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Abstract

Sequence-to-sequence models have been ap-
plied to a wide variety of NLP tasks, but
how to properly use them for dialogue state
tracking has not been systematically investi-
gated. In this paper, we study this problem
from the perspectives of pre-training objec-
tives as well as the formats of context repre-
sentations. We demonstrate that the choice
of pre-training objective makes a significant
difference to the state tracking quality. In
particular, we find that masked span predic-
tion is more effective than auto-regressive lan-
guage modeling. We also explore using Pega-
sus, a span prediction-based pre-training objec-
tive for text summarization, for the state track-
ing model. We found that pre-training for the
seemingly distant summarization task works
surprisingly well for dialogue state tracking.
In addition, we found that while recurrent state
context representation works also reasonably
well, the model may have a hard time recov-
ering from earlier mistakes. We conducted
experiments on the MultiWOZ 2.1-2.4, WOZ
2.0, and DSTC2 datasets with consistent obser-
vations.

1 Introduction

Sequence-to-sequence (Seq2Seq) modeling
(Sutskever et al., 2014) is one of the most widely
adopted generative framework for a multitude of
NLP tasks. While it has also been applied for
task-oriented dialogue modeling (Wen et al., 2018;
Lei et al., 2018; Rongali et al., 2020; Feng et al.,
2020), how to best setup Seq2Seq models on this
task remains an understudied topic. In this paper,
we investigate this problem from two perspectives:
Pre-training objectives and dialogue context
representation, and we focus on the dialogue state
tracking (DST) task.

The flexibility of the Seq2Seq model allows
us to adopt and compare pre-training strategies
for other NLP tasks sharing the same architec-

ture. Specifically, we first experimented with dif-
ferent pre-training setups of T5 (Raffel et al., 2020)
which have been shown to be effective for generic
language understanding. Additionally, as an ex-
ploratory effort, we applied Pegasus (Zhang et al.,
2020b), a pre-training procedure designed for text
summarization, to the task of DST.

Additionally, to investigate how different dia-
logue context representations affect Seq2Seq per-
formance, we compare two versions of all models:
one accepts full conversation history as context,
and one that feeds the previously predicted states
recurrently as summary of context.

We conduct systematic experiments on the Multi-
WOZ (Budzianowski et al., 2018) benchmark. For
fair comparison with existing approaches, we re-
port results on MultiWOZ 2.1-2.4 (Eric et al., 2019;
Zang et al., 2020; Han et al., 2020; Ye et al., 2021),
all 4 variations of the benchmark proposed to date.
In addition, we report results on the WOZ 2.0 (Wen
et al., 2016) and DSTC2 (Henderson et al., 2014)
datasets. Our findings can be summarized as fol-
lows:

1. Pre-training procedures involving masked
span prediction work consistently better than
auto-regressive language modeling objectives.

2. Pre-training for text summarization works sur-
prisingly well for DST, despite it being a seem-
ingly irrelevant task.

3. Recurrent models work reasonably well by
including previously predicted states and con-
stant length dialogue history. However they
may suffer from the problem of not being able
to recover from early mistakes.

2 Methods

2.1 Models

We directly apply the Seq2Seq model to the prob-
lem of state tracking, where both the encoder and
decoder are Transformers (Vaswani et al., 2017).
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The inputs to the encoder are dialogue contexts, and
the decoder generates a sequence of strings of the
format slot1=value1,slot2=value2,...
describing the predicted states conditioned on the
given context. Depending on how we represent the
dialogue context, we consider two variations of the
model:

1. Full-history model: The most straightfor-
ward way of preparing the context is simply
to concatenate turns from the entire history
as inputs to the encoder, which ensures the
model to have full access to the raw informa-
tion required to predict the current state. This
setup is also adopted by several generative di-
alogue models such as SimpleTOD (Hosseini-
Asl et al., 2020), Seq2Seq-DU (Feng et al.,
2020) and SOLOIST (Peng et al., 2021). A
potential drawback of the full-history model
is that it may become increasingly inefficient
as a conversation unfolds and the input length
grows.

2. Recurrent-state model: An alternative
approach is to include just the N recent turns
in the conversation history, and replace turns
from 1 to T − N with dialogue states up to
T − N (where T is the current turn index).
That is, the inputs to encoder have the format
[states(turn1,...,T−N ), turnT−N+1,...,T ].
States provide a summarization of the conver-
sation semantics. By consolidating remote
histories into states we not only reduce the
context lengths, but also discard information
not immediately related to the purpose of
state tracking. Similar setup has also been
considered by generative models including
GPT-2 (Budzianowski and Vulić, 2019) and
Sequicity (Lei et al., 2018), although in their
cases only the last turn has been considered
(N = 1).

An example of the input and output formats for
both models is given in Appendix A.1.

2.2 Pre-training
Pre-training followed by task-specific fine-tuning
is becoming a standard paradigm for contemporary
NLP model training. Existing pre-training objec-
tives mainly fall into two categories: masked span
prediction (where the span length can be 1 corre-
sponding to word prediction) and auto-regressive
prediction. Objectives like BERT MLM (Devlin

et al., 2019) and the denoising setup in T5 (Raffel
et al., 2020) belong to the former category, while
GPT (Radford et al., 2019; Brown et al., 2020) and
the prefix LM setup in T5 fall into the latter.

For generative dialogue modeling, both pre-
training styles have been considered. For example,
Seq2Seq-DU (Feng et al., 2020) adopted a BERT-
pre-trained encoder, while SimpleTOD (Hosseini-
Asl et al., 2020) and SOLOIST (Peng et al., 2021)
are based on the GPT-2 auto-regressive prediction
procedure. Nevertheless, it remains unclear which
style is more effective for dialogue understanding.
To study this problem, we compare span prediction
and auto-regressive language modeling (ARLM)
by pre-training the encoder and decoder simultane-
ously using the denoising and prefix LM objectives
from T5. To compare the relative effectiveness of
different pre-training styles, we consider 3 setups:
1) Pre-training the model with span prediction only;
2) Continuing the pre-training of models from setup
(1) with prefix LM; 3) Pre-training the model only
with prefix LM only.

While T5 pre-training has demonstrated its effec-
tiveness for generic language understanding tasks
such as the GLUE and SuperGLUE benchmarks,
we are curious as to which procedures are biased
towards the downstream DST task. While it can be
difficult to define an objective that applies immedi-
ately to DST, we consider a surrogate pre-training
for a seemingly remote task: Summarization. To
properly summarize a large chunk of text requires
the model to be able to extract key semantics out
of a clutter of inputs, which to some extent shares
a similar problem structure as DST.

Following this intuition, we choose Pegasus
(Zhang et al., 2020b), a strong pre-training ob-
jective developed for summarization based on
Seq2Seq, as an alternative for comparison. In brief,
Pegasus defines a self-supervised objective named
Gap Sentence Generation (GSG), which identifies
potentially important sentences in a paragraph ac-
cording to some heuristics (for example, the top-
m sentences with the highest ROUGE score with
respect to the remaining ones), masks them out,
and forces the decoder to predict these pivoting
sentences. A critical difference between Pegasus
and other span prediction objectives is that masked
spans are carefully identified instead of random-
ized. This principled operation positions the model
to work specifically well for the downstream task
of summarization.



7488

3 Experiments

3.1 General Setup

Our models are built with the open-source frame-
work Lingvo (Shen et al., 2019)1. Each encoder
and decoder has 12 Transformer layers, 8 atten-
tion head’s and embedding dimension 768. Our
models are trained with 16 TPUv3 chips (Jouppi
et al., 2017). We use the memory-efficient Adafac-
tor (Shazeer and Stern, 2018) as the optimizer, with
learning rate 0.01 and inverse squared root decay
schedule. We use the default SentencePiece model
provided by T52 with vocabulary size 32k. For
the pre-training procedure, we strictly follow the
setups and procedures described in (Zhang et al.,
2020b) and (Raffel et al., 2020). For decoding, we
use beam search with size 5. We also enabled label
smoothing with uncertainty 0.1 during training.

3.2 Datasets

We conduct our experiments on the MultiWOZ
(Budzianowski et al., 2018) benchmark. The orig-
inal MultiWOZ dataset, released in 2018, was
known to contain substantial annotation errors.
Continuous efforts have been made in recent years
to clean up and refine the annotations, resulting
in 4 variations of the dataset (2.1-2.4, Eric et al.
(2019); Zang et al. (2020); Han et al. (2020); Ye
et al. (2021)). The existence of multiple versions
of the same benchmark, as well as ad-hoc pre- and
post-processing procedures3 adopted by different
research groups make it difficult to compare results
fairly. We therefore report results on all of Multi-
WOZ 2.1-2.44, without any pre- or post-processing
of the original data. We use Joint-Goal-Accuracy
(JGA) as the metric for all experiments.

In addition to the MultiWOZ datasets, we also re-
port results on the WOZ 2.05 (Wen et al., 2016) and
DSTC26 (Henderson et al., 2014) datasets. While

1https://github.com/tensorflow/lingvo
2https://github.com/google-research/

text-to-text-transfer-transformer
3For example on MultiWOZ 2.1, some well-known works

including TRADE (Wu et al., 2019), TripPy (Heck et al., 2020)
and SimpleTOD (Hosseini-Asl et al., 2020) applied different
data processing procedures, making the results incomparable.

4MultiWOZ datasets retrieved from: https:
//github.com/budzianowski/multiwoz
(2.1, 2.2), https://github.com/lexmen318/
MultiWOZ-coref (2.3), https://github.com/
smartyfh/MultiWOZ2.4 (2.4)

5WOZ 2.0 dataset retrieved from https://github.
com/nmrksic/neural-belief-tracker/tree/
master/data/woz

6DSTC2 dataset retrieved from https://github.

these datasets are much smaller in both ontology
and number of examples when compared to Mul-
tiWOZ, they provide additional evidence for the
conclusions we make in this paper.

We compare our results with a set of strong
baselines: TRADE (Wu et al., 2019), SUMBT
(Lee et al., 2019), DS-DST (Zhang et al., 2020a),
Seq2Seq-DU (Feng et al., 2020), SOM-DST (Kim
et al., 2020), Transformer-DST (Zeng and Nie,
2021), TripPy (Heck et al., 2020), SAVN (Wang
et al., 2020), SimpleTOD (Hosseini-Asl et al.,
2020), StateNet (Ren et al., 2018), GLAD (Zhong
et al., 2018), GCE (Nouri and Hosseini-Asl, 2018),
and Neural Belief Tracker (Mrksic et al., 2016). To
be consistent with our approach, when both open-
and closed-vocabulary setups are available, we only
compare with the open-vocabulary setup.

Note that on DSTC2, unlike other methods
which combines the n-best speech recognition hy-
potheses as inputs, we make use of only the top
1-best hypothesis for simplicity, although the com-
bination of n-best hypotheses could potentially fur-
ther improve DST quality.

3.3 Results
We first report the MultiWOZ JGA scores achieved
by the full-history models in Table 1, in which
“span” and “ARLM” indicate masked span predic-
tion and auto-regressive language modeling for pre-
training respectively, and “span+ARLM” means
pre-training with “span” followed by “ARLM”. In
addition, WOZ and DSTC2 JGA scores are re-
ported in Table 2.

From Tables 1 and 2 we make the following
observations:

1. Pre-training procedures with masked span
prediction involved (“span”, “span+ARLM”)
consistently performed better than using
“ARLM” alone. This is true even if “span”
is continued by “ARLM”, and this result is
seen in not just MultiWOZ 2.1-2.4 but also
WOZ 2.0 and DSTC2.

2. Pegasus pre-training works almost equally
well or better than the T5 pretraining, indicat-
ing that some features can be shared and trans-
ferred between the two tasks. Again, this ob-
servation is consistent across all benchmarks.
This also corroborates conclusion (1) above
in that span prediction objectives are more
effective for DST.

com/matthen/dstc
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MultiWOZ
Model 2.1H 2.2 2.3 2.4
TRADE 45.6 45.4 49.2 55.1
SUMBT 49.2 49.7 52.9 61.9
DS-DST 51.2 51.7 - -
Seq2Seq-DU - 54.4 - -
Transformer-DST 55.35 - - -
SOM-DST 51.2 - 55.5 66.8
TripPy 55.3 - 63.0 59.6
SAVN 54.5 - 58.0 60.1
SimpleTODs 50.3/55.7 - 51.3 -
Pegasus 54.4 56.6 60.2 66.6
T5 (span) 52.8 57.6 59.3 67.1
T5 (span+ARLM) 53.1 57.1 59.9 65.6
T5 (ARLM) 52.5 56.1 58.9 63.0
No pre-train 25.8 26.1 28.1 26.7

Table 1: JGA comparison on MultiWOZ 2.1-2.4 with
the full history model. H: For 2.1, baseline meth-
ods adopted different and incomparable data clean-
up procedures, but we used the original data and
did not do any pre- or post-processing for convenient
and fair future comparisons. s: SimpleTOD results
are cited from the 2.3 website https://github.
com/lexmen318/MultiWOZ-coref, in which
two numbers are reported for 2.1 (one produced by the
2.3 author, the other by the original SimpleTOD paper).
“-” indicates no public number is available. Best results
given by existing and our models are marked in bold.

Model WOZ 2.0 DSTC2
SUMBT 91.0 -
StateNet-PSI 88.9 75.5
GLAD 88.1 74.5
GCE 88.5 -
Neural Belief Tracker: NBT-DNN 84.4 72.6
Neural Belief Tracker: NBT-CNN 84.2 73.4
Pegasus 91.0 73.6
T5 (span) 91.0 73.6
T5 (span+ARLM) 91.0 73.5
T5 (ARLM) 89.5 73.3
No pre-train 64.5 50.1

Table 2: JGA comparison for WOZ 2.0 and DSTC2
datasets on the full history model. Note that our
DSTC2 JGAs are likely underreported. While other
models use the n-best predictions to evaluate, we only
used the single best prediction.

3. Without pre-training, model quality drops mis-
erably, as expected.

3.4 Recurrent Results
For the recurrent-state model, we report results for
the Pegasus pre-trained model on MultiWOZ 2.1-
2.4 in Table 3, with N = 1, 2, 3 (number of recent
history turns). Each turn contains a pair of user
and agent utterance. Our observations on models
pre-trained with T5 are similar. The results show
that while the recurrent-state models achieved rea-
sonably good JGA on all data sets, they are never-
theless worse than the full-history model, despite
the fact that the representation of context is more
concise for the recurrent model. What is more, the
choice of N can make a big difference to the model
quality.

Model 2.1H 2.2 2.3 2.4
Pegasus (full-history) 54.4 56.6 60.2 66.6
Pegasus (1-turn history) 52.4 53.9 59.5 57.0
Pegasus (2-turn history) 52.7 56.2 59.2 59.3
Pegasus (3-turn history) 52.3 55.9 58.4 60.0

Table 3: JGA of the recurrent model pre-trained with
Pegasus. H has the same meaning as in Table 1.

A closer look at failed examples produced by
the model reveals that the main reason why the
recurrent context representation achieved worse re-
sults is that they had a hard time recovering from
prediction mistakes made at earlier turns. Since pre-
viously predicted states are feedback to the model
inputs for future predictions, as long as the model
made a mistake at earlier turns, this wrong predic-
tion will be carried over as future inputs, causing
the model to make consecutive prediction errors.
We therefore believe that for the DST task, it may
still be important to provide the model full access
to dialogue history, so that it can learn to correct its
predictions once a mistake was made in the past.

3.5 Remarks
From results enumerated in Sec. 3.3, one will see
wildly varying scores across MultiWOZ 2.1-2.4,
despite the fact that each dataset evolved from the
same benchmark. This poses a concerning ques-
tion of whether existing approaches can generalize
well across different setups and benchmarks. For
example, TripPy performed remarkably well on 2.1
and 2.3 (55.3%, 63.0%), but dropped to 59.6% on
2.4 (which claims to be the “cleanest” version of
MultiWOZ). SOM-DST on the other hand, under-
performed on 2.1 and 2.3 but achieved a strong

https://github.com/lexmen318/MultiWOZ-coref
https://github.com/lexmen318/MultiWOZ-coref
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result on 2.4.

We therefore suggest researchers working on
the MultiWOZ benchmark report results on mul-
tiple version of the data with consistent or no
data processing steps, to provide the community
a more faithful assessment of the quality of their
approaches.

4 Related Work

Generative sequential models have been applied for
task-oriented dialogue problems in several ways.
(Budzianowski and Vulić, 2019; Hosseini-Asl et al.,
2020; Peng et al., 2021) adopted GPT-2, a uni-
directional pretrained Transformer LM, as back-
bones for the generation of states, actions and re-
sponses. Under the framework of Seq2Seq, per-
haps most similar to our work is (Feng et al., 2020),
which adopts a Transformer encoder-decoder archi-
tecture, with the encoder pre-trained with BERT
which is also used to encode schema. Besides,
(Wen et al., 2018) is an early example that uses en-
coder outputs as state representation, merged with
KB representation for the decoder to generate re-
sponses; (Lei et al., 2018) proposes a simplistic two
stage CopyNet on top of Seq2Seq model to enable
word copying from input sequences; (Chen et al.,
2020) proposes a hierarchical Seq2Seq model for
coarse-to-fine DST; (Zeng and Nie, 2021) proposes
a “flat” encoder-decoder structure which reuses a
BERT encoder for the function of a decoder with
hidden layer states reused.

In terms of pre-training, BERT and GPT are still
the most commonly used techniques (Zaib et al.,
2021; Zhang et al., 2020c). Various pre-training
methods developed for dialogue-specific problems
have also been developed. (Zhang et al., 2021)
uses dialogue specific datasets for pre-training and
fine-tuning. (Mehri et al., 2019) studies 4 ways of
pre-training aiming at better capturing discourse-
level dependencies for multi-turn dialogues; (Li
et al., 2020) proposed a contrastive pre-training loss
to capture important qualities of dialogues; (Bao
et al., 2021) proposed a curriculum pre-training pro-
cedure for response generation, subsuming open-
domain, knowledge-grounded, task-oriented dia-
logue applications. (Liu et al., 2021) factorize the
generative dialogue model according to the noisy
channel model, pre-training each component sepa-
rately.

5 Conclusion

We studied the problem of how to perform the DST
task with Seq2Seq models effectively from the per-
spective of pre-training and context representation.
We demonstrated that Seq2Seq pre-training objec-
tives involving masked span prediction are more
preferred than auto-regressive predictions for di-
alogue understanding. This observation further
generalizes to the adoption of Pegasus, a span pre-
diction objective for summarization, which works
surprisingly well on DST tasks. We also find that
recurrent state representation for dialogue context
can work reasonably well.
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A Appendix

A.1 Dialog Example

Dialog examples are formatted to the following in-
put and output sequences for the models presented
in this paper. An example input sequence for a
full-history model:

user: I need to find a spot on a train
on wednesday, can you help me find one?
agent: yes I can. where are you going
and what time would like to arrive or
depart? user: i’m leaving from london
kings cross and going to cambridge. i’d
like to leave after 14:30 on wednesday.
agent: where would you be departing
from? user: i am looking to depart
from broxbourne.

http://proceedings.mlr.press/v80/shazeer18a.html
http://proceedings.mlr.press/v80/shazeer18a.html
http://arxiv.org/abs/1902.08295
http://arxiv.org/abs/1902.08295
http://arxiv.org/abs/1902.08295
https://proceedings.neurips.cc/paper/2014/file/a14ac55a4f27472c5d894ec1c3c743d2-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://doi.org/10.18653/v1/2020.emnlp-main.243
https://www.aclweb.org/anthology/C18-1320
https://www.aclweb.org/anthology/C18-1320
https://www.aclweb.org/anthology/C18-1320
http://arxiv.org/abs/1604.04562
http://arxiv.org/abs/1604.04562
http://arxiv.org/abs/1604.04562
https://doi.org/10.18653/v1/P19-1078
https://doi.org/10.18653/v1/P19-1078
http://arxiv.org/abs/2104.00773
http://arxiv.org/abs/2104.00773
http://arxiv.org/abs/2104.00773
http://arxiv.org/abs/2104.10810
http://arxiv.org/abs/2104.10810
https://arxiv.org/abs/2007.12720
https://arxiv.org/abs/2007.12720
https://arxiv.org/abs/2007.12720
http://arxiv.org/abs/2010.14061
http://arxiv.org/abs/2010.14061
http://arxiv.org/abs/2010.14061
http://arxiv.org/abs/1910.03544
http://arxiv.org/abs/1910.03544
http://arxiv.org/abs/1910.03544
http://proceedings.mlr.press/v119/zhang20ae.html
http://proceedings.mlr.press/v119/zhang20ae.html
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
https://doi.org/10.18653/v1/2020.acl-demos.30
http://arxiv.org/abs/1805.09655
http://arxiv.org/abs/1805.09655


7493

The target output sequence would be

train-day = wednesday; train-departure =
london kings cross; train-destination =
cambridge; train-leaveat = 14:30

As a recurrent example, we would remove the
older turns of the conversation and replace them
with the relevant states. For example, the 2-turn
recurrent input sequence for this example would be

<state> train-day = wednesday
<utterance> agent: yes I can. where
are you going and what time would like
to arrive or depart? user: i’m leaving
from london kings cross and going to
cambridge. i’d like to leave after
14:30 on wednesday. agent: where would
you be departing from? user: i am
looking to depart from broxbourne.

The 1-turn recurrent input sequence would be

<state> train-day = wednesday;
train-departure = london kings
cross; train-destination = cambridge;
train-leaveat = 14:30 <utterance> agent:
where would you be departing from? user:
i am looking to depart from broxbourne.

Note that the target output sequence remains the
same for the recurrent input sequences. That is,
the model is expected to carry over the predictions
from previous states into the current state. Empir-
ically, we found this approach works better than
only predicting the new states at each turn.


