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Abstract
In the context of neural passage retrieval, we
study three promising techniques: synthetic
data generation, negative sampling and fusion.
We systematically investigate how these tech-
niques contribute to the performance of the
retrieval system and how they complement
each other. We propose a multi-stage frame-
work comprising of pre-training with synthetic
data, fine-tuning with labeled data and nega-
tive sampling at both stages. We study six
negative sampling strategies and apply them
to the fine-tuning stage and, as a noteworthy
novelty, to the synthetic data that we use for
pre-training. Also, we explore fusion methods
that combine negatives from different strate-
gies. We evaluate our system using two pas-
sage retrieval tasks for open-domain QA and
using MS MARCO. Our experiments show
that augmenting the negative contrast in both
stages is effective to improve passage retrieval
accuracy and, importantly, they also show that
synthetic data generation and negative sam-
pling have additive benefits. Moreover, using
fusion of different kinds allows us to reach per-
formance that establishs a new state-of-the-art
level in two of the tasks we evaluated.

1 Introduction

Recently, there is a surge of interest in neural first-
stage retrieval models (Yang et al., 2020; Guo et al.,
2021). These models overcome the lexical gap is-
sue of traditional models based on term matching
(Robertson and Zaragoza, 2009) by projecting both
query and document to a shared dense space. Find-
ing relevant documents can then be achieved by
employing nearest neighbor search. Neural first-
stage retrieval models have shown competitive on
many benchmark data sets (Karpukhin et al., 2020;
Xiong et al., 2021; Qu et al., 2021), and combin-
ing them with term matching-based models further
boosts their retrieval performance (Bendersky et al.,
2020).

∗Work done during an internship at Google.

Arguably, abundance of training data and neg-
ative sampling strategies have been the two most
important factors to the success of neural retrieval
models. On one hand, deep Neural Networks are
data hungry due to their vast volume of model pa-
rameters. Ma et al. (2021) has shown that synthetic
question generation can be effective to mitigate the
data scarcity issue in low-resource settings. In this
work we are interested in exploring how synthetic
question generation can further improve the neu-
ral retrieval models when there is already a decent
amount of supervised data available. We propose
a two-stage training strategy where we first train
the dense retrieval model on synthetic question-
passage pairs and then, as illustrated in Fig 1, we
fine-tune it on supervised data. We show that such
methodology substantially improves upon baseline
models.

On the other hand, previous works (Karpukhin
et al., 2020; Xiong et al., 2021) found that utilizing
extra negatives in addition to in-batch negatives
significantly improves the performance of dense
retrieval models. Here, we first draw a connec-
tion between the cross-entropy loss with in-batch
negatives and Noise Contrastive Estimation (Ma
and Collins, 2018), and highlight the limitations
of in-batch negative sampling. Then, we exten-
sively study the impact of several negative sam-
pling strategies on model accuracy and propose
ways to effectively combine them.

In addition to investigating synthetic question
generation and negative sampling independently,
another research question we explore is whether
the benefits of these two techniques are additive.
Thus, we apply the proposed negative sampling
strategies to the different model stages and study
the impact on the final accuracy.

We conduct experiments on three different
datasets: SQuAD (Chen et al., 2017), Natural
Questions (Kwiatkowski et al., 2019) 1, and MS

1We evaluate on retrieval part of OpenDomainQA tasks.
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Figure 1: Two-stage neural retrieval model with negative sampling in both stages. In Stage 1, the model is trained
using synthetic question-passage pairs. In Stage 2, the model is fine tuned using supervised data. Early and late
fusion methods are shown as variations of Stage 2.

MARCO (Nguyen et al., 2016). We show that
each of these approaches significantly improves the
dual encoder-based retrieval models and combining
them together improves the models further. Our
final models achieve state-of-the-art performance
on NQ and SQuAD improving over the accuracy
rates of prior works by 0.8–2.5 points.

The main contributions of this paper are: (1) Sys-
tematically explore negative sampling strategies for
neural passage retrieval; (2) A novel pre-training
approach that integrates synthetic question genera-
tion with negative sampling; (3) Fusion approaches
that combine models trained with different hard
negatives and establish new state-of-the-art perfor-
mance in the passage-retrieval tasks we tested.

2 Related Work

Previous attempts at improving the quality of dual
encoder models can be classified into three types.
The first type focuses on finding a good initial-
ization for the model parameters. This is typically
achieved by pre-training the model on various tasks
(Lee et al., 2019; Chang et al., 2020). Ma et al.
(2021) showed that leveraging synthetic question
generation is an effective way to improve model ac-
curacy and outperform other variants in zero-shot
settings. While the approach was originally pro-
posed for a low-resource scenario, we show that
synthetic question pre-training still significantly
improves retrieval performance in cases where suf-
ficient amounts of supervised data is available.

The second type focuses on learning better rep-

resentations using hard negatives. This strategy has
proven effective in passage retrieval (Karpukhin
et al., 2020), machine translation (Guo et al., 2018)
and entity linking (Gillick et al., 2019) tasks. These
works mine hard negatives using different strate-
gies. For example, Guo et al. (2018) mine “coarse”
negatives with a low-resolution model. Gillick et al.
(2019) use a model trained with in-batch negatives
and select examples ranked above the correct one
as negative examples. Karpukhin et al. (2020)’s
dense passage retrieval model (DPR) mines hard
negatives using a BM25 model.

Both Xiong et al. (2021) and Zhang and Stratos
(2021) proposed to sample negatives from the
model itself. While Xiong et al. (2021) analyzed
the drawbacks of in-batch negative sampling from
the point of view of convergence rate, Zhang and
Stratos (2021) argued that contrastive loss is a bi-
ased estimator and drawing negative samples from
the model itself leads to bias reduction. More-
over, Zhang and Stratos (2021) showed that popu-
lar choices of "noisy" distributions such as uniform
distribution generally cannot reduce the bias. In
this work, we draw a connection between Noise
Constrastive Estimation (NCE) and in-batch cross-
entropy loss and show that the limited sampling
space of in-batch negatives reduces the estimation
problem to a much simpler surrogate. Further-
more, we empirically show that combining random
sampling with in-batch negatives achieves results
competitive with using approximate nearest neigh-
bor negatives, which is typically implemented with
asynchronous updates.
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Figure 2: The neural passage retrieval model. The doc-
ument title and passage are concatenated and fed into
the passage encoder.

Another approach focuses on distilling from ef-
fective, but less efficient, teacher models such as
cross-attention models. Hofstätter et al. (2021) use
an ensemble of BERT-based models as teacher and
propose a margin mean-squared error that utilize
the output margin of the teacher to optimize the
student dual encoder model. On the other hand,
RocketQA (Qu et al., 2021) applies a different
knowledge distillation strategy by using the scores
returned by the cross-attention teacher to denoise
negative examples and to annotate unlabeled exam-
ples. These techniques can be also incorporated
in our framework. For example, in a more recent
work, Lin et al. (2021) combine knowledge distilla-
tion and hard negative sampling in their model.

3 Neural Passage Retrieval Models

Following previous works (Karpukhin et al., 2020;
Lee et al., 2019), our dual encoder model is also
based on BERT (Devlin et al., 2019). The archi-
tecture is shown in Fig 2. To encode a question,
we feed the question text to the BERT model and
apply a fully-connected (FC) layer of size 768 to
the [CLS] token embedding. The output of the FC
layer is used as the question embedding. A pas-
sage is encoded in a similar way but we prepend
to the passage the title of the document where it
is found: [CLS] title [SEP] passage [SEP]. The
final question and passage embeddings are then
l2-normalized. The query to passage relevance is
computed by the dot-product of their vectors.

The model parameters are initialized from the
public uncased BERT checkpoint, and are trained
using a listwise loss function (Cao et al., 2007),
i.e., cross-entropy loss with in-batch negatives.
Let B denote a batch of question-passage pairs
{(xi, yi)}|B|, we train the model by minimizing the

following loss:

Lf = − 1

|B|

|B|∑
i=1

log
eφ(xi,yi)

eφ(xi,yi) +
∑
yj∈B,j 6=i e

φ(xi,yj)
, (1)

where φ(x, y) denotes the scoring function, in this
case the vector dot-product between the question
embeddings x and the passages embeddings y. Fol-
lowing Yang et al. (2019), we also add a copy of
the above loss in the reverse direction:

Lb = −
1

|B|

|B|∑
i=1

log
eφ(yi,xi)

eφ(yi,xi) +
∑
xj∈B,j 6=i e

φ(yi,xj)
, (2)

and the final loss is the mean of both.

3.1 Pre-training with Synthetic Data
Synthetic data has shown to be as a very effec-
tive approach to improve neural passage retrieval
models (Ma et al., 2021; Liang et al., 2020). We
adopt the approach from Ma et al. (2021) that uses
synthetic data for pre-training. In particular, we
train our own question generator by fine-tuning a
T5-large (Raffel et al., 2020) model which predicts
questions given the relevant passage. The model is
then used to generate synthetic questions on the pas-
sage collection. The generated (synthetic question,
passage) pairs are used to train the dense retrieval
model.

4 Improved Negative Sampling

In this section, we first draw a connection between
the loss function in the previous section and NCE
(Ma and Collins, 2018) to shed light on the draw-
back of in-batch negative sampling. Then we intro-
duce several negative sampling strategies to miti-
gate the issue.

4.1 Limitation of In-batch Negative Sampling
The training objectives described in section 3, re-
gardless of direction, can be treated as a special
case of the ranking-based NCE (Ma and Collins,
2018). To see this, let pN (y) denote the “noise” dis-
tribution from which negative passages are drawn.
More importantly, pN (y) > 0 for all y ∈ Y where
Y denotes the set of all passages in the collection.
Define φ̄(x, y) = φ(x, y) − log pN (y) to be the
“corrected” scoring function. Then the ranking vari-
ant of the NCE loss is defined as:

LRnce = −
1

|B|

|B|∑
i=1

log
eφ̄(xi,yi)

eφ̄(xi,yi) +
∑
yj∼pN (y),yj 6=yi e

φ̄(xi,yj)
.

(3)
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Let YG denote documents in the annotated rel-
evant (query, document) pairs. We can see that,
while LRnce draws negatives from the whole docu-
ment collection Y , in contrast Lf draws negatives
only from YG. Although theoretical implications
on estimation consistency need further investiga-
tion, given the fact that |YG| � |Y |2, in batch
negative sampling reduce the original parameter
estimation problem to a much simpler one: given
xi, rank the relevant passage yi above all others in
YG rather than Y . There is no guarantee that yi can
be ranked higher than any passage Y \ YG, which
harms ranking performance.

4.2 Negative Sampling Strategies

Given the above analysis, this subsection describes
several negative sampling strategies to address the
drawbacks of in-batch negative sampling.

Random sampling samples negatives passages
from Y with equal chance, i.e., treats PN (y) as a
uniform distribution. Despite its simplicity, uni-
form negative/noise has been shown effective in
training language models (Mnih and Teh, 2012).

Context negatives samples negative passages
from those occurred in the same document as yi,
assuming these negatives are less relevant to the
question than yi, but more relevant than rest of the
passage collection. Documents that contain only
one passage are split in half, and the half that does
not contain the answer span is picked as negative.

BM25 negatives samples negatives from top
passages returned by a BM25 model. Previous
work (Karpukhin et al., 2020; Luan et al., 2021)
have shown that such negatives are crucial to build-
ing high accuracy dense retrieval models.

Neural retrieval negatives employs neural re-
trieval models to sample negative passages. We
do this by running the models on the questions in
the training set and then sampling negatives from
the top K predictions. As analyzed by Luan et al.
(2021), encoding dimension and model size are
crucial factors affecting the dense retrieval model
accuracy. Varying encoding dimension and model
capacity allows us to control the relatedness of
the negative passages. In particular, the coarse
negatives are sampled from a dual encoder model
with 3 Transformer layers, and just 25 dimensions
in the encoding outputs; the fine and super fine
negatives are sampled from dual encoders with 12

2Take NQ for example, annotated passages accounts for
less than 0.3% of the total number of wiki passages.

Transformer layers with encoding dimension 512
and 768, respectively.

To illustrate our sampling strategies, Section 7.4
includes examples of all six hard negative types.

5 Hard Negatives in Multi-stage Training

For pre-training and fine-tuning, we use hard nega-
tives in addition to the in-batch negatives. Assum-
ing that there are M hard negatives for each ques-
tion in the training data, at each training epoch we
randomly select N out of M hard negatives. Those
N hard negatives are appended to the in-batch neg-
atives as in the standard dual encoder training3.
Note that the hard negatives for one question are
treated as in-batch negatives for the other ques-
tions in the batch. Therefore, for a batch of size B,
each question is compared during training against
(N + 1)×B passages instead of just B passages
in the standard way to train a dual encoder.

5.1 Hard Negatives for Pre-training

As the generated question-passage pairs can be
noisy, retrieval-based negatives using BM25 or a
semantic similarity model could end up generat-
ing negative pairs that are better (less noisy) than
the synthetic “positive pairs” that result from the
question generation process. To avoid this unde-
sirable condition, we use a heuristic-based hard
negatives at this stage. Specifically, we use context
hard negatives defined in section 4.2. However, this
heuristics assumes that there is a mapping between
documents and passages. That may not always be
the case, as described in Section 7.2 regarding one
of our testing tasks.

5.2 Fusion

We study three fusion methods to investigate how
the models trained with different negative sampling
strategies complement each other.

Mixing. We experiment with mixing all 6 types
of negatives in the pool from where to sample N
negatives during training. During training, we uni-
formly sample from the union of different types
of negatives for each question. We consider this
approach an “early-stage fusion” as opposed to the
next two “late-stage fusion” methods.

Embedding fusion. Here, we do a weighted
concatenation, as ensemble embeddings, of the
question (or passage) embeddings obtained from

3The hard negatives are only applied to the question-to-
passage loss during training and not in the reverse direction.
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the models trained with the different negative strate-
gies. The weights for each embedding type are
tuned based on the performance on the develop-
ment set. Then, we use the ensemble embeddings
to retrieve the relevant passages for the questions.
The advantage of this fusion is that we only need
to perform the retrieval once.

Rank fusion. Following the Reciprocal Rank
Fusion (RRF) (Cormack et al., 2009) method, we
obtain the final ranking results by considering the
ranking positions of each candidate in the rankings
generated by the different models.

Notice that for the “early-stage fusion” approach,
we train only one single model, while for the “late-
stage fusion” approaches, we keep the models
trained with different negatives and ensemble dur-
ing retrieval process.

6 Experimental Setup

We evaluate our proposed approach on two tasks:
firstly, we evaluate on the passage retrieval task for
open-domain question answering (QA) with the
goal of retrieving passages that contain the correct
answer spans given a question. Secondly, to under-
stand how our approach performs on large-scale
text retrieval datasets, we also evaluate on the MS
MARCO passage ranking task.

6.1 Open-Domain QA Retrieval

We evaluate on two open-domain QA datasets: Nat-
ural Questions (NQ) and SQuAD. NQ contains
questions from actual Google search queries and
answers from Wikipedia articles identified by an-
notators. We follow Lee et al. (2019) and convert
the dataset to a format suitable for open-domain
QA. Specifically, we only keep questions with short
answers (no more than five tokens). On the other
hand, SQuAD v1.1 is a commonly used dataset for
reading comprehension tasks.4 In contrast to NQ,
the questions in SQuAD are generated by annota-
tors given paragraphs from Wikipedia. The number
of questions in each dataset is shown in Table 1.

We use Wikipedia as our collection of docu-
ments and knowledge source from where to retrieve
passages that answer the questions. Following Lee
et al. (2019) and Karpukhin et al. (2020), we use an
English Wikipedia dump from Dec.20, 2018. After

4We do not use SQuAD 2.0 because it combines the ques-
tions in SQuAD 1.1 with unanswerable questions. It is hard
to judge if a question is unanswerable in the open domain
setup given that an originally unanswerable question could be
answered by one of the passages in the entire passage pool.

Dataset Train Dev Test
NQ 58,880 6,515 3,610
SQuAD v1.1 70,096 7,921 10,570
MS MARCO 532,761 6,980 43

Table 1: Number of examples in Train/Dev/Test sets

filtering semi-structured data, such as tables and
info-boxes, each document is split into disjoint text
passages of 100 words, which yields 21,015,324
passages in total. In order to be able to compare our
work with the DPR models from Karpukhin et al.
(2020) directly, we use the preprocessed Wikipedia
passages as released by the authors.

For open domain QA, we train our question gen-
eration model by fine-tuning the T5 large model
(Raffel et al., 2020) on NQ, where the model pre-
dicts the question conditioned on its long answer.
We use the model to sample at most 3 questions for
each passage in the collection. This results in 62
million synthetic question-passage pairs in total5.

We report the results using Top-K accuracy for
K = [1, 5, 10, 20, 100], which is the fraction of
K retrieved passages that contain a span with the
answer to the question.
6.2 MS MARCO Passage Ranking

The MS MARCO passage ranking task consists of
two sub-tasks: a full retrieval task and a top-1000
reranking task. In this paper we evaluate on the
full retrieval task only, which consists of retrieving
passages from a collection of web documents con-
taining about 8.8 million passages. All questions in
this dataset are sampled from real and anonymized
Bing queries (Nguyen et al., 2016).

Following Xiong et al. (2021), we report re-
sults on the MS MARCO dev set and TREC test
set from “TREC 2019 DL” track (Craswell et al.,
2020). Table 1 shows the number of questions in
the train/dev/test sets. We report our results using
the MRR@10 and the Recall@1k metrics on the
dev set and the Normalized Discounted Cumulative
Gain (NDCG@10) on the test set.

We generate synthetic questions in a way similar
to as described above but in this case the model is
trained on MS MARCO instead of on NQ.

6.3 Implementation Details

We use the public pre-trained uncased BERT6 as
initial checkpoint for our retrieval models. In or-
der to directly compare with prior works, we use

5See examples of synthetic questions in the Appendix A.
6https://github.com/google-research/bert
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Top
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Top
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Top
10

Top
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Top
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Baseline models
DPR (Single) - - - 78.4 85.4 - - - 63.2 77.2
DPR ours 44.6 68.1 74.5 79.6 86.2 25.3 47.3 56.3 64.4 78.1
BM25 - - - 59.1 73.7 - - - 68.8 80.0
BM25 + DPR - - - 76.6 83.8 - - - 71.5 81.3
ANCE (Single) - - - 81.9 87.5 - - - - -

Distilled models
RocketQA - 74.0 - 82.7 88.5 - - - - -

Our models
Synthetic 31.6 59.2 68.1 74.7 84.7 22.3 44.6 54.2 61.9 75.9

+ Gold 40.5 67.2 75.2 80.6 87.4 30.1 53.7 62.0 69.5 81.2
+ Gold + Uniform 40.5 67.7 75.9 81.3 88.2 33.1 56.7 65.4 72.4 83.4
+ Gold + Coarse 42.4 69.3 77.4 81.8 88.1 33.7 57.3 65.8 72.9 83.8
+ Gold + Fine 42.1 69.4 77.4 82.1 88.1 33.4 57.2 65.5 72.8 83.7
+ Gold + BM25 50.0 72.2 78.1 82.2 87.7 30.7 54.4 63.3 70.9 82.7
+ Gold + Context 51.0 72.4 77.8 82.1 88.1 30.6 53.9 62.7 69.7 81.8
+ Gold + Super Fine 51.0 72.6 77.8 82.2 88.2 26.5 49.2 58.4 66.5 80.0

Early fusion (mixing) 50.4 72.5 78.1 82.6 88.7 33.9 56.9 64.9 71.7 83.2
Late fusion (embedding) 62.2 74.6 79.0 82.7 88.5 44.4 59.4 67.0 73.5 83.8
Late fusion (rank) 47.9 71.9 78.1 82.5 88.6 34.2 58.0 66.7 73.4 82.7

Table 2: Results on open-domain QA NQ and SQuAD retrieval tasks. [Our models] are trained using a two-stage
neural retrieval model that uses hard negatives in both stages. The results of baseline models (except “DPR ours”)
are copied verbatim from the original papers. The missing numbers indicate results that are not reported.

BERTBase for open-domain QA retrieval task and
BERTLarge for the MS MARCO passage retrieval
task. We encode questions and passages into vec-
tors of size 768. We extract 100 hard negatives for
each question and in each training iteration, we ran-
domly pick 2 hard negatives per question to append
to the training batch. We train our models for 200
epochs using Adam with learning rate of 5e-67. We
use recall@1 on the development set as signal for
early stopping. We use Tensorflow version 1.15
and all models are trained on a “4x4” slice of V3
Google Cloud TPU using batches of size 2048.

For question generation, we fine-tune T5 large
on a “8x8” slice of V3 Google Cloud TPU. The
training data consists of (passage/long-answer,
question) pairs, and we truncate passage and
question to 256 and 48 sentencepiece (Kudo and
Richardson, 2018) tokens, respectively. That batch
size is set to 1024 for both NQ and MSMarco. We
use the default learning rate, and fine-tune for 15K
and 30K steps for NQ and MSMarco, respectively.
At inference time we use top-k sampling which is
already supported by T5, and K is set 10.

7Details of hyperparameter tuning can be found in the
Appendix.

7 Results and Discussion

7.1 Results on Open-Domain QA Retrieval
The first rows in Table 2 show the results of
the baseline systems starting with DPR using the
dual encoder model proposed by Karpukhin et al.
(2020)8. For the sake of reproducibility, we re-
implemented the DPR system as described in Sec-
tion 3. In contrast to ours, the original DPR model
does not share the question and passage encoders
from the BERT model and instead uses separate en-
coders for each type of text. Moreover, it does not
have an additional fully connected projection layer
and the loss function that we use is bidirectional
batch-softmax. With these modifications, our im-
plementation (DPR ours) outperforms the original
DPR on both the NQ and SQuAD evaluations.

The next three rows in the table show the perfor-
mance of a strong sparse model BM25, a hybrid
model BM25+DPR from Karpukhin et al. (2020)
and ANCE (Xiong et al., 2021). The second sec-
tion shows the performance of RocketQA (Qu
et al., 2021), i.e. the distilled dual encoder model.
The subsequent rows in Table 2 show the results
of our models starting with the Stage 1 model pre-
trained using synthetic data with context hard nega-
tives; no fine tuning. The models in the rest of table
are fine-tuned from the model trained in Stage 1

8It corresponds to the Single version in their paper that
trains the model on one dataset only.
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MS MARCO Dev TREC DL Test
MRR@10 Recall@1k NDCG@10

Baseline models
BM25-Anserini 18.7 85.7 49.7
ANCE 33.0 95.9 64.8
ME-BERT 33.4 - 68.7
ME-HYBRID-E 34.3 - 70.6
DPRLarge ours 27.2 78.6 59.3

Distilled models
RocketQA 37.0 97.9 -
BERT-BaseDOT 31.5 94.7 66.8
TCT-ColBERT W/ TCT HN+ 35.9 97.0 71.9

Our models
Synthetic 26.5 97.8 58.8
+ Gold 26.6 97.8 58.8
+ Gold + Uniform 33.7 98.2 68.1
+ Gold + Coarse 33.0 98.0 68.1
+ Gold + Fine 33.0 98.3 68.8
+ Gold + BM25 31.9 98.1 66.8
+ Gold + Context 29.6 97.6 65.2
+ Gold + Super Fine 32.1 88.4 66.4

Early fusion (mixing) 34.2 98.0 68.8
Late fusion (embedding) 33.9 98.4 68.1
Late fusion (rank) 32.2 88.4 66.4

Table 3: Results on MS MARCO Dev and TREC DL Test set. Note ANCE uses RoBERTa as the backbone encoder
while all others use BERTLarge. ME-BERT and ME-HYBRID-E use multiple vectors.

using the gold data. Our initial approach is a fine-
tuned model that uses only in-batch negatives. In
this case, it is interesting to notice that the accuracy
rates on NQ are already very close to the results of
ANCE, and the accuracy rates on NQ and SQuAD
outperform both BM25 and DPR. The following six
rows show that the models fine-tuned with our dif-
ferent negative sampling strategies outperform the
model that does not use hard negatives. They also
outperform the baseline models on both NQ and
SQuAD. The difference is statistically significant
(p < 0.05, using the two-tailed t-test). Specifically,
when using super fine hard negatives, our model
achieves the best Top1 and Top5 accuracy rates
on NQ and get a remarkable improvement of 6.4
points and 4.5 points respectively over DPR. The
Top 10/20/100 accuracy rates for the six kinds of
hard negatives are all very similar. On SQuAD,
the model that uses coarse hard negatives achieves
the best accuracy rates and outperforms the hybrid
BM25+DPR model by 1.4 points on Top20 accu-
racy and 2.5 points on Top100 accuracy. We reason
that the performance difference between NQ and
SQuAD is due to the way the datasets were created,
and the fact that SQuAD has much larger token
overlap between questions and passages compared
to NQ. The results illustrate that there is no single
best negative sampling strategy across all datasets.

Regarding fusion, we achieve the best Top100

accuracy on NQ by using early-stage fusion in the
fine tuning stage. For late-stage fusion, we found
that, notably, embedding fusion further improved
the Top1 accuracy by 11.2 and 10.7 points on NQ
and SQuAD, respectively. Even though not directly
comparable with the distilled model, we can see
that the embedding fusion model can achieve com-
parable performance. Rank fusion was helpful to
boost the Top 10/20/100 accuracy rates, but not the
Top 1/5 cases.

7.2 Results on MS MARCO

Table 3 shows the results on MS MARCO Dev
set and TREC DL Test set. The top section of
the table shows the results of the baseline models.
The dense retrieval models, including ANCE, ME-
BERT and ME-HYBRID-E (Luan et al., 2021),
significantly outperform BM25-Anserini (Yang
et al., 2018) with parameters k1=0.82, b=0.68.
ME-BERT is a model in which every passage is
represented by multiple vectors from BERT. ME-
HYBRID-E is a hybrid model of ME-BERT and
BM25-Anserini which linearly combines sparse
and dense scores using a single trainable weight.
Note that ANCE is initialized with RoBERTaBase
and ME-BERT and ME-HYBRID-E are initialized
with BERTLarge. As reference for the performance
gains from our improved negative contrast, we also
include our implementation of DPRLarge based on
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Figure 3: Model Ablation Results on open-domain QA NQ retrieval tasks by removing the hard negatives in stage
1 and removing stage 1 completely.

BERTLarge.

The middle section shows the results of the dis-
tilled models. RocketQA achieves the state-of-
the-art performance on MS MARCO Dev. BERT-
BaseDOT (Hofstätter et al., 2021) uses a ensem-
ble of three BERT-based cross-attention models
to teach a dual encoder student model based on
BERTBase. TCT-ColBERT(Lin et al., 2021) uses
ColBERT (Khattab and Zaharia, 2020) as teacher
with augmented training data containing hard nega-
tives and then distills its knowledge into a student
dual encoder model. Note that our results are not di-
rectly comparable with those models as they distill
additional knowledge from more powerful models
and use different training settings.

The bottom sections of the table shows the re-
sults of our model. Our Stage 1 model is trained
with synthetic data and coarse hard negatives as
the mapping between passages to documents is
not available in this case. This model outperforms
BM25-Anserini and achieves performance close to
our DPR baseline. There is not much gain when
fine-tuning the Stage 1 model using gold data with
in-batch negatives. However, there are consider-
able gains in all the models that use hard negatives.
In particular, the model that uses uniform sampling
negatives achieves the best MRR@10 among all
six types of hard negatives, and also outperforms
ANCE and ME-BERT. We see this as a remarkable
confirmation of the benefits of using hard negatives
in the fine-tuning stage of this task. The recall@1k
for the different types of negatives are very simi-
lar except the super fine hard negatives. This may

be attributed to the false negatives resulting from
the super fine negative sampling given that MS
MARCO only annotates one relevant passage for
each question. The best NDCG@10 on the test
set is achieved when the model is trained with fine
hard negatives. Both early and late (embedding)
fusion perform similarly on these metrics and they
are highly competitive against ME-HYBRID-E, the
best performing baseline model, but rank fusion did
not help much.

7.3 Model Ablations

We conduct ablation experiments in order to under-
stand the contribution of each component in our
models and show the Top1 and Top100 accuracy
rates on the open-domain QA NQ dataset in Fig-
ure 3. We observe the same trend on other TopK re-
sults9. The left bars present the performance of the
models using the full two-stage training reported
in the second part of Table 2. We first remove the
hard negatives from Stage 1 but keep them in the
fine tuning stage. As shown in the middle bars, the
accuracy rates drop across all settings except on
the one using super fine hard negatives. This shows
that the context hard negatives benefit the training
with synthetic data and that using hard negatives
in both stages is the best performing option. We
go further and remove the Stage 1 training alto-
gether. In this way we are fine tuning directly on
the BERT checkpoint. The right bars show that the
performance drops significantly and points to the
fact that using synthetic data to pre-train the system

9See the full table of ablation results in the Appendix B.
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Question Who sings the song Never Be the Same
Answer Camila Cabello
Gold Never Be the Same (Camila Cabello song) “Never Be the Same” is a song by Cuban-American singer

Camila Cabello from her debut studio album, “Camila” (2018). The song was written by Cabello, Noonie
Bao and Sasha Yatchenko ......

In-batch American Civil War and Cuba’s Ten Years’ War, U.S. businessmen began monopolizing the devalued
sugar markets in Cuba. In 1894, 90% of Cuba’s total exports went to the United States...

Uniform William Robert Brooks (June 11, 1844 – May 3, 1921) was a British-born American astronomer, mainly
noted as being one of the most prolific discoverers of new comets of all time......

Coarse and his group the Bob-cats. In 2008 Crosby’s rendition of the song appeared as part of the soundtrack of
“Fallout 3”. The song made a repeat appearance in “Fallout 4” in 2015. Happy Times (song) “Happy
Times” is a jazz ballad written by American lyricist Sylvia Fine ......

Fine Sisters (song) "Sisters" is a popular song written by Irving Berlin in 1954, best known from the 1954
movie “White Christmas”. Both parts were sung by Rosemary Clooney (who served as Vera-Ellen’s
singing vocal dub for this song, while Trudy Stevens dubbed Vera-Ellen’s ......

BM25 release of the album. The song has been certified Gold by the British Phonographic Industry (BPI). An
accompanying but unofficial music video for “Never Be the Same” was released on Cabello’s personal
YouTube channel on December 29, 2017......

Context “Never Be the Same” has been described as a “dark” pop ballad. A “NME” writer described it as
“bombastic” electro. The upbeat track features Cabello singing falsetto in the pre-chorus. According to
sheet music published by Sony/ATV Music Publishing on Musicnotes.com, ......

Super Fine wrote in his album review, “Cabello is at her peak on [“Never Be the Same”] which shows off what sets
her apart from the pop pack.[...] That she can quickly switch to her full voice for the desperate...”

Table 4: Examples of six types of negative sampling (plus in-batch) for a given question, answer and gold passage.

is highly effective.

7.4 Examples of Hard Negatives

Table 4 shows examples of the six types of neg-
atives plus, for reference, one in-batch negative
that was selected from the passages in one of the
training batches of NQ10. Given a question and
its gold passage, the coarse hard negative passage
is on topic, about a song, but not about the song
mentioned in the question. The fine hard negative
passage describes a different song from the one in
the question but it mentions the singer of the song
discussed. This singer-song relationship is semanti-
cally close to the relationship observed in the gold
passage. The BM25, context and super fine hard
negative passages mention the song in the question
and they are semantically closer to the gold passage
in comparison to the coarse and fine hard negatives.
It is worth noticing the BM25 negative seems to be
a plausible answer to the question11.

8 Conclusions

We presented a multi-stage system for neural pas-
sage retrieval based on models that combine the use
of synthetic data, negative sampling and fusion. We
trained BERT-based dual encoder models using a

10See examples of MS MARCO data in the Appendix C.
11“Never Be the Same” was released on Cabello’s personal

YouTube channel. However, it does not imply that the song is
sung by Cabello.

two-stage system and demonstrated the positive im-
pact of negative sampling in both the pre-training
stage, that uses synthetic data, and the fine-tuning
stage, that uses supervised data. Results of our
pre-training on synthetic data with hard negatives
showed the additive benefits of using both methods
in combination. We tested our models on passage
retrieval tasks and verified that hard negatives in
fine-tuning led to considerable gains over previous
dense and sparse retrieval models, including on
tasks where fine-tuning alone had not shown much
improvement. We achieved even greater gains with
early- and late-stage fusion. Overall, the combined
contributions of synthetic data for pre-training, dif-
ferent negative sampling strategies and late fusion
allowed us to achieve state-of-the-art retrieval per-
formance on Natural Questions and SQuAD and
highly competitive results on MS MARCO. Our
results encourage us to keep exploring this area
and investigate similar mechanisms to improve
the reranking stage for neural information retrieval
and the reading comprehension stage in end-to-end
question answering systems.
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Natural Questions SQuAD
Top

1
Top

5
Top
10

Top
20

Top
100

Top
1

Top
5

Top
10

Top
20

Top
100

Full model
Gold 40.5 67.2 75.2 80.6 87.4 30.1 53.7 62.0 69.5 81.2
Gold + Uniform 40.5 67.7 75.9 81.3 88.2 33.1 56.7 65.4 72.4 83.4
Gold + Coarse 42.4 69.3 77.4 81.8 88.1 33.7 57.3 65.8 72.9 83.8
Gold + Fine 42.1 69.4 77.4 82.1 88.1 33.4 57.2 65.5 72.8 83.7
Gold + BM25 50.0 72.2 78.1 82.2 87.7 30.7 54.4 63.3 70.9 82.7
Gold + Context 51.0 72.4 77.8 82.1 88.1 30.6 53.9 62.7 69.7 81.8
Gold + Super Fine 51.0 72.6 77.8 82.2 88.2 26.5 49.2 58.4 66.5 80.0
Gold + Mixed 50.4 72.5 78.1 82.6 88.7 33.9 56.9 64.9 71.7 83.2

No hard negative in Stage 1
Gold 39.0 65.9 73.9 79.8 87.1 28.1 51.3 59.9 67.2 80.0
Gold + Uniform 40.0 67.2 75.6 81.6 88.0 30.6 54.7 63.2 70.7 82.8
Gold + Coarse 41.3 68.0 76.0 81.6 88.2 30.7 54.6 63.3 70.7 82.6
Gold + Fine 39.7 67.6 76.0 81.2 88.0 31.0 54.3 63.4 70.5 82.5
Gold + BM25 47.3 70.8 77.0 81.4 87.4 27.0 50.3 59.8 67.9 80.8
Gold + Context 49.4 71.2 77.2 81.4 87.6 28.8 52.4 61.3 68.5 80.9
Gold + Super Fine 51.8 71.1 77.0 81.5 87.2 27.9 50.2 59.6 67.2 79.8
Gold + Mixed 48.9 72.0 78.0 82.2 88.1 32.0 55.8 64.4 71.5 83.3

No Stage 1
Gold 35.9 62.2 70.3 77.2 85.5 25.0 46.5 54.7 62.4 75.7
Gold + Uniform 36.3 64.1 72.8 78.6 86.1 27.0 48.3 57.0 64.3 77.7
Gold + Coarse 39.2 65.5 73.2 78.8 85.9 30.5 49.7 58.5 66.1 79.8
Gold + Fine 39.5 65.8 73.8 79.3 86.1 28.7 48.1 56.6 64.7 77.7
Gold + BM25 44.6 68.1 74.5 79.6 86.2 25.3 47.3 56.3 64.4 78.1
Gold + Context 46.5 68.5 74.7 79.3 86.5 28.2 47.6 56.3 63.8 77.4
Gold + Super Fine 36.8 63.9 71.9 78.2 85.7 25.3 47.3 55.4 63.6 77.2
Gold + Mixed 44.0 67.1 74.3 79.7 86.1 28.3 50.4 59.3 66.7 80.0

Table 5: Model Ablation Results on Open Domain QA NQ and SQuAD retrieval tasks by removing the hard
negatives in stage 1 and removing stage 1 completely.
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Passage Synthetic Questions
North Park Secondary School is a public high school located at
the major intersection of Williams Parkway and North Park Drive
in Brampton, Ontario, Canada. It was founded in 1978, making
it one of the oldest high schools in the area. North Park is best
known for being one of three high schools in Brampton to offer
the IBT program, a program using business and technology to
enrich the learning of its students. Students in the IBT program
are often required to bring a device such as a laptop to guide
through courses by filing notes

why do students go to north park school
what is the type of school north park high school
where is north park secondary school in brampton ontario

age 18 and over, there were 93.1 males. The median income for
a household in the CDP was $43,125, and the median income for
a family was $45,327. Males had a median income of $36,524
versus $29,861 for females. The per capita income for the CDP
was $19,670. About 9.7% of families and 9.9% of the population
were below the poverty line, including 14.5% of those under age
18 and 8.7% of those age 65 or over. In the state legislature,
Valley Springs is in , and . Federally, Valley Springs is in . Valley
Springs, California Valley Springs (formerly,

what is the poverty line in valley springs ca
what is the median income in valley springs ca
what is the largest city in the central valley of california

Start recording at any time during a conference call. Control
as you record by pausing and resuming recording. Recording
can be initiated by any touch-tone phone. Playback toll-free via
phone access, start, stop, rewind and fast forward at your control
using touch-tone commands on the phone keypad.

are tap phones recording
how to record a conference call
can you see what you record on your phone

Updated PANDAS signs and symptoms (1) Pediatric onset. The
first symptoms of PANDAS are most likely to occur between 5
and 7 years of age. Symptoms can occur as early as 18 months of
age or as late as 10 years of age. If the first clinically recognized
episode is detected after the age of 10, it is unlikely true initial
episode, but the recurrent one.

child pandas symptoms
age of onset of pandas
what age can you be affected by pandas

Table 6: Examples of Synthetic Data

Question Genetic Predispositions definition psychology
Gold A genetic predisposition is a genetic effect which influences the phenotype of an organism but which

can be modified by the environmental conditions. Genetic testing is able to identify individuals who
are genetically predisposed to certain health problems.redisposition is the capacity we are born with to
learn things such as language and concept of self. Negative environmental influences may block the
predisposition (ability) we have to do some things.

In-batch They’re loaded with nutrients, called antioxidants, that are good for you. Add more fruits and vegetables
of any kind to your diet. It’ll help your health. Some foods are higher in antioxidants than others, though.
The three major antioxidant vitamins are beta-carotene, vitamin C, and vitamin E.

Uniform How to Deal With a Liar. Do you know someone who can’t seem to utter the truth? Some people lie to
make themselves look good or to get what they want, and others because they actually believe what the...

Coarse Prevention of Musculoskeletal Disorders in the Workplace. Musculoskeletal disorders (MSDs) affect the
muscles, nerves and tendons. Work related MSDs (including those of the neck, upper extremities and
low back) are one of the leading causes of lost workday injury and illness.

Fine Mycoplasma pneumoniae (M. pneumoniae) is an atypical bacterium (the singular form of bacteria)
that causes lung infection. It is a common cause of community-acquired pneumonia (lung infections
developed outside of a hospital).M. pneumoniae infections are sometimes referred to as walking pneu-
monia..n general, M. pneumoniae infection is a mild illness that is most common in young adults and
school-aged children. The most common type of illness caused by these bacteria, especially in children,
is tracheobronchitis, commonly called a chest cold.

BM25 There is definitely a genetic predisposition to arterial disease and the risk factors that cause it.There have
been certain genetic abnormalities that have been identified.here is definitely a genetic predisposition to
arterial disease and the risk factors that cause it.

Context ... are at risk for loss of health insurance if they are discovered to have genetic predispositions for health
problems. The national center for genome resources found that 85 percent of those polled think employers
should not have access to information about their employees genetic conditions risks or predispositions.
2 the us federal government has so far taken only limited measures against discrimination based on
genetic testing...

Super Fine Understanding genetic predisposition to disease and knowledge of lifestyle modifications that either
exacerbate the condition or that lessen the potential for diseases (i.e., no smoking or drinking) ...

Table 7: Examples of negative sampling strategies (plus in-batch) for the MS MARCO dataset.


