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Abstract

Our goal, in the context of open-domain tex-
tual question-answering (QA), is to explain an-
swers by showing the line of reasoning from
what is known to the answer, rather than sim-
ply showing a fragment of textual evidence (a
“rationale”). If this could be done, new oppor-
tunities for understanding and debugging the
system’s reasoning become possible. Our ap-
proach is to generate explanations in the form
of entailment trees, namely a tree of multi-
premise entailment steps from facts that are
known, through intermediate conclusions, to
the hypothesis of interest (namely the question
+ answer). To train a model with this skill,
we created ENTAILMENTBANK 1 , the first
dataset to contain multistep entailment trees.
Given a hypothesis (question + answer), we
define three increasingly difficult explanation
tasks: generate a valid entailment tree given
(a) all relevant sentences (b) all relevant and
some irrelevant sentences, or (c) a corpus. We
show that a strong language model can par-
tially solve these tasks, in particular when the
relevant sentences are included in the input
(e.g., 35% of trees for (a) are perfect), and
with indications of generalization to other do-
mains. This work is significant as it provides
a new type of dataset (multistep entailments)
and baselines, offering a new avenue for the
community to generate richer, more system-
atic explanations.

1 Introduction

Explanation remains a formidable challenge in AI.
While today’s explanation systems are good at pro-
viding a sentence or two of supporting evidence
(“rationales”) for an answer (DeYoung et al., 2019),
they rarely explain the chain of reasoning from
what is known to the answer, i.e., how the answer
follows, given the evidence – the goal of this work.

1ENTAILMENTBANK dataset, annotation tool and evalua-
tion code is available at https://allenai.org/data/entailmentbank

Figure 1: Given a hypothesis (green, summarizing a
question+answer pair), and some partially relevant text
(or a corpus), our goal is to generate an entailment tree,
including intermediate nodes (blue), showing how the
hypothesis follows from the text/corpus.

Without this, it is hard to fully understand a sys-
tem’s response and/or pinpoint the source of er-
rors if its conclusions are wrong. Conversely, if a
system could support its answers with a chain of
reasoning, new opportunities arise for interactively
teaching the machine by debugging its mistakes.

Our approach is to generate explanations in the
form of multistep entailment trees, such as shown
in Figure 1, made up of individual, multi-premise
textual entailment (TE) steps (Dagan et al., 2013;
Lai et al., 2017). Although there are many single-
step entailment datasets available (Bentivogli et al.,
2011; Bowman et al., 2015) no dataset of multistep
entailments exists, and so a significant contribution
of this paper is the construction of such a dataset,
called ENTAILMENTBANK. ENTAILMENTBANK

contains 1,840 multistep entailment trees for ac-
companying QA pairs, constructed using expert
annotators, and is the first dataset of its kind. We
also define three explanation tasks over this dataset,
namely: generate a valid entailment tree for a given

https://allenai.org/data/entailmentbank
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Property↓, Dataset→ WorldTree V21 eQASC2 HotpotQA3, R4C4 StrategyQA5 ENTAILMENTBANK
Semantics of Inference (informal) 1-Step Entailment (informal) Deduction Entailment Tree
Average Facts per Inference 5.6 2.0 2.4 2.9 7.6
Average Edges per Inference 9‡ 1 2‡ 2 6
Granularity of Inference Fine Coarse Coarse Coarse Fine
Explicit Ordering of Inference No No No Yes Yes
Authoring Method Expert Crowd Crowd Crowd Expert

1(Xie et al., 2020) 2(Jhamtani and Clark, 2020) 3(Yang et al., 2018) 4(Inoue et al., 2020) 5(Geva et al., 2021)
Table 1: A comparison of ENTAILMENTBANK with other similar datasets. In general, ENTAILMENTBANK contains larger
inference problems, at a finer level of granularity than existing datasets, while being the only dataset to include multi-step
entailments that make the reasoning steps explicit. ‡ WT2 and R4C explanations are implied (unannotated) graphs based on
overlapping words or entities – values here are inferred by constructing graphs based on lexical overlap.

QA pair given (a) all relevant sentences (the leaves
of the gold entailment tree), (b) all relevant and
some distractor sentences, or (c) a full corpus.

Our focus here is on generating the derivation
(line of reasoning) showing how the evidence leads
to the answer, rather than the pragmatics of decid-
ing which parts of that to then show the user. This
allows us to separate two (typically confounded)
explanation requirements, namely correctness (of
the derivation) from utility, allowing us to evaluate
derivations with a more objective measure (correct-
ness). This also sets the stage for future work on the
pragmatics of what to show users (Miller, 2019).

Finally, we define and train generative models,
called EntailmentWriters, for this task, adapting
earlier techniques for generating deductive proofs
(Tafjord et al., 2021). We find the models partially
solve the dataset, with indications of generalization
to other domains. Our contributions are thus:

• A formulation of explanation as multistep,
multi-premise textual entailment.

• ENTAILMENTBANK, the first dataset of mul-
tistep entailment trees for QA, to support
entailment-based explanation. Each tree con-
tains an average of 6.6 nodes and 2.7 entail-
ment steps, with the full dataset of 1,840 trees
including a range of small and large multi-step
entailment problems.

• Baseline results using a state-of-the-art, gener-
ative model, showing that reasonable trees can
be generated, in particular when the necessary
raw facts are provided as the model input (re-
sulting in 35% of trees with zero errors). We
also present indications that ENTAILMENT-
BANK-trained models can generalize to other
domains.

This work is significant as it provides a new av-
enue for the community to generate richer, more
systematic explanations.

2 Related Work

In the context of QA, there are multiple notions
of explanation/justification, including showing an
authoritative, answer-bearing sentence (Perez et al.,
2019), an attention map over a passage (Seo et al.,
2016), a synthesized phrase connecting question
and answer (Rajani et al., 2019), or the syntactic
pattern used to locate the answer (Ye et al., 2020;
Hancock et al., 2018). These methods are primarily
designed for answers to “lookup” questions, to ex-
plain where/how an answer was found in a corpus.

For questions requiring inference, the focus of
this paper, an explanation is sometimes taken as
the chain of steps (typically sentences) leading to
an answer. Because crowdsourcing such chains
is difficult, existing datasets typically simplify the
task, e.g., collecting answer-supporting sentences
but not how they combine, and/or largely focusing
on one-hop (length 2) chains. Here we generalize to
tasks requiring multi-step entailment trees, Table 1
illustrates these comparisons in detail.

Our trees are built from multi-premise entail-
ments (two or more sentences entail a hypothesis),
introduced by Lai et al. (2017), in contrast to the
majority of prior datasets where typically a single
sentence entails H through (typically) paraphras-
ing (Bentivogli et al., 2011; Bar-Haim et al., 2014;
Bowman et al., 2015). We extend multi-sentence
entailment in two ways. First, our trees also show
the provenance of each entailment, namely which
sentences are involved in each entailment (i.e., go-
ing beyond a classification task). Second, ours is
the first dataset that chains multiple entailments
together into a hypothesis-directed tree, rather than
containing separate, single-step entailments.

Recent work in deductive reasoning has shown
that transformers can generate formal proofs with
high reliability, both in a formal setting (Polu and
Sutskever, 2020; Wang and Deng, 2020) and with
rules expressed in natural language (Saha et al.,
2020). Inspired by this, we apply similar ideas to
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Figure 2: The web-based authoring tool developed to enable authoring entailment trees. (top) The question and a human-
readable version of the semi-structured explanation are provided to the user. (bottom) The semi-structured explanation, including
the entailment tree, as currently authored by the user. Nodes (facts) can be dragged-and-dropped to change their ordering. White
nodes represent facts from the corpus, while orange nodes were authored by the user. (right) A shortlist (or pool) of top-ranked
relevant facts from the corpus that the user can choose to drag-and-drop into the explanation.

generating entailment trees, in particular leveraging
the generative techniques used in the ProofWriter
system (Tafjord et al., 2021) (Section 5).

3 The ENTAILMENTBANK Dataset

ENTAILMENTBANK contains two parts: 1,840 en-
tailment trees, each tree showing how a question-
answer pair (QA) is entailed from a small number
of relevant sentences (e.g., Figure 1); and a general
corpus C, containing those and other sentences of
domain-specific and general knowledge relevant to
the QA domain. We use these two parts shortly
to define a simpler task (generate the tree given
the leaf sentences, without/with distractors) and a
harder task (generate the tree from the corpus).

ENTAILMENTBANK uses multiple-choice ques-
tions (and the correct answer option) from the ARC
dataset of grade-school science questions (Clark
et al., 2018), and a corpus of science- and general
knowledge derived from WorldTree V2 (Xie et al.,
2020; Jansen et al., 2018). WorldTree was created
for grade-school level science, making it an ideal
source for ENTAILMENTBANK’s corpus.

3.1 Guidelines

Three graduate and undergraduate annotators were
trained to construct entailment trees for QA pairs,
given a small number of potentially relevant sen-
tences for each QA pair (drawn from WorldTree).
Specifically, they were trained to author trees:

• where each step is an entailment (a conclu-
sion that “a person would typically infer” (Da-
gan et al., 2013)), i.e., the knowledge ex-
pressed in each node reasonably follows from
the content of its immediate children.

• at a fine-grained granularity, where each
step encodes a single inference, e.g., making
a single taxonomic inference, conjoining two
facts, or applying a single rule in the corpus.

• that are explicit, with the informal goal of
including all the knowledge that a young child
would need to answer the question.

• that are compositional, where more complex
conclusions can be drawn from simpler facts.

• that are relevant, concluding (a declarative
version of) the QA pair of interest.

3.2 Tool and Authoring Procedure
Constructing detailed entailment trees meeting the
above desiderata is challenging. To make authoring
easier, we designed a web-based graphical drag-
and-drop authoring tool 2 (screenshot in Figure 2)
that allows explanation authors to construct and
review explanations quickly.

For each question, the tool presents the user with
a pool of top-ranked relevant facts from the corpus3

2The ENTAILMENTBANK authoring tool was imple-
mented as a Javascript browser client and npm back-end,
and is released as open source at https://allenai.org/data/
entailmentbank.

3Details of the retrieval algorithm are in Appendix A.

https://allenai.org/data/entailmentbank
https://allenai.org/data/entailmentbank


7361

H: an astronaut requires the oxygen in 
a spacesuit backpack to breathe

an animal requires
oxygen to breathe

Question: Why do astronauts need oxygen in the backpacks of their spacesuits?
Answer: to help astronauts breathe in outer space

an astronaut is a
kind of animal

an astronaut is a
kind of human

a human is a
kind of animal

a vacuum does
not contain

oxygen

there is no oxygen
in space

an astronaut requires
oxygen to breathe

spacesuit backpacks
contain oxygen

H: evaporating and condensing can both
be caused by changes in heat energy

Question: In which way are evaporation and condensation similar?
Answer: both are caused by changes in heat energy

temperature is a measure
of heat energy

evaporating is a
kind of phase change

condending is a
kind of phase change

evaporating and condensing are
both phase changes

temperature changes can cause
phase changes

evaporating and condensing can be
caused by temperature changes

space
is a

vacuum

Figure 3: Two example medium-complexity entailment trees,
paired with their questions. The root nodes of each tree (hy-
potheses) are denoted by H (green), and intermediate con-
clusions are blue. The top tree describes the reasoning to
determine why an astronaut requires oxygen in spacesuit back-
packs, and the bottom to determine the similarity between two
concepts (evaporation and condensation).

that might be relevant to building an explanation.
To assist in the tree construction process, the user
first populates an “explanatory worksheet”, label-
ing facts that they anticipate will be included in
the tree with a small number of specific categories
(e.g., “core facts”, “grounding facts”). From this
worksheet, the user then begins constructing the
entailment tree – typically starting at the bottom-
most leaf nodes, authoring intermediate conclu-
sions from them, then progressively working on
higher levels of the tree until they author a conclu-
sion that directly answers the question.

If the user requires a fact not present in the pool
of provided facts, e.g., a missing science fact or a
question-specific statement, the user can quickly
add their own facts and use these in the tree. Once
completed, the individual entailment steps are then
separately reviewed by a different author for quality
and suggested edits. In total, this process takes an
average of approximately 20 minutes per question.
Two example trees authored using this process are
shown in Figure 3.

3.3 Overall Dataset

Due to the large time investment required to gen-
erate detailed entailment trees, we author trees for

Train Dev Test All

Questions 1,313 187 340 1,840
Entailment reasoning steps 4,175 597 1,109 5,881

Table 2: Summary statistics for the dataset splits.
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Figure 4: Histogram of entailment steps in the training set.
The average entailment tree contains 7.6 nodes (facts) across
3.2 entailment steps.

1,840 randomly selected questions (of the 7,787 in
ARC), which include a total of 5,881 discrete en-
tailment steps. Overall, approximately 600 (paid)
work hours were used to build the dataset.

Summary statistics for the train, development,
and test sets are shown in Table 2. On average,
each entailment tree includes 7.6 nodes across 3.2
entailment steps, where each entailment step typi-
cally involves 3 facts (two leaves, that combine to
entail a conclusion). Figure 4 shows a histogram of
entailment tree size (measured in terms of number
of entailment steps). ENTAILMENTBANK includes
a diverse range of problem sizes, with half (50%)
of entailment trees representing short entailment
problems with one or two entailment steps (typi-
cally composed of 3-5 nodes), while the remaining
50% of trees contain 3-17 entailment steps.

3.4 Dataset Analysis

To understand the entailment challenges in EN-
TAILMENTBANK, we analyzed 100 randomly sam-
pled entailment steps from trees in the training set.
We identified 6 common high-level categories of
inference, shown in Table 3. Substitution types
refer to entailments that require a model to per-
form taxonomic, merynomic, or other forms of
chaining that substitute one entity for another in
one of the input sentences. Inference from Rules
entailments require the application of a specific
rule, specified as one of the input sentences, to the
other input sentence. Our analysis suggests that
approximately one-third (33%) of all entailments
require the application of domain-specific rules to
complete. Further Specification or Conjunction
entailments require a model to combine the details
of both input facts into a single output fact. Less
frequent types require inferring an object’s class
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Inference Type Prop. Example Entailment
Substitution 42% s1 when a light wave hits a reflective object, the light wave will be reflected

s2 a mirror is a kind of reflective object
int when a light wave hits a mirror, the light wave will be reflected

Inference from Rule 33% s1 if two species have similar characteristics, they may share a common ancestor
s2 rhinoceroses and horses have similar characteristics
int rhinoceroses and horses might share a common ancestor

Further Specification or 15% s1 an animal requires warmth for survival as the season changes to winter
Conjunction s2 thick fur can be used for keeping warm

int thick fur can be used for keeping warm as the season changes to winter

Infer Class from Properties 4% s1 A compound is made of two or more elements chemically combined
s2 sodium chloride is made of two elements chemically combined
int sodium chloride is a kind of compound

Property Inheritance 4% s1 an animal’s shell is usually hard
s2 something hard can be used for protection
int an animal’s shell is usually hard for protection

Sequential Inference 3% s1 In molecular biology, translation follows transcription
s2 transcription is when genetic information flows from DNA to RNA
s3 translation is when genetic information flows from RNA to proteins
int In molecular biology, genetic information flows from DNA to RNA to proteins

Table 3: The prevalence of 6 common reasoning methods required to solve individual entailment tree steps, sampled from
100 random entailment steps in the training corpus. Discrete entailment steps in ENTAILMENTBANK require diverse forms of
reasoning to solve, from forms of taxonomic or merynomic chaining (substitution) to application of domain-specific rules. Here,
sn denotes input sentences, while int denotes entailed conclusions (intermediate nodes in the trees).

from it’s properties, inheriting properties of objects,
or determining orders for sequential reasoning. As
a whole, this analysis shows diverse forms of rea-
soning are required to successfully complete the
entailment steps in ENTAILMENTBANK.

4 Task Definitions

Because producing correct entailment trees from
a corpus is challenging, we define three tasks of
increasing difficulty that simplify the problems in-
herent in the task. The inputs to all three are a hy-
pothesis H , namely a declarative form of a question
+ answer (QA),4 and some sentences S expressing
(both relevant and irrelevant) knowledge. The de-
sired output is a valid entailment tree T where the
leaves are sentences selected from S, the interme-
diate nodes inti are intermediate conclusions (new
sentences, not part of the input), and the root node
(conclusion) is the hypothesis H . T is valid if ev-
ery node ni in the tree is entailed by its children.
The 3 tasks vary by the size of S, described below.

As an approximation to make automated eval-
uation feasible, we ensure that S includes all the
leaf sentences Sgold that are in the gold entailment
tree Tgold, and treat Tgold (+ valid reorderings) as

4For convenience we provide both H and QA as inputs,
although in principle H may be generated from QA automati-
cally, e.g., using the QA2D model (Demszky et al., 2018)

the only valid entailment tree constructable from
that input. This allows us to check validity by
comparing the generated tree with Tgold. This ap-
proximation is reasonable for tasks 1 and 2 below,
because their limited input makes it unlikely that an
alternative valid tree is constructable from the input.
For task 3, though, to avoid alternative valid trees
being buildable from the input corpus, we remove
the few sentences similar to Sgold from the corpus
on a per-question basis. Although these steps are
not fool-proof, they do allow tree validity to be
reasonably approximated by comparing with Tgold,
a critical requirement for automatic evaluation.
The three tasks’ inputs are thus as follows:
Task 1 (no-distractor): Inputs = H + QA + leaf

sentences Sgold

Task 2 (distractor): Inputs = H + QA + leaf sen-
tences Sgold + 15-20 distractor sentences

Task 3 (full-corpus): Inputs = H + QA + a cor-
pus C

Task 3 represents the full task where C is large. For
our experiments, C is the WorldTree corpus plus all
additional science facts created by the annotators
(Section 3.2).5 The desired output in all cases is a
valid entailment tree T , approximated as being the

5Some trees also need question-specific scenario facts (e.g.,
“A ball rolls down a hill.”), not in C but derivable from QA.
Thus the full Task 3 also requires deriving these. (Our Task 3
baseline does not do this, so has a limitation).
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gold entailment tree Tgold (+ valid reorderings).

5 Model

Inspired by the “All-at-once” sequence-to-sequence
model in the ProofWriter system (Tafjord et al.,
2021), we train three T5-based generative models
(one per task), called EntailmentWriters.

5.1 Entailment Tree Encoding

We encode entailment trees as a linear structure that
can be output by a generative model. To do this,
the input sentences S are labeled with identifiers
(sent1, sent2, ...), and the hypothesis H is labeled
with the special identifier ‘hypot’ (Figure 1). All
nodes in the output tree are then identifiers: sent*
for leaf nodes, int* for internal nodes, and ‘hypot’
for the conclusion (root node). As the int* nodes
denote new sentences (not in the input), we include
those sentences in the output immediately after
their int* identifier is first introduced.

When linearizing the tree, we start from leaf
facts and work towards proving the root of the tree
(hypot). We use the symbol “&” to denote “and”,
and “->” to denote “entails”. Thus the depth 2
entailment tree in Figure 1 would be encoded as:
sent2 & sent5 -> int1: Eruptions block
sunlight ; sent4 & int1 -> hypot

Note here that the new sentence for intermediate
node int1, “Eruptions block sunlight”, is explicitly
part of the to-be-generated output. The task for the
models is to output valid entailment trees encoded
in this way, given the input.

5.2 Model Details

The EntailmentWriter models are built on top of
the text-to-text pretrained T5 transformer (Raffel
et al., 2020), where the inputs are as described in
Section 4 for Task 1 (no-distractor) and Task 2
(distractor). For Task 3 (full-corpus), the corpus
exceeds T5’s token limit, so we add a retrieval
step of 25 sentences from the corpus C using the
hypothesis H as query. The output is the predicted
entailment tree, encoded as described earlier.

We fine-tune the models on the training sets us-
ing the default hyperparameters (including opti-
mizer) in the T5 library.6 We use the largest T5-
11B model, fine-tuned for 40k steps (batch size
8), selecting the checkpoint with highest dev score.

6https://github.com/google-research/text-to-text-transfer-
transformer

Additional details about the model can be found in
Appendix C.

6 Experiments

We train and test three EntailmentWriters, one for
each task. The model inputs are those described
earlier for the three tasks, with the exception of
Task 3 where a retrieval step is inserted (the corpus
C is too large to be input directly to T5). For this,
we retrieve 25 sentences from C using QA as the
query (using a RoBERTa-trained relevant sentence
ranker, details in Appendix A), and input those to
the model. The output in all cases is the entailment
tree explaining (H , the declarative form of) QA.

6.1 Evaluation Metrics
We approach evaluating entailment trees as a two
step problem. First, nodes in the predicted tree
Tpred are aligned with nodes in gold tree Tgold,
using the sent* labels and Jaccard similarity for
intermediate nodes. Thus, instead of doing exact
match against gold tree, we account for semantic-
preserving variants (Tree Alignment Algorithm
described in Appendix C).

Once aligned, the aligned tree T
′
pred is scored

against gold tree Tgold using the metrics below.
The F1/BLEURT metrics score elements of the
tree (micro-averaging the results), while “AllCor-
rect” checks if all the elements are correct (1=yes,
0=no), i.e., the predicted tree is perfect along the
dimension being considered. Our four metrics are:
• Leaf Nodes (F1, AllCorrect): Does the pre-

dicted tree use the correct leaf sentences? We com-
pute an F1 score by comparing leaf sentences Spred

to Sgold. The “AllCorrect” score is 1 if all nodes
are identified correctly (F1=1.0), 0 otherwise.
• Steps (F1, AllCorrect): Are the individual

entailment steps in the tree structurally correct? As
each intermediate node represents (the conclusion
of) a single step, the step is considered structurally
correct (score 1) if its input sent*/int* node labels
perfectly match the gold, 0 otherwise. We then
measure F1 comparing all steps in the two trees.
Then AllCorrect=1 if F1=1.0, 0 otherwise.
• Intermediates (F1, AllCorrect): Are the syn-

thesized intermediate nodes correct? For com-
paring gold and generated sentences, we use
BLEURT7 (Sellam et al., 2020). We define genera-

7Using the state-of-the-art BLEURT-Large-512 model.
Our analysis based on 300 hand-scored examples suggests
its similarity scores correlate well with human ratings (corre-
lation=0.67,sensitivity=0.88,specificity=0.80)
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Entailment Tree Scoring
Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1 (no-distractor) 99.0 89.4 51.5 38.2 71.2 52.9 35.6
Task 2 (distractor) 89.1 48.8 41.4 27.7 66.2 53.2 25.6
Task 3 (full-corpus) 39.7 3.8 7.8 2.9 36.4 13.2 2.9

Table 4: Baseline scores of the generated entailment trees from EntailmentWriter, along four different dimensions (test set).
F1/BLEURT scores measure predicted/gold overlap, while AllCorrect scores 1 when all the predictions are correct for a tree, 0
otherwise. Scores on the Dev set are provided in Appendix Table A2, and results using the T5-large model are presented in
Appendix Table A4.

tion correctness as 1 if an aligned pair of intpred,
intgold gives BLEURT > 0.28,8 0 otherwise. F1
is computed using the number of aligned, correct
intermediates wrt. the number of gold/predicted
intermediates. AllCorrect=1 if F1=1, otherwise 0.
•Overall Proof (AllCorrect): The overall “All-

Correct” score for a generated proof is 1 only if all
of the leaves, steps, and intermediates are all cor-
rect, i.e., the tree completely matches Tgold. Other-
wise it scores 0. This is a strict metric: any error in
the generated tree will result in a score of 0.

6.2 Results

The results are shown in Table 4. From these, sev-
eral conclusions can be drawn:

First, in the Task 1 (no-distractor) easiest setting,
where only the gold leaves are provided as input,
the Task1 model performs reasonably well with
over one-third of the trees perfectly matching the
gold tree. From a manual analysis of a random
sample of low-scoring trees, we find an additional
≈20% are also valid but structured differently (thus
incorrectly lowering their score), indicating our
evaluation metric is an underestimate. We discuss
this in more detail in Section 6.3.2.

Second, Task 2 (distractor) increases the diffi-
culty by adding distractors to the input gold sen-
tences until a total of 30 sentences are supplied as
input. Despite this large number of distractors, the
model is good at identifying the relevant facts
(leaves F1 = 89%, with nearly half the trees hav-
ing perfectly selected leaves). The overall tree
structure in Task2 is (only) a little worse than
for Task1 (F1 of steps 41%, vs. 51% for Task 1),
despite the substantial additional task complexity.

Finally, for Task 3, we reuse our Task 2 model
(no additional training) but add an IR component
to retrieve context from the entire corpus provided

8The BLEURT threshold was picked using a subset of 300
manually labeled pairs. When we test this threshold on the rest
of the labeled pairs we get a high (89%) F1 score, indicating
the threshold is reasonable.

for Task 3 (since our model is not able to ingest the
entire corpus), using the RoBERTa-based retriever
(Appendix A). Note that the retrieval is a feature of
our baseline system, not of the task specification
itself.

As shown in Table 4, the Task 3 results are lower,
indicating that the full task is difficult. Although
most trees are partially correct in places (e.g., leaf
F1 = 39%), few perfectly match the gold tree. One
additional source of error, not present in the earlier
Tasks, is that our IR component may not find all
the required sentences Sgold for the tree. In fact,
we find it retrieves 66.1% of them on average (and
also the model input does not include any question-
specific scenario facts that may be needed). Thus
the lower scores for Task 3 also suggest that the
retrieval component is as critical as the tree builder
itself (if ingestion of the entire corpus is infeasi-
ble); future solutions require either better retrieval
or ingestion of the entire corpus. Or, alternatively, a
model could generate rather than retrieve some sup-
porting sentences (as illustrated in Figure 4), then
use these post-hoc to identify suitable supporting
corpus sentences.

6.3 Error Analysis and Future Work
To understand why invalid trees are sometimes gen-
erated, or valid trees mis-scored, we performed
several error analyses that we now describe.

6.3.1 Individual Entailment Steps
We first analyze cases where the model is failing
at individual entailment reasoning steps. For this
we randomly sampled 100 entailment steps from
imperfect entailment trees (AllCorrect= 0) in the
development set. Manually evaluating these, we
found that 30% were correct entailments (and 13%
were nearly correct), suggesting overall invalid
trees still contain good steps within them. In
cases where the step was invalid, we identify sev-
eral failure classes and suggest future directions:
• Repetition: The entailed conclusion simply
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repeats one of the input sentences (41%), likely be-
cause, in many training instances, the intermediate
conclusions have high word overlap with input sen-
tences. A future direction would be to modify the
loss function to encourage the model to add some-
thing novel compared with the input sentences.
• Invalid Entailment: The entailed conclusion

does not follow from input sentences (47%): In
these cases, the model is using knowledge unstated
in the input for this particular entailment step but
present somewhere else in the input context. A
future direction would be to explore an interative
approach, where the model generates one entail-
ment step at a time (a potentially easier entailment
task) and then iterates.
• Mis-evaluation and Irrelevance: The en-

tailed conclusion is correct, but either different
from gold or irrelevant to prove the hypothesis
(12%). Future directions include improving the
evaluation metric, and adding a goal-directed term
to the loss function to encourage intermediates that
are closer to H .

6.3.2 Errors in the Full Entailment Trees
We analyzed an additional 50 imperfect trees on
the dev set, and observed the following errors:
• Incorrect/missing leaves (≈50%): For exam-

ple, for the question “Why do mosquitoes move
towards carbon dioxide...? A: It helps mosquitoes
find food”, the predicted tree misses using the criti-
cal input fact that “mosquitoes eat animal blood”,
hence cannot infer “animals are a source of food
for mosquitoes”, hence cannot infer the importance
of moving towards carbon dioxide.
• Imperfect evaluation (≈25%): We find that

a significant number of trees that were scored as
invalid are in fact valid, suggesting that our au-
tomated metrics underestimate tree validity. The
most common reason was that even with the same
input sentences, the tree can be structured in several
valid ways. For example, a gold tree with structure:

sent1 & sent2 & sent3→ hypot
may be predicted as:

sent1 & sent2→ int1; int1 & sent3→ hypot
scoring F1=100% for leaves but F1=0% for steps,
even though valid. (See Appendix D for an instan-
tiated example). This degree of restructuring is not
captured by our metrics.

To quantify this further, we randomly sam-
pled and rated 50 trees on Task 1 and found human
judgements estimated Overall AllCorrect at 58%
(vs. 35.6% comparing with the gold tree, Table 4),

suggesting the automated evaluation is underes-
timating true task performance by ≈20% in this
case. Future work on an improved evaluation met-
ric would help reduce such understimates.
• Correct leaves, but invalid steps (≈20%):

For example, for a question asking “Can a person
see someone in a dark room? A: No”, the model
selects the correct leaf sentences but stitches them
together in the wrong order, resulting in invalid
intermediate conclusions. Here, it incorrectly tries
to draw an entailment from “a person is in a dark
room” and “a person is looking into the dark room”,
producing “the person outside can see the person
in the dark room”, an invalid step and one that di-
rectly contradicts the target answer. Future work
on more reliable entailment, e.g., using an iterative
approach and/or adding an entailment validation
module, may help address this.
• Disconnected trees (≈5%): We found 2 ex-

amples where the generated entailment tree had
intermediate conclusions that were not used later
towards proving the hypothesis. Future work to
avoid this would be to apply structural constraints
on the output, enforcing a (single) tree structure.
• Correct steps, but incorrect intermediate

conclusions (<5%): For example, for a question
with H:“compression waves cause objects to move
in the same direction of the wave”, the model gets
the correct proof structure, but instead of conclud-
ing a gold intermediate conclusion “longitudinal
waves are also called compression waves” it pre-
maturely predicts the final conclusion H for the
intermediate (then re-predicts it in the final step).

Finally, we grouped the Task 2 results accord-
ing to the size (number of steps) in the gold tree.
The results are shown in Appendix Table A3, and
demonstrate that the scores drop significantly as
the number of steps in the gold proof increases.

7 Generality

To what extent can ENTAILMENTBANK help for
other domains? Although a full investigation is
out of the scope of this paper, we performed two
small out-of-domain (OOD) investigations. First,
we used the eQASC dataset (Jhamtani and Clark,
2020). eQASC provides a QA hypothesis H , 10
retrieved sentences C, and lists valid single step
entailments from two sentences in C to H - i.e.,
one-step (three node) entailment trees. Running our
Task 2 EntailmentWriter to generate a tree given C
and H , we find (comparing with the best-matching
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Input: (a QA pair)
Q: I would like to go running, but my ankle is injured.

What should I do?
A: ice it
Output:(explanation generated by EntailmentWriter)

Icing an injured body part can help to reduce the pain
An ankle is a kind of body part
→ Icing an injured ankle can help to reduce the pain

Input: (a QA pair)
Q: If I put some cheese in the fridge, will it melt?
A: no, because it will be too cold
Output:(explanation generated by EntailmentWriter)

If something is put in a cold place then it will remain cold
A refrigerator is used for cooling things
→ If something is put in a refrigerator then it will remain

cold.
Cheese is put in the fridge
→ The cheese will remain cold in the refrigerator

Cold objects do not melt in cold temperatures
→ Cheese will not melt in the refrigerator

Input: (a QA pair)
Q: I feel sad. What could I do to cheer myself up?
A: listen to music
Output: (explanation generated by EntailmentWriter)

Music is a kind of entertainment
Entertainment can be used to cheer up a person
→Music can be used to cheer up a person

If a person is sad, they may want to cheer themselves up
→ If a person is sad, they may want to cheer themselves

up by listening to music

Figure 5: Three examples of explanations fully generated
by EntailmentWriter, zero-shot, out-of-domain. Here, all sen-
tences (leaves and intermediates) are generated by the model.

gold tree) a F1 (leaves) of 67% and an Overall
AllCorrect score of 26% - a positive indication of
transfer OOD. Note that this is without fine-tuning
on eQASC, and that eQASC does not list all valid
entailments, hence good outputs may be missed.

We also trained a no-context version of Entail-
mentWriter using ENTAILMENTBANK, that inputs
just a QA pair and outputs a tree, generating all the
tree sentences (both leaves and intermediates). We
then ran this on Challenge300, an existing, indepen-
dently authored dataset of 300 test questions cov-
ering multiple domains (Tafjord and Clark, 2021).
From a manual evaluation of a random sample of
generated trees, ≈35% were valid, non-vacuous
trees. (≈ 25% of the remainder were valid but
largely repeated the question and answer). Three
good examples are shown in Figure 5, again il-
lustrating the potential of ENTAILMENTBANK for
explanation.

Finally, as an experiment in interactive expla-
nation generation, we re-purposed ENTAILMENT-
BANK to train a model to generate an explana-

tion one step at a time. To do this, we “shred-
ded” the entailment trees into individual one-deep
trees (where the intermediate nodes become new
hypotheses to prove), and re-trained a model to
generate similar one-deep entailment trees. This
model can then be used interactively, generating
a one-deep explanation then allowing a user to se-
lect which premise(s) to drill down into, based on
what he/she wants to know more about, recursively
calling the model to explain that premise further.
Although such generative models (both generating
a full tree or a one-deep tree) can sometimes pro-
duce false or nonsensical facts, one could apply fact
verification techniques, e.g., (Thorne et al., 2018;
Christodoulopoulos et al., 2020), to validate the
generated facts, and generate an alternative expla-
nation if validation fails. These are exciting future
directions that we are exploring.

8 Summary and Conclusion

Our goal is to enable machines to generate richer,
more systematic explanations. To this end, we have
developed a novel formulation of explanations as
multistep entailment trees, and created ENTAIL-
MENTBANK, the first large dataset of such trees.

We have also presented baseline results for auto-
matically generating entailment tree explanations
for answers to science questions, trained on EN-
TAILMENTBANK. These initial results suggest that
such generation is possible, in particular when the
necessary raw facts are included in the model in-
put. We have also presented indications that mod-
els trained on ENTAILMENTBANK can generalize
to other domains. This suggests exciting oppor-
tunities for future systems that can help users un-
derstand and debug a system’s answers, and ulti-
mately engage in meaningful dialogs that explore
the machine’s line of reasoning. ENTAILMENT-
BANK contributes to this direction, offering a new
resource for developing richer, more systematic ex-
planations. ENTAILMENTBANK is available at
https://allenai.org/data/entailmentbank.

Acknowledgements

We thank Google for providing the TPUs for con-
ducting experiments. We also thank the Allen Insti-
tute of Artificial Intelligence and National Science
Foundation award #1815948 to Peter Jansen for
funding this work.

https://allenai.org/data/entailmentbank


7367

References
Roy Bar-Haim, I. Dagan, and Idan Szpektor. 2014.

Benchmarking applied semantic inference: The pas-
cal recognising textual entailment challenges. In
Language, Culture, Computation.

L. Bentivogli, Peter Clark, I. Dagan, and Danilo Gi-
ampiccolo. 2011. The seventh pascal recognizing
textual entailment challenge. Theory and Applica-
tions of Categories.

Samuel R. Bowman, Gabor Angeli, Christopher Potts,
and Christopher D. Manning. 2015. A large anno-
tated corpus for learning natural language inference.
In EMNLP.

Christos Christodoulopoulos, James Thorne, An-
dreas Vlachos, Oana Cocarascu, and Arpit
Mittal, editors. 2020. Proc. 3rd Workshop
on Fact Extraction and Verification. ACL.
Https://aclanthology.org/events/fever-2020/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot,
Ashish Sabharwal, Carissa Schoenick, and Oyvind
Tafjord. 2018. Think you have solved question an-
swering? Try ARC, the AI2 reasoning challenge.
ArXiv, abs/1803.05457.

Ido Dagan, Dan Roth, Mark Sammons, and Fabio Mas-
simo Zanzotto. 2013. Recognizing Textual Entail-
ment: Models and Applications. Morgan and Clay-
pool.

Dorottya Demszky, Kelvin Guu, and Percy Liang.
2018. Transforming question answering datasets
into natural language inference datasets. ArXiv,
abs/1809.02922.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HIT.

Jay DeYoung, Sarthak Jain, Nazneen Rajani,
E. Lehman, Caiming Xiong, R. Socher, and
Byron C. Wallace. 2019. ERASER: A benchmark
to evaluate rationalized NLP models. In ACL.

Mor Geva, Daniel Khashabi, Elad Segal, Tushar Khot,
D. Roth, and Jonathan Berant. 2021. Did Aris-
totle use a laptop? A question answering bench-
mark with implicit reasoning strategies. ArXiv,
abs/2101.02235.

Shuguang Han, Xuanhui Wang, Mike Bendersky, and
Marc Najork. 2020. Learning-to-rank with BERT in
TF-ranking. ArXiv, abs/2004.08476.

Braden Hancock, Paroma Varma, Stephanie Wang,
Martin Bringmann, Percy Liang, and Christopher
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A Relevant Fact Retrieval Algorithm

When authoring an entailment tree for a question,
annotators are shown a pool of potentially relevant
facts, selected from WorldTree, to help them get
started. To identify those facts, we could simply use
standard information retrieval with the QA pair as
the query. However, for this dataset, we are able to
do better than this: First, we train two “relevant sen-
tence” classifiers (using BERT (Devlin et al., 2019)
and RoBERTa (Liu et al., 2019) respectively) using
additional WorldTree annotations.9 Then, for each
question, both models exhaustively score every fact
in the corpus, and the top 20 facts from each are re-
trieved, reranked using Tensorflow-Ranking-BERT
(Han et al., 2020), and presented as a ranked list to
the entailment tree annotator based on their final
scores.

B Evaluation: Tree Alignment
Algorithm

Predicted entailment trees are evaluated by first
aligning them with gold entailment trees, using a
variant of the algorithm in (Inoue et al., 2020), as
follows:

• First, for each intermediate conclusion intpred
in Tpred, and intgold in Tgold, we gather their
ancestor leaf sentences.

• Then, we align each intermediate node intpred
to the first intgold for which the Jaccard sim-
ilarity of their respective ancestor sentences
is maximum. For any intpred with zero Jac-
card similarity to all gold nodes intgold, it is
aligned to a dummy gold node with a blank
conclusion.

C Training and Model Selection

For Task 1 and Task 2, we trained T5 11B models
on the training set using default hyperparameters
(except the number of steps) following the proce-
dure of Khashabi et al. (2020). We used batch size
of 8 and a block size of 512 tokens on both input
and output side. For both training and evaluation
we use v3-8 TPUs from Google cloud computing

9WorldTree includes annotations about which WorldTree
table rows are relevant to which questions, i.e., which rows
are supporting evidence (“rationales”) for which question.
Although these rationales do not identify all relevant sentences,
they can be used as distant supervision (along with random
negative facts drawn from the corpus) to train a “relevant
sentence” classifier.

H: the shape of chocolate changes
when the chocolate melts

matter in the
liquid phase has 

variable shape

Question: A student left a bar of chocolate in the sun on a hot day.
As the chocolate melted, what property changed?

Answer: its shape

chocolate changes
from a solid to a

liquid when it melts

melting means changing
from a solid to a liquid by

increasing heat energy

chocolate melts
in the 

sunlight

matter in the
solid phase has
de�nite shape

chocolate in the solid
state has de�nite shape

melted chocolate will
have variable shape

chocolate is 
a kind of 

solid substance

chocolate is 
a kind of 

substance

chocolate is 
usually a

solid

H: the shape of chocolate changes
when the chocolate melts

melting means changing
from a solid to a liquid by

increasing heat energy

matter in the
liquid phase has
de�nite shape

chocolate has variable
shape in liquid state

the chocolate changes from
a solid state to a liquid state

chocolate has
de�nite shape
in solid state

matter in the
solid phase has
de�nite shape

chocolate is 
usually a

solid

chocolate is 
a kind of 

substance

chocolate melts
in the 

sunlight

Gold Tree

Model-Generated Tree

Figure A2: An example question, its gold entailment tree
(top), and a model-generated tree (bottom) that has different
structure and different intermediate conclusions, but is still
valid. The root nodes of each tree (hypotheses) are denoted by
H (green), and intermediate conclusions are blue.

platform. Each model has 11B parameters and
takes 22GB space on disk.

During training, we ran the model for different
number of steps (up to 40K steps in the intervals of
4K) and picked the model that gives best Overall
AllCorrect score on the Dev set. Thus our hyperpa-
rameter search involved 10 models each for Task 1
and Task 2. We picked the models after 16K and
32K steps for Task 1 and Task 2 respectively. Table
A2 shows model scores on the development set.

Each Task required 16 hours of training. Infer-
ence on 340 test questions takes 12 minutes. A
large fraction of this time is spent in saving the
model checkpoints to disk or loading the model
from disk.

D Tree Structure Variation

As described in Section 6.3.2, although our evalu-
ation metric accounts for different node ordering
and intermediates wording between the predicted
and gold trees, there are still cases where a valid
predicted tree differs from the gold tree in a way
which (undesirably) hurts its score. For example, a
gold tree with the structure:
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Entailment Tree Scoring
Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1 (no-distractor) 99.2 90.9 61.8 50.3 74.2 56.2 43.3
Task 2 (distractor) 89.4 52.9 46.6 35.3 69.1 54.6 32.1
Task 3 (full-corpus) 42.7 3.7 8.5 3.2 38.7 13.4 3.2

Table A2: Development set results, analogous to test set results for Table 4, showing baseline scores of the generated entailment
trees from EntailmentWriter along four different dimensions (dev set).

Number of Number of Leaves Steps Intermediates Overall
steps questions F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

1 87 97.0 87.4 82.2 79.3 95.2 86.2 79.3
2 84 90.5 58.3 35.0 21.4 69.5 58.3 17.9
3 52 87.5 32.7 25.8 5.8 59.4 46.2 0.0
4 38 87.9 31.6 33.2 10.5 53.6 39.5 7.9
5 28 87.3 32.1 27.9 0.0 55.4 39.3 0.0
≥6 51 76.5 5.9 11.9 0.0 33.6 15.7 0.0

Any 340 89.0 48.8 41.4 27.6 66.2 53.5 25.6

Table A3: Results on Task 2 (distractor) broken down by the number of entailment steps in the gold tree, indicating that scores
drop rapidly as trees get larger (more steps).

Entailment Tree Scoring
Leaves Steps Intermediates Overall

F1 AllCorrect F1 AllCorrect F1 AllCorrect AllCorrect

Task 1 (no-distractor) 98.7 86.2 50.5 37.7 67.6 50.3 34.4
Task 2 (distractor) 84.3 38.5 35.7 23.5 62.6 50.9 22.4
Task 3 (full-corpus) 35.2 2.9 6.2 2.4 33.0 13.2 2.4

Table A4: Test set results using T5-large model, analogous to T5-11B results in Table 4.

sent1 & sent2 & sent3→ hypot
may be predicted as:

sent1 & sent2→ int1; int1 & sent3→ hypot
scoring F1=100% for leaves but (undesirably)
F1=0% for steps, even though valid. Figure A2
shows a more complex example, where both the
gold and predicted trees have identical leaf nodes
(leaf F1 = 100%), but different organization. Al-
though both trees are valid, the predicted tree here
(undesirably) scores Step F1 = 0%. Because of
cases like this, our predicted scores are an under-
stimate of the true quality of the predictions (by as
much as 20% from a small study, as described in
Section 6.3.2).

E Additional Results: T5-large baseline

Here, we trained a T5-large model using default hy-
perparameters following the procedure of Khashabi
et al. (2020). We used batch size of 64 and a block
size of 512 tokens on both input and output side.
During training, we ran the model for different
number of steps (up to 80K steps in the intervals of
8K) and picked the model that gives best Overall

AllCorrect score on the Dev set. We picked the
models after 48K and 32K steps for Task 1 and
Task 2 respectively. Table A4 shows model scores
on the test set.


