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Abstract

In recent years, with the development of deep learning and the increasing demand for medical
information acquisition in medical information technology applications such as clinical decision
support, Clinical Event Detection has been widely studied as its subtask. However, directly
applying advances in deep learning to Clinical Event Detection tasks often produces undesirable
results. This paper proposes a multi-granularity information fusion encoder-decoder framework
that introduces external knowledge. First, the word embedding generated by the pre-trained
biomedical language representation model (BioBERT) and the character embedding generated
by the Convolutional Neural Network are spliced. And then perform Part-of-Speech attention
coding for character-level embedding, perform semantic Graph Convolutional Network coding
for the spliced character-word embedding. Finally, the information of these three parts is fused
as Conditional Random Field input to generate the sequence label of the word. The experimental
results on the 2012 i2b2 data set show that the model in this paper is superior to other existing
models. In addition, the model in this paper alleviates the problem that “occurrence” event type
seem more difficult to detect than other event types.

1 Introduction

Electronic medical records are an inevitable product of medical information. The use of natural language
processing (NLP) technology to effectively detect clinical events in electronic medical records becomes
crucial as the number of electronic medical records rapidly grows. It has been widely studied because of
its potential help in constructing clinical event lines, medical Q & A, assisted diagnosis and other tasks.
The task of Clinical Event Detection (CED) is to identify the boundary of the event in the electronic
medical record and determine its type. The event detection to identify the boundary and determine type
is usually considered as a sequence labeling task.

The emergence of deep learning has greatly improved the performance of the sequence labeling task
model. Bidirectional long short-term memory network (BiLSTM) is widely employed in sequence la-
beling tasks owing to its high power to learn the contextual representation of words. Huang et al. (2015)
was the first to apply the bidirectional long short-term memory (BiLSTM) and the conditional random
field (CRF) to sequence labeling tasks. But BiLSTM needs to be processed sequentially over time, it
cannot be calculated in parallel. Instead, the Transformer not only advantage in modeling the long-range
context, but also fully make use of the concurrence power of GPUs. Yan et al. (2019) found that due to
its position coding problem, the performance of Transformer in sequence labeling tasks is not as good as
in other NLP tasks, and solves the position coding problem. However, due to the lack and particularity
of clinical data, the performance of directly applying these technological advances to CED tasks is not
ideal. For this reason, we need to use a large amount of medical information for tokens representation.
In the past, Word2Vec (Mikolov et al., 2013) or Glove (Pennington et al., 2014) was used to train a
large number of unlabeled clinical texts to generate word embedding. There are two problems with this
method. On the one hand, it is difficult to obtain a large amount of clinical data. On the other hand, the
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obtained data is not standardized, many mistakes, Various representations. Lee et al. (2020) proposed a
pre-trained biomedical language representation model for biomedical text mining (BioBERT) in 2019,
whose performance on various biomedical text mining tasks largely surpassed BERT and previous ad-
vanced models. We use BioBERT for word embedding to solve the problem of poor model recognition
performance caused by a large number of obscure professional terms in the medical field. In addition, the
character-level features of words may show word features, for example, the beginning of “un” generally
indicates negative characteristics. Therefore, adding character-level encoding will also have an impact
on improving the performance of the model, and can solve the problem of Out Of Vocabulary(OOV).
Lample et al. (2016), Ma et al. (2016) and Liu et al. (2018) have added character-level coding to the
model of the English NER task and proved its effectiveness. This article uses Convolutional Neural
Network (CNN) as a character-level encoder for words (Chiu and Nichols, 2016).

After the Informatics Integrated Biology and Bedside Information (i2b2) sharing task was proposed in
2012 (Grouin et al., 2013), we found that in order to better enable the event extraction task to better serve
the later tasks such as disease diagnosis, the event types of the shared task also include “occurrence” type.
However, the experimental results of the organizations that participated in the challenge in the past show
that the “occurrence” type is more difficult to predict than other types of events, and it is not due to
the small amount of data in this type. We analyzed the reasons and found a solution. (1) Most of the
events in this type are nouns or verbs. We use the Part-of-Speech generated by Stanford CoreNLP tools as
attention to help them identify. (2) The past practice always solves the problem of poor recognition based
on the particularity of the medical field, while ignoring the language commonality between the medical
field and the general field, and incidents of “occurrence” type is more inclined to event recognition in
the general field. For this reason, this article introduces external knowledge to alleviates the problem
that occurrence event type seem more difficult to detect than other event types. At the same time, these
external knowledge are helpful to the recognition of the event span and improve the overall performance
of the model. In general, the contributions of this paper are as follows:

• The pre-trained BioBERT language model is used for word-level coding, which effectively solves
the problem of the lack and particularity of clinical data.

• The Graph Convolutional Network(GCN) that introduces external knowledge alleviates the problem
that occurrence event type seem more difficult to detect than other event types.

• The experimental results show that the model in this paper is better than the previous optimal model.

2 Related Work

Constructing the clinical timeline is crucial to the patient diagnosis and treatment. The 2012 Informatics
for Integrating Biology and the Bedside (i2b2) shared task (Grouin et al., 2013) was the identification
and linking of mentions of temporal expressions (TEs) (eg, dates, times, durations, and frequencies) and
clinically relevant events (eg, patients problems, tests, treatments) in narratives. For this task, previous
research on deep learning methods is mainly based on recurrent neural networks (RNN) (Fries, 2016;
Cheng and Miyao, 2017), convolutional neural networks (CNN) (Dligach et al., 2017; Li and Huang,
2016), BiLSTM (Tourille et al., 2017; Lin et al., 2018) and Attention (Zhao et al., 2019) methods.

2.1 Clinical Event Detection

As a subtask of constructing the clinical timeline, Clinical Event Detection(CED) methods are mainly
divided into the following two categories. (1) Method based on rules and machine learning: The method
based on rules mainly summarizes relevant classification rules based on the experience and knowledge of
knowledge engineers or domain experts, and then constructs corresponding rule templates as classifiers.
Traditional machine learning methods are based on feature engineering. After 2012 i2b2 challenge task
is proposed, The team involved in the task has adopted many different methods: rule-based , support
vector machine (SVM) (Cortes et al., 1995) conditional random field (CRF) (Lafferty et al., 2001),
Markov Logic and some combination of these methods, the best performance is the CRF-based model
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proposed by Beihang University, Microsoft Research Asia, Beijing and Tsinghua University. Roberts et
al. (2013) used a combination of supervised, unsupervised and rule-based method, and the task ranked
third. First, it uses the CRF classifier to identify event boundaries. Then use an independent SVM clas-
sifier for type detection. Kovacevic et al. (2013) combined rules and machine learning and achieved F1
measure of 79.85%, it proposed the event CRF models were trained on relevant (type-specific) subsets
of the training data and they all shared some feature groups. Although the rule-based method has high
classification accuracy, it does not have the ability to learn from experience and is difficult to maintain.
The rule making requires professional participation, time-consuming and labor-intensive, poor scalabili-
ty, and it is difficult to promote and use in multiple fields. Traditional machine learning does not need to
manually write rule templates, it can effectively solve the problems in rule-based methods. But, it is time
consuming to extract features, and its consumption tends to grow as the size of the data set becomes larg-
er, which is prone to dimensional disasters. (2) Methods based on deep learning: The emergence of deep
learning greatly reduces the difficulty of obtaining text features. Zhu et al. (2019) proposed a bidirec-
tional LSTM-CRF model is trained for clinical concept extraction using the contextual word embedding
model, it achieved the best performance among reported baseline models on the i2b2 2010 challenge
dataset and the result is higher than this article, this is due to the dataset of this article has added three
new event types three: evidential, occurrence and clinical department, in particular, the evidential and
occurrence event types seem more difficult to detect than other event types (2013). Recently, research
on the 2012 i2b2 data set has decreased, but the NER task has been widely studied. The LSTM and
CRF models greatly improve the performance of the NER task (Akhundov et al., 2018). Transformer
is widely used in NER tasks due to its parallelism and advantages in modeling long-range context (Yan
et al., 2019). Chen et al. (2019) proposed a simple but effective CNN-based network for NER, Gated
Relation Network (GRN), which is more capable than common CNNs in capturing long-term context.
Lin et al. (2020) also used Self Attention when solving NER tasks. Graph Neural Networks (GNNs) are
also widely used in NER tasks (Liu et al., 2019; Luo and Zhao, 2020).

2.2 BioBERT

In this section, we briefly introduce the pre-trained language model (BioBERT) used in this article. Direct
application of NLP advancements to clinical text mining often yields unsatisfactory results due to a word
distribution shift from general domain corpora to clinical corpora. Lee et al. (2020) investigate how
the recently introduced pre-trained language model BERT can be adapted for biomedical corpora, and
proposed a domain-specific language representation model pre-trained on large-scale biomedical corpora
(BioBERT) to solve this problem. BioBERT initializes weights from BERT, which is pre-trained on the
English Wikipedia and Books Corpus general domain corpus. Then, BioBERT is pre-trained on PubMed
abstract and PMC full-text article biomedical corpus.

Resolve name content
Sentence She had a CT scan
Part-of-Speech [(’She’, ’PRP’), (’had’, ’VBD’), (’a’, ’DT’), (’CT’, ’NN’), (’scan’, ’VB’)]

Constituency Parsing

(ROOT
(S

(NP (PRP She))
(VP (VBD had)

(S
(NP (DT a) (NN CT))
(VP (VB scan))))))

Dependency Parsing [(’ROOT’, 0, 2), (’nsubj’, 2, 1), (’det’, 4, 3), (’nsubj’, 5, 4), (’ccomp’, 2, 5)]

Table 1: Stanford CoreNLP semantic analysis example.
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2.3 Stanford CoreNLP
In this section, we will briefly introduce the semantic parsing tool Stanford CoreNLP used in this article.
It is a natural language processing toolkit. CoreNLP enables users to derive linguistic annotations for
text, including token and sentence boundaries, Part-of-Speech, named entities, numeric and time values,
dependency and constituency parses, coreference, sentiment, quote attributions, and relations. CoreNLP
currently supports 6 languages: Arabic, Chinese, English, French, German, and Spanish. This article
mainly uses its Part-of-Speech, dependency and constituency parses functions. Since this tool is suitable
for sentences in the general domain, that is, the model used by the tool is trained on a large number
of general domain corpora, so this article calls it the introduction of external knowledge. Taking the
sentence ”She had a CT scan” in the medical field as an example, The Part-of-Speech, dependency and
constituency parses of the sentences parsed by the Stanford CoreNLP tool are shown in table 1. When
we train the model, we need to encode the information in Table 1 into a matrix form, which will be
described in detail in a later part.

3 Model

The model of this article mainly includes four parts: character-word embedding module, Part-of-Speech
attention module, semantic GCN module, CRF decoding module. Figure 1 shows an overview of our
model, where CNN is a character-level encoder for words, BioBERT is a word-level encoder for words,
and the semantic analysis tool uses Stanford CoreNLP. First, input a sentence to generate character-level
embedding of words through CNN, and generate word-level embedding of words through biomedical
pre-training language model BioBERT, the two are spliced together. And then perform Part-of-Speech
attention coding for character-level embedding, perform semantic graph convolutional network coding
for the spliced character-word embedding. Finally, the information of these three parts is fused as CRF
input to generate the sequence label of the word. We will introduce each part in detail in the following
chapters.

Figure 1: The framework of our model.
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3.1 Character-word Embedding

Given a sequence of N tokens H = [H1, H2, ...,HN ], For each token Hi , We first splicing word-level
and character-level embedding Hi = [Ci;Wi]

T , where Ci is character-level embedding, Wi is word-
level embedding. And provide it to subsequent modules. So a sentence can be expressed as H =
[[C1;W1]

T ; [C2;W2]
T ; ...; [CN ;WN ]T ]T , H ∈ RN×(cd+wd), where cd is the character-level encoding

dimension, wd is the word-level encoding dimension. The following describes the details of word-level
embedding and character-level embedding of tokens in detail.

Character-level embedding: For a token character-level embedding Ci, As shown in Figure 2, for
the character sequence of the token i in a sentence xi = x1i , x

2
i , ..., x

cd
i , (cd represents the number of

characters in the longest word, namely, the maximum length of the word). We vectorize it and use
the character embedding method to get the vector representation of each character ci = ec(xi), Then
the character-level embedding of the word is expressed as a matrix c = [c1; c2; ...; cwl]T , c ∈ Rwl×cd,
Let’s perform a convolution operation. Assuming that there are cd convolution kernels, the formula for
the n-th convolution operation of the m-th convolution kernel is as follows: hmn = w · cn:n+k−1 + b,
The size of the sliding window contains k characters, which is represented by the symbol cn:n+k−1, w
represents the convolution kernel, each time the feature is obtained by sliding k characters hmn, that is,
the red box and the yellow box in the figure 2. The m-th convolution kernel generates feature vectors for
all characters sliding hm = [hm1;hm2; ...;hm(wl−k+1)]T , So, the character-level features of the words
generated by a set of convolution kernels are h = [h1;h2; ...;hcd], Then perform maximum pooling to get
the character-level representation of the token Ci = [max(h1),max(h2), ...,max(hcd)], Ci ∈ RN×cd.

Figure 2: The architecture of character-level embedding

Word-level embedding: In order to solve the problem of the particularity of clinical data, this article
uses BioBERT (a domain-specific language representation model pre-trained on large-scale biomedical
corpora). BioBERT initializes weights from BERT, which is pre-trained on the English Wikipedia and
Books Corpus general domain corpus. Then, BioBERT is pre-trained on PubMed abstract and PMC
full-text article biomedical corpus. Specifically, it uses pre-trained BioBERT on PubMed for 1M steps
model, this version as BioBERT v1.1 (+PubMed). Fine-tuned based on this model, the BioBERT model
takes in word sequence s = w1, w2...wN (N represents the maximum sentence length), Calculate the
output of the BioBERT layer using the equations below:

Hw = BioBERT (s) (1)

where Hw ∈ Rl×wd, wd is the word-level embedding dimension, the model limits it to a multiple of
768. This article is the last BioBERT layer, so the size is 768.

3.2 Part-of-Speech Attention

We found that most event words are basically verbs or nouns, so Part-of-Speech features are helpful to
event recognition. In order to learn sentence representations based on Part-of-Speech attention, we follow
the self-attention method introduced by Lin et al. (2017), this method has also been used in named entity
recognition tasks (Lin et al., 2020). it uses attention to convert the sentence into multiple vectors to
extract different parts of the sentence, and uses a matrix to represent the sentence embedding. This
article replaces the self-attention of the sentence with Part-of-Speech attention. The specific calculation
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formula is as follows:

Pos = SoftMax(W2tanh(W1P
T )) (2)

H
′
= Pos · C (3)

Where P represents the Part-of-Speech matrix corresponding to the sentence, we use one hot to represent,
P ∈ RN×37, 37 is the number of all types of Part-of-Speech of the Stanford CoreNLP tool, and C
represents the character-level embedding of the word. W1 and W2 are two trainable parameters for
calculating the Part-of-Speech attention score vector Pos. The W2 first dimension is fixed to N for
information fusion later. We get a matrix of weighted sums of token vectors for a Part-of-Speech attention
H
′
, H

′ ∈ RN×cd.

3.3 Semantic GCN

Since the original input sentences are plain texts without inherent graphical structure, we first construct
graphs based on the sequential information of texts and the semantic information in sentences parsed
using Stanford CoreNLP tool. Then, we apply GCN (Luo and Zhao, 2020; Kipf and Welling, 2017;
Qian et al., 2019) which propagates information between neighboring nodes in the graphs, to extract
extract events.

Graph construction: We create three kinds of information fusion people graphs for each sentence,
each graph is defined as G = (V,E), where V is the node set (word) and E is the edge set. Figure 3
shows the structure of the sentence “She had a CT scan.” The process of constructing a graph is divided
into three steps.

Figure 3: Semantic analysis graph.

• Adjacent graph: For each pair of adjacent words in the sentence, we add one directed edge from the
left word to the right one, allowing local contextual information to be utilized.

• Constituency parsing graph: According to the constituency parsing obtained by the Stanford
CoreNLP tool, we connect the leftmost node of all subtrees to the last edge node according to
the established tree structure.

• Dependency parsing graph: The dependency parsing obtained by the Stanford CoreNLP tool, we
build a dependency parsing graph based on the dependencies between words.

Bi-GCN: In order to consider both incoming and outgoing features for each node, we use Bi-GCN to
extract graph features (Marcheggiani and Titov, 2017; Fu et al., 2019),. Given a graph G = (V,E), and
the word representation H = [H1, H1, ...,HN ]T , the graph feature H

′′ ∈ RN×2df learned from Bi-GCN
is expressed as follows, we use them the same as Luo et al. (2020) :

−→
fi = ReLU(

∑
eij∈E

−→
WfHj +

−→
bf ) (4)
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←−
fi = ReLU(

∑
eji∈E

←−
WfHj +

←−
bf ) (5)

H
′′
= [
−→
fi ;
←−
fi ] (6)

where Wf ∈ R2df×(cd+wd) and bf ∈ Rdf , df are trainable parameters, it is the hidden size of GCN,
ReLU is the non-linear activation function. eij represents the edge outgoing from token Hi, and eji
represents the edge incoming to token Hi.

3.4 CRF Decoding

The character-word embedding representation, Part-of-Speech attention coding representation and se-
mantic graph convolutional coding representation of the word are spliced together to obtain a matrix
Ĥ = [H;H

′
;H

′′
], Ĥ ∈ RN×(2cd+wd+2df ). it is input to the CRF layer to predict the corresponding tag

sequence. The probability of a label sequence Y = y1, y2 . . . yl is

P (y|H) =
exp(

∑
i(W

yi
CRFhi + b

(yi−1,yi)
CRF ))∑

y′ exp(
∑

i(W
yi
CRFhi + b

(yi−1,yi)
CRF ))

(7)

Where y′ represents an arbitary label sequence, W yi
CRF is a model parameter specific to yi, and b

(yi−1,yi)
CRF

is a bias specific to yi−1and yi. Finally, the Viterbi Algorithm is used to find the path achieves the
maximum probability.

4 Experiment

4.1 Dataset

To evaluate our proposed model, we experiment on 2012 i2b2 challenge dataset, the training corpus con-
sists of 190 electronic medical records, which contains 2250 sentences (The number after adjusting the
sentence length), and the test corpus of 120 electronic medical records, which contains 1741 sentences
(The number after adjusting the sentence length), event types include clinical department, evidential,
“occurrence”, problem, test, treatment (Grouin et al.,2013). The 2012 i2b2 challenge dataset does not
have development set, this article divides the test set into a test set and a development set at a ratio close
to 1:1. Among them, there are 821 sentences in the development set, 920 sentences in the test set.

4.2 Evaluation Metrics

This paper CED is a sequence labeling task, standard precision (P), recall (R) and F1-score (F) are used
as evaluation metrics. In order to prove the effectiveness of the model, this article also uses the same
evaluation metrics as 2012 i2b2 challenge (Span F1-score and Type accuracy) (Grouin et al., 2013). We
used the Span F1-score, the harmonic mean of precision and recall of the predict output span against the
gold standard span to evaluate event span detection performance. The calculation of Span F1-score is
the same as the calculation of the F1-score evaluation metrics. It is worth noting that the Span F-score is
lenient matching (predict event span overlap with the gold standard span). For event types, we calculated
classification accuracy, that is, the percentage of correctly identified event types for the events whose
spans are detected correctly, the specific calculation process is as follows:

P =
|pred.type

⋂
glod.type|

|pred.span
⋂
glod.span|

(8)

where, “pred.type” means predict type output, “gold.type” means gold standard type, “ pred.span” means
predict span output, “gold.span” means gold standard span.

CC
L 
20
21

Proceedings of the 20th China National Conference on Computational Linguistics, pages 1190-1201, Hohhot, China, Augest 13 - 15, 2021.
(c) Technical Committee on Computational Linguistics, Chinese Information Processing Society of China



Computational Linguistics

4.3 Settings
In the process of data preprocessing, in order to solve the large gap in sentence length, we split the
sentence according to several punctuation marks. such as “,” and “;” etc, these punctuation marks can
be used to break the sentence, the sentence is still complete. Then join several short sentences that are
adjacent but whose total length does not exceed the maximum length. Because some special characters
have their own characteristics, this article will deal with them to increase accuracy, such as “’s”, splice
it directly to the previous word, and we replace all digits with “0”. In the experiment based on the CED
task. we use the BIOES tag schema. For character-level embedding, we set randomly initialized charac-
ter embedding size to 30. For word-level embedding we only take the last layer, the dimension is 768.
Since the Part-of-Speech attention coding representation and the semantic map convolution representa-
tion are obtained from the introduced external knowledge, in order to avoid negative effects and reduce
the problem of error propagation. We still have to focus on coding in the medical field, supplemented
by coding with external knowledge. Therefore, the dimension of the trainable parameters represented
by the semantic graph convolutional coding needs to be as small as possible than the word-level coding
dimension of words, we set it to 120.The batch size for training is 16, epochs is 100, We use SGD and
0.9 momentum to optimize the model. During the optimization, we use the triangle learning rate where
the learning rate rises to the pre-set learning rate (0.0008) at the first 1% steps and to 0 in the left 99%
steps (Smith, 2017).

4.4 Evaluation on CED
We compare proposed model with the latest model on the 2012 i2b2 challenge dataset. In addition, we
will also apply the latest model for NER to the data set of this article for comparative experiments. The
2012 i2b2 challenge test results are shown in Table 2 and Table 3.

Model Precision Recall F1-score
rule-based and machine learning (Kovacevic et al., 2013) 0.8147 0.7805 0.7985
BiLSTM CRF 0.7484 0.5272 0.6186
ELMo TENER (Yan et al., 2019) 0.7454 0.7805 0.7626
BioBERT TENER Data Augmentation 0.8101 0.7953 0.8026
Ours 0.8152 0.7961 0.8055

Table 2: Results of Precision, Recall and F1-score metrics.

The overall results of the model using P, R and F evaluation metrics are shown in Table 2. In the
first block, the model combines rule-based and machine learning approaches that rely on morphological,
lexical, syntactic, semantic, and domain specific features. In the second block, we give the model per-
formance based on BiLSTM, the model uses TENER for character level embedding and the Glove 100d
pre-trained embedding for word level embedding. In the third block of, we give the model performance
based on Transformer, the model uses TENER for character level embedding and the ELMo for word
level embedding. In the fourth part, we give the performance of another model experiment we did. The
model uses TENER for character-level embedding, BioBERT for word-level embedding, and TENER
for final encoding. In addition, the model also has data enhancements. In the last block, we give the
experimental result of our proposed model. We can observe that our proposed model outperforms other
models. it improves the F1-score from 79.85% to 80.55% on overall performance. Compared with the
the last experiment, our model improves the F1-score from 80.26% to 80.55%.

For the results use span F1-score and type accuracy evaluation metrics which is depicted in Table 3,
The first three block are the results of the top three participating in the 2012 i2b2 challenge, the forth
block used a combination of supervised, unsupervised and rule-based method, and the task ranked third.
First, it identifies event boundaries with a CRF classifier. Then it detects type using separate SVM
classifiers. the fifth block, we give the model performance based on Transformer, the Glove 100d pre-
trained embedding for word level embedding and model uses TENER for character level embedding,
the TENER for word-character level embedding. In the sixth part, we give the performance of another
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Model Span F1-score Type accuracy
Beihang University et al. (CRF) (Grouin et al., 2013) 0.9166 0.8600
Vanderbilt University (CRF SVM) (Grouin et al., 2013) 0.9000 0.84.00
The University of Texas (CRF SVM) (Grouin et al., 2013) 0.8900 0.8000
supervised, unsupervised and rule-based (Roberts et al., 2013) 0.8933 0.8045
TENER(the Glove 100d) (Yan et al., 2019) 0.7424 0.7505
BioBERT TENER Data Augmentation 0.9033 0.9300
Ours 0.9168 0.9276

Table 3: Results of Span F1-score and Type accuracy metrics.

model experiment we did. The model uses TENER for character-level embedding, BioBERT for word-
level embedding, and TENER for final encoding. In addition, the model also has data enhancements. In
the last block, we give the experimental result of our proposed model. We can observe that our proposed
model improves Span F1-score from 91.66% to 91.68%, but our method improves the Type accuracy
score from 86% to 92.76%. Compared with the the last experiment, our model improves the Span F1-
score from 90.33% to 91.68%.

4.5 Ablation Study

We examine the contributions of four main components, namely, BioBERT word-level embedding, CNN
character-level embedding, Part-of-Speech attention coding, and semantic GCN coding. The experimen-
tal results are shown in Table 4, Where “-” means remove component, “→” means replace component.

Model Precision Recall F1-score
Ours 0.8152 0.7961 0.8055
BioBERT→Glove 100d 0.7308 0.5849 0.6498
-CNN 0.8025 0.7892 0.7958
-Part-of-Speech 0.7553 0.7806 0.7677
-GCN 0.7547 0.6120 0.6759

Table 4: Results of ablation study.

We can observe that BioBERT word-level embedding, CNN character-level embedding, Part-of-
Speech attention coding and semantic GCN coding improved the performance of the model to varying
degrees. Especially, BioBERT and semantic GCN coding representation. BioBERT has been pre-trained
on a large amount of biomedical data and has lots of biomedical information. For semantic GCN coding,
because the external knowledge it uses is a tool that is trained on a large amount of general predictive
data. The understanding of sentence structure has played a very good help, and has a certain enlightening
effect on determining the boundary of the event. Therefore, it is helpful to improve the performance of
the model. The character-level embedding has less impact on the result, so analyze the reason is that the
word-level encoding dimension is much smaller than the 768 of the BioBERT word-level encoding, but
if the character-level encoding is also adjusted to a large value, the training efficiency of the model will
be very low. For the Part-of-Speech attention module, it is helpful to the model in judging whether it
is an event or not, but because its dimension is smaller than that of other information, Has little effect.
Experimental results show, these four components can help the model learn medical text information
better.

4.6 Type Analysis

The evaluation task challenged by i2b2 shows that event detection in 2012 seems more challenging than
i2b2 in 2010. This is due to the addition of three new event types: “evidence”, “occurrence” and “clinical
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department”. In particular, the types of “evidence” and “occurrence” seem to be more difficult to detect
than other types. The results of our last experiment also found that the “evidential” and “occurrence”
event types seem more difficult to detect than other event types. Especially occurrence EVENT type,

Event Type F1-score(Last) F1-score(Ours) Train(Dataset) Test(Dataset)
Clinical department 0.8164 0.8153 0.0605 0.0539
Evidential 0.7519 0.7532 0.0449 0.0438
Occurrence 0.6632 0.6910 0.1995 0.1838
Problem 0.8375 0.8367 0.3050 0.3170
Test 0.8409 0.8393 0.1576 0.1599
Treatment 0.8420 0.8345 0.2325 0.2417

Table 5: Results of different event types.

there is enough data volume, but the result is much lower than other types.The experimental results of
our previous model and the model in this article on different types are shown in the Table 5, where the
“Last” represents the result of our last experiment, where the “Ours” represents the experimental results
of this article. We found that due to the “occurrence” type, it is more biased towards the general field.
In the model in this article, we have introduced external knowledge, so its F value has been greatly
improved compared to the previous model and the model in our last experiment, while the performance
of other types has not significantly decreased.

5 Conclusion

This paper proposes a multi-granularity information fusion encoder-decoder framework.This framework
uses the pre-trained language model (BioBERT) to generate word-level features, and solves the prob-
lem of poor model recognition performance caused by obscure professional terms in electronic medical
records. The Graph Convolutional Network that introduces external knowledge improves the perfor-
mance of the model in identifying “occurrence” type. Further improve the overall performance of the
model. Experiments on the 2012 i2b2 challenge dataset show that our model achieves superior perfor-
mance than other existing models.
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