU.

II and mII : For this task, the context embedding
ECk

is fed to a MLP. Both the encoder and the MLP
are trained to predict the inconsistent utterance in-
dex by minimising a cross-entropy loss. Formally,
this task is formulated as a classification problem
with T classes.

NUR and mNUR: For this task, we first compute the
context embedding ECk

then the candidate utter-
ance uLc

c is embedded using the either fuθ or a cho-
sen encoder to obtain E

uLc
c

. Both representations
are concatenated and given to a MLP. The architec-
ture is trained to predict if the provided candidate
utterance is a suitable next utterance by minimizing
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a binary cross-entropy. This experiment is similar
to the one in (Lowe et al., 2015).

8.3 Additional details on models

In this section, we describe models used as well as
details on the pretraining parameters. In Tab. 10
we report the main hyper-parameters used for our
model pretraining. We used GELU (Hendrycks
and Gimpel, 2016) activations and the dropout rate
(Srivastava et al., 2014) is set to 0.1. Although
vanilla Transformers impose a fixed context size it
can be relaxed (Dai et al., 2019). We follow Sankar
et al. (2019a); Colombo et al. (2020) and set T = 5.
We rely on the tokenizers provided by the Hugging-
Face library based on the SentencePiece (Kudo and
Richardson, 2018) and WordPiece (Wu et al., 2016)
algorithms. In all experiments, for our models rely-
ing on theHT we use the same architecture as the
SMALL model from Chapuis et al. (2020) which
contains 80 millions parameters. Original BERT
has 167 millions parameters and is pretrained us-
ing 16 TPUs during several days with over 500K
iterations.

Pretrained Encoder
Nbs of heads 6

Nd 4
Nu 4
T 50
C 5

Td nbs of heads 6
Inner dimension 768

Model Dimension 768
|V| 105879

Td: Emb. size 768
dk: 64
dv: 64

Table 10: Architecture hyperparameters used for the
hierarchical pretraining.

8.4 Training details

For each task, the model is fine-tuned and dropout
(Srivastava et al., 2014) is set to 0.1. The best
learning rate is found in {0.01, 0.001, 0.0001} and
chosen based on the validation loss.

9 Additional experiment: ablation study
on pretraining data

We showcase the difference between pretraining
with spoken and written corpora. We compare

mHT (θwritten), a hierarchical encoder where each
utterance is embedded using the representation of
the [CLS] token given by the second layer of
BERT, and mHTu(θspoken), a model pretrained on
OPS using Lu only. The prediction is performed by
feeding the utterance embeddings to a simple MLP.
In Tab. 11, we report the results on MIAM. Results
demonstrate an overall higher accuracy when the
pretraining is performed on spoken data. This sup-
ports the choice of OPS as pretraining corpora and
demonstrates that the origin of the pretraining data
matters.
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VM2 Map Task Dihana Loria Ilisten Total
mHT (θwritten) 52.8 64.6 98.1 76.5 74.2 73.2
mHT u(θspoken) 53.0 67.3 98.3 78.5 74.0 74.2

Table 11: Ablation studies on pretraining data. We report the accuracy on MIAM for the mHT . mHT u(θspoken)
stands for the model pretrained with the utterance level loss mLu on spoken data and mHT (θwritten) stands for a
hierarchical encoder where sentence embeddings is computed using a pretrained BERT encoder.


