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Abstract

This paper presents our winning system at the
Radiology Report Summarization track of the
MEDIQA 2021 shared task. Radiology report
summarization automatically summarizes radi-
ology findings into free-text impressions. This
year’s task emphasizes the generalization and
transfer ability of participating systems. Our
system is built upon a pre-trained Transformer
encoder-decoder architecture, i.e., PEGASUS,
deployed with an additional domain adaptation
module to particularly handle the transfer and
generalization issue. Heuristics like ensemble
and text normalization are also used. Our sys-
tem is conceptually simple yet highly effective,
achieving a ROUGE-2 score of 0.436 on test
set and ranked the 1st place among all partici-
pating systems.

1 Introduction

Radiology reports are documents that record and
interpret radiological examinations. A typical radi-
ology report usually consists of three sections: (1)
a background section that describes general infor-
mation about the patient and exam, (2) a findings
section that presents details of the examination, and
(3) an impression section that summarizes the find-
ings against the background (Kahn Jr et al., 2009).
Figure 1 provides an example of such a radiology
report. In a standard radiology reporting process, a
radiologist first dictates detailed findings into the
report, and then summarizes the findings into a con-
cise impression based also on general background
of the patient (Zhang et al., 2018). The impression
section, which provides the most valuable informa-
tion to make clinical decisions, is the most crucial
part of a radiology report for both doctors and pa-
tients. However, manually summarizing radiology
findings into impressions are time-consuming and
error-prone (Gershanik et al., 2011), which necessi-
tates the need to automatically generate radiology
impressions.

Background: Examination: chest (portable
AP) indication: history: ___m with acute coro-
nary syndrome technique: upright AP view of
the chest comparison: chest radiograph ___
Findings: Patient is status post median ster-
notomy and CABG. Heart size remains mildly
enlarged. The aorta is tortuous. Mild pul-
monary edema is new in the interval. Small
bilateral pleural effusions are present. Patchy
bibasilar airspace opacities likely reflect areas
of atelectasis ...
Impression: Mild pulmonary edema and trace
bilateral pleural effusions.

Figure 1: A radiology report sampled from MEDIQA
2021 training set, where the impression is a summariza-
tion of the findings taking the background into account.

The MEDIQA 2021 shared task (Abacha et al.,
2021) at the NAACL-BioNLP workshop sets up a
Radiology Report Summarization subtask, the aim
of which is to build advanced systems to automat-
ically summarize radiology findings (along with
the background) into concise impressions. A key
feature of this task is that radiology reports used for
training and evaluation are collected from different
sources, e.g., training instances are sampled from
the MIMIC-CXR database (Johnson et al., 2019)
and some evaluation instances come from the Indi-
ana chest X-ray collection (Demner-Fushman et al.,
2016). This inevitably results in significant discrep-
ancies between training and evaluation, posing new
challenges to the generalization and transfer ability
of participating systems.

Zhang et al. (2018) presented the first sequence-
to-sequence attempt at automatic summarization
of radiology findings into natural language impres-
sions. After that, several extensions and improve-
ments have been proposed, e.g., to take into account
the factual correctness (Zhang et al., 2019) or the
ontologies (MacAvaney et al., 2019; Gharebagh
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Figure 2: An overview of our system, which consists of (1) a Transformer encoder-decoder tuning module, (2) a
domain adaptation module, (3) an ensemble module, (4) a negative impression normalization module. The domain
adaptation module is activated only for test instances in the Indiana subset, and the final normalization module is
activated only for test instances in the Stanford subset.

et al., 2020). These prior studies, however, are all
based on traditional sequence-to-sequence models
like RNN, BiLSTM, as well as pointer-generator
network (See et al., 2017), and none of them actu-
ally touches the generalization or transfer issue.

In the past few years, pre-training Transformer-
based encoder-decoder architectures from large-
scale text corpora has been proposed and quickly
received massive attention (Radford et al., 2018;
Dong et al., 2019; Xiao et al., 2020). Quite a num-
ber of such pre-trained models, e.g., MASS (Song
et al., 2019), BART (Lewis et al., 2020), and T5
(Raffel et al., 2020), have been devised and proved
extremely effective in various language generation
tasks. Against this background, we choose PEGA-
SUS (Zhang et al., 2020), a pre-trained model that
reports state-of-the-art performance on abstractive
text summarization, as the backbone of our system.
Since radiology report summarization is a special
form of abstractive text summarization, we expect
this choice to yield optimal performance. Besides,
we employ a simple yet effective domain adaptation
strategy, by further fine-tuning on a small amount
of in-domain data to improve generalization and
transfer abilities. We also use model ensemble and
negative impression normalization strategies to fur-
ther enhance the performance. Figure 2 provides
an overview of our system.

With all these strategies, our system achieves an
overall ROUGE-2 score of 0.436 on the whole test

set, ranked at the 1st place among all participating
systems. We will discuss later in the experimental
section the performance of different pre-trained
models and the effect of each individual strategy.

2 Task Description

This section gives a formal definition of the radiol-
ogy report summarization task, and introduces data
and evaluation metrics used for the task.

2.1 Task Definition

The MEDIQA 2021 Radiology Report Summariza-
tion task aims to automatically summarize radiol-
ogy findings into natural language impression state-
ments. Figure 1 provides an example of a standard
radiology report, which consists of a background,
findings, and impression section, detailed as below:

• Background: This section provides general
information about the patient and exam, e.g.,
clinical history of the patient, type of the exam,
and examination techniques. This kind of in-
formation helps diagnose diseases when com-
bined with specific findings.

• Findings: This section records notable details
in each part of the body observed in the exam,
after reading an X-ray image. It describes the
normality and abnormality a radiologist found
in each part of the body. If a specific part was
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examined but not mentioned, there is probably
no obvious abnormality found in that part.

• Impression: This section is a concise summa-
rization of the findings written by a radiologist.
It lists the patient’s symptoms and sometimes
with suggested diagnoses. This section is the
most crucial part of a radiology report, provid-
ing valuable information for doctors to make
clinical decisions.

Radiology Report Summarization is to generate
the impression given the background and findings.
Formally, given a passage of findings represented
as a sequence of tokens x={x1, x2, · · ·, xL} along
with the background represented as a sequence of
tokens y={y1, y2, · · ·, yM}, the goal is to generate
another sequence of tokens z = {z1, z2, · · ·, zN}
that best summarizes salient and clinically signifi-
cant findings in x. Here, L,M,N are the lengths
of the findings, the background, and the impression,
respectively.

2.2 Official Data
The official data consists of a training split, two
validation splits, and two test splits collected from
different sources, detailed as follows:

• Training split: The training split is composed
of 91,544 chest radiology reports picked from
MIMIC-CXR database (Johnson et al., 2019).
These reports are collected from patients pre-
senting to the Beth Israel Deaconess Medical
Center Emergency Department between 2011
and 2016.

• Validation split I: The first validation split
consists of 2,000 chest radiology reports sam-
pled also from MIMIC-CXR. It therefore has
the same distribution with the training split.

• Validation split II: The second validation
split consists of 2,000 radiology reports sam-
pled from the Indiana chest X-ray collection
(Demner-Fushman et al., 2016). These reports
are collected from the Indiana Network for Pa-
tient Care, thus bearing a risk of inconsistency
with the training split.

• Test split I: The first test split is also extracted
from the Indiana chest X-ray collection, com-
posed of 300 radiology reports in total.

• Test split II: The second test split comprises
another 300 chest radiology reports collected

Split # Reports Source
Training 91,544 MIMIC-CXR database
Validation I 2,000 MIMIC-CXR database
Validation II 2,000 Indiana collection
Test I 300 Indiana collection
Test II 300 Stanford collection

Table 1: Statistics and sources of the official data.

from the picture archiving and communication
system at the Stanford Hospital.

The statistics and sources of the data splits are sum-
marized in Table 1. As we can see, both test splits
come from different sources with the training split.
This poses significant challenges to the generaliza-
tion and transfer ability of participating systems.

2.3 Evaluation Metrics

The task uses ROUGE (Lin, 2004) to evaluate the
performance of participating systems. F1 scores for
ROUGE-1, ROUGE-2 and ROUGE-L are reported
on the whole test set, and also on the Indiana and
Stanford splits. The metrics measure the word-level
unigram-overlap, bigram-overlap and the longest
common sequence between reference summaries
and system predicted summaries respectively. The
overall ROUGE-2 on the whole test set is selected
as the primary metric to rank participating systems.

3 Our Approach

We employ a Transformer-based encoder-decoder
architecture for radiology report summarization.
Our system, as illustrated in Figure 2, consists of
four consecutive modules:

• a Transformer encoder-decoder training mod-
ule that fine-tunes a pre-trained language gen-
eration model, e.g., PEGASUS (Zhang et al.,
2020), on the training split;

• a domain adaptation module that further fine-
tunes the model on a small amount of valida-
tion data coming from the same source with
the test split, designed specifically to enhance
generalization and transfer ability to unseen
data;

• an ensemble module that combines diverse
predictions from multiple models to generate
robust summarization;
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• a final normalization module that normalizes
system predicted negative impressions into a
specific form.

Our system is simple yet highly effective, ranked
at the 1st place among all participating systems. In
the rest of this section, we detail key modules of
the system.

3.1 Transformer Encoder-Decoder Training
Transformer-based encoder-decoder architectures
pre-trained from large-scale text corpora have re-
cently stood out as the most promising techniques
for natural language generation, outperforming the
traditional RNN- or LSTM-based opponents in a
wide range of language generation tasks (Radford
et al., 2018; Raffel et al., 2020). We thereby choose
a pre-trained Transformer encoder-decoder model
as the backbone of our system, and fine-tunes the
model on the training split.

During the fine-tuning process, for each training
radiology report, we concatenate the findings x and
background y into a single sequence, and pair that
sequence with the impression z, i.e.,

• Source: x1, x2, · · ·, xL, [SEP], y1, y2, · · ·, yM

• Target: z1, z2, · · · , zN
where [SEP] is a special token separating the find-
ings and the background. The source sequence is
fed into the encoder, and the decoder autoregres-
sively decodes the next token conditioned on the
encoder output and previous tokens.

We are free to use any pre-trained Transformer
encoder-decoder models. We investigate three rep-
resentatives: BART, ERNIE-GEN, and PEGASUS,
detailed as below.

• BART (Lewis et al., 2020) is a denoising au-
toencoder for sequence-to-sequence learning.
It is trained by corrupting text with a noising
function, and learning a model to reconstruct
the original text. It achieves promising results
on a range of abstractive dialogue, question
answering, and summarization tasks.

• ERNIE-GEN (Xiao et al., 2020) is a multi-
flow sequence-to-sequence model that miti-
gates exposure bias with an infilling genera-
tion mechanism and a noise-aware generation
method. It achieves comparable results with a
smaller number of parameters on several ab-
stractive summarization, question generation,
and dialogue response generation tasks.

Model # Parameters Corpus Size
BART 400M 160GB
ERNIE-GEN 340M 430GB
PEGASUS 568M 3.8TB + 750GB

Table 2: Number of parameters and size of pre-training
corpus of the three models.

• PEGASUS (Zhang et al., 2020) is a Trans-
former encoder-decoder model specifically de-
signed for abstractive text summarization. It
is trained by masking out important sentences
from an input document and generating the
masked sentences together from the remaining
sentences, similar to an extractive summary.
It achieves state-of-the-art performance on 12
summarization tasks spanning across news,
science, stories, instructions, emails, patents,
and legislative bills.

Table 2 compares number of parameters and size of
pre-training corpus of the three models. PEGASUS
gets the largest number of parameters and is trained
on the largest amount of data.

3.2 Domain Adaptation

As the test splits (Indiana and Stanford) are col-
lected from different sources with the training split
(MIMIC-CXR), participating systems need to ad-
dress the generalization and transfer issue. Inspired
by (Gururangan et al., 2020), we employ a domain
adaptation strategy. Specifically, after fine-tuning a
pre-trained model on the MIMIC-CXR training set,
we further fine-tune the model on a small amount
of data similar to the test splits. In this way, we can
effectively adapt the model trained from MIMIC-
CXR to target test domains.

For the Indiana test split where there is a valida-
tion split sampled from the same source, we simply
use this validation split for further fine-tuning. Af-
ter a few epochs over the Indiana validation split,
we use the resultant model to make predictions for
reports in this test split. As we will show later in
the experiments, this adaptation strategy, though
conceptually simple, is highly effective, leading to
a remarkable boost in ROUGE-2 on this test split.

For the Stanford test split, there is no validation
split sampled from the same source. Therefore we
construct a subset from the training split to conduct
domain adaptation. For each case in this test split
(a radiology report without impression), we exploit
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Negative Impression Indiana Freq. MIMIC-CXR Freq. Overall Freq.
No acute cardiopulmonary abnormality. 14.2% 4.9% 9.6%
No acute cardiopulmonary process. 3.0% 15.0% 9.0%
No acute cardiopulmonary findings. 6.0% 0.1% 3.1%
No acute cardiopulmonary disease. 0.2% 4.9% 2.6%
No acute cardiopulmonary abnormalities. 4.9% 0.1% 2.5%

Table 3: Top 5 frequent negative impressions and their frequencies on the validation splits.

ElasticSearch1 to retrieve the top 10 reports from
the MIMIC-CXR training split that share the most
similar findings. We obtain 2,618 such radiology
reports in total after removing duplicates. Then we
conduct further fine-tuning on these reports, which,
however, downgrades the performance. So we just
use the model trained from training split to predict
for reports in this test split.

3.3 Model Ensemble
We further employ ensemble that combines diverse
predictions from multiple models for robust sum-
marization. Suppose we have T candidate models,
e.g., multiple runs with different seeds, each pro-
ducing a predicted impression ẑi (1≤ i≤T ) for the
given findings along with the background. We first
compute the mutual similarity score Sim(ẑi, ẑj) be-
tween each pair of predictions, and aggregate these
scores to measure the overall similarity of a specific
prediction against all the other predictions:

s(x̂i) =
∑
j 6=i

Sim(ẑi,ẑj), i = 1, · · · , T.

Then we select the prediction ẑi with the highest
overall similarity s(x̂i) as our final prediction. Fig-
ure 2 visualizes this ensemble process. We have
tried various similarity scoring functions Sim(·, ·),
e.g., ROUGE-1, ROUGE-2, ROUGE-L, and token-
level F1, but observed no significant differences be-
tween their performance. We finally use ROUGE-1
as the similarity scoring function.

3.4 Negative Impression Normalization
The final normalization module normalizes system
predicted negative impressions into a specific form.
Roughly speaking, the impression of a radiology
report can be divided into two categories: positive
or negative. A positive impression typically reveals
symptoms observed during the exam, e.g., “Mild
pulmonary edema and tracebilateral pleural effu-
sions”, whereas a negative impression indicates no

1https://www.elastic.co

symptoms at all, e.g., “No acute cardiopulmonary
abnormality”. Unlike positive impressions which
vary drastically w.r.t. input findings, negative im-
pressions tend to be expressed in specific forms.
Table 3 presents the top 5 frequent negative impres-
sions and their frequencies on the validation splits.
Though expressed in different forms, these nega-
tive impressions are all of the same meaning. The
choice of a particular form is just a matter of writ-
ing style. As the writing style usually varies across
organizations, predicting negative impressions by a
complex model trained from another organization
is prone to over-fitting and may not work well. In
contrast, simple heuristics based on basic statistics
may lead to less over-fitting and perform better.

Based on this observation, we introduce a heuris-
tic strategy, i.e., for any negative prediction starting
with “No acute”, we normalize it into “No acute
cardiopulmonary abnormality”, which is the most
frequent negative impression in the validation sets.
This normalization process is carried out only for
the Stanford test split, for which there is no training
or validation set from same organization.

4 Experiments and Results

This section presents experiments and results of
our system on the official data.

4.1 Experimental Setups

Our system is built upon a pre-trained Transformer
encoder-decoder architecture, PEGASUS (Zhang
et al., 2020). The maximum lengths of source and
target sequences are restricted to 512 and 128 re-
spectively, covering 99% of the cases in the training
and validation splits. Throughout all experiments,
we employ a decoding process with beam size of 5,
length penalty of 0.8, and early stopping.

Fine-tuning Setup We first fine-tune PEGASUS-
large2 on the MIMIC-CXR training split. We tune

2https://huggingface.co/google/
pegasus-large

https://www.elastic.co
https://huggingface.co/google/pegasus-large
https://huggingface.co/google/pegasus-large


108

All Test Set Indiana Test Set Stanford Test Set
Rank Team ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
1 BDKG (Ours) .5573 .4362 .5366 .6834 .5956 .6717 .4312 .2769 .4014
2 IBMResearch .5328 .4082 .5134 .6772 .5881 .6657 .3884 .2284 .3611
3 optumize .5186 .3918 .4957 .6188 .5182 .6050 .4183 .2655 .3864
4 JB .4955 .3778 .4794 .5895 .5039 .5824 .4015 .2517 .3763
5 low_rank_AI .4716 .3311 .4487 .5129 .3846 .5026 .4302 .2777 .3948
6 med_qa_group .4642 .3265 .4440 .5051 .3774 .4965 .4233 .2757 .3916
7 ChicHealth .4606 .3236 .4411 .5070 .3782 .4984 .4143 .2690 .3838
8 hEALTHai .4481 .3084 .4273 .4845 .3527 .4752 .4118 .2641 .3794
9 DAMO_ali .4330 .2763 .4116 .4371 .2839 .4278 .4289 .2687 .3954
10 I_have_no_flash .4303 .2743 .4092 .4351 .2826 .4258 .4256 .2661 .3926

Table 4: Official results of top 10 systems on the test splits. Systems ranked by ROUGE-2 on the whole test set.

the initial learning rate∈ {1e−5, 3e−5, 6e−5, 1e−4},
batch size ∈ {8, 16, 32}, and number of epochs ∈
{5, 10, 15, 25}. Other hyper-parameters are fixed
to their default values. The optimal configuration is
determined by ROUGE-2 on the whole validation
set (a combination of the MIMIC-CXR and Indiana
splits), which is learning rate = 6e−5, batch size
= 8, and number of epochs = 15.

Domain Adaptation Setup We further fine-tune
the model derived above on the Indiana validation
split, so as to adapt the model from MIMIC-CXR
to our target test domain. Specifically, we split the
Indiana validation set into 1700 : 300 subsets. We
tune the model with initial learning rate ∈ {1e−
4, 2e−4, 4e−4}, batch size ∈ {8, 16}, and number
of epochs ∈ {10, 20, 50, 100} on the former, and
determine the optimal configuration on the latter
(by ROUGE-2). The optimal configuration is initial
learning rate = 2e−4, batch size = 8, and number
of epochs = 100, with other hyper-parameters set,
again, to their default values. After determining the
optimal configuration, we re-tune the model on the
whole Indiana validation set.

Ensemble Setup We ensemble 16 models fur-
ther fine-tuned with in-domain data for the Indiana
test split. These models are obtained with the same
optimal configuration determined during domain
adaptation, but different random seeds. We ensem-
ble another 15 models trained from MIMIC-CXR
training split for the Stanford test split. These mod-
els are obtained, again, with the same configuration
but different seeds.

4.2 MEDIQA 2021 Official Results

Table 4 shows the official results of top 10 partici-
pating systems on the test splits, where systems are
ranked by ROUGE-2 score on the whole test set.
Our system, though conceptually simple, is highly
effective, ranked the 1st place among participating
systems. Notably, it consistently outperforms the
other systems across all three test splits and almost
in all metrics.

4.3 Further Analyses

This section provides in-depth analyses to show the
effect of each individual module in our system.

Effect of Pre-trained Models We first examine
the effect of different pre-trained models. Specifi-
cally, besides PEGASUS-large, we consider other
pre-trained models including BART3, DistilBART4,
ERNIE-GEN5, and PEGASUS-xsum6, all in the
“large” setting. We tune their hyper-parameters in
the same ranges as in PEGASUS-large, and report
optimal results on the validation splits. The results
are summarized in Table 5, where (S) scores denote
results for single models averaged over five runs.
Among these models, the two PEGASUS variants
(-large and -xsum), which are designed specifically
for abstractive text summarization, consistently per-
form better. And the -large variant performs even
better than the -xsum one. The reason may be that
the -xsum variant has been further tuned on XSum

3https://huggingface.co/facebook/
bart-large

4https://huggingface.co/sshleifer/
distilbart-xsum-12-6

5https://github.com/PaddlePaddle/
ERNIE/tree/repro/ernie-gen

6https://huggingface.co/google/
pegasus-xsum

https://huggingface.co/facebook/bart-large
https://huggingface.co/facebook/bart-large
https://huggingface.co/sshleifer/distilbart-xsum-12-6
https://huggingface.co/sshleifer/distilbart-xsum-12-6
https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen
https://github.com/PaddlePaddle/ERNIE/tree/repro/ernie-gen
https://huggingface.co/google/pegasus-xsum
https://huggingface.co/google/pegasus-xsum
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All Valid Set MIMC-CXR Valid Set Indiana Valid Set
Model ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
BART (S) .5352 .3871 .5103 .6209 .4902 .5865 .4495 .2840 .4340
BART (E) .5535 .4057 .5284 .6425 .5125 .6077 .4644 .2989 .4491
DistilBART (S) .5456 .3987 .5214 .6385 .5109 .6055 .4526 .2865 .4372
DistilBART (E) .5604 .4144 .5360 .6516 .5244 .6189 .4691 .3043 .4531
ERNIE-GEN (S) .5385 .3951 .5167 .6237 .4996 .5926 .4532 .2905 .4409
ERNIE-GEN (E) .5476 .4035 .5229 .6313 .5070 .6002 .4638 .3000 .4515
PEGASUS-xsum (S) .5506 .4107 .5303 .6413 .5233 .6117 .4600 .2981 .4489
PEGASUS-xsum (E) .5566 .4172 .5361 .6441 .5266 .6141 .4691 .3078 .4581
PEGASUS-large (S) .5559 .4129 .5330 .6511 .5290 .6188 .4608 .2968 .4471
PEGASUS-large (E) .5649 .4224 .5413 .6572 .5329 .6235 .4725 .3088 .4591

Table 5: Results of different pre-trained models on validation splits. We run each model five times with different
seeds under its optimal configuration. (S)/(E) respectively denotes the averaged/ensemble results of the five runs.

All Test Set Indiana Test Set Stanford Test Set
Ablation ROUGE-1/-2/-L ROUGE-1/-2/-L ROUGE-1/-2/-L
Full Model .5573 .4362 .5366 .6834 .5956 .6717 .4312 .2769 .4014
− Domain Adaptation .4539 .2916 .4333 .4766 .3062 .4652 .4312 .2769 .4014
− Normalization .5487 .4221 .5281 .6834 .5956 .6717 .4139 .2486 .3844

Table 6: Ablation results of domain adaptation and negative impression normalization on test splits.

(Narayan et al., 2018), which consists of articles
from the British Broadcasting Corporation and ex-
hibits drastic distinctions from radiology reports.
This thereby may result in catastrophic forgetting.

Effect of Ensemble We further investigate the
effect of model ensemble. To this end, for each of
the pre-trained models considered above, we run
the model five times with its optimal configuration
but different seeds. We then compare performance
of the single model (S) and the ensemble (E) on the
validation splits, and report the results in Table 5.
We can see that ensemble is a generally effective
strategy, leading to about 1% to 2% gains across
all data splits and metrics, not matter which pre-
trained model is used.

Effect of Domain Adaptation We then evaluate
the effect of our domain adaptation module, which
is applied solely to the Indiana test split. We con-
sider an ablation that uses the model trained from
MIMIC-CXR to predict on both Indiana and Stan-
ford test splits, without further fine-tuning on the in-
domain Indiana validation split. Table 6 reports the
performance of this ablation on the test splits, and
makes comparisons to the full model. We can see
that the adaptation module, though conceptually
simple, is extremely useful, pushing the ROUGE-2
score drastically from 0.3062 to 0.5956 on Indiana

test split.

Effect of Normalization We finally evaluate the
effect of negative impression normalization, which
is applied solely to the Stanford test split. Table 6
compares performance with and without this final
normalization strategy on the test splits. We can see
that this simple strategy brings meaningful gains,
pushing the ROUGE-2 score from 0.2486 to 0.2769
on Stanford test split.

5 Conclusion

This paper presents our winning system at the Radi-
ology Report Summarization track of the MEDIQA
2021 shared task. Participating systems in this track
are required to summarize radiology findings into
natural language impressions, and be able to gener-
alize or transfer to reports collected from previously
unseen hospitals. We build our system on the basis
of a pre-trained Transformer encoder-decoder ar-
chitecture, namely PEGASUS. We further employ
a domain adaptation module to enhance general-
ization and transfer ability. Heuristics such as en-
semble and negative impression normalization are
also used. Our system finally achieves a ROUGE-2
score of 0.436 on the test set, ranked the 1st place
among all participating systems.
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