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Abstract
Aspect-level sentiment analysis (ASA) has re-
ceived much attention in recent years. Most
existing approaches tried to leverage syntac-
tic information, such as the dependency pars-
ing results of the input text, to improve senti-
ment analysis on different aspects. Although
these approaches achieved satisfying results,
their main focus is to leverage the dependency
arcs among words where the dependency type
information is omitted; and they model dif-
ferent dependencies equally where the noisy
dependency results may hurt model perfor-
mance. In this paper, we propose an ap-
proach to enhance aspect-level sentiment anal-
ysis with word dependencies, where the type
information is modeled by key-value memory
networks and different dependency results are
selectively leveraged. Experimental results on
five benchmark datasets demonstrate the effec-
tiveness of our approach, where it outperforms
baseline models on all datasets and achieves
state-of-the-art performance on three of them.1

1 Introduction
Aspect-level sentiment analysis (ASA) determines
the sentiment polarity of a given input text on the
fine-grained level, where the sentiment towards a
particular aspect in the text is predicted instead of
the entire input. E.g., the sentiment of an aspect
“bar service” in the sentence “Total environment
is fantastic although bar service is poor.” is nega-
tive, although the text as a whole conveys a positive
sentiment polarity. Due to its high practical value
in many scenarios, e.g., product review analysis,
social media tracking, etc., ASA attracts much at-
tention in the natural language processing (NLP)
community for years (Tang et al., 2016a,b; He et al.,
2018a; Sun et al., 2019; Zhang et al., 2019; Song
et al., 2019; Huang and Carley, 2019).

*Equal contribution.
†Corresponding author.
1The code and different models are released at https:

//github.com/cuhksz-nlp/ASA-WD.

In recent studies, neural networks, especially
recurrent models with attention mechanism, are
widely applied in this task, where many of them
(Wang et al., 2016; Tang et al., 2016a; Chen et al.,
2017; Ma et al., 2017; Fan et al., 2018; Liang et al.,
2019; Tang et al., 2020) model semantic related-
ness between context and aspect words to facili-
tate sentiment analysis on aspects. There are other
approaches using additional inputs such as word
position (Gu et al., 2018), document information
(He et al., 2018b; Li et al., 2018a), commonsense
knowledge (Ma et al., 2018). Among all such in-
puts, dependency results of the input text are proved
to be a kind of useful information (He et al., 2018a;
Sun et al., 2019; Huang and Carley, 2019; Zhang
et al., 2019; Wang et al., 2020; Tang et al., 2020),
because they can help the model locate important
content that modifies the aspect words and thus
further suggests the sentiment towards the aspect
words. Previous approaches with attention mecha-
nism (He et al., 2018a; Wang et al., 2020), graph
neural networks (GNN) (Sun et al., 2019; Huang
and Carley, 2019; Zhang et al., 2019; Wang et al.,
2020) and transformer (Tang et al., 2020) are ap-
plied in leveraging such information. However,
most of them mainly focus on using the depen-
dencies among words and omit to leverage other
information such as relation types, which could
provide useful cues to predict the sentiment. Also,
they model all dependency information instances
equally without weighting them according to their
contribution to the task, where noisy information
from the auto-generated dependency tree may hurt
model performance. Therefore, improved methods
are expected to comprehensively and efficiently
learn dependencies among words to enhance ASA.

To address the aforementioned limitations, in
this paper we propose an effective and efficient
neural approach to ASA with incorporating word
dependencies, which is acquired from off-the-shelf
toolkits and modeled by key-value memory net-
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fantastic although bar service is poor

Figure 1: The overall architecture of the proposed model. The left part illustrates the backbone encoder (BERT)
and decoder for ASA; the right part demonstrates the key-value memory networks (KVMN) for dependency in-
formation incorporation, where we use example word dependencies and their types (highlighted in yellow) of the
aspect term “service” to show that how they are extracted, weighted and then fed into the left part for ASA.

works (KVMN) (Miller et al., 2016). In detail, for
each input text parsed by a dependency parser, we
extract its dependency relations and feed them into
the KVMN, in which word-word associations and
their corresponding dependency types are mapped
to keys and values, respectively. Then the KVMN
learns and weights different dependency knowl-
edge according to the contribution of their corre-
sponding keys to the ASA task, and provides the
resulted representations to a regular ASA model,
i.e., a BERT-based classifier, for final aspect-level
sentiment predictions. In doing so, the proposed
approach not only comprehensively leverages both
word relations and their dependency types, but
also effectively weights them through the memory
mechanism according to their contributions to the
ASA task. We evaluate the proposed approach on
five benchmark datasets, where our approach out-
performs the baselines on all datasets and achieves
state-of-the-art on three of them.

2 The Approach
The task of ASA aims to analyze the sentiment
of a text towards a specific aspect, which is for-
malized as a classification task performing on
sentence-aspect pairs (Tang et al., 2016b; Ma et al.,
2017; Xue and Li, 2018; Hazarika et al., 2018; Fan
et al., 2018; Huang and Carley, 2018; Tang et al.,
2019; Chen and Qian, 2019; Tan et al., 2019). In
detail, each input sentence and the aspect terms
in it are denoted by X = x1, x2, · · · , xn and
A = a1, a2 · · · , am, respectively, where A is the

sub-string of X (A ⇢ X ), n and m refer to the
word-based length of X and A. Following this
paradigm, we design the architecture of our ap-
proach in Figure 1, with a BERT-based (Devlin
et al., 2019) encoder illustrated on the left to com-
pute the sentence-aspect pair representation r, and
enhanced by the word dependency information ob-
tained from the KVMN module on the right, then
the result is fed into a softmax decoder to predict
the text sentiment towards the aspect. Therefore,
ASA through our approach can be formalized as

ŷ = argmax
y2T

p(y|X ,A, KVMN(X ,A)) (1)

where T denotes the set of sentiment polarities
for y and p computes the probability of predicting
y 2 T given X and A. ŷ refers to the predicted sen-
timent polarity type for A in the context of X . In
the rest of this section, we firstly describe KVMN
for leveraging word dependencies, then explain
how the resulted representations are integrated into
the backbone sentiment classifier.

2.1 KVMN for Word Dependencies
High quality text representations always play a cru-
cial role to obtain good model performance for
different NLP tasks (Song et al., 2017; Seyler et al.,
2018; Song and Shi, 2018; Song et al., 2018; Ba-
banejad et al., 2020), where contextual features,
including n-grams and syntactic information, have
been demonstrated to be effective in enhancing text
representation and thus leads to improvements on
different models (Song et al., 2006, 2009; Song
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and Xia, 2012; Song et al., 2012; Song and Xia,
2013; Dong et al., 2014; Miller et al., 2016; Seyler
et al., 2018; Diao et al., 2019; Sun et al., 2019;
Zhang et al., 2019; Huang and Carley, 2019; Tian
et al., 2020b,c,d,e; Chen et al., 2020). Among all
these features, dependency ones have been widely
used, especially for ASA. To incorporate word de-
pendencies into ASA task, there are many options,
including attention mechanism (He et al., 2018a)
where the information of dependency types among
word pairs are omitted, and GNN and Transformer-
based methods (Sun et al., 2019; Zhang et al., 2019;
Wang et al., 2020; Tang et al., 2020) that require
complicated architectures to model the entire de-
pendency structure of an input text. Compared to
these options, KVMN, whose variants have been
demonstrated to be effective in incorporating con-
textual features (Miller et al., 2016; Guan et al.,
2019; Song et al., 2020; Tian et al., 2020a,f; Nie
et al., 2020), not only provides an appropriate way
to leverage both word-word relations as well as
their corresponding dependency types, but also
weights different dependency information accord-
ing to their contribution to the ASA task.

In detail, to build the KVMN, we firstly collect
all word-word relations extracted from the parse
results of a corpus via an off-the-shelf toolkit and
use them to form the key set, and map their corre-
sponding dependency types to the value set. Then,
two embedding matrices, K and V are applied
to the key and value sets with each vector rep-
resenting a key or a value in the sets. At train-
ing or prediction stage, given an input text, our
model obtains its dependency parsing result, i.e.,
for each wi in a sentence-aspect pair, where wi

comes from X , A, or both X and A, we extract
words associated with wi and their corresponding
dependency types from the parse results. Note that,
for each word, we use its inbound and outbound
dependency types to represent its governor and
dependent word, respectively. Therefore, for exam-
ple, as illustrated in Figure 1, the words associated
to the aspect word “service” are “poor” (gover-
nor) and “bar” (dependent); their corresponding de-
pendency types are thus “nsubj” and “compound”,
respectively. Afterwards, we map the associated
words and their corresponding dependency types
to keys Ki = {ki,1, ki,2, · · · , ki,j , · · · , ki,q} and
values Vi = {vi,1, vi,2, · · · , vi,j , · · · , vi,q} from K

and V in the KVMN, where each item in Ki and
Vi has its embedding denoted by e

k
i,j and e

v
i,j , re-

spectively. Once the keys and values are placed, we
take the hidden vector hi for wi from the encoder
(i.e., BERT), and compute the weight assigning to
each value vi,j by

pi,j =
exp(hi · eki,j)Pq
j=1 exp(hi · eki,j)

(2)

We thus use pi,j to activate the corresponding val-
ues vi,j and compute the weighted sum by

oi =
qX

j=1

pi,je
v
i,j (3)

where oi refers to the output of the KVMN model
for wi and carries its word dependency information.

2.2 Word Dependency Integration for ASA
As shown in Figure 1, the entire model starts from
encoding the input text. For the aforementioned
sentence-aspect pair for ASA, it is normally orga-
nized by concatenating X and A to form a special
sequence of [[CLS],X , [SEP ],A, [SEP ]], and
then feed it into an encoder, i.e., BERT, to obtain
the hidden vectors by

[h0,H
X ,HA] = BERT (X ,A) (4)

where h0 denotes the hidden vector for the text-
initial symbol [CLS], and H

X , HA the embedding
matrices of words in X and A, respectively.

Upon the modeling of word dependencies for
each wi, different oi are obtained and averaged,
then concatenated with h0 by

r = h0 �
1

l
·

lX

i=1

oi (5)

where r is the representation for the input sentence-
aspect pair enhanced by word dependencies, and
the value of l equals to n, m, or n + m if all wi

come from X only, A only, or X+A, respectively.2

Then, we use a dense layer with a trainable matrix
W and vector b to align r’s dimension to the output
space by u = W · r + b, with each dimension
of u corresponding to a sentiment type. Finally,
a softmax function is applied to u to predict the
output sentiment ŷ for the aspect A in X :

ŷ = argmax
exp(ut)

P|T |
t=1 exp(u

t)
(6)

where ut is the value at dimension t in u.
2Figure 1 illustrate the case that wi comes from X + A,

where i 2 [1, 11] for all hi.
3For all datasets, the sum of aspect samples under three

sentiment polarities is larger than the total sentence numbers,
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LAP14 REST14 REST15 REST16 TWITTER

TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST TRAIN TEST

POSITIVE # 994 341 2,164 728 907 326 1,229 469 1,561 173
NEUTRAL # 464 169 637 196 36 34 69 30 3,127 346
NEGATIVE # 870 128 807 182 254 207 437 114 1,560 173

SENTENCE # 1,572 430 2,054 625 863 408 1,271 432 6,242 692

DIFF. # 147 36 301 76 39 34 72 18 0 0
DIFF. % 9.35 8.37 14.65 12.16 4.52 8.33 5.66 4.17 0 0

Table 1: The statistics of the five benchmark datasets, where the number of aspects on three sentiment polarities
and sentences are reported.3 We also report the number and percentage of the contrastive cases (DIFF.) where in a
sentence the sentiments on aspect(s) are different from the entire sentence.

3 Experimental Settings

3.1 Datasets

Five benchmark datasets, i.e., LAP14 and
REST14 (Pontiki et al., 2014), REST15 (Pon-
tiki et al., 2015), REST16 (Pontiki et al., 2016),
TWITTER (Dong et al., 2014), are used in our exper-
iments. Specifically, LAP14 is a dataset consists
of laptop computer reviews; REST14, REST15,
and REST16 consist of restaurant reviews from on-
line users; TWITTER includes tweets collected by
querying the Twitter API. For all datasets, we use
their official train/test splits and follow Tang et al.
(2016b) to clean them by filtering out the aspects
with the conflict label4 as well as the sentences
without an aspect. The statistics of the processed
five datasets are reported in Table 1, where the num-
bers of aspects with positive, neutral, and negative
polarities are reported. Note that in some datasets,
e.g., LAP14 and REST14, there are rather high
percentages of sentences (e.g., the sentence in Fig-
ure 1) that contain different sentiments towards as-
pects, as shown in the DIFF. rows in Table 1, which
indicates a bigger challenge on ASA comparing to
sentiment analysis on an entire sentence.

3.2 Word Dependency Extraction

Similar to previous studies (Wang et al., 2020; Tang
et al., 2020) that also require dependency informa-
tion, we employ the English version of SAPar5

(Tian et al., 2020e), which is the most effective
constituency parser trained on English Pen Tree-
Bank (PTB) (Marcus et al., 1993), to obtain the
constituency trees of the input text and then convert

because that many sentences have more than one aspect and
such aspects usually have contrastive sentiment polarities.

4The “conflict” label is used in LAP14, REST14/16 to
identify aspects that have conflict sentiment polarities.

5https://github.com/cuhksz-nlp/SAPar

them into dependency trees by Stanford converter6.
Therefore, when a dependency tree is built on the
entire input text, for each word in the text, one can
find its dependent words and types according to the
dependency paths on the tree. Consequently, the
dependency relations of each word to others can be
extended along with the dependency paths and it
is not restricted that only one-hop (first-order) rela-
tions can be considered in our model. One could
easily extend the coverage of word dependencies
with two- or three-hop relations from a given word,
which are known as second- and third-order depen-
dencies, e.g., “poor ! service ! bar” in Figure 1
is a second-order dependency relation.

As described in §2.1, extracting first-order word
dependencies is straightforward; to extend it with
higher order ones, we follow the same principle
to extract word dependencies and assign depen-
dency types as follows: (1) for the governor wg of
the target word w, we collect all its governor and
dependents (except for w) associated with wg’s
inbound and outbound dependency types, respec-
tively; (2) for each dependent wd of w, we find all
dependents of wd and use outbound dependency
types to represent wd’s dependent words; (3) we
include all context words and their corresponding
dependency types collected in (1) and (2) as the
input to KVMN for w and repeat the process for
further higher order word dependencies.

For example, in the input text in Figure 1, the
second-order word dependencies and types for “ser-
vice” are started from its governor “poor” and
dependent “bar”. Then for “poor”, we collect
its governor “fantastic” with an inbound depen-
dency type of “advcl”, and dependents “although”
and “is” with the outbound dependency types of
“mark” and “cop”, respectively. For “bar”, it is
not able to expand because it has no dependent,

6We use the converter of version 3.3.0 from https://
stanfordnlp.github.io/CoreNLP/index.html.
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MODELS
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

BERT-BASE 77.90 73.30 84.11 76.66 83.02 67.92 89.38 64.98 73.27 71.52
+ X -KVMN 78.37 74.18 84.46 78.44 84.14 66.12 90.36 72.77 74.13 72.16
+ A-KVMN 79.78 76.14 85.98 77.94 84.14 68.49 90.52 73.15 75.14 73.68
+ XA-KVMN 78.53 75.00 85.09 78.32 83.77 66.57 90.36 72.20 74.13 73.11

BERT-LARGE 78.68 73.75 85.17 77.94 83.21 70.55 90.52 72.88 74.13 73.04
+ X -KVMN 79.31 75.58 86.34 79.63 84.14 70.93 92.13 77.15 74.56 73.07
+ A-KVMN 80.41 77.38 86.88 80.92 84.70 72.71 92.48 79.54 76.59 74.91
+ XA-KVMN 80.16 77.20 86.70 79.95 84.58 71.05 91.83 77.28 74.57 72.76

Table 2: Experimental results (accuracy and F1 scores) of using different encoders (BERT-base and BERT-large)
with and without KVMN on five benchmark datasets, where X , A, and XA refer to that KVMN models word
dependencies from X only, A only, and X +A, respectively.

the collection thus stops here. Therefore, the re-
sulted words (keys) in second-order dependencies
and their corresponding dependency types (values)
for “service” are K11 = {bar, poor, fantastic,
although, mark}, and V11 = {bar compound,
poor nsubj, fantastic advcl, although mark,
is cop}, respectively.

3.3 Implementation Details

We adopt BERT-base-uncased and BERT-large-
uncased7 as the encoders in our approach, which
are demonstrated to be the most effective encoders
for many NLP tasks (Straková et al., 2019; Bal-
dini Soares et al., 2019; Xu et al., 2019). In our
experiments, we use their default settings for the
two BERT encoders (i.e., for BERT-base-uncased,
we use 12 layers with 768 dimensional hidden vec-
tors; and for BERT-large-uncased, we use 24 lay-
ers with 1024 dimensional hidden vectors). For
all experiments, we use Adam optimizer (Kingma
and Ba, 2014) and try different combinations of
learning rates, dropout rates, and batch size.8 In
addition, we apply Xavier initialization (Glorot and
Bengio, 2010) on all trainable parameters including
the embeddings for keys and values in the KVMN.
Moreover, we use the cross-entropy loss function
to optimize our model and follow the convention
to evaluate our models via accuracy and macro-
averaged F1 scores over all sentiment polarities,
i.e., positive, neutral and negative.

7We obtain the BERT models from https://github.
com/huggingface/pytorch-pretrained-BERT.

8We report the hyper-parameter settings of different mod-
els, as well as their size and running speed, in the Appendix.

4 Experimental Results

4.1 Effect of Using Word Dependencies

In the main experiments, we test our model with
and without integrating word dependencies by
KVMN, where both the base and large BERT en-
coders are used. In detail, when leveraging word
dependencies, we run experiments on our proposed
model to explore the effect of learning from dif-
ferent parts of the input, i.e., we try word depen-
dencies from three sources: X only, A only, and
both X and A (see §2.2). Experimental results are
reported in Table 2 with the prefixes of KVMN
denoting which part is encoded from.

There are several observations. First, KVMN
works well with both the base and large BERT. Al-
though BERT baselines have already achieved good
performance, improvements of our proposed model
over the baselines are observed on all datasets with
respect to both accuracy and F1 scores. Second,
among the three settings of encoding from different
parts of the input (i.e., X , A, X+A) in KVMN, in
most datasets (except for TWITTER), the highest
performance is observed on “A-KVMN”. These
results comply with the intuition where extracting
and learning word dependencies from A ensures
KVMN only incorporates the information from the
content directly associated with the aspect words,
thus focuses the model on the words that are most
likely to be helpful on ASA for a particular aspect
in a sentence. Third, although the overall perfor-
mance of X -KVMN and XA-KVMN are not as
good as that of A-KVMN, they are still better than
the baselines without using word dependencies. Es-
pecially for X -KVMN, where word dependencies
are extracted from the entire sentence, in this case,
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ORDER
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE.

1ST 77.59 73.00 26.89 84.28 75.90 27.05 83.76 67.06 32.26 90.03 70.39 32.50 74.28 73.31 22.26

2ND 79.78 76.14 52.47 85.98 77.94 53.83 84.14 68.49 60.95 90.52 73.15 61.19 75.14 73.68 44.70

3RD 78.99 74.60 72.55 85.35 77.78 75.16 82.83 62.81 80.44 89.54 66.56 80.66 74.27 72.31 67.27

(a) BERT-base

ORDER
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE. ACC F1 CVGE.

1ST 80.25 76.74 26.89 86.43 79.55 27.05 84.33 69.47 32.26 92.12 79.09 32.50 75.43 73.45 22.26

2ND 80.41 77.38 52.47 86.88 80.92 53.83 84.70 72.71 60.95 92.48 79.54 61.19 76.59 74.91 44.70

3RD 80.09 76.84 72.55 86.52 81.02 75.16 84.14 68.05 80.44 92.27 79.20 80.66 76.16 74.85 67.27

(b) BERT-large

Table 3: Experimental results of our models with the best setting (i.e., using base and large BERT with A-KVMN)
of using dependency relations on different (i.e., 1st, 2nd and 3rd) orders. Average percentage of words in a sentence
covered by word dependencies on different orders are also reported in the CVGE. column.

the dependency information also helps ASA even
though it introduces some noise to the task when
the entire sentence possesses a different sentiment
polarity (as shown in the DIFF. rows in Table 1),
while such noise contributes to its inferior perfor-
mance to the A-KVMN setting. Therefore, for the
case that the sentiment is agreed between the entire
sentence and its aspect (e.g., TWITTER dataset is
in this case according to Table 1), X -KVMN and
A-KVMN have similar performance.

4.2 Effect of Different Dependency Orders

Previous experiments showed the effectiveness of
our model with KVMN on first-order word depen-
dencies. In this experiment, we use the best setting
(i.e., models using A-KVMN) for base and large
BERT and run them with encoding higher-order de-
pendencies to further investigate the effectiveness
of our model with more dependency information.
Particularly, we try second- and third-order word
dependencies and compare their results with the
previous first-order ones. The results on all datasets,
as well as average coverage (%) of words in each
sentence with respect to different dependency or-
ders,9 are reported in Table 3, where (a) and (b)
show the results of models with BERT-base and
BERT-large encoders, respectively. From the re-
sults, it is found that in most cases (e.g., for both
base and large BERT), models using second-order
word dependencies achieve the overall highest per-

9This metric is used to present how many words in each
input sentence are involved when different orders are applied
for extracting word dependencies, so as to illustrate how much
information in a sentence is helpful for ASA.

formance, which can be explained by that first-
order dependency for aspect words is not enough
to cover enough salient information helping ASA.
This is a common phenomenon when negation is
included in a sentence. For example, in “the pizza
is not good”, for its aspect “pizza”, whose first-
order dependencies only link “pizza” with “good”,
the classifier is thus misled to predict a positive
sentiment polarity. Compared to using second-
order word dependencies, third-order dependencies
in general do not provide further improvement to
ASA, which owes to the reason that more irrele-
vant information is introduced to the encoder thus
distract the model for final prediction. In fact, third-
order dependencies lead to that around 75% words
in each sentence are fed into KVMN, which could
severely affect ASA by sentence-level sentiment
polarities, and eventually harm model performance
especially when an aspect-level sentiment differs
from the sentence-level sentiment.

4.3 Comparison with Previous Studies

To further demonstrate the effectiveness of
our approach, we compare our best-performing
model, i.e., the BERT-large encoder with second-
order word dependencies incorporated through A-
KVMN, with previous studies, where the com-
parisons on all datasets are reported in Table 4,
where the results of BERT-large baseline, as well
as the ones using BERT-base, are also reported for
references. It is observed that, our model consis-
tently outperforms the BERT-large baseline on all
datasets and achieves state-of-the-art on three of
them (i.e., LAP14, REST15, REST16) in terms of
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MODELS
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

ATAE-LSTM (WANG ET AL., 2016) 68.70 - 77.20 - - - - - - -
MEMNET (TANG ET AL., 2016B) 72.21 - 80.95 - - - - - - -
IAN (MA ET AL., 2017) 72.10 - 78.60 - - - - - - -
RAM (CHEN ET AL., 2017) 74.49 71.35 80.23 70.80 - - - - 69.36 67.30
PBAN (GU ET AL., 2018) 74.12 - 81.16 - - - - - - -
TNET-AS (LI ET AL., 2018B) 76.54 71.75 80.69 71.27 - - - - 74.97 73.60
PRET+MULT (HE ET AL., 2018B) 71.15 67.46 79.11 69.73 81.30 68.74 85.58 69.76 - -
SYNATT (HE ET AL., 2018A) 72.57 69.13 80.63 71.32 81.67 66.05 64.61 67.45 - -
PF-CNN (HUANG AND CARLEY, 2018) 70.06 - 79.20 - - - - - - -
MGAN (FAN ET AL., 2018) 75.39 72.47 81.25 71.94 - - - - 72.54 70.81
CAN (HU ET AL., 2019) - - 84.28 74.45 78.58 54.72 - - - -
TRANSCAP (CHEN AND QIAN, 2019) 73.87 70.10 79.55 71.41 - - - - - -
IACAPSNET (DU ET AL., 2019) 76.80 73.29 81.79 73.40 - - - - 75.01 73.81
ANTM (MAO ET AL., 2019) 75.84 72.49 82.49 72.10 - - - - 72.35 69.45
CDT (SUN ET AL., 2019) 77.19 72.99 82.30 74.02 - - 85.58 69.93 74.66 73.66
ASGCN (ZHANG ET AL., 2019) 75.55 71.05 81.22 72.94 79.89 61.89 88.99 67.48 72.69 70.59
†TD-GAT-BERT (HUANG AND
CARLEY, 2019) 80.10 - 83.00 - - - - - - -

†AEN-BERT (SONG ET AL., 2019) 79.93 76.31 83.12 73.76 - - - - 74.71 73.13
†BERT-PT (XU ET AL., 2019) 78.07 75.08 84.95 76.96 - - - - - -
†R-GAT-BERT (WANG ET AL., 2020) 78.21 74.07 86.60 81.35 - - - - 76.15 74.88
†DGEDT-BERT (TANG ET AL., 2020) 79.8 75.6 86.3 80.0 84.0 71.0 91.9 79.0 77.9 75.4

BERT-BASE 77.90 73.30 84.11 76.66 83.02 67.92 89.38 64.98 73.27 71.52
OUR BEST MODEL (BERT-BASE) *79.78 *76.14 *85.98 *77.94 *84.14 *68.49 *90.52 *73.15 *75.14 *73.68

†BERT-LARGE 78.68 73.75 85.17 77.94 83.21 70.55 90.52 72.88 74.13 73.04
†OUR BEST MODEL (BERT-LARGE) *80.41 *77.38 *86.88 *80.92 *84.70 *72.71 *92.48 *79.54 *76.59 *74.91

Table 4: Performance Comparison (on accuracy and F1 scores) of our best model (BERT-LARGE + A-KVMN
with second-order word dependencies) with previous studies on all datasets. The results of BERT-large baseline
are also reported for references. Models that use BERT-large as the encoder are marked by “†”. The results marked
by “*” indicate that our model is significantly better than the corresponding baseline model (t-test with p < 0.05).

both accuracy and F1 scores. Specifically, com-
pared with previous studies that also leverage de-
pendency information, our approach outperforms
He et al. (2018a); Sun et al. (2019); Huang and
Carley (2019); Zhang et al. (2019) on all dataset
and outperforms Wang et al. (2020) and Tang et al.
(2020) on most datasets. This observation is valid
because, in previous models, they are weighting
or averaging hidden vectors of the (aspect related)
words rather than on the relations, and omitting de-
pendency types which provide guidance to empha-
size some useful relations, e.g., the “amod” (i.e.,
adjectival modifier) type identifies that an adjec-
tival modifier could be the sentiment words of a
corresponding aspect. Therefore, the superiority
of our model comes from two aspects, weighting
word-word relations and leveraging dependency
types. KVMN highlights salient dependency rela-
tions and learns from them and their dependency
types, which alleviates the influence of noisy de-
pendency information. In addition, we note that
our approach achieves inferior results on TWITTER
dataset compared with Tang et al. (2020). One
possible explanation is that a dependency parser
trained in the general domain can get inferior pars-
ing results on TWITTER texts from the social media
domain, which makes it harder for our approach
to improve the BERT-large baseline compared to
other datasets. Nevertheless, the effectiveness of

our approach is still valid given that our approach
outperforms Tang et al. (2020) on all other datasets.

5 Analyses

5.1 Ablation Study

To confirm the validity of using both word relations
(keys) and their corresponding dependency types
(values) for ASA, we conduct an ablation study
by learning from either part of the two types of
dependency information. We choose the models
using BERT-base and BERT-large with our best
setting (i.e., models with second-order word depen-
dencies and A-KVMN) for this study and adapt
the KVMN module to key-only or value-only in-
put. The experimental results on all benchmark
datasets are reported in Table 5, where keys or val-
ues are ablated. It is clearly indicated in the table
that, for models with different encoders (i.e., base
and large BERT), the model performance drops on
all datasets if either keys or values are excluded.
Specifically, in most cases, the drop of performance
(especially on accuracy) is higher when keys are ab-
lated (“� KEYS”), comparing with the ablation of
values (“� VALUES”). This phenomenon indicates
the context words, which attracts much attention
from previous studies (He et al., 2018a; Sun et al.,
2019; Zhang et al., 2019; Huang and Carley, 2019),
play a more important role compared with their
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SETTING
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

FULL MODEL 79.78 76.14 85.98 77.94 84.14 68.49 90.52 73.15 75.14 73.68

� KEYS 79.47 75.29 84.91 77.33 82.65 67.95 89.54 72.21 74.41 73.32
� –0.31 –0.85 –1.07 –0.61 –1.49 –0.54 –0.98 –0.94 –0.73 –0.36

� VALUES 79.62 75.45 85.18 77.71 83.21 68.20 89.71 72.57 74.70 73.45
� –0.16 –0.69 –0.80 –0.23 –0.93 –0.29 –0.81 –0.58 –0.44 –0.23

(a) BERT-base

SETTING
LAP14 REST14 REST15 REST16 TWITTER

ACC F1 ACC F1 ACC F1 ACC F1 ACC F1

FULL MODEL 80.41 77.38 86.88 80.92 84.70 72.71 92.48 79.54 76.59 74.91

� KEYS 79.94 77.06 86.43 79.60 83.84 70.89 91.50 77.99 75.58 72.94
� –0.47 –0.32 –0.45 –1.32 –0.86 –1.82 –0.98 –1.55 –1.01 –1.97

� VALUES 80.26 77.34 86.63 80.82 84.40 70.31 91.82 78.53 75.87 73.69
� –0.15 –0.04 –0.25 –0.10 –0.30 –2.04 –0.66 –1.01 –0.72 –1.22

(b) BERT-large

Table 5: Results on five datasets from our full models (base and large BERT with A-KVMN and second-order
word dependencies) and its variants where keys (“� KEYS”) and values (“� VALUES”) are ablated. � refers to
the drop of accuracy and F1 score when keys or values are excluded from the full model.

dependency types. Still, one cannot deny the con-
tribution of dependency types because the drop
is still significant if values are excluded, where
even on some datasets (e.g., REST15 and REST16)
higher drops are observed on F1 than KEY ablation.
The results for this ablation study demonstrate that
dependency type is of high importance to improve
ASA if they are appropriately encoded.

5.2 Case Study

To illustrate the effect of KVMN module on
weighting salient word dependencies and thus im-
prove ASA, we conduct a case study on the sen-
tence “The falafel was rather overcooked and dried
but the chicken was fine” shown in Figure 2, in
which it contains two aspects with contrast senti-
ment polarities, i.e., negative towards “falafel” and
positive towards “chicken”. For each aspect, we run
our best model (BERT-LARGE + A-KVMN with
second-order word dependencies), and visualize
the weights (pi,j in Eq. (2)) assigned to all asso-
ciated dependency types and their corresponding
words, where darker color refers to higher weights.

For the first aspect “falafel” (Figure 2(a)), al-
though there are some adjectives carrying oppo-
site sentiment polarities within its second-order
relations, KVMN successfully distinguishes “over-
cooked” is more important to it and assigns a rel-
atively higher weight. This is because that the
corresponding type (“nsubjpass”, passive nominal
subject) to “overcooked” is intensively highlighted

𝒳𝒳 = The falafel was rather overcooked and dried but the chicken was fine

cop

compound

nsubj
det

conj

…

Keys: {chicken, the, fine}
Values: {chicken_nsubj, the_det, fine_conj}

cop

nsubjpass

det
conj

ROOT

advmod

auxpass
cc

cc
conj

The  falafel was rather   overcooked   and dried but … fine

… overcooked   …    the    chicken was          fine

𝑏𝑏 : 𝒜𝒜 = falafel y* = negative

𝑏𝑏 :𝒜𝒜 = chicken y∗ = positive

The falafel was rather overcooked and dried but fine

advmod

ROOT

overcooked

…

… … chickenthe was fine…

Figure 2: Illustration of an example sentence with two
aspects in different sentiment polarities. For each as-
pect, weights (from our best model) assigned to depen-
dent words and dependency types are visualized with
colors, where darker color refers to higher weights.

so that the model identifies it as the main sentiment
carrier for the aspect word “falafel” where other
adjectives (i.e., “dried” and “fine”) share the “conj”
(conjunction) type and are distantly related to the
aspect words, making them less important.

For the other aspect “chicken” (Figure 2(b)), sim-
ilar to the first one, both “overcooked” and “fine”
are included in its associated context words. In this
case, “fine” is more closely dependent on “chicken”
than “overcooked”, where it has a “nsubj” (noun
subject) type showing a predicate role thus receives
higher weight from KVMN, resulting in a positive
sentiment polarity prediction towards “chicken”.
Overall, this case study perfectly explains the ef-
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fectiveness of our model, where two aspects share
the same context and the only change is the de-
pendency information (oi) comes from KVMN.
Therefore, the different prediction results for the
two aspects suggest that KVMN appropriately
learns from salient dependency relations and types
for each aspect, where different types have their
own capabilities to enhance ASA accordingly (e.g.,
“nsubj” may contribute more than “conj”).

6 Related Work

Different from sentiment analysis for large gran-
ular texts, such as document and sentences, ASA
focuses on processing sentiment polarities for a spe-
cific aspect (e.g., “pizza”) or category (e.g., “food”)
in a piece of text. To address this task, early ap-
proaches (Jiang et al., 2011; Dong et al., 2014)
followed the sentence classification paradigm and
recent studies enhanced it as a mission of sentence-
aspect pair classification with applying neural ap-
proaches (Wang et al., 2016; Tang et al., 2016a; Ma
et al., 2017; Chen et al., 2017; Xue and Li, 2018;
Li et al., 2018b; Hu et al., 2019; Xu et al., 2019)
such as recurrent models (e.g., bi-LSTM) and pre-
trained encoders (e.g., BERT) for effectively captur-
ing contextual information. In addition to improv-
ing the input form, advanced models such as mem-
ory networks (Tang et al., 2016b; Chen et al., 2017;
Wang et al., 2018; Zhu and Qian, 2018; Mao et al.,
2019), attention mechanism (Wang et al., 2016; Ma
et al., 2017; Hazarika et al., 2018), capsule net-
works (Du et al., 2019; Chen and Qian, 2019; Jiang
et al., 2019), GNN (Huang and Carley, 2019; Sun
et al., 2019; Zhang et al., 2019; Wang et al., 2020),
and transformer (Tang et al., 2020) are applied to
this task, with other studies leveraging external re-
sources, including position information (Gu et al.,
2018), document information (He et al., 2018b),
commonsense knowledge (Ma et al., 2018), etc.
Among all resources, syntactic information was
proved to be the most effective one and success-
fully adopted in recent studies with GNN (Huang
and Carley, 2019; Sun et al., 2019; Zhang et al.,
2019). Compared with previous studies, our ap-
proach offers an alternative way to use KVMN and
syntactic information for ASA. Consider those stud-
ies using memory networks where their memories
are represented by contextual features of the aspect
terms, dependency information was not leveraged
in their work. In addition, compared with those
approaches leveraging word dependencies (i.e., us-

ing attention mechanism or GNN), where they not
only omitted useful dependency information such
as relation types, but also demanded a complicated
model structure in doing so, our approach ensures
comprehensively encoding from both word-word
relations and their dependency types, and models
them in an efficient way by KVMN.

7 Conclusion

In this paper, we propose an effective neural ap-
proach to improve ASA with word dependencies
by KVMN, where for each aspect term, we firstly
extract the words associated to it according to the
dependency parse of the input sentence and their
corresponding dependency relation types, then use
KVMN to encode and weight such information
to enhance ASA accordingly. In our approach,
not only word-word relations but also their depen-
dency types are leveraged in a KVMN, which to
our best knowledge are the first attempts in all re-
lated syntax-driven studies for ASA. Experimen-
tal results on five widely used benchmark datasets
demonstrate the effectiveness of our approach, and
shows that second-order word dependency is the
best choice for ASA, where the new state-of-the-art
results are achieved on three datasets. Moreover,
further analyses illustrate the validity of applying
KVMN on both dependency relation and type infor-
mation, especially the effectiveness of dependency
types, which are often omitted in previous studies.

Acknowledgements

This work is supported by The Chinese University
of Hong Kong (Shenzhen) under University De-
velopment Fund UDF01001809. This work is also
partially supported by NSFC under the project “The
Essential Algorithms and Technologies for Stan-
dardized Analytics of Clinical Texts” (12026610).

References
Nastaran Babanejad, Ameeta Agrawal, Aijun An, and

Manos Papagelis. 2020. A Comprehensive Analysis
of Preprocessing for Word Representation Learning
in Affective Tasks. In Proceedings of the 58th An-
nual Meeting of the Association for Computational
Linguistics, pages 5799–5810, Online.

Livio Baldini Soares, Nicholas FitzGerald, Jeffrey
Ling, and Tom Kwiatkowski. 2019. Matching the
blanks: Distributional similarity for relation learn-
ing. In Proceedings of the 57th Annual Meeting
of the Association for Computational Linguistics,
pages 2895–2905.



3735

Guimin Chen, Yuanhe Tian, and Yan Song. 2020.
Joint Aspect Extraction and Sentiment Analysis
with Directional Graph Convolutional Networks.
In Proceedings of the 28th International Confer-
ence on Computational Linguistics, pages 272–279,
Barcelona, Spain (Online).

Peng Chen, Zhongqian Sun, Lidong Bing, and Wei
Yang. 2017. Recurrent attention network on mem-
ory for aspect sentiment analysis. In Proceedings of
the 2017 conference on empirical methods in natural
language processing, pages 452–461.

Zhuang Chen and Tieyun Qian. 2019. Transfer capsule
network for aspect level sentiment classification. In
Proceedings of the 57th Annual Meeting of the As-
sociation for Computational Linguistics, pages 547–
556.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186.

Shizhe Diao, Jiaxin Bai, Yan Song, Tong Zhang, and
Yonggang Wang. 2019. ZEN: Pre-training Chinese
Text Encoder Enhanced by N-gram Representations.
ArXiv, abs/1911.00720.

Li Dong, Furu Wei, Chuanqi Tan, Duyu Tang, Ming
Zhou, and Ke Xu. 2014. Adaptive Recursive Neu-
ral Network for Target-dependent Twitter Sentiment
Classification. In Proceedings of the 52nd annual
meeting of the association for computational linguis-
tics (volume 2: Short papers), pages 49–54.

Chunning Du, Haifeng Sun, Jingyu Wang, Qi Qi,
Jianxin Liao, Tong Xu, and Ming Liu. 2019. Cap-
sule network with interactive attention for aspect-
level sentiment classification. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5492–5501.

Feifan Fan, Yansong Feng, and Dongyan Zhao. 2018.
Multi-grained attention network for aspect-level sen-
timent classification. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 3433–3442.

Xavier Glorot and Yoshua Bengio. 2010. Understand-
ing the difficulty of training deep feedforward neural
networks. In Proceedings of the thirteenth interna-
tional conference on artificial intelligence and statis-
tics, pages 249–256.

Shuqin Gu, Lipeng Zhang, Yuexian Hou, and Yin Song.
2018. A position-aware bidirectional attention net-
work for aspect-level sentiment analysis. In Pro-
ceedings of the 27th International Conference on
Computational Linguistics, pages 774–784.

Chaoyu Guan, Yuhao Cheng, and Hai Zhao. 2019. Se-
mantic Role Labeling with Associated Memory Net-
work. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long and Short Papers), pages
3361–3371, Minneapolis, Minnesota.

Devamanyu Hazarika, Soujanya Poria, Prateek Vij,
Gangeshwar Krishnamurthy, Erik Cambria, and
Roger Zimmermann. 2018. Modeling inter-aspect
dependencies for aspect-based sentiment analysis.
In Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), pages 266–270.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018a. Effective attention modeling for
aspect-level sentiment classification. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1121–1131.

Ruidan He, Wee Sun Lee, Hwee Tou Ng, and Daniel
Dahlmeier. 2018b. Exploiting document knowl-
edge for aspect-level sentiment classification. arXiv
preprint arXiv:1806.04346.

Mengting Hu, Shiwan Zhao, Li Zhang, Keke Cai,
Zhong Su, Renhong Cheng, and Xiaowei Shen.
2019. CAN: Constrained Attention Networks for
Multi-Aspect Sentiment Analysis. In Proceedings
of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 4593–4602.

Binxuan Huang and Kathleen M Carley. 2018. Param-
eterized Convolutional Neural Networks for Aspect
Level Sentiment Classification. In Proceedings of
the 2018 Conference on Empirical Methods in Natu-
ral Language Processing, pages 1091–1096.

Binxuan Huang and Kathleen M Carley. 2019. Syntax-
Aware Aspect Level Sentiment Classification with
Graph Attention Networks. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing
(EMNLP-IJCNLP), pages 5472–5480.

Long Jiang, Mo Yu, Ming Zhou, Xiaohua Liu, and
Tiejun Zhao. 2011. Target-dependent twitter senti-
ment classification. In Proceedings of the 49th An-
nual Meeting of the Association for Computational
Linguistics: Human Language Technologies-Volume
1, pages 151–160.

Qingnan Jiang, Lei Chen, Ruifeng Xu, Xiang Ao, and
Min Yang. 2019. A Challenge Dataset and Effective
Models for Aspect-Based Sentiment Analysis. In
Proceedings of the 2019 Conference on Empirical
Methods in Natural Language Processing and the
9th International Joint Conference on Natural Lan-
guage Processing (EMNLP-IJCNLP), pages 6281–
6286.



3736

Diederik P Kingma and Jimmy Ba. 2014. Adam: A
method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Junjie Li, Haitong Yang, and Chengqing Zong. 2018a.
Document-level multi-aspect sentiment classifica-
tion by jointly modeling users, aspects, and overall
ratings. In Proceedings of the 27th International
Conference on Computational Linguistics, pages
925–936.

Xin Li, Lidong Bing, Wai Lam, and Bei Shi. 2018b.
Transformation Networks for Target-Oriented Senti-
ment Classification. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pages 946–
956.

Bin Liang, Jiachen Du, Ruifeng Xu, Binyang Li, and
Hejiao Huang. 2019. Context-aware Embedding for
Targeted Aspect-based Sentiment Analysis. In Pro-
ceedings of the 57th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 4678–
4683, Florence, Italy.

Dehong Ma, Sujian Li, Xiaodong Zhang, and Houfeng
Wang. 2017. Interactive attention networks for
aspect-level sentiment classification. In Proceed-
ings of the 26th International Joint Conference on
Artificial Intelligence, pages 4068–4074.

Yukun Ma, Haiyun Peng, and Erik Cambria. 2018.
Targeted aspect-based sentiment analysis via em-
bedding commonsense knowledge into an attentive
LSTM. In Thirty-Second AAAI Conference on Arti-
ficial Intelligence.

Qianren Mao, Jianxin Li, Senzhang Wang, Yuanning
Zhang, Hao Peng, Min He, and Lihong Wang. 2019.
Aspect-based sentiment classification with attentive
neural turing machines. In Proceedings of the 28th
International Joint Conference on Artificial Intelli-
gence, pages 5139–5145.

Mitchell P. Marcus, Beatrice Santorini, and Mary Ann
Marcinkiewicz. 1993. Building a Large Annotated
Corpus of English: The Penn Treebank. Computa-
tional Linguistics, 19(2):313–330.

Alexander Miller, Adam Fisch, Jesse Dodge, Amir-
Hossein Karimi, Antoine Bordes, and Jason Weston.
2016. Key-Value Memory Networks for Directly
Reading Documents. In Proceedings of the 2016
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 1400–1409.

Yuyang Nie, Yuanhe Tian, Yan Song, Xiang Ao, and
Xiang Wan. 2020. Improving Named Entity Recog-
nition with Attentive Ensemble of Syntactic Infor-
mation. In Findings of the Association for Computa-
tional Linguistics: EMNLP 2020, pages 4231–4245,
Online.

Maria Pontiki, Dimitris Galanis, Haris Papageorgiou,
Ion Androutsopoulos, Suresh Manandhar, Moham-
mad AL-Smadi, Mahmoud Al-Ayyoub, Yanyan

Zhao, Bing Qin, Orphée De Clercq, Véronique
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Appendix

A. Model Size and Running Speed
Table 6 reports the number of trainable parame-
ters and inference speed (sentences/second)10 of
baseline (i.e., the ones without using KVMN and
the dependency information) and our best perform-
ing models (i.e., the ones with A-KVMN and the
second-order dependencies) on all datasets.

B. Hyper-parameter Settings
Table 7 reports the hyper-parameters we used for
tuning our models. For each dataset, we try all com-
binations of the hyper-parameters and report the
one with the highest accuracy score in our paper.

10The test is performed on a Quadro RTX 6000 GPU.
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MODELS
LAP14 REST14 REST15 REST16 TWITTER

PARA. SPEED PARA. SPEED PARA. SPEED PARA. SPEED PARA. SPEED

BERT-BASE 109.5M 37.1 109.5M 38.1 109.5M 37.3 109.5M 38.5 109.5M 38.2
FULL MODEL 125.2M 34.6 125.2M 30.6 125.2M 34.5 125.2M 34.6 147.2M 34.3

BERT-LARGE 335.1M 20.0 335.1M 20.1 335.1M 20.5 335.1M 20.5 335.1M 19.6
FULL MODEL 356.1M 19.6 356.1M 19.0 356.1M 19.2 356.1M 19.6 385.4M 19.8

Table 6: The number of trainable parameters (PARA.) and the running speed (sentences/second) on the test sets
of the baseline models (the ones without using KVMN and the dependency information) and our best performing
models (the ones with A-KVMN and the second-order dependencies).

HYPER-PARAMETER TYPES TRIED HYPER-PARAMETER VALUES

LEARNING RATE e�5, 2e�5, 3e�5, 4e�5, 5e�5, 6e�5, 7e�5, 8e�5, 9e�5, e�4

DROPOUT RATE 0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9
BATCH SIZE 8, 16, 32

Table 7: The hyper-parameters for tuning our models.


