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Abstract

A private learning scheme TextHide was re-
cently proposed to protect the private text data
during the training phase via so-called instance
encoding. We propose a novel reconstruction
attack to break TextHide by recovering the pri-
vate training data, and thus unveil the privacy
risks of instance encoding. We have experi-
mentally validated the effectiveness of the re-
construction attack with two commonly-used
datasets for sentence classification. Our attack
would advance the development of privacy pre-
serving machine learning in the context of nat-
ural language processing.

1 Introduction

With the development of deep learning technolo-
gies, a large number of applications in various do-
mains (e.g., image classification and NLP) have
been greatly promoted with significantly improved
performance. However, this also arouses serious
privacy concerns since a large portion of the train-
ing data are usually collected from individuals.
For instance, the diagnosis systems in hospitals
or healthcare institutions will be trained on the pa-
tients’ private data, such as medical history (Pham
et al., 2017), and radiology medical images (Hosny
et al., 2018). In addition, it has been reported that
the input keyboard prediction model can be trained
with the users’ data on mobile devices (Hard et al.,
2018), and the assisted composing function for
emails/texts can be trained with users’ personal
messages (Chen et al., 2019).

There have been various works on protecting
users’ data privacy during the training, which are
categorized into two main types: 1) composing
cryptographic protocols for securely training the
data (Bonawitz et al., 2016; Mohassel and Zhang,
2017; Mohassel and Rindal, 2018) which result in
high computational and communication costs in
general; 2) leveraging the differential privacy tech-
niques (Dwork et al., 2006; Chaudhuri et al., 2011;

Hong et al., 2015; Abadi et al., 2016) to prevent
the information leakage which typically cause sig-
nificant accuracy loss. Despite the above demerits,
both types of methods can ensure provable privacy
guarantees for the training data. This also raises the
question: are there any private learning schemes
which can preserve both accuracy and efficiency?

To this end, there are several techniques (Huang
et al., 2020a,b) which privately train the model
via the so-called instance encoding scheme, by en-
coding the local data into a somewhat “encrypted”
(encoded) data with a mixup scheme (Zhang et al.,
2018), and directly training the model on the en-
coded data. Data privacy is claimed to be well
preserved through the encoding method while only
causing minor accuracy loss with the merit of the
mixup scheme. In this paper, we study the pri-
vacy risks of the instance encoding scheme, and
show that the instance encoding cannot provide
sufficient privacy protection as the conventional
cryptographic techniques against well-designed at-
tacks. Specifically, we design a reconstruction at-
tack to recover the original data from the privately
encoded data. We focus on the instance encoding
in language understanding, i.e., TextHide (Huang
et al., 2020a) as the state-of-the-art technique.

2 TextHide

The TextHide (Huang et al., 2020a) aims to protect
the private text data under the federated learning
setting. First, the input text is pre-processed with
a BERT transformer encoder to output the corre-
sponding text representation. Then, for “encryp-
tion”, TextHide will apply the instance encoding to
mix up the original text representation with some
randomly selected text (representations), which
will be fed into the training model of various down-
stream language understanding tasks, e.g., classi-
fication, and question answering. Formally, given
the input text xi with the label yi, we denote the
text representation as ei = φ(xi), where φ(·) is
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a pre-tuned BERT model. The private instance
encoded data ẽi can be generated as below:

ẽi = σ ◦
K∑
j=1

λjej (1)

where λj is chosen uniformly at random such
that

∑K
j λj = 1, the sign-flipping mask σ ∈

{−1, 1}d is also chosen uniformly at random, and
d denotes the dimension of the encoding vector. ◦
represents the Hardamard (element-wise) multipli-
cation, and K is the number of combined mix en-
coding data (as the security parameter). Therefore,
the label (one-hot vector) ỹi of the ẽi is updated
as: ỹi =

∑K
j=1 λjyj , which is the element-wise

addition across yj . Then, for the training with one
data batch B, each data (xi, yi) ∈ B will be pri-
vately encoded as Equation 1, where the K data
for mixup are randomly sampled from the batch B.
TextHide also specifies another parameter m as the
size of the mask pool to facilitate the security of in-
stance encoding against the reconstruction attacks.
These formalize the (m,K)-TextHide (Algorithm
1 in (Huang et al., 2020a)), which can be integrated
into the language training process to ensure text
privacy. For instance, (m = 0,K = 1) is the base-
line training setting without protection. A larger
K will sacrifice some accuracy while improving
the privacy (higher costs on recovering the original
data), which reflects the trade-off between privacy
and accuracy for private training.

Furthermore, TextHide can utilize another
dataset Xpublic (usually a large public corpus, e.g.,
Wikipedia) for mixup, where such mixup works
similar to a random oracle in the cryptography do-
main.1 Specifically, TextHide will mix up about
one half bK/2c public data with the private original
data, then Equation 1 is updated as:

ẽi = σ ◦ (

bK/2c∑
j=1

λjej +
K∑

j=bK/2c+1

λje
p
j ) (2)

where epj = φ(xpj ), x
p
j ∈ Xpublic (randomly sam-

pled). As a consequence, the mixed label ỹ is com-
puted by normalization with the labels of the pri-
vate data (public data usually do not have labels):

ỹi =

∑[K/2]
j=1 λjyj∑[K/2]
j=1 λj

(3)

1The privacy notion provided by mixup in TextHide is
based on a k-vector subset sum (Abboud and Lewi, 2013)
oracle, which would require O(nk/2) efforts to break.

In practice, given the original training dataset
(denoted as X), each data (xi, yi) ∈ X will be
encoded for n times (usually equal to the number
of training epochs).

3 Attack Preliminaries

Privacy-Enhancing Schemes. As mentioned be-
fore, both cryptographic protocols and differen-
tial privacy can provide provable privacy guaran-
tees for protecting the private data. On the one
hand, for cryptographic solutions, the data is usu-
ally protected by the encryption schemes, e.g., fully
homomorphic encryption (FHE) (Gentry, 2009;
Cheon et al., 2017), where the security of schemes
depends on some hard mathematical problems.
Normally, to prove the security of the encryption
scheme, we need to formulate a security game, e.g.,
IND-CPA (Goldreich, 2009), where an attacker
with repeating many operations polynomially (w.r.t.
the size of the security parameter) cannot do better
than randomly guessing. It should be noted that
the newly proposed instance encoding schemes are
claimed to work as the encryption scheme for pri-
vacy protection (Huang et al., 2020a,b), but fail to
provide such provable security guarantees.

On the other hand, differential privacy (Dwork
et al., 2006, 2014; Mohammady et al., 2020)
can statistically protect the individual information
from being identified (i.e., against identification at-
tacks (Dinur and Nissim, 2003)) by injecting well-
calibrated noise to the original values. For example,
differential privacy can help to defend against so-
called membership inference attacks (Shokri et al.,
2017) in the machine learning such that an attacker
cannot determine whether any specific individual
information is in the dataset or not.

Privacy Attacks. The attacks on the data privacy
in ML training are generally referred to member-
ship inference attacks (Shokri et al., 2017; Salem
et al., 2018; Nasr et al., 2019; Hisamoto et al.,
2020; Song and Raghunathan, 2020), where an
adversary can know whether a given data points
was used to train the model or not. In addition,
model inversion attacks (Fredrikson et al., 2015;
Wu et al., 2016; Zhu et al., 2019) can reconstruct a
group of representative data points from the train-
ing set, e.g., utilizing gradients (Zhu et al., 2019).
Our attack on TextHide works closely as the re-
construction attack (Dinur and Nissim, 2003; Car-
lini et al., 2020a), which aims to reconstruct the
original data/information from the protected data
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(privately encoded data). Note that Carlini et al.
(Carlini et al., 2020a) attacks the instance encod-
ing on images while we extend this method to the
language understanding domain.

Attack Setting. We assume that the attacker have
full knowledge of the public dataset Xpublic and
the embedding model for downstream ML tasks.
Besides, we assume that the attacker can obtain
the private dataset (but unaware of the specific data
for the training). Note that we need to consider
the worst case (attacker) to evaluate the vulnerabili-
ties of the privacy-enhancing schemes. That is, the
strong knowledge (e.g., embedding model and pri-
vate training dataset) can be accessed by a skilled
attacker armed with any background knowledge.
For instance, such private training dataset can be
machine-generated. Specifically, if the dataset in-
volves personal conversations, then the attacker can
utilize some language models to generate a large
set of commonly-used dialogs as the private train-
ing dataset. The attacker can also leverage some
advanced inference attacks, e.g., side-channel or
public essays to derive some sentences.

Attack Goal. Given a privately encoded dataset Ẽ
(including the mixed label ỹ), the attacker aims to
reconstruct the original data vector e ∈ E , where E
is the set of the original data vectors. W.l.o.g.,
we consider the basic mixup case that the two
original data vectors are used for private encod-
ing, i.e., for one encoded data ẽi, it will be con-
structed on two original data ej1 and ej2 . Then,
we denote a mapping function for the attack as
Am : ẽi ∈ Ẽ → {ej1 , ej2} ∈ E × E . Thus,
given Am(ẽi) = {ej1 , ej2}, the attacker seeks to
derive such mapping function. Note that our attack
focuses on reconstructing the text representation
vectors (processed by the language understanding
model, e.g., BERT) and then we can utilize the
model inversion attack (Zhu et al., 2019) to recover
the raw text, i.e., xi = φ−1(ei).

4 Attack Methodology

4.1 Overview of The Attack

Our proposed attack consists of three main steps:

1. Removing the sign-flipping mask σ. We first
nullify the sign-flipping step for encoding by
taking the absolute value of the encoded data
ẽ ∈ Ẽ as: Ẽ ← {abs(ẽ), ẽ ∈ Ẽ}.

2. Revealing the mapping function Am to map

the encoded data vector Ẽ to the original data
vector via clustering (Section 4.2).

3. Reconstructing the original text representa-
tion vector ei (by computing the λi) given the
mapping function Am (Section 4.3).

4.2 Revealing Mapping Function
The main procedure of this step is clustering the
encoded text vectors and mapping the clusters back
to the original text vectors. Given a set of original
data instances |X| and every data instance will be
encoded n times. Since each encoded text vector
ẽi is corresponding to the two original data (i.e.,
Am(ẽi) = {ej1 , ej2}), the clustering result would
expect to be |X| clusters of size 2 ∗n encoded data
vectors (the size of encoded data Ẽ is |X| ∗ n).

1) Compute Similarity Score. For the cluster of
Ẽ , we first compute a similarity score s ∈ [0, 1]
among the two privately encoded data ẽi and ẽj :
if Am(ẽi) ∩ Am(ẽj) 6= ∅, s = 1 (or close to 1),
otherwise 0 (or close to 0). To compute the similar-
ity score s, we train a neural network model f(·)
by inputting two privately encoded vectors (ẽi, ẽj),
and f(ẽi, ẽj) = {0, 1}. The two vectors will be
stacked together (e.g., for d×1 encoded vector, the
input will be d× 2).

Specifically, we utilize a vanilla MLP model
trained with Adam (learning rate 0.01) on the cross-
entropy loss. We use the MNLI dataset (around
393k examples with all labels removed) (Williams
et al., 2018) as the public dataset , and Corpus of
Linguistic Acceptability (CoLA) (Warstadt et al.,
2019), and Stanford Sentiment Treebank (SST-2)
(Socher et al., 2013) as the private dataset. Then,
we construct a large-scale training data pairs en-
coded with the above datasets by TextHide, which
are labeled accordingly (1 if encoded with the same
original text data; otherwise 0). The final model
can achieve 94% accuracy.

Notice that reconstructing model f(·) by com-
puting the similarity scores between two privately
encoded data is based on a key hypothesis: given
any instance encoding scheme which achieves a
high accuracy, the privacy guarantee would be
somewhat weak (since the original information
should be preserved with high accuracy). In other
words, if TextHide ensures high accuracy in the
downstream tasks (e.g., sentence classification),
then the instance encoded data can also be “learned”
to recover the original text data (model f(·) can be
viewed as a downstream task in NLP). We identify
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this as an intrinsic vulnerability of such instance en-
coding schemes, which can be exploited to launch
the reconstruction attack.

2) Clustering. Given the similarity model, we can
compute the similarity scores on all pairs of the
encoded data (ẽi, ẽj) (|Ẽ |2 pairs in total). This
procedure can be computationally efficient. To find
|X| clusters (exclusive), denoted the cluster set as
{Cp, p ∈ [1, |X|]} w.r.t. |X| original text vectors,
we formulate the objective function as:

max

|X|∑
p=1

∑
ẽi,ẽj∈Cp

f(ẽi, ẽj) (4)

Ideally, the size of each cluster should be exactly
2n, and any two encoded data (ẽi, ẽj) in every clus-
ter Cp should satisfy f(ẽi, ẽj) = 1 (or close to 1).
Following K-NN, we can design a greedy method
to iteratively update |X| clusters by selecting the
encoded data which has the maximum average sim-
ilarity score of all the data in the cluster. Further-
more, we can audit each cluster by checking the
similarity scores among the encoded data and fi-
nally partition Ẽ into |X| clusters.

4.3 Reconstructing Original Text Vectors

After deriving the mapping function from the en-
coded data to the original data, we can reconstruct
the original data. Roughly we can sum up the ab-
solute values of all the encoded vectors mapping
to one given original data vector e and average it:
e′ = 1

n

∑
abs(ẽi). The vector e′ is approximately

close to the original e based on two aspects: 1)
the sign-flipping mask σ is removed by taking the
absolute values; 2) the values of other irrelevant
mixup text vectors can be “cancelled out” by the
averaging (could also result in some noises added
into the vector). Thus, we need to ensure that the
recovered result is close to the original result with
tolerable noises.

We first recover the values of the mix-up coeffi-
cients λ via the mix-up labels. Specifically, we can
get the list of λ with the mix-up labels since Tex-
tHide utilizes one-hot vector labels. For example,
given one TextHide label (0.4, 0, 0, 0.6), we can di-
rectly derive λi, λj as 0.4, 0.6 (Figure 1 in (Huang
et al., 2020a)). Then, the attacker can directly re-
trieve the values of λ. Note that there exists one
special case: the mixed two data could belong to
the same class (the mixed label will only have one
non-zero entry), and thus we can consider λi = λj .

After we compute the value of λ, we can re-
construct the original vector e by trying to inverse
the mixup operation (Equation 2). Specifically,
we denote Λ as an |E| × |X| matrix. For each
row of Λ, there are two non-zero entries i, j cor-
responding to the two mixup values λi and λj
(other entries are 0). Denote the original text
vectors as X = [e1, · · · , e|X|]T (with dimension
|X| × d), and the privately encoded vectors as
Y = [ẽ1, · · · , ẽ|E|]T (with dimension |E|×d). Then,
Equation 2 can be updated as:

Λ · X = Y + ε (5)

where ε denotes the potential introduced noises
(X may not be exactly the original one). To com-
pute X , we can directly solve the above equation:

X = Λ−1 · Y + Λ−1 · ε (6)

Since the noise could subject to Gaussian distri-
bution, the component Λ−1 · ε ≈ 0 (the mean value
would be close to 0, then we can average it). Fur-
thermore, we can formulate another optimization
to minimize the “extra” noise ε:

min
X
||ε||22 s.t. ε = Y − λ · X (7)

Thus, with the minimization of the noise, we can
accurately derive X (close to the true value). It is
worth noting thatX includes the sign-flipping mask
σ. Recall that we nullify the mask σ by taking the
absolute value, then Equation 8 can be updated:

min
X
||ε||22 s.t. ε = abs(Y)− λ · abs(X ) (8)

where abs is the element-wise absolute value
function of the matrix X or Y . To solve Equation
8, we can utilize the gradient descent to search the
value of X , and thus compute the ε based a fit solu-
tion of X (w.r.t. the objective function ||ε||22). Note
that there may exist several values of ε to satisfy
the constraints, then we can heuristically search
the value of ε entry by entry to get the smallest
||ε||22. Since the attackers have the full knowledge
of the pre-trained language model φ(·), we can di-
rectly utilize model inversion attacks (Song and
Raghunathan, 2020) to recover the original text.

5 Results and Analysis

We utilize the pre-trained BERTbase model by
(Devlin et al., 2019) (https://github.com/

https://github.com/google-research/bert
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K 1 2 4 6
CoLA 100% 88% 91% 93%
SST-2 100% 92% 95% 88%

Table 1: Attack success rate on the two datasets.

google-research/bert) as the language
model to generate the text representations (the
dimensionality d is 768). We evaluate our at-
tack on two datasets for sentence classification:
1) Corpus of Linguistic Acceptability (CoLA)
(Warstadt et al., 2019); 2) Stanford Sentiment
Treebank (SST-2) (Socher et al., 2013) (the pri-
vate datasets). For the “public dataset”, we use
MNLI daset (Huang et al., 2020a). We utilize
the open source code of TextHide (https://
github.com/Hazelsuko07/TextHide) to
construct the private dataset. We vary the parameter
k ∈ [1, 2, 4, 6] (the number of data for mixup). We
keep the size of mask pool m = 1. Also, we evalu-
ate the attack performance on varying the size of
mask pool m = [1, 16, 64, 256, 1024, 4096]. For
each dataset, we randomly select 100 data points
and generate 5000 encoded data via TextHide. In
our attack, we will try to reconstruct the original
data from such 5000 encoded data by instance en-
coding. We report the attack success rate (the
percentage of reconstructed data out of the orig-
inal data). Note that our attack is independent of
datasets/applications and hyper-parameter free.

Table 1 illustrates the attack results (the percent-
age of recovering original data) on the two datasets.
We can observe that our proposed attack can almost
recover the text vectors (high success rate). More-
over, while TextHide claims that the privacy will
increase as K increases (while losing accuracy),
the results show that the value of K does not im-
pact privacy much. Similarly, Figure 1 shows that
the mask cannot ensure privacy (but only increasing
computational costs instead). Above all, the text
vectors cannot be simply viewed as “real-number”
vectors since they may still contain semantic mean-
ings (features), which may help the attacker break
the security oracle more efficiently.

6 Discussion

Privacy preserving machine learning (PPML) has
been popular in industries under more and more
restrictive data actions or regulations, e.g., Gen-
eral Data Protection Regulation (GDPR) in Euro-
pean Union. PPML could help the corporations im-
prove business continuity while machine learning-
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Figure 1: Attack success rate vs. size of mask pool m

based services deal with large amounts personal
data/information, including text data-based applica-
tions such as the keyboard input prediction (Hard
et al., 2018). Private instance encoding (e.g., Tex-
tHide) has been proposed to address privacy risks
in such application scenarios. However, weak pri-
vacy guarantees provided by TextHide (e.g., against
our proposed attack) may leak the personal infor-
mation, and also violate privacy regulations and
laws. This would cause severe sanctions and lose
enterprise reputation from their customers.

As depicted earlier, a well-designed privacy-
enhancing scheme must ensure provable privacy
guarantee, and show its performance on data pro-
tection. Since TextHide is based on such mixup
encoding method, it would be possible to apply dif-
ferential privacy (Dwork et al., 2006) to the mixup
encoding and thus to show similar indistinguisha-
bility of the privately encoded instances. This can
defend against our reconstruction attacks to some
extent (at least reducing the information disclosure).
Another possible defense method is to filter sen-
sitive data from the training data. However, this
might degrade the model performance.

It is also worth noting that the intrinsic property
of DNN model (i.e., memorization) can also be
utilized to extract/recover training data from model
itself, especially for language models (Carlini et al.,
2020b; Lehman et al., 2021). Such works are or-
thogonal with our proposed attack since we focus
more on the encoded data. Nevertheless, our at-
tack can be integrated with such attacks to be more
powerful on instance encoding schemes.

7 Conclusion

We proposed a novel reconstruction attack on a re-
cent private learning scheme, TextHide in the NLP
domain. We have experimentally shown that such
scheme cannot provide rigorous privacy guarantee
even though it obtains good accuracy.

https://github.com/google-research/bert
https://github.com/Hazelsuko07/TextHide
https://github.com/Hazelsuko07/TextHide
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