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Abstract
Because of globalization, it is becoming
more and more common to use multiple lan-
guages in a single utterance, also called code-
switching. This results in special linguistic
structures and, therefore, poses many chal-
lenges for Natural Language Processing. Ex-
isting models for language identification in
code-switched data are all supervised, requir-
ing annotated training data which is only avail-
able for a limited number of language pairs.
In this paper, we explore semi-supervised ap-
proaches, that exploit out-of-domain mono-
lingual training data. We experiment with
word uni-grams, word n-grams, character n-
grams, Viterbi Decoding, Latent Dirichlet Al-
location, Support Vector Machine and Lo-
gistic Regression. The Viterbi model was
the best semi-supervised model, scoring a
weighted F1 score of 92.23%, whereas a fully
supervised state-of-the-art BERT-based model
scored 98.43%.1

1 Introduction

Social platforms have been the cradle of the inter-
net, driving vast amounts of communication among
people from all over the world. As a consequence,
the way people communicate in written text has
changed, as now it is common to use, for example,
abbreviations of words, emoticons, references to
other users and use multiple languages within the
same utterance. An annotated example sentence of
this is the following tweet:

Word El online exercise de hoy :
Label es en en es es other

This phenomenon has caught particular interest in
both sociolinguistics and Natural Language Pro-
cessing (NLP) (Aguilar et al., 2020; Khanuja et al.,
2020).

∗ Equal contributions
1https://github.com/RalleGr/

msc-code-switching

Classifying the language labels on the word
level (i.e. code-switch detection) has shown to
be beneficial to improve performance on down-
stream NLP tasks, like dependency parsing (Bhat
et al., 2018) or lexical normalization (Barik et al.,
2019). Previous work has shown that high per-
formances can be achieved for this task for many
language pairs (Molina et al., 2016; Banerjee et al.,
2016). However, to the best of our knowledge,
most previous work focused on supervised settings,
restraining their usefulness to language pairs for
which annotated datasets exist. Recent efforts to
unify existing datasets have collected annotation
for 4 (Aguilar et al., 2020) and 2 (Khanuja et al.,
2020) language pairs, which confirms that anno-
tated data is not available for most language pairs.

In supervised settings, recent transformer mod-
els (Vaswani et al., 2017; Devlin et al., 2019) have
reached a new state-of-the-art (Aguilar et al., 2020;
Khanuja et al., 2020), outperforming Bi-LSTMS
and traditional machine learning methods used ear-
lier (Molina et al., 2016; Banerjee et al., 2016). Yir-
mibeşoğlu and Eryiğit (2018) tackled this task
in a semi-supervised setup as well, where they
used character n-gram language models trained on
monolingual data to predict perplexity on the target
word for classification. They show that this obtains
a micro-average F1 score of 92.9%, compared to
95.6% with a supervised CRF-model.

To overcome this limitation, we focus on ex-
ploiting only mono-lingual datasets for per-
forming word-level language identification in
code-switched data. We refer to this setup as
semi-supervised, since we have no data anno-
tated for the task at hand (code-switch detec-
tion). This enables the possibility to easily train
models for new language pairs, and leads to the
research question: How do semi-supervised models
compare and perform in the task of language iden-
tification in English-Spanish code-switched data?
(RQ1).

https://github.com/RalleGr/msc-code-switching
https://github.com/RalleGr/msc-code-switching
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Since supervised methods have the advantage of
learning from annotated data, the second research
question is: How much can we reduce the gap
in performance between the aforementioned semi-
supervised models and a supervised state-of-the-art
model? (RQ2).

Previous work in similar setups have automat-
ically generated code-switched data from mono-
lingual datasets (Santy et al., 2021). We consider
this approach to be orthogonal to ours, and Santy
et al. (2021) exploit mono-lingual in-domain data,
syntactic parsers and parallel sentences.

2 Datasets

In this section, we will first describe the manu-
ally annotated code-switched data that we use for
evaluating our models, then we describe the mono-
lingual data that we will use as “training” data. It
should be noted that this is not real training data,
as it is not annotated for the task at hand (thus the
setting is semi-supervised).

2.1 Test data

To evaluate and compare our models, we use
the Spanish-English (SPA-EN) part of the LinCE
benchmark (a total of 32,651 posts equivalent to
390,953 tokens) (Aguilar et al., 2020). We chose
this language pair because it has the challenge of in-
creased similarity between the languages (Tristram,
1999). In the original data, 8 labels are used, from
which we only focus on the 3 labels necessary for
the language identification task: lang1, lang2
and other, for English, Spanish and punctuation,
numbers, symbols and emoticons, respectively. We
use the default development and test splits for our
experiments.

2.2 Monolingual data

In order to perform semi-supervised code-
switching detection, we use Wikipedia data, be-
cause it is available in many languages and easy
to obtain. We extracted dumps from September
1st 2020 with Wikiextractor2. Without punctuation
and numbers, the English dataset contains 420K
distinct words and the Spanish dataset contains
610K distinct words.

It should be noted that there is a domain dif-
ference between the training and the dev/test data.
However, collecting monolingual data from Twitter

2https://github.com/attardi/
wikiextractor

is non-trivial.3 Furthermore, it should be noted that
the Wikipedia datasets are not 100% monolingual,
so there will be some Spanish data in the English
dump and vice-versa. Both of these artefacts might
have a negative effect on performance.

2.3 Automated annotation for monolingual
tokens

Tokenization of the raw datasets is done using the
English and Spanish SpaCy tokenization models4,
as it matches the tokenization of the development
and test sets. Punctuation and non-word tokens
(the other class) are identified with manually
designed rules using regular expressions, and the
python emoji package. Tokens that are not identi-
fied as other, are labeled with the corresponding
label based on the language of the wikipedia.

3 Methods

3.1 Word uni-grams

We first clean the mono-lingual Wikipedia data by
removing XML/HTML tags from the articles and
special tokens that belong to the other class. We
calculate the word probability based on the result-
ing data (word frequency/total number of words)
using Laplace smoothing with a smoothing factor
of 1.

3.2 Word n-grams

We also experiment with taking a larger context
into account through bi-grams and tri-grams. Here,
we divide the frequency of the n-gram containing
the word with the frequency of the leading (n− 1)-
gram. The probability is computed this way for a
given word in each language, and then the label
with the highest probability is assigned to the word.
Laplace smoothing with a factor of 1 is used. In
our initial experiments, tri-grams showed very low
performance, so we use bi-grams in the remainder
of this paper.

3.3 Character n-grams

For this model, we calculate the joint log probabil-
ity of words based on the monolingual training data,
and assign the most probable label. We vary the
n-gram size from 1 to 6 and use Laplace smoothing
with a factor of 1.

3Twitter blog: Evaluating language identification perfor-
mance

4https://spacy.io/

https://github.com/attardi/wikiextractor
https://github.com/attardi/wikiextractor
https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html
https://blog.twitter.com/engineering/en_us/a/2015/evaluating-language-identification-performance.html
https://spacy.io/
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3.4 Viterbi decoding

The problem of code-switching can be represented
as a Hidden Markov Model (HMM) problem, since
a sentence can be seen as a Markov chain with
hidden states that are the two different languages.

We use the Viterbi decoding algorithm (Forney,
1973) to find the most probable sequence of states
given the observations - namely, to assign a lan-
guage label (state) to each word (observation). We
used eginhard’s implementation5 of the Viterbi al-
gorithm and modified the starting and transition
probabilities to the values specified below, which
were found to be optimal using grid search on the
development set using the range of initial probabil-
ities for English from 0.1 to 0.9 with step size 0.1,
transition probabilities for English from 0.05 to
0.95 with step size 0.05. The final hyperparameters
are as follows:

• states: lang1 and lang2, other tokens
are identified based on heuristics (see Sec-
tion 2.3);

• initial probabilities: 0.6 for English and 0.4
for Spanish;

• transition probabilities: 0.15 for transitioning
to a different language and 0.85 for transition-
ing to the same language;

• emission probabilities: these are estimated
through a relative probability model, the prob-
ability of the word being emitted from English,
for example, is:

P (w) =
P (w|EN)

P (w|EN) + P (w|SPA)
, (1)

where P (w|EN) and P (w|SPA) are proba-
bilities given by the dictionaries described in
section 3.1. In case this is 0 (i.e. the word
does not occur in our monolingual data), the
emission probability is calculated by a relative
character bi-gram probability.

3.5 Latent Dirichlet Allocation

Generally, Latent Dirichlet Allocation (LDA) aims
to find the topics a document belongs to using the
words in the document as features. In our case,
the documents are the words, the features are char-
acter n-grams (with n 1 to 5) and the topics are

5https://github.com/eginhard/
word-level-language-id/

English and Spanish. The LDA algorithm does not
output labels for the resulting clusters, so we select
the top 10 words based on weight that represent
best each cluster, and assign them a language us-
ing the word uni-gram method (Section 3.1). We
use the Scikit Learn6 implementation of LDA with
the TfidfVectorizer and use only the first
100,000 words from each monolingual dataset, in
order to reduce training time.

3.6 Support Vector Machine

For our Support Vector Machine (SVM) model,
we consider the monolingual data (Section 2.2) to
be the gold training data, without tokens from the
other class. Using TfidfVectorizer, we
extract character n-gram features from each word,
with n 1 to 5. We use the Scikit Learn implementa-
tion with all default parameters and select the first
100,000 words from each dataset.

3.7 Logistic regression

We use Logistic Regression in a weakly-supervised
manner, the same as with SVM, where we con-
sider the first 100,000 words from each Wikipedia
dataset to be the gold training data. Again, we use
TfidfVectorizer to extract character n-gram
features, with n 1 to 5, and rely on the default Scikit
Learn implementation.

3.8 Ensemble model

We also experiment with ensembling the previous
methods, where we use a simple majority voting.
We compare using all models, to using the best 3
and the best 5 models, as well as an oracle.

4 Results

To evaluate the performance of our models, we use
weighted F1 score7. As found in Table 1, Viterbi
has the overall best performance scoring 95.76% on
validation data and 92.23% on the test data. Word
uni-grams, character n-grams, SVM and Logistic
Regression models achieve results with a range
of weighted F1 score from 90.34% to 92.19% on
validation data and a range from 87.80% to 88.95%
on test data.

We compare our performance to a supervised
BERT-based classifier as implemented by the
MaChAmp toolkit 0.2 (van der Goot et al., 2021).

6https://scikit-learn.org/
7over only the classes of interests; as mentioned in Sec-

tion 2.1, we only focus on 3/8 labels of the LinCE data

https://github.com/eginhard/word-level-language-id/
https://github.com/eginhard/word-level-language-id/
https://scikit-learn.org/
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Model Dev Test
Word uni-grams 91.32% 88.25%
Word n-grams 50.50% 49.04%
Character n-grams 92.19% 88.95%
Viterbi 95.99% 92.23%
LDA 64.40% 62.84%
Support Vector Machine 91.39% 88.74%
Logistic regression 90.34% 87.80%
Ensemble Model
All models 92.15% 88.99%
Models 3, 4 and 6 93.72% 90.27%
Models 1, 3, 4, 5 and 6 92.96% 89.64%
Oracle∗ 98.47% -
Supervised
MaChAmp 99.24% 98.43%

Table 1: Models evaluated using weighted F1 score on
validation and test data. ∗ Made use of gold labels

We use multilingual BERT and all default settings.
Results in Table 1 show that there is still a per-
formance gap between the semi-supervised ap-
proaches and this state-of-the-art supervised model.
When comparing common confusions of our best
semi-supervised model (Viterbi) to the output of
MaChAmp, we found that there was more confu-
sion in the Viterbi model about other, where 213
words were classified as lang1 and 60 as lang2
instead, compared to just 3 and 1 in MaChAmp.
Full confusion matrices can be found in the ap-
pendix.

The majority voting ensembling models do not
lead to improved performance. However, the oracle
ensemble, which always picks the correct label if
it is available from one of the models, shows that
there is potential in improving the selection method
for ensembling.

5 Discussion

When inspecting the performances of the models
per class (see also Table 2 in the appendix), we
found that, for the development dataset, all models
have a better F1 score for English than for Spanish
and, for the test dataset, the other way around. This
might be due to a discrepancy between the label
distribution of the two datasets and is a significant
aspect to be investigated in future work.

Regarding the LDA model, its low performance
can be explained by the results of (Zhang et al.,
2014), which show that for the task of language
filtering, the performance of LDA decreases when

the dominating language decreases under 70% of
the whole text. This is also the case in our experi-
ments, where the test data had a 54% English and
46% Spanish ratio. Furthermore, the amount of
evidence per sample is rather low compared to the
normal use of LDA (it is commonly used on the
document level).

For character n-grams, we observed that the
more we increased the value of n, the better results
we got, up until n = 6. The higher order n-grams
performed better with around 12% difference in
validation weighted F1 score, as we can capture
groups of letters that are representative for a lan-
guage, e.g. ‘tion’ in English and ‘cion’ in Spanish.
This model achieves good results also because it
addresses the problem of misspelled words. For
word n-grams, using tri-grams resulted in worse
predictions than using bi-grams with around 11%
difference in validation weighted F1 score.

For LDA, SVM and Logistic Regression models
we tried to vectorize data with CountVector-
izer from Scikit Learn, which gives the term-
frequency for each n-gram in a word. However,
TfidfVectorizer performed approximately
1% better in LDA and Logistic Regression and
4% for SVM in validation data. This was then
the preferred vectorizer in all models, as it helps
decreasing the impact of very frequent character
n-grams that are not expressing much value and
gives more importance to less frequent character
n-grams.

The fact that the oracle model has a 3% higher
weighted F1 score than the best model (in valida-
tion data), suggests that there is room for improve-
ment for the ensemble model with other methods
than majority voting. Improvements on the single
models could be achieved by using bigger mono-
lingual datasets of the same size or selecting a
corpus that is more similar to the test set (social
media-like posts), which is not as easy to query as
Wikipedia articles. The overall performance of the
models can also be slightly improved by a more
complex method for the other class (the exist-
ing rule-based method scored an F1 of 96.76, see
Table 2 in the appendix).

The training efficiency of the Viterbi model and
the supervised model were measured in a Windows
Sub-system for Linux environment on an i7-7700K
processor with 16GB ram. We ran the MaChAmp
model in this environment and it completed in
53,990 seconds. In comparison, the Viterbi training



69

completed in 1,805 seconds, which is an improve-
ment of almost 30 times faster than the MaChAmp
model.

6 Conclusion

In this study we evaluated different types of mod-
els, namely word uni-grams, word n-grams, char-
acter n-grams, Viterbi Decoding, Latent Dirich-
let Allocation, Support Vector Machine and Lo-
gistic Regression, for the task of semi-supervised
language identification in English-Spanish code-
switched data. We found that most of the models
achieved promising results, however, the Viterbi
model performed the best with a weighted F1 score
of 95.76% on validation data and 92.23% on test
data (RQ1). Using this model, one can potentially
train CS-detection for many more language pairs
as previously possible. Furthermore, since the ma-
jority voting did not lead to improvements, we ex-
perimented with an Oracle model, which showed
that by combining results form our models, the
best score we could achieve is 98.47% on valida-
tion data. Even though the results were good, our
models still underperformed compared to the su-
pervised MaChAmp model, that scored 99.24%
weighted F1 score on validation data and 98.43%
on test data (RQ2). There is also a clear take away
that, by using simpler, faster approaches like ours
and when top performance is not crucial, one can
avoid the extensive process of human-annotation
and long training time that are needed by finetuning
these large transformer models on supervised data.
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A Appendix

Validation F1 score Test F1 score
Model English Spanish Other English Spanish Other
1. Word uni-grams 91.05% 88.77% 96.76% 87.42% 89.94% 95.84%
2. Word n-grams 45.41% 31.98% 96.76% 40.61% 35.73% 95.84%
3. Character n-grams 91.84% 90.19% 96.76% 88.56% 90.68% 95.84%
4. Viterbi 96.09% 95.48% 96.76% 93.13% 94.71% 95.84%
5. Latent Dirichlet Allocation 59.37% 53.09% 96.76% 53.15% 57.74% 95.84%
6. Support Vector Machine 90.84% 89.21% 96.76% 88.07% 90.55% 95.84%
7. Logistic regression 89.65% 87.74% 96.76% 86.74% 89.41% 95.84%
Ensemble Model English Spanish Other English Spanish Other
All models 91.92% 90.00% 96.76% 88.36% 90.91% 95.84%
Models 3, 4 and 6 93.55% 92.31% 96.76% 90.35% 92.34% 95.84%
Models 1, 3, 4, 5 and 6 92.79% 91.17% 96.76% 89.31% 91.69% 95.84%
Oracle∗ 98.96% 98.81% 96.76% - - -
Supervised
MaChAmp 99.14% 99.08% 99.78% 98.42% 99.00% 99.84%

Table 2: Models evaluated using F1 score per class for validation and test data

Figure 1: Confusion matrix of Viterbi predictions
on test data

Figure 2: Confusion matrix of MaChAmp predic-
tions on test data

Figure 1 and 2 show the confusion matrices of the Viterbi and MaChAmp model. It can be noted
that the confusion matrix for MaChAmp model has more than the three labels we used, because it was
trained on part of the original training set presented in Section 2.1. This set contained 8 classes, and, thus,
occasionally, the model mistakenly predicted some of these classes. It can be seen that there was more
confusion in Viterbi model about other, where 213 words were classified as lang1 and 60 as lang2
instead, compared to just 3 and 1 in MaChAmp, which also had 7 other misclassifications.


