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Abstract

We present a simple and effective pretrain-
ing strategy – bidirectional training (BiT) for
neural machine translation. Specifically, we
bidirectionally update the model parameters at
the early stage and then tune the model nor-
mally. To achieve bidirectional updating, we
simply reconstruct the training samples from
“src→tgt” to “src+tgt→tgt+src” without any
complicated model modifications. Notably,
our approach does not increase any parameters
or training steps, requiring the parallel data
merely. Experimental results show that BiT
pushes the SOTA neural machine translation
performance across 15 translation tasks on 8
language pairs (data sizes range from 160K to
38M) significantly higher. Encouragingly, our
proposed model can complement existing data
manipulation strategies, i.e. back translation,
data distillation and data diversification. Ex-
tensive analyses show that our approach func-
tions as a novel bilingual code-switcher, ob-
taining better bilingual alignment.

1 Introduction

Recent years have seen a surge of interest in neural
machine translation (NMT, Luong et al., 2015; Wu
et al., 2016; Gehring et al., 2017; Vaswani et al.,
2017) where it benefits from a massive amount of
training data. But obtaining such large amounts of
parallel data is not-trivial in most machine transla-
tion scenarios. For example, there are many low-
resource language pairs (e.g. English-to-Tamil),
which lack adequate parallel data for training.

Although many approaches about fully exploit-
ing the parallel and monolingual data are pro-
posed, e.g. back translation (Sennrich et al., 2016a),
knowledge distillation (Kim and Rush, 2016) and
data diversification (Nguyen et al., 2020), the pre-
requisite of these approaches is to build a well-
performed baseline model based on the parallel
data. However, Koehn and Knowles (2017); Lam-
ple et al. (2018); Sennrich and Zhang (2019) em-

pirically reveal that NMT runs worse than their
statistical or even unsupervised counterparts in low-
resource conditions. Here naturally arise a ques-
tion: Can we find a strategy to consistently improve
NMT performance given the parallel data merely?

We decide to find a solution from human learn-
ing behavior. Pavlenko and Jarvis (2002); Dworin
(2003); Chen et al. (2015) show that bidirec-
tional language learning helps master bilingual-
ism. In the context of machine translation, both
the source→target and target→source language
mappings may benefit bilingual modeling, which
motivates many recent studies, e.g. dual learn-
ing (He et al., 2016) and symmetric training (Cohn
et al., 2016; Liang et al., 2007). However, their
approaches rely on external resources (e.g. word
alignment or monolingual data) or complicated
model modifications, which limit the applicabil-
ity of the method to a broader range of languages
and model structures. Accordingly, we turn to pro-
pose a simple data manipulation strategy and trans-
fer the bidirectional relationship through bidirec-
tional training (§2.2). The core idea is using a
bidirectional system as an initialization for a uni-
directional system. Specifically, to make the most
of the parallel data, we first reconstruct the train-
ing samples from “

−→
B : source→target” to “

←→
B :

source+target→target+source”, where the train-
ing data was doubled. Then we update the model
parameters with

←→
B in the early stage, and tune the

model with normal “
−→
B source→target” direction.

We validated our approach on several bench-
marks across different language families and
data sizes, including IWSLT21 En↔De, WMT16
En↔Ro, WMT19 En↔Gu, IWSLT21 En↔Sw,
WMT14 En↔De, WMT19 En↔De, WMT17
Zh↔En and WAT17 Ja↔En. Experimental re-
sults show that the proposed bidirectional train-
ing (BiT) consistently and significantly improves
the translation performance over the strong Trans-
former (Vaswani et al., 2017). Also, we show that
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BiT can complement existing data manipulation
strategies, i.e. back translation, knowledge distilla-
tion and data diversification. Extensive analyses in
§3.3 confirm that the performance improvement in-
deed comes from the better cross-lingual modeling
and our method works like a novel code-switching
method.

2 Bidirectional Training

2.1 Preliminary

Given a source sentence x, an NMT model gener-
ates each target word yt conditioned on previously
generated ones y<t. Accordingly, the probability
of generating y is computed as:

p(y|x) =
T∏
t=1

p(yt|x,y<t; θ) (1)

where T is the length of the target sequence and
the parameters θ are trained to maximize the likeli-
hood of a set of training examples according to
L(θ) = arg maxθ log p(y|x; θ). Typically, we
choose Transformer (Vaswani et al., 2017) as its
SOTA performance. The training examples can be
formally defined as follows:

−→
B = {(xi,yi)}Ni=1 (2)

whereN is the total number of sentence pairs in the
training data. Note that in standard MT training, the
x is fed into the encoder and y<t into the decoder
to finish the conditional estimation for yt, thus the
utilization of

−→
B is directional, i.e. xi→yi.

2.2 Pretraining with Bidirectional Data

Motivation The motivation is when human learn
foreign languages with translation examples, e.g.
xi and yi. Both directions of this example, i.e.
xi→yi and yi→xi, may help human easily master
the bilingual knowledge. Motivated by this, Levin-
boim et al. (2015); Liang et al. (2007) propose to
modelling the invertibility between bilingual lan-
guages. Cohn et al. (2016) introduce extra bidi-
rectional prior regularization to achieve symmetric
training from the point view of training objective.
He et al. (2018); Zheng et al. (2019); Ding et al.
(2020a) enhance the coordination of bidirectional
corpus with model level modifications. Different
from above methods, we model both directions of
a given training example by a simple data manipu-
lation strategy.

Our Approach Many studies have shown that
pretraining could transfer the knowledge and
data distribution, hence improving the generaliza-
tion (Hendrycks et al., 2019; Mathis et al., 2021).
Here we want to transfer the bidirectional knowl-
edge among the corpus. Specifically, we propose
to first pretrain MT models on bidirectional corpus,
which can be defined as follows:

←→
B = {(xi,yi) ∪ (yi,xi)}Ni=1 (3)

such that the θ in Equation 1 can be updated by
both directions. Then the bidirectional pretraining
objective can be formulated as:

←→
L (θ) =

Forward:
−→
Lθ︷ ︸︸ ︷

arg max
θ

log p(y|x; θ) (4)

+ arg max
θ

log p(x|y; θ)︸ ︷︷ ︸
Backward:

←−
Lθ

(5)

where the forward
−→
Lθ and backward

←−
Lθ are opti-

mized iteratively.
From data perspective, we achieve the bidirec-

tional updating as follows: 1) swapping the source
and target sentences of a parallel corpus, and 2) ap-
pending the swapped data to the original. Then the
training data was doubled to make better and full
use of the costly bilingual corpus. The pretraining
can acquire general knowledge from bidirectional
data, which may help better and faster learning
further tasks. Thus, we early stop BiT at 1/3 of
the total training steps (we discuss its reasonabil-
ity in §3.1). In order to ensure the proper training
direction, we further train the pretrained model on
required direction

−→
B with the rest of 2/3 training

steps. Considering the effectiveness of pretrain-
ing (Mathis et al., 2021) and clean finetuning (Wu
et al., 2019b), we introduce a combined pipeline:←→
B → −→B as out best training strategy. There are

many possible ways to implement the general idea
of bidirectional pretraining. The aim of this paper
is not to explore the whole space but simply to
show that one fairly straightforward implementa-
tion works well and the idea is reasonable.

3 Experiments

3.1 Setup
Data Main experiments in Table 1 are con-
ducted on five translation datasets: IWSLT21
English↔German (Nguyen et al., 2020),
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Data Source IWSLT14 WMT16 IWSLT21 WMT14 WMT19
∆Size 160K 0.6M 2.4M 4.5M 38M

Direction En-De De-En En-Ro Ro-En En-Sw Sw-En En-De De-En En-De De-En Ave.

Transformer 29.2 35.1 33.9 34.1 28.8 48.5 28.6 32.1 39.9 40.1 –
+BiT 29.9† 36.3‡ 35.2‡ 35.9‡ 29.9‡ 49.9‡ 29.7‡ 32.9† 40.5† 41.6‡ +1.1

Table 1: Comparison with previous AT work on several widely-used benchmarks, including IWSLT14 En↔De,
WMT16 En↔Ro, IWSLT21 En↔Sw, WMT14 En↔De and WMT19 En↔De. “‡/†” indicates significant differ-
ence (p < 0.01/0.05) from corresponding baselines, and this leaves as default symbol in Table 2-6.

WMT16 English↔Romania (Gu et al.,
2018), IWSLT21 English↔Swahili1, WMT14
English↔German (Vaswani et al., 2017) and
WMT19 English↔German2. The data sizes
can be found in Table 1, ranging from 160K to
38M. Two distant language pairs in Table 2 are
WMT17 Chinese↔English (Hassan et al., 2018)
and WAT17 Japanese→English (Morishita et al.,
2017), containing 20M and 2M training examples,
respectively. The monolingual data used for
back translation in Table 3 is randomly sampled
from publicly available News Crawl corpus3.
We use same valid& test sets with previous
works for fair comparison except IWSLT21
English↔Swahili, where we follow Ding et al.
(2021d) to sample 5K/ 5K sentences from the
training set as valid/ test sets. We preprocess all
data via BPE (Sennrich et al., 2016b) with 32K
merge operations. We use tokenized BLEU (Pap-
ineni et al., 2002) as the evaluation metric for all
languages except English→Chinese, where we use
SacreBLEU4 (Post, 2018). The sign-test (Collins
et al., 2005) is used for statistical significance test.

Model We validated our proposed BiT on Trans-
former (Vaswani et al., 2017)5. All language
pairs are trained on Transformer-BIG except
IWSLT14 En↔De and WMT16 En↔Ro (trained
on Transformer-BASE) because of their extremely
small data size. For fair comparison, we set beam
size and length penalty as 5 and 1.0 for all lan-
guage pairs. It is worth noting that our data-level
approach neither modifies model structure nor adds
extra training loss, thus it’s feasible to deploy on
any frameworks, e.g. DynamicConv (Wu et al.,

1https://iwslt.org/2021/low-resource
2http://www.statmt.org/wmt19/

translation-task.html
3http://data.statmt.org/news-crawl/
4BLEU+case.mixed+lang.en-

zh+numrefs.1+smooth.exp+test.wmt17+tok.zh+version.1.5.1
5https://github.com/pytorch/fairseq

2019a) and non-autoregressive MT (Gu et al., 2018;
Ding et al., 2020b, 2021c), and training orders, e.g.
curriculum learning (Liu et al., 2020a; Zhou et al.,
2021; Zhan et al., 2021; Ding et al., 2021a). We
will explore them in the future works.

Training For Transformer-BIG models, we em-
pirically adopt large batch strategy (Edunov et al.,
2018) (i.e. 458K tokens/batch) to optimize the per-
formance. The learning rate warms up to 1× 10−7

for 10K steps, and then decays for 30K (data vol-
umes range from 2M to 10M) / 50K (data vol-
umes large than 10M) steps with the cosine sched-
ule; For Transformer-BASE models, we empirically
adopt 65K tokens per batch for small data sizes,
e.g. IWSLT14 En→De and WMT16 En→Ro. The
learning rate warms up to 1 × 10−7 for 4K steps,
and then decays for 26K steps. For regularization,
we tune the dropout rate from [0.1, 0.2, 0.3] based
on validation performance, and apply weight de-
cay with 0.01 and label smoothing with ε = 0.1.
We use Adam optimizer (Kingma and Ba, 2015)
to train the models. We evaluate the performance
on an ensemble of last 10 checkpoints to avoid
stochasticity.

Someone may doubt that BiT heavily depends on
how to properly set the early-stop steps. To dispel
the doubt, we investigate whether our approach is
robust to different early-stop steps. In preliminary
experiments, we tried several simple fixed early-
stop steps according to the size of training data (e.g.
training 40K En-De and early stop at 10K/ 15K/
20K, respectively). We found that both strategies
achieve similar performances. Thus, we decide to
choose a simple and effective method (i.e. 1/3 of
the total training steps) for better reprehensibility.

3.2 Results

Results on Different Data Scales we exper-
imented on 10 language directions, including
IWSLT14 En↔De, WMT16 En↔Ro, IWSLT21

https://iwslt.org/2021/low-resource
http://www.statmt.org/wmt19/translation-task.html
http://www.statmt.org/wmt19/translation-task.html
http://data.statmt.org/news-crawl/
https://github.com/pytorch/fairseq
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Data Source WMT17 WAT17
Size 20M 2M
Direction Zh-En En-Zh Ja-En

Transformer 23.7 33.2 28.1
+BiT 24.9‡ 33.9† 28.8†

Table 2: Performance on distant language pairs, includ-
ing WMT17 Zh↔En and WAT17 Ja→En. To perform
BiT on languages in different alphabets, we share the
sub-words dictionaries between languages.

En↔Sw, WMT14 En↔De and WMT19 En↔De.
The smallest one merely contains 160K sentences,
while the largest direction includes 38M sentence
pairs. Table 1 reports the results, we show that
BiT achieves significant improvements over strong
baseline Transformer in 7 out of 10 directions un-
der the significance test p < 0.01, and the rest of
3 directions also show promising performance un-
der the significance test p < 0.05, demonstrating
the effectiveness and universality of our proposed
bidirectional pretraining strategy.

Notably, one advantage of BiT is it saved 1/3 of
the training time for the reverse direction. For ex-
ample, the pretrained BiT checkpoint for En→De
can be used to tune the reverse direction De→En.
This advantage shows that BiT could be an efficient
training strategy for multiple training direction, e.g.
multi-lingual MT tasks (Ha et al., 2016).

Results on Distant Language Pairs Inspired by
Ding et al. (2021b), to dispel the doubt that BiT
could merely be applied on languages within the
same language family, e.g. English and German,
we report the results of BiT on Zh↔En and Ja→En
language pairs, which belong to different language
families (i.e. Indo-European, Sino-Tibetan and
Japonic).

Table 2 lists the results, as seen, compared with
baselines, our method significantly and incremen-
tally improves the translation quality in all cases.
In particular, BiT achieves averaged +0.9 BLEU
improvement over the baselines, showing the ef-
fectiveness and universality of our method across
language pairs.

Complementary to Related Work Recent stud-
ies start to combine pretraining and traditional data
manipulation approaches for better model perfor-
mance (Conneau and Lample, 2019; Liu et al.,
2020b, 2021). To show the complementary be-
tween our proposed pretraining method BiT and

Model BLEU

Transformer-BIG/+BiT 28.6/ 29.7‡

+BT(Caswell et al., 2019)/+BiT 30.5/ 31.2†

+KD(Kim and Rush, 2016)/+BiT 29.3/ 30.1†

+DD(Nguyen et al., 2020)/+BiT 30.1/ 30.7†

Table 3: Complementary to other works. “/+BiT”
means combining BiT with corresponding works, and
BLEU scores of BiT followed their counterparts with
“/”. Experiments are conducted on WMT14 En-De.

Model BLEU

Transformer-BIG 28.6
+mRASP (Lin et al., 2020) 29.3†

+CSP (Yang et al., 2020) 29.4†

+BiT (Ours) 29.7‡

Table 4: Comparison with previous code-switch ap-
proaches on bilingual data, where we follow the best
settings of “+mRASP” and “+CSP” as default without
extra parameter tuning. For fair comparison, the pre-
train/ finetune steps are identical with ours.

related data manipulation works, we list three rep-
resentative data manipulation approaches for NMT:
a) Tagged Back Translation (BT, Caswell et al.
2019) combines the synthetic data generated with
target-side monolingual data and parallel data; b)
Knowledge Distillation (KD, Kim and Rush 2016)
trains the model with sequence-level distilled par-
allel data; c) data diversification (DD, Nguyen et al.
2020) diversifies the data by applying KD and BT
on parallel data. As seen in Table 3, BiT can be
applied on existing data manipulation approaches
and yield further significant improvements.

3.3 Analysis
We conducted analyses to better understand BiT.
Unless otherwise stated, all results are reported on
the WMT14 En-De.

BiT works as a simple bilingual code-switcher
Lin et al. (2020); Yang et al. (2020) employ the
third-party tool to obtain the alignment informa-
tion to perform code-switching pertraining, where
partial of the source tokens is replaced with the
aligned target ones. But training such alignment
model is time-consuming and the alignment errors
may be propagated. Actually, BiT can be viewed as
a novel yet simple bilingual code-switcher, where
the switch span is the whole sentence and both the
source- and target-side sentences are replaced with
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Model AER P R

Transformer-BIG 27.1% 71.2% 74.7%
+BiT 24.3% 74.6% 76.9%

Table 5: The AER scores of alignments on En-De.

Model En→Gu Gu→En Ave.∆

Base 3.0 8.2 -
+BT 2.6 10.1 -

Base+BiT 4.2‡ 9.0‡ +1.0
+BT 5.8‡ 12.4‡ +2.8

Table 6: Results for En↔Gu on WMT2019 test
sets. “Ave. ∆” shows the averaged improvements of
“Base+BiT” v.s. “Base” and their corresponding “+BT”
comparisons.

the probability 0.5. Take a sentence pair {“Bush
held a talk with Sharon”→“布什 与 沙龙 举行
了会谈”} in English→Chinese dataset as an ex-
ample, during pretraining phase, the reconstructed
corpus contains {“Bush held a talk with Sharon”
→ “布什与沙龙举行了会谈”} and its reversed
version “布什 与 沙龙 举行 了 会谈” → “Bush
held a talk with Sharon”, simultaneously. For the
English→Chinese direction, the reversed sentence
pair exactly belongs to the sentence-level switch
with a probability of 0.5. For fair comparison, we
implement Lin et al., 2020; Yang et al., 2020’s ap-
proaches in bilingual data scenario. Table 4 show
the superiority of BiT, indicating BiT is a good
alternative to code-switch in bilingual scenario.

BiT improves alignment quality Our proposed
BiT intuitively encourages self-attention to learn
bilingual agreement, thus has the potential to in-
duce better attention matrices. We explore this
hypothesis on the widely-used Gold Alignment
dataset6 and follow Tang et al. (2019) to perform
the alignment. The only difference being that we
average the attention matrices across all heads from
the penultimate layer (Garg et al., 2019). The align-
ment error rate (AER, Och and Ney 2003), pre-
cision (P) and recall (R) are evaluation metrics.
Table 5 summarizes that BiT allows Transformer to
learn better attention matrices, thereby improving
alignment performance (24.3 vs. 27.1).

6http://www-i6.informatik.rwth-aachen.
de/goldAlignment, the original dataset is German-
English, we reverse it to English-German.

BiT works for extremely low-resource settings
Researches may doubt BiT may fail on extremely
low-resource settings where back-translation even
does not work. To dispel this concern, we con-
duct experiments on WMT19 English↔Gujurati7

in Table 6. Specifically, we follow Li et al. (2019)
to collect and preprocess the parallel data to build
the base model “Base” and our “Base+BiT” model.
For a fair comparison, we sample the monolingual
English and Gujurati sentences to ensure Parallel:
Monolingual = 1:1 to generate the synthetic data.
As seen, when directly applying back-translation
(BT) on the En↔Gu Base model, there indeed
shows a slight performance drop (-0.4 BLEU).
However, our “BiT” significantly improves the ini-
tial Base model by averaged +1.0 BLEU, and mak-
ing the BiT-equipped BT more effective compared
to vanilla BT (+2.8 BLEU). These findings on ex-
tremely low-resource settings demonstrate that 1)
our BiT consistently works well; and 2) BiT pro-
vides a better initial model, thus rejuvenating the
effects of back-translation.

4 Conclusion and Future Works

In this study, we propose a pretraining strategy for
NMT with parallel data merely. Experiments show
that our approach significantly improves translation
performance, and can complement existing data
manipulation strategies. Extensive analyses reveal
that our method can be viewed as a simple yet better
bilingual code-switching approach, and improves
bilingual alignment quality.

Encouragingly, with BiT, our system (Ding et al.,
2021d) got the first place in terms of BLEU scores
in IWSLT20218 low-resource track. It will be in-
teresting to integrate BiT into our previous sys-
tems (Ding and Tao, 2019; Wang et al., 2020) and
validate its effectiveness on industrial level compe-
titions, e.g. WMT9. It is also worthwhile to explore
the effectiveness of our proposed bidirectional pre-
training strategy on multilingual NMT task (Ha
et al., 2016).
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