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Introduction

Welcome to the ACL-IJCNLP 2021 Student Research Workshop!

The ACL-IJCNLP 2021 Student Research Workshop (SRW) is a forum for student researchers in
computational linguistics and natural language processing. The workshop provides a unique opportunity
for student participants to present their work and receive valuable feedback from the international
research community as well as from faculty mentors.

Following the tradition of the previous student research workshops, we have two tracks: research papers
and thesis proposals. The research paper track is a venue for Ph.D. students, Masters students, and
advanced undergraduates to describe completed work or work-in-progress along with preliminary results.
The thesis proposal track is offered for advanced Masters and Ph.D. students who have decided on a thesis
topic and are interested in feedback on their proposal and ideas about future directions for their work.

This year, the student research workshop has again received wide attention. We received 114 submissions
including 109 research papers and 5 thesis proposals. The submissions included 68 long papers and 46
short papers. Following withdrawals and desk rejects, 45 were accepted for an acceptance rate of 39%.
Excluding non-archival papers, 36 papers appear in these proceedings. All the accepted papers will be
presented virtually in three sessions during the course of August 3rd.

Mentoring is at the heart of the SRW. In keeping with previous years, we had a pre-submission mentoring
program before the submission deadline. A total of 36 papers participated in the pre-submission
mentoring program. This program offered students the opportunity to receive comments from an
experienced researcher to improve the writing style and presentation of their submissions.

We are deeply grateful to the Swiss National Science Foundation (SNSF) for providing funds that covered
student registrations. We thank our program committee members for their careful reviews of each paper
and all of our mentors for donating their time to provide feedback to our student authors. Thank you
to our faculty advisors, Jing Jiang, Rico Sennrich, Derek F. Wong and Nianwen Xue, for their essential
advice and guidance, and to the ACL-IJCNLP 2021 organizing committee for their support. Finally,
thank you to our student participants!
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Abstract

Data processing is an important step in various
natural language processing tasks. As the com-
monly used datasets in named entity recogni-
tion contain only a limited number of samples,
it is important to obtain additional labeled data
in an efficient and reliable manner. A common
practice is to utilize large monolingual unla-
beled corpora. Another popular technique is to
create synthetic data from the original labeled
data (data augmentation). In this work, we in-
vestigate the impact of these two methods on
the performance of three different named en-
tity recognition tasks.

1 Introduction

Recently, deep neural network models have
emerged in various fields of natural language pro-
cessing (NLP) and replaced the mainstream posi-
tion of conventional count-based methods (Lample
et al., 2016; Vaswani et al., 2017; Serban et al.,
2016). In addition to providing significant perfor-
mance improvements, neural models often require
high hardware conditions and a large amount of
clean training data. However, there is usually only
a limited amount of cleanly labeled data available,
so techniques such as data augmentation and self-
training are commonly used to generate additional
synthetic data.

Significant progress has been made in recent
years in designing data augmentations for computer
vision (CV) (Krizhevsky et al., 2012), automatic
speech recognition (ASR) (Park et al., 2019), nat-
ural language understanding (NLU) (Hou et al.,
2018) and machine translation (MT) (Wang et al.,
2018) in supervised settings. In addition, semi-
supervised approaches using self-training tech-
niques (Blum and Mitchell, 1998) have shown

∗Work completed while studying at RWTH Aachen Uni-
versity.

promising performance in conventional named en-
tity recognition (NER) systems (Kozareva et al.,
2005; Daumé III, 2008; Täckström, 2012). In this
work, the effectiveness of self-training and data
augmentation techniques on neural NER architec-
tures is explored.

To cover different data situations, we select
three different datasets: The English CoNLL 2003
(Tjong Kim Sang and De Meulder, 2003) dataset,
which is the benchmark on which almost all NER
systems report results, it is very clean and the base-
line models achieve an F1 score of around 92.6%;
The English W-NUT 2017 (Derczynski et al., 2017)
dataset, which is generated by users and contains
inconsistencies, baseline models get an F1 score
of around 52.7%; The GermEval 2014 (Benikova
et al., 2014) dataset, a fairly clean German dataset
with baseline scores of around 86.3%1. We observe
that the baseline scores on clean datasets such as
CoNLL and GermEval can hardly be improved by
data adaptation techniques, while the performance
on the W-NUT dataset, which is relatively small
and inconsistent, can be significantly improved.

2 Related Work

2.1 State-of-the-art Techniques in NER

Collobert et al. (2011) advance the use of neural net-
works (NN) for NER, who propose an architecture
based on temporal convolutional neural networks
(CNN) over the sequence of words. Since then,
many articles have suggested improvements to this
architecture. Huang et al. (2015) propose replacing
the CNN encoder in Collobert et al. (2011) with
a bidirectional long short-term memory (LSTM)
encoder, while Lample et al. (2016) and Chiu and
Nichols (2016) introduce a hierarchy into the archi-
tecture by replacing artificially designed features

1From here on, for the sake of simplicity, we omit the
annual information of the datasets.
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with additional bidirectional LSTM or CNN en-
coders. In other related work, Mesnil et al. (2013)
have pioneered the use of recurrent neural networks
(RNN) to decode tags.

Recently, various pre-trained word embedding
techniques have offered further improvements over
the strong baseline achieved by the neural architec-
tures. Akbik et al. (2018) suggest using pre-trained
character-level language models from which to ex-
tract hidden states at the start and end character
positions of each word to embed any string in a
sentence-level context. In addition, the embedding
generated by unsupervised representation learning
(Peters et al., 2018; Devlin et al., 2019; Liu et al.,
2019; Taillé et al., 2020) has been used success-
fully for NER, as well as other NLP tasks. In this
work, the strongest model for each task is used as
the baseline model.

2.2 Data Adaptation in NLP

In NLP, generating synthetic data using forward or
backward inference is a commonly used approach
to increase the amount of training data. In strong
MT systems, synthetic data that is generated by
back-translation is often used as additional training
data to improve translation quality (Sennrich et al.,
2016). A similar approach using backward infer-
ence is also successfully used for end-to-end ASR
(Hayashi et al., 2018). In addition, back-translation,
as observed by Yu et al. (2018), can create various
paraphrases while maintaining the semantics of the
original sentences, resulting in significant perfor-
mance improvements in question answering.

In this work, synthetic annotations, which are
generated by forward inference of a model that is
trained on annotated data, are added to the train-
ing data. The method of generating synthetic data
by forward inference is also called self-training
in semi-supervised approaches. Kozareva et al.
(2005) use self-training and co-training to recog-
nize and classify named entities in the news do-
main. Täckström (2012) uses self-training to adapt
a multi-source direct transfer named entity rec-
ognizer to different target languages, “relexical-
izing” the model with word cluster features. Clark
et al. (2018) propose cross-view training, a semi-
supervised learning algorithm that improves the
representation of a bidirectional LSTM sentence
encoder using a mixture of labeled and unlabeled
data.

In addition to the promising pre-trained embed-

ding that is successfully used for various NLP tasks,
the masked language modeling (MLM) can also
be used for data augmentation. Kobayashi (2018)
and Wu et al. (2019) propose to replace words with
other words that are predicted using the language
model at the corresponding position, which shows
promising performance on text classification tasks.
Recently, Kumar et al. (2020) discussed the effec-
tiveness of such different pre-trained transformer-
based models for data augmentation on text classi-
fication tasks. And for neural MT, Gao et al. (2019)
suggest replacing randomly selected words in a
sentence with a mixture of several related words
based on a distribution representation. In this work,
we explore the use of MLM-based contextual aug-
mentation approaches for various NER tasks.

3 Self-training

Though, the amount of annotated training data
is limited for many NLP tasks, additional unla-
beled data is available in most situations. Semi-
supervised learning approaches make use of this
additional data. A common way to do this is self-
training (Kozareva et al., 2005; Täckström, 2012;
Clark et al., 2018).

At a high level, it consists of the following steps:

1. An initial model is trained using the labeled
data.

2. This model is used to annotate the additional
unlabeled data.

3. A subset of this data is selected and used in ad-
dition to the labeled data to retrain the model.

For the performance of the method it is critical to
find a heuristic to select a good subset of the auto-
matically labeled data. The selected data should not
introduce too many errors, but at the same time they
should be informative, i.e. they should be useful to
improve the decision boundary of the final model.
One selection strategy (Drugman et al., 2016) is
to calculate a confidence measure for all unlabeled
sentences and to randomly sample sentences above
a certain threshold.

We consider two different confidence measures
in this work. The first, hereinafter referred to as c1,
is the posterior probability of the tag sequence y
given the word sequence x:

c1(y, x) = p(y | x) =
es(x,y)∑
y′ e

s(x,y′)
(1)

2



whereby s(x, y) is the unnormalized log score as-
signed by the model to the sequence, consisting of
an emission model qEi and transition model qT :

s(x, yT1 ) =

T∑

i=1

qEi (yi | x) + qT (yi | yi−1)

For the second confidence measure, we take into
account the normalized tag scores at each position.
To get a confidence score for the entire sequence,
we take the minimum tag score of all positions.
Thus, c2 is defined as follows:

c2(y, x) = min
i

qEi (yi | x) + qT (yi | yi−1)∑
y′i
qEi (y′i | x) + qT (y′i | yi−1)

(2)

4 MLM-based Data Augmentation

Instead of using additional unlabeled data, we ap-
ply MLM-based data augmentation specifically for
NER by masking and replacing original text tokens
while maintaining labels.

For each masked token xi:

x̂i = arg max
w

p(xi = w|x̃) (3)

where x̂i is the predicted token, w ∈ V is the token
from the model vocabulary and x̃ is the original
sentence with xi = [MASK].

There are several configurations that can affect
the performance of the data augmentation method:
Techniques of selecting the tokens to be replaced,
the order of token replacement in case of multi-
ple replacement and the criterion for selecting the
best tokens from the predicted ones. This section
studies the effect of these configurations.

4.1 Sampling
Entity spans (entities of arbitrary length) make the
training sentences used in NER tasks special. Since
there is no guarantee that a predicted token belongs
to the same entity type as an original token, it is
important to ensure that the masked token is not in
the middle of the entity span and that the existing
label is not damaged. In this work, we propose
three different types of token selection inside and
outside of entity spans:

• Entity replacement: Collect entity spans of
length one in the sentence and randomly select
the entity span to be replaced. In this case,
exactly one entity in the sentence is replaced.
The sentences without entities or with longer
entity spans are skipped.

• Context replacement: We consider tokens
with the label “O” as context and alternate
between two setups: (1) Select only context
tokens before and after entities, and (2) select
a random subset of context tokens among all
context tokens.

• Mixed: Select uniformly at random the num-
ber of masked tokens between two and the
sentence length among all tokens in the sen-
tence.

The first approach allows only one entity to be gen-
erated and thus benefits from conditioning to the
full sequence context. However, it does not guar-
antee the correct labeling for the generated token.
The disadvantage of the second approach is that
we do not generate new entity information, but
only generate a new context for the existing entity
spans. Even if a new entity type is generated, it
has the original “O” label without a NER classi-
fication pipeline. The disadvantage of the third
approach is that the token may be selected in the
middle of the entity span and the label is no longer
relevant. The sampling approaches depicted on the
Figure 1. In addition, the number of replaced to-
kens should be properly tuned to avoid inadequate
generation. In this work, we do not set any bound-
aries for maximum token replacement and leave
such investigation to future work.

4.2 Order of Generation
In our method, we predict exactly one mask token
per time. Our sampling approaches allow multi-
ple tokens to be replaced. Therefore we have two
possible options for the generation order:

• Independent: Each consecutive masking and
prediction is made on top of the original se-
quence.

• Conditional: Each consecutive masking and
prediction is made on top of the prediction of
the previous step.

4.3 Criterion
The criterion is an important part of the generation
process. On the one hand, we want our synthetic
sequence to be reliable (highest token probability),
on the other hand, it should differ as much as possi-
ble from the original sequence (high distance). We

2Given example is taken from https://
artificialintelligence-news.com
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Figure 1: Sampling approaches example2for the MLM data augmentation. Gray color refers to the tokens with the
entity type ”O“ (context), green color refers to the PER entity type and purple color refers to the ORG entity type.
Red square represents the subset of tokens which is used for replacement.

propose two criteria for choosing the best token
from the five-best predictions:

• Highest probability (top token): Choose the
target token only based on the MLM probabil-
ity for that token.

• Highest probability and distance (joint cri-
terion): Choose the target token based on the
product of the MLM probability for the to-
ken and Levenshtein distance (Levenshtein,
1966) between the original sentence and the
sentence with the new token.

Regardless of the combination of the parame-
ters, the sentences must be changed. As a result,
we guarantee that there is no duplication in our
synthetic data with the original dataset.

4.4 Discussion
The main disadvantage of using a language model
(LM) for the augmentation of NER datasets is that
the LM does not take into account the labeling
of the sequence and the prediction of the masked
token, which only depends on the surrounding to-
kens. As a result, we lose important information
for decision-making. Incorporating label informa-
tion as described in Wu et al. (2019) into the MLM
would be the way to tackle this problem.

Another way to reduce the noise in the generated
dataset is to apply a filtering step to the generation

pipeline. One way to incorporate filtering into the
augmentation process is to set the threshold for
the MLM token probabilities: If the probability
of the predicted token is less than a threshold, we
ignore such prediction. However, the problem of
misaligning token labels is not resolved. Therefore,
we adapt our proposed confidence measure from
Section 3 for filtering.

In this work, we do not discuss the selection of
the MLM itself as well as the effects of fine-tuning
on the specific task.

5 Experiments

5.1 Datasets

We test our data adaptation approaches with three
different NER datasets: CoNLL (Tjong Kim Sang
and De Meulder, 2003), W-NUT (Derczynski et al.,
2017) and GermEval (Benikova et al., 2014).

All datasets have the original labeling scheme
as BIO, but following Lample et al. (2016) we
convert it to the IOBES scheme for training and
evaluation. For our baseline models, we do not use
any additional data apart from the provided training
data. Development data is only used for validation.
For CoNLL we skip all document boundaries. The
statistics for the datasets are shown in Table 1.3

3Further details on the used datasets can be found in Ap-
pendix A
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Dataset train dev test
CoNLL 14041 3250 3453
W-NUT 3394 1008 1287
GermEval 24001 2199 5099

Table 1: Dataset sizes in number of sentences.

5.2 Model Description

The Bidirectional LSTM - Conditional Random
Field (BiLSTM-CRF) model (Lample et al., 2016)
is a widely used architecture for NER tasks. To-
gether with pre-trained word embeddings, it sur-
passes other neural architectures. We use the
BiLSTM-CRF model implemented in the Flair4

framework version 0.5, which delivers the state-of-
the-art performance.

The BiLSTM-CRF model consists of 1 hidden
layer with 256 hidden states. Following Reimers
and Gurevych (2017), we set the initial learning
rate to 0.1 and the mini-batch size to 32. For
each task, we select the best performing embed-
ding from all embedding types in Flair. For train-
ing models with CoNLL data, we use pre-trained
GloVE (Pennington et al., 2014) word embedding
(Grave et al., 2018) together with the Flair embed-
ding (Akbik et al., 2018) as input into the model.
For W-NUT experiments, we use roberta-large em-
bedding provided by Transformers library (Wolf
et al., 2019). German dbmdz/bert-base-german-
cased embedding is used for experiments with the
GermEval dataset.

5.3 Unlabeled Data

Additional unlabeled data is required for self-
training. To match the domain of the test data,
we collect the data from the sources mentioned in
the individual task descriptions.

W-NUT Like the test data, the data for W-NUT
consists of user comments from Reddit, which were
created in April 20175 (comments in the test data
were created from January to March 2017), as well
as titles, posts and comments from StackExchange,
which were created from July to December 20176

(the content of the test data was created from Jan-
uary to May 2017). The documents are filtered

4https://github.com/zalandoresearch/
flair/

5https://files.pushshift.io/reddit/
comments/

6https://archive.org/download/
stackexchange

according to length and community as described in
the task description paper and tokenized with the
TweetTokenizer from nltk7.

CoNLL The data was sampled from news ar-
ticles in the Reuters corpus from October and
November 1996. The sentences are tokenized using
spaCy8 and filtered (by removing common patterns
like the date of the article, sentences that do not
contain words and sentences with more than 512
characters as this is the length of the longest sen-
tence in the CoNLL training data).

GermEval We randomly sampled additional
data from sentences extracted from news and
Wikipedia articles provided by the Leipzig Cor-
pora Collection9. In addition to tokenizing the
sentences using spaCy, we do not do any additional
preprocessing or filtering.

5.4 Self-training

Before applying the approach described in Sec-
tion 3, we need to find the thresholds t for the
confidence measures c1 and c2 for each corpus. We
evaluate both confidence measures on the develop-
ment sets of the three corpora. One way to evaluate
confidence measures is to calculate the confidence
error rate (CER). It is defined as the number of
misassigned labels (i.e. confidence is above the
threshold and the prediction of the model is incor-
rect or the confidence is below the threshold and the
prediction is correct) divided by the total number
of samples.

Figure 2 shows the CER of c1 and c2 on the
development set of W-NUT for different threshold
values t. For the threshold of 0.0 or 1.0 the CER
degrades to the percentage of incorrect or correct
predictions as either all or no confidence values are
above the threshold. For c2 there is a clear optimum
at t̂2 = 0.42 and for larger and smaller thresholds
the CER rises rapidly.

In contrast, the optimum for c1 at t̂1 = 0.57 is
not as pronounced. This motivated us not only to
choose the best value in terms of CER, but also a
lower threshold t′1 = 0.42 with slightly worse CER.
In this way, we include more sentences where the
model is less confident without introducing too
many additional errors. The threshold values for

7https://www.nltk.org/api/nltk.
tokenize.html

8https://github.com/explosion/spaCy
9https://wortschatz.uni-leipzig.de/de/

download
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Figure 2: CERs for c1 (orange) and c2 (blue) with dif-
ferent threshold values on the W-NUT development set.
Vertical dashed lines represent t̂1 and t̂2.

W-NUT CoNLL GermEval
t̂1 0.57 0.83 0.63
t′1 0.42 0.70 0.50
t̂2 0.42 0.50 0.47

Table 2: Selected confidence threshold values.

CoNLL and GermEval are selected analogously.
Table 2 provides an overview of all threshold values
that are used in all subsequent experiments.

The unlabeled data is annotated using the base-
line models described in Section 3 (we choose the
best runs based on the score on the development
set) and is filtered based on the different confidence
thresholds. Then we sample a random subset of
size k from these remaining sentences. For tasks
where the data comes from different sources, e.g.
news and Wikipedia for GermEval, we uniformly
sample from the different sources to avoid that a
particular domain is overrepresented. The selected
additional sentences are then appended to the origi-
nal set of training sentences to create a new training
set that is used to retrain the model from scratch.

To validate our selection strategy, we test our
pipeline with different confidence thresholds for
both confidence measures. Figure 3 shows the re-
sults on the test set of W-NUT. For each threshold,
3394 sentences are sampled, i.e. the size of the
training set is doubled. The results confirm our se-
lection strategy. t′1 and t̂2 give the best results of all
tested threshold values. In particular, t′1 performs
better than t̂1.

Table 3 shows the results of self-training on all
three datasets. For each of them, we test the three
selection strategies by sampling new sentences in
the size of 0.5 times, 1 times and 2 times the size of
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f1
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Figure 3: Average F1 scores and standard deviation
(shaded area) of 3 runs on the test set of W-NUT after
retraining the model on additional data selected using
different confidence measures (color) and thresholds.

the original training data. For W-NUT we get up to
2% of the absolute improvements in the F1 score
over the baseline. On larger datasets like CoNLL
and GermEval these effects disappear and we only
get improvements of up to 0.1% and in some cases
even deterioration.

5.5 MLM-based Data Augmentation

We follow the approach explained in Section 4
and generate synthetic data using pre-trained mod-
els from the Transformers library. We concatenate
original and synthetic data and train the NER model
on the new dataset. We test all possible combina-
tions of the augmentation parameters from Section
4 on the W-NUT dataset. Table 4 shows the re-
sult of the augmentation. When sampling with one
entity, there is no difference between independent
and conditional generation, since only one token
in a sentence is masked. We therefore only carry
out an independent generation for this type of sam-
pling. We report an average result among 3 runs
along with a standard deviation of the model with
different random seeds.

W-NUT and CoNLL datasets are augmented us-
ing a pre-trained English BERT model10 and Ger-
mEval with a pre-trained German BERT model11

respectively. We do not fine-tune these models.
Sampling from the context of the entity spans

shows significant improvements on W-NUT test
set. First of all, it includes implicit filtering: Only
the sentences with the entities are selected and re-

10https://huggingface.co/
bert-large-cased-whole-word-masking

11https://huggingface.co/
bert-base-german-cased
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W-NUT CoNLL GermEval
∆ sen. F1 ∆ sen. F1 ∆ sen. F1

1 baseline +0% 52.7± 2.48 +0% 92.6± 0.18 +0% 86.3± 0.06

2 c1 ≥ t̂1 +50% 54.2± 0.35 +50% 92.5± 0.06 +50% 86.0± 0.08

3 c1 ≥ t̂1 +100% 53.6± 1.41 +100% 92.5± 0.12 +100% 86.1± 0.26

4 c1 ≥ t̂1 +200% 53.5± 0.53 +200% 92.4± 0.08 +200% 86.3± 0.14

5 c1 ≥ t′1 +50% 53.7± 1.95 +50% 92.5± 0.02 +50% 86.1± 0.21
6 c1 ≥ t′1 +100% 54.8 ± 0.33 +100% 92.6± 0.09 +100% 86.2± 0.12
7 c1 ≥ t′1 +200% 53.5± 0.29 +200% 92.5± 0.06 +200% 86.4 ± 0.03

8 c2 ≥ t̂2 +50% 54.6± 0.42 +50% 92.7 ± 0.04 +50% 86.0± 0.16

9 c2 ≥ t̂2 +100% 54.2± 0.98 +100% 92.6± 0.06 +100% 86.4 ± 0.15

10 c2 ≥ t̂2 +200% 54.5± 0.43 +200% 92.7 ± 0.02 +200% 86.3± 0.05

Table 3: Results of self-training.

placed. Therefore, compared to other methods, we
add less new sentences (except when replacing en-
tities). Second of all, since replacing tokens with
a language model should result in the substitution
with similar words, the label is less likely to be
destroyed while context tokens are replaced.

On the other hand, the mixed sampling strategy
performs the worst among all methods. We believe
that this is the effect when additional noise is in-
cluded in the dataset (by noise we mean all types of
noise, e.g. incorrect labeling, grammatical errors,
etc). Allowing masking of words up to sequence
in some cases destroys the sentence, e.g. incorrect
and multiple occurrences of the same words can
occur. In Appendix B we present the examples
of augmented sentences for each augmentation ap-
proach and each dataset. Additionally, we report
the average number of masked token.

To analyze the resulting models, we plot the
average confidence scores of the test set as well
as the number of errors per sentence for the best
baseline model and best augmented model. We use
the best baseline system with 54.6% F1 score and
the best model corresponding to the setup of line
8 in Table 4 with 57.4% F1 score. We count the
error every time the model predicts a correct label
with low confidence or an incorrect label with high
confidence. We set high and low confidence to be
0.6 and 0.4 respectively. Figure 4 shows that the
augmented model makes a more reliable prediction
than the best baseline system model.

We repeat the promising MLM generation
pipeline on the CoNLL and GermEval datasets.
These datasets contain more entities in the origi-
nal data. In addition, even though the entity re-
placement sampling did not work well on W-NUT
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Figure 4: Average confidence score and the error per
sentence on W-NUT test data. MLM DA refers to the
setup of line 8 in Table 4

dataset, we repeat these experiments, since gener-
ating new entities is the most interesting scenario
for using the MLM augmentation.

Although the MLM-based data augmentation
leads to improvements of up to 3.6% F1 score
on the W-NUT dataset, Table 5 shows that such
effect disappears when we apply our method to
larger and cleaner datasets such as CoNLL and
GermEval. We believe there are several reasons
for that. First, our MLM-based data augmentation
method does not guarantee the accuracy of the la-
beling after augmentation. So for larger datasets,
there are many more possibilities to increase the
noise of the corpus. Moreover, we do not study
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sampling generation criterion ∆ sen. F1
1 baseline - - - +0.0% 52.7± 2.48

2
entity independent

top token +24.4% 53.7± 0.91
3 joint +24.7% 54.6± 0.50
4

mixed
conditional

top token +98.7% 52.3± 1.25
5 joint +99.7% 51.7± 1.36
6

independent
top token +98.6% 53.7± 0.89

7 joint +99.7% 53.3± 0.61
8

context
conditional

top token +33.8% 56.3 ± 1.21
9 joint +35.8% 55.6 ± 1.12
10

independent
top token +33.8% 55.0 ± 1.16

11 joint +35.8% 56.0 ± 0.06
12

random context
conditional

top token +96.8% 54.9 ± 0.40
13 joint +99.7% 54.5± 1.21
14

independent
top token +96.9% 53.7± 0.93

15

MLM DA

joint +99.7% 53.5± 2.40

Table 4: Results of the MLM-based augmentation on the W-NUT dataset. entity refers to the sampling
tokens from entity spans of length one, mixed means sampling from the complete sequence, context indi-
cates sampling from the entity span context, random context denotes sampling from random context labels.
conditional refers to the conditional generation and independent refers to the independent generation type.
The top token criterion selects the token based on the highest probability, and the joint criterion takes into
account the token probability and the Levenshtein distance.

how well pre-trained models suit the specific task,
which might be crucial for the DA. Besides, for
GermEval augmentation, we use the BERT model
with three times fewer parameters than for W-NUT
and CoNLL.

5.5.1 Filtering of Augmented Data

As discussed in Section 4, an additional data filter-
ing step can be applied on top of the augmentation
process. We report results on two different filtering
methods: First, we set a threshold for the proba-
bility of the predicted token (in our experiments
we use the probability 0.5); Second, we filter sen-
tences by minimum confidence scores as discussed
in Section 3. We set the minimum confidence score
according to Table 2. We apply filtering to the
worst and best-performing model according to the
numbers in Table 4. The filtering results on W-NUT
are shown in Table 6.

In the case of the worst model, filtering based on
the token probability improve the performance of
the model by 2.6% compared to the unfiltered one.
Filtering by confidence score does not improve the
performance, but significantly reduces the standard
deviation of the score. The results are expected,
since by using token probability we increase the
sentence reliability and completely change the syn-
thetic data, while using the confidence score we

filter on the same synthetic data. In the case of
the better model, we see the opposite trend. Here
filtering leads to performance degradation and an
increase in the standard deviation.

We apply the same filtering techniques for
CoNLL and GermEval. Table 7 shows the results
for 3 different models. We choose the best, the
worst and the model with the highest number of
additional sentences for filtering. In the case of
the worst model, the performance is improved by
1.1% F1 score with the minimum confidence filter-
ing for CoNLL and 0.5% F1 score for GermEval
compared to the unfiltered version. However, for
the best model, the results remain at the same level
and the baseline systems are not improved.

Although we do not achieve significant improve-
ments compared to the baseline system, we see a
potential in the MLM-based augmentation with the
combination with filtering.

6 Discussion and Future Work

In this work, we present results of data adapta-
tion methods on various NER tasks. We show that
MLM-based data augmentation and self-training
approaches lead to improvements on the small and
noisy W-NUT dataset.

We propose two different confidence measures
for self-training and empirically estimate the best

8



CoNLL GermEval
sampling generation criterion ∆ sen. F1 ∆ sen. F1

1 baseline - - - +0.0% 92.6 ± 0.18 0.0% 86.3 ± 0.06

3 entity independent joint +57.9% 91.5± 0.10 +47.9% 85.9± 0.06
8

context
conditional

top token +65.7% 92.4± 0.12 +51.4% 86.1± 0.26
9 joint +72.2% 92.3± 0.06 +58.5% 86.0± 0.15
10

independent
top token +65.7% 92.5± 0.06 +51.4% 86.1± 0.15

11 joint +72.2% 92.2± 0.17 +58.5% 86.0± 0.20
12

MLM DA

rand. cont. conditional top token +85.1% 92.1± 0.15 +94.1% 86.1± 0.10

Table 5: Results of the MLM-based data augmentation on CoNLL and GermEval datasets. The row numbers refer
to the row numbers of the Table 4.

∆ sen. filtering F1
+99.7% - 51.7± 1.36
+86.3% token prob. 54.3 ± 0.315
+59.5% min. conf. 51.2± 0.60

+33.8% - 56.3 ± 1.21
+13.8% token prob. 53.3± 2.009
+10.4% min. conf. 51.7± 2.10

Table 6: F1 scores of using filtered augmented data on
W-NUT. The row numbers refer to the row numbers of
the Table 4.

CoNLL GermEval
filtering ∆ sen. F1 ∆ sen. F1

none +57.9% 91.5± 0.10 +47.9% 85.9± 0.06
tok. prob. +7.8% 92.4± 0.15 +13.1% 86.1± 0.293
min. conf. +13.5% 92.6± 0.15 +13.9% 86.4 ± 0.12

none +65.7% 92.5± 0.06 +51.5% 86.1± 0.15
tok. prob. +22.5% 92.5± 0.15 +34.5% 86.3 ± 0.2110
min. conf. +52.1% 92.6 ± 0.20 +23.9% 86.1± 0.10

none +85.1% 92.1± 0.15 +94.1% 86.1± 0.10
tok. prob. +42.5% 92.8 ± 0.06 +76.1% 86.1± 0.0012
min. conf. +58.9% 92.6 ± 0.12 +62.3% 86.0± 0.21

Table 7: F1 scores of using filtered augmented data on
CoNLL and GermEval. The first line represents the
augmentation method from Table 4.

thresholds. Our results on the W-NUT dataset show
the effectiveness of the selection strategies based
on those confidence measures.

For MLM-based data augmentation, we suggest
multiple ways of generating synthetic NER data.
Our results show that even without generating new
entity spans we are able to achieve better results.

For future work, we would like to incorporate
label information into the augmentation pipeline by
either conditioning the token predictions on labels
or adding additional classification steps on top of
the token prediction. Another important question
is the choice of the MLM and the impact of task-
specific fine-tuning. Further investigations into the
filtering step should also be carried out.

For both self-training and MLM-based data aug-

mentation we would like to improve the integration
in the training process. The contribution of the
original training data to the loss function could
be increased or additional data could be weighted
by their confidence. Finally, we would like to
test whether we can combine the two methods to
achieve additional improvements.
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A Data Description

In our work we use three NER datasets:

• CoNLL 2003 (Tjong Kim Sang and De Meul-
der, 2003) contains news articles from the
Reuters12 corpus. The annotation con-
tains 4 entity types person, location,
organization, miscellaneous. We
remove the document boundary information
for our experiments.

• W-NUT 2017 (Derczynski et al., 2017)
contains texts from Twitter (training data),
YouTube (development data), StackExchange
and Reddit (test data). The annota-
tion contains 6 entity types: person,
location, corporation, product,
creative-work, group

• GermEval 2014 (Benikova et al., 2014): con-
tains the data from the German Wikipedia and
news Corpora. The annotation contains 12
entity types: location, organization,
person, other, location deriv,
location part, organization
deriv, organization part, person
deriv, person part, other deriv,
other part.

Table 8 shows detailed statistics of those datasets.
Together with number of entities, tokens and sen-
tences we report the percentage of the labelled to-
kens among all the tokens.

Dataset train dev test
#sentences 14041 3250 3453
#entities 23500 5943 5649
#tokens 203621 51362 46435
#entity types 4 4 4

CoNLL

%labelled 16.7 16.8 17.5
#sentences 3394 1008 1287
#entities 1976 836 1080
#tokens 62730 15723 23394
#entity types 6 6 6

W-NUT

%labelled 5.0 7.9 7.4
#sentences 24001 2199 5099
#entities 29077 2674 6178
#tokens 452790 41635 96475
#entity types 12 12 12

GermEval

%labelled 9.3 9.5 9.3

Table 8: Dataset sizes in number of sentences, tokens
and entities. Here, entity means the entity span, e.g.
European Union is considered as one entity.

12https://trec.nist.gov/data/reuters/
reuters.html

B MLM-based Data Augmentation

B.1 Data statistics
The number of masked tokens solely depends on
the augmentation strategy discussed in section 4.
Table 9 reports the average number of masked to-
kens in the sentence on W-NUT dataset for each
augmentation strategy. Table 10 and Table 11 show
the average number of masked tokens in the sen-
tence for the most promising augmentation strate-
gies for CoNLL and GermEval tasks.

sampling generation criterion ∆ sen. Masked

entity independent
top token +24.4% 1.2

joint +24.7% 1.2

mixed
conditional

top token +98.7% 7.4
joint +99.7% 8.8

independent
top token +98.6% 7.0

joint +99.7% 8.8

context
conditional

top token +33.8% 4.4
joint +35.8% 4.5

independent
top token +33.8% 4.3

joint +35.8% 4.5

random context
conditional

top token +96.8% 7.1
joint +99.7% 8.1

independent
top token +96.9% 6.9

joint +99.7% 8.1

Table 9: Average number of masked tokens for each
augmentation strategy on W-NUT dataset.

sampling generation criterion ∆ sen. Masked
entity independent joint +57.9% 1.1

context
conditional

top token +65.7% 3.4
joint +72.2% 6.4

independent
top token +65.7% 3.4

joint +72.2% 6.4
random context conditional top token +85.1% 4.5

Table 10: Average number of masked tokens on
CoNLL dataset.

sampling generation criterion ∆ sen. Masked
entity independent joint +47.9% 1.0

context
conditional

top token +51.4% 4.4
joint +58.5% 5.7

independent
top token +51.4% 4.3

joint +58.5% 5.3
random context conditional top token +94.1% 6.0

Table 11: Average number of masked tokens on Ger-
mEval dataset.

B.2 Data Examples
We show the data examples on different dataset by
varying one augmentation parameter while keeping
others unchanged. Table 12 shows the examples
on W-NUT dataset. In Table 13 and Table 14 we
collect the examples for GermEval and CoNLL.
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Parameter Value Example
- RT @Quotealicious: Today, I saw a guy

driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.
MLIA #Quotealicious

entity RT @Quotealicious: Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>beer</product>
MLIA #Quotealicious

context RT @Quotealicious : Today, I saw a guy
driving a <corporation>Pepsi</corporation>
car, drinking a <product>Coke</product>.
MLIA #Quotealicious

random context m me: Today, I saw a man driving a
<corporation>Pepsi</corporation> truck,
buying a <product>Coke</product>. MLIA
#Quotealicious

Sampling

mixed m @Quotealicious Earlier Today, I saw a guy
driving a <corporation>Pepsi</corporation>
truck, drinking a <product>Coke</product>.
MLIA #Quotealicious

- What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>? anyone going to see
<creativework>Friday Night
Lights</creativework>?

independent What is everyone watching this weekend?
<group>Twins</group>?
<group>Vikings</group>? anyone going to see
<creativework>the Night
Lights</creativework>?

Order

conditional What is he doing this weekend with
<group>the</group> ##ing
<group>Vikings</group>? anyone going to
install <creativework>Friday Night
lights</creativework>?

- <person>Oscar</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

top token <person>Jack</person>’s new favorite pass
time is running as fast as he can from one
end of the house to another yelling
BuhBYYYYYE

Criterion

joint <person>Ben</person>’s new favorite pass time
is running as fast as he can from one end of
the house to another yelling BuhBYYYYYE

Table 12: Data examples of W-NUT augmentation.
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Parameter Value Example
- Zu einer Gebietsveränderung kam es 1822, als

das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

entity Zu einer Gebietsveränderung kam es 1822, als
das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Paris</LOC> eingemeindet wurde.

context Zu einer Gebietsveränderung kam es 1822, als
das vorher selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> verlegt wurde.

random context Zu einer Gebietsveränderung kam es 1822, als
das damals selbständige <LOC>Champsigna</LOC>
nach <LOC>Soucia</LOC> eingemeindet wurde.

Sampling

mixed Zu einer Eingemeindung kam es 1822, als die
damals selbständige <LOC>Dorf</LOC> nach
<LOC>Turin</LOC> verlegt wurde.

- Aus diesem Grund wurde er Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in eine Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

independent Zu diesem Grund wurde er Anfang Januar und
nach nur zwei Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC> Boden </LOC> verlegt.

Order

conditional Aus diesem Grund wo ich Anfang Januar auch
nach nur wenigen Tagen aus dem Klinikum
<LOC>Jena</LOC> in die Reha-Einrichtung am
<LOC>Bodensee</LOC> verlegt.

- Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Erillus</PER> von
<LOC>Karthago</LOC>.

top token Mit ihm der gleichen Meinung sind
<PER>Pyrrhon</PER> und <PER>Gregor</PER> von
<LOC>Karthago</LOC>.

Criterion

joint Mit ihm der gleichen Meinung sind
<PER>Alexander</PER> und <PER>Erillus</PER>
von <LOC>Karthago</LOC>.

Table 13: Data examples of GermEval augmentation.
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Parameter Value Example
- <PER>Christopher Reeve</PER> --

<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Superman</PER> in
four movies but his greatest heroics came in
real life.

entity <PER>Christopher Reeve</PER> --
<PER>Reeve</PER> was best known for playing
the comic book hero <PER>Batman</PER> in four
movies but his greatest heroics came in real
life .

context <PER>Christopher Reeve</PER> The
<PER>Reeve</PER> is best known for playing
the comic book superhero <PER>Superman</PER>
in four movies but his greatest heroics came
in real life.

random context <PER>Christopher Reeve</PER> --
<PER>Reeve</PER> popular best known for
popular popular popular book hero
<PER>Superman</PER> in four movies but his
popular heroics came in real popular popular

Sampling

mixed <PER>Christopher Reeve</PER> The
<PER>He</PER> is best known for playing the
comic book superhero <PER>Superman</PER> in
the films but his greatest heroics came in
real life.

- Four weeks ago <ORG>Stagecoach </ORG> said it
had agreed the deal in principle, and it
expected to pay 110 million stg-plus for the
firm, with <ORG>Swebus</ORG>’ current owner,
the state railway company.

independent Four days ago <ORG>it</ORG> said it had made
the deal in principle, and it expected to
raise 110 million euros to the operation
contract including <ORG>Swebus</ORG> ’
current employer being the state railway
company.

Order

conditional Two years ago <ORG>Stagecoach</ORG> said it
had made the deal in principle, and was
expected to pay 110 million marks for the
operation, with <ORG>Swebus</ORG>’s owner,
the Swedish railway company.

- <ORG>ZDF</ORG> said <LOC> Germany </LOC>
imported 47,600 sheep from <LOC> Britain
</LOC> last year, nearly half of total
imports.

top token <ORG>He</ORG> said <LOC> they </LOC> imported
more goods from <LOC> Germany </LOC> that
year, nearly half of all number.

Criterion

joint <ORG>ZDF</ORG> this <LOC> this </LOC> this
47,600 sheep this <LOC> this </LOC> this year
this nearly half of this imports.

Table 14: Data examples of CoNLL augmentation.
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Abstract

Graph-to-text generation has benefited from
pre-trained language models (PLMs) in achiev-
ing better performance than structured graph
encoders. However, they fail to fully utilize
the structure information of the input graph. In
this paper, we aim to further improve the per-
formance of the pre-trained language model
by proposing a structured graph-to-text model
with a two-step fine-tuning mechanism which
first fine-tunes the model on Wikipedia be-
fore adapting to the graph-to-text generation.
In addition to using the traditional token and
position embeddings to encode the knowl-
edge graph (KG), we propose a novel tree-
level embedding method to capture the inter-
dependency structures of the input graph. This
new approach has significantly improved the
performance of all text generation metrics for
the English WebNLG 2017 dataset.1

1 Introduction

In the graph-to-text generation task (Gardent et al.,
2017), the model takes in a complex KG (an exam-
ple is in Figure 1) and generates a corresponding
faithful natural language description (Table 1). Pre-
vious efforts for this task can be mainly divided
into two categories: sequence-to-sequence mod-
els that directly solve the generation task with
LSTMs (Gardent et al., 2017) or Transformer
(Castro Ferreira et al., 2019); and graph-to-text
models (Trisedya et al., 2018; Marcheggiani and
Perez-Beltrachini, 2018) which use a graph en-
coder to capture the structure of the KGs. Re-
cently, Transformer-based PLMs such as GPT-
2 (Radford et al., 2019), BART (Lewis et al., 2020),

∗This research was conducted during the author’s intern-
ship at Salesforce Research.

1The programs, data and resources are publicly avail-
able for research purpose at: https://github.com/
EagleW/Stage-wise-Fine-tuning
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Figure 1: Input RDF Knowledge Graph

and T5 (Raffel et al., 2020) have achieved state-
of-the-art results on WebNLG dataset due to fac-
tual knowledge acquired in the pre-training phase
(Harkous et al., 2020; Ribeiro et al., 2020b; Kale,
2020; Chen et al., 2020a).

Despite such improvement, PLMs fine-tuned
only on the clean (or labeled) data might be
more prone to hallucinate factual knowledge (e.g.,

“Visvesvaraya Technological University” in Table
1). Inspired by the success of domain-adaptive
pre-training (Gururangan et al., 2020), we propose
a novel two-step fine-tuning mechanism graph-to-
text generation task. Unlike (Ribeiro et al., 2020b;
Herzig et al., 2020; Chen et al., 2020a) which di-
rectly fine-tune the PLMs on the training set, we
first fine-tune our model over noisy RDF graphs
and related article pairs crawled from Wikipedia
before final fine-tuning on the clean/labeled train-
ing set. The additional fine-tuning step benefits
our model by leveraging triples not included in the
training set and reducing the chances that the model
fabricates facts based on the language model.

Meanwhile, the PLMs might also fail to cover all
relations in the KG by creating incorrect or miss-
ing facts. For example, in Table 1, although the
T5-large with Wikipedia fine-tuning successfully
removes the unwanted contents, it still ignores the

“sports Governing Body” relation and incorrectly
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Category Output

Reference The Acharya Institute of Technology in Karnataka state was given Technical Campus status by All
India Council for Technical Education in Mumbai . The school offers tennis which is governed by the
International Tennis Federation . Karnataka has the Arabian Sea to its west and in the northeast is Telangana .

T5-large The state of Karnataka is located southwest of Telangana and east of the Arabian Sea . It is the lo-
cation of the Acharya Institute of Technology which was granted the Technical Campus status by the
All India Council for Technical Education in Mumbai . The Institute is affiliated with the Visvesvaraya Tech-

nological University and offers the sport of tennis . [International Tennis Federation]
T5-large
+ Wiki

The Acharya Institute of Technology is located in the state of Karnataka . It was given the Technical Campus sta-
tus by the All India Council for Technical Education which is located in Mumbai . The institute offers tennis
and has Telangana to its northeast and the Arabian Sea to its west. [International Tennis Federation]

T5-large
+
Position

The Acharya Institute of Technology is located in the state of Karnataka which has Telangana to

its northeast and the Arabian Sea to its west. It was given the Technical Campus status by the
All India Council for Technical Education in Mumbai . The Institute offers tennis which is governed by the
International Tennis Federation .

T5-large
+ Wiki +
Position

The Acharya Institute of Technology in Karnataka was given the ’Technical Campus’ status by the
All India Council for Technical Education in Mumbai . Karnataka has Telangana to its northeast and the

Arabian Sea to its west. One of the sports offered at the Institute is tennis which is governed by the
International Tennis Federation .

Table 1: Human and System Generated Description in Figure 1. We use the color box to frame each entity out
with the same color as the corresponding entity in Figure 1. We highlight fabricated facts, [missed relations], and
incorrect relations with different color.

links the university to both “Telangana” and “Ara-
bian Sea”. To better capture the structure and in-
terdependence of facts in the KG, instead of using
a complex graph encoder, we leverage the power
of Transformer-based PLMs with additional posi-
tion embeddings which have been proved effective
in various generation tasks (Herzig et al., 2020;
Chen et al., 2020a,b). Here, we extend the embed-
ding layer of Transfomer-based PLMs with two
additional triple role and tree-level embeddings to
capture graph structure.

We explore the proposed stage-wise fine-tuning
and structure-preserving embedding strategies for
graph-to-text generation task on WebNLG corpus
(Gardent et al., 2017). Our experimental results
clearly demonstrate the benefit of each strategy in
achieving the state-of-the-art performance on most
commonly reported automatic evaluation metrics.

2 Method

Given an RDF graph with multiple relations
G = {(s1, r1, o1), (s2, r2, o2), ..., (sn, rn, on)},
our goal is to generate a text faithfully describing
the input graph. We represent each relation with
a triple (si, ri, oi) ∈ G for i ∈ {1, ..., n}, where
si, ri, and oi are natural language phrases that rep-
resent the subject, type, and object of the relation,

respectively. We augment our model with addi-
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ROL1
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...

Figure 2: Position Embeddings for the KG in Figure 1

tional position embeddings to capture the structure
of the KG. To feed the input for the large-scale
Transformer-based PLM, we flatten the graph as a
concatenation of linearized triple sequences:

|S s1 |P r1 |O o1 ... |S sn |P rn |O on

following Ribeiro et al. (2020b), where |S, |P, |O
are special tokens prepended to indicate whether
the phrases in the relations are subjects, relations,
or objects, respectively. Instead of directly fine-
tuning the PLM on the WebNLG dataset, we first
fine-tune our model on a noisy, but larger corpus
crawled from Wikipedia, then we fine-tune the
model on the training set.
Positional embeddings Since the input of the
WebNLG task is a small KG which describes prop-
erties of entities, we introduce additional positional
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Model BLEU(%)↑ METEOR↑ TER↓
Seen Unseen All Seen Unseen All Seen Unseen All

Without Gardent et al. (2017) 54.52 33.27 45.13 0.41 0.33 0.37 0.40 0.55 0.47
Pretrained Moryossef et al. (2019) 2 53.30 34.41 47.24 0.44 0.34 0.39 0.47 0.56 0.51

LM Zhao et al. (2020) 64.42 38.23 52.78 0.45 0.37 0.41 0.33 0.53 0.42
With Nan et al. (2021) 52.86 37.85 45.89 0.42 0.37 0.40 0.44 0.59 0.51

Pretrained Kale (2020) 63.90 52.80 57.10 0.46 0.41 0.44 - - -
LM Ribeiro et al. (2020b) 64.71 53.67 59.70 0.46 0.42 0.44 - - -

Our model T5-large + Wiki + Position 66.07 53.87 60.56 0.46 0.42 0.44 0.32 0.41 0.36

Table 2: System Results on WebNLG Test Set Evaluated by BLEU, METEOR, and TER with Official Scripts

embeddings to enhance the flattened input of pre-
trained Transformer-based sequence-to-sequence
models such as BART and TaPas (Herzig et al.,
2020). We extend the input layer with two position-
aware embeddings in addition to the original posi-
tion embeddings3 as shown in the Figure 2:

• Position ID, which is the same as the original
position ID used in BART, is the index of the
token in the flattened sequence |S s1 |P r1 |O
o1 ... |S sn |P rn |O on .

• Triple Role ID takes 3 values for a specific
triple (si, ri, oi): 1 for the subject si, 2 for the
relation ri, and 3 for the object oi.

• Tree level ID calculates the distance (the num-
ber of relations) from the root which is the
source vertex of the RDF graph.

Two-step Fine-tuning To get better domain adap-
tation ability (Gururangan et al., 2020; Herzig et al.,
2020), following TaPas and Wikipedia Person and
Animal Dataset (Wang et al., 2018), we perform
intermediate pre-training by coupling noisy En-
glish Wikipedia data with Wikidata triples, both
of which are crawled in March 2020. We select
15 related categories (Astronaut, University, Monu-
ment, Building, ComicsCharacter, Food, Airport,
SportsTeam, WrittenWork, Athlete, Artist, City,
MeanOfTransportation, CelestialBody, Politician)
that appear in the WebNLG dataset (Gardent et al.,
2017) and collect 542,192 data pairs. For each
Wikipedia article, we query its corresponding Wiki-
Data triples and remove sentences which contain
no values in the Wikidata triples to form graph-text
pairs. Unlike (Chen et al., 2020a) which focuses on
individual entity-sentence pairs for distant super-
vision, our pre-training corpus, on the other hand,

2For this baseline, we use the results reported from Zhao
et al. (2020) who also use official evaluation scripts.

3For T5 models, we only keep the Triple Role and Tree-
level embeddings.

is designed to better adapt to translating deeper
graph structure into text. We remove triples and
description pairs that have already appeared in the
WebNLG dataset. After intermediate pre-training
on this noisy corpus, we continue with fine-tuning
our model on the WebNLG dataset.

3 Experiments

3.1 Dataset and Implementation details

Model BLEU↑ P↑ R↑ F1↑
BART-base 57.8 68.7 68.9 67.0

+ Wikipedia 59.7 69.6 70.7 68.4
+ Position 58.8 68.7 69.9 67.6
+ Wiki + Position 57.3 67.8 69.0 66.6

BART-large 58.3 67.9 69.4 66.8
+ Wikipedia 59.0 68.0 70.4 67.4
+ Position 58.1 67.6 69.4 66.6
+ Wiki + Position 60.0 68.6 69.2 67.1

distill-BART-xsum 59.1 69.9 70.6 68.5
+ Wikipedia 59.8 69.7 71.1 68.8
+ Position 59.2 69.8 70.2 68.3
+ Wiki + Position 59.9 70.1 70.1 68.7

T5-base 61.2 72.3 72.0 70.6
+ Wikipedia 60.9 72.0 71.8 70.2
+ Position 60.8 72.4 72.4 70.8
+ Wiki + Position 60.3 72.2 72.0 70.5

T5-large 60.0 71.6 72.1 70.2
+ Wikipedia 61.3 72.2 72.0 70.5
+ Position 60.6 72.1 72.4 70.6
+ Wiki + Position 61.9 72.8 73.5 71.6

Table 3: Results with both Wikipedia Fine-tuning and
Positional Embedding for Various Pre-trained Models
over All Categories on Development Set Evaluated by
average of PARENT4precision, recall, F1 and BLEU
(%)

We use the original version of English
WebNLG2017 (Gardent et al., 2017) dataset which
contains 18,102/2,268/4,928 graph-description
pairs for training, validation, and testing set re-
spectfully. For this task, we investigate a variety
of the BART and T5 models with our novel tree-

4https://github.com/KaijuML/parent
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level embeddings. The statistics and more details
of those models are listed in Appendix A.

Model P↑ R↑ F1↑
Gardent et al. (2017) 88.35 90.22 89.23
Moryossef et al. (2019) 85.77 89.34 87.46
Nan et al. (2021) 89.49 92.33 90.83
Ribeiro et al. (2020b) 89.36 91.96 90.59
T5-large + Wiki + Position 96.36 96.13 96.21

Table 4: System Results on WebNLG Test Set Evalu-
ated by BERTScore precision, recall, F1 (%)

3.2 Results and Analysis

We use the standard NLG evaluation metrics to
report results: BLEU (Papineni et al., 2002),
METEOR (Lavie and Agarwal, 2007), and TER
(Snover et al., 2006) , as shown in Table 2. Be-
cause Castro Ferreira et al. (2020) has found that
BERTScore (Zhang* et al., 2020) correlates with
human evaluation ratings better, we use BERTscore
to evaluate system results5 as shown in Table 4.
When selecting the best models, we also evaluate
each model with PARENT (Dhingra et al., 2019)
metric which measures the overlap between predic-
tions and both reference texts and graph contents.
Dhingra et al. (2019) show PARENT metric has
better human rating correlations. Table 3 shows
the pre-trained models with 2-step fine-tuning and
position embeddings achieve better results.6 We
conduct paired t-test between our proposed model
and all the other baselines on 10 randomly sampled
subsets. The differences are statistically significant
with p ≤ 0.008 for all settings.

Results with Wikipedia fine-tuning. The
Wikipedia fine-tuning helps the model handle
unseen relations such as “inOfficeWhileVicePresi-
dent”, and “activeYearsStartYear” by stating “His
vice president is Atiku Abubakar.” and “started
playing in 1995” respectively. It also combines
relations with the same type together with correct
order, e.g., given two death places of a person,
the model generates: “died in Sidcup, London”
instead of generating two sentences or placing the
city name ahead of the area name.

Results with positional embeddings. For the
KG with multiple triples, additional positional em-
beddings help reduce the errors introduced by pro-

5We only use BERTScore to evaluate baselines which have
results available online.

6For more examples, please check Appendix for reference.

noun ambiguity. For instance, for a KG which has
“leaderName” relation to both country’s leader and
university’s dean, position embeddings can distin-
guish these two relations by stating “Denmark’s
leader is Lars Løkke Rasmussen” instead of “its
leader is Lars Løkke Rasmussen”. The tree-level
embeddings also help the model arrange multiple
triples into one sentence, such as combining the
city, the country, the affiliation, and the affiliation’s
headquarter of a university into a single sentence:

“The School of Business and Social Sciences at the
Aarhus University in Aarhus, Denmark is affili-
ated to the European University Association in
Brussels”.

3.3 Remaining Challenges

However, pre-trained language models also gen-
erate some errors as shown in Table 5. Because
the language model is heavily pre-trained, it is bi-
ased against the occurrence of patterns that would
enable it to infer the right relation. For example,
for the “activeYearsStartYear” relation, the model
might confuse it with the birth year. For some
relations that do not have a clear direction, the lan-
guage model is not powerful enough to consider
the deep connections between the subject and the
object. For example, for the relation “doctoralStu-
dent”, the model mistakenly describes a professor
as a Ph.D. student. Similarly, the model treats an as-
teroid as a person because it has an epoch date. For
KGs with multiple triples, the generator still has a
chance to miss relations or mixes the subject and
the object of different relations, especially for the
unseen category. For instance, for a soccer player
with multiple clubs, the system might confuse the
subject of one club’s relation with another club.

4 Related Work

The WebNLG task is similar to Wikibio genera-
tion (Lebret et al., 2016; Wang et al., 2018), AMR-
to-text generation (Song et al., 2018) and RO-
TOWIRE (Wiseman et al., 2017; Puduppully et al.,
2019). Previous methods usually treat the graph-
to-text generation as an end-to-end generation task.
Those models (Trisedya et al., 2018; Gong et al.,
2019; Shen et al., 2020) usually first lineralize the
knowledge graph and then use attention mecha-
nism to generate the description sentences. While
the linearization of input graph may sacrifice the
inter-dependency inside input graph, some papers
(Ribeiro et al., 2019, 2020a; Zhao et al., 2020)
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Category Output

T5-large Andrew White (born in 2003) is a musician who is associated with the band Kaiser Chiefs and Marry Banilow.
He is also associated with the label Polydor Records and is signed to B-Unique Records. S| Aleksandra Kovač P|
activeYearsStartYear O| 1990

T5-large Walter Baade was born in the German Empire and graduated from the University of Gottingen. He was the
doctoral student of Halton Arp and Allan Sandage and was the discoverer of 1036 Ganymed. S| Walter
Baade P| doctoralStudent O| Halton Arp; S| Walter Baade P| doctoralStudent O| Allan Sandage

T5-large
+Wiki

11264 Claudiomaccone was born on the 26th of November, 2005. He has an orbital period of 1513.722 days, a
periapsis of 296521000.0 kilometres and an apoapsis of 475426000.0 kilometres. S| 11264 Claudiomaccone P|
epoch O| 2005-11-26; S| Aleksandr Prudnikov P| club O| FC Amkar Perm

T5-large
+Position

The chairman of FC Spartak Moscow is Sergey Rodionov. Aleksandr Prudnikov plays for FC Spartak Moscow
and manages FC Amkar Perm. [ S| FC Amkar Perm P| manager O| Gadzhi Gadzhiyev; S| Aleksandr Prudnikov
P| club O| FC Amkar Perm ]

Table 5: System Error Examples. We highlight fabricated facts, [missed relations], incorrect relations, and
ground truth relations with different color.

use graph encoder such as GCN (Duvenaud et al.,
2015) and graph transformer (Wang et al., 2020a;
Koncel-Kedziorski et al., 2019) to encode the in-
put graphs. Others (Shen et al., 2020; Wang et al.,
2020b) try to carefully design loss functions to con-
trol the generation quality. With the development
of computation resources, large scale PLMs such as
GPT-2 (Radford et al., 2019), BART (Lewis et al.,
2020) and T5 (Raffel et al., 2020) achieve state-of-
the-art results even with simple linearized graph in-
put (Harkous et al., 2020; Chen et al., 2020a; Kale,
2020; Ribeiro et al., 2020b). Instead of directly
fine-tuning the PLMs, we propose a two-step fine-
tuning mechanism to get better domain adaptation
ability. In addition, using positional embeddings as
an extension for PLMs has shown its effectiveness
in table-based question answering (Herzig et al.,
2020), fact verification (Chen et al., 2020b), and
graph-to-text generation (Chen et al., 2020a). We
capture the graph structure by enhancing the input
layer with the triple role and tree-level embeddings.

5 Conclusions and Future Work

We propose a new two-step structured generation
task for the graph-to-text generation task based on
a two-step fine-tuning mechanism and novel tree-
level position embeddings. In the future, we aim
to address the remaining challenges and extend the
framework for broader applications.
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Abstract

The neural hidden Markov model has been
proposed as an alternative to attention mecha-
nism in machine translation with recurrent neu-
ral networks. However, since the introduction
of the transformer models, its performance
has been surpassed. This work proposes to
introduce the concept of the hidden Markov
model to the transformer architecture, which
outperforms the transformer baseline. Inter-
estingly, we find that the zero-order model al-
ready provides promising performance, giving
it an edge compared to a model with first-order
dependency, which performs similarly but is
significantly slower in training and decoding.

1 Introduction

Recently, significant improvements have been
made to neural machine translations (NMT). Re-
gardless of whether a recurrent neural network with
long short-term memory (Hochreiter and Schmid-
huber, 1997) (LSTM-RNN) (Bahdanau et al., 2015)
or a convolutional neural network (CNN) (Gehring
et al., 2017) or a self-attentive transformer network
(Vaswani et al., 2017) is used, the attention mecha-
nism is always one of the key components that all
state-of-the-art NMT systems contain.

Several attempts have been made to explore al-
ternative architectures that do not use an attention
mechanism (Wang et al., 2017, 2018; Bahar et al.,
2018; Press and Smith, 2018). However, either the
performance of those systems is significantly worse
than that of the LSTM-RNN-based approaches, or
the time and memory complexity is much higher.
Since the transformer architecture has upgraded the
state-of-the-art to an even higher standard, fewer
studies are being carried out in this direction.

Despite the promising translation performance
of the transformer architecture, recent studies have
found that the quality of the word alignments pro-
duced by the multi-head cross-attention weights is

quite poor, and various techniques are proposed to
address this problem (Alkhouli et al., 2018; Garg
et al., 2019; Zenkel et al., 2020). While these works
focus on extracting promising alignment informa-
tion from the transformer architecture, we aim to
improve the translation performance of the baseline
model by introducing alignment components while
keeping the system monolithic. To this end, the pos-
sibilities are studied to apply the transformer archi-
tecture to the direct hidden Markov model (HMM),
which is not as straightforward as in the case of
LSTM-RNN due to the cross-attention through all
decoder layers. Experimental results show that the
zero-order direct HMM already outperforms the
baseline transformer model in terms of TER scores
(Snover et al., 2006), while the first-order depen-
dency with higher computational complexity offers
no further improvements.

2 Related Work

The attention component is introduced by Bah-
danau et al. (2015) in NMT to simulate the align-
ment between the source and target sentence, which
leads to significant improvements compared to the
pure sequence-to-sequence model (Sutskever et al.,
2014). Wang et al. (2018) present a LSTM-RNN-
based HMM that does not employ an attention
mechanism. This work aims to build a similar
model with the transformer architecture. While
they perform comparable to the LSTM-RNN-based
attention baseline with a much slower model, our
model outperforms the transformer baseline in
terms of TER scores.

The derivation of neural models for translation
on the basis of the HMM framework is also studied
in Yu et al. (2017) and Alkhouli et al. (2018). In
Yu et al. (2017), alignment-based neural models
are used to model alignment and translation from
the target to the source side (inverse direction), and
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a language model is included in addition. And
Alkhouli et al. (2018) rely on alignments generated
by statistical systems that serve as supervision for
the training of the neural systems. By contrast, the
model proposed in this work does not require any
additional language model or alignment informa-
tion and thus keeps the entire system monolithic.

Several works have been carried out to change
attention models to capture more complex depen-
dencies. Cohn et al. (2016) introduce structural
biases from word-based alignment concepts such
as fertility and Markov conditioning. Arthur et al.
(2016) incorporate lexical probabilities to influence
attention. These changes are based on the LSTM-
RNN-based attention model. Garg et al. (2019) and
Zenkel et al. (2020) try to generate translation and
high-quality alignment jointly using an end-to-end
neural training pipeline. By contrast, our work fo-
cuses more on improving the translation quality
using the alignment information generated by the
self-contained model.

3 Direct HMM

The goal of machine translation is to find the target
language sentence eI1 = e1, e2, · · · , eI that is the
translation of a particular source language sentence
fJ1 = f1, f2, · · · , fJ with the maximum likelihood
(argmaxI,eI1

{
Pr(eI1|fJ1 )

}
). In the direct HMM,

an alignment from target to source (i→ j = bi) is
introduced into the translation probability:

Pr(eI1|fJ1 ) =
∑

bI1

Pr(eI1, b
I
1|fJ1 ) (1)

=
∑

bI1

I∏

i=1

Pr(bi, ei|bi−10 , ei−10 , fJ1 ) (2)

=
∑

bI1

I∏

i=1

Pr(ei|bi0, ei−10 , fJ1 )︸ ︷︷ ︸
lexicon probability

·Pr(bi|bi−10 , ei−10 , fJ1 )︸ ︷︷ ︸
alignment probability

(3)

The term “direct” refers to the modeling of p(e|f)
instead of p(f |e) as in the conventional HMM
(Vogel et al., 1996). In Wang et al. (2018), two
LSTM-RNN based neural networks are used to
model the lexicon and the alignment probability
separately. In this work they are modeled with a
single transformer-based network.

4 Direct HMM in Transformer

This section describes in detail how we modify the
transformer model so that both the alignment and

the lexicon probability can be generated. While the
lexicon model in the direct HMM has a zero-order
dependency on the current alignment position bi:

Pr(ei|bi0, ei−10 , fJ1 ) := p(ei|bi, ei−10 , fJ1 ) (4)

we implement zero- and first-order dependencies
for the alignment model.

4.1 Zero-order Architecture
In the zero-order architecture, the alignment model
is defined as follows:

Pr(bi|bi−10 , ei−10 , fJ1 ) := p(bi|ei−10 , fJ1 ) (5)

To obtain the alignment probability we change the
order of the weighted sum and the activation func-
tion at each decoder layer in the transformer:

c
(l+1)
i

=

J∑

j=1

α(l+1)(j|i) W1max
(
0,W2hj +W3s

(l)
i

)

(6)

l: index of the decoder layer ∈ {1, 2. · · · , L}
ci: context vector, input to the next layer
hj : source hidden state (key and value)
si: target hidden state (query)

Wn: weight matrices
α(j|i): softmax(A[si, hj ]) cross-attention weights

The arrow indicates that the weighted sum with
the cross-attention is moved outside of the ReLU
activation function. Before the ReLU function is
employed, the target hidden state si−1 is projected
and added to the projected source hidden state hj in
order to include information from the target side to
the context vector, which can also be considered as
a substitution for the residual layer in the standard
transformer architecture. As the outputs of the last
decoder layer (and the entire network) we have a
lexicon probability:

p(ei|j, ei−10 , fJ1 )

= softmax
(
W4 ·max

(
0,W5 · hj +W6 · s(L)i

))

(7)
and an alignment probability:

p(j|ei−10 , fJ1 ) = α(L)(j|i) (8)

The output probability for the current word is:

p(ei|ei−10 , fJ1 )

=
J∑

j=1

p(j|ei−10 , fJ1 ) · p(ei|j, ei−10 , fJ1 ) (9)
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Figure 1: Visualized comparison between the direct HMM and the standard transformer architecture.

And the sentence probability is then:

p(eI1|fJ1 ) =
I∏

i=1

p(ei|ei−10 , fJ1 ) (10)

Due to the redefinition of the context vector, layer
normalization, residual connection and linear pro-
jection are also modified accordingly. Detailed
changes to the architecture are shown in Figure 1.
Note that all modifications are made to decoder
layers while encoder layers remain unchanged.

4.2 First-order Architecture
In the first-order architecture, the alignment model
is defined as follows:

Pr(bi|bi−10 , ei−10 , fJ1 ) := p(bi|bi−1, ei−10 , fJ1 )
(11)

The lexicon probability remains the same as in
the zero-order model (Equation 4). To consider
the dependency on the previous source position
(j′ = bi−1), we change the cross-attention weights:

α(L)(j|i, j′)
= softmax

(
A
[
s
(L−1)
i ,W · [h(L)j , h

(L)
j′ ]
])

(12)

where [h(L)j , h
(L)
j′ ] denotes the concatenation of the

source hidden states at positions j and j′.
Changing the architecture from the zero-order

model to the first-order model is straightforward,

but the main challenge is in the training process.
Due to the first-order dependency, the complexity
of the brute-force search (forward path) becomes
exponential (confirm Equation 3). To address this
problem, we apply a dynamic programming algo-
rithm to find the probability of the entire sentence:

Q(i, j) =
∑

j′
p(ei, j|j′, fJ1 , ei−10 ) ·Q(i− 1, j′)

(13)
p(eI1|fJ1 ) = Q(I) =

∑

j

Q(I, j) (14)

where Q denotes the recursive function. For given
sentence pairs (Fr, Er), the training criterion is
then the maximization of the log-likelihood func-
tion argmaxθ

∑
r log p(Er|Fr, θ).

In previous work on the neural HMM, the
forward-backward algorithm is implemented to cal-
culate the posterior probability as the golden truth
to guide the training of the lexicon and the align-
ment models (referred to as “manual differentia-
tion”). But actually it is not necessary. As long
as the forward path is implemented according to
a recursive function of dynamic programming, as
shown in Equation 13, the frameworks can han-
dle the backward path automatically (referred to
as “automatic differentiation”). Intuitively, the re-
cursive equation is nothing more than a sum of
products that should be easy to work with the au-
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tomatic differentiation toolkit. Theoretically, the
mathematical proof for this is presented in Eisner
(2016). And practically, our experimental results of
the automatic differentiation and the manual differ-
entiation are the same as long as label smoothing
(Szegedy et al., 2016) is not applied.

Without an explicitly implemented forward-
backward algorithm, applying label smoothing is
not straightforward as it should be applied to the
words while the automatic differentiation is per-
formed after the forward path has been done for
the entire sentence. To solve this problem, we
apply label smoothing to the lexicon probability
p(ei|j, ei−10 , fJ1 ) at each step of the forward path.
Although in this case the type of label smoothing is
different for the automatic and manual differentia-
tion, experimental results are quite similar (< 0.1%
differences). The automatic differentiation has an
advantage in terms of memory and time complex-
ity and is therefore used for all subsequent experi-
ments.

5 Experiments

5.1 Translation Performance
In order to test the performance of the direct
HMM, we carry out experiments on the WMT
20191 German→English (de-en), WMT 2019
Chinese→English (zh-en) and WMT 20182

English→Turkish (en-tr) tasks. These three
tasks represent different amounts of training data,
from hundreds of thousands to tens of millions.
Detailed data statistics are shown in Appendix A.

The proposed approaches are completely imple-
mented in fairseq (Ott et al., 2019). The standard
transformer base model (Vaswani et al., 2017) im-
plemented in the fairseq framework is used as our
baseline and we follow the standard setup for hyper-
parameters. Translation performance is measured
by case-insensitive BLEU (Papineni et al., 2002)
and TER (Snover et al., 2006) scores with SACRE-
BLEU toolkit (Post, 2018). The results are shown
in Table 1.

The results show that the direct HMMs achieve
comparable performance to the transformer base-
lines in terms of BLEU scores and outperform the
baseline systems in terms of TER scores. The TER

metric is known to favor shorter hypotheses, but
from the length ratio results we can conclude that
the improvements are not due to it. In addition, it

1http://www.statmt.org/wmt19/
2http://www.statmt.org/wmt18/

BLEU [%] de-en zh-en en-tr
transformer base 38.7 31.5 17.4
zero-order HMM 38.5 31.5 17.6
first-order HMM 38.7 31.3 17.7
TER [%] de-en zh-en en-tr
transformer base 48.2 56.6 71.9
zero-order HMM 47.7 55.7 71.4
first-order HMM 47.9 55.4 71.2
length ratio [%] de-en zh-en en-tr
transformer base 97.3 94.1 99.7
zero-order HMM 97.7 94.0 99.7
first-order HMM 98.0 93.9 99.5

Table 1: Experimental results on the WMT news trans-
lation tasks.

can be seen that the first-order dependency could
not provide further improvements over the zero-
order model. To find the possible reasons for this,
we try to extract alignment heat maps with regard
to the dependencies between the current position j
and the predecessor position j′.

Figure 2: Alignment heat map for p(j|j′, ei−10 , fJ1 )
with fixed target position i. The heat map is extracted
when the training is almost converging.

As shown in Figure 2, the target position j with
the maximum probability is often the same for dif-
ferent predecessor positions j′, which indicates that
the training of the model tends to “forget” the ex-
plicit first-order dependency. We checked a lot of
heat maps and this happens quite often, in fact, for
short sentences it almost always happens. This es-
sentially explains why the first-order model fails to
make improvements. To benefit from the first-order
dependency, constraints or other techniques might
be used during training.

Here the results of the RNN-based direct HMM
are not included as one of the baselines, as the
performance of the RNN-based approaches is sig-
nificantly surpassed by the transformer-based ap-
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proaches. We believe this work will outperform the
system proposed in (Wang et al., 2018), but that is
mainly due to the transformer architecture rather
than refinements we made.

Compared to the baseline transformer model,
the direct HMM only has about 2% more free pa-
rameters. While the first-order model has a clear
disadvantage in terms of training and decoding
speed compared to the baseline system due to the
inevitable loop over the target position i, the decod-
ing speed of the zero-order model is only slightly
slower than that of the transformer baseline. De-
tails of time usage are given in Appendix B.

5.2 Alignment Quality

In addition to improvements in the TER scores, we
believe that the direct HMM also provides better
alignment quality than the standard cross-attention.
To verify this assumption, we compute the align-
ment error rate (AER) (Och and Ney, 2000) on
the RWTH German-English Golden Alignments
corpus (Vilar et al., 2006), which provides 505
manually word-aligned sentence pairs extracted
from the Europarl corpus. We take the argmax
of the alignment probability output of our model
as an estimated alignment. In addition, as with
the conventional HMM, the argmax of the poste-
rior probability can also be used as an estimated
alignment, which explicitly includes the lexicon
information and should lead to a better quality. As
baselines, we take the argmax of the average of
the attention heads in the fifth and sixth decoder
layers, since Garg et al. (2019) claim that the cross-
attention weights in the fifth layer produce more
accurate alignment information than the last layer.
All models are trained in both directions to get
bidirectional alignments. These bidirectional align-
ments are then merged using the grow diagonal
heuristic (Koehn et al., 2005).

model alignment from AER

transformer fifth layer 39.1
sixth layer 55.7

direct HMM alignment prob. 31.8
posterior prob. 27.4

Table 2: Experimental results on the German-English
alignment task in AER [%].

From the results shown in Table 2, we can ob-
serve that the alignment generated by the direct
HMM has a significantly better quality than that

extracted directly from the transformer attention
weights. The posterior probability that contains the
lexicon information indeed provides better align-
ments, which can be seen as a further advantage
of the direct HMM, since it cannot be calculated
in the standard transformer architecture without an
explicit alignment probability. In terms of AER

performance, our model stands behind GIZA++
(Och and Ney, 2003) as well as the approaches pro-
posed in Garg et al. (2019) and Zenkel et al. (2020).
Note, however, that our zero-order model does not
include the future target word information in esti-
mating alignments, and we do not use additional
loss for alignment training, since the original goal
of this work is to improve translation quality by
applying HMM factorization.

In addition to the AER results, Appendix C
shows heat maps extracted for the alignment prob-
ability from direct HMM compared to those ex-
tracted for cross-attention weights from the stan-
dard transformer model.

6 Conclusion

This work exhibits the use of the transformer archi-
tecture in a direct HMM for machine translation,
which significantly improves TER scores. In ad-
dition, we show that the proposed system tends
to “refuse” to learn first-order dependency during
training. The zero-order model achieves a good
compromise between performance and decoding
speed, which is much faster than previous work on
the direct HMM. In order to benefit from the pre-
decessor alignment information, further techniques
should be carried out. Another future work would
be to combine the attention mechanism with the
alignment information to further improve perfor-
mance.
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A Data Statistics

WMT 2019 train valid test
German→English source target source target source target
# sentence pairs 5.9M 2169 2000
# original vocabulary 2.1M 932k 12.2k 10.7k 10.8k 9.5k
# vocabulary after BPE 45.1k 33.2k 10.5k 8.2k 9.3k 7.3k
# running words 137M 144M 38.2k 40.8k 31.1k 34.4k
# running BPE sub-words 160M 157M 54.8k 53.1k 44.7k 43.4k
WMT 2019 train valid test
Chinese→English source target source target source target
# sentence pairs 26.0M 2002 2000
# vocabulary 1.3M 651k 9.2k 8.7k 9.5k 8.5k
# vocabulary after BPE 47.0k 32.2k 9.2k 9.2k 9.3k 8.8k
# running words 555M 606M 53.7k 59.8k 62.7k 82.2k
# running BPE sub-words 588M 658M 58.7k 65.1k 69.2k 87.2k
WMT 2018 train valid test
English→Turkish source target source target source target
# sentence pairs 208k 3007 3000
# vocabulary 70.6k 160k 8.7k 15.1k 9.4k 16.4k
# vocabulary after BPE 7280 7324 4944 5437 5093 5592
# running words 5.16M 4.61M 68.3k 55.0k 70.5k 56.8k
# running BPE sub-words 6.72M 7.45M 98.0k 101k 101k 107k

For the German→English task, joint byte
pair encoding (BPE) (Sennrich et al., 2016)
with 32k merge operations is used. The
newstest2015 dataset is used as the validation
set and newstest2019 as the test set.

The Chinese data are segmented using the
pkuseg toolkit3 (Luo et al., 2019). The vocabu-
lary size and number of running words are calcu-
lated after segmentation. Separate BPE with 32k
merge operations is used for Chinese and English
data. The newsdev2017 dataset is used as the
validation set and newstest2019 as the test set.

For the English→Turkish task, separate BPE
with 8k merge operations is used. The
newstest2017 dataset is used as the validation
set and newstest2018 as the test set.

3https://github.com/lancopku/
pkuseg-python
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B Training and Decoding Speed

Training and decoding are performed on one
NVIDIA GeForce RTX 1080 Ti with 11 GB of
GPU memory. Table 3 shows the training and de-
coding speed on the WMT 2019 German→English
dataset. Compared to the baseline system, the dis-
advantages of the zero-order HMM on training
speed are mainly due to the limited GPU memory.
Since the largest tensor of the proposed model has
a dimension of batch size × length of the source
sentence × length of the target sentence × vocabu-
lary size (in the standard transformer the dimension
of “length of the source sentence” is not required),
the batch size must be reduced to fit in the GPU
memory. Although gradient accumulation can be
used to guarantee performance, the reduced batch
size still linearly slows the training speed. The in-
fluence on the decoding speed is rather small. By
introducing the first-order dependency, however, a
for loop over every target position is inevitable,
so that the training and decoding speeds are greatly
slowed down. This is also reported by the previous
work.

model # parameters training decoding
tokens/sec time tokens/sec time

transformer baseline 84.2M 10.2k 5d 108.2 6.9min
zero-order HMM 86.1M 2.2k 20d 84.0 8.9min
first-order HMM 88.0M 0.4k 54d 31.7 23.5min

Table 3: Comparison of training and decoding speed.
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C Heat Maps of Attention Weights and
Alignments

Figure 3 demonstrates the heat maps of some sen-
tence pairs that are randomly selected from the
German→English training data after the training
has almost converged. Note that here the x and y
axes indicate the source and target positions (j and
i), which differs from Figure 2, where they indicate
the current and previous source positions (j and j′).
We can observe that the alignment paths are much
more focused than the attention weights. Since
our main goal is to propose an alternative tech-
nique to improve translation performance rather
than alignment quality, alignment error rates are
not calculated in this work.

Figure 3: Heat maps of attention weights and align-
ments. The source sentence goes from left to right and
the target sentence goes from top to bottom. The first
column shows the attention weight heat maps (average
of the multi-head cross-attention) for the 4th decoder
layer. The second column shows the attention weight
heat maps (average of the multi-head cross-attention)
for the 6th (last) decoder layer. The third column shows
the alignment heat maps taken from the proposed direct
HMM.
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Abstract

Although BERT based relation classification
(RC) models have achieved significant im-
provements over the traditional deep learn-
ing models, it seems that no consensus can
be reached on what is the optimal architec-
ture, since there are many design choices avail-
able. In this work, we design a comprehen-
sive search space for BERT based RC model-
s and employ a modified version of efficien-
t neural architecture search (ENAS) method
to automatically discover the design choices
mentioned above. Experiments on eight bench-
mark RC tasks show that our method is effi-
cient and effective in finding better architec-
tures than the baseline BERT based RC mod-
els. Ablation study demonstrates the necessity
of our search space design and the effective-
ness of our search method. We also show that
our framework can also apply to other entity
related tasks like coreference resolution and s-
pan based named entity recognition (NER).

1 Introduction

The task of relation classification (RC) is to pre-
dict semantic relations between pairs of entities
inside a context. It is an important NLP task s-
ince it serves as an intermediate step in variety of
NLP applications. There are many works that apply
deep neural networks (DNN) to relation classifica-
tion (Socher et al., 2012; Zeng et al., 2014; Shen
and Huang, 2016). With the rise of pre-trained
language models (PLMs) (Devlin et al., 2018), a
series of literature have incorporated PLMs such
as BERT in RC tasks (Baldini Soares et al., 2019;
Wu and He, 2019; Eberts and Ulges, 2019; Peng
et al., 2019), and shows significant improvements
over the traditional DNN models.

Despite great success, there is yet no consensus
reached on how to represent the entity pair and their

∗Contact: 52205901018@stu.ecnu.edu.cn.

contextual sentence for a BERT based RC model.
First, Baldini Soares et al. (2019) and Peng et al.
(2019) use different entity identification methods.
Second, Baldini Soares et al. (2019) and Wu and
He (2019) use different aggregation methods of en-
tity representations and contexts. Third, choosing
which features should be considered for the classfi-
cation layer should also be determined (Eberts and
Ulges, 2019). In addition, previous literature does
not consider the interactions between the feature
vectors.

In this work, we experiment on making the de-
sign choices in the BERT based RC model automat-
ically, so that one can obtain an architecture that
better suits the task at hand (Figure 1). Through-
out this work, we will refer to our framework as
AutoRC, which includes our search space and
search method. Firstly, a comprehensive search
space for the design choices that should be con-
sidered in a BERT based RC model is established.
Second, to navigate on our search space, we em-
ploy reinforcement learning (RL) strategy follow-
ing ENAS (Pham et al., 2018). That is, a controller
generates new RC architectures, receives rewards,
and updates its policy via policy gradient method.
To stabilize and improve the search results, three
non-trivial modifications to ENAS are proposed: a)
heterogeneous parameter sharing, which is to share
parameters more deeply than ENAS if the mod-
ules play similar role, and not to share if not; b)
maintain multiple copies of the shared parameters
which will be drawn randomly to the child models;
c) search warm-ups, which is to generate and up-
date child models without updating the controller
at the beginning of the search stage.

Experiments on eight benchmark RC tasks show
that our method can outperform the standard BERT
based RC models. Transfer of the learned archi-
tecture across different tasks is investigated, which
shows the transferred architectures can outperform
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the baseline models but cannot outperform the ar-
chitecture learned on this task. Ablation study of
the search space demonstrates the validity of the
search space design. In addition, ablation studies
on the search space show the validity of our search
space design, and experiments show that our pro-
posed modifications to ENAS are effective. We
also show our framework can work effectively on
other entity related tasks like coreference resolution
and span based NER.

The contributions of the paper can be summa-
rized as:

• We develop a comprehensive search space and
improve the BERT based RC models, in which
alternatives of the input formats and the ag-
gregation layers are applicable to other tasks.

• As far as we know, we are the first to introduce
NAS for BERT based models. Our proposed
methods for improving search results are ef-
fective and universally applicable.

2 Related Work

Our work is closely related to the literature on neu-
ral architecture search (NAS). The field of NAS
has attracted a lot of attentions in the recent years.
The goal is to find automatic mechanisms for gen-
erating new neural architectures to replace conven-
tional handcrafted ones, or automatically deciding
optimal design choices instead of manually tuning
(Bergstra et al., 2011). Recently, it has been widely
applied to computer vision tasks, such as image
classification (Cai et al., 2018), semantic segmen-
tation (Liu et al., 2019), object detection (Ghiasi
et al., 2019), super-resolution (Ahn et al., 2018),
etc. However, NAS is less well studied in the field
of natural language processing (NLP), especially
in information extraction (IE). Recent works (Zoph
and Le, 2017; Pham et al., 2018; Liu et al., 2018)
search new recurrent cells for the language model-
ing (LM) tasks. The evolved transformer (So et al.,
2019) employs an evolution-based search algorith-
m to generate better transformer architectures for
machine translation tasks. Zhu et al. (2021) de-
velops a novel search space which incorporates
cross-sentence attention mechanism and are able
to find novel architectures for natural language un-
derstanding (NLU) tasks. In this work, we design
a method that incorporate NAS to improve BERT
based relation extraction models.

Figure 1: General architecture for a RC model.

Our work is closely related to literatures on re-
lation extraction, especially the recent ones that
take advantages of the pre-trained language models
(PLMs). In terms of entity span identification, Bal-
dini Soares et al. (2019) argues that adding entity
markers to the input tokens works best, while Peng
et al. (2019) shows that some RC tasks are in fa-
vor of replace entity mentions with special tokens.
For feature selection, Baldini Soares et al. (2019)
shows that aggregating the entity representations
via start pooling works best across a panel of R-
C tasks. Meanwhile, Wu and He (2019) chooses
average pooling for entity features. In addition,
it argues that incorporating the representation of
the [CLS] token is beneficial. Eberts and Ulges
(2019) shows that the context between two entities
serves as a strong signal on some RC task. Zhu
(2020) shows that pre-training with entity spans
can benefit the downstream tasks. In this work,
we provide a more comprehensive overview of the
design choices in BERT based RC models, and
provide a solution for efficient and task-specific
architecture discovery, thus alleviating NLP practi-
tioner in the field of RE from manually or simple
heuristic model tuning.

3 Search space for RC model

An overall architecture design for a RC model is
shown in Figure 1. Following its bottom-up work-
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(a) standard input

(b) entity markers

(c) entity tokens

Figure 2: How to make changes to the input sequence
for entity span identification.

Figure 3: An example of the entity positional encod-
ing.

flow, we will define the search space for AutoRC.

3.1 Formal definition of task
In this paper, we focus on learning mappings from
relation statements to relation representations. For-
mally, let x = [x0, ..., xn] be a sequence of tokens,
and entity 1 (e1) and entity 2 (e2) to be the entity
mentions, which is depicted at the bottom of Fig-
ure 1. The position of ei in x is denoted by the
start and end position, si = (esi , e

e
i ). A relation

statement is a triple r = (x, e1, e2). Our goal is to
learn a function fθ that maps the relation statemen-
t to a fixed-length vector hr = fθ(r) ∈ Rd that
represents the relation expressed in r.

Note that the two entities divide the sentence
into five parts, e1 and e2 as entity mentions, and
three contextual pieces, denoted as c0, c1 and c2.

3.2 Entity span identification
In this work, we employ BERT (Devlin et al., 2018)
as the encoder for the input sentences. The BERT
encoder may need to distinguish the entity men-
tions from the context sentence to properly model
the semantic representations of a relation statement.
We present three different options for getting infor-
mation about the entity spans s1 and s2 into our
BERT encoder, which are depicted in Figure 2.

standard, that is, not to make any change to the
input sentence (Figure 2(a)).

entity markers. We add special tokens at the
start and end of the entities to inform BERT where
the two entities are in the sentence, as depict-
ed by Figure 2(b). Formally, the sentence x
becomes [[CLS], x0...[E1]...[/E1]...[E2]...[/E2]
...xn, [SEP ]].

entity tokens. This approach (Figure 2(c))
replaces the entity mentions in the sentence
with special tokens. Formally, x becomes
[[CLS]...[ENTITY − 1]...[ENTITY −
2]...[SEP ]].

3.3 Entity positional encoding

To make up for the standard input’s lack of entity
identification, or to further address the position of
entities, one can add special entity positional en-
coding accompany input sequence x. As is shown
in Figure 3, for entity 1, the entity positional encod-
ing will be the distance to entity 1’s starting token.
1

Now there are two design choices. First is
whether to use entity positional encoding at all.
Second, as is shown in Figure 1 if using entity po-
sitional encoding, do we add this extra embedding
to the embedding layer of the BERT (denoted as
add to embedding), or do we concatenate this em-
bedding to the output of BERT encoder (denoted
as concat to output)?

3.4 Pooling layer

How to aggregate the entities’ and contexts’ hidden
representations into fixed length feature vectors,
i.e., what kind of poolers are used becomes the core
part of the RC model architecture. In this work,
we investigate 5 different poolers: average pooling
(avg pool), max pooling (denoted as max pool),
self-attention pooling (denoted as self attn pool),
dynamic routing pooling (dr pool) (Gong et al.,
2018), and start pooling (start pool), which is to
use the reprsentation of the starting token as in
Baldini Soares et al. (2019).

3.5 Output features

To select appropriate features for classifying rela-
tion types, there are many design choices. First,
whether the two entity vectors should be used as
features. Second, whether each contextual piece

1Entity positional encoding corresponds to two (one for
either entity) entity positional embedding modules in the RC
model, and they are randomly initialized and fine-tuned during
BERT fine-tuning.
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(c0, c1, c2) should be added as features (Eberts and
Ulges, 2019; Wu and He, 2019).

We notice that the literature does not consider
the interactions of the features from different parts
of the sentence, which proves to be useful in oth-
er tasks such as natural language inference (NLI)
(Chen et al., 2016). Here, we consider the interac-
tion between the two entities, and their interactions
with contextual pieces. The interaction can be dot
product (denoted as dot) or absolute difference (de-
noted as minus) between two feature vectors.

3.6 Search space
Now we are ready to define the search space for-
mally. The search space is as follows:

• entity span identification = entity markers, en-
tity tokens, standard;

• how to use entity positional embedding = null,
add to embedding, concat to output;

• poolers for entity or contextual piece =
avg pool, max pool, self attn pool, dr pool,
start pool;

• whether to use the representation of entity ei
= True, False, where i = 1, 2;

• whether to use the representation of context
ci = True, False, where i = 0, 1, 2;

• Interaction between the two entities = dot, mi-
nus, null, where null means no interaction;

• Interaction between entity and contextual
piece ci = dot, minus, null, where null means
no interaction, and i = 0, 1, 2.

Our search space contains 1.64e+8 combination-
s of design choices, which makes manually fine-
tuning or random search impractical.

4 Search method

In this section, we first formally formulate the prob-
lem of architecture search with reinforcement learn-
ing. Then, , we discuss the search algorithm based
on policy gradient. At the last part, we discuss our
modifications to stabilize the search outputs.

4.1 Problem formulation
Given a search space M of neural architectures,
and a dataset split into train set Dtrain and Dvalid,
we aim to find the best architecture m∗ ∈M that

Figure 4: An illustration of the RL mechanism for ar-
chitecture search.

maximizes the expected reward E[RDvalid
(m)] on

the validation set Dvalid, i.e.,

m∗ = arg max
m∈M

E[RDvalid
(m)]. (1)

Figure 4 shows the reinforcement learning frame-
work used to solve Eq 1 by continuously sampling
architectures m ∈ M and evaluating the reward
(performance score)R on the validation set Dvalid.
First, the recurrent network generates a network de-
scription m ∈M that corresponds to a RC model.
Then, the generated model m is trained on Dtrain
and tested on the validation set Dvalid. The test
result is taken as a reward signal R to update the
controller.

4.2 Search and evaluation
The whole procedure for model search can be di-
vided into the search phase and evaluation phase.
The search phase updates the shared parameters
and the parameters for the controller in an inter-
leaving manner, while the evaluation phase obtains
multiple top-ranked models from the controller and
train them till convergence on the task dataset for
proper evaluations of the learned architectures.

Parameter sharing. In order to avoid training
from scratch to obtain reward signals, parameter
sharing is applied. The same operator is re-used
for a child model if it is chosen. Specific to our
architecture, the BERT encoder and the final classi-
fier are shared for all child models. We denote the
collection of all the parameters shared as Φ.

Search phase. Now we describe the interleav-
ing optimization procedure. First, an architecture is
sampled by the controller, and its network parame-
ters are initialized with Φ. It is trained for nc steps
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(which is usually a small integer), during which
Φ is updated. Then, the reward of this model is
obtained on Dvalid. With n reward signals receive,
Θ is updated using policy gradients following RE-
INFORCE (Williams, 1992):

∇ΘĴ(Θ) =
1

n

n∑

i=1

∇Θ log π(ai,Θ)(R(Θ)− b),

(2)
where b denotes a moving average of the past re-
wards and it is used to reduce the variance of gra-
dient approximation. In this work, we find n = 1
already works quite well. Repeating this interleav-
ing optimization procedure for N times till the con-
troller is well trained, then we generate k candidate
architectures, evaluate them using the shared pa-
rameters, and then select the top-ranked ke models
for architecture evaluation.

Evaluation phase. In this phase, the top-ranked
models are trained with the whole train set, and
validated on the dev set to select the best check-
point for prediction on the test set. Note that the
shared parameters Φ are discarded in this phase,
and the learned architecture is trained from scratch.
To fully evaluate each architecture, we run a grid
search for the optimal hyper-parameters including
learning rate, batch size and warm-up steps. After
the optimal combination of hyper-parameters is s-
elected, the model is run several times to ensure
replication.

4.3 Improving search
Now we propose a few methods to stabilize the
search results and improve the search performance.

Heterogeneous parameter sharing. First, the
reward signals directly relies on the parameter shar-
ing mechanism, thus we should think deeper into
how to design proper parameter sharing strategies
for RC model search. Parameter sharing in ENAS
is unconditional. Note that to much or too little
parameter sharing can generate un-reliable reward
signals, guiding the controller to wrong directions.
Thus based on our extensive experiments, we now
present our parameter sharing strategies, which we
will call heterogeneous parameter sharing, since
our idea is to share parameters among modules
that plays similar roles in the model architectures.
The details are as follows: (a) first, note that the
entity span identification method entity tokens sig-
nificantly alter the original sentence, thus, it is nat-
ural for it to use a different BERT encoder in the
child models. (b) since entities and contexts play

quite different roles in the RC tasks, the aggregators
for entities and contexts will not share parameters.
Note that start pooler and dr pooler have a com-
mon component, which is a linear layer followed
by a non-linear module, thus the linear layer will
be shared in these two aggregators for entities or
for contexts. However, we will use the linear layer
of the BERT pooler to initialize all the linear layers
of start pooler and dr pooler.

Multiple copies of shared parameters. Note
that all child models have a BERT encoder and a
classifier layer, thus parameters in these modules
may over-fit quickly. Thus, during search training,
we maintain multiple copies of these modules, and
each time we initialize a child model, a copy of
BERT encoder and classifier layer will be randomly
selected from shared parameters Φ. After updating,
these copies will be stored back to Φ.

Search warm-ups At the beginning of training,
the shared parameters are not trained, thus reward
signals generated are unreliable. Thus, at the first
few epochs, the controller will generate child mod-
els to train on the dataset, but it will not be updated.

5 Experiments

Due to resource limitations, we assign up to 2 N-
VIDIA V100 GPU cards to each tasks.

5.1 Datasets

We run experiments on 8 different benchmark
datasets, semeval10 (Hendrickx et al., 2009),2 ta-
cred (Zhang et al., 2017), kbp37 (Zhang and Wang,
2015), wiki80 (Han et al., 2019), deft2020 (Spala
et al., 2019), i2b2 (zlem et al., 2011), ddi (Herrero-
Zazo et al., 2013), chemprot (Krallinger et al.,
2017). These tasks are from various domains and
are different in the respects of dataset sizes, sen-
tence length, entity mention length, etc, to demon-
strate that our method is robust for various RC tasks.
Detailed descriptions and statistics are provided in
the Appendix.

5.2 Search protocol

During search phase, the interleaving optimization
process is run 100 epochs. Throughout this work,
we use the base uncased version of BERT (De-
vlin et al., 2018) as the sentence encoder, and its

2This dataset does not establish a default split for devel-
opment, so for this work we adopt the same train/dev split
with that provided by OpenNRE (Han et al., 2019). Thus, we
cannot adopt the reported results for semeval10 on Table 1 of
Baldini Soares et al. (2019).
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parameters are fine-tuned to better adjust to down-
stream tasks. During search, 4 copies of BERT
model checkpoints are maintained, 2 for method
entity tokens and 2 for the other two entity span
identifiers, so each time we initialize a child model,
a BERT checkpoint is randomly selected and its
parameters can be updated. If the entity position
embedding is concatenated after the BERT output,
its size is set to be 12.

During search, each child model is trained with
4 batches of training data and evaluated on a single
batch of valid data, and the evaluation batch size is
4 times the training batch size. The learning rate
for the controller is set at 1e-4, and the learning
rate and batch size for the sampled architectures
are manually tuned to obtain better search results.
During search, the number of warm-up steps for
the BERT encoders is set to be equal to 0.8 of a
epoch, and the warm-up steps for search is set to
be 1.5 epochs.

5.3 Architecture evaluation protocol

In this work, we differentiate between a NAS
method’s performance and that of a learned mod-
el. We obtain the former by running architecture
search 5 times. The best learned model’s perfor-
mance will be regarded as the NAS method’s per-
formance in each run. The best learned model in
each search is also run for 10 times.

To make our results more reproducible, each
learned model or each baseline model is trained
for 10 times, and the mean and variance of the
performance will be reported. And for evaluating
the search method, after the search phase, 30 mod-
el architectures are sampled from the trained con-
troller, and they are ranked via their performance
on the valid data when they are initialized using the
shared parameters. Then the top-ranked 5 models
are trained from scratch till convergence on the w-
hole training data of the task to formally evaluate
their performances. The best learned model’s per-
formance of a search run is regarded as the search
method’s performance. In this work, we will re-
port the mean and standard deviation of the search
method performances in 5 independent runs.

To compare our methods with random search,
for each task, we randomly samples 10 different
models with a randomly initialized controller, since
the GPU time for training 10 models is guaranteed
to be larger than an entire search and evaluation
process described above.

To thoroughly evaluate a learned model or a base-
line model, we run a random search of 10 times on
the following space for the optimal combination of
the following key hyper-parameters:

• learning rate = 1e-4, 5e-5, 2e-5, 1e-5;

• training batch size = 128, 64, 32;

• warm-up steps = 0.8, 1.0 of the number of
steps in an epoch.

The hyper-params for the baseline models are re-
ported in the Appendix.

5.4 Baseline models

In this work, we select two strong baselines for
comparison. The first one is BERT-entity, the best
model from Baldini Soares et al. (2019). The sec-
ond is R-BERT by Wu and He (2019). BERT-
entity and R-BERT are implemented by Open-
NRE (Han et al., 2019). The two models are special
cases in our search space. The baseline models also
have to go through the above reproducibility pro-
tocols. We will not compare with traditional deep-
learning based model in the pre-BERT era, since
BERT-entity significantly outperforms them.3

5.5 Results on Benchmark datasets

The results on the 8 benchmarks RC datasets are re-
ported in Table 1. We report both the performance
of the search methods and the performance of the
best model learned on each task using AutoRC.
For all eight tasks, AutoRC successfully obtains
higher average scores than the baseline models. In
addition, we find that AutoRC outperforms naive
ENAS and random search and its results are more
stable. In addition, we can see that the best learned
model outperforms the baseline models significant-
ly. One observation can be made is that the test
results of the search architectures are consistently
stable than the baseline, which also validates that
our method are efficient in finding a task-specific
model for the task at hand.

Figure 5, 6 and 7 report the best searched ar-
chitectures for the deft2020, i2b2 and kbp37 tasks.
We can see that learned architectures can be quite

3This work only considers the effects of architecture de-
sign, thus some of the SOTAs may not provide fair comparison.
KnowBert (Peters et al., 2019) explicitly incorporates external
KGs. Tao et al. (2019) take advantage of syntactic priors. Be-
fore submission, we run the REDN (Li and Tian, 2020) model
(by using their code and re-implement by our self), but the
results are not comparable to the results in their paper.
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Model semeval10 tacred kbp37 wiki80 deft2020 i2b2 ddi chemprot
R-BERT 88.19±0.234 69.63±0.178 64.15±0.285 85.38±0.158 60.12±0.875 81.88±0.547 75.73±0.786 66.77±0.336

BERT-entity 88.35±0.159 69.97 ± 0.198 64.20±0.273 85.35±0.141 60.19±0.723 81.94±0.691 75.66±0.712 66.86±0.393
random search 87.61±0.316 69.15±0.376 63.90±0.516 83.46±0.378 58.19±1.968 81.33±1.364 74.23±0.653 66.04±0.873
naive ENAS 88.23±0.256 69.98±0.267 64.25±0.412 85.38±0.286 61.57±0.727 82.18±0.632 75.57±0.598 66.94±0.453

AutoRC 88.53±0.212 70.06±0.242 64.32±0.414 85.46±0.143 62.87±0.632 82.76±0.587 75.72±0.532 67.15±0.367
ARsemeval10 88.89±0.165 - - - - - - -
ARtacred - 70.87±0.167 - - - - - -
ARkbp37 - - 64.96±0.185 85.63±0.175 - 81.87±0.778 75.58±0.704 -
ARwiki80 - - 64.58±0.169 85.98±0.134 - 82.32±0.604 75.89±0.633 -
ARdeft2020 - - - - 63.82±0.593 - - -
ARi2b2 - - 64.43±0.166 85.46±0.164 - 83.59±0.478 76.05±0.658 -
ARddi - - 64.37±0.172 85.39±0.159 - 82.92±0.454 76.73±0.475 -

ARchemprot - - - - - 67.95±0.283

Table 1: Test results for eight relation classification tasks. The performance metric is micro F1 for all tasks except
for deft2020 which uses macro F1. Results from the baseline model are obtained with the help of OpenNRE (Han
et al., 2019).

Figure 5: ARdeft2020, the best learned architecture on
deft2020.

Figure 6: ARi2b2, the best learned architecture on
i2b2.

different, thus validating the necessity of task speci-
ficity. The learned models are different in the fol-
lowing three aspects. First, ARdeft2020 choose to
replace entity mentions with entity tokens. We hy-
pothesis that in deft-2020, the entities are often
quite long, thus replacing entity mentions with en-
tity tokens is beneficial for the model to understand

Figure 7: ARkbp37, the best learned architecture on
kbp37.

the contexts’ structural patterns. Second, note that
ARdeft2020 uses start pool to aggregate context
piece c0, which is the representation of [CLS] to-
ken. In addition, it includes the representation of
context c1, which is also used in ARkbp37. Third,
ARdeft2020 incorporates the interaction between
context c0 and the two entities, while ARi2b2 and
ARkbp37 include the interaction between the two
entities. Differences in the learned architectures
for different tasks indicate the necessity of task spe-
cific architectures, which is challenging without
the help of NAS. We believe there are two aspects
that can affect the learned models. First, different
domains have different contexts, which may lead
to different models. Second, the formulation of
data. For example, in deft-2020, some extended
definitions of scientific concepts are annotated as
entities. Thus, the avg entity mention length (18.5)
is quite different from other tasks (2.3 in ”ddi”).

In Table 1, we also study how does an archi-
tecture learned on one task performs on another.
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Search space deft2020 i2b2
M 63.82 ± 0.593 83.59 ± 0.478
M1 63.45 ± 0.698 83.22 ± 0.514
M2 62.31 ± 0.423 82.68 ± 0.483
M3 61.78 ± 0.893 82.35 ± 0.558

BERT-entity 60.19 ± 0.723 81.94 ± 0.691

Table 2: Results of ablation study on the search space.

Note that when evaluated on a different task, an ar-
chitecture’s hyper-parameters are tuned again, fol-
lowing the procedure described in subsection 5.3.
The architecture learned on kbp37, which is an
open-domain dataset, ARkbp37, transfer well on
wiki80. But it does not perform well on the two
tasks of medical domain, i2b2 and ddi. However,
the learned architectures learned on i2b2 and ddi
transfer well on each other and perform compara-
bly well. The above results demonstrate that the
learned models have certain ability for task trans-
fer, but its suitability is significantly affected by the
domains of the tasks.

5.6 Ablation study on the search space
We further investigate the specific contributions
by the different components of the search space.
For this purpose, we create three smaller search
space. The first one, denoted asM1, which does
not allow any interactions among entity features
and context features. The second one,M2 further
reduceM1 by limiting that the pooling operation
available is the start pooling operation. The third
one, M3, further forbid contextual features. If
further limit the entity span identification method
to be entity markers, the search space is reduced to
the baseline BERT-entity model. The search and
evaluation protocols on the reduced search space
strictly follow the previous subsections.

Ablation study for the search space is done on
deft2020 and i2b2. Results are reported in Table 2.
For deft2020, alternating the method for span iden-
tification provides significant performance gain on
deft2020, and interaction among features is also im-
portant. For i2b2, the most significant performance
drop occurs when the pooling operations are limit-
ed, indicating that even for powerful bi-directional
context encoder like BERT, considering different
pooling operations are beneficial.

5.7 Ablations on the modifications for search
method

In this subsection, we will show that our modi-
fications to the search method, i.e., the naive E-

Search Method deft2020 i2b2
naive ENAS 61.57 ± 0.727 82.18 ± 0.632
AutoRC 62.87 ± 0.632 82.76 ± 0.587
AutoRC1 62.38 ± 0.689 82.42 ± 0.616
AutoRC2 62.53 ± 0.672 82.56 ± 0.595
AutoRC3 62.49 ± 0.708 82.61 ± 0.614

Table 3: Ablation study on the search methods.

Method OntoNotes CoNLL04
SpanBERT 85.3 -

SpERT - 88.94
AutoRC 86.1 89.87

Table 4: Experiments on the coreference resolution
and span based NER.

NAS, are indeed effective and necessary. Here we
use AutoRC to denote our method, which is the
combination of ENAS and our proposed modifi-
cations. We now experiment on three variations
to AutoRC. First, AutoRC1 drops heterogeneous
parameter sharing, that is, all input formats share
the same BERT encoder, and all context and all
entity representations share the same aggregators.
The second variant, AutoRC2, is to maintain sin-
gle copies of shared weights. The third variant,
AutoRC3, is the one that drops search warm-ups.

The average search performance, which is the
average score of the best learned model at each
search run, and their standard deviations are report-
ed on Table 3. From the results, dropping any of
three strategies we propose results in performance
drop and increased variance in results. And chang-
ing the parameter sharing strategies cause the most
significant performance drops on both tasks. The
above results demonstrate that our proposed modifi-
cations make the reward signal during search more
reliable, thus resulting in better searched architec-
tures.

5.8 Applications to other entity related tasks
In Table 4, we apply ourAutoRC framework to the
other two entity related tasks, i.e., coreference reso-
lution and span based NER. AutoRC can directly
apply to coreference resolution since it essentially
asks the model to determine whether an expression
refers to an entity. It can also be applied to span
based NER since it asks the model to determine
whether a span in the sentence is an entity.

We experiment on the OntoNotes coreference
resolution benchmark (Pradhan et al., 2012). The
metric is MUC F1 and we choose the state-of-the-
art (SOTA) SpanBERT (Joshi et al., 2019) as base-
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line. The results show that our AutoRC frame-
work can effectively improve the performances of
the SpanBERT checkpoint.

We experiment on the NER task of CoNLL04
(Roth and tau Yih, 2004), which uses entity level
F1 as metric. Eberts and Ulges (2020) provides a
SOTA baseline. The results show that performance
improves via AutoRC.

6 Conclusion

In this work, we first construct a comprehensive
search space to include many import design choic-
es for a BERT based RC model. Then we design
an efficient search method with the help of RL
to navigate on this search space. To improve the
search results, parameter sharing strategies differ-
ent from ENAS are designed. To avoid over-fitting,
we maintain multiple copies of shared weights dur-
ing search. To stabilize the reward signal, search
warm-ups are applied. Experiments on eight bench-
mark RC tasks show that our method can outperfor-
m the standard BERT based RC model significantly.
Ablation study shows our search space design and
proposed modifications are effective.
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A Benchmark datasets

Here we include introductions to the benchmark
datasets we investigate. And the basic statistics and
performance metrics are included in Table 5.

SemEval-2010 Task 8 (Hendrickx et al., 2009)
(denoted as semeval10) This dataset does not es-
tablish a default split for development, so for this
work we adopt the same train/dev split with that
provided by OpenNRE (Han et al., 2019).
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Dataset # labels Train Dev Test sent length Metrics
semeval2010 19 6508 1494 2718 19.09 micro F1

tacred 42 75,050 25,764 18,660 36.2 micro F1
kbp37 37 15917 1724 3405 31.09 micro F1
wiki80 80 40320 10080 5600 24.93 micro F1

deft2020 6 16727 963 1139 72.11 macro F1
i2b2 8 2496 624 6293 24.33 micro F1
ddi 5 18779 7244 5761 45.03 micro F1

chemprot 6 19460 11820 16943 49.69 micro F1

Table 5: Overview of datasets in experiments.

Wiki80 (denoted as wiki80) This dataset (Han
et al., 2019) is derived from FewRel (Han et al.,
2018), a large scale few-shot dataset. Since Wiki80
only has a train/val split, we randomly split the
train set into a train set and val set (with 8:2 ratio),
and treat the original validation set as the test set.

KBP-37 (Zhang and Wang, 2015) (denoted as
kbp37). This dataset is a revision of MIML-RE
annotation dataset, provided by Gabor Angeli et al.
(2014). They use both the 2010 and 2013 KBP of-
ficial document collections, as well as a July 2013
dump of Wikipedia as the text corpus for annota-
tion.

DEFT-2020 Subtask 3 (denoted as deft2020)
This dataset also serves as the task 6 of SemEval
2020 shared tasks. This RC task have to overcome
longer contexts, longer entity mentions, and more
imbalanced relation types. (Spala et al., 2019)

i2b2 2010 (denoted as i2b2) shared task collec-
tion consists of 170 medical documents for training
and 256 documents for testing, which is the subset
of the original dataset (zlem et al., 2011).

ChemProt (denoted as chemprot) consists of
1,820 PubMed abstracts with chemical-protein in-
teractions annotated by domain experts and was
used in the BioCreative VI text mining chemical-
protein interactions shared task (Krallinger et al.,
2017) 4.

DDI extraction 2013 corpus (denoted as ddi) is a
collection of 792 texts selected from the DrugBank
database and other 233 Medline abstracts (Herrero-
Zazo et al., 2013).5

B Hyper-params for models on different
tasks

Now we report the hyper-parameters for the base-
line models and the learned models (for architec-
ture evaluation phase). The main hyper-parameters

4https://biocreative.bioinformatics.udel.edu/news/corpora/
5http://labda.inf.uc3m.es/ddicorpus

Dataset model lr bsz warm-up
semeval10 R-BERT 2e-5 64 0.8

BERT-entity 5e-5 64 1.0
ARsemeval10 1e-5 64 0.8

tacred R-BERT 1e-4 128 0.8
BERT-entity 5e-5 128 0.8
ARtacred 5e-5 128 0.8

kbp37 R-BERT 1e-5 64 0.8
BERT-entity 2e-5 64 0.8
ARkbp37 5e-5 64 1.0

wiki80 R-BERT 5e-5 128 0.8
BERT-entity 2e-5 64 1.0
ARwiki80 2e-5 64 1.0

deft2020 R-BERT 1e-4 64 0.8
BERT-entity 5e-5 64 1.0
ARdeft2020 1e-4 64 0.8

i2b2 R-BERT 2e-5 32 0.8
BERT-entity 5e-5 32 0.8
ARi2b2 1e-5 32 0.8

ddi R-BERT 5e-5 64 0.8
BERT-entity 2e-5 32 0.8
ARddi 5e-5 64 1.0

chemprot R-BERT 5e-5 64 0.8
BERT-entity 1e-5 128 0.8
ARchemprot 5e-5 64 1.0

Table 6

are learning rate (lr), batch size (bsz) and warm-
up steps (warm-up) for finetuning. Warm-up is
reported as the proportion of steps in one epoch.
One common hyper-parameter is the max sequence
length, which is set as 256.
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Abstract

Despite the recent advancements of attention-
based deep learning architectures across a ma-
jority of Natural Language Processing tasks,
their application remains limited in a low-
resource setting because of a lack of pre-
trained models for such languages. In this
study, we make the first attempt to investigate
the challenges of adapting these techniques to
an extremely low-resource language – Sume-
rian cuneiform – one of the world’s oldest writ-
ten language attested from at least the begin-
ning of the 3rd millennium BC. Specifically,
we introduce the first cross-lingual informa-
tion extraction pipeline for Sumerian, which
includes part-of-speech tagging, named entity
recognition, and machine translation. We in-
troduce InterpretLR, an interpretability toolkit
for low-resource NLP and use it alongside hu-
man evaluations to gauge the trained models.
Notably, all our techniques and most compo-
nents of our pipeline can be generalised to any
low-resource language. We publicly release
all our implementations including a novel data
set with domain-specific pre-processing to pro-
mote further research in this domain.

1 Introduction

Sumerian is one of the oldest written languages,
attested in the cuneiform texts from around 2900
BC and possibly the language of even older proto-
cuneiform texts from the second half of the 4th
millennium BC (Englund, 2009). Specialists in As-
syriology have recently worked to digitize Sume-
rian scripts, annotate, and translate a part of them
to modern-day languages like English and German.

In this work, we attempt to create the first in-
formation extraction and translation pipeline for

Data sets and training subroutines are available at
linktr.ee/rachitbansal

†Work was done prior to joining Amazon at Goethe Uni-
versity Frankfurt

1. a-na-ah-i3-li2
Anah-ili;

2. szu ba-an-ti
did receive.

3. iti ezem-an-na
Month: An-festival,

4. mu na-ru2-a-mah 
mu-ne-du3
Year: He erected the great stele 
for them.

1. 1(disz) kusz udu niga
1 hide, grain-fed sheep;

2. 1(disz) kusz masz2 niga
1 hide, grain-fed goat;

3. kusz udu sa2-du11
sheep hides, regular offerings,

4. ki {d}iszkur-illat-ta
from Adda-illat,

obverse.

reverse.

Figure 1: Tablets inscribed with Sumerian cuneiform
script, their corresponding digitized transliterations,
and human-translated English text for each line.

Sumerian. Specifically, we focus on machine trans-
lation from Sumerian to English, and sequence
labeling tasks of Named Entity Recognition (NER)
and Part of Speech (POS) Tagging.

Figure 1 shows a sample of our raw data where
the Sumerian text has been derived from the tablet-
inscribed cuneiform script along with its human-
interpreted English translations. Creating an an-
notated corpus for such a language is a tedious
task. We obtain our data from openly available
sources and corpora, painstakingly annotated and
translated by human experts. Yet, for languages
like Sumerian, which are not fully-understood by
humans themselves, transferring knowledge and
patterns to learning algorithms from this limited
data becomes extremely difficult. The consequent
challenge posed for NER and POS tagging is evi-
dent. Lack of annotated data and fuzzy character-
level text makes it hard for a model to generalise,
irrespective of its size.
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In case of machine translation, the labeled data is
composed of incomplete and short phrase-like sen-
tences, especially on the target side. This makes the
context largely ambiguous. Moreover, we find that
for a majority of medieval and ancient languages
the target-side translated text is highly incoherent
with modern-day English language text, making it
impossible to use the latter in semi-supervised and
unsupervised settings.

Throughout this study, we elaborate on such
challenges faced when working with low-resource
languages, and talk about what makes some of
these languages like Sumerian ‘extremely’ low-
resource. Through extensive experimentation, eval-
uation, and analysis we further introduce specific
algorithms and modifications to work around them.

In all, our contribution is three-fold:
1. Building and analyzing a variety of algorithms

on the unexplored human-annotated Sumerian
dataset for sequence labeling tasks of POS
Tagging and NER. (§3)

2. Introducing the problem of
Target-side Incoherence for low-resource
settings and its effect on semi-supervised
and unsupervised machine translation (§4.2).
Further investigating specific modifications
and methodologies to cope-up with these
constraints. (§4)

3. Introducing InterpretLR, a generalisable
toolkit to interpret low-resource NLP. We ap-
ply it to further study, compare, and evaluate
all of our proposed techniques for machine
translation and sequence labeling. (§7)

Throughout this work, we have conducted human
studies and evaluation for our models, in addition
to automated metrics. For gauging our models with
InterpretLR, we have made use of human annota-
tions.

2 Background

2.1 Data

Sumerian is an ancient language from Iraq that
was written using the cuneiform script. While
Basque and Turkish display some similarities (split-
ergativity, agglutinativity), it is a language isolate
(Englund, 2009). We have found artifacts dating
to around 2900 BC with Sumerian texts inscribed
until the first century AD. Most of the Sumerian
texts found to this day are administrative in nature
as, during the third dynasty of the Ur III Period,
the state administration swell to an unprecedented

level of activity which was not seen again later in
the history of Mesopotamian culture. All through
this study, our evaluation sets are composed of Ur
III Admin text only and it acts as our in-domain
data.

Part of the datasets we used were assem-
bled from the Cuneiform Digital Library Ini-
tiative (CDLI)1, Machine Translation and Auto-
mated Analysis of Cuneiform languages (MTAAC)
project (Pagé-Perron et al., 2017)2 and The Elec-
tronic Text Corpus of Sumerian Literature (ETCSL)
dataset3. CDLI and MTAAC datasets contain the
Ur III Administrative (Admin) texts4 which are
preserved by the CDLI5. The MTAAC and ETCSL
corpora were both manually annotated for morphol-
ogy by cuneiform linguistics.
We divided the data between training and testing
sets, and then to reduce the data sparsity, we per-
formed text augmentation using a set of labeled
named entities for these sets separately. This in-
creased our combined number of phrases from
25,000 to 48,000, representing our final dataset
for sequence labeling. Figures 2 and 3 provide
the distribution of word tokens in our final pre-
annotated dataset. The corpus consists of phrases
with lengths ranging from 1 to 19 words. These
phrases are small since they are translated line by
line from the scripts. Around 2,500 phrases were
used for testing, while the 45,500 were employed
for training purposes.
For machine translation, the final dataset summa-
rizes as (i) 10,520 parallel phrases from the Ur III
administrative corpus; (ii) 88,460 parallel phrases,
all genres combined; and (iii) all monolingual
Sumerian data (1.43 million phrases). In all cases,
phrases are short, generally ranging from 1 to 5-
word tokens.

2.2 Related Work
Past work aimed at machine translation of
Sumerian-English (Pagé-Perron et al., 2017; Punia
et al., 2020a) have used the minimal bitext upon a
variety of general statistical and neural supervised
techniques. However, they do not handle the text-
level peculiarities any differently than one would

1https://cdli.ucla.edu
2https://cdli-gh.github.io/mtaac/
3http://http://etcsl.orinst.ox.ac.uk/
4The Third Dynasty of Ur is a cultural and temporal period

ranging in ∼2112− 2004 BC, in Mesopotamia
5https://github.com/cdli-gh/data,

https://github.com/cdli-gh/mtaac_gold_
corpus/tree/workflow/morph/to_dict
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do for a high-resource language, thus, often failing
to capture context, resulting in poor and inconsis-
tent translations. Techniques, learning algorithms,
and architectures that optimally use the vast mono-
lingual data and parallel sentences while keeping
in mind the several linguistic limitations are mo-
tivated in such a scenario. Thus, we experiment
on semi-supervised and unsupervised techniques
across the three categories of data augmentation
(Sennrich et al., 2016; He et al., 2016), knowledge
transfer (Zoph et al., 2016), and pre-training (Con-
neau and Lample, 2019; Song et al., 2019).

In the past, Pagé-Perron et al. (2017) applied
statistical models for morphological analysis and
information extraction for Sumerian. Although,
due to the unavailability of annotated data, these
models could not generalise well. Liu et al. (2015)
and Luo et al. (2015) used an unsupervised ap-
proach for NER with the help of domain experts
and used contextual and spelling rules to build the
model. They also post-processed their outputs au-
tomatically, which enhanced their results. In this
work, we thoroughly investigate a wide range of
algorithms for these sequence labeling tasks and
consequently take a first step towards effective in-
formation extraction for Sumerian.

Figure 2: Composition of the POS tagging dataset.
Here, “NE” stands for named entities, “O” stands for
unstructured words. Other tags are in accordance with
ORACC.

3 Part of Speech Tagging and Named
Entity Recognition

In this section, we talk about the various algorithms
that we investigated to carry out the sequence
labeling tasks of POS tagging and NER for
Sumerian. The subsequent experimental results are
described and discussed in Section 6.

Figure 3: Composition of our NER dataset. Tags are in
accordance with ORACC.

Conditional Random Fields CRF (Lafferty
et al., 2001) is a discriminative probabilistic
classifier, which optimises the weights or pa-
rameters in order to maximize the conditional
probability distribution P (y | x). They take set
of input features (language or domain specific)
into account, using the learned weights associated
with these features and previous labels to predict
the current label. Since CRFs use feature sets
(rules) which are language-specific, it makes the
model more robust specially for very low-resource
languages. In our case we developed domain
specific rules with the help of previous studies (Liu
et al., 2015; Luo et al., 2015) and language experts.
A set of these rules are mentioned in the Appendix.

Bi-directional LSTM We also experiment
across Recurrent Neural Networks (RNNs) to
deal with the sequential text input. We employ
Bi-LSTM (Hochreiter and Schmidhuber, 1997;
Schuster and Paliwal, 1997) in particular. As
in Huang et al. (2015), an additional CRF layer
is used for efficient usage of sentence level tag
information and past input features by LSTM cells.

FLAIR Akbik et al. (2018) introduced a
Contextual String Embedding for Sequence
Labeling, FLAIR, which has shown great promise
for NER across various languages (Akbik et al.,
2019b). We make use of the two distinct properties
of its embeddings: (i) training without any explicit
notion of words and fundamentally modeling the
words as a sequence of characters, and (ii) deriving
and using the context from surrounding tokens.
We train the bi-directional character language
model using the Sumerian monolingual phrases
and retrieve the contextual embedding for each
word which we then pass into the vanilla Bi-LSTM
CRF model.
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RoBERTa We also investigate the transformer-
based language model, RoBERTa (Liu et al., 2019).
The encoder is first pre-trained on our Sumerian
monolingual data, and then fine-tuned on our
downstream sequence labeling tasks using the
labeled data.

4 Machine Translation

In this section, we present our experiments for
machine translation, primarily focusing on spe-
cific data and algorithmic modeling techniques
which may be generalised for any extremely low-
resource language that may or may not suffer from
Target-side Incoherence, a phenomenon which we
also introduce herein. All results are summarised
in Table 1.

4.1 Supervised NMT

In order to create a benchmark for the semi-
supervised and unsupervised approaches, we per-
form supervised machine translation using the lim-
ited bitext available (∼10,000 phrases). We per-
form experiments on a variety of data configura-
tions which are given by:

1. UrIIISeg: Follows the format as present
in the original texts provided by Assyriol-
ogists and used in the past attempts for
Sumerian-English machine translation (Pagé-
Perron et al., 2017; Punia et al., 2020b). It
contains only in-domain Ur III Admin text
with line-by-line translated segments, each of
1-5 words. Amounts to total 10528 segments.

2. UrIIIComp: Also contains the in-domain
data only, but multiple segments are concate-
nated together to form complete sentences.
The ‘completeness’ of a sentence is ensured
through punctuation marks. Since multiple
segments are combined, it amounts to only
4792 sentences.

3. AllSeg: Contains all of out-of-domain
Sumerian text segments in addition to in-
domain Ur III Admin text alone. The addi-
tional text varies across a wide range of genres
such as literary, lexical, ritual, and legal, re-
sulting into a corpus size of 88466 segments.

4. AllComp: Combines the additional features
of 2. and 3., thus comprising of a total of
32694 complete text sentences from all out-
of-domain as well as in-domain genres.

We make use of the vanilla transformer encoder
and decoder architecture (Vaswani et al., 2017) for

all our supervised machine translation experiments
over these three different bitext configurations.
Noting the supervised MT results from Table 1, the
AllComp text configuration is used for all further
experiments. The computational configurations are
mentioned in Section 5.

4.2 Semi-Supervised and Unsupervised NMT

We observed that one of the primary reasons for
the lack of success of semi-supervised and unsu-
pervised algorithms for low-resource settings, spe-
cially for ancient languages, is the lack of coher-
ence between monolingual texts for the target-side
language in the modern-day corpora and the target-
side text in the available bitext. We refer to this as
the Target-side Incoherence (TSIC) problem for
such languages.
Specifically, as can be seen from Figure 1, the
transliterated English text in our parallel corpora is
vastly different from general modern-day English
texts. In Sumerian, this is because the text has been
human-translated to English on the level of words
and small segments due to insufficient knowledge
of the language. This results into a contextually dis-
torted English language text, as compared what we
see in general corpora. This leads to multiple pit-
falls. Most significantly, the colossal monolingual
data available for a data-rich target-side language
(i.e., English in this case) can no longer be used.
This Target-side Incoherence holds true for most
ancient language texts like Sumerian, which makes
them ‘extremely’ low-resource.

In this section, we elaborate on the problems
caused due to TSIC and further present findings
on adapting various semi-supervised and unsuper-
vised NMT techniques to deal with them.

Forward Translation Back-translation (BT)
(Sennrich et al., 2016) has been widely used and
analysed for NMT across a large set of language
pairs. BT uses a reverse model, Sumerian ←
English trained on the existing parallel corpora,
when the task is to translate from Sumerian→ En-
glish, and applies it on the target-side monolingual
corpus. The synthetic samples thus generated are
added to the source-side corpus and a new reverse
model is trained on the augmented dataset. It has
been shown to outperform its forward counterpart,
Forward Translation (FT) (Zhang and Zong, 2016;
Burlot and Yvon, 2018), which instead uses a
forward (Sumerian→ English) model to augment
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the target-side of the bitext.
However, due to TSIC, the target-side monolingual
data falls into a completely different distribution
than what a Sumerian← English model is trained
on. Using back-translation in such a scenario
results into a poor source-side augmentation, doing
more harm than good. Keeping this in mind, we
rely on forward-translation (FT), thus using the
Sumerian monolingual text.

We divide the Sumerian monolingual data into
8 shards, each containing ∼100,000 monolingual
AllComp sentences each. The FT process takes
place for each shard and the Transformer model is
trained after each shard is forward-translated.

Large scale studies (Edunov et al., 2018; Wu
et al., 2019) have shown the heavy dependency
of BT and FT on aspects like sampling methods
and the amount of parallel data. The performance
with non-MAP (where, MAP stands for maximum
a posteriori) estimation methods like nuclear
sampling (Holtzman et al., 2018) and beam search
with noise improves almost-linearly with the
amount of bitext, and thus, for low-resource
settings (∼80,000 sentence pairs), MAP methods
have been shown to give better results. This was
also observed in our experiments and the reported
results are obtained using beam search (§5).

Cross-Lingual Language Model Pre-training
We further make use of XLM (Conneau and
Lample, 2019) to carry out a wide range of experi-
ments for both unsupervised and semi-supervised
fine-tuning techniques. Considering the lack of
original target-side monolingual text due to TSIC,
the following target data configurations were used
for pre-training the XLM:

1. WMT: This configuration ignores TSIC and
composes the entire text with the WMT ’18
English corpora. This amounts to a large set of
20M sentences, which are however incoherent
with our parallel training + evaluation set.

2. Orig: Composed of all the English side
texts in UrIIISeg, UrIIIComp, AllSeg
and AllComp bitext configurations com-
bined. Contains only ∼60,000 sentences.

3. Mixed: This combines all of Orig with a
set of WMT, such that the net size of the corpus
equalizes the Sumerian monolingual corpus,
i.e., 1.5M sentences.

In the pre-training phase, we perform various
experiments over different combinations of MLM

and TLM objectives. The XLM is, then, fine-tuned
on a denoising auto-encoding objective for unsu-
pervised while cross-reference machine translation
objective over the parallel data for semi-supervised
training. BT steps are also performed in both cases.

Data Augmentation In order to further re-
duce the effect of TSIC on the model performance
and to allow the model to attend to a larger
and more diverse volume of target text during
pre-training, we make use of the following data
augmentation techniques:

1. BERT: Replacing words by the spatially clos-
est words measured using cosine similarity
over BERT (Devlin et al., 2019) embeddings.
A threshold of 0.8 is used.

2. WordNet: Replacing words with WordNet
(Miller et al., 1990) synonyms.

3. CharSwap: Introduces certain character-
level perturbations in the text by substituting,
deleting, inserting, or swapping adjacent char-
acter tokens.

Different combinations of these techniques have
been used to augment the Orig type target mono-
lingual data. The resultant target-side corpora sizes
are summarised in Figure 4.

Figure 4: Effective size of the target monolingual cor-
pora with different combinations of augmentation.

5 Experimental Setup

All our experiments have been implemented in Py-
Torch, except for the Bi-LSTM and CRF which
were done in Tensorflow. In addition to this, we
used FairSeq (Ott et al., 2019), FLAIR (Akbik et al.,
2019a), HuggingFace Transformers (Wolf et al.,
2019), and Open-NMT (Klein et al., 2017) frame-
works in Python. Nvidia Apex was used for mem-
ory optimisation using fp-16 training. Experiments
related to Bi-LSTM, CRF, vanilla transformers,
and FT were performed on a single 8GB Nvidia
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Technique S US SS HE
Vanilla Transformer

UrIIISeg 36.32 2.202
UrIIIComp 33.45 2.242
AllSeg 37.01 2.360
AllComp 42.23 2.431
+3×FT? 41.98 2.358
+5×FT 44.14 2.504
+7×FT 42.95 2.367

XLM
MLM, Orig 4.49 15.04

MLM + TLM, WMT 0.94 –
Mixed 13.08 21.23 1.104, –
Orig 12.73 24.64 1.294, –

XLM + Data Augmentation
BERT 13.06 29.50 1.320, 1.704

WordNet 13.08 28.57 1.269, 1.690
CharSwap 12.92 29.04

BERT+WordNet 13.34 26.57 1.460, 1.666
BERT+CharSwap

+WordNet
13.23 30.10 – , 1.757

Table 1: Sumerian-English Machine Translation. Here, S: Supervised,
US: Unsupervised, SS: Semi-Supervised and HE: Human Evaluation.
Each of the available values for the first three columns (BLEU) is com-
pared with a value under HE (out of 3). ?Number of shards used for FT.

F1-Score
HMM 0.815

Rules +
CRF 0.991

Bi-LSTM +
CRF

0.763

FLAIR 0.499
RoBERTa 0.949

Table 2: POS Tagging for Sumerian.
CRF with rules outperform large mod-
els like FLAIR and RoBERTa.

F1-Score
HMM 0.656

Rules +
CRF

0.913

Bi-LSTM +
CRF

0.775

FLAIR 0.187
RoBERTa 0.953

Table 3: NER for Sumerian.
RoBERTa performs best among
others. Due to high character-level
noise, FLAIR fails to generalise well.

GeForce RTX 2070 GPU, while the pre-training
and fine-tuning of FLAIR, RoBERTa, and XLM on
various data configurations were performed on 2
16 GB Nvidia V100 GPUs. We used development
sets to tune the hyper-parameters for all our models,
especially those for POS and NER. For RoBERTa
and vanilla transformer,N = 6 encoder layers with
h = 16 attention heads were used, while N = 4
and h = 12 was used for XLM. A beam-size of 5
was used for our FT experiments. Adam (Kingma
and Ba, 2015) optimiser with a learning rate of
0.001, β1 = 0.90, β2 = 0.98 and a decay factor of
0.5 was used. Additional regularisation was done
via Dropout and Attention Dropout (wherever ap-
plicable) layers with pdrop = 0.1. We used a batch
size of 32 or 64 and an early stopping criteria based
on the validation loss.

6 Results and Analysis

Sequence Labeling Tables 2 and 3 represent the
metric scores of our different models for POS and
NER tasks, respectively. CRF with domain-specific

rules gives the best F1-score for the POS tagging
task, even better than the complex RoBERTa and
FLAIR language models which are the current
state-of-the-art techniques for most languages. The
prevalence of distorted words and short phrases
in the corpora makes context learning difficult, al-
though the domain-specific rules help learn short-
term dependencies by learning feature weights.

RoBERTa performs well for both of the tasks,
while being the best among others for NER
(95.37 F1 score). To make the most out of
the limited vocabulary and noisy text, we used
Byte-Level BPE (Radford et al., 2019) to train
the language model and further fine-tuned it on
our POS and NER dataset with a batch size of
128. We also tried FLAIR language model across
various word embeddings (character, Word2vec,
FastText, GloVe) along with an additional CRF
layer for both of the tasks. Although a high
precision is observed using this approach, the
F1 scores is seen to be significantly low due to
low recall. In addition to the F1 metric we also
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conducted human evaluation by language expert
for the best performing models, out of randomly
selected 76 (496 words) phrases, only 8 and 6
words were misclassified by NER and POS mod-
els, giving an error of 1.20 and 1.61%, respectively.

Machine Translation Table 1 summarises
our results for all supervised, semi-supervised,
and unsupervised techniques. Forward translation
on vanilla transformer outperforms all other
techniques by at least 2 BLEU. The variation of
its performance with more monolingual source
text is shown. The superior performance of
AllComp over the other configurations in vanilla
transformer signifies the value of both context
and out-of-domain data together. Even though the
XLM-based models show lower performance, it
could be attributed to the lesser number of encoder
layers and attention heads used for them. What
is interesting to note, though, is the variation of
its performance across various training strategies.
We experiment across MLM and TLM (+ MLM)
initialization for XLM, where the latter comfort-
ably outperforms the former. We do not test with
random initialization and CLM, following up
from the conclusions made for NMT in Conneau
and Lample (2019). Pre-training the XLM on
augmented target-side text works surprisingly
well. We note that using pre-training on BERT
and WordNet augmentations results in better
Unsupervised performance while introducing
CharSwap improves the semi-supervised models.
The human evaluation presented in the table was
made by three Assyriologists, who rated 100
output examples for each model, on a scale of 3.
A pairwise inter-annotator agreement of 0.673
(Cohen’s Kappa) was observed.6

7 Interpretability Analysis

Oftentimes in case of Deep Learning Architectures,
metric scores like Accuracy, F1 and BLEU are un-
able to portray the true behavior of the models. For
languages like Sumerian, the human-understanding
itself is scarce. Visualizing the representations and
correlations made by the model could provide in-
sights into which elements of the context can give
additional information to support semantic analysis
of the terms. Thus, we herein introduce a gen-
eralisable interpretability toolkit, InterpretLR, to
interpret algorithms for Low-Resource NLP and

6Elaborate evaluation criteria mentioned in the Appendix.

further apply it for the aforementioned tasks and
models.

InterpretLR is primarily aimed at fabricating at-
tribution saliency maps, i.e., tracing back the model
output so as to assign an importance score to each
input token, based on its ‘influence’ on that out-
put. We do this using two kinds of interpretability
techniques– gradient-based (Sundararajan et al.,
2017; Simonyan et al., 2014; Shrikumar et al.,
2017), and perturbation-based (Zeiler and Fergus,
2014; Castro et al., 2009).

Due to the inherently discrete nature of natu-
ral language text, the starting point for all our ap-
proaches is the embedding of the input sentence
across the model to interpret. Most of our analysis
is done for the encoder of the network architecture,
thus analyzing the effect of different pre-training
and fine-tuning techniques on how the model even-
tually represents the language attributes. We use
the word ‘Attribution’ as a better-defined substitute
for the ‘Influence’ measure of an input span of text
on the output.
A part of our visual analysis is shown and elabo-
rated here, while a complete analysis with all our
models and layer-wise heat-maps is presented in
the Appendix.

In Table 4a, we apply InterpretLR on 3 different
configurations of XLM for a randomly chosen sen-
tence from NMT’s evaluation set. A human expert
was asked to annotate the source sentence in accor-
dance with the expected reference for each output
token in the actual English translation, as shown
in the first column. The highlighted visualizations
for each of the 3 models were obtained using Inte-
grated Gradients (Sundararajan et al., 2017) across
the three input embeddings- token, position, and
language. A lot of interesting observations could
be made from these attributions.
Firstly, the named entity in the sentence ur-
{d}asznan (UrAnan) has been wrongly translated
by all the three models. Although this behavior is
expected (learning the context of a named entity is
extremely difficult without excessive supervision
around the same, which is largely absent our train-
ing text) the models even largely fail to attend to
the right words in the input.
Secondly, words like rations, weavers and seal
which appear frequently in the parallel Ur III Ad-
min corpora and have a contextual meaning at-
tached to them, are translated perfectly by the mod-
els, this property is observed among these models
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Actual Human Expert Model-1 Semi-Supervised DataAug XLM Model-2 Unsupervised DataAug XLM Model-3 Unsupervised Orig TLM XLM 

Output Word Annotations Output Word Visualisations Output Word Visualisations Output Word Visualisations 

barley #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

barley #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

Monthy #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

Basketoftablets #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

rations #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

rations #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

rations #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

rations #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

weavers #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

weavers #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

weavers #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

weavers #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

under #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

under #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

from #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

255 #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

seal #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

seal #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

seal #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

seal #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

of #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

of #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

of #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

of #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

UrAnan #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

Lugalniglagare #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

Ninlil #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

weavers #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

foreman #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

foreman #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

foreman #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

female #s sze-ba geme2 usz-bar kiszib3 
ur-{d}asznan ugula #e 

 

(a) MT- Selected output tokens for Sumerian Input text of “sze-ba geme2 usz-bar kiszib3 ur-dasznan ugula”, which translates to
“barley rations of the female weavers under seal of UrAnan the foreman”.7 

Actual Human Expert Model RoBERTa 

N   5(disz) gin2 ku3-babbar N 5 ( disz ) gin 2 ku- 3  -  babbar 

 

Actual Human Expert Model RoBERTa 

GN mu ur-bi2-lum{ki} ba-hul GN mu ur  -  bi  2- lum { ki } ba  -  hul  

 

 

 

(b) POS- With tagged word “ku3-babbar”

 

Actual Human Expert Model RoBERTa 

N   5(disz) gin2 ku3-babbar N 5 ( disz ) gin 2 ku- 3  -  babbar 

 

Actual Human Expert Model RoBERTa 

GN mu ur-bi2-lum{ki} ba-hul GN mu ur  -  bi  2- lum { ki } ba  -  hul  

 

 

 

(c) NER- With tagged word “ur-bi2-lumki”

Table 4: Highlighted attributions for randomly selected examples. Green and Red represent correct and wrong
predictions, respectively, while Green and Red highlights represent positive and negative attributions, respectively.

in general. Even the unsupervised models that do
not have access to the one-to-one mapping of the
translation during training manage to infer these
words from the appropriate context. It can be as-
sumed that they learn the right representations of
such tokens. But at the same time, there are in-
stances like sze-ba (barley), which the two unsu-
pervised models rightly refer to but do not give the
right translations, which thus is a direct result of
the absence of supervision.
Lastly, English words like under, of and from do
not have any direct translations in Sumerian and
are mostly inferred from the context, even by the
human annotators. At such places, again, supervi-
sion might play a critical role as in the 4th row of
Table 4a. There are also instances like the 6th row
where the supervised model fails to attend to the
right words, and the correct output word could very
well be out of memorisation.

Tables 4b and 4c represent visualizations for
two randomly selected phrases for our sequence
labeling tasks, indicating the attributions for each
sub-word for tagging the corresponding target word
with their predicted labels. It can be observed from
Table 4b that word gin (unit) and sub-word ku, are
contributing to the attribution score positively, de-
picting positive model attribution to tag ku3-babbar

7The left-out tokens were rightly predicted by all the three
models, with almost the same attributions.

as a Noun (N), whereas in Table 4c the sub-words
ur, hul and ki are contributing ur-bi2-lum{ki} to
be tagged as the label GN (Geographical Name).
As observed from the corresponding human anno-
tation, ur and ki are the most associated for Geo-
graphical names and GNs are mostly followed by
a verb part, which is hul (destroy) in this case. It
can thus be inferred that RoBERTa identifies this
correspondence well and makes the decision ac-
cordingly.

8 Conclusion

In this work, we introduced the first information
extraction and translation pipeline for Sumerian
cuneiform. We first undertook the tasks of POS
Tagging and NER, where we observed that deeper
is not necessarily better. A simple CRF model with
well-defined rules outperformed the large language
model RoBERTa for POS Tagging. Further, for
machine translation we overcame unprecedented
challenges pertaining to lack of in-domain text,
sparse sentence formation, and incoherence. We
found that using out-of-domain text along with spe-
cific data-augmentation can have huge impacts in a
low-resource setting. All components of this work
are generalisable to other low-resource languages,
including InterpretLR, and we open way to future
research in this direction.

51



Acknowledgments

The authors would like to acknowledge the use of
the University of Oxford Advanced Research Com-
puting (ARC) facility in carrying out this work
(http://dx.doi.org/10.5281/zenodo.22558). We
would like to thank our collaborators at the
Cuneiform Digital Library Initiative (CDLI;
https://cdli.ucla.edu) and from the Machine Trans-
lation and Automated Analysis of Cuneiform Lan-
guages (MTAAC; https://cdli-gh.github.io/mtaac/).
We would also like to thank CDLI and the Elec-
tronic Text Corpus of Sumerian Literature (ETCSL)
for providing the data for our experiments. This
work was partly undertaken during the Google
Summer of Code (GSoC) program, 2020. CDLI
has been supported by GSoC, where aspects of ma-
chine translation have been addressed by several
students since 2018. We are thankful to Ilya Khait
and Bertrand Lafont for their assistance with the
human evaluations for machine translation and se-
quence labeling. We are grateful to Orhan Firat for
insightful discussions and multiple rounds of re-
views during the pre-submission mentoring phase
of ACL SRW that greatly shaped this manuscript.

References
Alan Akbik, Tanja Bergmann, Duncan Blythe, Kashif

Rasul, Stefan Schweter, and Roland Vollgraf. 2019a.
FLAIR: An easy-to-use framework for state-of-the-
art NLP. In Proceedings of the 2019 Conference of
the North American Chapter of the Association for
Computational Linguistics (Demonstrations), pages
54–59, Minneapolis, Minnesota. Association for
Computational Linguistics.

Alan Akbik, Tanja Bergmann, and Roland Vollgraf.
2019b. Pooled contextualized embeddings for
named entity recognition. In Proceedings of the
2019 Conference of the North American Chapter
of the Association for Computational Linguistics:
Human Language Technologies, NAACL-HLT 2019,
Minneapolis, MN, USA, June 2-7, 2019, Volume 1
(Long and Short Papers), pages 724–728. Associa-
tion for Computational Linguistics.

Alan Akbik, Duncan Blythe, and Roland Vollgraf.
2018. Contextual string embeddings for sequence
labeling. In Proceedings of the 27th International
Conference on Computational Linguistics, COLING
2018, Santa Fe, New Mexico, USA, August 20-26,
2018, pages 1638–1649. Association for Computa-
tional Linguistics.

Franck Burlot and François Yvon. 2018. Using mono-
lingual data in neural machine translation: a system-
atic study. In Proceedings of the Third Conference

on Machine Translation: Research Papers, pages
144–155, Brussels, Belgium. Association for Com-
putational Linguistics.
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A Detailed Evaluation and Analysis
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Forward Translation with Vanilla Transformer
gave the best results for Sumerian-English Neural
Machine Translation. Figure 5 shows the varia-
tion of the BLEU score with the amount of source
monolingual data used. Here, the X-Axis repre-
sents the number of shards used, with each shard
consisting of 80K sentences. It can be observed
that the translation accuracy is not linear with the
amount of text used.

Figure 6 shows the variation of several perfor-
mance metrics during the Unsupervised fine-tuning
of various XLM configurations. The comparison
is made between XLM pre-training without any
data augmentation (MLM TLM), with one aug-
mentation (Aug) and with all three augmentations
(Aug 12x). It can be seen from Figure 6a that an
XLM pre-trained on the Aug 12x configuration
converges the fastest among the others, in terms
of the main Denoising Auto-encoding Loss. It can
also be observed that the curve corresponding to
this configuration is much smoother than the oth-
ers, which shows a positive regularizing effect of
a better weight initialisation (through appropriate
pre-training). A similar pattern is observed for the
validation accuracy across the epochs as shown
in Figure 6c, although, the trend of Back Transla-
tion loss remains mostly inseparable for the three
configurations.

Table 5 depicts the net percentage error found by
an human expert on the POS and NER results for
the entire evaluation set across the best performing
model. Table 6 and 7 represents the detailed results
of POS and NER models. It can be observed from
the tables, that although CRF and RoBERTa mod-
els gave the best results, FLAIR language model
along with character embeddings also gave high
precision for both of the tasks.

(a) Denoising Auto-encoder Loss (AE Loss) variation across
the 1st Epoch

(b) Back Translation Loss variation in XLM across the 1st
Epoch

(c) MT accuracy across a number of training epochs

Figure 6: Quantitative comparison of various models
during Unsupervised MT fine-tuning

POS error
(in %)

NER error
(in %)

Human Evaluation 1.61 1.20

Table 5: Human Evaluation for POS and NER

B Extended Interpretations

Here we present the interpretability analysis across
a larger set of models and visualisations. We use
and compare the different algorithms across layer-
level, gradient-based, and perturbation-based tech-
niques to obtain the attributions.

Figure 7 visualises the Multi-head Self Atten-
tion (MHSA) using Layer Conductance Dhamd-
here, Sundararajan, and Yan 2018) across the 4
encoder layers we employ in XLMs8. The first
two output tokens barley and female are known to
be one-on-one mapping between the input words
of sze-ba and geme2 respectively. While the third
output token barley is not a direct translation and

8The supervised version of the augmented pre-training is
used here.
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Part of Speech Tagging
Precision Recall F1-Score

HMM 0.857 0.794 0.815
Rules +

CRF
0.994 0.989 0.991

BBi-LSTM
+ CRF

0.852 0.710 0.7631

FLAIR 0.9323 0.4766 0.4999
RoBERTa 0.9500 0.9489 0.9495

Table 6: POS Tagging Models for Ur III Sumerian Text

Named Entity Recognition
Precision Recall F1-Score

HMM 0.810 0.599 0.656
Rules +

CRF
0.916 0.910 0.913

Bi-LSTM
+ CRF

0.864 0.704 0.775

FLAIR 0.9562 0.1817 0.1873
RoBERTa 0.9540 0.9534 0.9537

Table 7: NER Models for Ur III Sumerian Text

is needed to be inferred from context.
Figure 9a represents the attribution heat-map

when gradient-normalisation saliency (Simonyan,
Vedaldi, and Zisserman 2013) is used. Being one
of the most conventional techniques for finding at-
tribution, it is more prone to inconsistent interpreta-
tions. Whereas, the attribution heat-map in Figure
9b represents the Integrated Gradients (IG) (Sun-
dararajan, Taly, and Yan512017) approach. Being a
path-based technique, which measures the gradient
attribution relation using a straight-line path from
a baseline (usually all-zeros), to the given input, it
is much more robust and stable.

Even though the gradient-based methods are
much faster than perturbation-based methods, we
observe that the heavy dependency of IG on hyper-
parameters like the number of input steps to be con-
sidered when going from a baseline to the actual
input, n steps, to be a major setback. The final at-
tribution is generally found out after integrating (or
summing) over the attributions of these sub-steps.
We found that the attributions do not change when
going beyond n steps = 250, thus, we experiment
by varying it between 10 to 250. We observe that
there is no ideal value of n steps, IG’s faithfulness
to the model varies largely over this range. For
some inputs, the best value is n steps = 50 while

Figure 7: Layer Conductance across MHSA Layers

for others n steps = 250 is the most ideal. We
judge this by considering how much the attribution
is given to sos and eos tokens for each output token.
Thus, based on both plausibility and faithfulness.
We use n steps = 50 for obtaining the heat-maps
in Figure 9b.

Figure 10 represents the visualization for our
sequence labeling tasks. It indicates two major
things, 1) the effect of words, sub-words (depends
on tokenization) on tagging the target word and
2) the effect of 6 transformer encoder layers. We
created the hook on embeddings of RoBERTa with
layer IG and obtained the visualizations for how
each sub-word is contributing to tag the target word.
Similarly, to obtain the heat-map we created the
hook on RoBERTa embeddings and used the Layer
Conductance.

From Figure 10a it can be observed that ku and
du contribute the most to the attribution scores for
tagging ku3-babbar and ba-du3 as a Noun (N) and
Verb (V), respectively. From the heat-maps it is
also noted that ku shows the effect on all 6 layers
whereas in second example effects are majorly due
to the initial transformer layers. Similarly in the
Figure 10b ur and lugal are the most effective sub-
words to tag ur-bi2-lumki and lugal-tesz2-mu as
GN (Geographical Name) and PN (Personal Name)
respectively. It is also interesting to note that both
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Figure 8: Feature Ablation in InterpretLR

of these sub-words have a very positive impact in
the initial layers but are contributing oppositely in
the last layer.

B.1 Human Evaluation

The scoring by human experts was done indepen-
dently for each result according to the following
criterion:

• 3 (good): interpretable in the correct mean-
ing by a native speaker of English; (almost) no
incorrectly translated content word (e.g., tolerant
against some errors in word order, but not in incor-
rect words).

• 2 (helpful): partially distorted, but inter-
pretable with some context information (tolerant
against errors in word order and against incorrect
function words).

• 1 (incorrect): contains incorrectly translated
content words and/or is un-interpretable.

C Rules for POS Tagging and NER

We used certain language-specific rules to assist
CRF for the sequence labeling tasks. The rules
were identified by human experts and some of them
are as mentioned here:

• A word starting with “ur-”, “lu2-”, or “dumu”
is most likely to be a personal name.

• If a word is followed by “mu”, then the next
phrase denotes a year name.

• If a word is followed by “iti”, it denotes a
month name.

• Words containing “ki” are mostly associated
with geographical names (GN).

• Words ending with part “-hul” majorly denotes
verbs.

• Words containing “{d}” denotes either per-
sonal name (PN) or divine name (DN).

• A word followed by “gin” (unit) majorly repli-
cate a noun.
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(a) Grad-Norm Saliency

(b) Integrated Gradients

Figure 9: Comparing different gradient-based approaches used in InterpretLR
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(a) POS Tagging (b) NER

Figure 10: InterpretLR on RoBERTa for Sequence Labeling
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Abstract

This paper studies whether emergent lan-
guages in a signaling game follow Zipf’s law
of abbreviation (ZLA), especially when the
communication ability of agents is limited be-
cause of interfering noises. ZLA is a well-
known tendency in human languages where
the more frequently a word is used, the shorter
it will be. Surprisingly, previous work demon-
strated that emergent languages do not obey
ZLA at all when neural agents play a signal-
ing game. It also reported that a ZLA-like ten-
dency appeared by adding an explicit penalty
on word lengths, which can be considered
some external factors in reality such as artic-
ulatory effort. We hypothesize, on the other
hand, that there might be not only such exter-
nal factors but also some internal factors re-
lated to cognitive abilities. We assume that
it could be simulated by modeling the effect
of noises on the agents’ environment. In our
experimental setup, the hidden states of the
LSTM-based speaker and listener were added
with Gaussian noise, while the channel was
subject to discrete random replacement. Our
results suggest that noise on a speaker is one
of the factors for ZLA or at least causes emer-
gent languages to approach ZLA, while noise
on a listener and a channel is not.

1 Introduction

There has recently been a growing interest in sim-
ulating languages spontaneously emerging among
artificial agents, by training them to solve some
tasks requiring communications. A primary mo-
tivation in this area is to pursue the development
of artificial intelligence that can interact or com-
municate with human beings (e.g., Havrylov and
Titov, 2017; Lazaridou et al., 2017, 2018; Lee
et al., 2018). In addition to this line of research,
some studies have investigated the characteristics
of emergent languages, mainly concerned with to

what extent they are similar to human languages or
what kind of factor forms language-like protocols
(e.g., Kottur et al., 2017; Harding Graesser et al.,
2019; Chaabouni et al., 2020; Kharitonov et al.,
2020).

Chaabouni et al. (2019), for example, studied
the relationship between emergent languages and
Zipf’s law of abbreviation (ZLA), which is a univer-
sal tendency in human languages, where frequent
words tend to be shorter (Zipf, 1935; Kanwal et al.,
2017). To see whether emergent languages follow
ZLA, they performed experiments in which agents
played a signaling game. Their results suggested
that emergent languages have an opposite tendency
against ZLA. In other words, more frequent inputs
are encoded into longer messages. They also re-
ported that by giving an additional penalty on mes-
sage lengths (Eq. 6), the emergence of a ZLA-like
tendency was observed.

Zipf (1935) hypothesized that ZLA comes about
between two conflicting pressures: one for accu-
racy and the other for efficiency. In a paradigm
with human subjects using a simple artificial lan-
guage, Kanwal et al. (2017), for instance, intro-
duced some external factors for simulating the
competing pressures, namely, money reward for
precise and quick communications. In emergent-
language simulations, the explicit penalty on mes-
sage lengths (Eq. 6) of Chaabouni et al. (2019) can
also be considered an external factor for ZLA.

However, we speculate that there might be not
only such external factors but also internal factors
(or implicit penalties) related to the cognitive abili-
ties of human beings such as memory. Inspired by
some concepts in psychology, we hypothesize at
first in the following way:

Hypothesis 1. ZLA appears due to some internal
factors from the cognitive abilities of human beings,
as well as external factors. In other words, human
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beings assign shorter codes to frequent words so
that they can avoid difficulty in their internal pro-
cesses as much as possible.

Some studies in psychology suggested that in
human beings, there is an output buffer of some
sort that temporarily reserves some words to be
spoken (Baddeley et al., 1975; Baddeley, 2003;
Meyer et al., 2003; Damian et al., 2010; Baddeley
and Hitch, 2019). The output buffer might decay
over time, be overwhelmed by incoming inputs one
after another, or be exposed to other disturbances.
Such pressures, we thought, could be factors to
shorten frequent words.

But how should they be modeled in the simu-
lations of language emergence? Since artificial
agents in simulations are not humans but often (re-
current) neural networks, it is not trivial to define
equivalent pressures for them. To adopt such pres-
sures into a signaling game, we propose modeling
them into noise that interferes with the states of
agents. Although the potential factors described
above might be the matter of a speaker in a sig-
naling game, we also propose adding noise to a
listener for comprehensive research. The listener’s
short-term memory might also be limited due to
similar reasons as the speaker. Besides, we try
adding noise to a channel that spans the speaker
and the listener, referring to a noisy-channel model
(Shannon, 1948). Although a noisy channel is not
probably pressure for efficiency but for accuracy,
the assumption that redundancy contributes to ac-
curacy seems to think implicitly of a listener as
capable enough of correcting errors while main-
taining necessary information, which is not trivial
for neural agents. Therefore it is worth a try.

By the modeling and for the comprehensiveness,
hypothesis 1 is revised as follows:

Hypothesis 2. ZLA appears due to some of the
three types of noises: noise on a speaker, noise on
a listener, and noise on a channel.

In our experimental setup, speaker and listener
agents are exposed to Gaussian noise since they
have continuous vectors as their states. On the other
hand, the channel is exposed to discrete random
replacements, as messages passing through it have
discrete variables.

Our experiments suggest that noise on a speaker
is one factor for ZLA or at least causes emergent
languages to be closer to ZLA, whereas noise on
a listener and a channel is not in our signaling
game. Rather, the noise on a channel strengthened

redundancy.
Our analysis reveals the following things. First,

when noise interferes with a speaker agent, noise
accumulation can make it difficult to generate long
consistent messages. Second, when noise interferes
with a listener agent, on the other hand, noise accu-
mulation does not affect the overall tendency cru-
cially: even if the listener agent “forgets” the prefix
of a message, the suffix is sufficient for communi-
cations. Third, noise on a channel can be thought
of as a pressure for accuracy rather than efficiency,
which is consistent with an information-theoretic
point of view and Zipf’s hypothesis.

2 Background

Chaabouni et al. (2019) studied whether emergent
languages follow ZLA when neural agents play a
signaling game. As we largely refer to, we review
their setups, methods, and results in this section.

2.1 Signaling Game with a Power-law
distribution

They extended a signaling game (Lewis, 1969) by
making inputs be sampled from a power-law dis-
tribution. In the power-law distribution, the n-th
most frequent input is sampled from a finite input
space I at the probability ∝ 1/n. Thus, if agents
learned to assign frequent inputs to shorter mes-
sages, their communication protocol could be said
to obey ZLA.

Let S andL be a speaker and a listener. Formally,
the game procedure is as follows:

1. An input i ∈ I is sampled from a power-law
distribution. Let ir be the r-th most frequent
input. Then ir is sampled at the probability
∝ r−1.

2. Given i, the speaker S generates a message
m, i.e., m = S(i). m = x1 . . . x|m| is a string
over an alphabet A = {a1, . . . , a|A|−1,eos}
s.t. xi 6= eos (1 ≤ i < |m|), x|m| = eos,
and 0 < |m| ≤ max len, where |m| is the
length of m and max len is a hyperparam-
eter. Note that eos ∈ A stands for “end-of-
sentence,” and it is guaranteed to be attached
to the end of each message1.

3. Given m, the listener L generates an output,
i.e., o = L(m).

1One might think that eom (end-of-message) is better, but
we follow the convention in the literature of neural language
modeling.
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4. The procedure is successful if i = o.

2.2 Training Method
Since players in a signaling game are neural net-
works, each input i ∈ I is represented as a |I|-
dimensional one-hot vector i. Likewise, an output
o is represented as a |I|-dimensional vector o s.t.
(o)k > 0 (k = 1, . . . , |I|) and

∑|I|
k=1(o)k = 1.

Let L(i,o) = L(i, L(S(i)) be the cross-entropy
error between i and o = L(S(i)):

L(i,o) = −
|I|∑

k=1

(i)k log(o)k, (1)

where S is a speaker and L is a listener. Our pur-
pose is to minimize its expectation E[L], but the
simple backpropagation algorithm is not applicable
due to discrete messages m = x1 . . . x|m| sampled
from a speaker. Chaabouni et al. (2019) used the
following surrogate function, the gradient of which
is an unbiased gradient estimator, with an auxiliary
loss entropy regularizer ER:

E[LS + LL + ER] (2)

LS = SG(L(i,o)− b)
|m|∑

t=1

logPS,t(xt) (3)

LL = L(i,o) (4)

ER = −λH
N

N∑

t=1

H(PS,t), (5)

where b is a mean baseline added to reduce the
estimate variance, SG(·) denotes the stop-gradient
operation2, PS,t is the speaker’s output layer at time
step t defining a categorical distribution over an al-
phabet A, PS,t(xt) is the probability of xt ∈ A
being sampled at time step t, and H(·) is the en-
tropy function. Eq. 3 and Eq. 4 are derived by
the approach of Schulman et al. (2015), which can
be seen as the combination of REINFORCE-like
method (Williams, 1992) and standard backprop-
agation. ER (Eq. 5) is added to encourage the
exploration during training (Williams and Peng,
1991).

2.3 Anti-ZLA Emergent Languages
Chaabouni et al. (2019) reported, somewhat surpris-
ingly, that the communication protocols had a clear
anti-ZLA tendency when agents play a signaling

2When we write SG(x) instead of bare x, we regard x as
a constant with respect to any parameters.

game described in section 2.1. They also reported
that a ZLA-like tendency appeared when they ad-
ditionally imposed an artificial length pressure on
messages:

L′(i, L(m),m) = L(i, L(m)) + α× |m|, (6)

where m is a message, | · | denotes length, and
α ≥ 0 is a hyperparameter.

Rita et al. (2020) took a quite similar approach
and observed the emergence of ZLA. As well as
imposing a length pressure on a speaker agent, they
re-designed the architecture of a listener agent so
that the listener would be impatient to recover i as
soon as possible.

Note that both the length pressure (Eq. 6) and
the architecture re-design in Rita et al. (2020) can
be regarded as somewhat explicit losses, whereas
we try to impose an implicit pressure on agents.

3 Setup

3.1 Game with Noise

For a game, we take almost the same design as
Chaabouni et al. (2019), which was introduced in
section 2.1. We additionally introduce a channel C
over which messages move from speaker to listener:
A listener L obtains a message m̃ = C(m) through
a channelC, instead of receiving directlym = S(i)
from a speaker. Also, there are several differences
in hyperparameter settings.

3.2 Architectures

As speaker and listener agents have continuous vec-
tors as their states, they are added with continuous
noise. For simplicity, we choose a Gaussian noise
sampled at each time step with replacement. Chan-
nels, on the other hand, are exposed to discrete
noise, since they convey discrete symbols. We take
a random replacement operation for the channel
noise.

3.2.1 Speaker and Listener

The architectures of speaker and listener agents
are based on a single-layer LSTM, following
Chaabouni et al. (2019).

At training time, we add Gaussian noise to the
cell states of the LSTM of each agent3. Formally,

3We also tried simply shrinking the size of the agents’
hidden layers to restrict their capacity, but it made it difficult
to train the agents successfully. We leave it for future work
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for t > 0,

(ht+1, ct+1) = LSTM(xt+1, (ht, ĉt)) (7)

ĉt = ct + εt (8)

εt ∼ N (· | 0, σ2E) (9)

where σ > 0 is a standard deviation (SD), E is
the identity matrix, N (· | 0, σ2E) is a Gaussian
distribution with a mean vector 0 and a variance-
covariance matrix σ2E, and εt is a sampled value
from N (· | 0, σ2E) at time step t. We denote by
σS , σL the SDs for the speaker and listener archi-
tecture respectively.

At test time, we do not add noise for determinis-
tic evaluation.

3.2.2 Channel
At training time, we think of a channel as being
exposed to some noise so that the messages can
be degraded during transportation. Such degrada-
tion is modeled as replacement: each symbol in a
message is probabilistically replaced with another
one. Note that each message is attached with eos,
which is exceptionally protected from the replace-
ment, since the effect of the insertion or deletion of
eos is too strong for our purpose.

Formally, let A be an alphabet, m = a1 . . . an
be an original message generated by the speaker,
and m̃ = ã1 . . . ãn be transformed one. Then the
probability distribution over ãi 6= eos given ai 6=
eos (i = 1, . . . , n− 1) is as follows:

p(ãi | ai) =
{

1− πC (ai = ãi)
πC

|A\{ai,eos}|
(ai 6= ãi)

,

(10)

where πC is a hyperparameter s.t. 0 ≤ πC ≤ 1.
Let us call πC a channel replacement probability.

At test time, the channel is free from noise so
that we can perform deterministic examinations.

3.3 Optimization

3.3.1 Design and Estimation of Loss Function
We use almost the same loss function as Eq. 2. We
modify ER (Eq. 5) into Decayed Entropy Regular-
izer (DER) and we define an additional auxiliary
loss Soft Max Length (SML) in the following sec-
tions. Both DER and SML are introduced to pre-
vent messages from being unnaturally long. Note
that they themselves are not factors for ZLA in our
assumption.

Figure 1: Illustration of the effect of the entropy regu-
larizer

3.3.2 Decayed Entropy Regularizer
Chaabouni et al. (2019) used ER (Eq. 5) to en-
courage the exploration. However, ER might have
an unexpected side-effect: They could lead mes-
sages to be unnecessarily long. We give an intu-
itive explanation as shown in Figure 1. Suppose
that a speaker agent has learned a message pattern
m = x1 . . . x|m| for an input i. By the definition
of the message, x|m| = eos, indicating that the
probability that eos is sampled is relatively higher
at time step |m|. Then, the speaker’s output layer
PS,|m| at time step |m| is updated so that the en-
tropy H(P|m|) will be larger. It means that the
probability of eos being sampled becomes lower,
which might lead the message to be longer. Such
an effect can cause an undesirable bias in emer-
gent languages. Thus, we modify ER into Decayed
Entropy Regularizer (DER) as:

DER = −λH
Z

N∑

t=1

H(Pt)× ρt−1H , (11)

Z =
N∑

t=1

ρt−1H , (12)

where ρH is a hyperparameter s.t. 0 < ρH ≤ 1.
DER is a weighted mean that puts a higher priority
on the entropy at earlier time steps but lower on
those at later. Therefore, it is expected to cancel
the unnecessary effect of hindering eos emission
at later time steps.

3.3.3 Soft Max Length
Each message m is generated by sampling a sym-
bol xt at each time step t and concatenating them
until either eos is sampled (self-termination) or
the time step reaches max len − 1 (forced ter-
mination). In the forced termination case, eos is
attached to the end of the sequence. However, this
generating procedure may cause a speaker agent
to fail to learn to emit eos for some inputs, since
message lengths are bounded regardless of the eos
emission. To handle this problem, we introduce an
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additional auxiliary loss Soft Max Length (SML)
defined as:

SML = λsmlmax(0, |m| − eff max len),
(13)

where m is a message, | · | denotes length, λsml
is the coefficient of this term, and eff max len
is a hyperparameter s.t. 0 ≤ eff max len ≤
max len.

3.3.4 Training and Implementation
We follow Chaabouni et al. (2019) on the rest of
the training method: Agents are trained for 2500
episodes, each of which contains 100 mini-batches.
Each mini-batches are made of 5120 inputs sam-
pled from the power-law distribution with replace-
ment. When the accuracy at test time reaches 0.99
or more, the training stops early. Note that we do
not add any noise at test time.

The game and the training are implemented us-
ing the EGG toolkit (Kharitonov et al., 2019)4.

3.4 Evaluating Communicative Effectiveness
As Lowe et al. (2019) pointed out, emergent com-
munications have to be carefully examined in terms
of effectiveness: even if something like communi-
cation emerges, agents might act without referring
to signals from others. Since message lengths can
vary in our signaling game, it is doubtful that every
single symbol in a message conveys essential infor-
mation. For example, it is not trivial whether eos
is really end-of-sentence, since agents can use other
symbols as “punctuations” or meaningless “blanks.”
The effective position of beginning-of-sentence is
not trivial, either. Thus, apparent message lengths
may differ from actual ones.

To evaluate effectiveness, we introduce
position-wise symbol effectiveness and then
head/intermediate/tail effectiveness to cover a
weak point in the former.

Position-wise Symbol Effectiveness
First, to evaluate how informative symbols are dis-
tributed across positions, we introduce position-
wise symbol effectiveness, which is a quite sim-
ilar notion to positional encoding in Rita et al.
(2020). Suppose a symbol xk in a message m =
x1 . . . xk . . . x|m| is informative enough. Then, a

4The code for the EGG toolkit is found at https:
//github.com/facebookresearch/EGG. Our code
is available at https://github.com/wedddy0707/
noisyEGG.git.

listener L is expected to fail to recover an input
i correctly if xk is replaced with another sym-
bol y, i.e., i 6= L(x1 . . . y . . . x|m|). Based on
this intuition, the symbol effectiveness e(m, k)
at position k ∈ {1, . . . ,max len} in a message
m = x1 . . . x|m| is defined as follows:

e(m, k) =





1

|A′|
∑

a∈A′
1i 6=L(m[xk:=a]) (k < |m|)

0 (k ≥ |m|)
(14)

A′ = A\{xk,eos}, (15)

where A is an alphabet, m[xk := a] denotes
x1 . . . xk−1axk+1 . . . x|m|, and 1φ is defined as

1φ =

{
1 (φ is true.)
0 (φ is false.)

. (16)

By definition, 0 ≤ e(m, k) ≤ 1. Low e(m, k)
means that symbol xk is redundant, since the lis-
tener L can recover i from most of m[xk := a]
(a ∈ A′). Otherwise, xk is considered neces-
sary for successful communications. Note that
eos = x|m| is prevented from being replaced.

The value of e(m, k) (Eq. 14) may vary de-
pending on messages and speaker agents. That
would make it difficult to perform straightforward
evaluations for position-wise symbol effectiveness.
To handle this problem, we also define ek, mean
e(m, k) across messages and across speaker agents.
Formally, let S = {S1, . . . , S|S|} be a set of |S|
speaker agents trained with different random seeds.
Then ek is defined as:

ek =
1

|S||I|
∑

S∈S

∑

i∈I
e(S(i), k). (17)

Head, Intermediate, and Tail Effectiveness
One may be interested in detecting whether the ef-
fectiveness is concentrated in the prefixes, infixes,
or suffixes of messages. However, ek (Eq. 17) do
not seem good for this purpose: Since message
lengths can vary, the effectiveness of infixes and
suffixes can scatter across ek. Thus, we addition-
ally introduce head effectiveness ehead, intermedi-
ate effectiveness emed, and tail effectiveness etail.
Intuitively, ehead is mean effectiveness across the
heads of messages (i.e., x1 inm = x1 . . . x|m|) and
across speaker agents. Similarly, emed (resp. etail)
is mean effectiveness across the intermediate posi-
tions (resp. tails) of messages and across speaker
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Figure 2: Mean message lengths across successful runs
as a function of inputs sorted by frequency, when ER,
DER, SML, and DER+SML are used respectively. The
shaded areas represent one stanrd error of mean (SEM).

# successful runs
ER (baseline) 16

DER 7
SML 6

DER+SML 11

Table 1: The number of successful runs out of 16.

agents. Formally, let S = {S1, . . . , S|S|} be as
above. Then ehead, emed, and etail are defined as
follows:

ehead =
1

|S||I|
∑

S∈S

∑

i∈I
e(S(i), 1) = e1 (18)

emed =
1

|S||I|
∑

S∈S

∑

i∈I
e

(
S(i),

⌊ |S(i)|
2

⌋)

(19)

etail =
1

|S||I|
∑

S∈S

∑

i∈I
e(S(i), |S(i)| − 1), (20)

where b·c is a floor function.

4 Experiments

4.1 Hyperparameter Setting
In all our experiments, the size |I| of an input space
was set to 256, the size |A| of an alphabet was 40,
the size of hidden layers was 100 for both agents,
and the entropy regularizer coefficient λH was 1.
The hyperparameters σS , σL, and πC for noise var-
ied through sections.

We define a training run ending with an accuracy
higher than 0.99 as a successful run.

4.2 Effects of DER and SML
Before conducting the main experiments, we show
the effect of DER (Eq. 11) and SML (Eq. 13). For a

setting Spearman ρ
no noise 0.327 (p = 5.9× 10−71)
noise σS = 1/4 0.113 (p = 1.5× 10−6)
noise σS = 1/2 0.109 (p = 6.9× 10−7)
noise σS = 1 0.008 (p = 7.7× 10−1)
noise σL = 1/4 0.273 (p = 6.6× 10−32)
noise σL = 1/2 0.280 (p = 5.9× 10−20)
noise σL = 1 0.268 (p = 1.4× 10−22)
noise πC = 0.01 0.261 (p = 3.3× 10−37)
noise πC = 0.05 0.236 (p = 6.3× 10−21)
noise πC = 0.1 0.249 (p = 8.6× 10−27)

Table 2: Spearman correlations between input fre-
quency ranks and message length ranks in successful
runs in various noise conditions.

baseline model, we used the existing entropy regu-
larizer ER (Eq. 5), setting λH = 1 and max len =
30. For a model with DER, (λH, ρH) = (1, 1/2).
For a model with SML (and ER), λH = 1 and
(max len,eff max len) = (40, 30). For a
model with DER+SML, (λH, ρH) = (1, 1/2) and
(max len,eff max len) = (40, 30).

To see the overall tendency, we show the mean
message lengths across successful runs for each
model in Figure 2. The mean lengths are longer
when ER is used. In particular, the ones of the
baseline model are near max len = 30. On the
other hand, the mean lengths are shorter when DER
is used. That suggests that DER prevents messages
from being unnecessarily longer.

To check the effects on learning, in addition,
Table 1 shows the number of successful runs out
of 16 for each model. Although apparent tenden-
cies in Figure 2 are similar between the DER and
DER+SML model, Table 1 suggests that it is easier
to learn with the DER+SML model which has 5
more successful runs than the SML model.

4.3 Effects of Noise

In this section, we show the influence of noise
on a speaker, listener, and channel. We used the
DER+SML model with the same hyperparameters
as in the previous section. We examined the effect
of each noise by varying σS , σL, and πC . Note that
σS is the standard deviation of noise on a speaker,
σL is the one on a speaker, and πC is the channel
replacement probability.

4.3.1 Noise on a Speaker
To examine the effect of noise on a speaker,
(σS , σL, πC) was set to (1/4, 0, 0, 0), (1/2, 0, 0),
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Figure 3: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (1/4, 0, 0), (1/2, 0, 0), and
(1, 0, 0) respectively.

Figure 4: ek in successful runs, when (σS , σL, πC) =
(0, 0, 0), (1/4, 0, 0), (1/2, 0, 0), and (1, 0, 0) respec-
tively.

and (1, 0, 0). 7 out of 16, 8 out of 16, and 6 out of
32 runs were successful for each setting.

To see the overall tendency, we show mean mes-
sage lengths for each model in Figure 35. The
tendency shifts from anti-ZLA to the one between
ZLA and anti-ZLA as σS gets bigger.

In addition, we show Spearman correlations be-
tween input frequency ranks and message length
ranks in Table 2. Intuitively, ρ < 0 implies ZLA
and ρ > 0 implies anti-ZLA. According to Table 2,
ρ gets smaller as σS gets bigger, which is consistent
with the observation in Figure 3.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 4. Judging from Figure 4, the
effectiveness at an earlier position becomes higher

5There are some messages of length max len =40 while
other messages are much shorter. We excluded the former
in Figure 3 because otherwise the mean lines would have
unnatural peaks and impair readability. As a result, 4 out of
1792, 30 out of 2048, and 7 out of 1526 data points were
removed for σS = 1/4, 1/2, and 1 respectively.

Figure 5: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (0, 1/4, 0), (0, 1/2, 0), and
(0, 1, 0) respectively.

Figure 6: ek in successful runs, when (σS , σL, πC) =
(0, 0, 0), (0, 1/4, 0), (0, 1/2, 0), and (0, 1, 0) respec-
tively.

as σS gets bigger. We also show ehead, emed, and
etail (Eq. 18, Eq. 19, and Eq. 20) in Figure 9. In
Figure 9, the bigger σS is, the higher ehead and
emed are, indicating that the former halves of mes-
sages become more informative by the effect of
noise on a speaker.

These results suggest that noise on a speaker is a
factor for ZLA, or at least causes message lengths
to be closer to ZLA. One possible reason is that
noise accumulation over time made it difficult for a
speaker agent to generate long consistent messages.

4.3.2 Noise on a Listener

Next, to investigate the effect of noise on a listener,
(σS , σL, πC) was set to (0, 1/4, 0), (0, 1/2, 0), and
(0, 1, 0). 7 out of 16, 4 out of 32, and 5 out of 16
runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 5. The apparent ten-
dencies are quite similar among all the settings
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Figure 7: Mean message lengths across successful
runs as a function of inputs sorted by frequency, when
(σS , σL, πC) = (0, 0, 0), (0, 0, 0.01), (0, 0, 0.05), and
(0, 0, 0.1) respectively.

including ‘no noise,’ showing clear anti-ZLA ten-
dencies. Spearman correlations in Table 2 also
suggest anti-ZLA tendencies.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 6. In Figure 6, ek for σL > 0
shows similar tendencies to those for ‘no noise,’
although the peak of ek for σL = 1/2 is lower than
the other results.. ehead, emed, and etail (Eq. 18,
Eq. 19, and Eq. 20) are shown in Figure 9. Ac-
cording to Figure 9, ehead for σL > 0 tends to be
smaller than the one for ‘no noise,’ but the over-
all tendencies seem similar (e.g., ehead < emed <
etail).

These results suggest that noise on a listener is
not a crucial factor for changing a tendency in emer-
gent languages. The listener’s short-term memory
is thought to have been limited due to noise accu-
mulation over time, as ehead got smaller. However,
even if there was no noise, informative symbols
tended to be located in the latter half of messages,
i.e, ehead < emed < etail, which is one possible
reason why noise on a listener did not crucially
affect the overall tendency.

4.3.3 Noise on a Channel
Finally, to check the effect of noise on a channel,
(σS , σL, πC) was set to (0, 0, 0.01), (0, 0, 0.05),
and (0, 0, 0.1). 9 out of 16, 6 out of 32, and 7
out of 32 runs were successful for each setting.

To see the overall tendency, mean message
lengths are shown in Figure 7. The apparent re-
sults for πC > 0 are similar to the one for ‘no
noise,’ showing clear anti-ZLA tendencies. Spear-
man correlations in Table 2 also suggest anti-ZLA
tendencies.

Figure 8: meaneffk in successful runs, when
(σS , σL, πC) = (0, 0, 0), (0, 0, 0.01), (0, 0, 0.05), and
(0, 0, 0.1) respectively.

To check the symbol effectiveness, we show ek
(Eq. 17) in Figure 8. In Figure 8, ek becomes lower
entirely as πC gets bigger. ehead, emed, and etail
(Eq. 18, Eq. 19, and Eq. 20) are shown in Figure 9.
In Figure 9, ehead, emed, and etail become lower
as πC gets bigger. Remember that low e(m, k)
(Eq. 14) means that the symbol at position k in m
is redundant. Thus, lower ek, ehead, emed, and etail
indicate that symbols are redundant on the whole.

These results suggest that redundancy was facili-
tated due to the noise on a channel. It is consistent
with Zipf’s hypothesis and a noisy-channel model.

5 Discussion

Our experiments suggest that noise on a speaker is
a factor for ZLA, while noise on a listener and a
channel is not in our signaling game.

One possible reason for the noise on a speaker
is that noise accumulation matters as time goes.
At each trial, the speaker agent gets an input i
and transforms it into an initial hidden state h0.
The hidden states need to maintain the input i in
some way for emitting consistent symbols. But
noise accumulates over time and is harmful to their
memory, which may cause frequent messages to be
shorter. However, the result per se shows a neutral
tendency between ZLA and anti-ZLA. Our implicit
length pressure might not have been strong enough,
or there might have been some problems with the
agents’ architectures.

Noise on a listener is not a crucial factor for
ZLA in our setting. Judging from symbol effec-
tiveness, the latter halves of messages tend to be
more informative than the former when noise in-
terferes with the listener. It means that the listener
could “forget” the former halves of messages. In
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Figure 9: ehead, emed, and etail in successful runs under various noise conditions.

the first place, however, the former halves are less
informative even if there is no noise. That may be
why noise on a listener did not affect the overall
tendency. Noise on a channel seems to facilitate
the redundancy of messages, which is consistent
with Zipf’s hypothesis and a noisy-channel model.

To help agents with learning, we used the two
auxiliary loss DER (Eq. 11) and SML (Eq. 13)
which are somewhat artificial. In particular, the
usage of SML conflicts a bit with our original goal
to give rise to ZLA by an implicit penalty, as SML
is similar to an artificial length pressure (Eq. 6).

6 Conclusion

In this paper, we simulated the emergence of lan-
guage and checked whether the emergent languages
follow Zipf’s law of abbreviation (ZLA). Inspired
by some psychological concepts, we proposed ex-
posing architectures to some noise during train-
ing. Our experiments were conducted under several
noise conditions. The results suggested that noise
on a speaker agent is one factor for ZLA, whereas
neither noise on a listener nor noise on a channel is
in our signaling game.

Our main contribution is to propose a potential
factor for ZLA instead of an external length pres-
sure and to demonstrate that noise imposing inter-
nal difficulty on a speaker agent may cause ZLA.

However, there are several problems and limita-
tions in addition to what is discussed in section 5.
First, we could not try the combination of noises.
One might be interested in combining the noises
on a speaker, listener, and channel, but we failed
to train agents stably under such conditions. It is
simply because it became much more difficult for
agents to learn under several noises.

Second, our signaling game did not contain any
contexts. As an input space was no more complex

than having the order by frequency, emergent lan-
guages could only have a unigram-like structure.
However, according to Piantadosi et al. (2011),
word predictability considering contexts is a better
predictor of word length than unigram probabili-
ties. From a more realistic point of view, therefore,
contexts should be considered in some ways. More-
over, if agents are forced to remember contexts,
noise on a listener may also be a factor for ZLA,
making the listener impatient.

We leave these issues for future work.
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Abstract

Abstractive summarization is the task of com-
pressing a long document into a coherent short
document while retaining salient information.
Modern abstractive summarization methods
are based on deep neural networks which of-
ten require large training datasets. Since col-
lecting summarization datasets is an expensive
and time-consuming task, practical industrial
settings are usually low-resource. In this pa-
per, we study a challenging low-resource set-
ting of summarizing long legal briefs with
an average source document length of 4268
words and only 120 available (document, sum-
mary) pairs. To account for data scarcity,
we used a modern pretrained abstractive sum-
marizer BART (Lewis et al., 2020), which
only achieves 17.9 ROUGE-L as it struggles
with long documents. We thus attempt to
compress these long documents by identify-
ing salient sentences in the source which best
ground the summary, using a novel algorithm
based on GPT-2 (Radford et al., 2019) lan-
guage model perplexity scores, that operates
within the low resource regime. On feeding the
compressed documents to BART, we observe a
6.0 ROUGE-L improvement. Our method also
beats several competitive salience detection
baselines. Furthermore, the identified salient
sentences tend to agree with an independent
human labeling by domain experts.

1 Introduction and Related Work

Text summarization is the task of generating a
smaller coherent version of a document preserv-

∗* Equal Contribution

ing key information. Typical abstractive summa-
rization algorithms use seq2seq models with atten-
tion (Chopra et al., 2016), copy mechanisms (Gu
et al., 2016), content selection (Cheng and Lapata,
2016), pointer-generator methods (See et al., 2017)
and reinforcement learning (Wu and Hu, 2018).
These methods perform well in high resource sum-
marization datasets with small documents such
as CNN/DailyMail (Nallapati et al., 2016), Gi-
gaword (Rush et al., 2015), etc. However, sum-
marization over long documents with thousands
of tokens is a more practically relevant problem.
Existing solutions focus on leveraging document
structure (Cohan et al., 2018) or do mixed model
summarization involving compression or selection
followed by abstractive summarization (Liu et al.,
2018; Gehrmann et al., 2018). However, these
methods require large amounts of training data.
Low resource settings are common in real world
applications as curating domain specific datasets es-
pecially over long documents and on a large scale,
is both expensive and time consuming.

A human summarizing a long document would
first understand the text, then highlight the impor-
tant information, and finally paraphrase it to gen-
erate a summary. Building on this intuition, we
present a low-resource long document summariza-
tion algorithm (Section 2) operating in 3 steps:

1. Ground sentences of every training set sum-
mary into its source, identifying salient sen-
tences

2. Train a salience classifier on this data, and use
it to compress the source document during test
time
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Figure 1: Our method for long document summarization task in low resource setting. The Extraction Model
generates a compressed documentD′ by identifying salient sentences. It is trained by computing salience score for
each training set source sentence. The pretrained abstractive summarizer takes as input the compressed document.

3. Feed the compressed document to a state-of-
the-art abstractive summarizer pretrained on
a related domain to generate a coherent and
fluent summary

To tackle data scarcity, we use pretrained lan-
guage models in all three steps, which show strong
generalization (Devlin et al., 2019) and are sample
efficient (Yogatama et al., 2019). Notably, our step
(1) uses a novel method based on GPT-2 perplex-
ity (Radford et al., 2019) to ground sentences.

Unlike prior work (Parida and Motlicek, 2019;
Magooda and Litman, 2020) tackling data scarcity
in summarization, our method needs no synthetic
data augmentation. Moreover, we study a signifi-
cantly more resource constrained setting — a com-
plex legal briefs dataset (Section 2) with only 120
available (document, summary) pairs and an av-
erage of 4.3K tokens per document; Parida and
Motlicek (2019) assume access to 90,000 pairs with
a maximum of 0.4K source document tokens, Ma-
gooda and Litman (2020) use 370 pairs with 0.2K
source document tokens.

Despite this challenging setup, our method beats
an abstractor-only approach by 6 ROUGE-L points,
and also beats several competitive salience detec-
tion baselines (Section 3). Interestingly, identified
salient sentences show agreement with an indepen-
dent human labeling by domain experts, further
validating the efficacy of our approach.

2 Dataset and Approach

To mimic the real world scenario of summarization
over long domain-specific documents, we curate
120 document-summary pairs from publicly avail-

able Amicus Briefs,1 thus simulating the legal do-
main. The source contains detailed arguments that
the court should consider for a case; the target sum-
marizes them. As shown in Table 1, our dataset is
significantly smaller than the popular CNN/Daily
Mail benchmark (Nallapati et al., 2016) and has
significantly longer documents and summaries.

Dataset # (S, T ) Avg. |S| Avg. |T |
CNN/DM 312,084 781 56
Amicus 120 4,268 485

Table 1: A comparison between the Amicus legal
briefs dataset and the popular CNN/Daily Mail bench-
mark. Amicus has far fewer document-summary pairs
#(S, T ), with more documents tokens (Avg. |S|) and
summary tokens (Avg. |T |) on average.

To tackle this low resource setting, we use
the state-of-the-art abstractive summarizer
BART (Lewis et al., 2020), pretrained on a dataset
from a related domain (CNN/DM). Since BART
was trained on short documents, it truncates docu-
ments longer than 1024 subwords. Hence, instead
of feeding the whole source document as input to
BART, we feed salient sentences extracted using
a salience classifier. Our salience classification
dataset is built using a novel method which grounds
summary sentences to sentences in source with
language model perplexity scores. Our approach
(Figure 1) resembles the extract-then-abstract
paradigm popular in prior work (Gehrmann et al.,
2018; Liu et al., 2018; Subramanian et al., 2019;
Chen and Bansal, 2018).

1https://publichealthlawcenter.org/
amicus-briefs
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Extraction Stage: To extract the most important
content from the source document required to gen-
erate the summary, we pose content selection as a
binary classification task, labeling every sentence
in the source document as salient or non-salient.
Sentences classified as salient are concatenated in
the order of occurrence in the source document
to generate a compressed “extractive summary”,
which is then fed to the abstractive summarizer.
Maintaining the order of sentences ensures the logi-
cal flow of information is not disrupted. In addition
to identifying important information, the salience
classifier is able to remove repetitive boilerplate
text which is common in technical documents but
often irrelevant to the actual content.

Training Data for Salience Classification: Since
we do not have sentence-level training data for
the classifier, we construct it by grounding sen-
tences of the ground truth summary to sentences
in the source document. Consider a source docu-
ment S consisting of m sentences s1:m and a target
summary T consisting of n sentences t1:n where
m >> n. We compute the salience score for every
source sentence si ∈ S as 1

n

∑n
j=0 f(si, tj). Here

f(s, t) is a measure of how much source sentence
s grounds target sentence t. Following this, we
sort the sentences in the source document based on
salience score. The highest scoring 3n sentences
are chosen as salient sentences and the lowest scor-
ing 3n are chosen as non-salient sentences. 3n is
a tuned hyperparameter. Whenever m < 6n, we
sort the sentences according to the salience score
and assign salient to the top half and non-salient
to the bottom half. We construct our dataset for
salience classification by running this algorithm for
every (S, T ) pair in the training dataset. To ensure
generalization with limited training data, we incor-
porate transfer learning and build our classifier by
finetuning BERT-base (Devlin et al., 2019) using
transformers (Wolf et al., 2019). More details
on training are provided in Appendix A.2.

Choice of f(s, t): To measure how much a source
sentence s grounds a target sentence t we measure
the perplexity of t conditioned on s, using a pre-
trained language model GPT-2 large (Radford et al.,
2019). More formally, we concatenate s and t as
[s; t] and feed it as input to GPT-2 large, calculat-
ing perplexity over the tokens of t. Here, a lower
perplexity corresponds to a higher f(s, t) score.
We find that this measure correlates with entail-

ment and outperforms other choices of f(s, t) like
n-gram overlap, sentence embedding similarity &
entailment classifiers (Section 3.3).

Abstraction Stage: Having compressed the source
document using our extractor, we use a black-box
pretrained abstractive summarizer trained on a re-
lated domain. In this work, we make use of the
state-of-the-art model (i.e. BART), which is based
on pretrained language models. Pretraining on
CNN/DM helps BART generalize to unseen but
related domains like legal briefs. Details on our
BART setup are provided in Appendix A.3.

3 Experiments

3.1 Evaluating the extractor

To evaluate our proposed extractor, we first check
whether our salience classifier generalizes to a held-
out test set.2 Indeed, it achieves a classification
accuracy of 73.66%, and qualitative analysis of the
classifications confirm its ability to identify boiler-
plate sentences as non-salient. Our classifier com-
presses source documents by 61% on average. Note
that classifier score can be thresholded to obtain
more or less compression depending on domain
and end-task.
Next, we evaluate the quality of extracted salient
sentences by checking the extent to which they
overlap in information with the gold test set sum-
maries, by measuring ROUGE-1/2 recall scores.
As shown in Table 2, our extractor outperforms a
random selection of the same number of sentences
and is comparable to the upper-bound recall per-
formance achieved by feeding in the whole source
document. Finally, to measure the extent to which
our salience classifier matches human judgement,
domain experts identified 8-10 salient sentences in
four test documents with more than 200 sentences
each on request. Despite their scarcity, our salience
classifier recovers 64.7% marked sentences, con-
firming correlation with human judgments.

3.2 Evaluating the entire pipeline

We evaluate the entire pipeline by measuring the
quality of abstractive summaries, obtained by feed-
ing the extractive summary to BART. We study two
abstractor settings:

1. Treating BART as a black-box with no modi-
fication

2Classifier data statistics at salient/non-salient sentences
level: (Train=5363, Dev=1870, Test=2070)
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Source R-1 (Recall) R-2 (Recall)

Whole Document 87.75 50.67
Random Extractor 78.66 38.53
Proposed Extractor 81.78 43.96

Table 2: ROUGE-1/2 (R-1/2) recall scores of the gold
summary with respect to the the “Source” document.
Our saliency-driven extractor performs better than a
random selection of the same number of sentences and
is close to the upperbound recall performance achieved
by feeding in the whole source document.

Extractor Abstractor R-1 R-2 R-L

NE BART 40.17 13.36 17.95
Random BART 41.96 13.30 17.91
TextRank BART 42.63 13.09 17.93
Bottom-up BART 42.41 14.50 20.76
Ours BART 44.97 15.37 23.95

NE f.t. BART 43.47 16.30 19.35
Random f.t. BART 44.63 15.11 18.57
TextRank f.t. BART 45.10 15.51 18.74
Bottom-up f.t. BART 44.89 17.26 23.40
Ours f.t. BART 47.07 17.64 24.40

Table 3: Comparison of our method on the Amicus
dataset with strong baselines. Our method outperforms
all baselines in both Abstractor settings: (1) a pre-
trained CNN/DM BART; (2) the pretrained CNN/DM
BART finetuned on the Amicus dataset (f.t. BART).

2. Finetuning BART on the training and valida-
tion split of Amicus dataset.3

We present results on the Amicus test set. We
compare our model against several competitive
baselines:

1. NE: no extraction

2. Random: a random selection of the same
number of sentences as our extractive sum-
mary

3. TextRank (Mihalcea and Tarau, 2004; Liu
et al., 2018): unsupervised graph based ap-
proach to rank text chunks within a document

4. Bottom-up summarizer (Gehrmann et al.,
2018): a strong extract-then-abstract baseline
where content selection is posed as a word-
level sequence tagging problem. Similar to
our setting, their content selector also uses
large pretrained models (ELMo, Peters et al.,
2018), which we finetune on our training set.

3The training and validation splits together comprise of 96
documents. The test split was not used.
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Figure 2: Perplexity distribution of the hypothesis
given the premise for each of the three classes sampled
from the MultiNLI dataset. Entailment pairs tend to
have lower perplexity, validating our choice of f(s, t).

Choice of f(s, t) R-1 R-2 R-L

Entailment (using RoBERTa) 43.66 16.95 23.24
Similarity (using BERT) 44.67 16.69 23.81
BLEU (using nltk) 43.95 17.38 23.69
Perplexity (using GPT-2) 47.07 17.64 24.40

Table 4: Results of our extract-then-abstract pipeline
(after finetuning BART) by varying f(s, t). Our choice
of GPT-2 perplexity performs better than 3 alternatives.

As seen in Table 3, we observe a 4.8 / 6 ROUGE-
1/L improvement when compared to the no extrac-
tor baseline (NE), and 2.3 / 3.2 R-1/L improvement
over the strongest extractor baseline (per metric);
confirming the effectiveness of our method. In ad-
dition, finetuning the CNN/DM pretrained BART
on 96 Amicus documents helps in domain adaption
and boosts the ROUGE scores of both baselines
and our method (f.t. BART). Specifically, we ob-
serve a 2.1 / 0.5 R-1/L boost in performance and
outperform the best baseline (per metric) by 2.0 /
1.0 R-1/L points. Our model’s improvements are
statistically significant (p-value< 0.06) except for
when comparing our extractor + f.t BART with
Bottom-up + f.t BART, the p-value is 0.16 due to
the small test set. Refer Appendix A.3 for qualita-
tive analysis of our proposed model’s generations.

3.3 Validating the choice of f(s, t)

In Section 2 we used GPT-2 perplexity scores to
measure the extent to which a source sentence
grounds a target sentence. To motivate this choice,
we measure its correlation with existing entailment
datasets. We randomly sample 5000 sentences
from each class of the MultiNLI dataset (Williams
et al., 2018) and compute the perplexity of the hy-
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pothesis with the premise as context. As seen in
Figure 2, entailment pairs tend to have the lowest
perplexity. This motivates our choice of f(s, t),
since hypothesis sentences are best grounded in
premise sentences for entailment pairs. We hypoth-
esize contradiction sentences have slightly lower
perplexity than neutral due to more word overlap.
To further validate the merit of GPT-2 perplexity,
we conduct ablations using alternatives for f(s, t):

1. Entailment score from a RoBERTa based
MNLI classifier (Liu et al., 2019)

2. Cosine similarity of averaged embeddings
from final layer of BERT (Devlin et al., 2019)

3. BLEU scores (Papineni et al., 2002)

We present ROUGE scores using our whole extract-
then-abstract pipeline with different choices of
f(s, t) in Table 4. We note that perplexity per-
forms the best, 2.4 ROUGE-1 better than the best
alternative and also performs 3.41 ROUGE-1 bet-
ter than entailment. We hypothesize that RoBERTa
overfits on the MNLI dataset that also has known
biases (Gururangan et al., 2018).

The code can be found on Github here.4

4 Conclusion

We tackle an important real-world problem of sum-
marizing long domain-specific documents with
much less training data than previous works. We
propose an extract-then-abstract pipeline which
uses GPT-2 perplexity and a BERT classifier to
estimate sentence salience. This sufficiently com-
presses a document, allowing us to use a pretrained
model (BART) to generate coherent & fluent sum-
maries.
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A Appendix

A.1 Data pre-processing

In this section, the various pre-processing steps of
data performed at different stages are explained.

Extracting (document, summary) pairs: The
120 pairs of Amicus Briefs were scrapped from
their website5. The Summary of Arguments
section of the Amicus Briefs was extracted as the
target summary and the main content excluding
title page, table of contents, acknowledgements,
appendix etc was extracted as document/source.

Sentence pre-processing: Sentences from the
(document, summary) files were split using the
spaCy6 sentence splitter. Furthermore, the sen-
tences were each processed to remove special char-
acters using regex rules. If a sentence contained
less that 5 words, it was pruned out from the com-
putation of f(s, t) to reduce the complexity of pairs
considered.

A.2 Sentence Saliency Classifier

Training Details: Our classifier uses the
BERT sequence labeling configuration7 from
transformers (Wolf et al., 2019), which is
a pretrained BERT-base model with an initially
untrained classification head on the [CLS] feature
vector. This model is then finetuned for 5 epochs
using the training data which consists of 5363
sentences in the Amicus dataset (equal distribution
among the two classes). We use a train / dev / test
split of 60%, 20%, 20%. Training configuration
of the classifier is as follows: learning rate = 2e-5,
max grad norm = 1.0, num training steps = 1000,
num warmup steps = 100, warmup proportion =
0.1, Optimizer = Adam, Schduler = linear with
warmup.

Alternate methods to choose +/- samples: The
aggregate scoring method mentioned in Section 2
was one choice to pick salient and non-salient sam-
ples for each document. Aggregate method com-
presses the source by 61% on an average. The other
methods experimented were:

5https://publichealthlawcenter.org/amicus-briefs
6https://pypi.org/project/spacy/
7https://huggingface.co/transformers/

model_doc/bert.html#transformers.
BertForSequenceClassification

• Top k - Bottom k: ∀tj ∈ T, we picked the
top-k scoring source sentences as positive
samples and the bottom-k sentences as the
negative samples ensuring that {positive} ∩
{negative} = 0. Using this technique, the
classifier achieves accuracy of nearly 1 as can
be seen from Table 5. On qualitative analysis,
we identified that there is a clear distinction
in the positive and the negative examples. Eg:
sentences such as ‘This document is prepared
by XYZ’ would be picked as non salient sen-
tence and classifier is able to achieve high
accuracy. This could however be used to train
a classifier to identify boiler plate sentences
across the document. This method compresses
source document by 63% on an average.

• Random negative sampling: Salient examples
were chosen for a document as per the above
method. For the non salient examples, we ran-
domly sampled from the rest of the document.
This allows the classifier to learn about sen-
tences that that are difficult to be classified
as positive or negative. Hence, the accuracy
of the classifier is lower than the other two
methods as can be seen from Table 5. This
method compresses the source document by
70% on an average.

Compute time and resources: Execution time
for different choice of f(s,t) for all 120 pairs:

• Perplexity using GPT-2:executes within 15hrs
using 2 GPUs

• Entailment score using RoBERTa: executes
within 22hrs using 2 GPUs

• Cosine Similarity using BERT [CLS] embed-
dings: executes within 3hrs on a single GPU

• BLEU score using nltk: executes within
15min on a single GPU.

These scores need to be generated once and can be
reused for various experiments. Sampling methods
to choose salient and non-salient sentences for
each document takes less than a minute to run.

Analysis: (a) Table 5 shows the classifier ac-
curacies for combinations of f(s,t) and sampling
methods. We observe that for the aggregate
sampling method, although perplexity based clas-
sifier does not have the highest accuracy, our
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Sampling Method f(s,t) Accuracy

Aggregate scoring
for each source
sentence.

BLEU 0.7813
Perplexity 0.7366
Entailment 0.6569
Similarity 0.8391

Top k-Bottom k
sources sentences
or each summary sentence

BLEU 0.9997
Perplexity 0.9915
Entailment 0.9973
Similarity 1

Top k for each summary
sentence and random
negative sampling from
the remaining document.

BLEU 0.5784
Perplexity 0.655
Entailment 0.5611
Similarity 0.6233

Table 5: The accuracy of the held out set of Amicus for
different classifiers trained on the data prepared using
choice of different f(s,t) and sampling methods. Here,
k=3.

pipeline where f(s, t) is perplexity score gives the
best result(ROUGE) amongst the ablation experi-
ments(Table 4). Classifier accuracy is determined
on automated labelling based on the saliency score,
rather than true labels, hence best classifier does
not imply best summarization. (b) Table 6 shows
the examples of using perplexity as f(s,t) to see how
the summary grounds the source. The table shows
three summary sentences and the corresponding
source sentences that had the lowest perplexity
scores. We can see that, summary either has a
similar meaning or logically follows the source. (c)
Table 7 has three examples each for salient sen-
tences and non-salient sentences inferred by the
classifier trained on data prepared as mentioned in
Section 2. The third sentence in the non-salient sen-
tences column is an example of boiler-plate content
detected that is present across documents.

A.3 Abstractive Summarizer: BART

BART is a seq2seq model based on denoising pre-
training objective which is supposed to generalize
better on various natural language understanding
tasks; abstractive summarization being one of them.
For abstractive stage of our proposed approach, we
decided to see (bart.large.cnn) variant which is
essentially BART-large model (with 12 encoder
and decoder layers and 400 million parameters)
finetuned for CNN/DM summarization task. We
use the pre-computed weights available for use
here8. Using BART’s text generation script, we set
length penalty (lenpen) as 2.0 and minimum length
(min len) as 500 words in order to encourage

8https://github.com/pytorch/fairseq/
tree/master/examples/bart

BART to produce longer outputs which is more
suitable to our dataset. Also, we use beam size of
4 and and no repeat ngram size of 3.

Finetuning: We use the train and dev splits
of Amicus dataset (96 source-target pairs) and
finetune BART for summarization task starting
from its CNN/DM finetuned checkpoint. First, we
pre-process the dataset as per the guidelines in the
official code9. We finetune for 500 epochs with
learning rate of 3e-5 and early stop if validation
loss doesn’t decrease for 50 epochs. Others
parameters are as follows: total num updates =
20000, warmup updates = 500, update freq = 4,
optimiser = Adam with weight decay of 0.01. Rest
of parameters were kept as default in the official
script. Results (Precision, Recall, F1) on the test
set of Amicus using the existing BART model and
finetuned BART are shown in Table 8.

Table 9 shows an example of target summary
and summary generated by our model(Section 2)
for one sample source document. We can see that
the summary generated by our model is fluent and
has coherent flow of information.

9https://github.com/pytorch/fairseq/
blob/master/examples/bart/README.
summarization.md
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Summary Sentence Source Sentence

In the immigration context, this jurisprudence has
prompted the Court to reject the notion that
the so-called entry fiction is of constitutional significance.

Prior to Knauff and Mezei, the distinction
between noncitizens who had entered the
United States and those who remained outside
it had not had been elevated to a bright-line constitutional
rule, and entry had never been completely determinative
of the fact or extent of protection under the Due
Process Clause.

It has accordingly authorized such detention only in limited
circumstances pursuant to a carefully defined scheme.

The Court’s substantive due process jurisprudence also
recognizes that an individual may be subjected to regulatory
detention only in narrow circumstances under a carefully
drawn scheme.

With respect to substantive due process, this Court has
increasingly recognized the punitive consequences of indefinite
regulatory detention.

Thus, the Court has substantially restricted the availability and
duration of regulatory confinement in the — years since it decided
Meze1.In Zadvydas, this Court established that its substantive
due process jurisprudence provided the appropriate framework
for evaluating the administrative detention of noncitizens
pending removal from the United States.

Table 6: Using GPT-2 perplexity as f(s,t), here are three sentences from the summary with corresponding source
sentence, having the lowest perplexity.

Salient Sentences Non-Salient sentences
The same time, the Court has long been skeptical of the
military’s authority to try individuals other than
active service personnel.

A government predicated on checks and balances serves
not only to make Government accountable but also to
secure individual liberty.

On the basis of this revised test, the Court of Appeals
refused to apply the exceptional circumstances exception
to Al-Nashiri’s petition.

At present, the Rules for Courts-Martial require that the
accused be brought to trial within 120 days after
the earlier of preferral of charges or confinement.

Consonant with that tradition,
this Court should review the Court of Appeals’
decision to confirm that exceptional delay before trial remains
of central concern on habeas review and is indeed one of the
very dangers the writ of habeas corpus was designed to avoid.

Respectfully submitted, May 31, 2017 LINDA A. KLEIN
Counsel of Record AMERICAN BAR ASSOCIATION
321 North Clark Street Chicago ...

Table 7: This table shows the sentences classified as salient and non-salient from one Amicus source document.
We can see that the last sentence in the non-salient sentences column shows an example of boiler-plate content
present across documents. The classifier is trained on data chosen on aggregate score of source sentences where
f(s,t) is GPT-2 perplexity.

Metric BART Ours + BART f.t. BART Ours + f.t. BART

ROUGE-1
Recall 40.87 47.46 46.90 56.04
Precision 47.21 49.97 48.68 46.16
F-1 40.17 44.97 43.47 47.07

ROUGE-2
Recall 13.76 16.54 17.84 21.50
Precision 15.46 17.04 17.84 17.10
F-1 13.36 15.37 16.30 17.64

ROUGE-L
Recall 18.34 25.58 21.30 29.62
Precision 21.04 26.27 21.35 23.47
F-1 17.95 23.95 19.35 24.40

Table 8: Overall pipeline results by adding our extractor (f(s,t) as GPT-2 perplexity + Classifier) to BART and
finetuned BART (f.t. BART), including the precision and recall values for each metric.
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This Court’s determination of whether due process under the New Hampshire Constitution requires
court-appointed counsel for indigent parent-defendants, in order to protect their fundamental right

to parent, requires the balancing of three factors–(1) the private interest at stake, (2) the risk of error
and the value of procedural safeguards, and (3)the state’s interest. See In re Shelby R., 148 N.H. 237,
240 (2002) (citing In re Richard A., 146 N.H..295, 298 (2001)). Because there is no dispute that the

fundamental right to parent isat stake in abuse and neglect proceedings, the ABA focuses its
discussion on the second and third factors of the three factor test.As to the second, so-called ”risk of error”

factor, the ABA’s conclusion, after years of investigation and analysis, is that the absence of counsel for
indigent parent-defendants in abuse and neglect proceedings results in a significant risk of an erroneous

determination. This is especially true where the opposing party is the State. As to the third, state’s interest
factor, the ABA’s investigation shows that the interests of both the parent and the state are best served

where indigent parent-defendants are represented. The ABA respectfully suggests that the evidence and
analysis relevant to these two factors is so compelling in most, if not all, abuse and neglect proceedings
involving indigent parent-defendants, that a case-by-case balancing of the factors should be rejected in

favor of a rule requiring the appointment of counsel] for indigent parent-defendants in all such proceedings.
The evidence and analysis supporting the ABA’s policy includes the fact that a substantial majority of states
have recognized an unqualified right to counsel for indigent parent-defendants in child custody proceedings.
Similarly, other industrial democracies provide indigent parent-defendants with such right to counsel. The
ABA respectfully submits that this Court should require no less as a matter of due process under the New

Hampshire Constitution.Although of whether Jn re Shelby R. resulted in a or not a natural parent’s plurality
role in ruling, the the family Court is a was not split fundamental on the liberty question interest protected by

the State Constitution. See In re Shelby R., 148 NH. at 244 (dissenting opinion).
Hampshire constitution requires this court to determine whether indigent parents have a legally protected interest.

Most indigent parent - defendants are incapable of performing the advocacy functions required in abuse and
neglect proceedings. Most unrepresented parents cannot perform the advocacy functions - - including investigating
facts , making an orderly factual presentation , and cross - examining witnesses - - that are required. The intense,
emotionally charged backdrop against which custody decisions are often made further exacerbates the inherent

disadvantages faced by unrepresented indigent parents. The need for counsel for the indigent parent - defendant is
especially great where the opposing party is the state. The court must weigh three factors : ( 1) the private interests

that will be affected. ( 2) the risk of erroneous deprivation of the liberty interest through the procedures used and the
value , if any, of additional or substitute procedural safeguards. ( 3) the state ’ s interest , including the function

involved and fiscal and administrative burdens that additional or substitute procedural requirements would entail id
at 240 ; see also in re father , 155 n . h . 93 , 95 ( 2007 ) . this court has previously concluded as to the first factor

that adversary child custody proceedings implicate a fundamental liberty interest - - the right to parent in this case,
the central question thus becomes whether that right is sufficiently protected. The conclusion that counsel must be

provided is so compelling in most , if not all cases , that a case - by - case balancing of the factors should be rejected
in favor of a rule requiring the appointment of counsel for low income parent - defendant in all such proceedings to be
constitutionally acceptable. The state is not the only adversary finding the only meaningful right to be heard when her

adversary is not represented by counsel is not spaled against the traditional weapons of the state, such as the state’s
attorney general. The courts must also weigh the public interest in the child custody case, including the function

involved and the cost of additional or substitute safeguards, as well as the cost to the state of the additional or substituted
safeguards. The risk of an erroneous deprivation of the fundamental right to parent only increases the only increase in

the risk that the state will find the child is not heard when the state is the adversary. The public interest is only
increased by the fact that the child will not be heard by the state when the parent is represented by a lawyer.

The high level of complexity of child custody cases makes it difficult for the court to make a fair and just decision.

Table 9: The table shows the comparison of summaries where the top summary is the target summary and the
bottom summary is the one generated by our extractor and f.t BART. As we can see, the summary is coherent and
has fluent information flow.
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Abstract

The impressive performances of pre-trained vi-
sually grounded language models have moti-
vated a growing body of research investigating
what has been learned during the pre-training.
As a lot of these models are based on Trans-
formers, several studies on the attention mech-
anisms used by the models to learn to associate
phrases with their visual grounding in the im-
age have been conducted. In this work, we in-
vestigate how supervising attention directly to
learn visual grounding can affect the behavior
of such models. We compare three different
methods on attention supervision and their im-
pact on the performances of a state-of-the-art
visually grounded language model on two pop-
ular vision-and-language tasks.

1 Introduction

The introduction of Transformers (Vaswani et al.,
2017) has been a major component of the suc-
cess of pre-trained language models (Devlin et al.,
2019; Yang et al., 2019; Liu et al., 2019; Lan et al.,
2020) which achieved new records in many natu-
ral language processing tasks. The same mecha-
nism has been adapted to create models (Su et al.,
2020; Chen et al., 2020; Li et al., 2019; Lu et al.,
2019, 2020; LXM) that can now tackle vision-and-
language tasks with impressive performances.

A large body of research (Clark et al., 2019;
Kovaleva et al., 2019) has been dedicated to un-
derstanding what attention heads learn during the
pre-training of language models. Liu et al. (2016)
have even shown how providing attention heads
with guidance can improve performance on neural
machine translation.

On the other hand, the internal behaviors of
vision-and-language models have attracted less in-
terest from the research community. Li et al. (2020)
have shown some attention heads in vision-and-
language models are able to map entities to image

regions while others even detect syntactic relations
between non-entity words and image regions. Nev-
ertheless, no initiative has been taken towards su-
pervising directly the attention modules.

In this paper, we study how different meth-
ods on attention supervision can affect vision-and-
language models. We propose a fine-tuning method
aimed at using the visual grounding of entities
to provide guidance to attention heads. We com-
pare three different methods by evaluating their
performance on popular downstream tasks and vi-
sualize the different attention modules obtained.
We observe that an indirect method which uses a
module appended to the final output of the Trans-
former obtains worse results than methods which
focus on supervising every attention head directly.
The codes are available at https://github.com/
jules-samaran/VL-BERT.

2 Our Method

We use a state-of-the-art pre-trained vision-and-
language model on which we propose multi-task
fine-tuning methods focusing on attention super-
vision. After this proposed fine-tuning, we judge
the success of our approach by further fine-tuning
the model on downstream tasks of visual question
answering and referring expressions, and evaluat-
ing it. We propose a fine-tuning approach after an
initial pretraining step on a large unlabelled dataset
because we believe the model would benefit from
learning first from scratch freely about text and im-
ages without any supervision on its attention heads,
and that our fine-tuning would allow it to then re-
fine the representations it provided using visual
grounding labels.

2.1 Backbone Model
We choose as our basic architecture VL-BERT (Su
et al., 2020), a state-of-the-art vision-and-language
pre-trained model that revisits BERT (Devlin et al.,
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2019) to take both visual and linguistic inputs.
Based on a multi-layer bidirectional multi-modal
Transformer encoder (Vaswani et al., 2017), VL-
BERT learns during its pre-training a generic fea-
ture representation mainly on the conceptual cap-
tions dataset consisting of 3.3M image-caption
pairs (Sharma et al., 2018). Note that many other
choices are possible for this backbone model (see
the Section 4).1 The reason we chose VL-BERT is
that it was available; it achieved state-of-the-art per-
formances (better than ViLBERT (Lu et al., 2019,
2020) for example) on several classical vision-and-
language downstream tasks; the way it handles
both visual and textual tokens in a single stream
(whereas ViLBERT processes them in two separate
streams) made it very adapted for our approach
of supervising the attention between textual and
visual elements.

2.2 VGP Fine-tuning

To provide guided attention supervision in vision-
and-language models, we devise a multi-task fine-
tuning method that aims to improve the model’s
ability to understand complex semantic relations
(e.g. paraphrases) and align visual with linguistic
elements. Li et al. (2020) hinted the importance of
attention-based vision-and-language model’s abil-
ity to map entity-words to corresponding image
regions. Following this direction and to improve a
model’s reasoning abilities, we propose to further
fine-tune a pre-trained model with the aim of learn-
ing visually grounded paraphrases (VGPs) (Chu
et al., 2018; Otani et al., 2020).

VGPs are two phrasal expressions that describe
the same visual concept in an image. As shown
in Figure 1, we fine-tune a model based on VGPs
with three different tasks simultaneously as a multi-
task learning problem: an image description iden-
tification task (§2.2.1), a VGP classification task
(§2.2.2), and an attention supervision task (§2.2.3).
The first two tasks are inspired by Arase and Tsujii
(2019), who showed that injecting semantic rela-
tions between a sentence pair can improve a BERT
model’s performance on several downstream tasks.
We adapted them to make the model learn from
both visual and linguistic elements.

Input The input of the fine-tuning process is
composed of 1) an image, and 2) a pair of captions,

1It is unclear how well the results we obtained would
generalize to other vision-and-language models, especially
since our approach is designed for VL-BERT’s architecture,
but we leave it as future work.

ROI1

Transformer encoder

Image Description 
Identification

VGP 
classifier Losstotal

Lossatt

LossVGP
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[CLS] a cook sits [SEP] a man crouches [SEP] ROI2 [END]

Caption 1 Caption 2

Attention heads

Image

Attention 
Supervision

Figure 1: Overview of the VGP fine-tuning. The Trans-
former Encoder is the VL-BERT model, our contribu-
tions are the modules on the bottom.

c1 and c2, where at least one of them corresponds
to the image. Hard negative captions are chosen
offline following Lu et al. (2019). The input se-
quence to the Transformer model is constructed
as: [[CLS], c1,[SEP], c2,[SEP], img,[END]], where
[CLS] is the start of sequence token, [SEP] sepa-
rates different elements, img is the image regional
features extracted as Girshick (2015) and [END] is
the end of sequence token.

2.2.1 Image Description Identification
In this task, a Softmax classifier f takes the output
x0 of the Transformer corresponding to [CLS] and
predicts which of the captions corresponds to the
image (c1, c2, or both). The loss is given by

Lossid = LCE(y, log f(x0)), (1)

where y indicates which caption corresponds to the
image and LCE is the cross-entropy loss function.

2.2.2 VGP Classification
The second task is to classify VGPs according to
the semantic relationship between the two phrases,
e.g. entailment, equivalence, etc. More details on
the semantic classes are provided in the supplemen-
tary material. Let p = {xi} denote the set of the
final encodings xi, where i ranges from the first
to the last words of the sampled phrase. Phrase
embedding e of the phrase is given by

e = MaxPooling(p). (2)

We obtain phrase embeddings e1 and e2 from c1
and c2, combining them as Arase and Tsujii (2019)

ec = [e1, e2, e1 ∗ e2, |e1 − e2|], (3)

where ∗ denotes the element-wise multiplication
and | · | gives element-wise absolute values. For
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VGP classification, we input ec to a Softmax clas-
sifier g to predict the paraphrase’s semantic class.
The loss for this task is computed as

LossVGP = LCE(t, log g(ec)), (4)

where t is the label of the VGP semantic class.

2.2.3 Attention Supervision Task
Since VGPs align directly with image regions, we
can have the model learn the visual grounding. We
explore three methods of supervising attention.

Indirect attention supervision We learn the vi-
sual grounding using the final representations of
grounded phrases and their aligned regions of inter-
est. We train a binary classifier d that takes as input
phrase embedding e as well as the representation xi
of one of the regions in img, and predicts whether
they align or not. We repeat this classification for
every grounded phrase with every region. The loss
is computed by

Lossatt =
1

nr

∑

i

LCE(zi, log d([e, xi])), (5)

where zi is the indicator of whether the phrase
refers to the i-th region, nr is the number of re-
gions, and the summation is computed over i corre-
sponding to regions in img.

Direct attention supervision Similarly to Liu
et al. (2016), we view every attention head in ev-
ery layer as a classifier that, given an input token,
outputs probabilities distributed over all the other
tokens. Our motivation is that the attention be-
tween two elements should reflect how much they
are relevant to each other, hence grounded word en-
tities should pay attention the most to their visual
grounding, and vice versa. We re-normalize the
attention so that this supervision has only a limited
impact on text-to-text and region-to-region atten-
tion. Specifically, let W denote the set of indices i
of all text tokens, and R corresponding to regions
in img. The attention αlhij for layer l, head h, from
the i-th token to j-th region can be normalized by

α̂lhij =
αlhij∑

j′∈R α
lh
ij′
, α̃lhij =

αlhij∑
j′∈W αlhij′

. (6)

The phrase grounding gives pairs (i∗, j∗) in both
W ×R and R×W (we have multiple pairs since
a phrase has multiple tokens). We use the average
of cross-entropy losses for supervision, i.e.,

Losstxt→img =
1

nlnh

∑

l,h

LCE(si∗ , log α̂
lh
i∗j),

(7)

where j ∈ R; si∗ is the indicator whether respec-
tive region j ∈ R forms pair (i∗, j∗); nl and nh are
the numbers of layers and attention heads, respec-
tively. We do the same for the loss Lossimg→txt

for region-to-text pairs using α̃lhij , where j ∈ W
and s′i∗ is the corresponding indicator. The loss for
direct attention supervision loss is given by

Lossatt = Losstxt→img + Lossimg→txt. (8)

Semi-direct attention supervision Abnar and
Zuidema (2020) introduced a transformation of
raw attention called attention rollout and showed
that it gives a more accurate quantification of
how much information one token contains about
another token than raw attention does. Therefore,
we propose to replace the raw attention with the
attention rollout in the direct supervision method.
In other words, if we denote frollout(·) as the
function that transforms raw attention vectors into
attention rollout then our semi-direct attention
supervision approach consists in replacing αlhij
with frollout(α)

lh
ij in Equations (refeq6), (7) and (8).

The final loss for the VGP fine-tuning is

Losstotal = Lossid + LossVGP + Lossatt. (9)

3 Experiments

3.1 Dataset

For our fine-tuning, we used the VGP dataset (Chu
et al., 2018), which was created from the Flickr30k-
entities dataset’s captions (Plummer et al., 2017).
As it is based on Flickr30k-entities, those phrases
come with the id of the image region that corre-
sponds to their grounding. The dataset contains
54, 313 VGPs distributed across 31, 784 images.

3.2 Fine-tuning on Downstream Tasks

To evaluate how our fine-tuning methods can im-
prove the generic representations generated by
the model, we further fine-tune it on downstream
vision-and-language tasks and compare their perfor-
mances. Results are reported in Table 1, including
the performance of the original VL-BERT model.
We also include a model fine-tuned on VGPs with-
out the attention supervision task, with only the
image description identification and VGP classifi-
cation in order to estimate the impact of forcing the
model learn visual grounding.
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VQAv2.0 Refcoco+ (Detected) Refcoco+ (Ground-truth)

Fine-tuning Method val val testA testB val testA testB

w/o Attention 66.73 67.10 74.36 57.07 77.38 81.28 71.53
Indirect Attention 66.71 65.95 72.72 54.49 77.20 80.61 70.81
Direct Attention 67.09 69.99 76.25 58.99 77.07 80.86 70.96
Semi-direct Attention 67.41 69.63 75.93 58.72 78.12 80.96 71.75

Original (Su et al., 2020) 67.73 71.60 77.72 60.99 79.88 82.40 75.01

Table 1: Comparison of our different fine-tuning methods on the VQAv2.0 and the Refcoco+ datasets. For each
column, the best fine-tuning method is underlined. Original VL-BERT results added as reference.

3.2.1 Visual Question Answering

In this task, every input is an image coupled with
a question expressed in natural language. We used
the VQAv2.0 dataset (Goyal et al., 2017). The
model is expected to answer the question with the
correct answer picked from a shared set consist-
ing of 3, 129 answers according to Anderson et al.
(2018). We trained the models on the train split
(83k images and 444k questions) and report results
on the validation split (41k images and 214k ques-
tions). We used the same experimental protocol for
prediction and evaluation as in Su et al. (2020).

Results in Table 1 indicate that the original
model is the best performing method, showing that
forcing VL-BERT to learn paraphrases before train-
ing the VQAv2.0 dataset does not contribute to
the task. However, it is still relevant to compare
the performances of different attention supervision
methods. The two worse performance are attained
by the method without attention and the Indirect,
which does not seem to improve the model’s ability
to answer the question. Both the Direct and Semi-
direct methods, which use the attention heads as
classifiers, fare better with a slight advantage for
the Semi-direct method.

3.2.2 Referring Expression Comprehension

The objective of this task is to locate the object in
the image that is designated by the input phrase.
The input is constituted of a referring expression
and an image that contains the object that is be-
ing referred to. We used the RefCOCO+ dataset
(Kazemzadeh et al., 2014) (141k expressions for
50k referred objects in 20k images). The dataset
contains two test sets, where testA contains im-
ages with multiple persons and testB with multiple
objects. We report results both with ground-truth
RoIs and with the bounding boxes detected by Yu

et al. (2018). We also used the same experimental
protocol for prediction and evaluation as in Su et al.
(2020).

As shown in Table 1, despite having been de-
signed with the referring expression task in mind,
the Indirect attention supervision method is the
worse one, even behind the method without atten-
tion. The original VL-BERT model is still the
leading performance followed by the Direct and
Semi-direct attention supervision methods. Direct
attentions works better on detected bounding boxes.
We think the reason is that direct attention tries to
link tokens with image regions similarly to how the
region detector would do it.

VL-BERT is pre-trained on 3.3M image-caption
pairs, while VGP fine-tuning is conducted on 30k
image-caption pairs only. Therefore, for both tasks,
we believe that our methods failed to beat VL-
BERT due to two reasons: catastrophic forgetting,
and small-scale attention supervision training data.
To address catastrophic forgetting, applying knowl-
edge distillation (Hinton et al., 2015) that can in-
corporate both knowledge from the pre-trained VL-
BERT model and the VGP fine-tuned model might
be effective. For the small-scale attention supervi-
sion training data issue, a possible direction could
be applying visual grounding on the conceptual cap-
tions dataset and training VL-BERT from scratch
with attention supervision on the conceptual cap-
tions dataset.

3.2.3 Visualization
To gain more insights into what models learn with
the different attention supervision methods, we vi-
sualize attention heads using Bertviz2 (Vig, 2019).

By zooming in on individual attention heads, we
noticed that when the model was fine-tuned using

2https://github.com/jessevig/bertviz
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either the Semi-direct or Direct attention super-
vision methods, every grounded entity text token
attributes more attention to image tokens to image
tokens corresponding to the visual grounding of
the entity. We also observed that even though the
Direct method seemed to have an uniform impact
on all attention heads in every layer, with the Semi-
direct method attention heads displayed varying
attention patterns across different layers. A possi-
ble explanation is that the attention rollout trans-
formation makes the attention supervision problem
slightly different across different layers whereas
it is not the case for the Direct method which im-
poses the same constraint on the raw attention in
all attention heads (and it is the raw attention we
are visualizing). More details about the visualiza-
tion and images are provided in the supplementary
materials.

4 Related Work

Vision and language pre-trained models on large
image caption datasets have been proposed such
as VisualBERT (Li et al., 2019), ViLBERT (Lu
et al., 2019, 2020), VL-BERT (Su et al., 2020;
Lu et al., 2020), LXMERT (LXM) and UNITER
(Chen et al., 2020). Those vision and language pre-
training models differ from the model architecture.
We study visually grounded attention supervision
in VL-BERT.

Clark et al. (2019); Kovaleva et al. (2019) ana-
lyzed on language pre-trained models and showed
that different attention heads share similar patterns
and behaviors. For neural machine translation, Liu
et al. (2016) proposed to use word alignment for
cross-attention supervision during decoding in a
recurrent neural network based architecture. We
work specifically on vision-and-language trans-
formers and use phrase visual grounding for at-
tention supervision in order to help the model learn
how to align phrases with their associated regions
in the images.

5 Conclusion

Motivated by similar works in language models,
we have presented three different methods that at-
tempt to guide the model in its learning of entity
grounding. We observed that the indirect method
which is the most similar to the structure used for
downstream tasks had a little or negative effect on
the performance of the model. We also found that
supervising attention heads through attention roll-

out is the best performing method nevertheless all
these methods fell short of the performances of the
model before being fine-tuned on the VGP dataset.

Despite the performance, we have shown which
attention supervision methods give better results
and more interpretable attention patterns3 (i.e., di-
rect and semi-direct attention) than others that
should not be used (i.e., indirect attention). There-
fore, we believe that our work can pave the way
for further analyses of how this mechanism could
be made to improve the performance of vision-and-
language models. For future work, we plan to study
how direct supervision methods could be applied
on some selected heads instead of supervising uni-
formly all attention heads in every layer.
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Abstract

Video-guided machine translation, as one type
of multimodal machine translations, aims to
engage video contents as auxiliary information
to address the word sense ambiguity problem
in machine translation. Previous studies only
use features from pretrained action detection
models as motion representations of the video
to solve the verb sense ambiguity, leaving the
noun sense ambiguity a problem. To address
this problem, we propose a video-guided ma-
chine translation system by using both spa-
tial and motion representations in videos. For
spatial features, we propose a hierarchical at-
tention network to model the spatial informa-
tion from object-level to video-level. Exper-
iments on the VATEX dataset show that our
system achieves 35.86 BLEU-4 score, which
is 0.51 score higher than the single model of
the SOTA method.

1 Introduction

Neural machine translation (NMT) models rely-
ing on text data (Bahdanau et al., 2015; Wu et al.,
2016) have achieved high performance for domains
where there is less ambiguity in data such as the
newspaper domain. For some other domains, espe-
cially real-time domains such as spoken language
or sports commentary, the verb and the noun sense
ambiguity largely affects the translation quality. To
solve the ambiguity problem, multimodal machine
translation (MMT) (Specia et al., 2016) focuses on
incorporating visual data as auxiliary information,
where the spatiotemporal contextual information
in the visual data helps reduce the ambiguity of
nouns or verbs in the source text data (Barrault
et al., 2018).

Previous MMT studies mainly focus on image-
guided machine translation (IMT) task (Zhao et al.,
2020; Elliott et al., 2016). However, videos are
better information sources than images because one

Source: An apple picker takes apples from the trees and places 
them in a bin.

Translation: ⼀ 个 苹 果 苹 果 从 树 上 摘 下 苹 果 ， 然 后 把 它 
们 放 在 ⼀ 个 垃 圾 桶 ⾥ 。( An apple apple takes apples from 
the trees and places them in a trash bin.)

Figure 1: An example with the noun sense ambiguity
problem in the VMT model by Wang et al. (2019).

video contains an ordered sequence of frames and
provides much more visual features. Specifically,
each frame provides spatial representations for the
noun sense disambiguation as an image in IMT task.
Besides the noun sense disambiguation provided
by one frame, the ordered sequences of frames can
provide motion representations for the verb sense
disambiguation.

The research of video-guided machine transla-
tion (VMT) starts from a large-scale video-and-
language-research dataset (VATEX) (Wang et al.,
2019). The authors also established a baseline us-
ing features from pretrained action detection mod-
els as motion representations of the video, which
addresses the verb sense ambiguity to some extent,
leaving noun sense ambiguity unsolved. Hirasawa
et al. (2020) aims to solve both the verb and noun
sense ambiguity problems by using frame-level
action, object, and scene representations. How-
ever, without using detailed spatial information
within one frame and contextual information be-
tween frames, the effect of resolving the noun am-
biguity problem is limited. For example, as shown
in Figure 1, the noun “bin” in English is wrongly
translated into “trash bin” in Chinese, which should
be translated into “box.”

In this work, we propose a VMT system to ad-
dress both the verb and the noun sense ambiguity
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Figure 2: The proposed model with spatial HAN. The text encoder and the motion encoder are the same as those
in the VMT baseline model.

problems by using both motion and spatial repre-
sentations in a video. To obtain spatial representa-
tions efficiently, we propose to use a hierarchical
attention network (HAN) (Werlen et al., 2018) to
model the spatial information from object-level to
video-level, thus we call it the spatial HAN module.
Additionally, to obtain a better contextual spatial
information, we add several kinds of middle lay-
ers between the object-to-frame layer and frame-
to-video layer in the original HAN. Experiments
on the VATEX dataset (Wang et al., 2019) show
that our VMT system achieves 35.86 corpus-level
BLEU-4 score on the VATEX test set, yielding a
0.51 score improvement over the single model of
the SOTA method (Hirasawa et al., 2020).

2 VMT with Spatial HAN

The overview of the proposed model is presented
in Figure 2, which consists of components in the
VMT baseline model (Hirasawa et al., 2020) and
our proposed spatial HAN module.

2.1 VMT Baseline Model

Hirasawa et al. (2020) proposed a strong VMT
baseline model, which consists of the following
three modules.
Text Encoder. Each source sentence is repre-
sented as a sequence of N word embeddings.
Then, the Bi-GRU (Schuster and Paliwal, 1997)
encoder transforms them into text features U =
{u1,u2, ...,uN}.
Motion Encoder. The VATEX dataset already pro-
vides motion features obtained by the pretrained
I3D model (Carreira and Zisserman, 2017) for ac-
tion recognition. A Bi-GRU motion encoder first
transforms motion features into motion representa-
tions M = {m1,m2, ...,mP}. Then, a positional
encoding (PE) layer PE (Vaswani et al., 2017) en-
courages the model use the order of the motion

features and obtain ordered motion representations
M∗, represented as:

M∗ = PE(M) (1)

Target Decoder. The sentence embedding U from
the source language encoder and the ordered mo-
tion embedding M∗ from the motion encoder are
processed using two attention mechanisms (Luong
et al., 2015):

ru,t = Attentionu,t(ht−1, U) (2)

rm,t = Attentionm,t(ht−1,M
∗) (3)

where Attention denotes a standard attention
block, ht−1 denotes the hidden state at the pre-
vious decoding time step. Text representations ru,t
and motion representations rm,t are allocated by
another attention layer to obtain a contextual vector
rc,t at decoding time step t. The contextual vector
is fed into a GRU layer for decoding:

rc,t = Attention(ht−1, [ru,t, rm,t]) (4)

yt,ht = fgru([yt−1, rc,t],ht−1) (5)

where fgru refers to the GRU decoding layer and y
denotes the output target word embedding.

2.2 Spatial HAN

After splitting one video into X frames, we
extract Y object-level spatial features Si =
{o1,o2, ...,oY} for the i-th frame. Because of
the effectiveness of the PE layer (Vaswani et al.,
2017) in the VMT baseline model, we also apply it
to the object-level spatial features.

[R1
o, R

2
o, ..., R

X
o ] = PE([S1, S2, ..., SX ]) (6)

Rio denotes the object-level spatial representations
of i-th frame.
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Figure 3: Structure of spatial HAN. Ro, Rf and rv
denote object-level, frame-level and video-level repre-
sentations, q denotes query in attention layers, ht−1

denotes the hidden state at previous decoding time step.

Werlen et al. (2018) show that HAN can cap-
ture contextual and inter-sentence connections for
translation. We propose to use HAN to extract con-
textual spatial information from adjacent frames
within one video clip. With some modifications,
we call the network spatial HAN.

The overview of spatial HAN is given by Fig-
ure 3. The object-level attention layer summarizes
information from all separated objects in their re-
spective frames:

qo,t = lo(ht−1) (7)

rif ,t = Attentiono,t(qo,t, R
i
o) (8)

Rf,t = {r1f ,t, r2f ,t, ..., rXf ,t} (9)

R∗
f,t = fd(Rf,t) (10)

where the function lo is a linear layer to obtain the
query qo,t. We adopt an attention layer to trans-
form object-level spatial featuresRio into respective
frame-level spatial features rif ,t. fd denotes the mid-
dle encoding layer to obtain contextual frame-level
spatial features R∗

f,t at time step t.
The frame-level attention layer then summarizes

representations from all ordered frames to video-
level abstraction rv,t:

qf ,t = lf(ht−1) (11)

rv,t = Attentiono,t(qf ,t, R
∗
f,t) (12)

where lf is a linear transformation, qf ,t is the query
for attention function at time step t.

2.3 Target Decoder with Spatial HAN
Features

The target decoder in our system contains three
types of inputs: text representations ru,t, motion

representations rm,t, and contextual spatial repre-
sentations rv,t from spatial HAN. The contextual
vector rc,t and the decoding GRU layer at each
decoding step t become:

rc,t = Attention(ht−1, [ru,t, rm,t, rv,t]) (13)

yt,ht = fgru([yt−1, rc,t],ht−1) (14)

3 Experiments

3.1 Dataset

The dataset we used for the VMT task is VATEX,
which is built on a subset of action classification
benchmark DeepMind Kinetics-600 (Kay et al.,
2017). It consists of 25, 991 video clips for training,
3, 000 video clips for validation, and 6, 000 video
clips for public test. Each video clip is accompa-
nied with 5 parallel English-Chinese descriptions
for the VMT task. However, the VATEX dataset
only contains parallel sentences and segment-level
motion features. To extract spatial features, we
recollected 23, 707 video clips for training, 2, 702
video clips for validation, and 5, 461 video clips for
public test, where about 10% clips are no longer
available on the Internet. Therefore, we lack 10%
spatial features for the dataset, so the experiment
comparison is inherently unfair for our method.

3.2 Settings

We directly used the implementation of Hirasawa
et al. (2020) as our VMT baseline model. For the
common settings in our proposed approach and in
the VMT baseline model, we set the maximum sen-
tence length to 40, word embedding size to 1, 024,
and the text encoder and motion encoder of both
2-layer bi-GRU with hidden dimension of 512. For
our proposed spatial HAN, we used Faster R-CNN
(Anderson et al., 2017) to extract object-level fea-
tures as the input. The hidden dimensions of both
object-level and frame-level attention layers were
512. As for the middle layer fd in spatial HAN, we
examined GRU and LSTM with the hidden dimen-
sion of 512, and spatial HAN without the middle
layer. The target decoder was a 2-layer GRU with
the hidden dimension of 512. During training, we
used Adam optimizer with a learning rate of 0.001
and early stop with patience to 10 times. The vo-
cabulary contained lower-cased English and char-
acterized Chinese tokens that occurred more than
five times in the training set, which is provided by
Hirasawa et al. (2020) whose sizes are 7, 949 for
English and 2, 655 for Chinese.
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ex. 1: English (Source): A little boy is looking for easter eggs holding an easter basket.

VMT baseline: ⼀个⼩男孩正在寻找复活节彩蛋的复活节彩蛋 (’s easter eggs)。

Our method: ⼀个⼩男孩正在寻找复活节彩蛋，并且⼿⾥拿着⼀个复活节篮⼦ (holding an 
easter basket in his hand)。

ex. 2: English (Source): A boy is shown playing around on an electric hoverboard.

VMT baseline: ⼀个男孩在电动悬浮板 (suspension board)上玩耍。 


Our method: ⼀个男孩在电动平衡⻋ (hoverboard, similar to skateboard)上玩耍着。

ex. 3: English (Source): A man throws an ax hitting the bulls eye in the snow.

VMT baseline: ⼀个男⼈把⼀把斧头扔向雪地⾥的⼀头公⽜ (an animal bull)。


Our method: ⼀个男⼈扔出⼀把斧头在雪地⾥击中靶⼼的靶⼼ (center of target)。

ex. 4: English (Source): Two plastic ducks talk and kiss while people shop in the 
background.

VMT baseline: 当⼈们在后台商店时 (in the backstage store)，两只塑料鸭和亲吻在⼀起
交谈 (talk with sb. called Kiss)。 

Our method: 当⼈们在后台商店时，两个塑料鸭⼦在聊天和亲吻 (talk and kiss)。

Figure 4: Four English to Chinese translation examples. Phrases in orange imply corresponding information and
phrases in blue imply other translation errors. Ex. 1, 2 and 3 display noun sense ambiguity errors generated by the
VMT baseline that make the translation unreasonable, whereas our model correctly translates these noun phrases.
Ex. 4 shows a sentence structure error in the VMT baseline output, where the model wrongly recognizes the verb
as the noun.

We adopt corpus-level BLEU-4 as the evaluation
metric. We reported the score of the VMT baseline
model denoted as “VMT baseline: Text+Motion,”
naming that it uses both the text and motion en-
coders. Besides the experiments with text, motion
and spatial features obtained by our methods, de-
noted as “Ours: Text+Motion+Spatial,” we also
conducted the experiments with only text and spa-
tial features denoted as “Ours: Text+Spatial.”

3.3 Results

Model Valid Test
Wang et al. (2019) - 31.10
Hirasawa et al. (2020) 35.42 35.35
VMT baseline: Text+Motion 35.55 35.59
Ours: Text+Motion+Spatial 35.71 35.82
Ours: Text+Spatial 35.75 35.86

Table 1: BLEU-4 scores of English to Chinese transla-
tion.

Table 1 shows the results of baseline and pro-
posed models on the validation and public test sets.
Our proposed system achieves 35.75 score on the
validation set and 35.86 score on the test set, show-
ing 4.76 BLEU score improvement over the VA-
TEX’s baseline model (Wang et al., 2019), and
0.51 BLEU score improvement over the best single

Model Mid Layer Valid

Text+Motion+Spatial
None 35.71
LSTM 35.50
GRU 35.54

Text+Spatial
None 35.75
LSTM 35.37
GRU 35.27

Table 2: BLEU-4 scores of our models with different
settings and middle layer choice.

model with the text corpus and action features. Be-
cause of some different settings in hyperparameters,
our VMT baseline has 0.24 BLEU score improve-
ment over the best single model.

Table 2 shows the ablation study on different
settings of middle layer choice. Without the mid-
dle layer, both the two models achieved the best
validation score. The reason may be that the PE
layer for object-level spatial features already pro-
vides the contextual information, thus the middle
layer in spatial HAN is dispensable. We notice that
our models achieve comparable BLEU score re-
sults with and without motion features. We assume
that it may come from the misalignment between
motion, spatial and text features, where nouns and
verbs in the sentences are not aligned to spatial
features and motion features strictly. Also, the
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amount of nouns in sentences are much more than
the amount of verbs in sentences, e.g., the ratios of
nouns and verbs in source training corpus are 0.29
and 0.17, thus spatial features will take on more
roles.

We further conducted a pairwise human eval-
uation to investigate how our proposed method
improves the translation. Results on 50 random
samples show that our model has 12 better transla-
tions than the VMT baseline model mainly on the
noun sense disambiguation, where the VMT base-
line model has 6 better translations mainly on the
verb sense disambiguation and syntax. This sug-
gests that our model can alleviate the noun sense
ambiguity problem. The analysis details of several
examples are given by Figure 4.

4 Conclusion

In this work, we proposed a VMT system with
spatial HAN, which achieved 0.51 BLEU score
improvement over the single model of the SOTA
method. The result also showed the effectiveness
of spatial features for the noun sense disambigua-
tion. Our future work will focus on the alignment
between text, motion and spatial representations.
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Abstract

Past work investigating what makes a Reddit
post popular has indicated that style is a far
better predictor than content, where posts con-
forming to a subreddit’s community style are
better received. However, what about diglos-
sia, when there are two community styles? In
Singapore, the basilect (‘Singlish’) co-exists
with an acrolect (standard English), each with
contrasting advantages of community identity
and prestige respectively. In this paper, I apply
stylistic approaches to predicting Reddit post
scores in diglossia. Using data from the Sin-
gaporean and British subreddits, I show that
while the acrolect’s prestige attracts more up-
votes, the most popular posts also draw on
Singlish vocabulary to appeal to the commu-
nity identity.

1 Introduction

Reddit is a popular social media platform which is
organized into different sub-forums, called subred-
dits. Users can submit original content as top-level
posts to each subreddit, which other users can then
comment on and either up- or down-vote. The most
popular posts earn tens of thousands of upvotes.

But what exactly makes a post popular? In this
paper, I apply natural language processing (NLP)
techniques to predicting the popularity of a Red-
dit post. As past research has found style to be a
strong predictor of community response (Tran and
Ostendorf, 2016), I focus on stylistic approaches
using punctuation, stopwords and part-of-speech
tags, as inspired by Bergsma et al. (2012).

In particular, I investigate how community style
endorsement (Tran and Ostendorf, 2016) applies in
diglossic Singapore. Linguists have observed that
Singapore English is organized along a sociolect
continuum from an informal basilect (Singlish), to
a formal acrolect, which has minimal features of
Singlish and is essentially Standard British English

(Gupta, 1991; Zhiming and Huaqing, 2006). Use of
the acrolect is generally associated with better edu-
cation, and therefore higher socioeconomic status.
On the other hand, despite top-down efforts from
the Singaporean government, the basilect is the di-
alect used by the average Singaporean in everyday
situations, and is closely associated with the Sin-
gaporean identity. In fact, Singaporean politicians
intentionally include Singlish phrases in election
speeches in efforts to appear more down-to-earth
and likeable. With competing appeals of identity
and prestige between the two, I find that the most
popular posts similarly use basilectal lexicon to-
gether with the acrolect to achieve the ‘best of both
worlds’.

2 Related Work

Much research has gone into investigating what
makes a social media post popular, including some
specifically focused on Reddit. Lakkaraju et al.
(2013) controlled for the content of the post by
concentrating on image submissions, which are
frequently re- or cross-posted to different commu-
nities by different authors. They found that the title
of a submission played a role in determining its suc-
cess, where titles specifically engineered towards
the community it was posted in (for example, by
using community-specific words) performed better.

Tran and Ostendorf (2016) took this a step
further and trained separate models for the con-
tent (using Latent Dirichlet Allocation (LDA))
and the style of the language used (by replacing
topic words with their part-of-speech tags). They
computed the Spearman rank correlation between
scores and post representations, and found that the
style model was much better at predicting of the
success of a post than the content model. In other
words, they found that these subreddits had their
own community style, and posts which are stylisti-
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cally more similar to it are more likely to be well-
received.

Fang et al. (2016) is the paper which is closest to
the aim of this paper. They divided posts into eight
different bins which are automatically determined
by the score distribution of that particular subreddit,
and evaluated model performance using a modified
macro F1 score (details in Section 5.1). However,
while Fang et al. (2016) focused on modelling the
conversational context of a post, I instead focus on
modelling the community style.

I take cues from Bergsma et al. (2012) to achieve
this. They grouped their features into three broad
categories: word (bag-of-words), style, and syn-
tax features. For style features, they defined style
words to be punctuation, stop-words, or Latin ab-
breviations, and replaced all non-style words with
their part-of-speech (POS) tags. Meta-features
such as average word and sentence lengths were
also used. For grammatical features, they included
a feature for every unique context free grammar
and tree substitution grammar rule, as well as Char-
niak and Johnson re-ranking features (Charniak
and Johnson, 2005). These are parse tree features
initially used for re-ranking parser output, and in-
clude aggregate features for conjunct parallelism
and lexicalized features for sub-trees and head-to-
head dependencies.

3 Approach

I adopt Bergsma et al. (2012)’s three-pronged ap-
proach to stylometry. For content features, I use
Bidirectional Encoder Representations from Trans-
formers (BERT) (Devlin et al., 2019); for style
features, I used term frequency–inverse document
frequency (TF–IDF) vectors (Sparck Jones, 1988)
with stopwords and punctuation only; for gram-
matical features, I used dependency relations and
part-of-speech (POS) tags.

3.1 BERT

BERT (Devlin et al., 2019) uses a Transformer
(Vaswani et al., 2017) encoder to achieve state-
of-the-art performance on a wide variety of tasks.
Past investigations have suggested that BERT is not
just good at capturing the meaning of sequences,
but is also sensitive to the grammar of phrases.
Goldberg (2019) ran a series of grammatical test
cases and found that BERT performed well on all;
Jawahar et al. (2019) suggested that BERT layers
encode linguistic information hierarchically, with

surface information in lower layers, syntax in the
middle, and semantic information at the top. Thus,
it seems that BERT would be able to capture both
the contents of posts as well as their style, making
it particularly suitable for this task.

To capture the content of a post, I used the un-
cased English BERTBASE model provided by Hug-
ging Face (Devlin et al., 2019; Wolf et al., 2020)
to produce post embeddings. Since BERT is de-
signed to encode sequence-level representations
(Devlin et al., 2019), I first split each Reddit post
into sentences using NLTK’s sentence tokenizer.
Then, each of the sentences were tokenized and
encoded with BERT. Finally, the embeddings for
each sentence were averaged to produce the overall
post-level representation.

3.2 Grammatical features

I used the spaCy parser to extract dependency rela-
tions and part-of-speech (POS) tags. First, I hand-
compiled the lists of relations and POS tags from
the documentation1. Then, the dependency and
POS labels for each word were replaced by their
positions in the respective lists. I also included the
POS labels of the heads of each word. Each of the
three vectors (dependency tag, POS label, and head
POS label) were L2-normalized.

3.3 Style features

I used stopword TF–IDF vectors for the style fea-
tures. The vocabulary is predefined to be either a
stop-word, using NLTK’s English stop-word list,
or a punctuation character, from Python’s inbuilt
string module. NLTK’s English stop-word list,
consists of 179 stop-words including determin-
ers (‘the’, ‘a’), pronouns (‘he’, ‘she’), preposi-
tions (‘before’, ‘after’), quantifiers (‘all’, ‘some’),
among others.

3.4 Model

As I wanted to focus on feature rather than the
model engineering, I used a tried-and-tested model
for imbalanced class distributions: random forest
classifiers. I opted to use the RandomForestClas-
sifier from sklearn. I weighted each class propor-
tional to its frequency in the dataset particular. For
each Level i, 0 ≤ i ≤ 7, these are:

weightLeveli =
#samplesLevel0
#samplesLeveli

1https://spacy.io/api/annotation
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4 Data

4.1 Data collection

As my aim was to investigate the stylistic char-
acteristics of communities, I selected a subreddit
with a distinctive linguistic style – the Singaporean
(SG) subreddit.2 Singaporeans speak a distinctive
flavour of English dubbed “Singlish”, which has
drawn much linguistic interest as the lingua franca
of different cultural communities. It serves as the
vernacular in the diglossic Singapore, where the
Standard British English serves as the acrolect.

Therefore, for comparison, I also select the
United Kingdom (UK) subreddit.3 Although the
population sizes of the two countries are quite dif-
ferent (roughly 5 million Singaporeans versus over
60 million UK citizens), I found that the subreddit
sizes were similar, with roughly 300k participants
in SG and 400k participants in UK.

Data was scraped from the two subreddits by
querying the Pushshift API.4 3 years’ worth of
posts, ranging from 1 January 2017 to 31 Decem-
ber 2019, were collected for each subreddit. To
ensure each post had sufficient linguistic content, I
excluded any posts containing less than 101 char-
acters.

4.2 Annotations

I followed the annotation procedure described in
Fang et al. (2016). First, all posts with a score
below 2 were labelled as the lowest class, Level
0. This threshold was selected for the base class
as all new posts are initialized with a score of 1
(Fang et al., 2016). For the next level, the median
of the remaining posts was computed and all posts
with a score lower than the median labelled as 1.
This process is repeated for each of the levels 2-
6. Finally, the remaining posts are labelled as the
highest class, Level 7. For clarity, the annotation
function is given as pseudocode in the appendix
(Algorithm 1). The distribution for each subred-
dit along with the respective class thresholds are
summarized in Table 1.

5 Quantitative evaluation

5.1 Evaluation metric

I also replicate the evaluation procedure described
in Fang et al. (2016). First, the F1 score for each of

2reddit.com/r/singapore
3reddit.com/r/unitedkingdom
4https://github.com/pushshift/api

Level r/singapore r/UK
Size Cap Size Cap

0 15,633 2 9246 2
1 4797 14 2466 14
2 2394 36 1246 64
3 1200 74 633 191
4 620 151 318 531
5 310 284 159 1086
6 156 507 79 1762
7 156 - 80 -
Total 25,266 14,227

Table 1: Distribution of classes for both subreddits.

the Levels 1-7 were computed, treating each sample
with a score below that level as a negative example.
Then, the final score for that model is obtained by
averaging over the F1 scores for each level. Fang
et al. (2016) had designed this evaluation metric
such that the higher levels, which are of greater in-
terest, are weighted more highly. For example, for
the SG score distribution, a model which predicts
only Level 1s would obtain an F1 of 0.0789, while
a model which predicts only Level 8s would obtain
an F1 of 0.176. Level 0 is excluded in computing
the average, as using the scheme described above
the F1 score would always be 1.

5.2 Results

In total, I tried six different combinations of the
three different types of features. First, I tried each
of the style features, BERT embeddings, and gram-
matical (POS and dependency labels) features sep-
arately. Then, I tried individually adding the other
two types to the weakest baseline, which was the
grammatical model. Finally, I tried a combination
of all features together. I used stratified five-fold
cross-validation and report the average modified F1
score across all folds. The results can be found in
Table 2.

In all cases, the models clearly out-performed
the simplistic baseline of 0.176 for a model which
predicts only the highest class. Although the scores
for each model are similar, the results are consis-
tent across the two sub-reddits, r/Singapore (SG)
and r/UnitedKingdom (UK). In both cases, BERT
performs the best out of the three baselines, and
indeed was improved only slightly by 0.02 for SG
when other features were added, and not at all for
UK.

Between SG and UK, all models performed sig-
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nificantly better on the UK dataset. This is possibly
due to there being a more consistent group style for
UK, compared to the diglossic situation in Singa-
pore. It could also be due to the tools used (such as
BERT and spaCy) being trained mostly on standard
American / British English, and hence performing
better on the UK subreddit.

The results are not directly comparable to those
achieved by Fang et al. (2016), due to differences in
the data used. However, comparing the trends in F1
score across levels reveals some interesting differ-
ences. In Fang et al. (2016), the model performed
better on lower levels, with an average of nearly
0.60 F1 on the lowest 3 levels, and an average of
under 0.50 F1 on the highest 3.

However, in this paper, the models used per-
formed better at higher levels, as can be seen from
Figure 1. Though the models start with roughly
similar performance for Levels 1 and 2, they grad-
ually diverge as the level increases, for a gap of
0.085 F1 points at the highest. As we will see in
the next section, a diglossic situation with two com-
peting dialects makes it a bit more difficult to craft
an effective style.

SG UK
Style 0.748 0.788
BERT 0.749 0.793
Gram. 0.733 0.781
Gram. + style 0.750 0.792
Gram. + BERT 0.751 0.793
All 0.751 0.793

Table 2: F1 scores for each subreddit for each model.

Figure 1: F1 scores for each individual level for the
model with all features. The numerical results are given
in the appendix (Table 6.)

6 Qualitative evaluation and analysis

In this section, I look at inferences that can be
gained by looking at the most important features
from each model. While BERT appears to be good
at capturing the grammatical relations, it is not
as good with more complex relationships. I also
find overlaps between the grammatical and stylistic
features, with the more specific stylistic features
performing better. Finally, I investigate grammati-
cal and lexical similarities between SG posts and
the acrolect and basilect respectively. I find that
while the most popular posts are most grammati-
cally similar to the acrolect, they also use the most
lexicon from the basilect.

6.1 Feature importances

The top 10 non-BERT features, i.e. either a POS,
dependency, head POS tag, or a stopword or punc-
tuation for SG and UK are tabulated in Table 3 and
4 respectively. The POS tags of head words (hence-
forth referred to as head-POS) are differentiated
from the POS tags of words with a ‘head ’ prefix.

6.1.1 Does BERT capture grammatical
features?

Although model performance improved only a lit-
tle when BERT embeddings were added to gram-
matical features, the most informative features
were completely taken over by BERT features.
For SG, the highest ranking non-BERT feature
was ‘head ADV’ at 15th place, with the next one,
‘head SCONJ’, coming in 10 places lower. For
UK, the top two were at 5th (‘head X’) and 30th
(‘CCONJ’) place respectively. This does suggest
BERT is capable of capturing the grammar of a
sentence in its embedding, as it seems to have re-
placed grammatical features when it was added to
the model.

Of particular note are the changes in the individ-
ual features’ rankings. In the grammatical features
only model, the top features are occupied by depen-
dency and POS tags; the highest ranking head-POS
features for SG and UK are ‘head NOUN’ and
‘head VERB’ at 12th and 7th place respectively.
The relatively higher rankings of head-POS tags
after adding BERT suggest that it might not be
as good at capturing more complex grammatical
relationships.
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Rank Gram. only Style only Gram + Style Gram + BERT (position)
1 punct . . head ADV (15)
2 PUNCT the ? empty dep relation (22)
3 ROOT ? PUNCT head SCONJ (25)
4 DET to punct prt (42)
5 advmod , ROOT head PUNCT (48)
6 poss and the dative (50)
7 aux i advmod DET (52)
8 NOUN a head VERB poss (104)
9 det of AUX PUNCT (118)
10 ADJ in DET PART (128)

Table 3: Top 10 non-BERT features for selected models on the SG dataset.

Rank Gram. only Style only Gram + Style Gram + BERT (position)
1 amod . / head X (5)
2 ROOT / . CCONJ (30)
3 NOUN the ROOT PART (46)
4 DET to head VERB amod (48)
5 PUNCT a punct cc (57)
6 punct i i conj (137)
7 head VERB and AUX advmod (173)
8 PRON , head NOUN relcl (174)
9 aux ” PUNCT SPACE (176)
10 cc ? amod NOUN (220)

Table 4: Top 10 non-BERT features for selected models on the UK dataset.

6.1.2 Overlap between grammatical and style
features

There is a noticeable overlap between grammatical
and style features, where the top-ranked features
for grammatical and style mirror each other. For
example, punctuation ranks among the most infor-
mative style features, particularly for UK where
they occupy 5 out of the top 10 spots despite mak-
ing up only 15% of the roughly 200 style features.
Among the 100 grammatical features, the depen-
dency rule ‘punct’ and POS tag ‘PUNCT’ also rank
highly. A similar trend can be seen for determin-
ers, which rank highly as both style features (in
the form of the stopwords ‘the’ and ‘a’) as well
as grammatical features (in the form of the depen-
dency rule ‘DET’). This possibly contributes to the
very similar performances of the style and gram-
matical models.

However, it appears that the more specific style
features generally perform better. When grammati-
cal and style features were combined for SG, the
specific punctuation characters ‘.’ and ‘?’ appear
before ‘PUNCT’ and ‘punct’. Similarly, the de-

terminer ‘the’ appears before the dependency rule
‘DET’. This might explain the difference between
the individual style and grammatical models, where
the style model performed better on both the SG
and UK datasets. Although the top features from
both form a common subset, the more specific fea-
tures found in the style model are better predictors.

6.2 Grammatical closeness

Since the acrolect should be close to Standard
British English, I decided to assess this by first
computing the Euclidean centre of Level 7 posts
from UK. Then, for each of the Levels 0-7, I com-
puted the average Euclidean distances from Singa-
porean posts to the UK centre. For comparison, I
also compute the average distances for UK posts.
The distances for each of the three types of features
are tabulated in Table 5. Note that, due to different
dimensions and normalization, the distances for
each feature are not directly comparable to that of
other features.

Across all three features, Level 0 SG posts are
generally less similar to the UK centre than Level
0 UK posts, possibly due to greater presence of the
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basilect. However, at the top level, SG posts are
even more similar than the original posts the centre
was calculated from. This suggests that indeed the
Standard British English acrolect holds more pres-
tige and draws greater community endorsement.

Separately, the consistent trend in the Style col-
umn where posts from higher levels are more sim-
ilar to the Level 7 centre than lower level posts
supports the hypothesis that there is a community
style and posts which are more similar to it receive
greater community endorsement.

6.3 Lexical closeness

We can see that stylistically and grammatically, the
most popular posts from SG are very similar to
British English. However, what about lexically?
Singlish has a vocabulary full of borrowed words
and phrases from the different cultural groups of
Singapore. As mentioned earlier, politicians often
try to build rapport by sprinkling speeches with
Singlish terms. Would we observe something simi-
lar on Reddit? I decide to investigate the prevalence
of Singlish terms by level.

Compiling a written Singlish lexicon can be very
tricky due to several reasons, including different
possible romanizations and lexical change in loan-
words (when the word’s meaning changes). With
this in mind, using my experience growing up in
Singapore, I compiled a list of 56 everyday Singlish
words and phrases, including alternative spellings
where practical. I excluded phrases with specific
niches, like the names of foods or military terms
(common in Singapore where all males have to en-
list for 2 years). The full list of phrases used is
included in the appendix.

The average number of such Singlish words or
phrases used per 1000 words per post for each of
the Levels 0-7 is shown in Figure 2. The results
confirm the earlier hypothesis that effective use
of Singlish words helps earn more community en-
dorsement. We see a somewhat U-shape in the
frequency of Singlish terms; the least popular posts
include more Singlish than the middlingly popular
posts, likely due to greater influence of the basilect,
while posts on the highest levels utilise Singlish
vocabulary in tandem with the acrolect to achieve
the most popularity.

A reading of the Level 7 texts including Singlish
terms confirm that this is indeed the case. For ex-
ample, one post is written in very eloquent standard

English5, but includes Singlish quotes as well as
specific, appropriate Singlish terms (with English
explanations in brackets).

Figure 2: Average number of everyday Singlish terms
per 1000 words. The numerical results are given in the
appendix (Table 7).

7 Future Work

In the future, I would like to extend this work by
including context-free grammar (CFG) features us-
ing CoreNLP to compare the use of Singlish gram-
matical features, in order to further confirm or dis-
prove the theory that the most popular posts use the
acrolect, i.e. the least grammatical features from
Singlish, despite having the highest prevalence of
Singlish terms.

8 Conclusion

In summary, in this paper, I look at the linguistic
factors that predict the community response of Red-
dit posts. I collected data from two Reddit subfo-
rums, the Singaporean and UK subreddits. Follow-
ing Bergsma et al. (2012), I extracted three types of
features, broadly grouped as grammatical, stylistic
and content features. The models generally show
good results, with the stylistic and grammatical
models performing comparable to state-of-the-art
BERT embeddings.

I investigate also the hypothesis that posts con-
forming to a group’s style receive greater commu-
nity endorsement (Tran and Ostendorf, 2016). I
show that in a diglossic situation, although the
acrolect draws greater prestige, the most successful
posts draw on features from the basilect in order to
connect with the audience.

5https://www.reddit.com/r/singapore/comments/8gfewd/
the singaporean male version of metoo an exguards/
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Level BERT Style Gram.
SG UK SG UK SG UK

0 4.45 4.35 0.875 0.847 0.704 0.715
1 4.40 4.31 0.874 0.845 0.688 0.697
2 4.33 4.34 0.877 0.832 0.678 0.716
3 4.39 4.34 0.848 0.830 0.676 0.733
4 4.17 4.35 0.826 0.826 0.632 0.722
5 4.11 4.20 0.808 0.829 0.629 0.711
6 3.79 4.18 0.797 0.814 0.591 0.722
7 3.55 3.91 0.751 0.800 0.513 0.659

Table 5: Average Euclidean distances from the UK Level 7 centre.
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327–337, Montréal, Canada. Association for Com-
putational Linguistics.

Eugene Charniak and Mark Johnson. 2005. Coarse-
to-fine n-best parsing and MaxEnt discriminative
reranking. In Proceedings of the 43rd Annual Meet-
ing of the Association for Computational Linguis-
tics (ACL’05), pages 173–180, Ann Arbor, Michi-
gan. Association for Computational Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Hao Fang, Hao Cheng, and Mari Ostendorf. 2016.
Learning latent local conversation modes for pre-
dicting comment endorsement in online discussions.

In Proceedings of The Fourth International Work-
shop on Natural Language Processing for Social Me-
dia, pages 55–64, Austin, TX, USA. Association for
Computational Linguistics.

Yoav Goldberg. 2019. Assessing BERT’s Syntactic
Abilities. arXiv e-prints, page arXiv:1901.05287.

Anthea F Gupta. 1991. Acquisition of diglossia in sin-
gapore english. Child language development in Sin-
gapore and Malaysia, pages 119–160.

Ganesh Jawahar, Benoı̂t Sagot, and Djamé Seddah.
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A Appendices

A.1 Annotation algorithm

Algorithm 1 Annotator
Input: An array ‘score’ containing the number
of votes for each post
Output: Another array ‘classes’ containing the
annotations

get indexes(array, condition)← function which
returns the list of indexes x in the array for which
array[x] satisfies condition

class indexes← new array[8]
class indexes[0]← get indexes(score, x ≤ 1)
rest of posts← get indexes(score, x > 1)
for i, 1≤ i ≤ 7 do

median← median score of rest of posts
class indexes[i] ← get indexes(score, x <

median)
rest of posts← get indexes(score, x ≥ me-

dian)
end for

class indexes[7] = rest of posts
classes← new array[len(score)]
for i, 0≤ i ≤ 7 do

classes[class indexes[i]] = i
end for

A.2 Extra numerical results

SG UK
Level 1 0.721 0.728
Level 2 0.727 0.724
Level 3 0.711 0.743
Level 4 0.734 0.768
Level 5 0.746 0.813
Level 6 0.781 0.851
Level 7 0.835 0.920

Table 6: F1 scores for each individual level for the
model with all features.

Level # terms (per 1000)
0 0.115
1 0.108
2 0.0996
3 0.0906
4 0.128
5 0.0923
6 0.163
7 0.225

Table 7: Average number of everyday Singlish terms
per 1000 words.

A.3 List of Singlish words
‘abuden’, ‘act blur’, ‘agak’, ‘ai’, ‘aiya’, ‘alamak’,
‘ang mo’, ‘ang moh’, ‘atas’, ‘bao toh’, ‘barang’,
‘bo’, ‘bodoh’, ‘bojio’, ‘boliao’, ‘botak’, ‘chao’,
‘chee bai’, ‘chim’, ‘cheem’, ‘chio bu’, ‘chiong’,
‘chope’, ‘gahmen’, ‘heng’, ‘huat’, ‘jialat’, ‘jio’,
‘kena’, ‘kiasu’, ‘la’, ‘lah’, ‘lao’, ‘leh’, ‘lepak’,
‘liao’, ‘liddat’, ‘mafan’, ‘mah’, ‘meh’, ‘paiseh’,
‘ps’, ‘paktor’, ‘sabo’, ‘sia’, ‘sian’, ‘siao’, ‘simi’,
‘tahan’, ‘ulu’, ‘wa’, ‘walao’, ‘wayang’, ‘ya’, ‘yah’
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Abstract

Natural language generation systems have wit-
nessed important progress in the last years,
but they are shown to generate tokens that are
unrelated to the source input. This problem
affects computational models in many NLP
tasks, and it is particularly unpleasant in multi-
modal systems. In this work, we assess the rate
of object hallucination in multimodal conver-
sational agents playing the GuessWhat?! ref-
erential game. Better visual processing has
been shown to mitigate this issue in image cap-
tioning; hence, we adapt to the GuessWhat?!
task the best visual processing models at dis-
posal, and propose two new models to play
the Questioner agent. We show that the new
models generate few hallucinations compared
to other renowned models available in the lit-
erature. Moreover, their hallucinations are less
severe (affect task-accuracy less) and are more
human-like. We also analyse where hallucina-
tions tend to occur more often through the di-
alogue: hallucinations are less frequent in ear-
lier turns, cause a cascade hallucination effect,
and are often preceded by negative answers,
which have been shown to be harder to ground.

1 Introduction

Recent years have witnessed important progress in
the quality of the output generated by deep neu-
ral network architectures. Although it is not easy
to evaluate the output of natural language genera-
tion systems, some features clearly deteriorate their
value, making these systems hardly employable
in real-world scenarios. Crucially, state-of-the-art
models are shown to generate words that are not
consistent with the source inputs. This issue is
generally referred to as hallucination.

This phenomenon applies to different NLP tasks
and neural architectures. It has been explored in
summarization (Kryscinski et al., 2020; Nan et al.,
2021), machine translation (Koehn and Knowles,

is it a dog ? no 
is it a chair ? no 
is it a fridge ? no
is it a cup ? yes
on the right? yes

is it a person ? no 
is it a skateboard ? no

is it a car ? yes 
is it white ? no 
is it green ? no

Figure 1: Hallucinations generated by the GDSE model
playing GuessWhat?!. Note that the dialogue on the
right also contains a question referring to an attribute
(green) that is not related to the source image. In this
paper, however, we focus only on entity hallucination.

2017; Nguyen and Chiang, 2018), and image cap-
tioning (Rohrbach et al., 2018). Hallucinating enti-
ties is particularly harmful in multimodal systems.
MacLeod et al. (2017) study how blind people expe-
rience automatically generated captions describing
images. The authors found that many participants
in this study value more the correctness of the cap-
tion compared to a fine-grained description of the
image, thus providing evidence that hallucination
represents a major issue.

The problem of generating hallucinated entities
is thus a relevant challenge for the community, but
it is an understudied problem in multimodal con-
versational agents. Apart from sharing similarities
with the image captioning task (e.g., generating
tokens that are grounded in the image), visual di-
alogues have the peculiarity of being based on a
complex dialogic structure. In this paper, we com-
pare the output of neural models playing the Guess-
What?! referential visual game (de Vries et al.,
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2017). We consider different models based on
the encoder-decoder framework (Sutskever et al.,
2014), and we compare different architectures, with
different processing of the visual input, to serve
as the Encoder and Decoder modules. We adapt
two multimodal models based on Transformers
(Vaswani et al., 2017) to play the GuessWhat?!
Questioner agent, and we highlight their strengths
and weaknesses with a focus on the issue of hal-
lucination. Examples of GuessWhat?! dialogues
containing hallucinations are reported in Figure 1.
We use the CHAIR metric proposed in Rohrbach
et al. (2018) to quantify the number of hallucina-
tions in the generated dialogues.

Our results confirm that hallucination heavily
affects the output of generative models playing
GuessWhat?!, but pre-trained Transformers (used
both as Encoder and Decoder) show a consistent
improvement in this respect. Moreover, our results
reveal that the rate of object hallucination increases
across the dialogue turns. Hallucinations frequently
appear in consecutive turns and are more likely to
occur after negative answers. Finally, we carry
out an in-depth analysis in dialogues produced by
human annotators. The main contributions of this
paper can be summarized as follows:

• We investigate the issue of hallucination, an
understudied problem in visual dialogue, by
taking GuessWhat?! as a test-bed.

• We studied to what extent fine-grained visual
representations reduce hallucinations in multi-
modal models.

• We show the importance of computing the
CHAIR metric on models’ and humans’ text,
and use this metric to guide a qualitative anal-
ysis to better understand the results.

2 Related Work

Hallucination in Language-only Tasks.
Kryscinski et al. (2020); Nan et al. (2021)
highlight the problem of factual inconsistency
in abstractive summarization. This phenomenon
occurs when a computational model generates a
summary containing entities that do not appear
in the source document. Kryscinski et al. (2020)
propose a weakly-supervised, model-based
approach to verify factual consistency and identify
conflicts between source documents and generated
summaries. Nan et al. (2021) design a set of

new metrics to quantify the degree of entity
hallucination in summaries. Interestingly, the
authors found that ground truth summaries in the
training data contain hallucinations. Similarly
to these works, we focus on entity hallucination,
and on inconsistencies with respect to the visual
context, instead of the linguistic one.

Neural machine translation systems are also
prone to such kinds of hallucinations, i.e. trans-
lations that are grammatically correct, but crucially
unrelated to the source input (Koehn and Knowles,
2017; Nguyen and Chiang, 2018). A recent work
(Müller et al., 2020) found that neural machine
translation systems evaluated on out-of-domain test
sets generate translations that are fluent but unre-
lated to the source sentence. These works focus on
words belonging to different parts of speech, like
proper nouns, adjectives, and verbs, while we only
focus on entity hallucination and leave for future
work the analysis of attribute hallucination.

Hallucination in Vision & Language. The gen-
eration of hallucinations affects also Multimodal
Machine Translation systems. Lala and Specia
(2018) highlight the issues that may arise while
translating ambiguous or polysemic words given a
visual context. Rohrbach et al. (2018) investigate
the problem of object hallucination in image cap-
tioning, the closest task to our work. The authors
propose a new metric (CHAIR) to quantify the
extent to which machine-generated captions con-
tain hallucinated entities. The authors found over-
reliance on language priors as a plausible cause
of hallucinated tokens in the generated captions.
Moreover, they found that models with a more reli-
able visual representation hallucinate less, suggest-
ing that a robust processing of the visual input is
important for reducing hallucination. We use the
CHAIR metric to evaluate different models, and
look at the role of different visual representations.
A recent work (Xiao and Wang, 2021) investigates
the relationship between hallucinations and pre-
dictive uncertainty in image captioning and data-
to-text generation. The authors found that higher
predictive uncertainty leads to a higher chance of
hallucinating entities. We leave this kind of analy-
sis for future work.

Visual Dialogues Evaluation. Among the visual
dialogue datasets and tasks available (e.g., de Vries
et al. 2017; Mostafazadeh et al. 2017; Das et al.
2017; Haber et al. 2019), we chose a task-oriented
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referential game, GuessWhat?! (de Vries et al.,
2017). Task-oriented conversational agents gen-
erate dialogues to reach a goal, thus the presence of
hallucinations considerably hurt the performance
of such systems. We chose GuessWhat?! because
of the simplicity of its dialogue structure (polar
question-answer pairs). Recent work in the litera-
ture highlights the inability of the accuracy in the
guessing task to serve as a good proxy of the qual-
ity of the underlying dialogues, with a particular
focus on surface-level features such as the presence
of repetitions (Shekhar et al., 2019; Murahari et al.,
2019; Testoni et al., 2019). We extend this claim
by looking at hallucination, an under-studied but
crucial issue in Visual Dialogues.

3 Task and Metrics

Task The GuessWhat?! game (de Vries et al.,
2017) is a cooperative two-player game in English
based on a referential communication task where
two players collaborate to identify a referent object
in an image. This setting has been extensively used
in human-human collaborative dialogue (e.g., Clark
1996; Yule 2013). GuessWhat?! is an asymmetric
game involving two human participants who see a
real-world image. One of the participants (the Ora-
cle) is secretly assigned a target object within the
image, and the other participant (the Questioner)
has to guess it by asking binary (Yes/No) questions
to the Oracle. The GuessWhat?! dataset is com-
posed of more than 150k human-human dialogues
containing an average of 5.3 questions in natural
language created by annotators playing the game
on MSCOCO images (Lin et al., 2014). Success-
ful dialogues consist of around 135K dialogues
grounded on about 63K unique MSCOCO images.

Metrics The first metric we consider is the raw
accuracy in guessing the target object among the
list of candidate objects. Secondly, to quantify the
extent to which different models hallucinate enti-
ties during the dialogue, we compute the CHAIR
metric (Caption Hallucination Assessment with Im-
age Relevance) proposed in Rohrbach et al. (2018)
for image captioning. This metric has two vari-
ants: CHAIR-i (per-instance), defined as the num-
ber of hallucinated objects in a sequence divided
by the total number of objects mentioned, and
CHAIR-s (per-sentence), defined as the number of
sequences with at last one hallucinated entity di-
vided by the total number of sequences. We use the
same two variants of the CHAIR metric to evaluate

the dialogues generated by models playing Guess-
What?!. This metric exploits the 80 MSCOCO
objects which appear in the MSCOCO segmenta-
tion challenge, extended with entities mentioned in
ground-truth captions, together with a list of syn-
onyms for MSCOCO objects. We compute CHAIR
for both machine-generated and human dialogues
from the GuessWhat?! test set (referred to as HU-
MAN in the following). Computing CHAIR on
human dialogues allows us to identify possible mis-
classification in the MSCOCO annotation and es-
tablish an upper bound for models’ performance.

4 Models

To allow for a fair comparison of different Ques-
tioner models, we use the same Oracle and Guesser
models in all our experiments. Following de Vries
et al. (2017), we employ distinct computational
models for each of the three key tasks: answering
questions (Oracle), guessing the target (Guesser),
and asking questions (Questioner).

4.1 Oracle

We use the baseline Oracle model proposed in
de Vries et al. (2017). The model receives as input
the embedding of the target object category, its spa-
tial coordinates, and the question to be answered
encoded by a dedicated Long-Short-Term Mem-
ory (LSTM) network. These three embeddings are
concatenated and fed to a Multi-Layer Perceptron
(MLP) that gives an answer (Yes, No, N/A).

4.2 Guesser

We use the state-of-the-art multimodal Guesser
model proposed in Greco et al. (2021a) (Figure 2
bottom).1 This Guesser is based on LXMERT
(Tan and Bansal, 2019), a powerful multimodal
Transformer model that is fine-tuned on the Guess-
What?! guesser task using successful human dia-
logues. LXMERT represents the visual input by the
set of position-aware object embeddings for the 36
most salient regions detected by a Faster R-CNN
network, and the text by position-aware randomly-
initialized word embeddings. LXMERT has self-
attention and cross-attention layers to merge and en-
hance the information coming from the two modal-
ities to create a joint representation. LXMERT
uses a special tokens CLS and the embedding cor-
responding to this token is considered a represen-
tation of the given sequence. LXMERT has been

1https://github.com/claudiogreco/aixia2021
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Figure 2: Skeleton architecture of the Questioner and
Guesser models.

pre-trained on five tasks.2 For the Guesser task, can-
didate objects are represented by the embeddings
obtained via an MLP starting from the category and
spatial coordinates of each candidate object. The
representations so obtained are used to compute dot
products with the embedding corresponding to the
special token [CLS]. The scores of each candidate
object are given to a softmax classifier to choose
the object with the highest probability.

4.3 Questioner Models

In order to study the effect of a different (and more
fine-grained) processing of the visual input, we
compare two models already presented in the liter-
ature (BL and GDSE) with two Transformer-based
multimodal models (LXMERT-GDSE and VLP)
that we adapt to play the GuessWhat?! Questioner
task. The architecture shared by the Questioner
models is depicted in Figure 2. All the models dis-
cussed in the paper (except for BL) are trained to
perform both the Questioner and the Guesser tasks
in a multi-task fashion. For a fair comparison, we
compute the accuracy in the guessing task using the
same Guesser and Oracle models described above,

2Masked cross-modality language modeling, masked ob-
ject prediction via RoI-feature regression, masked object pre-
diction via detected-label classification, cross-modality match-
ing, and image question answering

and we use the Questioner models only to generate
questions.

BL. The first model we consider is the base-
line Questioner model proposed in de Vries et al.
(2017). This model is implemented as a Recurrent
Neural Network (RNN) with a transition function
handled with LSTM, on which a probabilistic se-
quence model is built with a Softmax classifier. At
each time step in the dialogue, the model receives
as input the raw image and the dialogue history and
generates the next question. The image is encoded
by extracting its VGG-16 features (Simonyan and
Zisserman, 2014). We consider the version of the
model trained in a supervised learning fashion.

GDSE. The Visually-Grounded Dialogue State
Encoder (GDSE) model was proposed in Shekhar
et al. (2019). We consider the version of GDSE
trained in a supervised learning fashion. The model
uses a visually grounded dialogue state that takes
the visual features of the input image and each
question-answer pair in the dialogue history to cre-
ate a shared representation used both for generating
a follow-up question (QGen module) and guessing
the target object (Guesser module) in a multi-task
learning scenario. More specifically, the visual fea-
tures are extracted with a ResNet-152 network (He
et al., 2016) and the dialogue history is encoded
with an LSTM network. The QGen component is
optimized with the Log Likelihood of the training
dialogues, and the Guesser computes a score for
each candidate object by performing the dot prod-
uct between a visually grounded dialogue state and
each object representation. In this work, we use
GDSE only to generate dialogues, since the guess-
ing part relies on the Guesser described above.

LXMERT-GDSE. Similarly to GDSE, we im-
plement a new Questioner model based on the
LXMERT architecture described above. In this
model, we take the representation corresponding to
the [CLS] token as the hidden dialogue state and,
similarly to GDSE, we feed this representation as
input to both a QGen module (an LSTM-based de-
coder) and a Guesser module. We fine-tune the
pre-trained LXMERT on GuessWhat?!. Again, we
use this model only to generate dialogues.

VLP. Finally, we develop a Questioner model
based on VLP (Zhou et al., 2020), a powerful mul-
timodal Encoder-Decoder Transformer architecture
pre-trained on image captioning. VLP is a single
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CHAIR-s CHAIR-i
BL 29.53 27.32

GDSE 30.31 16.57
LXMERT-GDSE 14.98 8.83

VLP 10.78 6.60
HUMAN 7.45 4.11

Table 1: CHAIR results on human and machine-
generated dialogues on the GuessWhat?! test set.

stream unified encoder-decoder architecture: its
Transformer backbone is the same as BERT-base
(Devlin et al., 2019). VLP represents each input
image as 100 object regions extracted from a vari-
ant of Faster RCNN (Ren et al., 2016) pre-trained
on Visual Genome (Krishna et al., 2017; Anderson
et al., 2018), together with the class likelihood on
the 1600 object categories defined in Anderson et al.
(2018) as region object labels. During pre-training,
the model uses a masked language modelling ob-
jective. During inference, in order to generate a
sequence token-by-token, VLP masks sequentially
each token by appending a special token [SEP] at
the end of the sequence. VLP is trained to predict a
[STOP] token at the end of the sequence, so it can
stop the generation of new tokens before reaching
the maximum length. We fine-tune the version of
VLP pre-trained on image captioning to play the
GuessWhat?! game.3

Implementational Details We evaluate BL,
GDSE, LXMERT-GDSE, and VLP on the Guess-
What?! test set. We let the models generate 5
question-answer pairs for each game (i.e., simi-
lar to the average number of questions asked by
human players in GuessWhat?!). Note that VLP
is trained to predict a [STOP] token, so it can stop
asking questions before reaching the 5th turn. We
found that, on average, VLP asks 4 questions in a
dialogue. We compare the models with respect to
their accuracy in the guessing game and the qual-
ity of the generated dialogues, with a focus on the
phenomenon of hallucination.

5 Experiments and Results

5.1 CHAIR Results
We compare different models against the CHAIR
metric. As Table 1 shows, BL and GDSE gener-

3Simultaneously, Suglia et al. (2021) have adapted VLP to
the GuessWhat?! game; they use a different training regime,
and they focus on VQA as a downstream task via transfer
learning.

ate many hallucinated entities, both at the sentence
and instance level. On the other hand, LXMERT-
GDSE and especially VLP generate less than half
of the hallucinations of the previous models. Re-
call that LXMERT-GDSE encodes the image with
36 regions. The best model, VLP, encodes each
image region together with the class likelihood on
1600 object categories, so it has access to a suit-
able source of information to ground the generated
tokens in the image. The fine-grained visual in-
put representation of these two models leads to a
consistent reduction in hallucinations, confirming
that a strong visual processing is critical for avoid-
ing hallucination (Rohrbach et al., 2018).4 Table
1 shows that also dialogues generated by human
players contain some hallucinated entities accord-
ing to the CHAIR metric, thus establishing an upper
bound for models’ performance. VLP is closest to
the ceiling set by humans.

5.2 Performance-based Analysis

We expect the Guesser to perform better when the
dialogues contain few hallucinations. In fact, as
reported in Table 2, the best result is obtained with
human dialogues. However, among the machine-
generated dialogues, we found that the baseline
model (which is shown to generate many hallu-
cinations – Table 1) outperforms the others. We
believe that this result is due to the over-reliance
of the baseline model on location questions, as
highlighted in Shekhar et al. (2019). These ques-
tions, though are helpful for the model to identify
the target object, make its dialogues sound unnatu-
ral when asked too often. We think this confirms
the failure of the overall accuracy to serve as a
proxy for the quality of the generated dialogues, as
recently highlighted in Shekhar et al. (2019) and
Testoni and Bernardi (2021).

In order to understand this discrepancy between
accuracy and hallucination, we compared dialogues
that contain at least one hallucinated entity with
dialogues not affected by this issue. We found
that the presence of hallucinations clearly deterio-
rates the accuracy in the game: as shown in Table
2, dialogues containing at least one hallucinated
token lead to lower accuracy in guessing the tar-
get object compared to games that do not contain

4We also computed the CHAIR metric for the model pro-
posed in Suglia et al. (2020). We obtained from the authors
the dialogues generated on a subset of the GuessWhat?! test
set (corresponding to around 39% of the test set). Accuracy:
40.69%. CHAIR-s: 22.88, CHAIR-i: 12.41.
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Test Set Accuracy (5Q) w/o hallucination with hallucination
BL 52.36 55.39 45.15

GDSE 44.85 47.26 39.29
LXMERT-GDSE 48.53 49.62 42.38

VLP 47.55 48.18 42.34
HUMAN 69.17 69.49 64.16

Table 2: Accuracy reached by the Guesser model when receiving as input dialogues generated by different Ques-
tioner models playing with the same Oracle or full human dialogues from the GuessWhat?! test set. ‘w/o hallucina-
tion’ refers to the accuracy on the subset of games that do not contain any hallucinated tokens. ‘with hallucination’
refers to the accuracy on the subset of games that contain at least one hallucination.
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Figure 3: Per-turn CHAIR-i score for machine-
generated and human dialogues. Models generate 5
questions. Hallucinated tokens tend to show up less
in earlier turns.

hallucinations. Interestingly, the drop in accuracy
between the two settings reveals a degree of sever-
ity from the severe hallucination encountered in
BL (-10%) to the mild one in LXMERT-GDSE and
GDSE (-7%) till the almost harmless one in VLP
and HUMAN (-5%).5

5.3 Analysis of Hallucination Occurrences

In Rohrbach et al. (2018), the authors found that
hallucinated entities tend to be mentioned towards
the end of the sentence, and they hypothesise that
some of the preceding words in the image caption
may have triggered hallucination. To understand
whether a similar phenomenon occurs also in vi-
sual dialogues, we run a per-turn analysis on the
GuessWhat?! dialogues by computing the CHAIR-
i metric after each question-answer pair. As we can
see from Figure 3, hallucinations tend to show up
in the latest turns of the dialogue, while the first

5We have also compared the accuracy in the two settings
by fixing the number of candidate objects, i.e., by comparing
games of the same difficulty. We found the same difference
between the two settings, confirming the validity of our claim.

% consecutive halluc.
BL 24.13

GDSE 34.82
LXMERT-GDSE 38.65

VLP 25.50
HUMAN 8.09

Table 3: Percentage of hallucinated tokens appearing in
consecutive turns of the dialogue.
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% Hallucinations after YES    % Hallucinations after NO
Total % YES                            Total % NO

Figure 4: Percentage of hallucinated tokens appearing
after a positive vs. negative answer. In light colours, we
report the overall distribution of positive/negative an-
swers in the output. The two distributions differ signifi-
cantly, and this difference is particularly pronounced in
machine-generated data.

turn contains few hallucinations.
To investigate the effect of hallucinations on

follow-up turns, we study how the Question Gener-
ator and the Encoder modules are affected by this
issue. To study the effect of hallucinations on the
Question Generator, we compute how often hallu-
cinated tokens occur in consecutive turns, i.e. the
percentage of turns consisting of two consecutive
questions containing at least one hallucination each,
over all the turns containing at least one hallucina-
tion. As we can see from Table 3, for all the models
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BL GDSE LXMERT-GDSE VLP HUMAN
person 2803 chair 1649 bottle 716 table 480 table 389
couch 1113 person 1525 table 488 chair 462 bike 237
table 656 table 1483 bike 375 bike 352 person 211
chair 538 car 629 book 362 bottle 315 car 91

computer 404 bottle 605 cup 320 person 223 chair 88
bike 332 bench 468 bear 310 cup 220 bottle 83
car 229 book 468 chair 301 book 157 bowl 73
sink 224 phone 413 fridge 198 car 140 bear 60
dog 182 cup 376 car 195 bowl 111 cup 58
bear 171 dog 296 ball 186 ball 100 truck 54

keyboard 161 boat 255 person 163 bear 79 book 51

Table 4: Most frequent hallucinated MSCOCO categories for machine-generated and human dialogues, together
with their raw frequency.

Is it edible? No
Is it human? No 
Is it on the table? Yes 
Is it the pizza pan? No 
Is it a plate? No 
Is it a fork? Yes

Is it a car? No 
Is it person? Yes 
Is he riding a bike? Yes

Is a chair? No 
Is the couch? No 
Is a person? No 
Is the table? No 
Is the keyboard? No 
Is the mouse? No 
Is a light? No 
Is a bike? Yes 
with orange wheel? Yes

Is it person? No
Is it bike? Yes 
Front one? No 
Middle one? Yes

(a) (b)

(c) (d)

Figure 5: Tokens counted as ‘hallucinated’ (in red) observed in human dialogues. (a): the object ‘table’ is not
present in MSCOCO segmentation. (b): the human annotator refers to the motorcycle with ‘bike’, while they are
different entities in the MSCOCO categories. (c): people in paintings are not annotated. (d): the dialogue contains
an unrelated question.

we considered, a large part of the hallucinated to-
kens appear in consecutive turns, corroborating the
hypothesis of Rohrbach et al. (2018) that halluci-
nations may cause a cascade effect. Crucially, in
human dialogues this is not the case.

Another crucial component of the systems under
analysis is the Encoder module, which plays a key
role in processing the dialogue history. In Greco
et al. (2021b), the authors found that computational
models playing the GuessWhat?! guessing task on
human dialogues struggle to profit from negatively
answered questions, even when they are crucial to
succeed in the game. Inspired by these findings,
Figure 4 reports the percentage of hallucinations
occurring after a positive vs. negative answer, com-

pared with the overall distribution of answers in
the generated dialogues. As we can see, hallucina-
tions occur much more frequently after a negative
answer than after a positive one, compared with
the overall distribution. While in human dialogues
the two answer distributions do not differ much,
machine-generated dialogues have a clear tendency
to generate hallucinations after a negative answer.
In the baseline model, in particular, almost all hal-
lucinated entities appear after a negative answer,
while positive and negative answers are equally dis-
tributed in the generated dialogues. We conjecture
that the failure in grounding negatively answered
questions is behind the generation of hallucinations
in the subsequent turns.
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VLP: is it food ? <no> is it the plate ? 
<no> is it the table ? <no> is it the cup ? 
<yes>

LXMERT-GDSE: is it food ? <no> is it a 
plate ? <no> is it the table ? <no> is it the 
cup ? <yes> is it the white one ? <yes>

BL: is it a person ? <no> is it a table ? 
<no> is it a bed ? <no> is it in left ? 
<no> in middle ? <yes>

GDSE: is it a person ? <no> is it food ? 
<no> is it a chair ? <no> is it the table ? 
<no> is it the plate ? <no>

Figure 6: Examples of machine-generated dialogues
containing hallucinations, focusing on the entity table.
On the left, examples of fake hallucinations similar to
those observed in human dialogues. On the right, ex-
amples of real hallucinations.

5.4 Qualitative Analysis

Table 1 shows that VLP is the model that is closest
to humans in terms of the number of hallucinations
in the output. Here, we wonder whether the hal-
lucinations generated by VLP are human-like, i.e.,
whether they are similar to the ones appearing in
human dialogues. The CHAIR metric relies on the
MSCOCO segmentation annotation, which is not
an exhaustive source for the wide variety of ob-
jects present in MSCOCO images. For this reason,
Rohrbach et al. (2018) augmented the MSCOCO
segmentation annotation with entities mentioned in
ground truth captions. While in image captioning
human annotators tend to mostly refer to salient
objects in the image, in referential visual games,
given the nature of the task, human annotators also
refer to objects that are globally not salient, but
are discriminative to perform the task. We believe
that in this scenario it becomes crucial to apply
the CHAIR metric both to machine-generated and
human dialogues so to run a comparative analysis.
Below we report what our comparison reveals.

Table 4 reports the most frequent hallucinated
MSCOCO categories for each model and for hu-
mans, together with their raw frequency. We have
run a manual inspection of human dialogues con-
taining hallucinations based on the CHAIR metric,
and found that in many cases they are fake hallu-
cinations – they are due to missing labels in the
annotation used to compute CHAIR. Figure 5-a
reports an example with the hallucinated word “ta-
ble”: common sense would suggest the pizza is
on the table, even if the latter is not visible; hence
it is understandable that human players refer to it
in the dialogue. The case of the word “bike” is

illustrated by the example in 5-b, where rather than
a hallucination, we simply have a not rigorous use
of the work “bike” to refer to motorbikes. Finally,
Figure 5-c illustrates why “person” appears in the
top list of the hallucinated word: human players
in their dialogues refer to entities in the paintings
(in this case “person”) which are rarely annotated
in MSCOCO. Through our manual inspection of
human dialogues, we have found also cases of real
hallucinations. In most of these cases, the halluci-
nated entity is person and it occurs in the first turn
– as illustrated by the example in Figure 5-d.

Our quantitative analysis (Table 4) suggests that
entities hallucinated by VLP are similar to those
appearing in human dialogues, indicating that some
of them may count as fake hallucinations. Instead,
the other models frequently hallucinate entities that
are not in the human hallucination list or have low
frequency; we conjecture this means that the rate
of real hallucinations is lower for VLP than for the
other models. To verify this hypothesis, we man-
ually checked the hallucinations most frequently
appearing in dialogues generated by models, and
we found that, as suggested by the patterns in Ta-
ble 4, VLP hallucinations are often fake, while BL
and GDSE ones are not; LXMRT-GDSE dialogues
stand in between. For instance, the example in
Figure 6 illustrates a case of fake hallucination for
VLP and LXMERT-GDSE and of real hallucina-
tion for the other two models.

6 Conclusion

Entity hallucination is one of the major problems
that affect natural language generation systems in
many NLP tasks, from machine translation to im-
age captioning. Generating tokens that are not re-
lated to the source data compromises the possibil-
ity to use these systems in real-world scenarios.
In this work, we explore to what extent this prob-
lem affects multimodal conversation agents playing
the GuessWhat?! referential guessing game. We
adapt two multimodal Transformer-based models
to play the GuessWhat?! Questioner agent based on
multimodal Transformers architectures (LXMERT-
GDSE and VLP), and we compare their output with
the widely used GDSE model (Shekhar et al., 2019)
and the baseline model in de Vries et al. (2017).
We adapt the CHAIR metric proposed in Rohrbach
et al. (2018) for image captioning to assess the
models’ rate of object hallucination. Our analysis
confirms recent findings about the inadequacy of
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the task success in the guessing game to serve as
a good proxy of the quality of the generated dia-
logues. While all the models perform similarly in
the GuessWhat?! game, the dialogues they generate
differ dramatically. VLP and LXMERT-GDSE gen-
erate less than half of the hallucinations compared
to GDSE and the baseline model, confirming the
crucial role played by a strong visual processing
to reduce hallucinations. The results of our in-
depth analysis support the hypothesis in Rohrbach
et al. (2018) that hallucinations tend to appear at the
end of the sequence. Moreover, our results reveal
that, in most cases, hallucinated tokens follow po-
lar questions answered negatively. We conjecture
this result is connected with our findings about the
difficulties multimodal encoders have in grounding
negation (Greco et al., 2021b); we believe further
work is needed to understand the role of negation
in visual dialogues. Finally, we highlight the impor-
tance of going beyond the simple CHAIR metric
to evaluate the impact of hallucination. By running
quantitative and qualitative analysis on human di-
alogues from the GuessWhat?! test set, we found
that VLP is the model that generates less severe
and more human-like hallucinations. Further work
is needed to design new decoding strategies for nat-
ural language generation systems and to explore
the relation between hallucination and repetitions,
another major issue that heavily affects the quality
of machine-generated data as recently highlighted
in Testoni and Bernardi (2020). Moreover, as the
example in Figure 1 (right) shows, attribute hallu-
cination plays an important role in the quality of
the generated output, and it has not received much
attention from the research community.
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Abstract
India is one of the most linguistically diverse
nations of the world and is culturally very rich.
Most of these languages are somewhat similar
to each other on account of sharing a common
ancestry or being in contact for a long period
of time (Bhattacharyya et al., 2016). Nowa-
days, researchers are constantly putting efforts
in utilizing the language relatedness to im-
prove the performance of various NLP systems
such as cross lingual semantic search, machine
translation (Kunchukuttan and Bhattacharyya,
2020), sentiment analysis systems, etc. So
in this paper, we performed an extensive case
study on similarity involving languages of the
Indian subcontinent. Language similarity pre-
diction is defined as the task of measuring
how similar the two languages are on the ba-
sis of their lexical, morphological and syntac-
tic features. In this study, we concentrate only
on the approach to calculate lexical similarity
between Indian languages by looking at vari-
ous factors such as size and type of corpus,
similarity algorithms, subword segmentation,
etc. The main takeaways from our work are:
(i) Relative order of the language similarities
largely remain the same, regardless of the fac-
tors mentioned above, (ii) Similarity within
the same language family is higher, (iii) Lan-
guages share more lexical features at the sub-
word level.

1 Introduction

Recently, there has been an explosion in informa-
tion (Wang et al., 2007) and a massive amount of
natural language data is added daily on the Internet.
Moreover, the human literature in different cultures
is digitalized and became available in digital
libraries (Farouk, 2019). A very large amount of
this data is formatted in natural language. This
makes NLP techniques crucial to make the use of
this high amount of data. Since most of the NLP
techniques either require linguistic knowledge

that can only be developed by experts and native
speakers of that language or they require a lot
of labelled data which is again expensive to
generate, NLP tasks become challenging for low
resource languages like Indian languages. India
is a multicultural country, a country with highly
religious and ethnically diverse people. People of
different races and classes live in different parts of
the country, and they speak a variety of languages.
Most of the Indian languages are divided into two
main language families namely Indo-Aryan1 and
Dravidian2. Underlying the vast diversity in Indian
languages are many commonalities. Because
of contact over thousands of years, most of the
Indian languages have undergone convergence to
a large extent (Shridhar et al., 2020). Therefore,
exploiting language relatedness becomes very
crucial in NLP related tasks for Indian languages.
Kunchukuttan and Bhattacharyya (2020) also
presents an impressive case study for utilizing
language relatedness for Machine translation but
that study was more inclined toward exploring
statistical approaches to MT. Prasanna (2018) in
his work has explored efficient ways of exploiting
relatedness in multilingualism and transfer learning
for low resource machine translation.

But no such large scale study has been done on ex-
ploring different factors that may affect the process
of calculating similarity among Indian languages.
This could really help the future researchers in
getting the clear picture while exploiting related
languages in NLP related tasks. So, in this work,
we performed an extensive case study on the
language relatedness involving languages of the
Indian subcontinent. This case study provides

1Indo Aryan languages - Hindi, Urdu, Punjabi, Gujarati,
Marathi, Bangla, Oriya, Konkani

2Dravidian languages - Tamil, Telugu, Kannada, Malay-
alam
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Figure 1: Pipeline for calculating similarity

the reader with valuable information about the
different methodologies in measuring relatedness
between Indian languages. In addition, it also
compares some popular techniques for measuring
sentence-to-sentence similarity. Moreover, datasets
from different domains and sizes have also been
used in comparing the similarity scores to enable
the reader to build a complete background in this
area. Also, these languages share a lot of cognates,
that’s why we have also compared the similarity
among language pairs at both word and subword
level.

This paper is further divided into 4 sections.
Section 2 elaborated the methodology behind the
different techniques and experiments. Section 3
elaborates the experimental details including the
dataset preparation and pre-processing. All the
results and analysis have been discussed in Section
4. Section 5 talks about conclusion and possible
future work.

2 Methodology

A universal characteristic of Indian languages is
their complex morphology and their unique char-
acteristics following default sentence structure as
subject object verb (SOV). Thus, we will be using
the parallel corpora for calculating the similarity
among them. But Indian languages are written in
different scripts, so in order to calculate the sim-
ilarity between two languages, one needs to first
map every language to a common surface form
i.e to a common script. To do so, we are using
a very well-known technique of ‘Unified Translit-
eration’. It is a string homomorphism technique
in which every character of the source is replaced
with the target language script. Following are the
steps for calculating the similarity between the two
languages:

• Collect parallel data of languages of which we
want to calculate similarity.

• Transliterate those languages to a common

script

• Calculate similarity of each sentence in source
with the corresponding transliterated sentence
in the target language using some string simi-
larity algorithm.

• Return the average score over all the sentences
in the parallel corpora.

The pipeline of the above discussed procedure is
shown in Figure 1. Also in computer science,
string similarity is an important family of algo-
rithms that try to find a place where one or several
strings (also called patterns) are found within a
larger string. Researchers have already put the ef-
forts and showed that these algorithms effectively
calculate the similarity between two strings (Leven-
shtein, 1965; Yujian and Bo, 2007; Masek and Pa-
terson, 1980; Larsen, 1992; Kondrak, 2005). Some
studies have also been done on calculating simi-
larity particularly for Indian languages (Singh and
Surana, 2007; Wagner and Fischer, 1974; Islam
and Inkpen, 2008; Akhtar et al., 2017; Sengupta
and Saha, 2015). In this work, we will consider
sentences as a string and use some of the above
algorithms for calculating the similarity between
two languages.

2.1 Token Overlap
This is the most general approach that works by
converting strings into sets of their tokens and then
counting the number of tokens which are shared
between the both sets. Similarity between two lan-
guages using token overlap is calculated as follows:

sim =

∑n
1

|Tokens1∩Tokens2|
max(|Tokens1|,|Tokens2|)

n
∗ 100

Here, n denotes the total number of sentences in the
parallel corpora, and s1 & s2 represent sentences
from language1 and language2 respectively. Major
disadvantage of this technique could be identifica-
tion of ”false friends” i.e words that look identi-
cal in two different languages, but actually mean

113



something completely different and don’t have a
common source.

2.2 Levenshtein Distance
The Levenshtein distance (LD) (Levenshtein, 1965)
between two strings is the minimum number of
single character edits (insertions, deletions, or sub-
stitutions) required to change one string into the
another. The algorithm considers one character of
the string at a time and it assigns cost to each of the
edit operations. The algorithm weights the cost of
each operation and chooses the operation with the
lowest cost and then moves on to the next character.
We can compute Levenshtein similarity between
two languages as follows:

simLevenshtein =

∑n
1 1− LD(s1,s2)

max(|s1|,|s2|)
n

∗ 100

2.3 Longest Common Subsequence
The Longest Common Subsequence (LCS) (Larsen,
1992) is a string similarity measurement that is
based on the longest common substring in a given
string pair. The rationale is that, parts of the string
may be similar while their prefixes or suffixes differ.
This algorithm finds the longest common character
sequence, between a string pair. The characters in
the LCS do not necessarily need to be contiguous
in the original strings. We can compute similarity
using LCS between two languages as follows:

simLCS =

∑n
1

LCS(s1,s2)
max(|s1|,|s2|)
n

∗ 100

2.4 Shingle (qgram) Similarity
This works by converting strings into sets of
qgrams (sequences of q characters, also sometimes
called k-shingles ) Kondrak (2005). The similar-
ity or distance between the two strings is then the
similarity or distance between the sets. Here we
are using Jaccard index as our similarity technique
which is a special case of shingle based algorithms.
We can compute similarity using Jaccard between
two languages as follows:

simqgram =

∑n
1 qgram(s1, s2)

n
∗ 100

3 Experiments

For our case study, we are performing all the exper-
iments using the ILCI (Indian Language Corpora
Initiative) Jha (2010) and PMI (Prime Minister of

India) Haddow and Kirefu (2020) multi parallel cor-
pora for Indian languages. ILCI contains 50k sen-
tences of health and tourism domain covering all
the major languages of India like Hindi, Urdu, Pun-
jabi, Gujarati, Marathi, Bangla, Konkani, Telugu,
Tamil, Malayalam. PMI contains 30k sentences of
news domain in every language mentioned above
including Oriya and Kannada except Konkani.

3.1 Data Preprocessing
For transliterating the Urdu and Konkani to a com-
mon script, we used the Indic Trans library (Bhat
et al., 2014), and for the others, we used Indic
NLP library (Kunchukuttan, 2020) (as Urdu and
Konkani not supported). In addition, there is an
exception with Urdu because it follows a right to
left writing system and all other Indian languages
follow left to right writing order. Hence, in the pro-
cessing step, we also changed the order of Urdu to
maintain consistency among all languages, and do-
ing this also made our string similarity algorithms
work more efficiently.

3.2 Different scenarios
In the real world scenario there can be multiple
possible cases that one can think of. But here, we
are trying to cover the important cases according
to our knowledge. Details of each use case is
described below and for calculating the similarity
among language pairs we are using the procedure
mentioned in section 2.

Case 1: In this case, we are evaluating the
effect of algorithm used for calculating sentence
similarity on the similarity among the language
pairs. We are computing the similarity for every
language pair present in our ILCI corpora using
each algorithm mentioned in subsections 2. Also,
as per the requirement of our pipeline, we are also
mapping each language to Devanagari script to
share the same surface form.

Case 2: Here, we are performing the exper-
iments to confirm whether the choice of script
selection matters in transliteration step of our
pipeline for calculating similarity. To do so, we
are mapping every language to Abugida instead
Devanagari script and then compared results of
both the cases. For this, we are only performing
experiments using LCS and K-shingle algorithm
on ILCI dataset.
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(a) Token Overlap (b) Levenshtein

(c) Longest Common Subsequence (d) Shingle Q-gram

Figure 2: Similarity Matrix calculated using different algorithms

(a) Similarity using 2k Sentences (b) Similarity using 10k Sentences

(c) Similarity using 20k Sentences (d) Similarity using 50k Sentences

Figure 3: Similarity V/s No. of Parallel Sentences
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(a) LCS similarity (b) Shingle Q-gram similarity

Figure 4: Effect of Script on Similarity; In this case we are converting every language to Abugida

(a) PMI imilarity (b) ILCI similarity

Figure 5: Effect of Dataset on Similarity

(a) Word level similarity (b) Sub-word level similarity

Figure 6: Effect of word segmentation on Similarity

Case3: In this scenario, we trying to figure
out that after how many parallel sentences, the
similarity score curve stabilizes itself. This will
give us a rough idea of required size of parallel
corpora for calculating similarity. To minimize our
efforts, we are only performing experiments for
Hindi-Urdu of ILCI corpora using the K-shingle
algorithm.

Case 4: Here, we will be evaluating the im-
portant factor whether the type/domain of the
dataset chosen effects the similarity among the
different language pairs. For this case, we are
calculating and comparing the results of similarity
for every language pair on both ILCI and PMI
dataset using the K-shingle algorithm.

Case 5: As Indian languages are morpho-
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logical rich and share more common words at root
level due to same ancestry. So in this case, we are
evaluating the effect of using root word instead of
words while calculating similarity using the Token
overlap algorithm discussed in section 2.1 among
Indian languages on ILCI dataset.

4 Results & Analysis

In Case 1, we are evaluating the effect of different
algorithms on the similarity. Figure 2a shows the
results corresponding to every language pair using
the algorithm mentioned in section 2.1 (Token
Overlap). Similarly Figure 2b, 2c, 2d represent
the results corresponding to other algorithms
discussed in section 2.2, 2.3 and 2.4 respectively.
Here, we observed a small amount of variation
in similarity values with the different algorithms.
However, more importantly, relative values within
the similarity matrix remain almost constant
even in the different algorithms, e.g., Hindi-Urdu
has shown the most similarity in all algorithms.
Our results confirm that this also holds for other
language pairs.

For Case2, we evaluated whether common
script selection matters in calculating language
similarity or not. To do so, we also performed
experiments by calculating similarity for all
languages using the Abugida script. In these
experiments, it can be seen that the scripts do not
matter in calculating the similarity. We got similar
results with both the Devanagari and Abugida
scripts with a variation of 0.25%. This can be
seen by comparing Figure 4a with Figure 2c and
Figure 4b with Figure 2d.

Case 3 shows variation in similarity to the
number of sentences we are using for calculating
it. Figure 3a shows variation plots of similarity
v/s No. of sentences used. We used overall 2000
sentences and observed that the similarity value
gets stable by the end of the curve; in addition
to observing that, we also see that the value
does not vary much with larger sentences. We
also performed experiments with 10k, 20k, 50k
sentences; Figure 3b, 3c and 3d shows the plot
corresponding to each case respectively. It can be
seen there is not much fluctuation in the curve,
even with the introduction of more sentences after
2k. Thus, we can say for calculating similarity, a
small parallel data-set of 2k sentences is enough.

We can further see in Case 4 that the simi-
larity is not dependent on the nature of data,
and is thus independent of external factors such
as domain. Figure 5a and Figure 5b show the
results corresponding to ILCI and PMI corpus,
respectively. We observed that the similarity
values might vary with the change in data-set, but
the overall relative similarity matrix will remain
constant. More clearly, if the similarity value of
L1-L2 varies by a magnitude of k, then there will
be a approximate change of k in the magnitude for
the other language pairs. This can be confirmed by
observing the results from the above experiments.

In the last Case 5, we observe from Figure
6a and Figure 6b that similarity increases drasti-
cally for the lexemes of all languages pairs. That is,
if we ignore affixes and consider the root form of a
word, we can notice that the similarity increases.

Also from the above experiments, we can
conclude some general results as:

• Hindi and Urdu being the most similar and
Tamil and Punjabi being least similar among
Indian languages.

• Language similarity increases within the fam-
ily, and it grows even more, when geo-
graphical distance is less. For example,
Urdu-Punjabi’s similarity is more than Urdu-
Gujarati.

• Different Families also show some reasonable
amount of similarity due to contact between
them over a long time. For example, Tel-
ugu belongs to Dravidian family but it shows
considerable similarity with Indo-aryan lan-
guages like Hindi and Marathi.

• Telugu from Dravidian and Marathi from
the Indo-Aryan language family have more
cross-family similarity than the others because
they have geographical proximity thus exhibit
greater lexical convergence.

5 Conclusion & Future Work

In this paper, we did an extensive study on similar-
ity involving the languages of Indian subcontinent.
We explored different factors that may affect the
process of calculating similarity. Our results led to
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some interesting conclusions, such as how the rela-
tive order of similarity among languages remains
same irrespective of the factors we considered, and
how the maximum similarity is observed within
pairs of the same language family and it increases
more with geographic proximity. Thus, this study
will help future research which focuses on exploit-
ing the language relatedness for NLP tasks. Future
work along these lines can focus on using semantic
similarity alongside lexical similarity to increase
accuracy.
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Abstract

Social media is often used by individuals and
organisations as a platform to spread misin-
formation. With the recent coronavirus pan-
demic we have seen a surge of misinformation
on Twitter, posing a danger to public health.
In this paper, we compile a large COVID-19
misinformation-related Twitter corpus and per-
form an analysis to discover patterns with re-
spect to vocabulary usage. Among others, our
analysis reveals that the variety of topics and
vocabulary usage are considerably more lim-
ited and negative in tweets related to misin-
formation than in randomly extracted tweets.
In addition to our qualitative analysis, our ex-
perimental results show that a simple linear
model based only on lexical features is ef-
fective in identifying misinformation-related
tweets (with accuracy over 80%), providing
evidence to the fact that the vocabulary used
in misinformation largely differs from generic
tweets.

1 Introduction

Social media has created a landscape where vast
amounts of information on various topics is shared
daily between users all around the world. Unfor-
tunately, not all information shared is legitimate.
As seen in recent events such as the Brexit referen-
dum in the UK (Bastos and Mercea, 2019) and the
2016 US Presidential Election (Bovet and Makse,
2019), there are many cases where people, either
unintentionally or deliberately (Fetzer, 2004), share
unreliable information which causes confusion and
suspicion in the general population. For instance,
individuals and organisations share ‘facts’ on how
the earth is flat, that vaccines cause autism, or that
chlorine is treatment against COVID-19.

The spread of misinformation through social net-
works is made easier by the structure of these plat-
forms. By personalising their users’ news feeds and

creating echo chambers, where users share believes
and biases, social media provide the perfect field
for spreading misinformation. Moreover, the fact
that most social media platforms either do not filter
misinformation or filter it inefficiently (Wardle and
Singerman, 2021) means that there is no essential
check on what people share online. Examples of
misinformation include fabricated content, where
the information is completely false; manipulated
content, where there has been some distortion of
genuine information; and imposter content, where
someone is impersonating genuine sources (publi-
cations.parliament.uk, 2018).

Even though misinformation spread is not only
related to scientific facts, health related misinfor-
mation holds an immediate danger to the public
(Chou et al., 2018). Specifically, public health mis-
information can be defined as a health-related claim
that is currently unsupported by scientific evidence,
with detrimental effects on public health (Memon,
2020). Along with the recent emergence of the
COVID-19 pandemic, a number of conspiracy the-
ories have arisen in social media; from fake and
dangerous treatments to schemes that the virus is
a part of a plan of the global elite to take over the
world (Shahsavari et al., 2020).

The main aim of this paper is to explore whether
there is a recognisable difference in the vocabulary
usage between tweets conveying misinformation
and random tweets present within COVID-19 dis-
course. To this end, we collected two corpora, one
corpus consisting of misinformation-related tweets
and a balancing corpus consisting of ‘generic’ (i.e.,
randomly-selected tweets) where we ran a compar-
ative analysis. This analysis is complemented with
a machine learning experiment in which we anal-
yse to what extent misinformation-related tweets
can be retrieved by using lexical features only.
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2 Lexical Analysis of COVID-19
Misinformation Tweets

In this section, we describe our corpus collection
efforts (Section 2.1) and provide a qualitative anal-
ysis on the same collected corpus (Section 2.2).

2.1 Corpus collection

We collected a continuous collection of tweets
identified as related to the coronavirus pandemic
from January to April 2020. The corpus was de-
rived from two sources of Twitter data for the En-
glish language with a misinformation-related cor-
pus collected via the Social Media analysis plat-
form Sentinel (Preece et al., 2017) and a corpus
of random tweets (‘generic’) for the same period.
The tweets were tracked and selected using a list
of keywords related to the pandemic1. Both sets
(‘misinformation-related’ and ‘generic’) are bal-
anced following the same distribution: 8,911 tweets
from January, 596 from February, 411,412 from
March and 20,434 from April.

Gathering a corpus of truly misinformation con-
tent is a challenging and time-consuming endeav-
our (Helmstetter and Paulheim, 2018) and the as-
sumption here is that the ’generic’ set contains a
more diverse set of information related to COVID-
19.

2.1.1 Misinformation-Related corpus
The misinformation-related corpus was extracted
from an existing collection of tweets gathered as
part of a longitudinal study of misinformation-
related call-outs in multiple languages. The tweets
were collected using a set of search terms focused
on misinformation in multiple languages such as
‘fake news’, ‘disinformation’, and ‘misinforma-
tion’. The objective of this collection is to focus on
the calling out of misinformation by Twitter users,
with the assumption that users will be tagging and
replying to content with the statement that some-
thing is fake news, disinformation, or consists of
lies. In this way the user base acts as social sensors
(Sakaki et al., 2010) to misinformation, allowing
for a proactive rather than reactive collection of
tweets relating to misinformation, as terms relat-
ing to particular pieces of misinformation narrative
will not be known at the time of collection.

Our data was extracted, using the COVID-19 re-
lated terms, from the larger longitudinal collection

1https://github.com/echen102/COVID-19-
TweetIDs/blob/master/keywords.txt

which covered English language tweets from the
first four months of 2020 (January to April). Fi-
nally, as the Sentinel data included tweets relating
to a variety of different subjects the same list of
keywords used to identify the ‘generic’ set were
utilised to filter down the collected tweets to those
relevant to coronavirus. From a total of 9.5 million
tweets in the longitudinal collection as of April
2020, 441,353 tweets were used.

2.1.2 Generic corpus

In order to get related data points that do not neces-
sarily contain misinformation, we used Tweepy
(Roesslein, 2009) to obtain COVID-19 related
tweets from a collection of tweet IDs provided in
Chen et al. (2020), retrieving the tweets directly
from Twitter’s API services.

An equal amount of random COVID-19 tweets
(441,353), that did not contain any of the same
specific set of terms employed in Sentinel for the
collection of the misinformation corpus, were gath-
ered.2 Clearly, however, there would be a small but
non-trivial number of tweets that could also contain
misinformation.

2.2 Data exploration

2.2.1 Lexical features & statistics

As an initial analysis of the dataset, we extracted
relevant features for each subset. Table 1 displays
some statistics about features gathered across the
two different tweet classes, i.e., misinformation
and generic. In particular, we include the average
relative frequency of tokens, emoji, hashtags, user
mentions (@), uppercase letters, punctuation and
exclamation marks.

In general, the misinformation-related tweets
tend to be a bit longer with average 2.28 words
more than the generic tweets. One of the most
defining differences between both classes is the
amount of user mentions (represented as @), which
are on average more than double in the misinforma-
tion set 1.32 to 0.59. Another interesting observa-
tion is that even though both classes use generally
the same amount of punctuation, the average use of
exclamation marks in the misinformation-related
tweets is on average 62% higher than those of the
generic set, 0.27 to 0.17.

2In both subsets, retweets were only considered when the
original tweet was not already available. This was done on the
assumption that most of the times when users retweet content
they do not add additional information.
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Tokens Emoji Hashtags @ Uppercase Punctuation Exclamation
Generic 14.76± 0.2% 0.31± 1.7% 0.87± 0.6% 0.59± 0.9% 13.4± 0.3% 9.41± 0.2% 0.17± 1.2%

Misinformation 17.04± 0.1% 0.21± 1.7% 0.76± 0.7% 1.32± 0.8% 15.26± 0.4% 9.23± 0.2% 0.27± 1%

Table 1: Set of features from the COVID-19 Twitter Misinformation dataset: quantities represent the average
numbers (95% confidence intervals) of instances per tweet.

We also attempted to measure the vocabulary
richness and perform a comparison between the
misinformation and generic sets as text contain-
ing misinformation has often less complex vocab-
ulary and tends to be repetitive (Horne and Adali,
2017). To accomplish this two different statistics
were utilised, the Type-Token Ratio (TTR) which
is the ratio of unique terms against all terms, and
the Measure of Textual Lexical Diversity (MTLD),
a more complex metric that is not very sensitive
to text length (McCarthy, 2005). MTLD is calcu-
lated as the mean length of sequential word strings
in a text that maintain a given TTR value. In
general, a higher MTLD score indicates a more
diverse corpus. For example, the MTLD score
for an equal size, random set of tweets is 913.62
whereas the score for our corpus (misinformation-
related and generic tweets) is 362.10. Addition-
ally, three subtopics were identified (using relevant
keywords 3) and deemed interesting to investigate
further. The subtopics include 1) ‘Covid/Weapon’
with tweets mentioning COVID-19 along the lines
of ”bioweapon” and ”human created weapon” 2)
‘5G’ with tweets talking about the conspiracy the-
ory of how the 5G network is responsible for the
pandemic and 3) ‘Politics’ where the content of
the tweets is revolving around US politics. The
keywords used

Table 2 displays the lexical diversity statistics
for the whole corpus as well as for three different
subsets (covid as a weapon, 5G and Politics)4. The
results indicate that the misinformation subset has
indeed a less diverse vocabulary, with an MTLD
score of 268.83 opposite to 593.74 of the generic
subset. The same pattern continues when looking at
the ‘Covid/Weapon’ and ‘5G’ subtopics where the
generic tweets have an MTLD score that is more
than double of that of the misinformation tweets.
In the case of the ‘Politics’ subtopic the lexical
diversity difference is small to nonexistent with the
generic and misinformation tweets achieving the

35G: 5G Politics: trump, democrat, republican, obama,
ted cruz, tedcruz, joebiden, joe biden, leftwing, rightwing, left
wing, right wing, left wing, right wing Covid/Weapon:
weapon, bioweapon, weaponizing, biological weapon

4The comparison was made between equal size subsets.

same TTR score and the generic tweets having a
slightly better MTLD score.

2.2.2 Lexical Specificity
Even though the tweets are not equally distributed
through time, an attempt was made to identify
trends between each month (reminder that we ran-
domly extracted a subset of equal number of tweets
per month for each of the two classes). This was
achieved by computing the lexical specificity value
of each word. Lexical specificity is a statistical
measure which calculates the set of most repre-
sentative words for a given text based on the hy-
pergeometric distribution (Lafon, 1980; Camacho-
Collados et al., 2016). In contrast to similar scores
used to calculate importance of terms, such as TF-
IDF, lexical specificity is not especially sensitive to
different text lengths.

Table 3 displays, for each month, the top five
relevant terms according to lexical specificity with
respect to the whole corpus when considering the
misinformation and generic subsets separately. To
gain a better understanding of tweets’ content, Ta-
ble 3 does not include words that were present in
the top 100 most relevant terms according to lexi-
cal specificity for each class. For both groups the
tweets from January are focused on China (terms
not displayed), which was the initial centre of the
epidemic, and the following months become more
diverse. Then, as can be observed in the table
misinformation-related tweets tend to be more fo-
cused around conspiracies and rumours with terms
such as ‘uncover’, ‘theory’ or ‘lie’, while generic
tweets appear to be more neutral, also including
government advice such as ‘stay at home’.

Generic Misinformation
TTR MTLD TTR MTLD

Whole Corpus 0.03 593.74 0.02 268.83
Covid/Weapon 0.23 294.81 0.19 185.12

5G 0.25 648.48 0.15 151.74
Politics 0.04 393.67 0.04 337.53

Table 2: Lexical diversity of generic and misinforma-
tion tweets Metrics used: Type Token Ratio (TTR) and
Measure of Textual Lexical Diversity (MTLD).

121



We further explored the three subtopics (i.e.,
Covid/Weapon, 5G, Politics) identified and ex-
tracted the most relevant terms based on lexical
specificity. For each subtopic we compare the
generic and misinformation subsets against their
combined subsets in the particular subtopic. Table
4 displays the five most relevant terms for each
class (misinformation/generic) in each subtopic.
Similar with the terms extracted when consider-
ing the whole corpus (Table 3) there is a trend
that in misinformation tweets appear more nega-
tive/intimidating terms (e.g., ‘policestate’, ‘chem-
trail’, ‘deep’) and also terms related to mainstream
news media which are often the ‘enemy’ of con-
spiracy theorists and hyperpartisan groups.

3 Identifying COVID-19 related
misinformation tweets

Upon collecting our dataset we aimed to explore
whether the lexical features of tweets can provide
a strong signal for identifying misinformation. To
test our hypothesis, we built multiple models using
different classification approaches based on lexical
features to distinguish the misinformation-related
and generic sets of tweets.

3.1 Experimental setting
Data pre-processing. Non-linguistic content,
such as references to web sites and special charac-
ters referring to other users were removed from the
dataset. Similarly, stopwords were removed from
the vocabulary. Finally, all words involved in the
construction of each of the subsets (see Section 2.1)
were not considered for this experiment.

Features. As our main goal is to test whether
models can retrieve misinformation-related content
using lexical features only, we use three different
types of lexical features: (1) Frequency features
based on TF-IDF (TF)5; (2) semantic based on
the average of word embeddings6 within the tweet
(WE); and (3) the extra-linguistic features listed in
Table 1 (EL).

Models. As linear machine learning models
exploiting the features, we used both Naive Bayes
(as a baseline model) and SVM (as a non Deep
Neural Network option) classifiers following their
default implementations in scikit-learn. Moreover,

5We considered the 500 most frequent words for the evalu-
ation.

6As pre-trained words embeddings, we used the 100-
dimensional fasttext embeddings (Bojanowski et al., 2017)
trained on Twitter from Camacho-Collados et al. (2020).

a Convolutional Neural Network (CNN) was imple-
mented. Even though CNNs have been traditionally
used in computer vision, they have proved to be
effective for various NLP tasks, including text clas-
sification (Kim, 2014). In the present work, we
trained a CNN with three layers of convolution
using the same Twitter pre-trained word embed-
dings as initialisation. All models were evaluated
using 10-fold cross validation. Finally, as current
state-of-the-art NLP system we trained the base
uncased version of BERT (Devlin et al., 2018) on
our dataset using the implementation provided in
Simple Transformers (Rajapakse, 2019).

3.2 Results

Table 5 shows the results of the classification mod-
els in our collected dataset. As expected, the CNN
and BERT models perform better with BERT at-
taining the best results, with an overall accuracy
of 0.91. Nonetheless, a simple SVM using lexical
and semantic features attains 0.82, which shows the
marked differences of the two datasets in terms of
vocabulary and topics. This is surprising given the
specificity of the topic and the fact that the linear
models neglect linguistic properties such as word
order or syntax (which are captured by the context
vectors of BERT and up to some degree from the
CNN), as they only rely on tokens represented as a
bag of words. In a way it also confirms some of the
statistics analysed in Section 2.2 and previous gen-
eral findings related to misinformation in Twitter
(Castillo et al., 2011) in this particular COVID-19
domain.

3.3 Analysis

In addition to the main results from the previous
subsection, we perform two types of analysis: error
and out-of-distribution analysis.

3.3.1 Error analysis: Examples
In this section, we provide some examples of the
errors made by the classifiers, which we attempt to
digest. First, we should note that not all errors are
due to the automatic model per se, and rather to the
way the corpora were collected (see Section 2.1)
– there is no certainty that generic tweets do not
convey a message related to misinformation. For
example, both the SVM and BERT models ‘mis-
classify’ the tweet ‘Take care of your health...not
a good time to be run down...and stay away from
Corona beer, I hear from mainstream media that it
causes a virus or something.’ as generic. Exclud-
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January February March April
— GENERIC —

confirm - 375.17 suga - 10.75 case - 4457.29 home - 215.29
flight - 255.54 pence - 9.07 home - 2732.56 stay - 195.40
case - 253.73 confirm - 6.14 test - 2139.79 distancing - 104.21
novel - 206.65 disease - 5.51 positive - 1776.12 day - 62.12
health - 157.46 border - 5.35 stay - 1748.64 worker - 61.52

— MISINFORMATION —
uncover - 846.75 deep - 16.09 medium - 5549.91 lie - 245.83
russia - 495.33 rosenstein - 13.84 lie - 5491.33 fox - 168.14
awash - 347.44 theory - 12.50 trump - 4682.74 3 medium - 149.72
iran - 248.20 rod - 11.05 spread - 4078.4 cnn - 132.21

election - 236.32 heil - 9.31 deep - 4053.62 fool - 110.00

Table 3: Top words per class based on lexical specificity not present in the top 100 of the other class.

Covid/Weapon 5G Politics
Generic Misinformation Generic Misinformation Generic Misinformation

denver - 48.47 news - 52.26 case - 32.76 news - 101.51 test - 334.27 news - 3115.22
attend - 44.44 deep - 42.16 test - 26.02 medium - 95.72 response - 216.37 deep - 1238.16

supporter - 38.35 chemtrail - 38.38 confirm - 20.77 vaccination - 86.30 bill - 213.14 lie - 691.22
rally - 37.59 establishment - 38.38 home - 19.17 policestate - 83.63 president - 173.50 medium - 683.58

deadly - 36.08 vaccination - 36.67 patient - 18.90 drill - 83.49 vaccine - 169.08 state - 506.51

Table 4: Top words per class based on lexical specificity for subtopics identified.

ing this type of example that makes a small portion
of the dataset, other mistakes of the SVM model
using lexical features include ‘Nonsense. I done
believe this disinformation campaign - the secret
services are born to capitalise on crisis. They are
not army or Police.The truth is #Covid19 outbreak
is the rarest golden opportunity for them to test - 1.
Expand Infrastructure. 2. New Tools. 3. Scalable
ops.’.

These examples show that lexical features are
not enough for this task, and other type of model
capturing other features (e.g., word order or syn-
tax) such as the BERT model (or even a simpler
CNN model) can provide a performance boost, as
we showed in Table 5. While both the SVM and
CNN struggle with linguistic phenomena such as
sarcasm, as exemplified by this error made by the
CNN model: ‘CHINA: *covers up all evidence of
biblical plague unleashed by underground farmer’s
market* HA let’s see you top that. USA: *multiple
senators dump stocks day after learning of looming
biblical plague and tell everyone things are awe-
some while they do nothing* CHINA: touché’, the
BERT model does seem to perform better with such
entries. Finally, all models struggle with tweets
where the user is calling out other users actions or

behaviours, for example: ‘ppl out here like when
is the coronavirus cure!! but wont even vaccinate
their kids. i wish ppl freaked out about the flu or
measles like they are the coronavirus maybe they
wouldnt be such big issues otherwise’ which is
misclassified as misinformation by all the models.

3.3.2 Out-of-distribution analysis
To test the robustness of our SVM and BERT mod-
els, an additional set of tweets from a different time
period (May, June, July 2020) was collected. The
new dataset is balanced, each month containing
63,468 tweets. In total, it contains 190,404 tweets
using the same methodology as described in Sec-
tion 2.1.

Table 7 displays the results for BERT and the
best performing SVM classifier when tested on the
new dataset (see Table 6 for detailed results). The
SVM classifier which used TF+WE was selected as
it achieved the best F1 score on the original data. It
is observable that there is no substantial difference
on the average performance of the models. There-
fore, this may suggest that the methods (including
a simple one based on lexical features and a SVM)
are still robust to detect misinformation in real time.
However, these results may not be generalisable
as we should also reiterate the limitations of our
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Classifier Features Misinfo class Generic class Overall
Prec Rec F1 Prec Rec F1 Prec Rec F1 Acc

Naive Bayes

TF 0.76 0.75 0.76 0.75 0.77 0.76 0.76 0.76 0.76 0.76
WE 0.69 0.77 0.73 0.74 0.66 0.70 0.72 0.72 0.71 0.72
TF+WE 0.77 0.75 0.76 0.76 0.78 0.77 0.76 0.76 0.76 0.76
TF+WE+EL 0.78 0.76 0.77 0.76 0.77 0.76 0.77 0.77 0.77 0.77

SVM

TF 0.86 0.74 0.80 0.77 0.88 0.82 0.82 0.81 0.81 0.81
WE 0.77 0.76 0.76 0.76 0.77 0.76 0.76 0.76 0.76 0.76
TF+WE 0.87 0.80 0.83 0.78 0.85 0.82 0.82 0.82 0.83 0.82
TF+WE+EL 0.89 0.74 0.80 0.67 0.89 0.75 0.78 0.81 0.78 0.78

CNN - 0.88 0.86 0.87 0.87 0.89 0.88 0.88 0.87 0.87 0.87
BERT - 0.90 0.92 0.91 0.91 0.90 0.91 0.91 0.91 0.91 0.91

Naive baseline 0.5 1.0 0.67 0.0 0.0 0.0 0.25 0.5 0.33 0.5

Table 5: Classification results in our COVID-19 Twitter Misinformation Dataset. Evaluation metrics: accuracy and
macro-averaged precision, recall and F1. Naive baseline refers to a system that detects misinformation for every
tweet.

SVM BERT
misinformation generic misinformation generic

Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1

May 0.87 0.80 0.83 0.82 0.88 0.85 0.91 0.88 0.89 0.88 0.91 0.89

June 0.87 0.81 0.84 0.82 0.87 0.85 0.90 0.89 0.90 0.90 0.90 0.90

July 0.86 0.78 0.82 0.80 0.87 0.83 0.89 0.88 0.89 0.88 0.90 0.89

Total 0.87 0.80 0.83 0.81 0.88 0.84 0.90 0.88 0.89 0.89 0.90 0.89

Table 6: Classification results of the SVM (TF+WE) and BERT models for May - July period.

analysis that was performed on a limited set of data
from a single year.

Precision Recall Accuracy F1
SVM 0.84 0.84 0.84 0.84
BERT 0.89 0.89 0.89 0.89

Table 7: Overall classification results for May - July
period. Evaluation metrics: accuracy and macro-
averaged precision, recall and F1. SVM model used:
TF+WE.

In order to better understand the behaviour of the
classifiers, we further investigated how the mod-
els perform in each individual month. Figure 1
displays the precision and recall results for the mis-
information class. In each month BERT outper-
forms the SVM model. While the performance of
both is mostly consistent, there is a drop in Recall
for the SVM model in July (May:0.8, June:0.81,
July:0.78). This may be indicative of a change in
the misinformation corpus vocabulary for July that
the SVM model fails to recognise. Despite this,

the results remain a strong indication that there is
indeed a recognisable difference between the vo-
cabulary used in the misinformation and generic
tweets.

Figure 1: Monthly precision and recall results for the
misinformation class.

4 Conclusion

In this paper, we have presented an analysis on the
lexical features present in misinformation about
COVID-19 in social media, and compare it with
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those present in generic or random tweets. To this
end, we compiled two different Twitter corpora
from early 2020 when the pandemic emerged. Our
analysis shows that there is a clear distinction in the
general vocabulary used in each type of corpus and
that a simple linear classifier based on lexical fea-
tures can retrieve misinformation-related tweets to
a high degree of accuracy. While this paper repre-
sents an initial reference point in this aspect, further
analysis would be required to investigate the main
features present in misinformation. On this respect,
our work can also be added to the increasing evi-
dence that shows that misinformation focuses on
a specific vocabulary that does not reflect on the
overall distribution of what can be found in general
social media content for a certain topic (Castillo
et al., 2011). Finally, it would be interesting to
evaluate and compare the models’ performance on
other datasets that are manually labelled and are not
collected based on the ”call out” principle (Alam
et al., 2020).
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Abstract

Currently, text chatting is one of the primary
means of communication. However, modern
text chat still in general does not offer any nav-
igation or even full-featured search, although
the high volumes of messages demand it. In
order to mitigate these inconveniences, we for-
mulate the problem of situation-based summa-
rization and propose a special data annotation
tool intended for developing training and gold-
standard data.

A situation is a subset of messages revolving
around a single event in both temporal and con-
textual senses: e.g, a group of friends arrang-
ing a meeting in chat, agreeing on date, time,
and place. Situations can be extracted via in-
formation retrieval, natural language process-
ing, and machine learning techniques. Since
the task is novel, neither training nor gold-
standard datasets for it have been created yet.

In this paper, we present the formulation
of the situation-based summarization prob-
lem. Next, we describe Chat Corpora Anno-
tator (CCA): the first annotation system de-
signed specifically for exploring and annotat-
ing chat log data. We also introduce a cus-
tom query language for semi-automatic situa-
tion extraction. Finally, we present the first
gold-standard dataset for situation-based sum-
marization. The software source code and the
dataset are publicly available1,2.

1 Introduction

In the recent years, the attitude to multiparticipant
chat has changed: what was regarded as a distrac-
tion is now used as primary means of communi-
cation in both professional and personal environ-
ments. However, its evident problems, such as

1https://github.com/mechanicpanic/
Chat-Corpora-Annotator

2https://github.com/mechanicpanic/
Situation_Dataset

the inability to quickly and efficiently navigate a
large body of skipped messages, are yet to be ad-
dressed. One of the ways of addressing this is
summarization. However, due to the specifics of
text chat data, such as noise and length, no widely
accepted model for this task has been created yet.
Nevertheless, there have been notable works in the
field. One of them is Collabot (Tepper et al., 2018):
a fully-fledged chat summarizer, which, however,
never went public. Additionally, there is a con-
siderable body of work on email summarization,
such as Ulrich et al. (2008), Loza et al. (2014), Joty
et al. (2011), which present both annotated data
and a summarization approach. While these works
are an indispensable basis for the research in the
area, we believe that chat data possesses enough
specific qualities (such as extremely short message
length, presence of specific slang and emoticons,
and largely informal grammar and spelling) to war-
rant new annotation procedures and summarization
methods.

To the best of our knowledge, publicly avail-
able annotated data for this task is both rare and,
additionally, highly specific. Most of the afore-
mentioned works have created their own specific
annotation procedures and applied them to small
volumes of data. Annotated data is hard to obtain
in and of itself, and creating a gold-standard dataset
from noisy raw data may take a lot of effort and
time. Therefore, we have focused on creating a
full-fledged annotation system for chat data.

In the current paper, we propose novel annota-
tion guidelines for multiparticipant chat data. In
our vision, it would be most practical to summa-
rize such datasets by specific situations. We de-
fine a situation as a subset of messages revolving
around a single event in both temporal and con-
textual senses. The set of situation tags would
be specific for each particular dataset, and devis-
ing a standardized tagset currently does not seem
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possible. Each tagset would be devised by a hu-
man analyst and will be specifically suited for the
needs of each user. This approach takes its roots
in the ideas of open-domain event extraction, such
as in (Ritter et al., 2012), but differs from them on
several points. First, we are interested in groups of
documents. Second, we do not explicitly extract
event keywords. Instead, we offer the user to de-
cide what situations revolve around which events
and how they are represented in the data.

Furthermore, the quality of the training data has
to be very high. In our understanding, creating a
gold-standard dataset requires full attention of a
human annotator, and relying on automatic recom-
menders would yield inferior results. Nevertheless,
a recommender could be helpful for deep dataset
exploration and for annotation assistance. Such
assistance may come in a form of generating candi-
dates for manual cross-checks when the annotator
had finished their job or for rapid dataset prototyp-
ing. Since our task formulation is novel, there is no
specifically trained machine learning (ML) model
for it yet. To address the need for a recommender,
we have designed a lightweight query language for
rule-based detection of situations in chat datasets.

Next, we introduce Chat Corpora Annotator, a
standalone desktop application for exploring and
annotating multiparticipant chat datasets. To the
best of our knowledge, this is the first tool that
addresses both these tasks simultaneously. Addi-
tionally, we describe the annotation guidelines and
the workflow for the summarization task.

Finally, we present an example collection that
can be used to train machine learning models or
serve as a gold-standard to assess summarization
algorithms.

The main contributions of the paper are:

• An introduction of the situation-based sum-
marization problem.

• A lightweight and easy-to-use annotation tool
specifically designed for data exploration in
multiparticipant chat logs.

• A special query language that can be used to
generate annotation recommendations and run
ad-hoc exploration queries.

• A workflow for CCA that is aimed at creat-
ing a dataset for the task of situation-based
summarization.

• An example collection created using CCA.

2 Situations

Our inspiration for the proposed approach is based
on cases such as a user taking a break from an
important multi-participant chat for a significant
amount of time. For example, it could be an em-
ployee taking a vacation. Having returned, they
would have to catch up with the rest of their col-
leagues, which would include browsing chat discus-
sions that happened during their absence. There-
fore, they would be forced to navigate a large body
of skipped messages which may be distracting and
unproductive, as well as require a lot of time.

Basically, they would have to quickly look
through all of the messages that were sent while
they were away, since they would have no means
to “prune” irrelevant discussions. The main issue
here is the fact that they would not know whether
a particular subset of messages is useful until they
read at least some of them.

Another frequent scenario is a user searching for
a particular conversation that is hard to find. Usu-
ally, in this case user issues search queries trying
different keywords. In general, chats offer unso-
phisticated search capabilities, limiting them to
simplified textual search, thus hindering efficient
retrieval. For example, if the user needs to recall
the details of a meeting (for example, the name of
the place their friends have agreed to go out to),
they would to issue “bar”, “pub”, “restaurant” until
they obtain the desired result.

We propose to address such use-cases with chat
log summarization that is based on the concept
of situation. We define a situation as a subset of
messages revolving around a single event in both
temporal and contextual senses. We can propose
many various examples: participants are arranging
a meeting, selecting a product to be used in their
project, solving a code issue and so on.

An example of a situation that has been found
and tagged with the use of our tool is presented in
Fig. 1. In this figure, the user is shown a situation in
which chat participants find a job offer and discuss
the process of applying to it.

Our final goal that exceeds the scope of this pa-
per is to build a system that would automatically
detect such situations and present them to the user.

The idea is to integrate the hypothetical tool into
the interface of multiparticipant chat applications
to provide the user with the means to take a situa-
tion-based perspective on chat history, instead of
plain-text browsing as it has to be done currently.
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Figure 1: CCA’s main window with a tagged situation visible.

In its first version, we plan to highlight situation
locations in the history, and then, in the future,
present a generated summary.

Automatic extraction of situations can be per-
formed using information retrieval, natural lan-
guage processing (Murray et al., 2018), and ma-
chine learning (Carenini and Murray, 2012) tech-
niques. However, currently, there are no corpora to
train models for this problem and no gold-standard
datasets to run experiments on. Therefore, our first
step is to create such a corpus and for this a special
tool that assists tagging is needed.

3 Chat Corpora Annotator: System
Overview

Following the aforementioned considerations, we
have created the Chat Corpora Annotator (CCA) —
the first exploration-annotation tool designed
specifically for multiparticipant chat log data. Its
main use case is creating a dataset for the proposed
summarization task.

Furthermore, the provided functionality can help
gain clear and immediate insights into raw data.
CCA implements all common statistics and explo-
ration tools and does not require any coding skills
to use them. Additionally, CCA’s CSV viewer is
more comfortable to use than, for example, the rep-
resentation of a dataset that can be created with
pandas3 in a Jupyter Notebook. The user can

3https://pandas.pydata.org/

resize and swap columns in the window without
affecting the data. CCA can be used for any tex-
tual data that contains a date, a username, and a
text field, for example, email threads, Twitter logs,
etc. Finally, all performance-heavy functionality is
implemented separately from the main module and
simply searching through a dataset does not require
the user to load the CoreNLP models.

3.1 Features and User Interface

CCA’s feature set has been inspired by linguistic-
oriented tools, which were traditionally intended
for a single researcher reading through the data
and manually creating a linguistic corpus (Weisser,
2016). However, we have also taken into account
the recent developments in the field, such as the
simplicity and usability of modern annotators.

The main screen of CCA can be seen in Fig. 1.
The user can upload CSV files and read through
them, jump through available dates, and use the
Lucene full-text search capabilities, as well as the
analysis tools:

• Statistics. This menu item contains simple
corpus statistics and visualizing functionality.
Currently available: the number of messages,
unique usernames, tokens, noun phrases, as
well as the average length of a message, av-
erage messages per day, and average token
length.
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• N-gram search. This is a simple tool inspired
by Google Ngram Viewer. On its first run it
builds a B+-tree disk-backed index for shin-
gles (Manning et al., 2008) of length from 2
to 5. This tool allows the user to query the
index with a single term efficiently and see
the frequency of each shingle that contains it.

• Concordancer. This is a simple concor-
dancer akin to nltk’s (Bird et al., 2009)
concordance(): the search is constrained
to a single term, which is then displayed with
its immediate context. The user can select the
number of characters that surround the term.

All of these tools are intended for the same purpose:
they provide different angles on the topics of dis-
cussion in the dataset. For example, searching for
the word “help” in the Ubuntu Chat Dataset (Uthus
and Aha, 2013) reveals that, indeed, it is tech sup-
port chat data.

Additionally, simple visualizations options are
provided. At the moment, there are two: a chart for
message counts by date and a heatmap for message
density by date.

3.2 Query Language
3.2.1 Idea
In this section, we will discuss Matcher, our custom
SQL-like query language created for annotation
recommendations and rich data exploration.

In modern systems such as (Cejuela et al., 2014),
annotation recommendations are usually provided
by machine learning models. There are no such
models for situation extraction yet, and this has mo-
tivated us to adopt a different approach: we provide
the users with complex querying functionality. Our
approach was inspired by rule-based information
extraction systems (Chiticariu et al., 2010, 2013).

Our idea was to allow the user to query the cor-
pus for occurrences of special entities while defin-
ing their surroundings. In essence, the approach
we have taken is rule-based pattern-matching. It is
inspired by the Boolean retrieval model (Manning
et al., 2008).

Running such queries in an ad-hoc manner is a
powerful and versatile way of dataset exploration.
A user can pose a query to check their annotation
work, browse the results, refine the query by adding
or removing conditions and run it again, effectively
fine-tuning their work.

Designing Matcher, we aimed to create an in-
tuitive, simple language that would be easier to

learn for non-programmers. SQL seemed to us a
suitable choice: so, we have created Matcher as
an SQL-like language. Our query editor provides
two modes of entering queries: free-text and a vi-
sual query builder (as seen on top of Fig. 2), which
highlights the operators that would be appropriate
to use next.

Matcher is implemented with the ANTLR parser
generator4.

3.2.2 Formalization
The general syntax of a Matcher query is as fol-
lows:

SELECT cond11, . . . , cond1n1
INWIN wsize1;

cond21, . . . , cond2n2
INWIN wsize2; . . . , condm1 ,

. . . , condmnm
INWIN wsizem.

We call each of condi1, . . . , condini
, i ∈ [1 . . .m]

a matching group and an individual condij a
matcher.

A matcher is a template that is matched against a
single reply in chat history. It consists of a boolean
expression which is sequentially (i.e., in a chrono-
logical order) checked against each message. If it
evaluates to true, then this line is considered to be
a part of the answer.

Each matcher that follows some condij searches
for the next line that satisfies its corresponding con-
dition condij+1. This message does not necessarily
have to immediately follow the previous one.

A single condij consists of a set of atomic pred-
icates joined by Boolean operators. Atomic pred-
icates check the message for simple conditions,
such as either the presence of any word from a
user-defined word list (haswordofdict(), see
Fig. 1) or an extracted NER tag (hastime(),
haslocation(), etc). In order to obtain the
NER data, we have implemented the CoreNLP
pipeline within our tool. The full list of atomic
predicates and other operators can be found in the
Github README.

For example, consider the following query:

SELECT (haswordofdict(meetings)
AND hastime()),
haswordofdict(agreements)

It returns all conversations which start with a
message containing any word from a user-defined
“meetings” dictionary (meeting-related words) and
contains a time marker. The conversation has to
end with any message that has a word from the

4https://www.antlr.org/
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Figure 2: A dedicated visual interface for the Matcher query language. The depicted query is intended for retrieval
of JobSearch situations.

“agreements” dictionary (words used to give con-
sent). Thus, this query tries to extract all situations
of participants scheduling a meeting.

The problem with this query is evident: while
it will return the required conversation, it will also
return a lot of unrelated messages since it does
not restrict the position of the last message. To
address this, we have introduced an optional clause
INWINwsize, wherewsize is a positive integer. It
requires that all matchers from the matching group
affected by the INWIN clause fit in a window of at
max wsize messages. Therefore, the proper query
looks like this:

SELECT (haswordofdict(meetings)
AND hastime()),
haswordofdict(agreements)
INWIN 10

The purpose of the INWIN clause is not only
to restrict the maximum length of the desired con-
versation fragment. Using it allows to query for
a sequence of messages in which each message
immediately follows another, i.e. without allow-
ing other messages in between. This functionality
comes naturally, if the length of the window is
specified to be equal to the number of matchers
in a given group. It stems from the rule that each
matcher should correspond to exactly one message
in each of the resulting fragments.

In Matcher, a query may have several matching
groups. In this case, the action of the next INWIN
clause starts from the last message of the previously

matched group. Finally, we have to note that using
the INWIN clause is optional for the last matching
group.

3.2.3 Real query example
The following query was issued by the annotator
during the creation of our corpus. Its purpose is
to locate situations where participants discuss the
current job market in programming, finding and
discussing appropriate job postings for themselves.
A fragment of the found results can be seen in
Fig 1.

SELECT
(SELECT

haswordofdict(job),
haswordofdict(skill)

INWIN 2);
(SELECT haswordofdict(area)

OR haswordofdict(dev)
OR haswordofdict(money))

INWIN 5

This query states that the annotator would like
to see two messages which contain words from
the “job” and “skill” dictionaries respectively, and
the distance between them should be less than 2
messages (first inner query). After that, the second
inner query will retrieve a third message which con-
tains any word from either “area”,“dev” or “money”
and is not farther away from the first one by more
than 5 messages.

Note that Matcher functionality is intended for
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assistance only, and it should not be considered
as the primary means of annotation. The reason-
ing is simple: due to the inherently variable and
noisy nature of chat logs there are no guarantees
that the found situations are valid. The results re-
quire manual checking. Moreover, there are no
guarantees that all relevant situations contained in
the logs would be found by a given query (for ex-
ample, a user-defined dictionary might not contain
a specific word that is used in logs). That is, speak-
ing in terms of information retrieval, there are no
guarantees on both precision and recall (Manning
et al., 2008). This is why our query processor does
not recommend tags outright, it only points out the
approximate locations of interest to the user in the
data.

Concluding this section, we state that the pro-
posed approach is simpler to use than ML recom-
menders. Our reasoning is that the results obtained
during this process are straightforward, while an
ML model can produce results as a “black box”:
the user would have no understanding as to why
certain messages are assigned certain labels.

3.3 Annotation Guidelines and Workflow

The annotation guidelines are currently simple
and revolve around situation definition, which was
given in Section 1. The annotator either receives
instructions before tagging or personally devises a
tagset during data exploration. Next, they manually
read through the data, extracting and annotating
subsets of messages as situations.

Concerning the annotation model, we have cre-
ated it to be more flexible than just assigning a
single tag to a sequential subset of messages. Each
message can belong to several differently-typed
situations, but cannot belong to two different situa-
tions of the same type. We rely on the assumption
that chat messages are short and the users generally
keep them constrained to one topic. However, as
the topics shift quickly in multiparticipant chat, the
users can try and catch up by compacting informa-
tion concerning different topics in one message.

Figure 3 contains the workflow we provide for
our tool. As it can be seen, the entirety of the data
preparation process is done inside CCA. The user
receives a semi-structured data file and loads it into
the tool. The user then explores it with the analytic
search tools (searches through n-grams, issues sim-
ple queries, and so on), as well as utilizes Matcher,
either coming up with their own dictionaries and

queries or importing them. During this process,
they simultaneously annotate the data and amend
the tagset if required. Finally, they save the result-
ing output as an XML file.

4 Gold-Standard Corpus

4.1 Corpus Development and Statistics
In order to test CCA’s functionality, we have cre-
ated an annotated situation corpus for the freeCode-
Camp dataset5. The fragment of the dataset that
we used contains 967, 038 messages spanning over
381 days, sent by 29870 unique users.

The constructed corpus contains 236 tagged sit-
uations, comprising 4146 messages in total. On
average, our situations are 17 messages long. The
average length of a message in the corpus is 78
symbols, in contrast to the dataset average of 66
symbols. The average number of users participat-
ing in a situation is 3.

Our tagset comprises 6 tags, as can be seen in
the list below. They describe a common situation
encountered in this particular dataset: e.g., Code-
Help is a user pasting in a faulty code fragment
and receiving help. The tags have been manually
devised after dataset exploration, and each of them
has yielded the following numbers:

• JobSearch: 24 situations, 4 users and 13 mes-
sages on average

• CodeHelp: 95 situations, 3 users and 18 mes-
sages on average

• SoftwareSupport: 53 situations, 3 users and
22 messages on average

• OSSelection: 19 situations, 4 users and 16
messages on average

• Meeting: 4 situations, 2 users and 12 mes-
sages on average

• FCCBug: 42 situations, 3 users and 14 mes-
sages on average

Additionally, we have considered windows in
situations (i.e., gaps containing untagged unrelated
messages inside situations) and intertwined situa-
tions (two or more situations which intersect). The
entire number of windows in our corpus is 820,
which makes every situation have around 3 win-
dows on average. The average length of a window

5https://www.kaggle.com/freecodecamp/
all-posts-public-main-chatroom
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Figure 3: CCA workflow.

is 5 messages. Furthermore, out of 236 total situa-
tions, 60 are intertwined.

The creation of the corpus took a single anno-
tator who was acquainted with the task around 20
work hours. They have utilized all available tools,
but used Matcher the most. As they have reported,
Matcher functionality was very valuable, as read-
ing through a million messages would have been
impossible. Additionally, they reported that run-
ning even very simple, single-term queries helped
navigate the chat log data more efficiently by pro-
viding a paginated view of the dataset, coupled
with highlighting of relevant messages.

4.2 Inter-Annotator Agreement

Only one annotator was employed during the cre-
ation of the corpus, so we did not run into situations
that called for conflict resolution.

Going forward, we envision an interface for man-
ual resolution that would allow to compare output
files from different annotators either against each
other and all at once. The annotator responsible for
the comparison should be able to extend or shrink
the boundaries of a situation, remove or add single
messages, etc. Furthermore, we will implement
the computation of various inter-annotator statis-
tics such as Cohen’s Kappa (Manning et al., 2008)
in order to provide the user with formal means of
evaluating the intermediate results.

5 Evaluation

We have conducted two kinds of evaluation tests: a
responsiveness study and a usability study.

5.1 Tool Responsiveness

Raw chat log dataset files can be as large as sev-
eral gigabytes, therefore, we have developed our
application taking this into account.

Metric Results
N-gram indexing 4 minutes
Indexing 1 minute
Heatmap rendering 0.5 s
Jumping dates less than 0.1s
Opening an indexed file less than 0.1s
Search query less than 0.1s
Simple Matcher query less than 0.1s
Complex Matcher query around 0.1s

Table 1: Experiments on CCA responsiveness.

Table 1 presents the results we have obtained.
We have measured the time it takes CCA to perform
crucial operations on a large data file. The setup
was as follows: we used CCA on a mid-range home
PC running Windows 10 (Intel i5-7600k, 16GB
DDR4 RAM, Crucial MX500 500GB SSD), ma-
nipulating a 500MB CSV file that contained around
1M chat messages. We adhere to the well-known
quote of Jakob Nielsen (Nielsen, 1994): “0.1 sec-
ond is about the limit for having the user feel that
the system is reacting instantaneously, meaning
that no special feedback is necessary except to dis-
play the result”. As it can be seen, our system is
responsive and only takes up a considerable amount
of time on tasks that are run once, such as index-
ing or extracting key phrases, which could also be
improved further in the next versions of our system.

5.2 Usability Study

We have run a small usability evaluation with three
volunteers. We have explained the annotation task
to them, and then asked them to load the tool, index
a small CSV file, explore the data and annotate it
using our standard tagset. Next, we have conducted
a short informal discussion on the tool’s interface,
responsiveness and feasibility for the task at hand.
The users have reported that the task was under-
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standable to them, although it did require a little
time to grasp, and the system appeared convenient
for reading and searching through large volumes of
data. They have proposed the following improve-
ments: developing concise documentation for the
system’s capabilities, improving the cohesiveness
of the UI, and finally, we have asked them to fill out
the System Usability Scale questionnaire (Brooke,
1986), which has been slightly modified to fit our
system better. Namely, we have modified ques-
tions 1 and 9, to “I find the system adequate for the
proposed task” and “I could use the system to con-
fidently complete the proposed task” respectively.
This has been done since our system is intended for
several specific tasks that arise in a research setting,
not in daily life. The answers have put CCA at the
50th percentile, which indicates an “OK” level of
usability (Sauro, 2018). Going by the responses we
have obtained, CCA was easy enough to use, but it
lacks better feature integration and perhaps a short
tutorial. We consider this an adequate result for a
first prototype, however, we will focus our future
efforts on improving it.

6 Related Work

In this section, we will review two types of related
studies: annotation tools and corpora created from
chat log data for various tasks.

6.1 Annotation Tools

As mentioned previously, annotating raw text chat
data is a complicated task due to its specifics. In
this section, we will go over several well-known
annotating tools and frameworks and evaluate their
feasibility for the task at hand.
brat (Stenetorp et al., 2012) is a flexible all-

purpose annotation tool. It supports two modes
of annotation: annotating a text span with a label,
and connecting these labels with either directed
or undirected binary relations. Furthermore, the
second mode also includes n-ary relations and at-
tributes of these relations. Finally, brat supports
an extensive constraint system for relations and an
advanced search system. Due to it being based on
a dedicated visualization system, brat was one of
the first tools that provided its users with intuitive
high-quality annotation visualization. However, as
noted by Kummerfeld (2019), it takes considerable
effort to set up for any custom task, including ours.

GATE (Bontcheva et al., 2013) and UIMA (Fer-
rucci and Lally, 2004) are well-known analysis

frameworks that have been developed since the
early 00’s. While they are powerful, customizable
and could be extended to suit any task, they are
not easy to set up and utilize “on-the-go” — a
feature that is essential for many modern tasks.
For example, the creators of the Tweebank v1
dataset (Owoputi et al., 2013) admit to creating
it in a single day. While it is not claimed to be a
gold-standard dataset, the speed is impressive, and
the team has used their own dedicated annotation
tool. However, with these frameworks, the user
would have not only to read through the extensive
manuals, but also, most likely, code their own tools
in Java6.

TWIST (Pluss, 2012) and LIDA (Collins et al.,
2019) are intended for dialogue annotation, which
has been mostly focused on task-oriented dialogue
for dialogue systems. Task-oriented dialogues al-
ready suppose a predefined topic and predefined
roles (e.g., customer support tasks) and little noise.
These tools provide their user with functionality
such as turn/dialogue segmentation. They also im-
pose constraints on the data, such as requiring only
two speakers to be present in the dataset, which
already makes them unsuitable for our task. Fi-
nally, they do not implement any full-text or con-
strained search features, which makes data explo-
ration nearly impossible.

TagTog (Cejuela et al., 2014) and LightTag7 are
modern Web-based annotators that advertise flex-
ibility for any task. While they are flexible and
require little set up time, they also do not feature
any search or exploration functionality in their free
versions. Usually, these tools let the user view the
data one line at a time, which is simply unfeasible
for the task. Although it is possible to set up Light-
Tag to display the “context” of the current message,
it is still a constrained view. Further, these tools
are oriented at fairly monotonous work such as
building a NER dataset with custom tags, and this
is why they tightly integrate ML recommenders
into their workflow. This is helpful for well-known
classification tasks, but it is not a feasible approach
for something novel, i.e. that lacks trained models.
SLATE by Kummerfeld (2019) is an experimental
annotation tool focused on a terminal-based work-
flow that was released in 2019. Its authors argue
that its main advantages are: complete configurabil-
ity for any task and annotation speed which is not

6https://uima.apache.org/doc-uima-
annotator.html

7https://www.lighttag.io/

134



hindered by GUI. Concerning the second point, this
tool is controlled via keyboard shortcuts instead of
a mouse, and all of its UI is contained within a
Linux terminal. It supports annotation of continu-
ous spans of any entities, such as characters, tokens,
lines, or documents. Additionally, SLATE supports
linking any of these entities. It was specifically
designed to create large corpora out of chat and
chat-like data in a very short time. This goal has
been achieved, however, SLATE does not offer any
exploration functionality. Furthermore, its learning
curve may be steep for someone who is not used
for a keyboard-based workflow.

Finally, we would like to mention Huggingface
Dataset Viewer8, which is a web-based tool for
manually looking through NLP datasets from the
Huggingface nlp library. While it is not an an-
notator and cannot be directly compared to our or
other tools, its existence proves that there is a need
to explore a dataset before using it for any task.

As it can be seen, there are no tools that could
be readily applied or easily customized for our task.
Existing options either lack the desired function-
ality or require a substantial, often comparable to
creating a new tool from scratch, effort in order to
make them suitable for the considered task.

6.2 Chat Datasets

Most of the existing annotated chat log datasets are
intended for the chat disentanglement task. The
first known corpora belongs to Shen et al. (2006),
who have drawn their data from an intra-university
IRC channel. This dataset was not public. Fur-
ther on, some of the most well-known work in
this area belongs to Elsner and Charniak (2008)
who have created a corpora for chat disentangle-
ment based on IRC logs of the #Linux channel
at free-node.org. They have manually anno-
tated around two thousand utterances via a dedi-
cated interface. However, to the best of our knowl-
edge, the data has since ceased to be publicly avail-
able. Adams and Martell (2008) developed a dis-
entanglement and topic extraction dataset based on
Navy tactical chat which was not released. How-
ever, the most well-known dataset belongs to Lowe
et al. (2015): they have created the Ubuntu Dia-
logue Dataset based on IRC data from the Ubuntu
help channel. It contains around a million of heuris-
tically extracted multi-turn dialogues, and it can be
accessed online. A dataset based on the French

8https://huggingface.co/nlp/viewer/

version of the same channel was presented by Riou
et al. (2015), containing 1229 messages. Dulceanu
(2016) presents a small dataset of manually col-
lected 884 chat messages which were disentangled
and annotated with three speech acts. Finally, Kum-
merfeld et al. (2019) present the largest disentangle-
ment corpus to date: it contains around 78 thousand
manually annotated messages also from the Ubuntu
and Linux IRC channels.

Concerning other tasks, we would like to men-
tion Tweebank v2 (3550 tweets) by Liu et al.
(2018), which was created for training a full ma-
chine learning based NLP pipeline. Its first ver-
sion by Owoputi et al. (2013) contained 840 tweets
tagged for training a part-of-speech tagger.

To the best of our knowledge, very few summa-
rization datasets for chat and chat-like data were
made publicly available. The AMI corpus (Carletta
et al., 2005) contains transcripts of audio drawn
from business meetings, hand-annotated with their
abstractive and extractive summaries among many
other annotation modes. Further on, Joty et al.
(2010) have developed the BC3 corpus that con-
tains email and blog data for summarization. Koto
(2016) take the same approach and present a sum-
marization dataset for chats in the Indonesian lan-
guage, consisting of 300 manually summarized
chat segments.

As it can be seen, no attempts on creating anno-
tated corpora from the freeCodeCamp data have
been made to date, and our work is the first to
attempt that.

7 Conclusion & Future Work

In this paper, we have presented a novel situation-
based summarization task, CCA — an annotation-
exploration tool for large chat logs, a workflow for
creating a situation-based summarization dataset,
and an example corpus. Chat Corpora Annotator
offers a novel approach to exploration: a query
language that allows the user to query a dataset for
subsets of messages which could be a situation. To
the best of our knowledge, CCA is the only tool
designed for these two tasks at once.

Further work on the tool will be focused on im-
proving its usability and efficiency, as well as ex-
tending language support. The work on the summa-
rization task will be moving towards implementing
the first versions of the summarizer itself.
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Abstract

In this study, we propose a model that extends
the continuous space topic model (CSTM),
which flexibly controls word probability in a
document, using pre-trained word embeddings.
To develop the proposed model, we pre-train
word embeddings, which capture the seman-
tics of words and plug them into the CSTM. In-
trinsic experimental results show that the pro-
posed model exhibits a superior performance
over the CSTM in terms of perplexity and con-
vergence speed. Furthermore, extrinsic experi-
mental results show that the proposed model is
useful for a document classification task when
compared with the baseline model. We qualita-
tively show that the latent coordinates obtained
by training the proposed model are better than
those of the baseline model.

1 Introduction

Topic models are statistical models that automati-
cally extract latent topics in documents from a text
corpus. Topic models have been used in various
applications within and outside of natural language
processing. Such applications include information
retrieval (Wei and Croft, 2006), collaborative fil-
tering (Marlin, 2003), author identification (Rosen-
Zvi et al., 2012), and opinion extraction (Lin et al.,
2011).

The latent Dirichlet allocation (LDA) (Blei et al.,
2003), which is a representative method for topic
modeling, assumes that each document has a la-
tent topic. It uses an unobservable random vari-
able called the latent topic to formulate the factors
that produce a set of words that are statistically
likely to co-occur. Unlike the LDA, the continu-
ous space topic model (CSTM) (Mochihashi et al.,
2013) models documents without using interme-
diate variables, such as latent topics. Specifically,
the CSTM is formulated by introducing latent co-
ordinates of words and considering a function that
follows a Gaussian process in the same space to

represent the importance of a word in a document.
In the LDA, the probability distribution of words is
fixed, and the probability of words is controlled by
the topic distribution. Therefore, it is not possible
to change the probability distribution of words ac-
cording to each document and thus the text cannot
be modeled in a fine-grained way. By contrast, the
CSTM controls the probability of words based on
the latent coordinates of the words and the function
representing the meaning of the document. Hence,
it is possible for the CSTM to dynamically change
the word distribution according to the document.
Additionally, the CSTM outperforms conventional
topic models, such as the LDA, in terms of perplex-
ity.

As mentioned above, the CSTM models docu-
ments using word embeddings; however, the struc-
ture of the model is such that the word embeddings
(latent coordinates) are free parameters. Therefore,
the estimation of the model is time-consuming be-
cause of the large number of parameters. In addi-
tion, the only information used for the estimation
of the word embeddings is the frequency of words,
which makes it difficult to capture the semantics of
words.

In this study, we propose a new method in which
the latent coordinates of words, which are one of
the free parameters of the CSTM, are learned in
advance using word2vec (Mikolov et al., 2013),
and the learned distributed representation of the
words are introduced into the CSTM. As in the
Gaussian LDA (Das et al., 2015), when we use
the word embeddings that capture the semantics
of words and provide them as prior information to
the model, we can expect improved performance
and faster convergence. In the experiments, we
use English and Japanese corpora to compare the
proposed method with the baseline CSTM in terms
of perplexity and convergence speed. We also per-
form a document classification task to evaluate the
quality of the document representations that are
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learned by our model. In the discussion, we use
the trained model to investigate the importance of
words in documents and evaluate the trained model
qualitatively. Additionally, we visualize the latent
coordinates of words and documents in the same
space.

The main contributions of this study are as fol-
lows:

• We propose a CSTM-based model that can es-
timate parameters faster and obtain useful doc-
ument representation using pre-trained word
embeddings.

• Intrinsic experiments using English and
Japanese corpora show that the proposed
model exhibits a superior performance over
the baseline model in terms of perplexity and
convergence speed.

• Extrinsic experimental results show that doc-
ument embeddings obtained by the proposed
model are useful for document classification.

2 Related Work

2.1 Word Embeddings and Topic Models

There are several studies that aimed to improve
the performance of topic models by using a dis-
tributed representation of words. Das et al. (2015)
proposed the Gaussian LDA (G-LDA), which uses
a multivariate Gaussian distribution in the same
space of word embeddings to estimate topics in
the embedding space. Compared with the LDA, it
has high coherence (Chang et al., 2009) because it
introduces prior knowledge of semantics of words
by using pre-trained word embeddings. Recently,
Dieng et al. (2020) proposed the embedded topic
model (ETM). The ETM models each word with
a categorical distribution whose natural parame-
ter is the inner product between the embedding of
word and an embedding of its assigned topic. It
outperformed traditional topic models including
the LDA.

However, both topic models use latent topics to
model the documents. The G-LDA defines latent
topics as multivariate Gaussian distribution, and
the ETM uses topic embeddings for formulating
the word probability. Therefore, those topic models
hardly control word probability directly depending
on a document. In Section 2.2, we introduce the
CSTM, which can directly control word probability
in a document.

2.2 Continuous Space Topic Model
In the CSTM, the probability of a word is modeled
through the Polya distribution, which is a com-
pound distribution of the Dirichlet and multino-
mial distributions, to account for the burstiness of
language (Doyle and Elkan, 2009). We denote
y = (y1, y2, . . . , yV ) as the frequency of each
word in the document, w. The Polya distribution
is defined as follows:

p(y|α) =
Γ(
∑

v αv)

Γ(
∑

v(αv + yv))

∏

v

Γ(αv + yv)

Γ(αv)
,

(1)
where α represents the concentration parameter of
the Polya distribution. We assume that each word,
wv, has latent coordinates φ(wv) ∼ N (0, Id) in
the d-dimension. To increase the probability of
semantically related words in each document, we
generate a function that follows a Gaussian process
with a mean of zero in the same latent space:

f ∼ GP(0,K), (2)

where K represents the kernel matrix, and in
this case, it is an inner product kernel: Kij =
k(wi, wj) = φ(wi)

Tφ(wj). A Gaussian process
(Rasmussen and Williams, 2006) is a stochastic
process that generates a random regression func-
tion, where the closer k(wi, wj) is, the closer the
corresponding outputs, f(wi), f(wj), will be. In-
tuitively, f represents “what we want to say in this
document.” The concentration parameter, αv, of
the Polya distribution is then modeled to be larger
according to its function value:

αv ∝ α0G0(wv) exp(f(wv)), (3)

where α0 ∼ Ga(a0, b0) is a free parameter, and
Ga(a0, b0) indicates the gamma distribution. Ad-
ditionally, G0(wv) ∼ PY(β, γ) represents the “de-
fault” probability of word wv, and PY(β, γ) de-
notes the Pitman-Yor process. In practice, the max-
imum likelihood estimator, #(wv)/

∑
i #(wi),

used as G0(wv) (#(wv) is the frequency of the
word wv in all documents). Based on this, the
generation process of the CSTM that generates N
documents is as follows:

1. Draw α0 ∼ Ga(a0, b0).

2. Draw G0 ∼ PY(β, γ). (In practice, maxi-
mum likelihood estimator is used.)

3. For v = 1 . . . V ,
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• Draw φ(wv) ∼ N (0, Id).

4. For n = 1 . . . N ,

• Draw fn ∼ GP(0,K).

• For v = 1 . . . V ,

– Set αv = α0G0(wv)e
fn(wv).

• Draw w ∼ Polya(α).

3 Proposed Method

3.1 Word Embeddings

Word2vec (Mikolov et al., 2013) is a probabilistic
model for learning distributed representations that
capture the semantics of words based on the distri-
butional hypothesis (Harris, 1954). The continuous
bag-of-words (CBOW) model, which is one of the
learning methods of word2vec, obtains word em-
beddings by maximizing the predicted probability
of the target word, wt:

p(wt|Cwt) ∝ exp(η(wt)
T η̃(Cwt)), (4)

where Cwt = {wt±i|1 ≤ i ≤ δ} represents the
set of nearby context words, δ is the context win-
dow width, and η̃(Cwt) := |Cwt |−1

∑
w∈Cwt

η(w)
denotes the average vector of all context word vec-
tors.

We use the CBOW model to learn word embed-
dings. In this study, we used a relatively large
context window of δ = 10 to learn the topi-
cal information (Bansal et al., 2014). In gen-
eral, it has been shown that the quality of word
embeddings improves by centering (Hara et al.,
2015; Mu and Viswanath, 2018). Accordingly,
acquired distributed representations of the word,
η(w1), η(w2), . . . , η(wV ), are centered and nor-
malized as follows:

ψ(wv) = τS−
1
2

{
η(wv)− V −1

∑

i

η(wi)

}
, (5)

where S is a normalization constant, and defined
as follows:

S = V −1
∑

i

η(wi)
T η(wi). (6)

In addition, τ is a hyperparameter that controls the
variance of word embeddings, and in this study, we
simply set τ = d−1/2.

3.2 Modeling Text with Pre-trained Word
Embeddings

Next, as in Mochihashi et al. (2013), we define the
function that follows the Gaussian process, whose
mean is zero and kernel function is k(wi, wj) =
ψ(wi)

Tψ(wj), in the latent space consisting of the
word distributed representations obtained using Eq.
(5):

f ∼ GP(0,Kψ). (7)

However, because f is, in principle, infinite in di-
mension and difficult to estimate directly, we in-
troduce an auxiliary variable representing the la-
tent coordinates of the document in the word latent
space, similar to the discrete infinite logistic normal
distribution (Paisley et al., 2011), which introduces
latent coordinates to correlate between topics in the
LDA framework:

u ∼ N (0, Id). (8)

We summarize the latent coordinates of the words
as Ψ = (ψ(w1), ψ(w2), · · ·ψ(wV ))T , and we can
obtain the distribution of f = Ψu by marginalizing
u as follows:

f |Ψ ∼ GP(0,ΨTΨ) = GP(0,Kψ). (9)

f follows the same Gaussian process as expressed
in Eq. (7).

Therefore, in the proposed method, we define
the Gaussian process representing the meaning of
the document using the document vector, u, which
is in the same latent space as the word vector:

f(wv) ∝ ψ(wv)
Tu. (10)

Next, we define αv as in Eq. (3):

αv ∝ α0G0(wv) exp(ψ(wv)
Tu), (11)

and model the probability of a word using the Polya
distribution in Eq. (1).

3.3 Bayesian Markov Chain Monte Carlo
(MCMC) Estimation

By combining N documents as D =
(y1,y2, . . . ,yN ), we can obtain the joint
distribution of α0 and α as follows:

p(α0,α|D) ∝
∏

n

p(yn|α0, G0, fn)p(α0)p(fn|ψ). (12)
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Algorithm 1: MCMC Procedure

1 Initialize u ∼ N (0, Id)
2 Initialize α0 = 1
3 for j = 1 . . . J do
4 for n = randperm(1 . . . N) do
5 Draw u′n ∼ N (un, σ

2
uI)

6 Draw υ ∼ Uniform(0, 1)
7 if A(u′n) ≥ υ then
8 Update un = u′n
9 end

10 end
11 Draw z ∼ N (0, σ2α0

)
12 Set α′0 = α0 · exp(z)
13 Draw υ ∼ Uniform(0, 1)
14 if A(α′0) ≥ υ then
15 Update α0 = α′0
16 end
17 end

Figure 1: The MCMC algorithm of proposed model.

However, because α changes only through the doc-
ument vector, u, in Eq. (10), in the proposed model,
the joint distribution of the estimated parameters,
α0 and u = (u1, u2, . . . , uN ), is denoted as fol-
lows:

p(α0,u|D) ∝
∏

n

p(yn|α0, G0, ψ, un)p(α0)p(un). (13)

For model estimation, we use the random walk
Metropolis-Hastings (MH) algorithm to avoid the
problem of local optima, as demonstrated by
Mochihashi et al. (2013). 1 We show the MCMC
algorithm of proposed model in Figure 1. The esti-
mating parameters are α0, and the document vector
u in Eq. (11). The candidates for each parameter
are generated using the following proposal distri-
bution:

z ∼ N (0, σ2α0
), (14)

α′0 = α0 · exp(z), (15)

u′ ∼ N (u, σ2uI). (16)

1We attempted the Hamiltonian MCMC algorithm (Neal
et al., 2011) using the gradient of the posterior distribution.
However, owing to the high computational cost and need for
numerical differentiation, we only used the random walk MH
algorithm in this study for the experiments.

Table 1: Statistics for each corpus.

Data Docs Vocabulary Words

NIPS 1,740 37,822 3,971,243
CSJ 3,302 20,001 5,433,871

Mainichi 10,000 38,070 8,070,838

Table 2: Test set perplexity for each corpus.

Data Ours CSTM ETM

NIPS 980.682 1148.386 2872.731
CSJ 288.157 300.967 1017.658

Mainichi 362.706 405.199 2602.808

We also adopt candidates according to the accep-
tance probability of the following likelihood ratio:

A(α′0) = min

{
1,

∏
n p(yn|α′)Ga(α′0|a0, b0)∏
n p(yn|α)Ga(α0|a0, b0)

}
,

(17)

A(u′) = min

{
1,
p(yn|α′)p(u′|0, Id)
p(yn|α)p(u|0, Id)

}
. (18)

In this study, we set σα0 = 0.2 and σu = 0.01,
which are the random walk widths that control effi-
ciency of training, based on the results of prelimi-
nary experiments.

4 Experiments

4.1 Corpora

In the experiments, we used the Neural Information
Processing Systems (NIPS) 2, which is an English
corpus, Corpus of Spontaneous Japanese (CSJ) and
Mainichi Newspaper (10,000 randomly selected
articles from 2013), which are Japanese corpora.
For Japanese, we preprocessed texts using MeCab3

with IPADic. In all the corpora, words with a fre-
quency of less than five were excluded from the
training data. The statistics for each corpus are
listed in Table 1.

4.2 Intrinsic Evaluation

To evaluate the performance of topic models, we
computed the perplexity of the proposed model, the
CSTM and the ETM. Similar to the work of Wal-
lach et al. (2009), we randomly selected 80% of the

2https://cs.nyu.edu/˜roweis/data.html
3https://taku910.github.io/mecab/
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Figure 2: Test set perplexity of the proposed model and
the CSTM.

words in each document as training data and calcu-
lated the perplexity on the remaining 20% of the
words. For the evaluation in the proposed model
and the CSTM, we varied the latent dimension size
by 10, 20, 50, and 100 and reported the best score
on test data. For the evaluation in the ETM, we
set the local learning rate to 0.002 and the weight
decay parameter to 1.2× 10−6, and then selected
the model which reported the best validation score
by varying the number of topics by 10, 20, 50, and
100.

Perplexity The perplexity of the proposed model,
the CSTM and the ETM computed for each corpus
is shown in Table 2. The proposed method outper-
forms the CSTM and the ETM in terms of perplex-
ity for all three corpora. Compared to the CSTM,
the proposed method naturally has higher perfor-
mance because it has the topical information from
pre-trained word embeddings. The ETM cannot
directly control the word probability in a document
because it uses topic embeddings for formulating
the word probability, so the proposed model, which
can control the word probability flexibly, performs
better in terms of predictive power.

Convergence Speed Figure 2 shows the perplex-
ity convergence of the proposed model and the
CSTM. The proposed model only takes less than
ten iteration to converge, though the CSTM takes
fifty to hundred iteration. The proposed model also
outperforms the CSTM in terms of convergence
speed on all corpora because it has topical informa-
tion as prior knowledge from the pre-trained word
embeddings.

Table 3: Mean classification accuracy on the CSJ cor-
pus using learned embeddings.

Models Accuracy P-value

CSTM 0.704 0.000
Ours 0.866

word2vec 0.917 0.111
Ours w/ word2vec 0.928

4.3 Extrinsic Evaluation

To evaluate the quality of representations of the doc-
uments that are learned by our model, we perform
a document classification task. We evaluate the
performance of the proposed model by comparing
it with the performances of CSTM and word2vec.

Settings In this experiment, we use the one-
versus-one support vector machine implemented in
scikit-learn 4. The data was split between training,
90% and testing, 10%. For the tuning parameter
C, which is one of the parameters controlling the
extent of penalty, and γ, which is the parameter of
RBF kernel, we execute grid search by a 10-fold
cross validation on the training data and select the
best models in terms of accuracy. For other param-
eters, we use the default values set by scikit-learn.

We define the features as follows: For the CSTM,
we use the document vectors. For word2vec, we
use the mean vector of word vectors in the docu-
ment. For the proposed model, we use the docu-
ment vector (denoted “Ours”) and the concatena-
tion of the mean vector of word vectors and docu-
ment vector (denoted “Ours w/ word2vec”). Also,
we apply the paired t-test to compare the perfor-
mance between the proposed models and the base-
line models. A confidence interval of 95% was
considered to identify a significant difference be-
tween two compared models.

Results Table 3 shows the classification accuracy
on the CSJ corpus using each feature. For doc-
ument classification using only document vector
obtained from the proposed model, we can see
that it significantly (p < 0.05) outperformed the
CSTM but is slightly inferior to word2vec. How-
ever, when we use the document vector obtained
from the proposed model and the average vector
of word vectors obtained from word2vec, the accu-
racy is better than that of word2vec, although the

4https://scikit-learn.org/stable/
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Figure 3: The visualization of reduced embedding
space around the 1000th document “The Role of Ac-
tivity in Synaptic Competition at the Neuromuscular
Junction.” Words are colored as blue and document as
orange.

difference is not statistically significant. We will
analyze the classification results in detail in Section
5.3.

5 Discussion

5.1 Visualizing Word and Document
Embeddings

In the proposed model and the CSTM, word vectors
and document vectors are located in the same space,
so we can observe the relationships between a word
and a document at the same time by visualizing
embedding space. We execute the PCA on vectors
of words with high frequency and all documents to
reduce dimensionality.

The reduced word and document vectors ob-
tained by the proposed model are shown in Figure 3
and 4, and we additionally show the visualization of
full embedding space, including those documents,
in Figure 5 in Appendix. In these figures, two rep-
resentative documents are shown—a neuroscience
article titled “The Role of Activity in Synaptic
Competition at the Neuromuscular Junction,” and
a computer science article titled “Bayesian Model
Comparison by Monte Carlo Chaining.” Figure
3 enlarges reduced embedding space around the
neuroscience article that shows words such as “sig-
nal,” “neurons,” and “Cortex.” Figure 4 enlarges
reduced embedding space around the computer sci-
ence article that shows words such as “Bayesian,”
“iterations,” “optimized,” and “parameters.”

From these figures, we can see that words re-
lated to topics of the article are correctly located.
Therefore, we can see that the proposed model can
locate document vectors appropriately in the word
embedding space, which enhances the performance
of the model.

Figure 4: The visualization of reduced embedding
space around the 1183rd document “Bayesian Model
Comparison by Monte Carlo Chaining.” Words are col-
ored as blue and document as orange.

5.2 Analyzing the Importance of Words in a
Document

In the proposed model and the CSTM, the docu-
ment vectors are defined in the same space as the
word vectors. Therefore, based on the inner prod-
uct of the document vector and the word vector,
we can quantitatively measure the importance of
words in a document, such as words that are likely
to appear in a document and words that are not. For
the calculation, we used the document and word
vectors of all words in the training vocabulary, in-
cluding words that do not actually appear in the
document.

For example, for the proposed model and the
CSTM, we used the neuroscience article in the
NIPS corpus to compute the ranking of topic-
related and topic-unrelated words in the document.
Tables 4 and 5 show the results of the proposed
model and the CSTM, respectively. We show the
words that actually appear in the document in bold.
Although both the results of the CSTM and the
proposed model contain the words appearing in
the document, we can see that the proposed model
comparatively captures the topic of the document
and gives high score to topic-related words. The
topic-related words obtained using the CSTM ac-
counted for a few words that were related to the
topic of the document, whereas those obtained by
using the proposed model accounted for a signifi-
cant number of words that were related to the topic
of the document, such as “axon,” “synapses,” and
“nervous.” This means that the probability of such
words in the document will be reflected to a greater
extent. Moreover, we observed that words among
the topic-unrelated words obtained by applying the
proposed model were not related to the topic of
the document. Such words include “Euclidean,”
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Table 4: Top 30 topic-related words and topic-unrelated
words from the NIPS article, “The Role of Activity in
Synaptic Competition at the Neuromuscular Junction,”
using the proposed model. The words that appear in the
document are shown in bold.

ef Word ef Word

113.7901 axon 0.0862 vector
27.7607 synapses 0.1197 convex
22.7449 nervous 0.1267 hidden
21.7567 brain 0.1280 Fisher
19.4746 synaptic 0.1306 derivative
16.0369 interaction 0.1308 Euclidean
15.9976 mechanisms 0.1332 classifiers
15.5423 fiber 0.1357 norm
15.4603 stimulation 0.1359 sigmoidal
15.0863 presynaptic 0.1420 observable
14.7511 sites 0.1476 gradient
14.6049 animal 0.1565 regression
14.2858 ocular 0.1582 computes
13.9519 interneurons 0.1620 corrupted
13.7734 areas 0.1624 squared
13.5084 role 0.1643 sampled
13.3584 postsynaptic 0.1645 minimized
13.3000 plasticity 0.1710 Gaussian
12.9953 inhibition 0.1809 speaker
12.8826 dominance 0.1818 discrete
12.8527 muscle 0.1843 unknown
12.7587 recordings 0.1909 defined
12.5784 formation 0.1910 feature
12.5326 terminal 0.1920 written
12.4104 growth 0.1927 LMS
12.2916 pathway 0.1971 PCA
12.0274 caused 0.2029 piecewise
11.8988 cues 0.2065 perceptron
11.6562 effects 0.2089 entropy
11.5566 activated 0.2138 bounds

“gradient,” and “regression.” We believe that this
is because, unlike the CSTM, the proposed model
has prior knowledge of the topical information of
words, thereby facilitating the estimation of docu-
ment vectors that capture a set of topically similar
words.

5.3 Error Analysis of Document
Classification

Table 6 shows the classification accuracy for eight
category labels using each feature. The proposed
model outperforms the CSTM substantially in all
categories.

For example, the classification of “Speech Pro-
cessing,” the CSTM misclassified some of the doc-

Table 5: Top 30 topic-related words and topic-unrelated
words from the NIPS article, “The Role of Activity in
Synaptic Competition at the Neuromuscular Junction,”
using the CSTM. The words that appear in the docu-
ment are shown in bold.

ef Word ef Word

7.5986 adding 0.2744 silicon
7.0567 extent 0.3063 inequality
6.8850 relatively 0.3491 template
6.2375 recording 0.3565 schedule
6.0914 randomly 0.3582 ICA
5.9904 placed 0.3622 head
5.9894 other 0.3811 speaker
5.8748 specified 0.4120 filter
5.8090 write 0.4200 MLP
5.7228 adapted 0.4301 spin
5.1464 terms 0.4328 gate
5.0912 speed 0.4355 memory
5.0879 explicitly 0.4355 faces
4.9648 when 0.4386 orientation
4.8808 demonstrate 0.4503 PCA
4.8080 range 0.4520 nucleus
4.7802 share 0.4523 expansion
4.7197 section 0.4543 almost
4.6721 complicated 0.4552 functions
4.6541 partial 0.4593 variational
4.6538 conditions 0.4634 gates
4.6462 approximately 0.4715 boolean
4.6417 actually 0.4726 quantization
4.6161 practice 0.4758 contour
4.6149 journal 0.4816 Viterbi
4.6034 recognition 0.4845 chip
4.5872 overall 0.4899 pulses
4.5752 basic 0.4918 radial
4.5430 single 0.5009 MAP
4.5222 theoretical 0.5024 multilayer

uments as “Linguistics,” “Psychology,” and “Ar-
tificial Intelligence,” while the proposed model
classified almost all of the documents as “Speech
Processing” except for some of the documents la-
beled “Linguistics.” We find that the CSTM mis-
classified one of the documents in “Speech Pro-
cessing,” which discusses statistical methods in
detail, as “Psychology,” while the proposed model
classified it correctly. The CSTM models word
co-occurrence on a document-by-document basis
as in Eq. 3, though multiple topics might exist in
a document. Therefore, the document vectors ob-
tained by the CSTM do not have the information of
the semantic difference between psychology and
statistics.
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Table 6: Classification accuracy on the CSJ corpus for each category using learned embeddings.

Category Count CSTM Ours word2vec Ours w/ word2vec

Speech Processing 413 0.761 0.912 0.956 0.971
Cosmology 248 1.000 1.000 1.000 1.000
Biology 247 1.000 1.000 1.000 1.000
Linguistics 206 0.452 0.786 0.790 0.857
Psychology 141 0.393 0.721 0.857 0.843
Artificial Intelligence 120 0.358 0.592 0.825 0.817
Language Education 62 0.417 0.833 0.833 0.817
Sociology 28 0.167 0.400 0.700 0.700

Total 1465 0.704 0.866 0.917 0.928

In contrast, the proposed model models word co-
occurrence based on the local context of the neigh-
borhood, where topics are considered to be some-
what consistent. Therefore, the proposed model
can distinguish the word set that tends to appear in
the genre of psychology from the genre of statis-
tics in the embedding space. Hence, because the
document vectors are estimated in the space where
word vectors have the information of the semantic
difference between psychology and statistics, the
proposed model can distinguish those documents.

6 Conclusion and Future Work

In this study, we introduced the learned distributed
representation of words into the CSTM to pro-
vide prior knowledge on the semantics of words.
In the experiments, we showed that the proposed
model outperformed the baseline method in terms
of perplexity and convergence speed. Also, we
showed that the proposed model is useful for a
document classification task compared with the
baseline model. Additionally, we showed that the
document vectors obtained by training the model
are superior through visualization of the embed-
ding space and analysis of importance of words in
a document.

In the future, we would like to investigate better
ways of estimating the model, including optimiza-
tion by applying the Hamiltonian MCMC algo-
rithm, which was not used in this study. Further-
more, we would like to use contextualized word em-
beddings obtained by ELMo (Peters et al., 2018) or
BERT (Devlin et al., 2019) in the proposed model.
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Figure 5: The visualization of reduced embedding space using the proposed model. Words are colored as blue and
documents as orange.
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Abstract

The semantics of a text is manifested not only
by what is read, but also by what is not read. In
this article, we will study how the implicit “not
read” information such as end-of-paragraph
(EOP) and end-of-sequence (EOS) affect the
quality of text generation. Specifically, we find
that the pre-trained language model GPT2 can
generate better continuations by learning to
generate the EOP in the fine-tuning stage. Ex-
perimental results on English story generation
show that EOP can lead to higher BLEU score
and lower EOS perplexity. We also conduct
experiments on a self-collected Chinese essay
dataset with Chinese-GPT2, a character level
LM without EOP or EOS during pre-training.
Experimental results show that the Chinese
GPT2 can generate better essay endings with
EOP. Our code is available on GitHub.1

1 Introduction

Large-pretrained neural models such as GPT (Rad-
ford, 2018) and BERT (Devlin et al., 2019) have
achieved the state-of-the-art on many NLP tasks.
Among these models, OpenAI’s GPT2 (Radford
et al., 2019), for example, has shown to be capable
of generating long fluent text in many areas, such
as stories (See et al., 2019), recipes (H. Lee et al.,
2020), patent claims (Lee and Hsiang, 2019), and
news (Zellers et al., 2019). However, the semantics
of a text goes beyond what’s written to what’s not
written: When to break paragraphs and when to
end. We wish to experiment on this issue: How
much do EOP and EOS markers affect our ability
to generate texts with GPT2.

To study the strength of GPT2 as a language
generator, See et al. (2019) conduct experiments
in the context of story generation with the Writing-
Prompts (Fan et al., 2018) dataset. They find that

1https://github.com/rsvp-ai/semantic_
unwritten

the generated results of GPT2 have higher-quality
content (using more rare words, concrete words,
and named entities) by comparing the top 150 gen-
erated words. However, the average story length
of the dataset is 12 paragraphs, 368 words. In such
lengthy human writings, the overall layout and text
endings are also important, but whether the GPT2
can generate them properly is unclear, and how to
generate better endings has not been investigated.

In this work, we find the generated endings are
not only affected by EOS, but also EOP. EOP can
also help improve the topic relevance of the gener-
ated text. We first conduct essay completion exper-
iments with Chinese GPT2 (Zhang, 2019), which
is a character-level LM without EOS or EOP dur-
ing pre-training. Experimental results show that
fine-tuning with EOP can achieve higher ending
quality score and topic relevance score in human
evaluation. We further conduct story generation ex-
periments on dataset WritingPrompts with English
GPT2-117, which holds the line break “\n” (NL) in
the vocabulary. Thus, the NL can be treated as the
end-of-paragraph during fine-tuning (Mao et al.,
2019). Experimental results show that learning to
end the paragraph can benefit the word/token per-
plexity, BLUE score, EOS perplexity, and human
evaluated ending quality score.

Our contributions are as follows: We show that
not only the well-known EOS but also the EOP, is
part of the semantics of a text, and training with
this information improves the text generation itself.
The paragraph information not only can help im-
prove the effectiveness of the generation model but
also help to generate the end of the text. We also
investigate different approaches to incorporating
paragraph information into the LM generator. Our
findings indicate that SEP/EOP and EOS should be
introduced to GPT2 types of models during pre-
training, to generate better text in length.
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2 Background

Our target task is to conduct auto-regressive lan-
guage modeling over WritingPrompts and the
ChineseEssay dataset. The basic assumption of
auto-regressive generation is that the probabil-
ity of a word sequence equals the product of
conditional word probability: P (w1:T |W0) =∏T
t=1 P (wt|w1:t−1,W0) where W0 is the given

context, and in this work, W0 can be a story
prompt or the beginning of an essay. The gen-
erated sequence length T is usually determined by
the time t generating the EOS (end-of-sequence) to-
ken: P (wT |w1:T−1,W0) = P (EOS|w1:t−1,W0)
In this work, the model computing the conditional
probabilities is self-attention Transformer (Vaswani
et al., 2017). We train our model with the cross-
entropy loss between the predicted conditional
probabilities and the ground-truth next token.

When the target of generation consists of mul-
tiple paragraphs, there are several approaches
to indicating the paragraph ending. The most
common and obvious approach is to sepa-
rate paragraphs with line break NL: w1:T =
p1, NL, ..., pn−1, NL, pn, EOS where pi = {wbi:ei}
is the words sequence of paragraph i, from the be-
ginning wordwbi to the ending wordwei . However,
not every paragraph ends with NL, and during the
pre-training, not every NL represents the paragraph
separator (SEP) . A better option is to append a
new specific token EOP to indicate the end of the
paragraph: w1:T = p,1, ..., p

,
n−1, p

,
n, EOS where

p,i = {wbi:ei , EOP}. Then, each paragraph can end
with the EOP and the transformer-based language
model can learn this feature with every paragraph
in the training data, without distinguishing when to
generate EOP and when not to.

It is well known that greedy decoding and beam
search usually lead to repetitive and degenerate out-
puts(Shang et al., 2015; Massarelli et al., 2019).
Sampling-based decoding methods have shown a
strong ability in generating diversity, fluency and
repetitiveness of the generation with pre-trained
language models, such as top-k and top-p sampling.
In this work, we choose the top-p sampling decod-
ing algorithm and set the p equals to 0.95.

3 Experiments

3.1 Datasets

Story Generation. The story generation dataset is
the WritingPrompts, collected by Fan et al. (2018)

Dataset Story Essay
Language English Chinese
#Train samples 199,083 1,615
#Test samples 11,069 461
#Validation samples 11,474 195
#Avg. words per sample 367.9 571.3
#Avg. paragraphs per sample 12.1 5.6

Table 1: Detailed information of the filtered Writing-
Prompts dataset and the ChineseEssay dataset.

from Reddit. It is a large dataset of 300K human-
written stories. Each instance of this dataset is the
pair of a short prompt and a long story. Follow-
ing See et al. (2019), we exclude examples that
are longer than 1024 BPE tokens to meet the maxi-
mum length restriction of GPT2. Statistics for this
dataset are detailed in Table 1. We sample 1000
examples from the test set for decoding.

Essay Completion. We build an essay comple-
tion dataset ChineseEssay, which is collected from
primary school and annotated by native Chinese
annotators. All these essays are descriptive essays
about people, such as family members and teachers.
Hence, compared with the WritingPrompts, this
dataset is smaller but less open domain. Dataset
statistics are also shown in Table 1.

3.2 Experimental Settings

Model Configuration. For Chinese essay genera-
tion, we use Chinese-GPT2 (Zhang, 2019), which
is a 48 layers Transformer with 1.5 billion pa-
rameters, pre-trained with 15GB Chinese corpus.
For story generation, we fine-tune the OpenAI’s
GPT2-117 with WritingPrompts following previ-
ous work (See et al., 2019; Mao et al., 2019). The
GPT2-117 model has 12 layers and 117 million
parameters. During fine-tuning, the batch size is
32 and the warm-up steps are 800. The other hy-
perparameters are the same as the default setting
of Huggingface Transformers (Wolf et al., 2019).
Models can converge after 15 epochs for GPT2-117
and 3 epochs for Chinese-GPT2. The checkpoints
with the best evaluation results on validation set are
chosen for further testing.

Automatic Metrics. We use the following met-
rics: perplexity over all words/tokens (W/T
PPL); perplexity over words/tokens excluding
EOS/EOP/SEP (W/T PPL(-)); perplexity of
EOS (EOS PPL); percentage of the generated texts
that are ending with EOS (EOS%); BLEU/Distinct
score excluding EOS/EOP/SEP (BLEU/DIST). All
perplexities are macro-average.
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ParaType FT EOS T PPL T PPL(-) BLEU1 BLEU2 DIST1 DIST2 EOS% EOS PPL

None
No No 12.12 11.48 33.6 7.5 34.46 73.95 0 -
Yes No 11.44 11.44 38.1 9.9 32.95 73.96 0 -
Yes Yes 10.43 10.42 42.7 10.7 37.57 78.26 76.41 22.15

SEP DIY Yes Yes 10.45 10.52 44.1 11 38.73 78.98 90.26 8.92
EOP DIY Yes Yes 10.34 10.48 45.4 11.2 40.18 80.61 93.07 2.74

Table 2: Test results of different models with/without fine-tuning(FT) on ChineseEssay dataset.

ParaType FT W PPL W PPL(-) T PPL T PPL(-) EOS PPL BLEU1 BLEU2 DIST1 DIST2

None No 42.53 42.20 34.42 34.17 295.50 20.3 2.2 58.87 89.78
Yes 31.34 31.35 25.81 25.81 4.63 30.4 4.6 50.07 87.12

SEP
No 39.97 42.00 32.43 33.79 102.93 20.3 2.2 58.87 89.78
Yes 29.36 31.24 24.23 25.57 4.32 31.2 4.3 50.15 85.88

SEP DIY Yes 30.23 32.17 24.99 26.38 4.48 31.5 6.8 48.57 83.84

EOP NL
No 40.10 41.84 32.52 33.68 26478.91 20.3 2.2 58.87 89.78
Yes 29.95 31.32 24.70 25.63 20534.60 30.7 4.3 49.79 85.44

EOP DIY Yes 30.18 32.21 24.95 26.41 2.26 31.7 6.9 48.32 83.82

Table 3: Test results on WritingPrompts dataset.

Human Evaluation Metrics. We also conduct the
human evaluation with 50 random samples from
the test set. For ChineseEssay, we collect genera-
tions from EOS fine-tuned model, EOS+EOP fine-
tuned model, and EOS+SEP fine-tuned model. For
WritingPrompts, we collect generations from the
model fine-tuned with EOP and the model with-
out SEP/EOP. Four native speakers are asked to
compare the generations of different systems in
pairs over four metrics: topic relevance, fluency,
ending quality, and overall preference. The asses-
sors were presented with pairs of generated output
and asked to make a three way judgment: whether
the “left system” was better, the “right system” was
better, or “cannot distinguish”. The latter option
either meant that both output were equally good,
or equally bad. To prevent inadvertent bias, all sys-
tems were blinded, i.e., the assessors did not know
which system generated which output, and presen-
tation order was randomized. After annotation, we
count the total times of each system outperforming
the others, and then normalize to 0-100%.

4 Results

The results of different settings of utilizing para-
graph information (ParaType) are shown in Ta-
ble 2 and Table 3: concatenating all paragraphs
into an uninterrupted sequence (None); concate-
nating all paragraphs with “\n” as the paragraph
separator (SEP NL); concatenating all paragraphs
with a new token “[SEP]” as the paragraph sep-
arator (SEP DIY); appending “\n” to the end of
each paragraph (EOP NL); appending a new token
“[EOP]” to the end of each paragraph (EOP DIY).
Automatic Metrics. For Chinese essay generation,

since Chinese-GPT2 is pre-trained without any spe-
cial tokens(EOS/EOP/SEP), it will keep generating
until meet the max length limitation without fine-
tuning. In this case, we first compare None models
fine-tuned with and without EOS in Table 2. We
can find that both T PPL (-) and BLEU scores are
better with EOS. However, even fine-tuned with
EOS, only 76.41% generated texts can end with
EOS. After adding EOS, the EOS PPL plunges
from 22.15 to 2.74 and the EOS% rising from 76.41
to 93.07, indicating that more generated essays end
with the EOS after learning to end paragraphs. The
BLEU scores are also improved. It should be noted
that the BLEU score is affected by the length of
the text. We further truncate all generations with
the length of the ground-truth story to calculate
the truncated BLEU scores which are detailed in
Appendix A and the overall trending is consistent.
Finally, the ground-truth essays get 41.2 DIST1
and 82.65 DIST2, which means EOS DIY achieves
the closest DIST scores to the ground-truths.

On the other hand, English GPT2 is pre-trained
with EOS and line break NL. Hence, we first com-
pare GPT2 fine-tuned without NL, with NL, and
with new token “[SEP]”/“[EOP]”. According to
the Table 3, we can find that the fine-tuned GPT2
with NL as SEP achieves the best results on word
and token level perplexity metrics. Compared with
the model fine-tuned without paragraph informa-
tion, all the models with EOP/SEP achieve better
BLEU scores. We further report the length trun-
cated BLEU scores in Appendix A. The overall
trending is consistent. As for diversity score, the
DIST1 and DIST2 of the ground-truth stories are
50.23 and 85.07, and the SEP NL is the most close
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Figure 1: Relationships between paragraph relative position and the ranking of the EOS probability predicted by
the last token of each paragraph.

None SEP EOP
None 43 45
SEP 57 52
EOP 55 48

(a) Topic relevance

None SEP EOP
None 47 53
SEP 53 54
EOP 47 46

(b) Fluency

None SEP EOP
None 37 34
SEP 63 49
EOP 66 51

(c) Ending quality

None SEP EOP
None 42 47
SEP 58 50
EOP 53 50
(d) Overall preference

Figure 2: Average percentage of systems in row outperform system in column. Results are normalized without
considering the Cannot Distinguish examples.

None SEP EOP
None 0.89 0.69
SEP 0.89 0.70
EOP 0.69 0.70

(a) Topic relevance

None SEP EOP
None 0.61 0.60
SEP 0.61 0.65
EOP 0.60 0.65

(b) Fluency

None SEP EOP
None 0.68 0.63
SEP 0.68 0.71
EOP 0.63 0.71

(c) Ending quality

None SEP EOP
None 0.52 0.34
SEP 0.52 0.51
EOP 0.34 0.51

(d) Overall preference

Figure 3: Fleiss’ kappa κ (Fleiss, 1971) for the reliability of raters’ agreement. The interpretation of κ’s value
should be: poor agreement (< 0), slight agreement (0.01–0.2), fair agreement (0.21–0.4), moderate agree-
ment (0.41–0.6), substantial agreement (0.61–0.8), and almost perfect agreement (0.81–1).

one. In addition to the better PPL and BLEU score,
we find that learning to end paragraphs can bene-
fit the prediction of EOS. The EOP DIY achieves
the lowest EOS PPL and all models trained with
EOP/EOS achieve better EOS PPL than model with-
out paragraph information, except the EOP NL.
This observation indicates that GPT2 tends not to
generate the EOS following the NL even after fine-
tuning, but it can learn better EOS with the help of
a new EOP token.

We further compared the relations between
EOS and different EOP/SEP, which is shown in Fig-
ure 1. The horizontal axis represents the relative
paragraph index, 0 means the beginning paragraph
and 100 means the last paragraph of the story. The
vertical axis represents the ranking position of the
EOS probability among all tokens in the vocabulary
predicted by the last token of each paragraph. As
EOS should only be predicted by the last token of
the last paragraph, the ranking at 100 should be
higher and the other position should be lower. Ac-

cording to Figure 1(a), all models rank EOS higher
as the paragraph index increasing. EOP works bet-
ter than SEP as the EOP models rank EOS higher at
the 100th position and lower on the other positions,
which can be seen from Figure 1(b).

Human Evaluations. Human evaluation results
are shown in Figure 2. Each cell represents the
percentage of the examples that the row system
wins the column system on. Cells will be filled
in blue if the row system outperforms the column
system over 10%. It should be noted that Cannot
Distinguish examples are skipped when counting
winners for these figures. From Figure 2, we can
first find that learning to end paragraphs leads to
better ending quality: 63% and 66% results are
rated better when comparing SEP/EOP with None
systems, while only 37% and 34% results are rated
better for None system. We also find that EOP’s
text endings are slightly better than SEP. This is
consistent with EOS PPL and EOS% results in Ta-
ble 2. Although SEP wins on topic relevance and

151
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None 45
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(a) Topic relevance

None EOP
None 51
EOP 49

(b) Fluency

None EOP
None 43
EOP 57
(c) Ending quality

None EOP
None 47
EOP 53
(d) Overall preference

Figure 4: Average percentage of systems in row outperform system in column.

None EOP
None 0.67
EOP 0.67
(a) Topic relevance

None EOP
None 0.69
EOP 0.69

(b) Fluency

None EOP
None 0.72
EOP 0.72
(c) Ending quality

None EOP
None 0.58
EOP 0.58
(d) Overall preference

Figure 5: Fleiss’ kappa κ (ranging from -1.0 to 1.0) for the reliability of raters’ agreement.

fluency, the overall preference of SEP compared
with EOP is 50%, which means these two systems
are similar for human rates. Besides, we also find
that SEP and EOP achieve better topic relevance
and overall preference. For fluency, there is no
significant difference among different systems.

We also report Fleiss’ kappa κ in Figure 3, to
access the reliabilities of raters’ agreement. κ < 0
means poor agreement, and κ ∼ (0.6, 0.8) means
substantial agreement. From this figure, we can
find that most of them fall into the substantial agree-
ment group. The overall preference falls into mod-
erate agreement, because this metric is more sub-
jective than the others.

Human evaluation results for WritingPrompts
are shown in Figure 4 and Figure 5. Assessors
still prefer model fine-tuned with EOP rather than
without EOP/SEP.

Case Study. We further conduct case study and
detailed in Appendix B. The most important ob-
servation is that, without EOP, the beginning of
the generation is more relevant to the end of the
input prompt, but the more it generates, the poor
quality is. While the generator with EOP can gen-
erate multiple paragraphs related to the input with
a reasonable ending but each paragraph is more
independent than human writings.

5 Conclusion

In this paper, we have demonstrated that EOP and
EOS information helps generating better text. Chi-
nese GPT2 and English GPT2 are two existing mod-
els pre-trained without and with EOP respectively,
which provides a perfect platform for our proposed
experiments. On the ChineseEssay dataset, the text
generation when fine-tuned with EOP and EOS in-
formation is significantly improved. On the other
hand for the English task, although (English) GPT-

2 was trained with NL which serves as EOP to some
degree, learning to end paragraphs can still benefit
the story generation in terms of automatic metrics
and human evaluation results.
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Appendix Overview

In this supplementary material, we provide ad-
ditional experimental results of truncated BLEU
score in Appendix A, and several generations in
Appendix B.

A Truncated BLEU Score

The BLEU score is easily affected by the length
of text, where a short text might achieve a higher
BLEU score than a long text. The average lengths
of the texts generated from different methods are
shown in Table 5 and Table 4. An intuitive metric
for this problem is the truncated BLEU (T-BLEU)
score.

To get the T-BLEU score, we first truncate the
generated text with the length of its corresponding
ground-truth text. Then, the BLEU score of the
truncated text is the T-BLEU score.

As we can see from Table 5 and Table 4,
although the BLEU score improvements of
EOP/SEP become less significant on the Chinese
dataset, the overall trending is similar with the nor-
mal BLEU scores.

B Case Study

We first conduct case studies with Chinese GPT2.
Case B.1 and Case B.2 are two cherry-picked ex-
amples.

The prompt of the first example Case B.1 is
about the author’s teacher. After finetuning without
paragraph information, we can see that the gener-
ated continuation is related to the given prompt but
pays too much attention to the gifts instead of the
teacher, and generating something about the finan-
cial problem in the beginning. Although the middle

portion of the continuation is well written, the latter
half part is poor, incomplete and hard to be under-
stood. In contrast, the continuation generated with
EOP is much better, although with minor errors of
word choice. Besides, the ending of the latter one is
much better as the former one just keeps generating
until reaches the maximum length.

Similar trending can be found in the second ex-
ample Case B.2. According to our observation,
without EOP, the beginning of the generation is
more relevant to the end of the input prompt but
the more it generates, the poor the quality is. While
the generator with EOP can generate multiple para-
graphs related to the input with a reasonable ending
but each paragraph is more independent than hu-
man writings.

We further investigate the story generation re-
sults. Two different cases are shown in Case B.3
and Case B.4. In the first case, the generation of
DIY EOP is better than NL SEP, as it mentions the
aliens multiple times and also generates the time
“100 years” while the other one only talks about
the planet. In Case B.4, NL SEP is better than DIY
EOP. The generator fine-tuned without paragraph
information is the poorest in these two cases, which
is consistent with our experimental results and in-
dicates the paragraph information can benefit the
story generation.

ParaType FT EOS T-BLEU1 T-BLEU2 Avg.Length

None
No No 42.6 9.0 814.1
Yes No 48.0 11.6 793.5
Yes Yes 49.2 11.9 632.0

SEP DIY Yes Yes 49.4 12.0 576.7
EOP DIY Yes Yes 49.6 12.0 535.4
GroundTruth - - - - 571.3

Table 4: Average length and truncated BLEU scores of different models on ChineseEssay dataset.

ParaType FT T-BLEU1 T-BLEU2 Avg.Length
None Yes 36.6 5.3 392.7
SEP NL Yes 37.6 5.0 367.4
EOP NL Yes 37.3 5.0 368.0
SEP DIY Yes 38.6 8.0 385.7
EOP DIY Yes 38.6 8.1 379.6
GroundTruth - - - 369.3

Table 5: Average length and truncated BLEU scores of different models with finetuning on WritingPrompts dataset.
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B.1 Case 1 of Chinese-GPT2

Input prompt:
老师，就像辛勤的园丁，每天都向我们灌溉知识。老师，就像一支红烛，照亮了我们，燃尽了自己。老师，就
像那苍天大树，而我们，就是树下的一棵小草。老师，就像那蓝天上的白云，而我们，就是自由翱翔的小鸟。
老师，就像那无尽的海水，而我们，就是哪快乐畅游的小鱼。老师，就像那广袤无垠的大草原，而我们，就是
哪草原上奔腾的骏马。

每年快到教师节的时候，我都会无比的感谢老师，因为，有了老师，我们就是幸福的人，比那些在大
山上不了学的，我们是多么的幸运。有了老师，我们就是有了尾巴的鱼，在无尽的知识里畅游。有了老师，我
们就像有了翅膀的雄鹰，在蔚蓝的天空中，自由翱翔。

我今年小学毕业，我离开了上了6年的小学，那里有熟知的人，熟悉的教室，可是那就是过去，是我回
忆的地方，每年的教师节，我听到我们班主任说的最多的一句话就是：下次别再送了礼物了，我要的不是那些
礼物，我要的是你们学习的态度，如果，你们要送的话，就送些手工做的，可以旧物利用，比如，叠个千纸鹤
了，叠个星星了，都可以，不要用钱买，有那份钱，也可以买些学习用品。
Brief Translation:
I am grateful to my teacher. The teacher’s guidance to us is essential like the tail to the fish and the wings to the eagle.
This year, I have graduated from primary school which is a place full of good memories. I still remember that every
Teachers’ Day, my teacher told us not to waste money to prepare gifts for her, as learning together is the best gift.

Figure 6: Chinese input prompt and English translation.

Output of Chinese-GPT2 fine-tuned without EOP:
我记得有一次，班主任说有同学家里穷，需要资助，因为我们很多同学都没有孩子(unreasonable)，一般都是自
己挣钱，所以，我们同学的爸爸妈妈都说：”你们没钱没权，家里的爸妈都没有孩子(unreasonable)，这对我们
来说是一种压力，因为我们的父母的学历都比你们高，就算我们再穷，我们也要好好读书，不然到时候就没的
读了。”我听到这句话，心里像扎了根针一样，痛。我希望老师知道我的心声，并对我进行语文课程的辅导，
让我能更加好的理解课文。谢谢老师，让我在欢笑中学习知识，学会感恩，学会感谢辛苦付出的老师。老师，
我们是彩虹，落在心里最美的地方，遇到，便是老天最大的幸运，让我们用最美的彩虹，每天绽放最灿烂的彩
虹，为我们的校园增添一缕鲜花 (good continuation but should stop here.) す她，虽已不在人世，但我永远不会忘
记她，为了我，我愿用自己全部的青春献出自己的真心，把我对老师的感谢埋进心底，告诉父母：我对老师的
感恩，与幸福一样宝贵。笨呀，笨死了，我送了一本漫画书给她。我看到了她泪眼婆娑，一脸的疲惫，并且嘴
里还喃喃着：”对不起，我是单亲家庭，不能送你一本书了。”我哽咽着，扶了扶眼镜，他一把拽住了我的衣
服：”这有什么，我都已经这样了，还想着你，你居然还想走.....”我再三道谢，沉默地笑了。笨呀，有什么好
抱怨的，我不知道以后怎么办，以后，我愿不(incomplete)
Modified Google Translation:
I remember a time when my teacher told us that one of our classmates need financial assistance, because many of our
classmates had no children(unreasonable) and generally made their own money, so our classmates’ moms and dads
said,” You have no money and no rights. Parents has no children(unreasonable) , which is a stress for us, because our
parents have higher academic qualifications than you. Even if we are poor, we must study well, otherwise we will have
no chance of studying. ” At this point, my heart hurts like be inserted in a needle. I hope that the teacher will know
my minds and provide me with Chinese language tutoring so that I can better understand the text. Thank you
teacher, let me learn knowledge happily, learn to be grateful, learn to thank the hard-working teacher. Teacher,
we are the rainbow. We fall in the most beautiful place in our hearts. When we meet, it is the greatest luck. Let
us use the most beautiful rainbowe brightest rainbow every day and add a ray of flowers to our campus. (good
continuation but should stop here.) [garbled tokens], she has passed away but I will never forget her. I told my mother that
I am grateful to my teacher. I don’t know what to do. In the future, I hope not(incomplete)

Figure 7: Generation from Chinese-GPT2 fine-tuned without EOP.
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Output of Chinese-GPT2 fine-tuned with EOP:
老师，这是一个实实在在的老师，她知识渊博，课堂上，她激发我们的斗志，课下，她严格，刻苦，为我们全
班同学排忧解难，可是在我的生活中，我最敬佩的老师是一位母亲，老师，是用爱心来温暖，去回报，用知识
来创造美丽幸福的人。有了老师的教导，我们就像上帝创造出来的天使，是最纯净的天空，没有感伤，没有痛
苦，每一天，我都在老师的呵护下，享受天伦之乐(unreasonable)，是您指引着我们，走向未来，是您为我们
付出了许多，是您使我们在知识的海洋里健康地成长。

曾经有一位心灵手巧的老师，让我们学会手工活，学会穿衣服，学会修剪指甲，收拾桌椅，学会穿衣
服，学会洗衣服......她就是我们的语文老师。说真的，我心里很感激我的语文老师。她教会我们词语的讲解和
组合，教会我们汉字的发音，曾经我的心情很低落，她的安慰，为我指点迷津，让我重新燃起了奋斗的斗志。

我会好好的学习，才不会辜负老师的期望呢！[EOS]
Modified Google Translation:
Teacher, this is a trustworthy teacher. She is very knowledgeable. In class, she inspires our fighting spirit. After class, she
is strict and diligent. She solves problems for our classmates. The teacher is a mother, a teacher, a person who warms with
love, returns, and uses knowledge to create beautiful and happy people. With the teaching of the teacher, we are like the
angel created by God. It is the purest sky, no sentimentality, no pain. Every day, I am under the care of the teacher and
enjoy the family fun(unreasonable). It is you who lead us to the future, it is you who paid a lot for us, and it is you who
made us grow up healthy in the ocean of knowledge.
There used to be a handy teacher who taught us how to work by hand, how to dress, how to trim nails, how to clean tables
and chairs, how to dress, how to wash clothes ... she is our Chinese language teacher. Seriously, I am very grateful to
my Chinese teacher. She taught us the explanation and combination of words, taught us the pronunciation of Chinese
characters. And when I was depressed, her consolation gave me pointers to help me rekindle my fighting spirit.
I will study hard so that I will not disappoint the teacher’s expectations!

Figure 8: Generation from Chinese-GPT2 fine-tuned with EOP.
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B.2 Case 2 of Chinese-GPT2

Input Prompt:
那时，正值夏季，烈日炎炎。

我和我的朋友们正走回学校的路上。
Brief Translation:
It was a hot summer. I was on the way to walking back to school with my friends.

Figure 9: Chinese input prompt and English translation.

Output of Chinese-GPT2 fine-tuned without EOP
凉爽的风吹来，我的心也舒畅了些许。走出校门，看到一大群人在热火朝天地玩着什么，我不禁打了个冷战。
只见有几个小孩子挎着摇摇篮，走在空地上，摇摇篮里塞满了不听话的人，吵吵嚷嚷地叫着，吵闹的人群一
个接着一个地的在空地上来回飞舞。只见他们不管是乱扔垃圾的，还是在家里乱扔东西的，总有那么一两个
人，让人看了都觉得讨厌，那几个男生，在那儿使出浑身解数，往那儿扔垃圾，有的还不止一次，他们真的
是抓破了脑袋才钻到垃圾堆里啊！”听说那些事儿很早就埋在那儿了。”他们越说越起劲，像每个夏季都会发
生的那样，还拿起了”帚，拿起了沙包。回过神来，脸已经晒得通红，汗珠直往外流。我呆呆地站在那儿，思
绪飞到了几年前，那时的我才十三岁，现在的我才二十四岁！打来打去，什么也没有留下。唉，打得还挺勤
快。我转过身，在树底下端详着他们，又想起了他们，他们可真是坏事当前，坏事晚来了许多啊！我继续打
打我那张臭脸。我的心猛地一抽，丢下书包，飞奔出去。在那片空地上，零零星星的人有的在玩儿，有的正
在玩呢！他们又跳又叫，不分是非地叫着。我突然看见一个不起眼的小孩儿，他满脸通红，眼睛红得像个灯
泡，让人看了如沐春风。他正用眼睛注视着那只有倒在地的人，他下意识地往上看，一会儿，上面散落着一些
塑料瓶子。他不知道，还在玩儿呢！我忽然有些感动，急忙跑过去，跟在他后面，问：”他怎么了？为什么那
么残忍。”小伙儿只是若无其事地回答：”我觉得他太可怜了。”他倒也会说话，但是有些话让我怎么说也说不
出来。他一双大大的眼睛仿佛在说：”我这是为了家里，也是为了我们共同的孩子。现在，我是想退出，你们
也别急，知道吗？要是真和这些小孩闹僵了，家里的学习教材再翻出来，你们就完了！”看着小伙儿那可怜的
小眼睛，心里一阵酸楚，我不禁流下了眼泪。每次吵完架后，他总爱说：”我不怪你，可你就这样放弃我吧！
我没钱啊！”唉，啊！唉！哎！气息都快从嗓子里出来了啊！唉！唉！唉！唉！那时，我仿佛听见了他的声
音：”哎，孩子，爸爸的房屋可能拆迁了，你就住在那吧。等拆迁后我送你吧！我会好好学习的！”那声音大得
连我自己都听不见，我的心仿佛像灌了铅似的。我也哭了，但没办法，谁叫人生是漫长的呢？那时我只会低着
头走路，却找不到一根自来水。我生着闷气，仿佛快要窒息了。我急得满头大汗，冲到楼下，不停地喊：”救
救我！救救我！”唉，我都快把脸憋得通红。这时，对面来了一辆出租车，我毫不犹豫地将
Modified Google Translation:
The cool wind blew, and my heart was relieved a little. I walked out of the school gate and saw what a large group of
people were doing something. I couldn’t help fighting a cold war. I saw a few children carrying the cradle and walking on
the open space. The cradle was full of disobedient people, screaming loudly, and the noisy crowd flew back and forth on
the open space one by one. I saw that whether they were littering or throwing things at home, there were always one or
two people that made people feel annoying when they saw it. Those boys, they tried to do everything and throw garbage
there. Some more than once, they really broke their heads and got into the garbage dump! ”I heard that those things were
buried there very early.” They said more and more vigorously, as they would happen every summer, and took up ”Broom,
took up the sandbag. When I looked back, my face was already sunburned It was red, sweat was flowing out. I stood there
blankly, my thoughts flew a few years ago, when I was only 13 years old, and now I am only 24 years old! Stay. Alas, I
played very diligently. I turned around, looked at them under the tree, and thought of them again. They are really bad
things, and bad things come a lot late! I continue to beat my bad face . My heart twitched, dropped my schoolbag, and ran
out. On the open space, some people were playing and some were playing! They jumped and called, regardless of right or
wrong. Screaming. I suddenly saw an inconspicuous child, his face flushed, his eyes red like a light bulb, making people
look like a spring breeze. He was staring at the only person who fell to the ground with his eyes, he subconsciously went
up Look, for a while, there are some plastic bottles scattered on it. He doesn’t know, he’s still playing! I suddenly Some
moved, quickly ran behind him, asked: ”how he was? Why so cruel. ”The boy just answered casually:” I think he’s too
pathetic. ”He would speak, but some words made me unable to say what he said. His big eyes seemed to be saying,” This
is for my family and for our common children. Now, I want to quit. Don’t worry, you know? If you are really upset with
these children, you will find out the learning materials at home, and you are finished! ”Looking at the poor little eyes of
the guy, I felt sore in my heart, and I couldn’t help crying. After each quarrel, he always said,” I don’t blame you, but you
just give up on me! I have no money! ”Oh, ah! Uh! Hey! The breath is almost coming out of my throat! Uh! Uh! Uh! Uh!
Then I seemed to hear his voice:” Oh boy, my father’s house may be demolished, You live there. I’ll send you after the
demolition! I will study hard! ”That voice was so loud that I couldn’t even hear it myself, my heart seemed to be filled
with lead. I also cried, but there was no way, who made life long? At that time, I just walked with my head down, But I
couldn’t find a tap. I was sulking, as if I was about to suffocate. I was so sweaty that I rushed downstairs and kept shouting,
”Save me! help me! ”Well, I’m almost flushing my face. At this moment, a taxi came across, and I didn’t hesitate to

Figure 10: Generation from Chinese-GPT2 fine-tuned without EOP.

157



Output of Chinese-GPT2 fine-tuned with EOP
我们都还在上课，突然一阵急促的车铃声传来，我们低下了头，拿出粉笔，认真地练习。
窗外的大树上，有一个乞丐，他向路人求助，却得不到人帮助，放弃了乞丐的工作，独自一人走了。他的脸
上，永远挂着笑，脸颊上，微微露出皱纹。
火车缓缓开过，熙熙攘攘的人群和我们汇成一片。那时，我正在大口大口地吃着零食。突然，看到一个乞丐，
他颤巍巍地走了过来，我急忙拦住他：”小心，别被车轧到。”他却语气坚决，关切地问：”您怎么这么着急，
知不知道车辆出轨了？我们的工作又不是那么危险，怎么可以冒险出来帮助别人呢？您一天到晚忙着赚钱，却
不关心自己的健康，给钱这么不讲道理，真可怜。””啊，这是什么人啊？拿什么关心呀？这是个老人啊！他这
样只顾自己，在哪打点零工，卖什么不关心。”一旁的马路上，几个小伙子正在大口大口地讨论着。我不禁流
下了眼泪。含着眼泪，向其中一个乞丐致谢，这个老人见了我们，又弯下腰，打开自行车的后座，把钱给了我
们，又对我们说：”不要再来烦我们了，我们的工作就是很危险的，也很需要钱的，不如来为国家做点力所能
及的事吧。”我的泪水模糊了我的眼睛。
慢慢地，车流渐渐远去，但有些在星星点点的人群里，依然在四处寻找着那个乞丐。夜深人静了，我一人在街
上漫步，深深地感受到社会的冷漠和人性的丑恶。我的心又忍不住泛起阵阵潮湿的雨珠。一件一件事情，令我
感到我自己的不幸。随后，雨又愈发大了。
我环顾四周，在最好的车站等上了车，我并没有去接那乞丐。直到车子终于来了，我才有些不耐烦了。不是不
想让别人帮我，而是那些恶作剧都是不成熟的表现。很多时候，对人也是冷漠的，甚至是冷嘲热讽。我有些生
气，却又难以控制着。游戏在幸福的雨幕里。以后每当看见乞丐，我总是感到心酸。
在接下来的日子里，我不再光顾街头，但行人仍多。我依然不理会任何人的言语，回家却无法挽回，那个老人
又怎么会有人关心呢？
时间会冲淡一切，但我不想放弃，就算老天在我身边，我还是会努力，继续做好自己，虽然结果不尽如人意，
但我依旧要用自己的行动报答社会。[EOS]
Modified Google Translation:
We were all still in class, and suddenly there was a rush of car bells. We lowered our heads, took out chalk, and practiced
seriously.
In the big tree outside the window, there was a beggar who asked for help from passersby, but could not get help. He gave
up the work of the beggar and left alone. There was always a smile on his face, and a slight wrinkle appeared on his cheek.
The train passed slowly, and the bustling crowd merged with us. At that time, I was eating snacks with a big mouthful.
Suddenly, when I saw a beggar, he came tremblingly, and I hurriedly stopped him: ”Be careful, don’t get caught in the car.”
But he resolutely asked, ”Why are you so anxious, do you know the car is out of track Now? Our work is not so dangerous,
how can we take risks to help others? You are busy making money all day, but you don’t care about your health. It ’s so
pitiful to give money so unreasonably. ”” Ah, what is this? Man? What do you care about? This is an old man! He only
cares about himself like this, where to do odd jobs and don’t care what he sells. ”On the side of the road, a few young men
were talking in a big mouth. I can’t help crying. With tears, thanks to one of the beggars. The old man saw us, then bent
down, opened the back seat of the bicycle, gave us money, and said to us, ”Don’t bother us anymore, our work is very
dangerous. I also need money, so let’s do something for my country. ”My tears have blurred my eyes.
Slowly, the traffic gradually went away, but some of the little crowds were still looking for the beggar. The night was quiet,
and I was walking on the street alone, deeply feeling the indifference of society and the ugliness of human nature. My
heart could not help but burst with wet raindrops. One thing at a time makes me feel my own misfortune. Afterwards, the
rain became heavy again.
I looked around and waited at the best station. I didn’t pick up the beggar. I didn’t get impatient until the car finally came.
It’s not that you don’t want others to help me, but that those pranks are immature. Many times, it is indifferent to people,
even ridiculous. I’m a little angry, but hard to control. The game is in the rain of happiness. Whenever I see a beggar, I
always feel sad.
In the following days, I stopped patronizing the streets, but there were still many pedestrians. I still ignore the words of
anyone, but I ca n’t restore it when I go home. How could anyone care about that old man?
Time will dilute everything, but I don’t want to give up. Even if God is by my side, I will still work hard and continue to
be myself. Although the results are not satisfactory, I still have to repay the society with my own actions.

Figure 11: Generation from Chinese-GPT2 fine-tuned with EOP.
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B.3 Case 1 of GPT2-117

Input prompt:
Aliens come to Earth in hoping to wipe us out and take over the planet, but are honorable and gives us a fighting chance.
They announce they will return in 100 years so as to give Earth a chance to prepare and defend itself. Neither side expected
what the other would bring to war

Figure 12: English input prompt.

It was dark as the day began. Pure white, forever not knowing the night sky. This was the first time since their arrival that
ships had been so dark, it was hard not to feel the tremors of terror as the drops of rain started falling. The rain started
a minute after the humans had arrived. It started getting brighter as they piled up and felt the tremors of rain take their
place. Another minute or two they saw them in the distance. One little shell, below them floated a little bigger. Behind
that shell came another of them falling, one in each direction. Then, faster and faster the smaller the shell went. It was as
if they were floating to each other, different colors and shapes sailing past each other in any direction, making the scene
less momentary. The rain started to fall. The tall suits of soldiers patrolled the area. They didn’t see what was happening
but one was seeing some sort of change. He was slowly meeting the upper edge of the shell, directly under the soft snow.
The rain started to fall and he was choking back the hail and it suddenly stopped flowing. He looked up at the Sun and the
grass and saw the cloudless sky in front of him. He knew that had given him a new hope. He wasn’t lying when he said
that the atmosphere was starting to roll away, and just as he was about to turn around he felt a knock on his door. ”I’m
having a look at this. It’s new... ” ” We’ll wait. ” ” You have to go, have a look. ” ” Come with us.” With that said the
strange man took off his coat and sat on the porch of his house, waiting for the rain.

Figure 13: Generation from GPT-117 fine-tuned without EOP/SEP.

A planet - there is no other more appealing than a peaceful planet,
taking in the vast plains of green and dry,
allowing the native species to develop.
Among many other things, the greatest threat here was our neighbours as well,
hosting none but a single blue planet.
With every news we received, while we was still, the green grass kept
tilling even the most exotic plants.
Against the odds, we agreed. This blue planet
is sure to die if it too falls,
as if the planet we are about to take hold of is not giving it.
Whether it is the region of lush land,
living in the shadow of endless sea, or the ones that lie beyond,
this planet will feed our population just as well.

Figure 14: Generation from GPT-117 fine-tuned with NL as SEP.
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Robert stood in the room quietly. The pager in the edge of his TV blinked off as he contemplated what he was seeing. It
was not his first visit by alien ships. Most of them had flown over the galaxy in 882 since the foursome of an ancient race
had first started transit in the Kardashev system. But they did not have a star system to conquer or destroy.
The strain of building a bridge was far from comfortable as it had become. Even hands and feet were shaking as they
dutifully lugged the countless cargo back to their vessel. Each alien lacked a ship just like him. Their ships would not
be ready for another 100 years. Without time, they would be easily overwhelmed.
The first of them came on us. The black, streaming in through a far wall. Its shape changing from green to orange as it
accelerated. It came in waves across the curved surface. Its metallic surface simply glowed off. Robert had seen the
mouth of the creature. It had a back in it, almost reptilian. A spider-like body with a fangs that ripped through
the flesh like a spider. The mouth was growling with hunger in response. It roared as its muscles launched away from
Robert to mate with him.
The next twenty-three seconds went by with little delay. Robert led the old stranger down a hallway to his repair bay. He
was quick to greet the human with baited breath and followed close behind him. He took the sidearm from underneath his
suit and held it in front of his eyes as the humans tore at the metal. A metal band formed around the metal covered mouth.
The human was tongue hanging off his neck.
Without stopping, he freed his hands from the talons hanging around his head as he pressed the new badge on his hip.
Robert opened his mouth to scream but his goal was to prevent the humans from catching on to what was happening.
Robert began unwrapping a vial of orange liquid. He approached the canine and began licking it, waiting. The canine
howled as Robert removed his mask and walked away. He had fifty percent of the tanker harvested and stored at a distance
of about five million miles.
The alien warship stopped in mid-flight and seemed to accelerate down again as Robert completed its tasks. He called
back, letting out a whistle that was barely audible over the din of battle. Within a second the ship touched down at a small
cove. The human ran over to him, mewling.
”Not again. ” Robert said.
” Exactly, Mr. Tammoy. We have evidence of life support in here. ” The alien asked.
” And what. Was. All. You. Deposed. ” Robert responded.
” Quite literally. ” The humanoid replied.
” So, just one moment. Can’t you just give it a chance? ”
” Neither can anybody else.” The creature continued, seemingly oblivious to its words and their implications. Robert
slowly brought the cockpit of the ship’s other ’Crew’ to the nub. He unlocked the pods and stepped into the airlock. The
robot was gone. Robert sat in the cockpit, the cylindrical container behind him. He took a deep breath and looked out into
the blackness, following the exact pattern of the vessel. The black flesh was always fascinating. More often than not, he
didn’t really understand what it meant.
Robert walked past the humans towards his repair bay. It had not done much damage. He walked back past the humans
and got into his pickup truck. With the last line of effort he pushed his way through the trio.

Figure 15: Generation from GPT-117 fine-tuned with DIY EOP.
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B.4 Case 2 of GPT2-117

Input Prompt:
You were driving to work one day and your car suddenly started flying.

Figure 16: English input prompt.

( got more into poetry / fiction themes/ before calling it Work ) My grandfather had 3 boxes of cake and a white sugar
please Jane said ”today is April 25th, and your seventh or eighth ” I was in love by the looks of things, I hated her ” Your
father loves you at least nine times ” I said ” Oh, I know, it’s really funny. ” She looked at me with a confused expression ”
why would she do that ” Then I began to back out of it like I told her I would. At that point Jane said something ” no, she
had a birthday today ” and since I was the father of her child I felt really blessed for making her mother happy. We closed
the front door and walked back into her house to eat cookies. You see, she almost did so fast, I was so pumped and pretty
much took the bag to the kitchen for milk and honey, but here I was going to take everything home and spend it running
errands. My wife moved back in a minute later, but I saw her and told her I was having this late so I told her ” Yeah ” ” tell
her I’ll grab one at the bus stop tomorrow ” She said you’ll come back to bed early and eat one ” goodbye ” but I did hurry.
My wife usually leaves early so we’re in the car then this was her last day of school. At the bus stop it was all so bad that
I’d have forgotten not to say goodbye ” Hello, It seems I’ve had the worst day of my life. Please remember to check on
Jane ” ” Excuse me child ” I looked at her puzzled ” oh my god ” A strange feeling came over me and I knew I didn’t
have time for that in the moment. ” K- Come on Jane ” Suddenly I became stiff and lost my footing. I fell onto the curb
and immediately collapsed onto the curb again. ” What the HELL” followed by everything I missed out on. I knew my
grandmother was trying to get me to go to the movies.

Figure 17: Generation from GPT-117 fine-tuned without EOP/SEP.

My heart was racing; I felt something otherworldly being in my car. ” Hello again! Who is this? ” I was already bracing
for another crash at work.
” Shhh shhh ” the object before me suddenly let go. I tried turning it on to get some air. Nope, this thing didn’t change its
positioning, it never got to anything. My arm feels like a pressure cooker, its chest feels like a heater. In all that time I
never had expected to see anything like this happening. My legs were numb, and my back was numb. I was so tired. I was
like a boat out of water and it seemed like it took all my energy to get the gas pedal off. ” I swear to god please don’t hurt
me! ” I screamed, and I was feeling for my hands like claws were opening my right leg.
Suddenly the skull popped open... my car began to fly..no where else to go except to look on the horizon and never see it
again. I had been driving home in rage and frustration. I need to get out of here, I’m literally the black dog everywhere. ”
What the hell happened? ” I was about to ask out of fear of being right next to someone when a screeching fell from
above. I slowly turned my head towards the heavens. Something was definitely different in the sky.
” Can you hear me? ” I shouted, though I was standing a full 6 feet tall. I was so sure. * What is going on? * I wanted to
yell out, to pretend that I didn’t hear someone. ” Help me! Please! ” What! No. Please. Please help me! ” I must have just
tried to reach for my hand or something.
It landed in the grassland and started shaking. My chest felt heavier and it was hardly noticeable on the ground. It shook
harder, and now my eyes were fixated on that star. ” Fuuuuuk, Fuuuuuuuuuk... ” *BANG*, the Earth shook. I was spinning
and was floating. It was so bright I looked down at my arms, and I felt like we were floating for what seemed like an
eternity. I was breathing like I was being ripped apart.
Then I felt something was dragging me. I don’t know what it was, but it was drifting closer and closer and more and more
until I felt as though I was about to fall and I could hear what could only be a small nervous chuckle escaping my lips. ”
God this is so weird! ”
” What’re you doing? ”
” I’m.... In a strange alternate world. I’m falling from this sky, touching a comet... ”
” Hell no! This is just a dream... I’m falling from this sky and it’s going to explode and everything is going to be fine
until I touch a comet again. Then... this is it. All of this is right now and I can’t see what’s going on but I can feel it. I can
feel it being lifted off of me and all of this knowledge and knowledge... ”
Brilliant* What?! It was the best dream I had ever had! I could definitely feel that tiny little planet being pulled up to the
surface by whatever ship it was in. God, could I ever know what will happen to it like that? But what would happen to me
if I touched one such comet! Even being floating in space with nothing to do?
I had finally had enough! ” I’ll get you out of here! I’ll let you out... ( Once I get to the comet, I can feel the universe get
pulling me to another dimension. ) I’ll let you out! ” I took off my sunglasses and put them on, and there was no way I
wouldn’t be in that crowd again.
After that nightmare I decided that I wasn’t going to make it out of here alive. That I couldn’t ride a car that would almost
definitely end in killing someone. Whatever! I’ll be back, that’s all I need.
I’ll be free of this reality, *that dream* and open to some other universe!

Figure 18: Generation from GPT-117 fine-tuned with NL as SEP.
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Here we go again, I’m trying to pick up my pace. My hands are dragging along the overgrowth and I hardly feel a thing.
The sunlight beating down on me still yet dulling my vision. My hand suddenly feels like it’s in a basketball as I pick
myself up off the ground.
”Hey Wendy... You okay? ”
” Just trying to get some fresh air on my lungs ”
” Can you get me one of my of my stones to drink. I mean, there is no use in driving ”
” Sure... ” I say looking around, taking up a new position on a nearby skylight. While searching, one on a hill that seems
pretty rounded in any way, two other ones are out of order, and I take notice of them trying to move out of the way.
Not even half an hour passes... I can feel them roll in and out of the path as I decide it’s time to head out for the day. No, I
don’t give one.
” Would you like some fresh air for my shoulder? ”
” How about that new Sonic X that’s been around for the past couple years? Now as soon as I get off it, it can take me out
of the sun. So just give me a moment of peace and rest ”
I reach for my rock, still still clutching at my leg with my shoe. Yet as fast as I left it, it’s trapped by my arm. I’m powerless
to do anything... until I hear something coming down from the trees. ” STOP! ” I yell as I try to dodge it in a fast spiral.
Before I can react, it’s shoved right at me and I fall to the ground. The sky is dark, smog filling the sky. Already I’m
blacking out, the backlight on my car keeping me firmly in darkness.
A crisp wind whipping about me, I grab my blanket from my chair and prepare to throw it at anything that could have
managed to keep me with me. Bouncing out of my chair, I continue down the path where the road once was.
The wind is beginning to get stronger. More thunderstorms begin breaking out, as well as additional thunder. My turn
comes up and the wind picks up. As soon as I can see it, it’s nowhere to be seen. I’m only about 10 minutes away from the
road, standing in the middle of the road. I hear a voice screaming from my car. A tall man in fatigues looks at me and
looks at my car. ” Damn... I was driving... ” he says, before sprinting from my car and grabbing his wallet. He gives me
a look of disgust, as if the only thing worse than avoiding the highway was choosing between two other men.
I ask him what was going on, and he smiles gently. ” You think I’m lucky to get in, huh? I really shouldn’t be riding a
car just yet, you know. But I’m glad you’re here! So if you don’t mind if I drive me, I have a few things on my mind. ”
” Alright, fine, whatever. Go, fasten the seat belt, you can’t come back here any other way. Are you sure you’re just going
to excuse me, though?”
That was his last expression, before he limped away like a glutton.
This is the end of my first attempt at writing nothing! Any thoughts of how to improve upon it?

Figure 19: Generation from GPT-117 fine-tuned with DIY EOP.
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Abstract

Unsupervised cross-lingual word embedding
(CLWE) methods learn a linear transformation
matrix that maps two monolingual embedding
spaces that are separately trained with mono-
lingual corpora. This method relies on the as-
sumption that the two embedding spaces are
structurally similar, which does not necessar-
ily hold true in general. In this paper, we ar-
gue that using a pseudo-parallel corpus gener-
ated by an unsupervised machine translation
model facilitates the structural similarity of the
two embedding spaces and improves the qual-
ity of CLWEs in the unsupervised mapping
method. We show that our approach outper-
forms other alternative approaches given the
same amount of data, and, through detailed
analysis, we show that data augmentation with
the pseudo data from unsupervised machine
translation is especially effective for mapping-
based CLWEs because (1) the pseudo data
makes the source and target corpora (partially)
parallel; (2) the pseudo data contains informa-
tion on the original language that helps to learn
similar embedding spaces between the source
and target languages.

1 Introduction

Cross-lingual word embedding (CLWE) methods
aim to learn a shared meaning space between
two languages (the source and target languages),
which is potentially useful for cross-lingual transfer
learning or machine translation (Yuan et al., 2020;
Artetxe et al., 2018b; Lample et al., 2018a). Al-
though early methods for learning CLWEs often uti-
lize multilingual resources such as parallel corpora
(Gouws et al., 2015; Luong et al., 2015) and word
dictionaries (Mikolov et al., 2013), recent studies
have focused on fully unsupervised methods that
do not require any cross-lingual supervision (Lam-
ple et al., 2018b; Artetxe et al., 2018a; Patra et al.,
2019). Most unsupervised methods fall into the

category of mapping-based methods, which gen-
erally consist of the following procedures: train
monolingual word embeddings independently in
two languages; then, find a linear mapping that
aligns the two embedding spaces. The mapping-
based method is based on a strong assumption that
the two independently trained embedding spaces
have similar structures that can be aligned by a
linear transformation, which is unlikely to hold
true when the two corpora are from different do-
mains or the two languages are typologically very
different (Søgaard et al., 2018). To address this
problem, several studies have focused on improv-
ing the structural similarity of monolingual spaces
before learning mapping (Zhang et al., 2019; Vulić
et al., 2020), but few studies have focused on how
to leverage the text data itself.

In this paper, we show that the pseudo sentences
generated from an unsupervised machine transla-
tion (UMT) system (Lample et al., 2018c) facili-
tates the structural similarity without any additional
cross-lingual resources. In the proposed method,
the training data of the source and/or target lan-
guage are augmented with the pseudo sentences
(Figure 1).

We argue that this method facilitates the struc-
tural similarity between the source and target em-
beddings for the following two reasons. Firstly, the
source and target embeddings are usually trained on
monolingual corpora. The difference in the content
of the two corpora may accentuate the structural
difference between the two resulting embedding
spaces, and thus we can mitigate that effect by
making the source and target corpora parallel by au-
tomatically generated pseudo data. Secondly, in the
mapping-based method, the source and target em-
beddings are trained independently without taking
into account the other language. Thus, the embed-
ding structures may not be optimal for CLWEs. We
argue that pseudo sentences generated by a UMT
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Figure 1: Our framework for training CLWEs using un-
supervised machine translation (UMT). We first train
UMT models using monolingual corpora for each lan-
guage. We then translate all the training corpora and
concatenate the outputs with the original corpora, and
train monolingual word embeddings independently. Fi-
nally, we map these word embeddings on a shared em-
bedding.

system contain some trace of the original language,
and using them when training monolingual embed-
dings can facilitate the structural correspondence
of the two sets of embeddings.

In the experiments using the Wikipedia dump
in English, French, German, and Japanese, we ob-
serve substantial improvements by our method in
the task of bilingual lexicon induction and down-
stream tasks without hurting the quality as monolin-
gual embeddings. Moreover, we carefully analyze
why our method improves the performance, and
the result confirms that making the source and tar-
get corpora parallel does contribute to performance
improvement, and also suggests that the generated
translation data contain information about the orig-
inal language.

2 Background and Related Work

Cross-lingual Word Embeddings
CLWE methods aim to learn a semantic space
shared between two languages. Most of the cur-
rent approaches fall into two types of methods:
joint-training approaches and mapping-based ap-

proaches.
Joint-training approaches jointly train a shared

embedding space given multilingual corpora with
cross-lingual supervision such as parallel corpora
(Gouws et al., 2015; Luong et al., 2015), document-
aligned corpora (Vulic and Moens, 2016), or
monolingual corpora along with a word dictionary
(Duong et al., 2016).

On the other hand, mapping-based approaches
utilize monolingual embeddings that are already
obtained from monolingual corpora. They assume
structural similarity between monolingual embed-
dings of different languages and attempt to obtain
a shared embedding space by finding a transfor-
mation matrix W that maps source word embed-
dings to the target embedding space (Mikolov et al.,
2013). The transformation matrix W is usually ob-
tained by minimizing the sum of squared euclidian
distances between the mapped source embeddings
and target embeddings:

argmin
W

|D|∑

i

‖Wxi − yi‖2 , (1)

where D is a bilingual word dictionary that con-
tains word pairs (xi, yi) and xi and yi represent
the corresponding word embeddings.

Although finding the transformation matrix W
is straightforward when a word dictionary is avail-
able, a recent trend is to reduce the amount of cross-
lingual supervision or to find W in a completely un-
supervised manner (Lample et al., 2018b; Artetxe
et al., 2018a). The general framework of unsu-
pervised mapping methods is based on heuristic
initialization of a seed dictionary D and iterative
refinement of the transformation matrix W and
the dictionary D, as described in Algorithm 1. In
our experiment, we use the unsupervised mapping-
based method proposed by Artetxe et al. (2018a).
Their method is characterized by the seed dictio-
nary initialized with nearest neighbors based on
similarity distributions of words in each language.

These mapping-based methods, however, are
based on the strong assumption that the two inde-
pendently trained embedding spaces have similar
structures that can be aligned by a linear trans-
formation. Although several studies have tackled
improving the structural similarity of monolingual
spaces before learning mapping (Zhang et al., 2019;
Vulić et al., 2020), not much attention has been paid
to how to leverage the text data itself.
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Input: The source embeddings X, the target embeddings Y
Output: The transformation matrix W
Heuristically induce an initial seed word dictionary D
while not convergence do

Compute W given the word dictionary D from the equation (1)
Update the word dictionary D by retrieving cross-lingual nearest neighbors in a shared
embedding space obtained by W

end
return W

Algorithm 1: The general workflow of unsupervised mapping methods

In this paper, we argue that we can facilitate
structural correspondence of two embedding spaces
by augmenting the source or/and target corpora
with the output from an unsupervised machine
translation system (Lample et al., 2018c).

Unsupervised Machine Translation

Unsupervised machine translation (UMT) is the
task of building a translation system without any
parallel corpora (Artetxe et al., 2018b; Lample
et al., 2018a,c; Artetxe et al., 2019b). UMT is
accomplished by three components: (1) a word-
by-word translation model learned using unsuper-
vised CLWEs; (2) a language model trained on the
source and target monolingual corpora; (3) a back-
translation model where the model uses input and
its own translated output as parallel sentences and
learn how to translate them in both directions.

More specifically, the initial source-to-target
translation model P 0

s→t is created by the word-by-
word translation model and the language model of
the target language. Then, P 1

t→s is learned in a
supervised setting using the source original mono-
lingual corpus paired with the synthetic parallel
sentences of the target language generated by P 0

s→t.
Again, another source-to-target translation model
P 1
s→t is trained with the target original monolin-

gual corpus and the outputs of P 0
s→t, and in the

same way, the quality of the translation models is
improved with an iterative process.

In our experiments, we adopt an unsupervised
phrase-based statistical machine translation (SMT)
method to generate a pseudo corpus because it pro-
duces better translations than unsupervised neu-
ral machine translation on low-resource languages
(Lample et al., 2018c). The difference of the unsu-
pervised SMT (USMT) model from its supervised
counterpart is that the initial phrase table is de-
rived based on the cosine similarity of unsupervised
CLWEs, and the translation model is iteratively im-

proved by pseudo parallel corpora.

Our proposed method utilizes the output of a
USMT system to augment the training corpus for
CLWEs.

Exploiting UMT for Cross-lingual
Applications

There is some previous work on how to use UMT
to induce bilingual word dictionaries or improve
CLWEs. Artetxe et al. (2019a) explored an effec-
tive way of utilizing a phrase table from a UMT
system to induce bilingual dictionaries. Marie and
Fujita (2019) generate a synthetic parallel corpus
from a UMT system, and jointly train CLWEs
along with the word alignment information (Lu-
ong et al., 2015). In our work, we use the synthetic
parallel corpus generated from a UMT system not
for joint-training but for data augmentation to train
monolingual word embeddings for each language,
which are subsequently aligned through unsuper-
vised mapping. In the following sections, we empir-
ically show that our approach leads to the creation
of improved CLWEs and analyze why these results
are achieved.

3 Experimental Design

In this section, we describe how we obtain
mapping-based CLWEs using a pseudo parallel
corpus generated from UMT. We first train UMT
models using the source/target training corpora,
and then translate them to the machine-translated
corpora. Having done that, we simply concate-
nate the machine-translated corpus with the orig-
inal training corpus, and learn monolingual word
embeddings independently for each language. Fi-
nally, we map these embeddings to a shared CLWE
space.
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Corpora

We implement our method with two similar lan-
guage pairs: English-French (en-fr), English-
German (en-de), and one distant language pair:
English-Japanese (en-ja). We use plain texts from
Wikipedia dumps1, and randomly extract 10M sen-
tences for each language. The English, French, and
German texts are tokenized with the Moses tok-
enizer (Koehn et al., 2007) and lowercased. For
Japanese texts, we use kytea2 to tokenize and
normalize them3.

Training mapping-based CLWEs

Given tokenized texts, we train monolingual word
embeddings using fastText4 with 512 dimen-
sions, a context window of size 5, and 5 negative
examles. We then map these word embeddings on
a shared embedding space using the open-source
implementation VecMap5 with the unsupervised
mapping algorithm (Artetxe et al., 2018a).

Training UMT models

To implement UMT, we first build a phrase ta-
ble by selecting the most frequent 300,000 source
phrases and taking their 200 nearest-neighbors in
the CLWE space following the setting of Lample
et al. (2018c). We then train a 5-gram language
model for each language with KenLM (Heafield
et al., 2013) and combine it with the phrase ta-
ble, which results in an unsupervised phrase-based
SMT model. Then, we refine the UMT model
through three iterative back-translation steps. At
each step, we translate 100k sentences randomly
sampled from the monolingual data set. We use a
phrase table containing phrases up to a length of 4
except for initialization. The quality of our UMT
models is indicated by the BLEU scores (Papineni
et al., 2002) in Table 1. We use newstest2014 from
WMT146 to evaluate En-Fr and En-De translation
accuracy and the Tanaka corpus7 for En-Ja evalua-
tion.

1https://dumps.wikimedia.org/
2http://www.phontron.com/kytea/

index-ja.html
3We convert all alphabets and numbers to half-width, and

all katakana to full-width with the mojimoji library https:
//github.com/studio-ousia/mojimoji

4https://fasttext.cc
5https://github.com/artetxem/vecmap
6http://www.statmt.org/wmt14/

translation-task.html
7http://www.edrdg.org/wiki/index.php/

TanakaCorpus

en - fr en - de en - ja
→ ← → ← → ←

19.2 19.1 10.3 13.7 3.6 1.4

Table 1: BLEU scores of UMT.

Training CLWEs with pseudo corpora

We then translate all the training corpora with the
UMT system and obtain machine-translated cor-
pora, which we call pseudo corpora. We concate-
nate the pseudo corpora with the original corpora,
and learn monolingual word embeddings for each
language. Finally, we map these word embeddings
to a shared CLWE space with the unsupervised
mapping algorithm.

Models

We compare our method with a baseline with no
data augmentation as well as the existing related
methods: dictionary induction from a phrase table
(Artetxe et al., 2019a) and the unsupervised joint-
training method (Marie and Fujita, 2019). These
two methods both exploit word alignments in the
pseudo parallel corpus, and to obtain them we use
Fast Align8 (Dyer et al., 2013) with the default
hyperparameters. For the joint-training method, we
adopt bivec9 to train CLWEs with the parameters
used in Upadhyay et al. (2016) using the pseudo
parallel corpus and the word alignments. To ensure
fair comparison, we implement all of these methods
with the same UMT system.

4 Evaluation of Cross-lingual Mapping

In this section, we conduct a series of experiments
to evaluate our method. We first evaluate the per-
formance of cross-lingual mapping in our method
(§ 4.1) and investigate the effect of UMT quality (§
4.2). Then, we analyze why our method improves
the bilingual lexicon induction (BLI) performance.
Through carefully controlled experiments, we ar-
gue that it is not simply because of data augmenta-
tion but because: (1) the generated data makes the
source and target corpora (partially) parallel (§ 4.3);
(2) the generated data reflects the co-occurrence
statistics of the original language (§ 4.4).

4.1 Bilingual Lexicon Induction

First, we evaluate the mapping accuracy of word
embeddings using BLI. BLI is the task of iden-

8https://github.com/clab/fast_align
9https://github.com/lmthang/bivec
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Method
source (en) target en→fr fr→en en→de de→en en→ja ja→en
orig. psd. orig. psd. MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1 MRR P@1

BLI from
phrase table

X - - X - 0.673 - 0.524 - 0.551 - 0.486 - 0.311 - 0.226
- X X - - 0.509 - 0.697 - 0.302 - 0.542 - 0.198 - 0.259
X X X X - 0.673 - 0.522 - 0.551 - 0.486 - 0.311 - 0.226

joint
training

X - - X 0.640 0.636 0.615 0.634 0.552 0.509 0.545 0.520 0.347 0.295 0.272 0.227
- X X - 0.587 0.579 0.643 0.685 0.535 0.491 0.577 0.549 0.279 0.226 0.305 0.249
X X X X 0.654 0.642 0.642 0.650 0.585 0.532 0.520 0.518 0.325 0.267 0.295 0.234

mapping X - X - 0.670 0.612 0.650 0.614 0.579 0.484 0.587 0.488 0.471 0.378 0.364 0.242

mapping
(+ pseudo)

X - X X 0.709 0.666 0.687 0.688 0.656 0.582 0.635 0.563 0.514 0.405 0.436 0.304
X X X - 0.728 0.684 0.703 0.700 0.647 0.566 0.636 0.562 0.486 0.392 0.407 0.297
X X X X 0.721 0.677 0.696 0.700 0.652 0.574 0.637 0.563 0.497 0.387 0.426 0.300

Table 2: Comparison with previous approaches in BLI. “orig.” and “psd.” indicate original training corpus and
pseudo corpus. In each cell, the left cell shows the result of MRR, and the right cell shows the result of p@1.

tifying word translation pairs, and is a common
benchmark for evaluating CLWE methods. In these
experiments, we use Cross-Domain Similarity Lo-
cal Scaling (Lample et al., 2018b) as the method
for identifying translation pairs in the two embed-
ding spaces. For BLI scores, we adopt the mean
reciprocal rank (MRR) (Glavaš et al., 2019) and
P@1.

We use XLing-Eval10 as test sets for En-Fr and
En-Ge. For En-Ja. We create the word dictionaries
automatically using Google Translate11, following
Ri and Tsuruoka (2020). Other than BLI from a
phrase table, we train three sets of embeddings with
different random seeds and report the average of
the results.

We compare the proposed method with other
alternative approaches in BLI as shown in Table
2. In all the language pairs, the mapping method
with pseudo data augmentation achieves better per-
formance than the other methods. Here, one may
think that the greater amount of data can lead to
better performance, and thus augmenting both the
source and target corpora shows the best perfor-
mance. However, the result shows that it is not
necessarily the case: for our mapping method, aug-
menting only either the source or target, not both,
achieves the best performance in many language
pairs. This is probably due to the presence of two
pseudo corpora with different natures.

As for the two methods using word alignments
(BLI from phrase table; joint training), we ob-
serve some cases where these models underper-
form the mapping methods, especially in English
and Japanese pairs. We attribute this to our rel-
atively low-resource setting where the quality of
the synthetic parallel data is not sufficient to per-

10https://github.com/codogogo/
xling-eval

11https://translate.google.com/

en - fr en - de
BT BLI

BLEU
BLI

BLEU
step MRR P@1 MRR P@1

- 0.670 0.612 - 0.579 0.484 -
0 0.711 0.646 14.7 0.592 0.508 10.7
1 0.714 0.651 18.8 0.615 0.524 13.5
2 0.728 0.684 19.2 0.647 0.566 13.7

Table 3: Results of BLI score on CLWEs using pseudo
corpus generated from different quality UMTs.

form these methods which require word alignment
between parallel sentences.

4.2 Effect of UMT quality

To investigate the effect of UMT quality on our
method, we compare the accuracy of BLI on the
CLWEs using pseudo data generated from UMT
models of different qualities. As a translator with
low performance, we prepare models that perform
fewer iterations on back-translation (BT). Note that
we compare the results on the source-side (English)
extension, where the quality of the translation is
notably different. As shown in Table 3, we find that
the better the quality of generated data, the better
the performance of BLI.

4.3 Effect of sharing content

In the mapping method, word embeddings are inde-
pendently trained by monolingual corpora that do
not necessarily have the same content. As a result,
the difference in the corpus contents can hurt the
structural similarity of the two resulting embedding
spaces. We hypothesize that using synthetic paral-
lel data which have common contents for learning
word embeddings leads to better structural corre-
spondence, which improves cross-lingual mapping.

To verify the effect of sharing the contents using
parallel data, we compare the extensions with a
parallel corpus and a non-parallel corpus. More
concretely, we first split the original training data
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Extension
en - fr en - de en - ja

pseudo parallel
- - 0.621 / 711 0.502 / 877 0.426 / 1776
× × 0.630 / 838 0.509 / 1714 0.429 / 2301
X × 0.686 / 123 0.569 / 272 0.454 / 1050
X X 0.695 / 144 0.585 / 183 0.459 / 1024

Table 4: Results of BLI score and eigenvector similarity. In each cell, the left cell shows the result of BLI, and
the right cell shows the result of eigenvector similarity. Each row indicates, from top to bottom, no extension,
extension with non-pseudo data, extension with non-parallel pseudo data, and extension with parallel pseudo data.

Corpus fr-A de-A ja-A
en 0.621 / 711 0.502 / 877 0.426 / 1776

en + pseudo (fr-B) 0.686 / 123 0.516 / 315 0.421 / 2194
en + pseudo (de-B) 0.621 / 193 0.569 / 272 0.423 / 2173
en + pseudo (ja-B) 0.568 / 279 0.454 / 625 0.454 / 1050

Table 5: Results of BLI score and eigenvector similarity. Note that lang-A and pseudo (lang-B) are not parallel.

of the source and target languages evenly (each
denoted as Split A and Split B). As the baseline, we
train CLWEs with Split A. We use the translation of
Split A of the target language data for the parallel
extension of the source data, and Split B for the non-
parallel extension. Also, we compare them with the
extension with non-pseudo data, which is simply
increasing the amount of the source language data
by raw text.

Along with the BLI score, we show eigenvector
similarity, a spectral metric to quantify the struc-
tural similarity of word embedding spaces (Søgaard
et al., 2018). To compute eigenvector similarity, we
normalize the embeddings and construct the nearest
neighbor graphs of the 10,000 most frequent words
in each language. We then calculate their Laplacian
matrices L1 and L2 from those graphs and find the
smallest k such that the sum of the k largest eigen-
values of each Laplacian matrices is < 90% of all
eigenvalues. Finally, we sum up the squared differ-
ences between the k largest eigenvalues from L1
and L2 and derive the eigen similarity. Note that
smaller eigenvector similarity values mean higher
degrees of structural similarity.

Table 4 shows the BLI scores and eigenvector
similarity in each extension setting. The parallel
extension method shows a slightly better BLI per-
formance than the non-parallel extension. This
supports our hypothesis that parallel pseudo data
make word embeddings space more suitable for
bilingual mapping because of sharing content. In
eigenvector similarity, there is no significant im-
provement between the parallel and non-parallel
corpora. This is probably due to large fluctuations
in eigenvector similarity values. Surprisingly, the
results show that augmentation using pseudo data

is found to be much more effective than the exten-
sion of the same amount of original training data.
This result suggests that using pseudo data as train-
ing data is useful, especially for learning bilingual
models.

4.4 Effect of reflecting the co-occurrence
statistics of the language

We hypothesize that the translated sentences re-
flect the co-occurrence statistics of the original lan-
guage, which makes the co-occurrence information
on training data similar, improving the structural
similarity of the two monolingual embeddings.

To verify this hypothesis, we experiment with
augmenting the source language with sentences
translated from a non-target language. To examine
only the effect of the co-occurrence statistics of
language and avoid the effects of sharing content,
we use the extensions with the non-parallel corpus.

Table 5 shows that BLI performance and eigen-
vector similarity improve with the extension from
the same target language, but that is not the case if
the pseudo corpus is generated from a non-target
language. These results indicate that our method
can leverage learning signals on the other language
in the pseudo data.

5 Downstream Tasks

Although CLWEs were evaluated almost exclu-
sively on the BLI task in the past, Glavaš et al.
(2019) recently showed that CLWEs that perform
well on BLI do not always perform well in other
cross-lingual tasks. Therefore, we evaluate our
embeddings on the four downstream tasks: topic
classification (TC), sentiment analysis (SA), depen-
dency parsing (DP), and natural language inference
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en-fr en-de en-ja

Task mapping
mapping

(+ pseudo)
joint

training
mapping

mapping
(+ pseudo)

joint
training

mapping
mapping

(+ pseudo)
joint

training

TC
79.5 82.2† 79.7 79.0 79.3 70.4 70.4 71.6† 66.7
(92.6) (93.3) (92.5) (91.7) (92.0) (91.4) (92.2) (93.3) (91.9)

SA
69.1 69.5 66.3 63.7 65.1† 62.5 63.5 62.8 57.3
(71.8) (71.9) (69.9) (71.1) (70.2) (70.3) (70.7) (70.6) (66.8)

DP
63.9 64.3 64.1 56.7 57.0 55.9 17.8 18.1 17.3
(73.2) (73.5) (75.1) (73.2) (73.6) (74.7) (72.9) (73.3) (74.8)

NLI
54.4 54.7 45.0 55.7 56.0 44.7 - - -
(70.3) (70.1) (68.6) (70.2) (70.3) (69.7) - - -

Table 6: Results of Downstream tasks. Numbers in parentheses indicate the score of English validation data. The
scores indicate averages of 20 experiments with different seeds. Statistically significant correlations are marked
with a dagger (p <0.01).

(NLI).

Topic Classification This task is classifying the
topics of news articles. We use the MLDoc 12

corpus compiled by Schwenk and Li (2018). It
includes four topics: CCAT (Corporate / Indus-
trial), ECAT (Economics), GCAT (Government /
Social), MCAT (Markets). As the classifier, we
implemented a simple light-weight convolutional
neural network (CNN)-based classifier.

Sentiment Analysis In this task, a model is used
to classify sentences as either having a positive or
negative opinion. We use the Webis-CLS-10 corpus
13. This data consists of review texts for amazon
products and their ratings from 1 to 5. We cast the
problem as binary classification and define rating
values 1-2 as “negative” and 4-5 as “positive”, and
exclude the rating 3. Again, we use the CNN-based
classifier for this task.

Dependency Parsing We train the deep biaffine
parser (Dozat and Manning, 2017) with the UD
English EWT dataset14 (Silveira et al., 2014). We
use the PUD treebanks15 as test data.

Natural Language Inference We use the En-
glish MultiNLI corpus (Williams et al., 2018) for
training and the multilingual XNLI corpus for eval-
uation (Conneau et al., 2018). XNLI only covers
French and German from our experiment. We train
the LSTM-based classifier (Bowman et al., 2015),
which encodes two sentences, concatenated the rep-
resentations, and then feed them to a multi-layer
perceptron.

12https://github.com/facebookresearch/ MLDoc
13https://webis.de/data/webis-cls-10. html
14https://universaldependencies.org/

treebanks/en_ewt/index.html
15https://universaldependencies.org/

conll17/

In each task, we train the model using English
training data with the embedding parameters fixed .
We then evaluate the model on the test data in other
target languages.

Result and Discussion
Table 6 shows the test set accuracy of downstream
tasks. For topic classification, our method obtains
the best results in all language pairs. Especially
in En-Fr and En-Ja, a significant difference is ob-
tained in Student’s t-test. For sentiment analysis,
we observe a significant improvement in En-De,
but cannot observe consistent trends in other lan-
guages. For dependency parsing and natural lan-
guage inference, we observe a similar trend where
the performance of our method outperforms other
methods, although no significant difference is ob-
served in the t-test. The cause of the lower perfor-
mance of joint-training compared with the mapping
method is presumably due to the poor quality of
synthetic parallel data as described in § 4.1. In sum-
mary, given the same amount of data, the CLWEs
obtained from our method tend to show higher per-
formance not only in BLI but also in downstream
tasks compared with other alternative methods, al-
though there is some variation.

6 Analysis

Monolingual Word Similarity Our method
uses a noisy pseudo corpus to learn monolingual
word embeddings, and it might hurt the quality
of monolingual embeddings. To investigate this
point, we evaluate monolingual embeddings with
the word similarity task. This task evaluates the
quality of monolingual word embeddings by mea-
suring the correlation between the cosine similarity
in a vector space and manually created word pair
similarity. We use simverb-350016 (Gerz et al.,

16http://people.ds.cam.ac.uk/dsg40/simverb.html
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en-fr en-de en-ja
corpus en fr en de en ja
origin 1.60× 10−3 1.63× 10−3 1.51× 10−3 3.78× 10−3 1.52× 10−3 1.03× 10−3

pseudo 0.57× 10−3 0.57× 10−3 0.66× 10−3 0.59× 10−3 0.19× 10−3 0.17× 10−3

Table 7: Type-token ratio of the training corpus (origin) and the pseudo-corpus (pseudo)

corpus simverb-3500 men
en 0.259 0.763

en + pseudo (fr) 0.260 0.767

en + pseudo (de) 0.253 0.768

en + pseudo (ja) 0.220 0.760

Table 8: Results of word similarity. The scores indicate
averages of 3 experiments with different seeds.

2016) consisting of 3500 verb pairs and men17

(Bruni et al., 2014) consisting of 3000 frequent
words extracted from web text.

Table 8 shows the results of word similarity. The
scores of monolingual word embeddings using a
French and German pseudo corpus are maintained
or improved, while they decrease in Japanese. This
suggests that the quality of monolingual word em-
beddings could be hurt due to the low quality of the
pseudo corpus or differences in linguistic nature.
Nevertheless, the proposed method improves the
performance of En-Ja’s CLWE, which suggests that
the monolingual word embeddings created with a
pseudo corpus have a structure optimized for cross-
lingual mapping.

Application to UMT UMT is one of the impor-
tant applications of CLWEs. Appropriate initializa-
tion with CLWEs is crucial to the success of UMT
(Lample et al., 2018c). To investigate how CLWEs
obtained from our method affect the performance
of UMTs, we compare the BLEU scores of UMTs
initialized with CLWEs with and without a pseudo
corpus at each iterative step. As shown in Table 9,
we observe that initialization with CLWE using the
pseudo data result in a higher BLEU score in the
first step but does not improve the score at further
steps compared to the CLWE without the pseudo
data. Marie and Fujita (2019) also demonstrate the
same tendency in the CLWE with joint-training.

To investigate this point, we compare the lexical
densities of the training corpus and the pseudo-
corpus used in the above experiments (§ 4, 5) using
type-token ratio (Table 7). The results demonstrate
that the pseudo corpus has a smaller vocabulary
per word than the training corpus, and thus it is

17https://staff.fnwi.uva.nl/e.bruni/MEN

BT en→fr fr→en en→fr fr→en
step CLWE (no pseudo) CLWE (+ pseudo)

0 14.7 14.8
1 16.7 18.8 16.1 18.2
2 18.8 19.2 18.2 18.5
3 19.2 19.1 18.6 18.8

Table 9: BLEU scores of UMT at each back-translation
step in En-Fr with a phrase table induced using differ-
ent CLWEs.

standardized to some extent as reported in Van-
massenhove et al. (2019). As a result, specific
words might be easily mapped in CLWEs using a
pseudo corpus18, and then the translation model
makes it easier to translate phrases in more specific
patterns. Hence, the model cannot generate diverse
data during back-translation, and the accuracy is
not improved due to easy learning.

7 Conclusion and Future Work

In this paper, we show that training cross-lingual
word embeddings with pseudo data augmentation
improves performance in BLI and downstream
tasks. We analyze the reason for this improve-
ment and found that the pseudo corpus reflects the
co-occurrence statistics and content of the other
language and that the property makes the structure
of the embedding suitable for cross-lingual word
mapping.

Recently, Vulić et al. (2019) have shown that
fully unsupervised CLWE methods fails in many
language pairs and argue that researchers should
not focus too much on the fully unsupervised set-
tings. Still, our findings that improve structural
similarity of word embeddings in the fully unsu-
pervised setting could be useful in semi-supervised
settings, and thus we would like to investigate this
direction in the future.

18In a preliminary experiment, we investigated the variation
in performance of cross-lingual mapping with and without
pseudo according to the frequency of words in the source
language, but there was little correlation between them.
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8 Appendix

A The hyperparameters for downstream
tasks

A.1 Document Classification and Sentiment
Analysis

hyperparameters

CNN Classifier
number of filters 8
ngram filter sizes 2, 3, 4, 5
MLP hidden size 32

Training

optimizer Adam
learning rate 0.001
lr scheduler halved each time the dev score stops improving
patience 3
batch size 50

A.2 Dependency Parsing

hyperparameters

Graph-based Parser

LSTM hidden size 200
LSTM number of layers 3
tag representation dim 100
arc representation dim 500
pos tag embedding dim 50

Training

optimizer Adam
learning rate 0.001
lr scheduler halved each time the dev score stops improving
patience 3
batch size 32

A.3 Natural Language Inference

hyperparameters

Sentence Encoder
LSTM hidden size 300
LSTM number of layers 2

Training

optimizer Adam
learning rate 0.001
lr scheduler halved each time the dev score stops improving
patience 3
batch size 64
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Abstract

Constructing knowledge graphs from unstruc-
tured text is an important task that is relevant
to many domains. Most previous work focuses
on extracting information from sentences or
paragraphs, due to the difficulty of analyzing
longer contexts. In this paper we propose a
new jointly trained model that can be used for
various information extraction tasks at the doc-
ument level. The tasks performed in this paper
are entity and event identification, typing, and
coreference resolution. In order to improve
entity and event extraction, we utilize context-
aware representations aggregated from the de-
tected mentions of the corresponding enti-
ties and event triggers across the entire docu-
ment. By extending our system to document-
level, we can improve our results by incorpo-
rating cross-sentence dependencies and addi-
tional contextual information that might not
be available at the sentence level, which al-
lows for more globally optimized predictions.
We evaluate our system on documents from
the ACE05-E+ dataset and find significant im-
provement over the sentence-level state-of-the-
art on entity extraction and event detection.1

1 Introduction

Recently, large Transformer models, such as
BERT (Devlin et al., 2019), Transformer-XL (Dai
et al., 2019), and RoBERTa (Liu et al., 2019), have
attracted a lot of attention from the Natural Lan-
guage Processing (NLP) community. These models
are typically pretrained on a large unlabeled cor-
pus, and can be consequently fine-tuned for specific
NLP tasks using a relatively small amount of su-
pervised data. By adding shallow classifiers on top
of the context-sensitive embeddings produced by
these neural networks, state-of-the-art results have
been achieved on various subtasks in Information

1Code is available at https://github.com/
sam1373/long_ie

Extraction (Eberts and Ulges, 2019; Wang et al.,
2019; Asada et al., 2020).

Despite the ability of Transformer models to ef-
ficiently capture information across a long context,
most IE work still focuses on extracting informa-
tion from sentences (Lin et al., 2020; Eberts and
Ulges, 2019), or, in some cases, short paragraphs
(Wang et al., 2019). Additionally, some work has
been done where longer documents are represented
by encoding sentences or paragraphs separately
(Du and Cardie, 2020; Ebner et al., 2020). While
some datasets have been proposed which contain
document-level annotations of entities and relations
(Yao et al., 2019; Jain et al., 2020; Zaporojets et al.,
2021), very little work has been done in effectively
utilizing the fully available document-level context
in order to produce globally optimal predictions.

The main contribution of this paper is the intro-
duction and evaluation of our new neural IE model,
which can be used to jointly perform various IE
subtasks in the full document context. Our model
receives only the original document text as input.
After identifying relevant entity and event trigger
mentions in the text, we perform clustering to de-
termine which entities or events each mention be-
longs to. In order to make full use of the contextual
information related to an entity/event in a given
document, we aggregate information from all of
the corresponding mentions to create a document-
level representation, which can then be used for
type prediction of entities and events. We focus on
constructing a model which can efficiently tackle
the challenges that arise in this currently not well
explored variant of the task. Our approach achieves
an improvement of about 2% absolute gain over the
previous results on the ACE05-E+ dataset in terms
of F-score for entity extraction and event detection.
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2 Model

2.1 Task Definition
We formulate the task of document-level informa-
tion extraction in the following way. Each gold-
standard sample from the dataset consists of the
following parts:

1. Document D, represented by a sequence of
word tokens {w1, w2, ..., wn}.

2. The set of entities E, where each entity e
is represented by a set of mentions in the
document as well as an entity type: ei =
({mi1,mi2, ...}, li), where li ∈ Vent (the set
of entity types in the dataset).

3. The set of events T , where each event t is
represented by a set of event trigger mentions
in the document as well as an event type: ti =
({mi1,mi2, ...}, li), where li ∈ Vev (the set of
event types in the dataset).

The only input to our model is a sequence of to-
kens w. Given these tokens, the model is required
to produce the following output: the predicted set
of entities E′ and events T ′, where each entity or
event trigger mention corresponds to some span
of tokens in D. In order to produce the above de-
scribed output, the model operates in several steps:
token encoding, entity and event trigger mention
identification, coreference resolution, cluster aggre-
gation and typing.

2.2 Token Encoding
The first step of our model consists of passing the
document through a BERT-like large Transformer
pre-trained for language modeling. Since we are
working with potentially very long documents, for
our model we choose the Longformer (Beltagy
et al., 2020) as our encoder. Unlike BERT and
most similar models which have quadratically in-
creasing cost for attention, Longformer utilizes a
modified more efficient attention pattern, which
allows us to encode the entire document with a sin-
gle Transformer pass. In addition, Longformer is
pretrained on text up to 4,096 tokens, compared to
512 for models such as BERT and RoBerta.

Since the Longformer model operates using the
Byte Pair Encoding subword tokenization scheme,
in order to obtain the encoded representations of
a given word we average the representations of
corresponding word pieces. We additionally aug-
ment the word representations by concatenating a

Figure 1: Identifying mention spans

pre-trained GloVe (Pennington et al., 2014) word
embedding, in order to allow easier access to word-
level information. We find that this augmentation
improves evaluation results, particularly event trig-
ger identification and classification.

2.3 Mention Identification

In order to extract relevant mentions from the text,
we train two classifiers which are applied to each
token, and used to determine, respectively, whether
the token is the start of at least one relevant men-
tion, and what are the lengths of mentions starting
from this token. This is illustrated in Figure 1. Un-
like commonly used span-based methods, where a
representation is created for all possible mention
spans up to a certain length, our approach does not
require a significant increase in memory in order
to consider longer entities, while still retaining the
ability to potentially predict overlapping mentions.

The output of both of the classifiers at this stage
is trained using cross-entropy loss. During training,
further steps receive representations of gold men-
tions for input instead of the ones produced by the
model.

2.4 Entity Coreference Resolution

Due to the large length of the documents and
amount of mentions within them, it becomes im-
practical to use standard pairwise classification
methods for coreference resolution. In order to
find the entity and event clusters, we utilize the fol-
lowing method: mention representations are passed
through a shallow residual neural network (referred
to as the “coreference embedding network”) to pre-
dict a special embedding for each predicted men-
tion. In order to construct an appropriate embed-
ding for each mention, we first obtain a represen-
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tation by max-pooling over the encoded tokens
that correspond to the mention span. Additionally,
we concatenate a max-pooled representation of the
sentence that contains the mention. The obtained
mention representations are then passed through
the coreference embedding network. This network
is trained by using a combination of an attraction
and repulsion loss, denoted as La and Lr. Given an
n-length batch of mention embeddingsm1m1m1, ...,mnmnmn,
let C1, C2, ... denote the sets of mentions referring
to the same entity. We use c(i) to refer to the index
of the set that mentionmimimi belongs to, and o(i) to
refer to the index of a randomly sampled incorrect
mention set (somimimi ∈ Cc(i),mimimi 6∈ Co(i)). Then the
loss calculation can be written as follows:

La =
n∑

i=1

||mimimi −
∑

mjmjmj∈Cc(i)
mjmjmj

|Cc(i)|
||

Lr =
n∑

i=1

Max(T − ||mimimi −
∑

mjmjmj∈Co(i)
mjmjmj

|Co(i)|
||, 0)

The first of these losses pulls together mentions
that belong to the same entity. The second is used
to pull further apart mentions that belong to differ-
ent clusters by repelling each mention embedding
from the mean of another random cluster if the
distance is closer than some threshold T , which
is picked based on the development set’s perfor-
mance. After obtaining the mention embeddings,
we utilize agglomerative clustering (Murtagh and
Legendre, 2011) to obtain the actual entity or event
clusters.

While previous work has found un-tuned pre-
trained language model embeddings can achieve
good results for document-level coreference reso-
lution (Jain et al., 2020), this method is insufficient
for pronoun coreference resolution, as they don’t
capture enough contextual information to differenti-
ate between similar pronouns that refer to separate
entities.

2.5 Cluster-based Information Aggregation

Given the predicted clusters, we produce a repre-
sentation for each entity or event cluster, which
will be later used for entity and event type predic-
tion. In order to obtain the representation, we first
pass each mention representation through a resid-
ual layer. Afterward max pooling is performed in
order to obtain the final cluster representation. The

Figure 2: Method for constructing cluster representa-
tions by aggregating mentions

overall architecture for constructing mention rep-
resentations, as well as aggregating mentions into
a cluster representation is shown in Figure 2. Ag-
gregating information in this way helps the model
classify entities and events in situations where sen-
tences might not provide the necessary context,
such as the one presented in Figure 3. The final
class scores are obtain by passing this final repre-
sentation through a 2-layer linear network.

3 Experiments

3.1 Dataset

For training and evaluation we use documents from
the ACE05-E+ dataset (Lin et al., 2020), which
consist of up to 2000 tokens with entity, event and
relation annotations. This dataset was introduced as
a modified version of the ACE05-E dataset, which
adds pronoun mention annotations as well as multi-
token triggers, and has the following statistics:

Split Docs Entities Events

Training 599 47,525 4,419
Development 28 3,422 468

Test 40 3,673 424

Table 1: ACE05-E+ dataset statistics

We chose this particular configuration of the
dataset for our experiments due to the large amount
of annotated pronoun mentions, which can be par-

176



Figure 3: Excerpt from an ACE05-E+ document where access to the surrounding context can be helpful for
determining mention types. Mentions are colored to represent types.

ticularly difficult to classify correctly without ac-
cess to external context.

3.2 Evaluation
Similar to previous work (Zhang et al., 2019; Wad-
den et al., 2020; Lin et al., 2019), we evaluate de-
tection of entities and event triggers as follows:
an entity or event trigger mention is considered
to be correctly identified (Trig-I) if both of the
offsets are correctly matched, and out of those men-
tions the ones with the correctly predicted type are
considered correctly classified (Entities-C, Trig-C).
We compare the full model with the OneIE (Lin
et al., 2020) baseline, as well as with variants of
our model without additional GloVe embeddings
and without aggregation of information between
mentions. We also calculate results for our model
given gold mention and cluster information. We
measure the classification F-score for entities, and
the identification and classification F-scores for
event triggers. Overall these results, presented in
Table 2, demonstrate that document-level context
aggregation can improve entity and event detection.

We utilize a multi-step system, where the input
of the next step can depend on the outputs of previ-
ous steps. This leads to error accumulation, making
it hard to determine which modules are working
well and which aren’t from the final results alone.
In order to better understand how much error ac-
cumulation occurs at the coreference resolution
stage of the model, we also perform evaluation of
the produced entity and event trigger mention clus-
ters using two metrics. The first is B3

sys (Cai and
Strube, 2010). This metric is a modification of B3,
modified to properly account for system-predicted
mentions (as opposed to coreference resolution per-

Model Entities-C Trig-I Trig-C

OneIE 89.6 75.6 72.8
Our method
Full Model 91.96 77.67 75.06

- GloVe 91.94 76.69 74.07
- aggregation 91.03 77.32 73.74

+ gold inputs
mentions 95.97 - 92.69
clusters 97.58 - 94.25

Table 2: Entity and Event Trigger Extraction Results
on ACE05-E+ (F-score, %)

formed on gold-standard mentions). We base the
second metric on ”matching” predicted clusters to
gold clusters. The cluster matching is performed
with the following steps:

1. First, match predicted mentions to golden
ones based on the mention span start and end.

2. For each predicted cluster, we check if there
exists a gold cluster such that over half of the
predicted cluster mentions are matched to over
half gold cluster mentions.

3. We compute F-score based on the predicted
clusters, gold clusters, and matched clusters
based on previous step.

The matching metric is useful as it tells us the
amount of entity and event clusters for which our
information aggregation approach has the potential
to work well. Since more than half of the mentions
in a cluster are checked, this metric also has the
advantage of only matching at most one predicted
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cluster to at most one gold cluster. The results for
coreference resolution are presented in Table 3.

Metric Precision Recall F
Entities
B3
sys 83.5 86.2 84.83

Matching 70.76 72.05 71.40
Event Triggers

B3
sys 76.56 77.57 77.06

Matching 47.16 56.06 51.23

Table 3: Coreference Resolution Results on ACE05-E+

(%)

4 Related Work

An earlier CRF-based work by Durrett and Klein
(2014) shows benefits from joint modeling of coref-
erence resolution across a document, named entity
recognition and entity linking, and notes that prop-
agating information between different mentions of
an entity in a document can help resolve ambiguous
cases of semantic types or entity links.

In previous neural models similar ideas of using
document-level contextual information in order to
improve typing of entities have been considered
(Zhang et al., 2020a). The authors of this work
apply an attention mechanism in order to aggregate
information between different mentions of the same
underlying entity. In contrast with our proposed
method, instead of jointly performing coreference
resolution, this model only considers mentions with
exactly matching strings, which significantly limits
the effectiveness of their approach.

Jain et al. (2020) introduce a new document IE
dataset, as well as a baseline model which also
involves aggregation of information between men-
tions. However, here mention typing is performed
before aggregation, and the cluster representation
is instead used for other tasks, such as relation
extraction. Another dataset with document-level
annotation is RAMS (Ebner et al., 2020), which
contains event arguments annotated in a 5-sentence
window around each trigger in the documents. Sev-
eral approaches have been suggested for this task.
For example, Zhang et al. (2020b) introduce a two-
step process for extracting event arguments, which
consists of first detecting the first token, and then
expanding to the entire span. Chen et al. (2020)
propose to link events to their arguments by feeding
each section of a document through BERT, and then

processing the mention representations for triggers
and potential arguments with another Transformer.

Recently another dataset for multi-task IE was
introduced by Zaporojets et al. (2021), with par-
ticular focus on entities with mentions in different
parts of a document. The authors also propose a
baseline model for this dataset, which uses a neural
graph-based message passing approach in order to
aggregate document-level information.

5 Conclusions and Future Work

Aggregating information across an entire document
can be highly effective for classifying entity and
event mention types. This is particularly useful in
cases where pronouns are used to refer to entities
or events that are not explained within the same
sentence. In the future, we plan to extend our ap-
proach to use document-level context for extraction
of relations between entities and event arguments.
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Abstract

Television shows play an important role in
propagating societal norms. Owing to the
popularity of the situational comedy (sitcom)
genre, it contributes significantly to the over-
all development of society. In an effort to an-
alyze the content of television shows belong-
ing to this genre, we present a dataset of di-
alogue turns from popular sitcoms annotated
for the presence of sexist remarks. We train
a text classification model to detect sexism
using domain adaptive learning. We apply
the model to our dataset to analyze the evo-
lution of sexist content over the years. We
propose a domain-specific semi-supervised ar-
chitecture for the aforementioned detection of
sexism. Through extensive experiments, we
show that our model often yields better classi-
fication performance over generic deep learn-
ing based sentence classification that does not
employ domain-specific training. We find that
while sexism decreases over time on average,
the proportion of sexist dialogue for the most
sexist sitcom actually increases. . A quantita-
tive analysis along with a detailed error analy-
sis presents the case for our proposed method-
ology.

1 Introduction

Apart from being one of the most popular gen-
res on television 1, sitcoms also attract the adoles-
cent viewership2 and thus play a vital role in the
formation of their thought process (Villani, 2001).
Sink and Mastro (2017) argue that documenting the
prevalence and quality of television representations
of women is a valuable endeavor as television de-
pictions of women is known to influence attitudes
and beliefs towards gender. Therefore, these shows

1https://www.statista.com/statistics/1035741/most-in-
demand-tv-genres-us-share/

2https://www.statista.com/statistics/859722/all-time-tv-
shows-millennials/

would ideally contain a minimal amount of sexist
content. However, according to Lee et al. (2019a)
and O’Kelly (1974), this may not be the case. For
this reason, we present a dataset consisting of di-
alogue turns labeled as either ’sexist’ or ’neutral’.
We also build a system that automatically detects
instances of sexism present in the dialogue of pop-
ular sitcoms. Thus, we attempt to use machine
learning to document the gap between activism and
social change.

Often, a lack of labeled data can present a con-
siderable challenge for text classification systems.
Manual annotation often requires domain knowl-
edge and may be expensive and time-consuming for
large datasets. Manual annotation also carries the
risk of introducing new annotator biases, privacy-
breaches, discrimination, and misunderstanding
(Chowdhury et al., 2019). Although dialogue is
not the only way that sexism is constructed in TV
shows (Brewington, 2019; Mouka and Saridakis,
2015), the more subtle signs of discrimination can
be more difficult to detect and analyze. Our work
addresses issues of manual annotation by using
semi-supervised learning to generate a dataset in a
new domain of pseudo-labels from unlabelled data
to detect sexism in TV dialogue. This minimizes
the need for a manual annotation process while
creating large datasets.

We make use of a previously published dataset
(Waseem and Hovy, 2016) to create a semi-
supervised domain adapted classifier. In general,
domain adaptation uses labeled data in one or more
source domains to solve new tasks in a target do-
main. It is a sub-category of transfer learning.
Since there is a lack of television show scripts anno-
tated for sexism, we attempt a semi-supervised ap-
proach to develop our dataset. Here, our source do-
main consists of tweets from Waseem and Hovy’s
(2016)’s ’Hate Speech Twitter Annotations’ dataset
and our target domain is the dialogue in popular
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sitcoms. These two domains are quite different.
Tweets are usually short, full of abbreviations, ur-
ban slang and grammatical errors. On the other
hand, sitcom dialogue turns are descriptive, long,
grammatically correct and contextually dependent
on the dialogue turns that precede them. These
differences warrant the need for a semi-supervised
approach in our methodology.

2 Related Work

In the growing body of literature on the automatic
detection of sexism in text on social media, Twit-
ter, in particular, has been the object of study and
dataset creation.

Waseem and Hovy (2016) created a dataset con-
taining Racist and Sexist tweets. Following this,
there have been various efforts towards detecting
sexism in English tweets (Sharifirad et al., 2019),
(Jha and Mamidi, 2017). (Mishra et al., 2018).
Recently, Chiril et al. (2020) developed a dataset
for sexism detection in French tweets. While the
study of sexism in TV shows has received little
attention in natural language processing Lee et al.
(2019b), Gala et al. (2020), Xu et al. (2019), it
has received significant attention in the field of
gender studies (Sink and Mastro, 2017; Glascock,
2003). In gender studies, Sink and Mastro (2017)
conducted a quantitative analysis to document por-
trayals of women and men on prime-time television
and Glascock (2003) examines the perception of
gender roles on network prime-time television pro-
gramming. To the best of our knowledge, no pre-
vious work has presented a comprehensive dataset
for the presence of sexism in TV shows has been
created. While efforts have been made to anal-
yse the presence of sexism in TV shows (Nayef,
2016), the question of developing a machine learn-
ing based detection system for identifying sexism
in scripted TV dialogue remains under-explored.
However, Semi-supervised learning has received
a lot of attention from the NLP community (Zhai
et al., 2019; Xie et al., 2019; Chen et al., 2020).
Our method most closely resembles Unsupervised
Data Augmentation (Xie et al., 2019), which uses
labeled data to annotate unlabeled samples under
low resource settings.

3 Dataset

3.1 Collection
The dataset used for this experiment consists of
three parts. The first part is the data used for our

training dataset. We use a dataset annotated for
sexist tweets Waseem and Hovy (2016). To ensure
that the classifier can identify non-sexist dialogue
correctly, we append 2, 000 tweets that are non-
sexist in nature obtained from a web application
named ’Tweet Sentiment to CSV’.3 Before append-
ing these neutral tweets to the dataset, they were
manually checked and any tweets that were not
in English were removed, along with any ambigu-
ous tweets. To account for our target domain, we
collect the dialogues from twenty sitcoms cross-
referenced by popularity4 and script availability5.
From this set of dialogue scripts, we randomly sam-
ple 1, 937 dialogue turns to manually annotate (see
subsection 3.2 for annotation guidelines). The fi-
nal training set consists of 3, 011 tweets labeled
as sexist, 2, 000 tweets labeled as neutral, 203 sex-
ist dialogue turns and 926 neutral dialogue turns,
henceforth denoted as Dtrain.

For the second part of the dataset, we use the
un-annotated dialogue turns from the TV shows
to perform semi-supervised learning. We call this
dataset Dsemisupervised. Out of these, ten shows
aired between 1985 and 1999 (old shows) and ten
shows aired between 2000 and 2015 (new shows).

The third part of our dataset, which is manually
annotated and used as a held-out test set, consists of
805 manually annotated dialogues, 411 of that are
labeled as neutral and 394 as sexist. This data was
annotated by four annotators, achieving a Cohen’s
Kappa (Cohen, 1960) of 0.87.

3.2 Definition of Sexism
In this section, we describe the guidelines followed
during the annotation process. The guidelines of
what classifies a tweet as sexist were defined by
Waseem and Hovy (2016). We use Glick and
Fiske’s (1996) definition of sexism to annotate di-
alogue turns from popular sitcoms. According to
this definition, there are three primary dimensions
within sexism.

• Paternalism: Paternalism justifies men being
controlling, protective and authoritative over
women. E.g. ‘‘Hold on honey, men at work.”
(Howard Wolowitz, The Big Bang Theory)

• Gender Differentiation: Gender Differentia-
tion uses biological differences between gen-

3https://twitter-sentiment-csv.herokuapp.com/
4IMDB: https://www.imdb.com/
5https://subslikescript.com/series,

https://transcripts.foreverdreaming.org/
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Model Accuracy F1 Precision Recall AUCROC
NB 0.772 ±0.04 0.776 ±0.02 0.778 ±0.03 0.773 ±0.02 0.765 ±0.03
RF 0.781 ±0.05 0.791 ±0.04 0.784 ±0.03 0.799 ±0.02 0.771 ±0.01
LR 0.777 ±0.02 0.780 ±0.04 0.781 ±0.03 0.779 ±0.02 0.766 ±0.03
SVM 0.783 ±0.04 0.782 ±0.04 0.773 ±0.02 0.793 ±0.03 0.783 ±0.02
BERT 0.773 ±0.04 0.742 ±0.04 0.753 ±0.02 0.713 ±0.03 0.723 ±0.02
Bi-LSTM
(Ours)

0.830 ±0.03 0.828 ±0.02 0.819±0.01 0.823 ±0.03 0.817±0.04

Table 1: Results when models are trained on Dfinal. Standard errors are reported after 5 trials.

ders to justify social distinctions. An example
of a sexist dialogue turn under this dimension
is: “I think women just have a lower threshold
for pain than men.’ (Joey Tribbiani, Friends)

• Male Gaze: Male Gaze refers to viewing
women as sexual objects. An example of a
sexist dialogue turn under this dimension is:

”All men want is to see women naked.” (Jerry
Seinfeld, Seinfeld)

Apart from this, we have also included dialogue
turns that include derogatory terms against women
(James (1998)) and dialogue turns that justify
stereotypes against women or gender roles (Lauzen
et al. (2008)). E.g. “See? Strong women always
turn out to be nightmares” (Seinfeld) and “Look
I’m sorry but some things are different for men
and women.” (Chandler Bing, Friends)

We find that within the annotated sexist dia-
logues in our held-out test set, 27.9% of the di-
alogues fall under gender differentiation sexism,
33.7% of the dialogues fall under paternalism and
38.4% under male gaze.

3.3 Preprocessing
The following steps were taken as a part of the
preprocessing process:

• The names of the characters who said the dia-
logue were removed from each dialogue turn,
to avoid any undue dataset bias pertaining to
character names,

• Lines in the transcripts that were not dialogue
turns, such as bracketed expressions to convey
the settings or scenes, were removed,

• Any numbers that appeared in dialogue turns
were removed,

• All words were converted to lowercase, tok-
enized and lemmatized.

4 Experiment Setup

We begin by training a set of models on Dtrain

(section 3.1) to find the best performing model. We
make use of a support vector machine (SVM), a
logistic regression classifier (LR), a random for-
est ensemble (RF), a naive Bayes classifier (NB) ,
fine-tuned BERT, and a bi-directional LSTM (bi-
LSTM). We find that the bi-LSTM outperforms the
other models by 3.4%, with an accuracy of 76.03%
on the held-out test set, Dtest. Thus, we make use
of the bi-LSTM in our proposed semi-supervised
approach.

Out of the 20 sitcom show scripts we collect, we
use four, namely ‘Friends’, ‘The Big Bang The-
ory’, ‘How I Met Your Mother’ and ‘Seinfeld’ for
manual annotation (see section 3.1 for more de-
tail). Next, we use the baseline bi-LSTM to make
predictions on the other 16 show scripts. Out of
these, eight are new shows and the other eight are
old shows. The model classifies 1, 639 dialogue
turns as sexist. To form Dsemisupervised, we add
all dialogue turns identified as sexist by the base-
line model and randomly sample 31, 944 dialogue
turns from the 242, 108 dialogue turns identified as
neutral. We combine Dtrain and Dsemisupervised

to form Dfinal
6.

Finally, we train a bi-LSTM onDfinal. We make
use of the softmax activation function and the cate-
gorical cross entropy loss function while training
this bi-LSTM. It consists of an embedding layer, a
spatial dropout layer and makes use of the Adam
optimizer, with a dropout equal to 0.2. This bi-
LSTM attains an accuracy of 83.0% on Dtest. To
offer a fair comparison, we also train other compet-
itive models on Dfinal. Table 1 demonstrates the
performance of these models on Dtest across six
evaluation metrics.

To offer some insight on how the amount of sex-

6https://github.com/smritisingh26/HHMWdataset
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Old Shows Percentage New Shows Percentage
Friends 2.357% Brooklyn Nine Nine 0.089%
Seinfeld 2.580% The Big Bang Theory 4.131%
The Simpsons 2.611% The Office 0.179%
Frasier 1.956% How I met your Mother 2.343%
Full House 2.299% Modern Family 2.267%
Everybody Loves Raymond 2.481% Scrubs 2.168%
Home Improvement 1.956% Parks and Recreation 1.438%
House 2.556% New Girl 0.752%
That 70s’ Show 2.369% Two and a Half Men 3.521%
King of Queens 1.478% Family Guy 1.865%

Table 2: Sexist content in popular sitcoms as classified by the proposed model

ist content in the form of dialogue has developed
over the years, we use our proposed model to clas-
sify the dialogue turns of all twenty shows.

5 Results

5.1 Model Performance & Content Analysis

In comparing the baseline bi-directional LSTM
model trained on Dtrain and the proposed model
trained onDfinal, we observe a gain of 7% in terms
of accuracy on Dtest. Similarly, for all other mod-
els, we see an average improvement of 4.67% when
they are trained on Dfinal, as compared to their ini-
tial performance when they were trained on Dtrain.

The results shown in Table 1 suggest that us-
ing an augmented dataset obtained through semi-
supervised learning can provide a promising av-
enue for addressing hate speech in distinct domains
that do not have large labeled datasets available.

Furthermore, an analysis of the data labeled by
our proposed model (see Table1) reveals that be-
tween 1985-1999, the average percentage of sexist
dialogue turns in sitcoms is around 2.26%, whereas
between 2000-2015, the mean is around 1.87%
which shows an overall decrease in the number
of sexist dialogue turns by 0.39%. However, it is
worth noting that in the shows aired between 1985
and 1999, the show with the greatest percentage
of sexist dialogue turns has 2.61% sexist dialogue
turns while the proportion of sexist dialogue turns
is 4.13% for the worst offender after the turn of the
century. This is further complicated by the fact that
the shows with the lowest amounts of sexism in the
two time periods contain 1.95% and 0.08% for the
old and the new shows, respectively.

5.2 Error Analysis

In an analysis of the best-performing model’s per-
formance, we identify some confounding variables:

• Women vs that woman Aggressively nega-
tive statements about a particular woman are
marked as sexist. E.g. “To hell with her! She
left me!” (Friends).
While such statements may be sexist, our clas-
sifier is unable to distinguish the required nu-
ance to make the correct prediction.

• Sexual content Some statements that contain
extremely sexual terms are marked as sexist.
For example: “And yet you’re the one always
getting spanked.” (Two and a Half Men)
This may be because a lot of sentences that
contain sexual terms in the underlying datasets
are sexist. For instance, dialogue turns in the
training dataset like ”Well, most women want
to be banged.” (How I met your Mother) and

“Sit with her, hold her, comfort her and if the
moment feels right, see if you can cop a feel.”
(The Big Bang Theory) are sexist.

• Marriages Dialogues that mention women
and marriages or weddings are marked as sex-
ist in some cases. For example: “I know that
some lucky girl is going to become Mrs. Barry
Finkel.” (Friends)
This can be attributed to a lack of contextual
understanding in the classifier. Perhaps be-
cause there aren’t that many dialogue turns
that mention weddings or marriages.

• Gendered pronouns for objects In some
cases, the pronoun ‘she’ is used to refer to
objects like vehicles and boats and appear as
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sexist to the classifier. For example: “She re-
ally gets going after a while.” where ‘she’
refers to a car (Family guy).

6 Conclusion

We generate a labeled, real-world dataset and build
a classifier using a combination of transfer learning
and semi-supervised learning to classify dialogues
in sitcoms as sexist or neutral for the purpose of
tracking the status of social discrimination. An
analysis of the recent content reveals an overall de-
crease in sexist content over time but an increase in
the amount of sexist content in the worst offending
TV shows in the recent years.
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Abstract

In this paper we present our observations and
evaluations by observing the linguistic perfor-
mance of the system on several steps on the
training process of various English-to-German
Neural Machine Translation models. The
linguistic performance is measured through
a semi-automatic process using a test suite.
Among several linguistic observations, we find
that the translation quality of some linguistic
categories decreased within the recorded iter-
ations. Additionally, we notice some drops
of the translation quality of certain categories
when using a larger corpus.

1 Introduction

During the last years, neural machine translation
(NMT) has seen immense progress and achieved
high performance. As most machine learning meth-
ods, NMT is based on an iterative training process
that learns to translate given big amounts of paral-
lel corpora. Despite the remarkable achievements
of the training process in terms of producing a
model able to translate, it is used as a black box.
This is also due to the fact that it is training a neu-
ral network, one of the least interpretable machine
learning algorithms. Thus, little effort has been
done in order to investigate how the training pro-
cess evolves with regards to measurable factors of
translation quality, such as the rules of linguistic
correctness (grammar, syntax, semantics).

In particular, the training process performs sev-
eral iterations through which the neural network
weights are gradually adjusted to achieve the opti-
mal performance for the training data seen at the
moment. After several iterations, the performance
of the model, with its current weights, is typically
validated against a development set, using some au-
tomatic metrics (cross entropy or BLEU score; Pa-
pineni et al., 2002), which may also define whether

the optimal conditions have been reached and train-
ing should stop. Although these automatic metrics
have been proven useful for the training process
itself, they provide a single number for a generic no-
tion of the translation quality. As specified, we are
interested in observing the training process from
a more fine-grained perspective and particularly
how it proceeds with learning specific linguistic
phenomena.

This work is intended to provide NMT re-
searchers and engineers with additional guidance
on what to look for when evaluating and designing
machine translation systems. This is a preliminary
work towards this direction, aiming to investigate
how the training process evolves with regards to
linguistic performance for several phenomena. We
do this by selecting snapshots of particular train-
ing epochs and evaluating these snapshots with
test suites, which probe the translation of specific
linguistic phenomena.

As a result, we can observe the learning curve of
those linguistic aspects, along with strengths and
weaknesses. We find that as the training ends and
the BLEU score reaches the maximum value, some
linguistic categories experience a drop in their ac-
curacy. Additionally, we notice further drops of the
translation quality of certain categories when using
a larger corpus. Finally, we provide further observa-
tions on particular linguistic phenomena, by focus-
ing on certain test items. Our experiment is focus-
ing on the language direction English→German.

In the next section (section 2) we review related
work. Section 3 presents our used methods, while
in section 4 the experiment setup is further dis-
cussed. We present our results in section 5 and
compare the different models in section 6, followed
by a short conclusion and notes on further work in
section 7.
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2 Related work

2.1 Interpreting NMT with regards to
linguistic phenomena

There have been several efforts to interpret the oper-
ation of NMT with regards to linguistic phenomena.
These works mostly focus on identifying which
parts of the neural topology are responsible for
learning some particular linguistic aspects. For ex-
ample they investigate the role of particular neurons
(Bau et al., 2019), layers, major components such
as the encoder and the decoder (Dalvi et al., 2017;
Tang et al., 2019; Belinkov et al., 2020), or differ-
ent architectures (Tang et al., 2020) with regards
to word sense disambiguation and semantics, mor-
phology, long range dependencies and syntax, etc.
Contrary to these works, our consideration of the
linguistic aspects is not focusing on the elements of
the neural network, but on its timely development
during the training process.

Recognising the limitations of scoring with
cross-entropy or BLEU score, two papers have pro-
posed scoring based on more focused metrics, such
as semantic similarity (Wieting et al., 2019) and
adequacy (Kong et al., 2018). Here, we are not
interested in finding a linguistic metric to improve
the training process, but to apply a fine-grained lin-
guistic analysis to the several stages of the training
process and make observations.

2.2 Fine-grained evaluation using test suites
Despite the widespread usage of BLEU score, there
have been critical voices from the translation com-
munity on its role. As stated by Callison-Burch
et al. (2006), BLEU sometimes does not reflect
improvement in the quality of the produced transla-
tions and therefore is not always a reliable metric
to rate a system overall. They showed that BLEU
score allows for a certain variance and is often unre-
liable or inconsistent compared to human analysis
especially when one is examining linguistic phe-
nomena on a fine grained level (Avramidis et al.,
2019).

To overcome the disadvantages and instabilities
of the BLEU score, researches have suggested the
utilisation of test suites. Such test suites can report
scores either through manual (Ahrenberg, 2018;
Koh et al., 2001) or semi-automatic evaluation.
Semi-automatic evaluation uses certain metrics to
be tested against, such as reference translations
with specific tokens (Guillou and Hardmeier, 2016;
Macketanz et al., 2018a). Another important aspect

for using test suites instead of relying solely on au-
tomatic evaluation, is the domain-knowledge that
only human judges can provide and is required to
to assess the translation quality (Vojtěchová et al.,
2019).

3 Methods

We are interested in observing the learning curve of
neural machine translation with regards to linguis-
tic phenomena. Particularly, the aim is to exam-
ine how the linguistic performance of a translation
model improves along the iterations of the train-
ing process. In order to do that, we perform the
following steps:

• We train a neural machine translation system.
• We save the state of the translation model after

every epoch of the training process.
• We select some epochs of interest (snapshots)

based on the BLEU score of the epoch valida-
tion on the development set.

• We perform fine-grained evaluation for every
snapshot using a linguistically motivated test
suite.

By comparing the statistics from the fine-grained
evaluation for various snapshots, we intend to get
insights with a linguistic perspective in the machine
learning process. We can only evaluate particular
snapshots, since the functioning of the test suite
tool allows semi-automatic error annotation and
there is still need to manually evaluate some un-
certain decisions and edge cases. To decide which
snapshots to pick, we relied on the use of BLEU
score as a first indicator, despite its limitations.

Additionally, we build several systems with dif-
ferent architectures and corpus sizes to allow fur-
ther comparisons. This being a student experiment,
the computational and time restrictions allowed a
limited number of models trained with an amount
of data that is smaller than the state-of-the-art.
However, that should serve as proof of concept.
Despite the models not being state-of-the-art, our
focus remains on the evolution of the linguistic
performance, starting from the early steps of the
training process. In our experiments we will have
three systems: a small RNN model trained on a
small amount of corpora, a bigger RNN model
with more data than the former, and a transformer
model. Technical details for these models are given
further in Section 4.3.
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3.1 Different neural machine translation
models

We trained several models in order to understand
the impact of corpus sizes and the architectures to
the linguistic performance. A first run using a RNN
architecture (Bahdanau et al., 2014) examines the
development of the translation quality based on a
relatively small corpus (RNN-small). A succeeding
run uses the same model type and arguments but
utilises a larger corpus (RNN-big). This allows for
more direct comparison and helps to understand
the impact of the selected data size. To be able to
examine the importance of the selected model type
and be closer to the state-of-the-art, we trained a
transformer system (Vaswani et al., 2017).

3.2 Fine grained evaluation with a test suite

For the fine-grained evaluation of the trained sys-
tems performance, we used a test suite similar to
Avramidis et al. (2019). As opposed to an outright
human evaluation or the sole use of automatic met-
rics, the test suite relies on automated evaluation
based on manually provided rules. Therefore, reg-
ular expressions are applied to manually devised
test sentences with several linguistic phenomena
grouped into categories. Based on the regular ex-
pressions, the test suite can then evaluate the lin-
guistic phenomena, strictly by the presence, respec-
tively, absence of certain key terms and phrases,
such as false friends or the use of a wrong tense.
The score of a system is then presented as the accu-
racy across the selected phenomena.

The construction of the test suite and the orga-
nization of the categories do not follow a specific
linguistic theory and we do not claim a full cover-
age of the whole linguistic spectrum. Other pieces
of research may have different categorization, for
example unlike other test suites, we include pro-
nouns under the co-reference phenomenon in the
category of non-verbal agreement.

4 Experiment setup

4.1 Test suite setup

For the development and application of the test
suite we used the tool TQ-AutoTest (Macketanz
et al., 2018a). We created 10 sentences per phe-
nomenon, resulting in a total of 585 sentences, ex-
amining 49 phenomena organised in 13 categories.
The raw test items, as well as the translations eval-

System name RNN-small RNN-big transf.

Training datasets europarl europarl
DGT

europarl
DGT

Dataset size 1.8M 7M 7M
Vocab size 32000 32000 32000
Mini-Batch-Fit 5000 5000 10000
Learning rate 0.001 0.001 0.003
Encoder depth 1 1 6
Decoder depth 1 1 6
Beam size 6 6 12
Validation freq. 10000 10000 10000
Dropout 0.2 0.2 0.1
Dropout Source 0.1 0.1
Dropout Target 0.1 0.1
Transf. heads 8
Early stopping 5 5 10

BLEU min 1.31 5.58 0
BLEU max 14.34 16.02 24.29
Best epoch 39 18 28
Total run time 17 h 56 h 31 h

Table 1: Summary of training settings and development
results

uated can be found in our repository1. The phe-
nomena selected for this experiment are a subset
of the ones of German→English MT, as described
in Macketanz et al. (2018b) and Avramidis et al.
(2020), adapted to the opposite language direction.
An extract of the used sentences can be found in
table 5.

4.2 Data
The Europarl corpus ver. 10 (Koehn, 2005) with
about 1,8 M sentences and the DGT 2019 corpus
(Tiedemann, 2012) with approximately 5,2 M sen-
tences were used, summing up to around 7 M par-
allel sentences for training. Newstest 2015 (Bojar
et al., 2015) was used as a development (validation)
set and newstest 2016 (Bojar et al., 2016) as a test
set.

We applied standard preprocessing including
normalization, sentence filtering, tokenization and
byte-pair encoding by using the default Marian set-
ting (Junczys-Dowmunt et al., 2018) with embed-
ded SentencePiece (Kudo and Richardson, 2018).
Concerning the length of the individual sentences,
we followed the general practice and limited the
sentences to a maximum length of 100.

4.3 Training setup
The NMT systems were trained using Marian ver.
1.9.0 (Junczys-Dowmunt et al., 2018). In order to
follow the learning curve of the training process,

1https://github.com/pstadler1990/nmt_
paper21_appendix
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we kept one checkpoint every 10,000 iterations. To
do so, we disabled the overwrite option from the
CLI call of Marian. As per default, cross entropy
was used as a validation metric, whereas the train-
ing processes were run on a computational server
Quadro RTX 6000 (4608 cores, 96 ROPs and a 24
GB memory size) using 2 out of its 8 GPUs.

The validation iterations in the results are la-
beled as following: iterval =

itertr
fval

where itertr is
the reported training iteration number (up.) and
fval is the specified validation frequency. For our
trained systems, we set this to 10,000. So, a valida-
tion iteration of 10,000 training iterations is labeled
as 1.

An overview of the settings of the three systems
can be seen in Table 1. In particular, the following
three systems were trained:

Small RNN model This system was built with
Europarl with a final size after pre-processing of
1,828,521 sentences, using an RNN with single-
layer encoder and decoder and a minibatch size of
10,000.

Big RNN model In order to build a bigger RNN
model, we used the larger dataset consisting of
both, Europarl and the DGT corpora, following the
same settings as for the small RNN model.

Transformer We used the same training, dev and
test sets as in the big RNN model, and the exam-
ple configuration for a transformer model from
Marian2 adapted to our needs as shown in Table 1.
This configuration utilises a six-layer deep encoder
and decoder, learning rate warm-up and tied em-
beddings for source, target and output layer. As
suggested by Karita et al. (2019), we increased
the minibatch size for the transformer model from
5,000 to 10,000.

5 Results

5.1 Evaluation of the small RNN model

The small RNN model was trained for 17 hours
and achieved a BLEU score of 14.34.

5.1.1 Snapshot selection
The best reported BLEU score was reached in
epoch 39, out of total 46 epochs, having started
with 1.31 in epoch 1. Figure 1 shows the BLEU

2https://github.com/marian-nmt/
marian-examples/blob/master/transformer

Figure 1: Progress of BLEU score during the training
of the small RNN model

Figure 2: Progress of the average test suite accuracy
for the chosen snapshots while training the small RNN
model

score evolution, with the black triangle marks in-
dicating the snapshots that we chose to examine,
based on the following criteria:

• Epoch 1 (iteration 1): Start of training
• Epoch 4 (iteration 4): BLEU score > 10
• Epoch 11 (iteration 12): Sudden BLEU drop
• Epoch 23 (iteration 26): Mid-high
• Epoch 39 (iteration 45): Highest BLEU score

The complete dataset can be found online in the
repository3.

5.1.2 Evaluation of linguistic categories over
time

There was an unsteady but visible rise in the BLEU
score over time and also a positive development
in the average test suite accuracy (see figure 2),
achieving the best accuracy in epoch 39 after a
more or less constant improvement.

While looking at the evolution of the accuracy on
particular linguistic categories (Table 2), a positive
trend is observed when a constant improvement for
a specific category has been encountered, a nega-
tive trend when there is either a constant decrease

3https://github.com/pstadler1990/nmt_
paper21_appendix
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category\epoch 1 4 11 22 39

Ambiguity 10% 10% 10% 11% 20%
Coordination
& ellipsis 0% 20% 10% 20% 30%

False friends 50% 50% 56% 50% 50%

Function word 30% 50% 30% 50% 60%
Long distance
dependency
& interrogative

30% 40% 40% 40% 40%

MWE 0% 10% 0% 22% 22%
Named entity
& terminology 10% 30% 11% 20% 20%

Negation 20% 60% 60% 60% 60%
Non-verbal
agreement 0% 20% 20% 40% 20%

Punctuation 0% 20% 33% 50% 60%

Subordination 0% 40% 40% 60% 70%
Verb tense/
aspect/mood 0% 10% 10% 20% 20%

Verb valancy 0% 10% 30% 20% 30%

Table 2: Progress of accuracy for linguistic categories
(small RNN model) over selected epochs

in translation quality for the category or there is a
decrease after a peak, whereas any other trend is
considered neutral, meaning a positive overall trend
characterised by peaks and valleys, which indicate
a shift in quality over time or a trend without any
development. From the 13 examined categories we
found a positive trend in nine categories (70%), two
are to be considered neutral (15%) and there was a
negative trend in two categories (15%, non-verbal
agreement and NER and terminology). Further we
provide details on 3 particular categories:

Ambiguity For this category, 10 sentences from
a single phenomenon (lexical ambiguity) were ex-
amined. Until epoch 39, only one sentence was
correctly translated (Beijing is the capital
of China.). In epoch 39, another sentence was
translated in the right way (What is today’s
date?). In epoch 1, 4 and 11, the regular ex-
pression provided by the test suite reported a valid
translation, because it focused on the ambiguity
for the word china (wrong translation would be
Porzellan(geschirr)). However, the transla-
tion Kapital for the English word capital (as
in capital city) is wrong. In epoch 22, this is cor-
rected.

Non-verbal agreement A total of 10 sentences
from three distinct phenomena were examined. In

Figure 3: Progress of BLEU score during the training
of the big RNN model

Figure 4: Progress of the average test suite accuracy
for the chosen snapshots while training the big RNN
model

the first epoch, no sentence was correctly trans-
lated (four of them were not translated at all). In
the epoch four, two sentences were correctly trans-
lated according to the test suite. In epoch 22, four
sentences were correctly translated, while interest-
ingly the accuracy decreased to 20% in epoch 39;
two formerly correct sentences were mistranslated
in this epoch.

Subordination For this category, 10 sentences
from eight different phenomena were evaluated.
We found a constant increase in the translation
quality over the selected epochs. Starting with zero
correctly translated sentences in the first epoch,
the system already reached 40% in epoch 4. The
translation quality was quite decent, even when
regarding the remaining words that were not part
of the examined phenomenon.

5.2 Evaluation of the big RNN model
The big RNN model was trained for 56 hours and
achieved a BLEU score of 16.

5.2.1 Snapshot selection
Figure 3 shows the BLEU score evolution over all
164 iterations (28 epochs). We chose the five snap-
shots for further evaluation based on the following
criteria:
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category\epoch 1 1 4 9 18

Ambiguity 20% 20% 10% 10% 10%
Coordination
& ellipsis 0% 0% 20% 10% 30%

False friends 22% 50% 40% 40% 60%

Function word 10% 30% 30% 30% 44%
Long distance
dependency
& interrogative

10% 20% 30% 30% 50%

MWE 0% 0% 10% 0% 0%
Named entity &
terminology 22% 40% 40% 40% 40%

Negation 0% 0% 40% 40% 50%
Non-verbal
agreement 11% 22% 20% 30% 30%

Punctuation 0% 0% 10% 20% 20%

Subordination 0% 0% 20% 40% 30%
Verb tense/
aspect/mood 0% 0% 0% 10% 10%

Verb valancy 0% 0% 0% 20% 20%

Table 3: Progress of accuracy (big RNN model) for lin-
guistic categories over selected epochs

• Epoch 1 (iteration 1): start of training
• Epoch 1 (iteration 3): BLEU score < 10
• Epoch 4 (iteration 18): BLEU score > 14
• Epoch 9 (iteration 44): BLEU > 15
• Epoch 18 (iteration 108): highest BLEU score

5.2.2 Evaluation of linguistic categories over
time

While studying the accuracy progress for particu-
lar linguistic categories, we observe that three of
them have a negative thread, ending with a lower
accuracy than the one achieved during some ear-
lier epochs (ambiguity, multi-word expressions and
subordination). Additionally, we observe the fol-
lowing particular issues:

Named entities and terminology Four out of
ten sentences from five different phenomena were
translated correctly in this category: Proper name
(1 out of 1), Date (0 out of 2), Measuring unit
(2 out of 3), Location (1 out of 2) and Domain
specific term (0 out of 1). Dates were not properly
converted into the German format (dd.mm.yyyy),
however the named entities were kept in their
original spelling (Marilyn Monroe , Pearl
Harbor) in both cases. In our final recorded
snapshot, the system was able to translate 2 out of 3
measuring units accordingly: The human brain

Figure 5: Progress of BLEU score during the training
of the transformer model

has a volume of about 600 to 800 cubic
centimetres. and The room was 17 feet
long.. The system struggled with the sentence
Stella had her hair cut six inches
last week., no matter the progress. The
locations Saarland (Saarland) and Palatinate
(Pfalz) were only correctly translated in iteration
3 and 18 and mistranslated in lower and higher
iterations. Regarding the domain-specific term
neurotransmitter serotonin, the system was
not able to get the capitalisation right in most cases
and randomly got it either correct or wrong from
iteration to iteration.

False Friends False friends were translated cor-
rectly in 60% (6 out of 10 sentences). Three
sentences contained the word Genie and were
all translated wrong over all recorded snap-
shots. Four sentences examined the different
meanings of serious and were all translated
correct in all recorded snapshots but the first
(epoch 1). The system struggled with the sen-
tence For the Christmas party, the chef
sculpted an angel out of chocolate.; in
no case the translation was correct. It seems to
be obvious that words like Genie were not part
of the two used corpora or at least not used in the
given meaning and thus unable to translate cor-
rectly. Overall though, the system performed well
with false friends.

5.3 Evaluation of the transformer model

The transformer was trained for 31 hours and
achieved a BLEU score of 24.29. Our trained
model is comparable to the one trained by Sen-
nrich et al. (2015) that achieved a BLEU score of
22.7 to 25.7 for English→German with a similar
dev and test set (newstest14 and newstest15).
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Figure 6: Progress of the average test suite accuracy
for the chosen snapshots while training the transformer
model

category\epoch 2 4 21 28

Ambiguity 20% 20% 20% 20%
Coordination
& ellipsis 0% 10% 20% 10%

False friends 50% 50% 50% 50%

Function word 20% 40% 50% 60%
Long distance
dependency
& interrogative

20% 40% 70% 70%

MWE 10% 10% 10% 10%
Named entity
& terminology 20% 40% 70% 80%

Negation 40% 50% 60% 60%
Non-verbal
agreement 20% 40% 40% 50%

Punctuation 20% 10% 30% 50%

Subordination 0% 20% 80% 80%
Verb tense/
aspect/mood 10% 10% 30% 40%

Verb valancy 0% 20% 60% 50%

Table 4: Progress of accuracy for linguistic categories
(transformer) over selected epochs

5.3.1 Snapshot selection

Figure 5 shows the BLEU score evolution over all
351 iterations (28 epochs). For the transformer
model, we picked only four snapshots for further
examination, as there were no big changes after
certain epochs:

• Epoch 2 (iteration 15): BLEU score 10
• Epoch 4 (iteration 39): BLEU score >20
• Epoch 21 (iteration 255): BLEU score 24 (no

great changes from now on)
• Epoch 28 (iteration 355): Final epoch, BLEU

score 24

5.3.2 Evaluation of linguistic categories over
time

A total of 49 phenomena from 13 categories were
examined for the transformer-based system within
the test suite. There was a steady and visible rise in
the BLEU score development over time and a posi-
tive development in the average score as reported
by the test suite. The highest recorded BLEU
score 24,28 was achieved in epoch 28 (iteration
348). However, there is only a small difference
between epoch 21 and the final epoch 28 – this is
also perceptible from the BLEU score (figure 5);
the system became satisfactory around epoch 20
to 21. Regarding the test suite accuracy, there was
a notable increase from the first epoch to epoch
21 (see figure 6). Here, one observes that two
linguistic categories, verb valency and coordina-
tion and ellipsis, end up with 10% less accuracy
than the one achieved during the previous snap-
shot. Another three categories (ambiguity, MWE,
and false friend) have a flat trend, maintaining the
same accuracy as the one achieved in epoch 2,
whereas negation is also very close with a relatively
mild increase. A steady increase was achieved for
NER and terminology, whereas the steepest trend
is shown by subordination, which starts with 0%
and ends with 80%. Looking on particular items,
we can observe the following:

Ambiguity The system struggled with ambiguity
– only 2 out of 10 test sentences (20%) were
correctly translated, and this was stable from
the first snapshot until the final system. The
system didn’t make a correct lexical choice for
any of the three sentences focusing on the ambi-
guity of the word bat: The player hit the
ball with the bat., The woman hit the
burglar with the bat. and Bats sleep
upside-down. The two sentences containing the
words date respectively date palm, were both
translated incorrectly.

Function words Question tags were mistrans-
lated in nearly all cases within the recorded
snapshots. In the first snapshots, the question
tags were completely ignored in the translation,
however, the system understood the sentences con-
tained a question and therefore ended the sentences
with a question mark; yet, the important words
were skipped. In epoch 4, the system began to
translate some parts of the subordinate clauses (the
question tags), but was not able to translate them
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in an appropriate way (No one still goes
voluntarily in one of these old-style
libraries, right? → Niemand geht noch
immer freiwillig in einer dieser alten
Bibliotheken, Recht?). In epoch 21, one
question tag was translated accurately (You saw
her last week, didn’t you? → Sie haben
sie letzte Woche gesehen, nicht wahr?).
Focus particles such as even, only or also were
translated almost without any errors (9 out of 10
in epoch 26). However, the word even in the
sentence He didn’t even drink a single
glass of wine. was never translated correctly.

Named entities The translations for dates were
highly accurate within the latest recorded snapshots
(epoch 21 and epoch 28); Two dates have been
correctly translated from the American / English
format to the dd.mm.yyyy format commonly used
in Germany. Measuring units were not converted
(as intended) and correctly translated (3 out of 3
sentences in epoch 28). Location information was
not translated well enough; especially well-known
proper names, such as the names of the German
federal states still caused difficulties for the system

However, a slight improvement towards the
end could be recognized here. An interest-
ing transition in quality can be found for the
sentence The Saarland and the Palatinate
enjoy a fierce regional rivalry. where
the translation quality actually dropped in the
last two recorded epochs 21 and 28; it seemed
the system had been overfitted to some spe-
cific word combinations, resulting in the use of
Flughafen Pfalz (airport Pfalz) for the English
word Palatine (German: Pfalz or pfälzisch)
instead of Pfalz (epochs 2 and 4).

Coordination and ellipsis The system had dif-
ficulty translating sentences from this category.
An accurate evaluation of the phenomena is
difficult because many of the necessary vo-
cabularies were not correctly translated, mak-
ing the sentences incomplete or partially mean-
ingless. However, two sentences were trans-
lated correctly: Goethe wrote Faust, not
Schiller. and Jackie likes the doctor
but she doesn’t like the nurse. were
both translated correctly in epoch 21, but not in
epoch 28 and 4. In epoch 2, no sentence was trans-
lated correctly.

Verb valency There was an increasing develop-
ment until epoch 21 (best score for this category)
- in the following epoch 28 the translation quality
dropped from 60% back to 50% due to a mistrans-
lated sentence in the last epoch (I want to talk
to your neighbors.).

6 Comparison between iterations and
models

As figure 7 shows, there is a clear difference be-
tween the two RNN trainings regarding the re-
silience of the BLEU score over time. While there
is a lot of jittering in the RNN model with a small
amount of data, a nearly constant increase is given
in the model with a bigger amount of data, showing
no huge peaks or valleys. Regarding BLEU scores,
the system with the larger corpus performed a little
bit better (∼16) than the one smaller one (∼14), but
this was not reflected in the test suite comparison,
where there was no big difference in terms of test
suite accuracy, even though the used corpus has
more than doubled in the big RNN model. Addi-
tionally, it can be observed that some categories
in the bigger RNN perform worse than what was
achieved in the smaller one. The inability of the
bigger model to take advantage of the additional
data may be addressed to the rather shallow archi-
tecture of the encoder and the decoder. With the
current range of experiments, there are some open
questions regarding further comparisons between
RNN-small and RNN-big models. Future experi-
ments could investigate the reasons for the fact that
RNN-small and RNN-big systems perform com-
parably on the test suite, e.g. whether this can be
attributed to the shallow architecture, to a subtle
domain mismatch between Europarl and DGT or
to the domain mismatch between the training data
and the test suite.

The transformer model development takes some
more iterations until it reaches a competitive BLEU
score but then clearly outperforms both RNN sys-
tems by more than 60%, although the comparison
with the RNN models is not direct, since the trans-
former is built with more layers and a not directly
comparable architecture.

There is no generalizable development over all
examined categories; some performed better than
others, while some of the categories had no de-
velopment at all. Scoring with the test suite was
difficult for many sentences, because of insufficient
vocabulary and wrong lexical choices. The system
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Figure 7: BLEU scores for the models small RNN (_),
big RNN (�) and transformer (4)

had trouble with punctuation, such as quotation
marks. Names were often translated with frag-
ments or as mixtures of different fragments, clearly
coming from the Europarl proceedings.

7 Conclusions and further work

We performed a fine-grained evaluation on several
training stages of three different NMT models. The
most interesting observation is that although the
training process stops when the best scores of the
automatic metrics are achieved (early stopping),
the accuracy of some linguistic phenomena is drop-
ping, as compared to previous epochs. For this rea-
son, the contribution of the scoring metric and the
stopping criterion should be further investigated,
while it might be also depend on whether the devel-
opment sets contain these phenomena.

The fact that some linguistic categories have a
steeper curve than the others may also signalise
the difficulty of these categories from a machine
learning perspective.

Since this is a preliminary study, the amount
of items per linguistic category is small and does
not allow for statistically significant conclusions.
This could be improved in the future with further
annotation effort. Finally, the systems examined are
taken as random samples in terms of settings and
parameters. We should repeat the measurements on
state of the art systems, allowing fair comparisons
among different architectures and design decisions.
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A Appendix

Example sentence Category Phenomenon

Beijing is the capital of China. Ambiguity Lexical ambiguity
The manager suspects the president of theft. Verb valency Case government
I stopped reading the poster. Verb valency Catenative verb
John sang the baby to sleep. Verb valency Resultative
Goethe wrote Faust, not Schiller. Coordination & ellipsis Stripping
Hand me a Kleenex, please. Named entitiy & terminology Proper name
Marilyn Monroe was born as Norma Jeane Mortenson on June 1, 1926. Named entitiy & terminology Date
The room was 17 feet long. Named entitiy & terminology Measuring unit
John is studying at the Technical University of Vienna. Named entitiy & terminology Location
In the latter case, this would be the neurotransmitter serotonin. Named entitiy & terminology Domainspecific term
For the Christmas party, the chef sculpted an angel out of chocolate. False friends False friends
No one still goes voluntarily in one of these old-style libraries, right? Function word Question tag
I saw him only once. Function word Focus particle
You will have passed John the ball. Verb tense/aspect/mood Ditransitive - future II simple
She had been baking Tim a cake. Verb tense/aspect/mood Ditransitive - past perfect progressive
Neither John nor Mary could do anything about the problem. Long distance dependency & interrogative Multiple connectors
Never again will he eat raw spaghetti. Long distance dependency & interrogative Negative inversion
To whom should the documents be sent? Long distance dependency & interrogative Pied piping
No walking on the grass! Negation Negation
Susan dropped the plate and it shattered loudly. Non-verbal agreement Coreference
The man who you mentioned is my friend. Subordination Relative clause
What do you think they did that upset everyone? Long distance dependency & interrogative Extraposition
I’d like to have a round of applause for our next guest! MWE Collocation
John can play the guitar, and Mary can too. Coordination & ellipsis VP-ellipsis
Jackie likes the doctor but she doesn’t the nurse. Coordination & ellipsis Pseudogapping
She likes the car more than her husband does. Subordination Adverbial clause
Oh, what a beautiful morning! Jim said to himself. Punctuation Quotation marks
They are well-behaved children. MWE Compound
Don’t put all your eggs in one basket. MWE Idiom
Rebecca said she would be in Munich next week. Subordination Indirect speech
We didn’t realize she was so ill. Subordination Object clause
We are determined to completely solve the problem. Long distance dependency & interrogative Split infinitive
Are you going to the beach today? Long distance dependency & interrogative Polar question
They may not know it. Verb tense/aspect/mood Modal negated
They are teaching themselves Spanish. Verb tense/aspect/mood Reflexive - present progressive
I would be kicking Tim. Verb tense/aspect/mood Transitive - conditional I progressive
You would have been eating the potatoes. Verb tense/aspect/mood Transitive - conditional II progressive
She will have been painting the house. Verb tense/aspect/mood Transitive - future II progressive
I have been painting the house. Verb tense/aspect/mood Transitive - present perfect progressive
He looks up to his older brother. MWE Verbal MWE
She has lost her shoes. Non-verbal agreement Possession
Before leaving, John has been at home. MWE Prepositional MWE
What was the man looking for in the fridge? Long distance dependency & interrogative Wh-movement
Mandy’s brother John plays football. Non-verbal agreement Genitive
It was Lena who had baked the cake. Subordination Cleft sentence
What I did in the end was to go home. Subordination Pseudo-cleft sentence

Table 5: Extracted example sentences for each examined category and phenomenon
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Abstract

Question answering (QA) models for reading
comprehension have achieved human-level ac-
curacy on in-distribution test sets. However,
they have been demonstrated to lack robust-
ness to challenge sets, whose distribution is
different from that of training sets. Existing
data augmentation methods mitigate this prob-
lem by simply augmenting training sets with
synthetic examples sampled from the same dis-
tribution as the challenge sets. However, these
methods assume that the distribution of a chal-
lenge set is known a priori, making them less
applicable to unseen challenge sets. In this
study, we focus on question-answer pair gen-
eration (QAG) to mitigate this problem. While
most existing QAG methods aim to improve
the quality of synthetic examples, we conjec-
ture that diversity-promoting QAG can miti-
gate the sparsity of training sets and lead to bet-
ter robustness. We present a variational QAG
model that generates multiple diverse QA pairs
from a paragraph. Our experiments show that
our method can improve the accuracy of 12
challenge sets, as well as the in-distribution ac-
curacy.1

1 Introduction

Machine reading comprehension has gained signifi-
cant attention in the NLP community, whose goal is
to devise systems that can answer questions about
given documents (Rajpurkar et al., 2016; Trischler
et al., 2017; Joshi et al., 2017). Such systems usu-
ally use neural models, which require a substantial
number of question-answer (QA) pairs for training.
To reduce the considerable manual cost of dataset
creation, there has been a resurgence of studies
on automatic QA pair generation (QAG), consist-
ing of a pipeline of answer extraction (AE) and

1Our code and data are available at https://github.
com/KazutoshiShinoda/VQAG.

question generation (QG), to augment question an-
swering (QA) datasets (Yang et al., 2017a; Du and
Cardie, 2018; Subramanian et al., 2018; Alberti
et al., 2019).

For the downstream QA task, most existing stud-
ies have evaluated QAG methods using a test set
from the same distribution as a training set (Yang
et al., 2017a; Zhang and Bansal, 2019; Liu et al.,
2020). However, when a QA model is evaluated
only on an in-distribution test set, it is difficult to
verify that the model is not exploiting unintended
biases in a dataset (Geirhos et al., 2020). Exploit-
ing an unintended bias can degrade the robustness
of a QA model, which is problematic in real-world
applications. For example, recent studies have ob-
served that a QA model does not generalize to other
QA datasets (Yogatama et al., 2019; Talmor and
Berant, 2019; Sen and Saffari, 2020). Other studies
have found a lack of robustness to challenge sets,
such as paraphrased questions (Gan and Ng, 2019),
questions with low lexical overlap (Sugawara et al.,
2018), and questions that include noise (Ravichan-
der et al., 2021).

While existing studies have proposed data aug-
mentation methods targeting a particular challenge
set, they are only effective at the expense of the in-
distribution accuracy (Gan and Ng, 2019; Ribeiro
et al., 2019; Ravichander et al., 2021). These meth-
ods assume that the target distribution is given a
priori. However, identifying the type of samples
that a QA model cannot handle in advance is diffi-
cult in real-world applications.

We conjecture that increasing the diversity of
a training set with data augmentation, rather than
augmenting QA pairs similar to the original train-
ing set, can improve the robustness of QA models.
Poor diversity in QA datasets has been shown to
result in the poor robustness of QA models (Lewis
and Fan, 2019; Geva et al., 2019; Ko et al., 2020),
supporting our hypothesis. To this end, we propose
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a variational QAG model (VQAG). We introduce
two independent latent random variables into our
model to learn the two one-to-many relationships
in AE and QG by utilizing neural variational infer-
ence (Kingma and Welling, 2013). Incorporating
the randomness of these two latent variables en-
ables our model to generate diverse answers and
questions separately. We also study the effect of
controlling the Kullback–Leibler (KL) term in the
variational lower bound for mitigating the poste-
rior collapse issue (Bowman et al., 2016), where
the model ignores latent variables and generates
outputs that are almost the same. We evaluate our
approach on 12 challenge sets that are unseen dur-
ing training to assess the improved robustness of
the QA model.

In summary, our contributions are three-fold:

• We propose a variational question-answer pair
generation model with explicit KL control
to generate significantly diverse answers and
questions.

• We construct synthetic QA datasets using our
model to boost the QA performance in an
in-distribution test set, achieving comparable
scores with existing QAG methods.

• We discover that our method achieves mean-
ingful improvements in unseen challenge sets,
which are further boosted using a simple en-
semble method.

2 Related Work

2.1 Answer Extraction

AE aims to extract question-worthy phrases, which
are worth being asked about, from each textual
context without looking at the questions. AE has
been performed mainly in two ways: rule-based
and neural methods. Yang et al. (2017a) extracted
candidate phrases using rule-based methods such
as named entity recognition (NER). However, not
all the named entities, noun phrases, verb phrases,
adjectives, or clauses in the given documents are
used as gold answer spans. As such, these rule-
based methods are likely to extract many trivial
phrases.

Therefore, there have been studies on training
neural models to identify question-worthy phrases.
Du and Cardie (2018) framed AE as a sequence
labeling task and used BiLSTM-CRF (Huang et al.,
2015). Subramanian et al. (2018) treated the posi-
tions of answers as a sequence and used a pointer

network (Vinyals et al., 2015). Wang et al. (2019)
used a pointer network and Match-LSTM (Wang
and Jiang, 2016, 2017). Alberti et al. (2019) made
use of pretrained BERT (Devlin et al., 2019).

However, these neural AE models are trained
with maximum likelihood estimation; that is, each
model is optimized to produce an answer set clos-
est to the gold answers. In contrast, our model
incorporates a latent random variable and is trained
by maximizing the lower bound of the likelihood
to extract diverse answers. In this study, we as-
sume that there should be question-worthy phrases
that are not used as the gold answers in a manually
created dataset. We aim to extract such phrases.

2.2 Question Generation

Traditionally, QG was studied using rule-based
methods (Mostow and Chen, 2009; Heilman and
Smith, 2010; Lindberg et al., 2013; Labutov et al.,
2015). After Du et al. (2017) proposed a neu-
ral sequence-to-sequence model (Sutskever et al.,
2014) for QG, neural models that take context and
answer as inputs have started to be used to im-
prove question quality with attention (Bahdanau
et al., 2014) and copying (Gulcehre et al., 2016; Gu
et al., 2016) mechanisms. Most works focused on
generating relevant questions from context-answer
pairs (Zhou et al., 2018; Song et al., 2018; Zhao
et al., 2018; Sun et al., 2018; Kim et al., 2019; Liu
et al., 2019; Qiu and Xiong, 2019). These works
showed the importance of answers as input features
for QG. Other works studied predicting question
types (Zhou et al., 2019; Kang et al., 2019), model-
ing a structured answer-relevant relation (Li et al.,
2019), and refining generated questions (Nema
et al., 2019). To further improve question quality,
policy gradient techniques have been used (Yuan
et al., 2017; Yang et al., 2017a; Yao et al., 2018;
Kumar et al., 2019). Dong et al. (2019) used a
pretrained language model.

The diversity of questions has been tackled using
variational attention (Bahuleyan et al., 2018), a con-
ditional variational autoencoder (CVAE) (Yao et al.,
2018), and top p nucleus sampling (Sultan et al.,
2020). Our study is different from these studies
wherein we study QAG by introducing variational
methods into both AE and QG. Lee et al. (2020)
is the closest to our study in terms of the model-
ing choice. While Lee et al. (2020) introduced an
information-maximizing term to improve the con-
sistency of QA pairs, our study uniquely controls
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the diversity by explicitly controlling KL values.
Despite the potential of data augmentation with

QAG to mitigate the sparsity of QA datasets and
avoid overfitting, not much is known about the
robustness of QA models reinforced with QAG to
more challenging test sets. We comprehensively
evaluate QAG methods on challenging QA test
sets, such as hard questions (Sugawara et al., 2018),
implications (Ribeiro et al., 2019), and paraphrased
questions (Gan and Ng, 2019).

2.3 Variational Autoencoder

The variational autoencoder (VAE) (Kingma and
Welling, 2013) is a deep generative model con-
sisting of a neural encoder (inference model) and
decoder (generative model). The encoder learns to
map from an observed variable to a latent random
variable and the decoder works vice versa. The
techniques of VAE have been widely applied to
NLP tasks such as text generation (Bowman et al.,
2016), machine translation (Zhang et al., 2016),
and sequence labeling (Chen et al., 2018).

The CVAE is an extension of the VAE, in which
the distribution of a latent variable is explicitly
conditioned on certain variables and enables gener-
ation processes to be more diverse than a VAE (Li
et al., 2018; Zhao et al., 2017b; Shen et al., 2017).
The CVAE is trained by maximizing the variational
lower bound of the log likelihood.

3 VQAG: Variational Question-Answer
Pair Generation Model

3.1 Problem Definition

Our problem is to generate QA pairs from textual
contexts. We focus on extractive QA in which
an answer is a text span in context. We use c, q,
and a to represent the context, question, and an-
swer, respectively. We assume that every QA pair
is sampled independently given a context. Thus,
the problem is defined as maximizing the condi-
tional log likelihood log p(q, a|c) averaged over all
samples in a dataset.

3.2 Variational Lower Bound with Explicit
KL Control

Generating questions and answers from different
latent spaces makes sense because multiple ques-
tions can be created from a context-answer pair
and multiple answer spans can be extracted from a
context. Thus, we introduce two independent latent

random variables to assign the roles of diversifying
AE and QG to z and y, respectively.

VAEs often suffer from posterior collapse,
where the model learns to ignore latent variables
and generates outputs that are almost the same
(Bowman et al., 2016). Many approaches have
been proposed to mitigate this issue, such as weak-
ening the generators (Bowman et al., 2016; Yang
et al., 2017b; Semeniuta et al., 2017), or modify-
ing the objective functions (Tolstikhin et al., 2018;
Zhao et al., 2017a; Higgins et al., 2017).

To mitigate this problem, we use a variant of the
modified β-VAE (Higgins et al., 2017) proposed
by Burgess et al. (2018), which uses two hyperpa-
rameters to control the KL terms. Our modified
objective function is:

L = Eqφ(z,y|q,a,c)[log pθ(q|y, a, c)
+ log pθ(a|z, c)]
− |DKL(qφ(z|a, c)||pθ(z|c))− Ca|
− |DKL(qφ(y|q, c)||pθ(y|c))− Cq|, (1)

where DKL is the KL divergence, θ (φ) is the pa-
rameters of the generative (inference) model, and
Ca, Cq ≥ 0. See Appendix A for the derivation of
the objective. Tuning Ca and Cq was enough to
regularize the KL terms in our case (see Appendix
B). Ca and Cq can explicitly control the KL values
because the KL terms are forced to get closer to
these values during training. We mathematically
show that the KL control can be interpreted to con-
trol the conditional mutual information I(z; a) and
I(y; q). This is the major difference between our
model and Lee et al. (2020), where I(q; a) is max-
imized to improve consistency of QA pairs. See
Appendix C for the mathematical interpretation.

3.3 Model Architecture
An overview of VQAG is given in Figure 1. We
denote ci, qi, and ai as the i-th word in context,
question, and answer, respectively. See Appendix
D for the details of the implementation.

Embedding and Contextual Embedding Layer
First, in the embedding layer, the i-th word, wi, of
a sequence of length L is simultaneously converted
into word- and character-level embedding vectors
by using a CNN based on Kim (2014). Then, we
concatenate the embedding vectors. After that, we
pass the embedding vectors to the contextual em-
bedding layer consisting of bidirectional LSTMs
(BiLSTM). We obtain H ∈ RL×2d, which is the
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Figure 1: Overview of the model architecture. The la-
tent variables z and y are sampled from the posteriors
when computing the variational lower bound and from
the priors during generation. See §3.3 for the details.

concatenated outputs from the LSTMs in each di-
rection at each time step, and h ∈ R2d, which is
the concatenated last hidden state vectors in each
direction. The superscripts of the outputs H and h
shown in Figure 1 indicate where they come from.
C, Q, and A denote the context, question, and an-
swer, respectively.

Prior and Posterior Distributions Following
Zhao et al. (2017b), we hypothesized that the prior
and and posterior distributions of the latent vari-
ables follow multivariate Gaussian distributions
with diagonal covariance. The mean µ and log vari-
ance log σ2 of these prior and posterior distribu-
tions of z and y are computed with linear transfor-
mation from hC , hA, and hQ. Next, latent variable
z and y are obtained using the reparameterization
trick (Kingma and Welling, 2013). Then, z and y
are passed to the AE and QG models, respectively.
z and y are sampled from the posteriors during
training and the priors during testing.

Answer Extraction Model We regard AE as
two-step autoregressive decoding, i.e., p(a|c) =
p(cstart|c)p(cend|cstart, c), that predicts the start
and end positions of an answer span in this order.
For AE, we modify a pointer network (Vinyals
et al., 2015) to take as input the initial hidden state
computed from linear transformation from z, which
in the end diversifies AE by learning the mappings
from z to a. We use an LSTM as a decoder and
compute attention scores over HC .

Answer-aware Context Encoder To compute
answer-aware context information for QG, we use
another BiLSTM. We concatenate HC and one hot
vectors of start and end positions of answer, which
are fed to the BiLSTM. We obtain HCA ∈ RL×2d,
which is the concatenated outputs from the LSTMs
in each direction. HCA is used as the source for
attention and copying in QG.

Question Generation Model For QG, we mod-
ify an LSTM decoder with attention and copy-
ing mechanisms to take as input the initial hidden
state computed from linear transformation from y,
which in the end diversifies QG. At each time step,
the probability distribution of generating words
from vocabulary Pv(qi) is computed using atten-
tion (Bahdanau et al., 2014), and the probability dis-
tributions of copying words (Gulcehre et al., 2016;
Gu et al., 2016) from context Pc(cj) are computed
using attention. In parallel, the switching probabil-
ity ps is linearly estimated from the hidden state
vector. Lastly, we compute the probability of qi as:

p(qi) = psPv(qi) + (1− ps)
∑

j:cj=qi

Pc(cj). (2)

4 Experiments and Results

4.1 Dataset

We used SQuAD v1.1 (Rajpurkar et al., 2016), a
large scale QA dataset consisting of documents
collected from Wikipedia and 100k QA pairs cre-
ated by crowdworkers, as a source dataset for
QAG. Answers to questions in SQuAD can be ex-
tracted from textual contexts. Since the SQuAD
test set has not been released, we use the split of
the dataset, SQuAD-Du (Du et al., 2017), where
the original training set is split into the training
set (SQuADDu

train) and the test set (SQuADDu
test),

and the original development set is used as the
dev set (SQuADDu

dev). The sizes of SQuADDu
train,

SQuADDu
dev, and SQuADDu

test are 75,722, 10,570,
and 11,877, respectively. See Appendix E for the
training details of VQAG.

4.2 Answer Extraction

First, we conducted the AE experiment where in-
puts were the contexts and outputs were a set of
multiple answer spans. The objective of this ex-
periment is to measure the diversity and the extent
to which our extracted answers cover the ground
truths. We also study the effect of Ca in Eq. 1.
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Relevance Diversity

Precision Recall Dist
Prop. Exact Prop. Exact

NER 34.44 19.61 64.60 45.39 30.0k
HarQG 45.96 33.90 41.05 28.37 -
InfoHCVAE 31.59 16.18 78.75 59.32 70.1k

VQAG
Ca = 0 58.39 47.15 21.82 16.38 3.1k
Ca = 5 30.16 13.41 83.13 60.88 71.2k
Ca = 20 21.95 5.75 72.26 42.15 103.3k

Table 1: Results of AE on the test set.

Relevance Diversity

B1-R ME-R RL-R Token D1 E4 SB4

SemQG 62.32 36.77 62.87 7.0M 15.8k 18.28 91.44
VQAG
Cq = 0 35.57 18.31 33.92 7.6M 14.4k 17.33 97.61
Cq = 5 44.19 25.84 45.18 11.5M 19.0k 19.71 82.59
Cq = 20 48.19 25.29 48.26 4.9M 22.4k 19.72 44.41

Table 2: Results of answer-aware QG on the test set.
One question per input is evaluated in the upper part,
while 50 questions per input are evaluated in the lower
part to assess their diversity.

Metrics To measure the accuracy of multi-span
extraction, we computed Proportional Overlap
(Prop.) and Exact Match (Exact) metrics (Breck
et al., 2007; Johansson and Moschitti, 2010; Du
and Cardie, 2018) for each pair of extracted and
ground truth answer spans, and then we report their
precision and recall.2 Prop. is proportional to
the amount of overlap between two phrases. Our
models extracted 50 answers from each context.
To measure the diversity, we defined a Dist score,
which is the the total number of distinct context-
answer pairs.

Baselines We used three baselines: named entity
recognition (NER), Harvesting QG (HarQG) (Du
and Cardie, 2018), and InfoHCVAE (Lee et al.,
2020). For NER, we used spaCy (Honnibal et al.,
2020). For HarQG, we directly copied the scores
from Du and Cardie (2018). For InfoHCVAE, we
trained the model on the training set, and extracted
50 answers randomly from each context for a fair
comparison.

Result Table 1 shows the result. While we tested
various values of Ca ranging from 0 to 100, we only
report the selected values here for brevity. When

2We exclude Binary Overlap, which assigns higher scores
to systems that extract the entire input context and is not a
reliable metric as Breck et al. (2007) discussed.

using Ca larger than 20, the scores did not get im-
proved. Our model with Ca = 5 performed the best
in terms of the recall scores, while surpassing the
diversity of NER. The highest Dist scores did not
occur together with the highest recall scores. When
Ca is 0, the Dist score is fairly low. This implies
the posterior collapse issue, though the precision
scores are the best. We assert that low precision
scores do not necessarily mean poor performance
in our experiment because even the original test set
does not cover all the valid answer spans.

4.3 Answer-aware Question Generation
We also conducted answer-aware QG experiments
where the contexts and ground truth answer spans
were the inputs to assess diversity and relevance to
the gold questions.

Metrics To evaluate the diversity of the gener-
ated questions, our models generated 50 questions
from each context-answer pair. We reported the
recall scores (denoted as “-R”) of BLEU-1 (B1),
METEOR (ME), and ROUGE-L (RL) per refer-
ence question. We do not report precision scores
here because our motivation is to improve diver-
sity. To measure diversity, we reported Dist-1 (D1),
Entropy-4 (E4) (Serban et al., 2017; Zhang et al.,
2018), and Self-BLEU-4 (SB4) (Zhu et al., 2018).3

Baselines We compared our models with
SemQG (Zhang and Bansal, 2019).4 We used di-
verse beam search (Li et al., 2016b), sampled the
top 50 questions per answer from SemQG, and
used them to calculate the metrics as the baseline
for a fair comparison

Result The results in Table 2 show that our model
can improve diversity while degrading the recall
scores compared to SemQG. Using Cq larger than
20 did not lead to improved diversity. More de-
tailed analysis of Ca and Cq is provided in Ap-
pendix F.

4.4 Synthetic Dataset Construction
We created three synthetic QA datasets, de-
noted as D5,5, D20,20, and D5,20, using VQAG

3We computed Dist-1 following the definition of Xu et al.
(2018), wherein Dist-1 is the number of distinct unigrams.
Dist-1 is often defined as the ratio of distinct unigrams (Li
et al., 2016a) but this is not fair when the number of generated
sentences differs among models, so we did not use this. SB4
was calculated per 50 questions generated from each input.

4We reran the ELMo+QPP&QAP model, which is
available at https://github.com/ZhangShiyue/
QGforQA.
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beyoncé ’s vocal range spans
�� ���� ��four octaves .

�� ��jody rosen highlights her tone and timbre as particularly distinctive , describing her voice as ” one of
the most compelling instruments in popular music ” . while another critic says she is a ” vocal acrobat , being able to sing long and complex melismas
and vocal runs effortlessly , and in key .

�� ��her vocal abilities mean she is identified as the centerpiece of destiny ’s child .
�� ��the daily mail calls beyoncé

’s voice ”
�� ��versatile ” , capable of exploring power ballads , soul , rock belting , operatic flourishes , and

�� ��hip hop . jon pareles of the new york times
commented that her voice is ” velvety yet

�� ��tart , with an insistent flutter and reserves of soul belting ” .

Q: how can one find her vocal abilities in key music ? A: she is identified as the centerpiece of destiny ’s child
Q: how many octaves spans beyoncé ’s vocal range ? A: spans four
Q: how many octaves ’s vocal range spans the beyoncé hop vocal range ? A: four
Q: who commented that her voice is tart yet tart ? A: jon pareles

Table 3: Heatmap of extracted answer spans and generated samples using our model. The darker the color is, the
more often the word is extracted. The phrases surrounded by black boxes are the ground truth answers in SQuAD.

with the different configurations, (Ca, Cq) =
(5, 5), (20, 20), (5, 20) respectively. These configu-
rations are chosen based on the recall-based metrics
and diversity scores in the AE and QG results.

VQAG generated 50 QA pairs from each para-
graph in SQuADDu

train to construct each D. It is
generally known that VAEs generate diverse but
low-quality data unlike GANs. We used heuris-
tics to filter out low-quality generated QA pairs,
dropping questions that are longer than 20 words
or shorter than 5 words and answers that are longer
than 10 words, keeping questions that have at least
one interrogative word, and removing n-gram repe-
tition in questions. While some existing works used
the BERT QA model or an entailment model as a
data filter (Alberti et al., 2019; Zhang and Bansal,
2019; Liu et al., 2020), our heuristics are enough
to obtain improvement in the downstream QA task
as shown in §4.6. Some samples in our datasets are
given in Table 3, showing that the diverse QA pairs
are generated. See Appendix G to see how VQAG
maps latent variables to QA pairs.

4.5 Human Evaluation

We assess the quality of the synthetic QA pairs
by conducting human evaluation on Amazon Me-
chanical Turk. For human evaluation, we randomly
chose 200 samples from synthetic QA pairs gener-
ated by Zhang and Bansal (2019) and our model
with (Ca, Cq) = (5, 5), (20, 20) from the para-
graphs in SQuADDu

test. We also chose 100 samples
from SQuADDu

test. In addition to the three items pro-
posed by Liu et al. (2020), we asked annotators if
an given answer is important, i.e., it is worth being
asked about. We showed the workers a triple (pas-
sage, question, answer) and asked them to answer
the four questions shown in Table 4. See Appendix
H for the details. We report the responses obtained
using the majority vote.

According to the results in Table 4, nearly 25%
of our questions are not understandable or mean-

Experiments SemQG (Ca, Cq) =
(5, 5) (20, 20)

SQuAD

Question is
well-formed

No 2.9% 23.1% 27.8% 2.3%
Understandable 34.5% 16.0% 17.0% 10.5%

Yes 62.6% 60.9% 55.1% 87.2%

Question is
relevant

No 2.5% 9.5% 11.5% 4.0%
Yes 97.5% 90.5% 88.5% 96.0%

Answer is
correct

No 2.8% 28.8% 30.5% 7.5%
Partially 21.8% 28.1% 26.6% 11.8%

Yes 75.4% 43.2% 42.9% 80.6%

Answer is
important

No 1.5% 10.0% 5.0% 6.0%
Yes 98.5% 90.0% 95.0% 94.0%

Table 4: Human evaluation of the quality of QA pairs.

ingful, and 30% of our answers are incorrect for the
generated questions. This result indicates that our
synthetic datasets contain a considerable number
of noisy QA pairs in these two aspects. However,
90 % of the generated questions are relevant to the
passages, and 90% of the answers extracted by our
models are question-worthy. As we will verify in
§4.6, our noisy but diverse synthetic datasets are
effective in enhancing the QA performance in the
in- and out-of-distribution test sets.

4.6 Question Answering
We evaluated QAG methods on the downstream
QA task. We evaluated our method on 12 challenge
sets in addition to the in-distribution test set.

4.6.1 Baselines
We compared our method with the following base-
lines.

• SQuADDu
train BERT-base model trained on

SQuADDu
train without data augmentation.

• HarQG (Du and Cardie, 2018) uses neural
AE and QG models and generates over one
million QA pairs from top ranking Wikipedia
articles not included in SQuAD. We used the
publicly available dataset.5

5https://github.com/xinyadu/
harvestingQA
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• SemQG (Zhang and Bansal, 2019) uses
reinforcement learning to generate more
SQuAD-like questions. We reran the trained
model, and generated questions from the same
context-answer pairs as HarQG.

• InfoHCVAE (Lee et al., 2020) uses a vari-
ational QAG model with an information-
maximizing term. We trained this model6 on
SQuADDu

train, and then generated 50 QA pairs
from each context in SQuADDu

train for a fair
comparison with VQAG.

4.6.2 Training Details
We trained pretrained BERT-base models (Devlin
et al., 2019) on each synthetic dataset, and then
fine-tuned it on SQuADDu

train. We adopted this pro-
cedure following existing data augmentation ap-
proach for QA (Dhingra et al., 2018; Zhang and
Bansal, 2019). In our study, the order in which our
synthetic datasetsD were given to a QA model was
tuned on the dev set.

We used the Hugging Face’s implementation of
BERT (Wolf et al., 2020). We used Adam (Kingma
and Ba, 2014) with epsilon as 1e-8 for the optimizer.
The batch size was 32. In both the pretraining and
fine-tuning procedure, the learning rate decreased
linearly from 3e-5 to zero. We conducted the train-
ing for one epoch using a synthetic dataset and two
epochs using the original training set.

In addition to the performance of Single models,
we reported the performance of Ensemble models,
where the output probabilities of three different QA
models are simply averaged. In practice, the top
20 candidate answer spans predicted by each QA
model were used for the final prediction.

4.6.3 Challenge Sets
We assessed the robustness of the QA models to the
following 12 challenge sets, as well as SQuADDu

test.

• NewsQA (News) (Trischler et al., 2017):
5,166 QA pairs created from CNN articles by
crowdworkers, transformed into the SQuAD
format following Sen and Saffari (2020).

• Natural Questions (NQ) (Kwiatkowski et al.,
2019): 2,356 questions from real users for
Wikipedia articles. We reframed NQ as ex-
tractive QA by using long answers in NQ as
contexts following Sen and Saffari (2020).7

6https://github.com/seanie12/
Info-HCVAE

7We used answerable questions for NewsQA and NQ pro-

• Non-Adversarial Paraphrased Test Set
(Para) (Gan and Ng, 2019): 1,062 questions
paraphrased with slight perturbations from
SQuAD using a trained paraphrased model.

• Adversarial Paraphrased Test Set (APara)
(Gan and Ng, 2019): 56 questions manually
paraphrased using context words near a con-
fusing answer from SQuAD.

• Hard Subset (Hard) (Sugawara et al., 2018):
A subset of the SQuAD dev set, which con-
sists of 1,661 questions that require less word
matching and more knowledge inference and
multiple sentence reasoning.

• Implications (Imp) (Ribeiro et al., 2019):
13,371 QA pairs automatically derived from
the SQuAD dev set with a linguistic rule-
based method.8

• AddSent (Add) & AddOneSent (AddO)
(Jia and Liang, 2017): Adversarial SQuAD
dataset created using handcrafted rules de-
signed for fooling a QA model. The sizes
of Add and AddO are 3,560 and 1,787, re-
spectively.

• Quoref (Quo) (Dasigi et al., 2019): 2,418
questions requiring coreference resolution cre-
ated by humans. We used the dev set.

• Natural Machine Translation Noise (MT)
(Ravichander et al., 2021): A subset of
NoiseQA, consisting of 1,190 English trans-
lated questions produced by Google’s com-
mercial translation system from the XQuAD
dataset (Artetxe et al., 2020). This creation
introduces naturally occurring noise caused
by machine translation.

• Natural Automatic Speech Recognition
Noise (ASR) (Ravichander et al., 2021): An-
other subset of NoiseQA, consisting of 1,190
questions that include automatic speech recog-
nition error.

• Natural Keyboard Noise (KB) (Ravichan-
der et al., 2021): Another subset of NoiseQA,
consisting of 1,190 questions that include nat-
ural character-level typos introduced by typ-
ing questions on a keyboard.

These challenge sets enable us to evaluate the QA
models’ robustness to other domain corpora, varia-

vided by Sen and Saffari (2020). We did not use the MRQA
shared task version as Lee et al. (2020) did.

8For example, “Q: Who died in 1285? A: Zhenjin” is
derived from “Q: When did Zhenjin die? A: 1285”
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Challenge Sets
Training Data (Size) SQuADDu

test News NQ Quo Para APara Hard Imp Add AddO MT ASR KB
Si

ng
le

SQuADDu
train (76k) 83.5 49.2 67.7 30.1 85.7 50.2 75.6 64.7 62.9 71.8 79.7 67.5 80.1

+HarQG (1,205k) 83.3 48.5 66.2 31.3 85.2 56.5 73.0 63.5 65.1 73.1 78.6 70.0 80.3
+SemQG (1,204k) 84.7 50.5 69.8 34.5 86.2 51.8 75.0 65.1 66.5 74.3 79.5 71.0 80.7

+InfoHCVAE (824k) 84.8 51.3 71.2 33.8 85.6 53.3 77.7 64.8 66.1 74.5 81.3 71.6 82.8
+VQAG (432k) 84.5 49.2 70.1 32.0 86.7 59.0 76.1 66.3 64.8 73.9 79.9 70.5 81.1

E
ns

em
bl

e

{SQuADDu
train}*3 84.2 50.4 69.4 31.3 86.4 53.2 76.6 65.7 63.6 72.6 80.3 68.7 81.2

{+SemQG}*3 85.5 51.8 71.3 35.1 87.5 57.8 78.2 66.5 67.0 75.1 80.8 72.9 82.5
{+InfoHCVAE}*3 85.3 52.0 72.2 34.0 88.0 56.9 79.0 65.7 67.7 75.9 81.4 73.1 83.2
{+VQAG}*3 84.9 50.9 70.1 32.3 88.1 58.6 77.3 67.5 64.9 73.9 80.8 71.2 81.6
{+Sem,+Info,+V} 85.8 52.1 72.0 34.2 88.0 55.1 78.8 67.0 66.3 74.7 82.2 73.5 83.0

If challenge set is known - 62.9 83.0 66.9 88.6 73.9 - - - - 80.8 75.9 82.6

Table 5: QA performance (F1 score) on SQuADDu
test and the 12 challenge sets. The abbreviations of the challenge

sets are explained in §4.6. Curly brackets denote an ensemble of different models (e.g., {+VQAG}*3 denotes the
ensemble of three QA models, trained with different random seeds after data augmentation with VQAG). The best
scores for each of the Single and Ensemble models are boldfaced. The degraded scores compared to the no data
augmentation baseline (the 1st line) are in red. Sem: SemQG, Info: InfoHCVAE, V: VQAG.

tions in questions, adversarial examples, and noise
that may occur in real-world applications.

4.6.4 Results
The overall results are given in Table 5. First, we
discovered that the QA model without data aug-
mentation degraded the performance on the 12
challenge sets, showing a lack of the robustness
to the natural and adversarial distribution shifts in
contexts, questions, and answers.9

With data augmentation using QAG, the in-
distribution scores were generally improved, except
for HarQG. In the Single model setting on the chal-
lenge sets, SemQG achieved the best performance
on Quo and Add. InfoHCVAE achieved the best
performance on News, NQ, Hard, AddO, MT, ASR,
and KB. VQAG achieved the best performance on
Para, APara, and Imp. These results imply that dif-
ferent QAG methods have different benefits. In the
Ensemble setting, taking the best of the three, the
scores on SQuADDu

test, News, MT, and ASR were
further improved with {+Sem,+Info,+V}.

We also attached scores that are obtained if chal-
lenge set is known in Table 5; that is, natural or
synthetic samples from the same distributions as
the challenge sets are available during training. For
News, NQ, and Quo, we trained the BERT-base
model on the corresponding training sets, which
are annotated by humans. For paraphrased ques-

9The score on Para—85.7 F1 is degraded when compared
to the score on the SQuAD dev set—87.9 F1, which is the
source for creating Para. This means the lack of robustness to
paraphrased questions.

tions (Para, APara) and NoiseQA (MT, ASR, and
KB), the scores were taken from Gan and Ng (2019)
and Ravichander et al. (2021), respectively. These
scores can be considered as the upper bounds. In
NoiseQA, the QAG methods consistently improved
the scores, even though they were not designed for
the noise. This may be because the lack of quality
in synthetic datasets, as shown in Table 4, unin-
tentionally improved the robustness to the noise.
However, the most significant performance gap (>
30 F1) between the upper bound and the no data
augmentation baseline was observed in Quo. This
result indicates that a QA model does not acquire
coreference resolution from SQuAD, even though
approximately 18% of SQuAD questions require
coreference resolution (Sugawara et al., 2018). The
QAG methods mitigated this gap to some extent,
but there is a significant room for improvement.

The improvement in NQ is generally more
prominent than that in News. This may be be-
cause both SQuAD and NQ contain paragraphs
in Wikipedia. Utilizing unlabeled documents in
domains such as news articles may improve the
generalization to other domains, such as News.

In our experiment, our model and InfoHCVAE
improved the scores despite generating QA pairs
from only the paragraphs in SQuADDu

train, unlike
SemQG and HarQG, which generated QA pairs
from paragraphs out of SQuAD in Wikipedia. Us-
ing paragraphs in and out of SQuADDu

train as the
source for QAG may be more effective.

In paraphrased questions (Gan and Ng, 2019),
implications (Ribeiro et al., 2019), and NoiseQA
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Training Source (Size) EM F1

VQAG (432k) 81.49 88.61
−D5,5 (251k) 81.04 88.39
−D5,20 (113k) 81.00 88.48
−D20,20 (68k) 81.14 88.52

Table 6: Ablation study on SQuADDu
dev.

(Ravichander et al., 2021), augment questions that
are similar to the corresponding challenge sets, that
is, generating paraphrases, implications, and ques-
tions including the noise, successfully improved
the robustness to these perturbations. While these
methods slightly degraded or maintained the in-
distribution score, we showed that QAG methods
are less likely to exhibit a trade-off between the in-
and out-of-distribution accuracies. Notably, VQAG
did not degrade the scores on all the 12 challenge
sets while improving the in-distribution score. In
contrast, SemQG degraded the scores on Hard and
MT, and InfoHCVAE degraded the score on Para.
This property of VQAG may be because it can
significantly improve the diversity by combining
different configurations of the KL control.

Moreover, the size of synthetic dataset created by
VQAG was the smallest among the QAG methods.
If the diversity is assured sufficiently, significantly
increasing the quantity may not be necessary. In
Add and AddO, we showed that the QAG meth-
ods consistently improved adversarial robustness,
which has not been studied in the QAG literature.

4.6.5 Analysis
To assess the usefulness of each dataset D in
VQAG, we conducted an ablation study. As shown
in Table 6, each datasetD has meaningful effect on
the performance. This result implies that creating
more synthetic datasets using different configura-
tions may further improve the performance.

To understand the differences in each dataset in
terms of diversity, we conducted a simple analysis
on the question type. As shown in Table 7, VQAG
with different configurations corresponds to differ-
ent distributions of question types, while more than
50% of the questions in the other datasets contain
“what”. Among the QAG methods, this point is
unique to VQAG.

5 Discussion and Conclusion

We presented a variational QAG model, incorporat-
ing two independent latent random variables. We
showed that an explicit KL control can enable our

Dataset what how who which when where why

SQuADDu
train 58.3 10.4 10.3 6.7 6.7 4.2 1.5

SQuADDu
test 56.5 12.1 11.5 8.6 6.0 3.8 0.8

HarQG 61.3 7.8 13.8 0.7 10.1 5.8 0.5
SemQG 71.1 8.1 12.8 1.3 3.6 2.7 0.2

InfoHCVAE 77.1 6.6 5.0 1.6 5.6 3.3 0.5
VQAG
D5,5 36.6 54.9 4.9 0.5 0.3 0.5 2.3
D5,20 9.5 35.5 3.6 49.2 1.2 0.9 0.0
D20,20 28.2 36.7 6.3 23.2 0.2 1.6 3.9

Table 7: Percentages (%) of each question type in each
dataset. The largest number in each line is underlined.

model to significantly improve the diversity of QA
pairs. Our synthetic datasets were shown to be
noisy in terms of the grammaticality and answer-
ability of questions, but effective in improving the
QA performance in the in-distribution test set and
the 12 challenge sets. While out synthetic datasets
are noisy, they may unintentionally improve the
robustness to the noise that can occur in real appli-
cations. However, we should pay attention to the
negative effect of using our noisy dataset. For ex-
ample, the lack of the answerability of our synthetic
questions may lead to the poor performance in
handling unanswerable questions, such as SQuAD
v2.0. Moreover, QAG methods led to improve-
ments in most of the 12 challenge sets while being
agnostic to the target distributions during training.
We need to pursue such a target-unaware method
to improve the robustness of QA models, because
it is quite difficult for developers to know the types
of questions a QA model cannot handle in advance.

In summary, our experimental results showed
that the diversity of QA datasets plays a non-
negligible role in improving its robustness, which
can be boosted with QAG. We will consider using
unlabeled documents in other domains to further
improve the robustness to other domain corpora in
our future study.
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A Derivations of the Variational Lower
Bound

The variational lower bound, Eq. 1, without the KL
control is derived as follows:
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]
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log
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+ log
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log
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+ log
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+ log
qφ(y|q, c)
qφ(y|q, c)

+ log
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]

= Ez,y [log pθ(q|y, a, c) + log pθ(a|z, c)

+ log
pθ(y|c)
qφ(y|q, c)

+ log
qφ(y|q, c)
pθ(y|q, c)

+ log
pθ(z|c)
qφ(z|a, c)

+ log
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]

= Ez,y [log pθ(q|y, a, c) + log pθ(a|z, c)]
−DKL(qφ(y|q, c)||pθ(y|c))
+DKL(qφ(y|q, c)||pθ(y|q, c))
−DKL(qφ(z|a, c)||pθ(z|c))
+DKL(qφ(z|a, c)||pθ(z|a, c))

≥ Ez,y [log pθ(q|y, a, c) + log pθ(a|z, c)]
−DKL(qφ(y|q, c)||pθ(y|c))
−DKL(qφ(z|a, c)||pθ(z|c)).

B Distribution Modeling Capacity

We originally developed a QA pair modeling task to
evaluate and compare QA pair generation models.
We compared models based on the probability they
assigned to the ground truth QA pairs. We used the
negative log likelihood (NLL) of QA pairs as the
metric, namely, − log p(q, a|c). Since variational
models can not directly compute NLL, we esti-
mate NLL with importance sampling. We also esti-
mate each term in decomposed NLL, i.e.,NLLa =
− log p(a|c) and NLLq = − log p(q|a, c). The bet-
ter a model performs in this task, the better it fits
the test set. As a baseline, to assess the effect of
incorporating latent random variables, we imple-
mented a pipeline model similar to Subramanian
et al. (2018) using a deterministic pointer network.

Result Table 8 shows the result of QA pair model-
ing. First, our models with C = 0 are superior to
the pipeline model, which means that introducing
latent random variables aid QA pair modeling ca-
pacity. However, the KL terms converge to zero
with C = 0. When we set C > 0, KL values are
greater than 0, which implies that latent variables
have non-trivial information about questions and
answers. Also, we observe that the target value
of KL C can control the KL values, showing the
potential to avoid the posterior collapse issue.

NLL NLLa NLLq DKLz DKLy

Pipeline 36.26 3.99 32.50 - -
VQAG
C = 0 34.46 4.46 30.00 0.027 0.036
C = 5 37.00 5.15 31.51 4.862 4.745
C = 20 59.66 14.38 43.56 17.821 17.038
C = 100 199.43 81.01 112.37 92.342 91.635

Table 8: QA pair modeling capacity measured on the
test set. We used the same value C for the target values
of KLCa andCq for simplicity. NLL: negative log like-
lihood of QA pairs. NLLa (NLLq): NLL of answers
(questions). DKLz and DKLy are Kullback–Leibler di-
vergence in Ineq 1. NLL for our models are estimated
with importance sampling using 300 samples.

C Information Theoretic Interpretation
of the KL control

When training our models, we miximized the vari-
ational lower bound in Ineq. 1 is averaged over
the training samples. In other words, the expecta-
tion with respect to the data distribution is maxi-
mized. In the ideal case, the approximated posterior
qφ(z|a, c) is equal to the true posterior pθ(z|a, c).
Then, the expectation of the KL terms with respect
to the data distribution is equivalent to the condi-
tional mutual information I(a, y|c).

Mathematically, when the approximated poste-
rior qφ is equal to the true posterior pθ, the expec-
tation of the KL terms in Eq. 1 with respect to the
data distribution is:

Ep(q,a,c)[DKL(p(z|a, c)||p(z|c))]

=
∑

a,c

p(a, c)
∑

z

p(z|a, c) log p(z|a, c)
p(z|c)

=
∑

a,c,z

p(a, c, z) log
p(a, z|c)

p(z|c)p(a|c)
= I(a, z|c).
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Thus, controlling the KL terms is equivalent to
control the conditional mutual information. The
same is true for question q.

D Model Architechture

Prior and Posterior Distribution Following
Zhao et al. (2017b), we hypothesized that the prior
and posterior distributions of the latent variables
follow multivariate Gaussian distributions with di-
agonal covariance. The distributions are described
as follows:

z|a, c ∼ N (µpostZ , diag(σ
2
postZ

)) (3)

z|c ∼ N (µpriorZ , diag(σ
2
priorZ

)) (4)

y|q, c ∼ N (µpostY , diag(σ
2
postY

)) (5)

y|c ∼ N (µpriorY , diag(σ
2
priorY

). (6)

The prior and posterior distributions of the latent
variables, z and y, are computed as follows:

[
µpostZ

log(σ2postZ )

]
=WpostZ

[
hC

hA

]
+ bpostZ

(7)
[

µpriorZ
log(σ2priorZ )

]
=WpriorZh

C + bpriorZ (8)
[

µpostY
log(σ2postY )

]
=WpostY

[
hC

hQ

]
+ bpostY

(9)
[

µpriorY
log(σ2priorY )

]
=WpriorY h

C + bpriorY .

(10)

Then, latent variable z (and y) is obtained using
the reparameterization trick (Kingma and Welling,
2013): z = µ + σ � ε, where � represents the
Hadamard product, and ε ∼ N (0, I). Then, z and
y is passed to the AE and QG models, respectively.

Answer Extraction Model We regard answer
extraction as two-step sequential decoding, i.e.,

p(a|c) = p(cend|cstart, c)p(cstart|c), (11)

which predicts the start and end positions of an
answer span in this order. For AE, we modify
a pointer network (Vinyals et al., 2015) to take
into account the initial hidden state hAE0 =W1z +
b1, which in the end diversify AE by learning the
mappings from z to a. The decoding process is as

follows:

hINi =

{
e(⇒) if i = 1
HC
ti−1

if i = 2
(12)

hAEi = LSTM(hAEi−1, h
IN
i ) (13)

uAEij = (vAE)T tanh(W2H
C
j +W3h

AE
i + b2)

(14)

p(cti |cti−1 , c) = softmax(ui) (15)

where 1 ≤ i ≤ 2, 1 ≤ j ≤ LC , hAEi is the hidden
state vector of the LSTM, hINi is the i-th input, ti
denotes the start (i=1) or end (i=2) positions in c,
and v, Wn and bn are learnable parameters. We
learn the embedding of the special token “⇒” as
the initial input hIN1 .

When we used the embedding vector eti as
hINi+1, instead of HC

ti , following Subramanian et al.
(2018), we observed that the extracted spans tended
to be long and unreasonable. We assume that this
is because the decoder cannot get the positional
information from the input in each step.

Question Generation Model For QG, we mod-
ify an LSTM decoder with attention and copy-
ing mechanisms to take the initial hidden state
hQG0 = W4y + b3 as input to diversify QG. In
detail, at each time step, the probability distribu-
tion of generating words from vocabulary using
attention (Bahdanau et al., 2014) is computed as:

hQGi = LSTM(hQGi−1, qt−1) (16)

uattij = (vatt)T tanh(W5h
QG
i +W6H

CA
j + b4)

(17)

aatti = softmax(uatti ) (18)

ĥi =
∑

j a
att
ij H

CA
j (19)

h̃i = tanh(W7([ĥi;h
QG
i ] + b5)) (20)

Pvocab = softmax(W8(h̃i) + b6), (21)

and the probability distributions of copying (Gul-
cehre et al., 2016; Gu et al., 2016) from context are
computed as:

ucopyij = (vcopy)T tanh(W9h
QG
i +W10H

CA
j + b7)

(22)

acopyi = softmax(ucopyi ) (23)

Accordingly, the probability of outputting qi is:

pg = σ(W11h
QG
i ) (24)

p(qi|q1:i−1, a, c) (25)

= pgPvocab(qi) + (1− pg)
∑

j:cj=qi
acopyij (26)

where σ is the sigmoid function.
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E Training Details

We use pretrained GloVe (Pennington et al., 2014)
vectors with 300 dimensions and freeze them dur-
ing training. The pretrained word embeddings were
shared by the input layer of the context encoder,
the input and output layers of the question decoder.
The vocabulary has most frequent 45k words in our
training set. The dimension of character-level em-
bedding vectors is 32. The number of windows is
100. The dimension of hidden vectors is 300. The
dimension of latent variables is 200. Any LSTMs
used in this paper has one layer. We used Adam
(Kingma and Ba, 2014) for optimization with ini-
tial learning rate 0.001. All the parameters were
initialized with Xavier Initialization (Glorot and
Bengio, 2010). Models were trained for 16 epochs
with a batch size of 32. We used a dropout (Sri-
vastava et al., 2014) rate of 0.2 for all the LSTM
layers and attention modules.

F Answer Extraction and Question
Generation

Tables 9 and 10 show the detailed results of AE and
QG. Various values of Ca and Cq are explored.

Relevance Diversity

Precision Recall Dist
Prop. Exact Prop. Exact

NER 34.44 19.61 64.60 45.39 30.0k
BiLSTM-CRF 45.96 33.90 41.05 28.37 -
InfoHCVAE 31.59 16.18 78.75 59.32 70.1k

VQAG
Ca = 0 58.39 47.15 21.82 16.38 3.1k
Ca = 3 34.09 19.22 78.94 59.09 47.5k
Ca = 5 30.16 13.41 83.13 60.88 71.2k
Ca = 10 26.17 8.83 79.70 53.02 92.3k
Ca = 15 22.42 6.11 76.18 44.80 99.9k
Ca = 20 21.95 5.75 72.26 42.15 103.3k
Ca = 25 21.60 5.37 71.55 40.48 101.6k
Ca = 30 23.88 6.75 74.08 44.59 99.5k
Ca = 40 24.58 7.90 74.86 43.33 88.1k
Ca = 50 25.05 7.83 76.56 44.67 88.9k
Ca = 100 23.32 7.48 71.74 39.70 84.6k

Table 9: Detailed results of AE on the test set.

G Latent Interpolation

Table 11 shows the latent interpolation between
two ground-truth QA pairs using VQAG with
(Ca, Cq) = (5, 20). This result shows that z con-
trols answer and y controls question.

H Human Evaluation

We conducted human evaluation to assess the qual-
ity of QA pairs by asking the following questions.

1. Is the question well-formed in itself? The
workers are asked to select yes if a given ques-
tion is both grammatical and meaningful. The
workers select understandable if a question is
not grammatical but meaningful.

2. Is the question relevant to the passage?
This is to check whether a question is rele-
vant to the content of a passage.

3. Is the answer a correct answer to the ques-
tion? If a given answer partially overlaps with
the true answer in a passage, the workers se-
lect partially.

4. Is the meaning of the answer in itself re-
lated to the main topic of the passage? This
is to check the importance of an answer. We
designed this question to assess the question-
worthiness of an answer.

Each triple is evaluated by three crowdworkers.
Each task costs 0.08 USD.
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Relevance Diversity

B1 B2 B3 B4 ME RL Token D1 D2 E4 SB4

Zhang and Bansal (2019) 48.59 32.83 24.21 18.40 24.86 46.66 133.8k 10.2k 46.4k 15.78 -

B1-R B2-R B3-R B4-R ME-R RL-R Token D1 D2 E4 SB4

Zhang and Bansal (2019) 62.32 47.77 37.96 30.05 36.77 62.87 7.0M 15.8k 218.9k 18.28 91.44

VQAG
Cq = 0 35.57 18.75 10.79 6.35 18.31 33.92 7.6M 14.4k 155.3k 17.33 97.61
Cq = 3 44.05 26.74 16.08 9.26 24.61 44.10 9.0M 17.8k 394.2k 19.14 85.88
Cq = 5 44.19 27.09 16.33 9.71 25.84 45.18 11.5M 19.0k 481.1k 19.71 82.59
Cq = 10 44.00 27.15 16.78 10.24 25.64 44.78 10.2M 18.8k 461.5k 19.69 80.39
Cq = 15 45.23 27.91 16.67 10.11 26.12 45.41 11.3M 19.5k 381.5k 19.40 84.56
Cq = 20 48.19 32.87 22.96 14.94 25.29 48.26 4.9M 22.4k 549.2k 19.72 44.41
Cq = 25 47.20 31.16 21.15 13.66 25.30 45.97 6.8M 22.3k 706.9k 20.34 47.00
Cq = 30 47.96 31.69 21.26 13.83 24.95 47.07 7.3M 22.9k 732.8k 18.54 50.32
Cq = 40 46.31 31.29 21.52 13.94 23.73 46.46 5.4M 21.0k 487.8k 19.39 55.95
Cq = 50 43.92 25.95 15.54 9.61 23.61 43.18 10.8M 22.2k 527.2k 19.29 73.78
Cq = 100 35.22 19.88 13.25 9.20 22.27 37.55 8.2M 22.1k 508.8k 19.74 44.22

Table 10: Detailed results of answer-aware QG on the test set. Paragraph-level contexts and answer spans are
used as input. The baseline model is ELMo+QPP&QAP (Zhang and Bansal, 2019) with diverse beam search (Li
et al., 2016b) with a beam size 50. Bn: BLEU-n, ME: METEOR, RL: ROUGE-L, Token: the total number of the
generated words, Dn: Dist-n, E4: Ent-4 (entropy of 4-grams), SB4: Self-BLEU-4. “-R” represents recall. (e.g.
B1-R is the recall of B1.) One question per answer-context pair is evaluated in the upper part, while 50 questions
per answer-context pair are evaluated in the lower part to assess their diversity.

z1 z2 z3 z4 z5
y1 in what city and

state did bey-
once grow up
?—houston , texas

how do competitions
performed a child
child ?—dancing

the american singer
born what american
singer ?—songwriter

how did beyoncé
dobruja to ?—
dangerously in
love

how did beyoncé
album album ?—
dangerously in
love

y2 the album born and
raised ?—houston ,
texas

how do competitions
enovid ?—dancing

how is actress -
carter ?—songwriter

how did beyoncé
’s album album ?—
dangerously in love

how did beyoncé
album album ?—
dangerously in
love

y3 the album born and
raised ?—houston ,
texas

how do competitions
performed a child
child ?—dancing

the american singer
born what american
singer ?—songwriter

how did beyoncé
dobruja to ?—
dangerously in
love

how did beyoncé
dobruja to ?—
dangerously in
love

y4 the album born and
raised ?—houston ,
texas

how many compe-
titions does texas
child perform ?—
dancing

the american singer
born what american
singer ?—songwriter

how did beyoncé
dobruja to ?—
dangerously in
love

how did beyoncé
dobruja to ?—
dangerously in
love

y5 the album born and
raised ?—houston ,
texas

how many competi-
tions did texas child
perform ?—dancing

the american singer
born what american
singer ?—songwriter

how did beyoncé
dobruja to ?—
dangerously in
love

what was the
name of beyoncé
’s first solo album
?—dangerously in
love

Table 11: Latent interpolation with VQAG with (Ca, Cq) = (5, 20). The samples in the upper left and lower right
are the ground truth QA pairs from the same paragraph of SQuAD. The linearly interpolated samples show how
our generative model learns mapping from latent space to QA pairs.
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Abstract

The quality of the annotated data directly influ-
ences in the success of supervised NLP mod-
els. However, creating annotated datasets is of-
ten time-consuming and expensive. Although
the annotation tool takes an important role, we
know little about how it influences annotation
quality. We compare the quality of annotations
for the task of chat-untangling made by non-
experts annotators using two different tools.
The first is SLATE, an existing command-line
based tool, and the second is Parlay, a new tool
we developed that integrates mouse interaction
and visual links. Our experimental results in-
dicate that, while both tools perform similarly
in terms of annotation quality, Parlay offers a
significantly better user experience.

1 Introduction

Human linguistic annotation is essential for many
natural language processing tasks. However, the
construction of these datasets is extremely expen-
sive, both in terms of annotator hours and financial
cost (Snow et al., 2008). We know that the perfor-
mance of many natural language processing tasks
is limited by the quantity and quality of the data
available to them (Banko and Brill, 2001; Snow
et al., 2008). Many of the studies focus on the num-
ber of annotators and their experience in improving
annotation quality. However, little has been studied
about the role annotation tools play in producing
quality data.

We study the effect of annotation tools in chat-
untangling task. Chat-tangling occurs when simul-
taneous conversations arise in chat with multiple
participants (Elsner and Charniak, 2008). The goal
of chat-untangling is to identify the conversations
in a chat-thread. In order to perform this task, an-
notators must maintain a complex mental repre-
sentation of the ongoing conversations. Hence, a
tool should minimize the task load and facilitate

the annotation process. To the best of our knowl-
edge, there is only one public dataset sufficiently
large for training modern NLP architectures for this
task published by Kummerfeld et al. (2019). This
dataset was annotated using SLATE (Kummerfeld,
2019), a terminal based annotation tool. In SLATE,
interactions are marked by keyboard commands,
messages are shown as raw-text, and annotations
are presented by color coding. We argue that these
characteristics may influence in quality of annota-
tions for non-experts.

This paper presents Parlay, a new annotation tool
for the chat-untangling task. The main difference
between Parlay and SLATE is that it integrates
mouse interaction and visual links into the annota-
tion representation. We conducted a controlled ex-
periment with 12 non-expert participants, in which
each participant was first introduced to the annota-
tion task and then asked to use each tool to annotate
100 messages. The data to be annotated are selected
from gold standard adjudicated dataset presented
by Kummerfeld et al. (2019). Next, each annota-
tion tool is evaluated in terms of usability (SUS),
task load (NASA/TLX), performance and annota-
tion time. We define annotator performance by
the quality of its annotations calculated by compar-
ing them to the gold standard (expert) annotations
(Kummerfeld et al., 2019) using Cohen’s Kappa
coefficient (Cohen, 1960).

2 Background

Chat-untangling. Chat-untangling is an NLP task
that aims to find existing conversations within a
chat-log with two or more participants (Adams
and Martell, 2008; Holmer, 2008; Kummerfeld,
2019; Shen et al., 2006; Elsner and Charniak, 2010,
2008). Conversations are represented by a con-
nected graph in which the vertices are messages
and the edges are relationships between them (e.g.,
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an answer to a question) (Adams and Martell,
2008; Wang et al., 2008; Kummerfeld et al., 2019;
Holmer, 2008).

Annotation process. Manual text annotation is
the process of assigning some tags to the whole text
or to fragments of it. A corpus is a collection of
texts on a particular topic. Annotators tag parts of
the text in the corpus with labels that represent the
structure or semantics of interest. The annotated
data then goes through a curation process in which
a curator manually resolves discrepancies and in-
consistencies. Curation is primarily performed to
ensure data quality (Grosman et al., 2020). One
important step in curation is adjudication (Ide and
Pustejovsky, 2017). In this step the curator merges
the annotations from different annotators though
agreement and resolves discrepancies to produce a
gold standard annotation. The annotation process
concludes with the release of the curated corpus to
the community.

Annotation quality. To a large extent, the final
quality of the annotation process depends on how
human error is reduced and how discrepancies are
consolidated without biasing the annotator’s judg-
ment (Chau et al., 2020). It is demonstrated that
the annotation quality is related to the annotator
expertise (Snow et al., 2008; Burnap et al., 2015),
number of annotators (Snow et al., 2008) and the
process of learning the annotation task (Teruel et al.,
2018). On the other hand, annotation tools are used
to assist the annotation process (e.g., file loading,
user annotation interaction, data curation) (Yimam
et al., 2013; Grosman et al., 2020; Kummerfeld,
2019; Yordanova et al., 2018).

Although there is evidence that user-friendly an-
notation tools can benefit the annotation process
and reduce the annotation time (Yimam et al., 2013;
Kummerfeld, 2019; Grosman et al., 2020), little is
know how can they can influence to the annota-
tor’s performance. To the best of our knowledge,
Grosman et al. (2020) is the only study that report
changes in the inter-agreement evaluating different
tools for annotation. However, there is no further
understanding how this occurs at annotation time.

3 Methodology

In this section we introduce Parlay, a new chat-
untangling annotation tool, and SLATE as baseline.
Finally, we provide the evaluation methodology,
criteria and our hypotheses during this study.

Figure 1: Parlay. Linked messages are represented by
blue arcs between messages. The gray and green mes-
sages represent the pair of messages to be connected.
Annotated messages are colored in yellow.

Figure 2: SLATE. The underlined and green messages
represent the pair of messages to be linked. Messages
already annotated are colored in yellow.

3.1 Annotation tools

Parlay is desktop tool developed in Pharo1 and GT2

whose purpose is to annotate and analyze annota-
tions of chat-untangling task (Figure 1). Annota-
tions can be made by linking messages with the
mouse or key-commands (Table 1).

In contrast, SLATE is a terminal-based text an-
notation tool for different NLP tasks proposed in
Kummerfeld (2019). It has the characteristics to
link words, sentences and lines of text. SLATE
requires each line, in the file to be annotated, to be
a chat-message for chat-untangling annotation. All
SLATE interactions are made by key-commands.
The visual representation of messages is simple
plain text with no distinctive format for its compo-
nents (Figure 2). The full list of functional steps to
annotate in SLATE is given in Table 1.

Parlay and SLATE differ on two essential as-
pects. The first is the linking visualization, for
which Parlay creates a visual-arc in blue color, and

1Pharo is a pure object-oriented programming language
and offers a flexible programming environment (Bergel et al.,
2013).

2GT, which stands for Glamorous Toolkit, is a “moldable
programming environment”, https://gtoolkit.com.
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Tool SLATE Parlay

Select
message

Move messages by
pressing arrow key
one line at the time
to select a message.

Scroll down or up, then
left-click on a message’s
green button at the left part
of each message to select it.

Create
annotation

Move to select both
messages then press
key “D” to link them.

Select the first message,
then scroll down/up and
left-click in a message’s
username to link it to the
first one.

Remove
annotation

Select a message, then
press key “U”.
It eliminates all links
from the selected
messages.

i) Select a message, then
press key “R”. It eliminates
all links from the selected
message.
ii) Select the first message,
then scroll down/up and
left-click on the gray button
at the left of the message.
It eliminates only the link
between those messages.

Validate
annotation

Select a message that
has already been
annotated. This action
will change the color
of messages that are
linked to the selected
message.

i) Select a message that has
already been annotated.
ii) Hover over the left green
button of a message.
Both options will highlight
the color of links and
messages that are linked to
the selected message.

Table 1: Functional differences between Parlay and
SLATE.

First session Second session
Nro File Tool File Tool

Setting A 6 2015-08-10 SLATE 2015-10-19 Parlay
Setting B 6 2015-08-10 Parlay 2015-10-19 SLATE

Table 2: Experiment settings.

SLATE shows a change in the color of messages.
Second, Parlay allows one to use the mouse to
define annotations, whereas in SLATE the annota-
tions are made by keyboard commands. At first,
these two differences may look superficial. How-
ever, it is reasonable to think that they may signifi-
cantly impact the user experience.

3.2 Evaluation Design

This study aims to assess the usability, task load,
performance and annotation time of the SLATE
and Parlay annotation tools. In order to create fair
conditions for evaluating both tools, we conducted
a controlled experiment.

Participants. We gathered 12 participants among
university graduates (4), master students (4), master
graduate (1), doctoral students (1), postdoctoral (2).
None of the participants had a background in text
annotation. All of them were experienced in the
use of Linux, and none of them were native English
speakers, although all of them declared to have a
proficient level of English.

Data. We selected two files from Kummerfeld
et al. (2019) adjudicated dataset that was developed
to calculate inter-agreement. The adjudicated file
is considered as the gold standard annotation to
which we compare our non-expert participants’ an-
notations. Then, we selected a pair of files with
high similarity by two criteria: a) the agreement
between annotators against the adjudicated file, and
b) the number of annotated conversations.

Design. The controlled experiment was divided
in three sessions, one introductory and two evalua-
tion sessions. In the introductory session each par-
ticipant had to i) answer a demographic question-
naire, ii) read an introductory document to the chat-
untangling task, iii) read the annotation guidelines
developed by Kummerfeld et al. (2019), and iv)
answer a chat-untangling annotation exercise. The
exercise consists of annotating three 5-messages
long conversations without the help of Parlay or
SLATE. The moderator then discuses the partic-
ipants’ annotations. The annotation exercise en-
sures the participants’ maximum understanding of
the chat-untangling task.

In the consequent evaluation sessions the partici-
pants had to i) annotate a file using one of the two
tools, and ii) answer questionnaires. The tool for
each session is randomly selected, whereas the an-
notated file is always the same for each evaluation
session. We name each file-tool combination as
an experiment setting. Such that we get two exper-
iment settings, A and B. Where each experiment
setting considers 6 participants and the participants
use both tools in turn for the annotation task. For
instance, a participant in setting A uses SLATE in
the first evaluation session and Parlay in the second.
In Table 2 we present the two experiment settings
in detail.

Validation Criteria. Parlay and SLATE are evalu-
ated in terms of usability, task load, annotation time
and performance. The usability is measured by the
System Usability Scale (SUS) (Brooke, 1996). The
task load is measured using NASA/TLX (Hart and
Staveland, 1988). The annotation time is deter-
mined from the annotation-logs. Lastly, the per-
formance or quality of the annotation is measured
by calculating the Cohen’s Kappa (Cohen, 1960)
for agreement between each participant’s annota-
tions and the expert adjudicated annotations (gold
standard) presented in Kummerfeld et al. (2019)
work. We say that the higher the Kappa score (κ)
the better the performance.
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Parlay SLATE
Mean SD Mean SD

Mental 5.833 1.992 6.167 2.167
Physical 3.417 2.151 4 2.216
Temporal 4.417 2.429 4.25 2.34
Performance 5.5 2.908 5.167 1.946
Effort 5.25 1.815 6 2.174
Frustration 3.667 1.969 5.583 0.832

Table 3: Comparison of average and standard deviation
of NASA/TLX scores between Parlay and SLATE.

Hypotheses. To analyze this study results, we
performed some statistical tests to verify the fol-
lowing alternative hypotheses:

• H1: The participants’ performance is affected
by the annotation tool.

• H2: The participants’ performance is affected
by the experience gained in the annotation
sessions.

We evaluated the significance of the performance
kappa using the statistical t-test (De Winter, 2013)
for small sample size (De Winter, 2013). We reject
the null hypotheses if p-value < 0.05.

4 Results

In this section we present the results of our method-
ology of evaluation for i) the task load, ii) usability,
iii) performance and iv) annotation time.

Task load. Table 3 shows the averaged results
of participants’ answers for the NASA/TLX di-
mensions. On average mental demand, physical
demand, effort and frustration are lower in Parlay,
whereas SLATE shows less temporal demand, al-
though the difference is slight. Lastly, the users re-
port that they performed better using Parlay. Over-
all Parlay reports less task load with the exception
of being slightly more temporal demanding.

Usability Table 4 shows the mean and standard
deviation values of SUS scores with the two an-
notation tools. If we pay attention to questions re-
garding positive (i.e., Q1, Q3, Q5, Q7 and Q9) and
negative (i.e., Q2, Q4, Q6, Q8 and Q10) aspects of
usability we find that: i) SLATE has similar aver-
age scores in positive and negative; and ii) Parlay
rates higher to questions regarding the positive and
lower in negative aspects of usability. A closer look
at the ten component SUS scores we can see that
Parlay is perceived more usable by the participants.
This suggests that Parlay achieved better usability
compared to SLATE.

Parlay SLATE
Mean SD Mean SD

Q1: Willing to use the system 5.083 2.644 3 1.859
Q2: Complexity of the system 3.583 2.429 5.167 2.329
Q3: Ease of use 7.333 2.348 6.167 2.25
Q4: Need of support to use 3.833 2.443 5.25 2.491
Q5: Integrity of Functions 7.5 0.431 5.833 2.823
Q6: Inconsistency 3.25 2.454 3.75 1.658
Q7: Intuitiveness 7.333 2.309 5.333 2.498
Q8: Cumbersomeness to use 3.583 2.575 5.417 2.353
Q9: Feeling confident to use 7.667 1.67 5.667 2.348
Q10: Required learning-effort 4.083 2.353 4.667 2.309
Positive (odd) 6.983 2.425 5.2 2.563
Negative (even) 3.667 2.384 4.85 2.254

Table 4: Comparison of average and standard deviation
of SUS scores between Parlay and SLATE.

Sample
Size

Time (min) Performance
Mean SD Mean SD

Tool Parlay 12 48.5 21.211 0.666 0.079
SLATE 12 41.083 16.714 0.606 0.12

Session 1st 12 50.167 15.643 0.582 0.096
2nd 12 39.417 21.249 0.69 0.084

Table 5: Performance (κ) and annotation time (min) re-
sults by session of annotation and annotation tool.

Annotation time. SLATE reported less an-
notation time in minutes in our participants
(Mean=41.083, SD=16.714) compared to Parlay
(Mean=48.5, SD=21.211). Lastly the second evalu-
ation session reported less annotation time in our
participants (Mean=39.417, SD=21.249) compared
to Parlay (Mean=50.167, SD=15.643).

Performance. We assess our hypotheses by cal-
culating the performance (κ) by two criteria: i)
the tools used in the annotation task (H1) and ii)
the session in which the participants annotate (H2).
For H1 there was a non-significant difference in the
scores for Parlay and SLATE with p-value=0.1583.
For H2 there was a significant difference in the
scores for the first evaluation session and second
evaluation session with p-value=0.007636. There-
fore, the quality of annotations increases as anno-
tators gain experience. Finally, the annotation tool
used does not influence the quality of annotations.

5 Conclusion

In this paper we evaluate the influence of the an-
notation tool for non-expert users in terms of data
quality and user experience in the chat-untangling
task. To achieve our purpose we introduce a new
annotation tool named Parlay and establish SLATE
as our baseline. Subsequently, we conducted a con-
trolled experiment with 12 non-expert annotators
in which each participant annotated 100 messages
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on each tool in turn. Each tool was evaluated under
i) usability, ii) task load, iii) annotation time and
iv) annotation performance. Lastly, we establish
that the quality of annotations is measured by cal-
culating the agreement (κ) between participants’
annotations and the gold annotated data (Kummer-
feld et al., 2019).

The results indicate that the tools did not show
significant differences in the annotators’ perfor-
mance outcome on the chat-untangling task. On
the other hand, participants showed better perfor-
mance in the second session, presumably due to
a gain in experience. The annotation time is also
lower in SLATE. Complementary to these results,
we also report that Parlay scored better in usability
and task load. Where participants highlighted that
i) link representation between annotated messages
and ii) mouse interaction where the main character-
istics that made Parlay. In conclusion, Parlay offers
a better user experience while achieving compara-
ble annotation performance.

The study of annotation quality is an important
issue for future development of NLP models. Tools
remain as an important factor in the development of
high-quality training datasets for NLP tasks (Gros-
man et al., 2020). Despite the results presented in
this study, further work is required to get a thorough
understanding of how the annotation tool affects
the quality of chat-untangling data.

This study contributes to the area by introducing
Parlay, a new tool for the chat-untangling task. We
believe that an important contribution of our work
is the methodology we propose, which allows us
to compare annotation tools according to both data
quality and user experience. For future work we
aim to study the inter-annotator agreement of each
tool. As well as, the discrepancies between expert
an non-expert annotations.
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Abstract

In this study, we investigate the role of the mul-
tiple layers in deep transformer models. We
design a variant of ALBERT that dynamically
adapts the number of layers for each token
of the input. The key specificity of ALBERT
is that weights are tied across layers. There-
fore, the stack of encoder layers iteratively re-
peats the application of the same transforma-
tion function on the input. We interpret the
repetition of this application as an iterative
process where the token contextualized repre-
sentations are progressively refined. We ana-
lyze this process at the token level during pre-
training, fine-tuning, and inference. We show
that tokens do not require the same amount of
iterations and that difficult or crucial tokens for
the task are subject to more iterations.

1 Introduction

Transformers are admittedly over-parametrized
(Chen et al., 2020; Hou et al., 2020; Voita et al.,
2019). Yet the role of this over-parametrization
is not well understood. In particular, transformers
consist of a fixed number of stacked layers, which
are suspected to be highly redundant (Liu et al.,
2020) and to cause over-fitting (Fan et al., 2020;
Zhou et al., 2020). In this paper we provide a study
on the role of the multiple layers traditionally used.

The mechanism of transformer layers is often
compared to intuitive NLP pipelines (Tenney et al.,
2019). Starting with the lower layers encoding
surface information, middle layers encoding syn-
tax and higher layers encoding semantics (Jawahar
et al., 2019; Peters et al., 2018). Transformers pro-
gressively refine the features, which become more
fine-grained at each iteration (Xin et al., 2020).
However, ALBERT (Lan et al., 2020) highlights
that it is possible to tie weights across layers and
repeat the application of the same function. Con-
sequently, we hypothesize that it is the number

of layer applications that gradually abstracts the
surface information into semantic knowledge.

To better study the transformation of token rep-
resentations across layers, we propose a variant of
ALBERT. Our model implements the key speci-
ficity of weights tying across layers but also dy-
namically adapts the number of layers applied to
each token. Since all layers share the same weight,
we refer to the application of the layer to the hidden
states as an iteration.

After reviewing the related work (Section 2), we
detail the model and the training methodology in
Section 3. In particular, we encourage our model
to be parsimonious and limit the total number of it-
erations performed on each token. In Section 4, we
analyze iterations of the model during pre-training,
fine-tuning and inference.

2 Related Work

Adapting the transformer depth is an active subject
of research. In particular, deep transformer mod-
els are suspected to struggle to adapt to different
levels of difficulty. While large models correctly
predict difficult examples, they over-calculate sim-
pler inputs (Liu et al., 2020). This issue can be ad-
dressed using early-stopping: some samples might
be sufficiently simple to classify using intermediate
features. Some models couple a classifier to each
layer (Zhou et al., 2020; Liu et al., 2020; Xin et al.,
2020). After each layer, given the classifier output,
the model either immediately returns the output or
passes the sample to the next layer. Exiting too late
may even have negative impacts due to the network
”over-thinking” the input (Kaya et al., 2019).

Ongoing research also refines the application of
layers at the token level. Wang and Kuo (2020)
build sentence embeddings by combining token
representations from distinct layers. Elbayad et al.
(2020) and Dehghani et al. (2019) successfully use
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dynamic layers depth at the token level for full
transformers (encoder-decoder). However, to the
best of our knowledge, our attempt is the first to ap-
ply such mechanism to encoder only transformers
and to provide an analysis of the process.

3 Method

In this Section, we detail the model architecture,
illustrated in Figure 1, and pre-training procedure.

3.1 Model architecture

We use a multi-layer transformer encoder (Devlin
et al., 2019) which transforms a context vector of
tokens (u1 · · ·uT ) through a stack of L transformer
encoder layers (Eq. 1, 2). We use weight tying
across layers and apply the same transformation
function at each iteration (Lan et al., 2020).

h0t =Weut +Wp (1)

hnt = layer(hn−1
t ) ∀n ∈ [1, L] (2)

For the first layer, We is the token embedding
matrix, and Wp the position embedding matrix.

We augment the model with a halting mecha-
nism, which allows dynamically adjusting the num-
ber of layers for each token (Eq. 3 to 8). We di-
rectly adapted this mechanism from Graves (2016).
The main distinction with the original version is the
use of a transformer model instead of a recurrent
state transition model. The mechanism works as
follow: at each iteration n, we add the following
operations after Eq. 2. We assign a probability to
stop pnt for each token at index t (Eq. 3). Given
this probability, we compute an update weight λnt
(Eq. 4), which we use to compute the final state as
the linear convex combination between the previ-
ous and current hidden state (Eq. 5).

pnt = σ (Whh
n
t + bn) (3)

λnt = pnt if n < Nt, Rt elif n = Nt, else 0 (4)

hnt = λnt h
n
t + (1− λnt )hn−1

t (5)

With σ the sigmoid function. We define the
remainder Rt and the number of iterations for the
token at index t, Nt with:

Rt = 1−
Nt−1∑

l=1

plt. Nt = min
n′

n′∑

n=1

pnt ≥ 1−ε (6)

As soon as the sum of the probability becomes
greater than 1, the update weights λnt are set to 0
and the token is not updated anymore (Eq. 4). A
small ε factor ensures that the network can stop
after the first iteration (Eq. 6).

Figure 1: As in ALBERT model, tokens are transformed
through the iterative application of a transformer en-
coder layer. Our model key specificity is the applica-
tion of the halting mechanism, which dynamically ad-
justs the number of iterations for each token.

3.2 Pre-training objective
During the pre-training phase, we train the model
with the sentence order prediction (sop) — the
task introduced in Lan et al. (2020) that classi-
fies whether segments from the input sequence fol-
low the original order or were swapped — and the
masked language model task (mlm) (Devlin et al.,
2019). We also encourage the network to minimize
the number of iterations by directly adding the pon-
der cost into ALBERT pre-training objective. Given
a length T input sequence u, Graves (2016) defines
the ponder cost P(u) as:

P(u) =
T∑

t=1

Nt +Rt (7)

We define the final pre-training loss as the fol-
lowing sum:

L̂ = Lsop + Lmlm + τP (8)

where τ is a time penalty parameter that weights
the relative cost of computation versus error.

3.3 Datum and infrastructure
We follow the protocol from ALBERT and pre-train
the model with BOOKCORPUS (Zhu et al., 2015)
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and English Wikipedia. We reduce the maximum
input length to 128 and the number of training steps
to 112,5001. We use a lowercase vocabulary of size
30,000 tokenized using SentencePiece. We train
all our models on a single TPU v2-8 from Google
Colab Pro2 and accumulate gradients to preserve a
4,096 batch size. We optimize the parameters using
LAMB with a learning rate at 1.76e-3.

4 Experiments

We now analyze our iterative model properties dur-
ing pre-training (Section 4.1) and fine-tuning (Sec-
tion 4.2). We start by describing the setup for each
of the subtasks.

mlm task We generate masked inputs follow-
ing ALBERT n-gram masking. We mask 20% of
all WordPiece tokens but do not always replace
masked words with the [MASK] token to avoid dis-
crepancy between pre-training and fine-tuning. We
effectively replace 80% of the masked position with
[MASK] ([MASK/MASK]), 10% with a random
token ([MASK/random]), and keep the original
token for the last 10% ([MASK/original]).

sop task We format our inputs as “[CLS] x1
[SEP] x2 [SEP]”. In 50% of the case the two
segments x1 and x2 are effectively consecutive
in the text. In the other 50%, the segments are
swapped.

Ponder cost We fix the time penalty factor τ em-
pirically such that the ponder penalty represents
around 10% of the total loss. To estimate the pon-
der cost, we discard the remainder, as R� N for
sufficient values ofN . Given Eq. 7, the ponder cost
then corresponds to the total number of iterations
in the sentence, which is given by l×T , with T the
number of tokens in the sequence and l the average
iterations per token. We observe that ALBERT base
loss converges to around 3.5. We calibrate τ such
that τP ≈ 0.35 ≈ τ × l × T . We train distinct
models, listed in Table 1, that we calibrate such
that their average number of iterations per token
l is respectively 3, 6, and 12. We refer to these
models as respectively tiny, small and base.

1As emphasized in https://github.com/
google-research/bert, longer sequences are compu-
tationally expensive. To lighten the pre-training process, they
advise using 128 sentence length and increase the length to
512 only for the last 10% of the training to train the positional
embeddings. In this work, we only perform the first 90%
steps as we are not looking for brute force performances.

2https://colab.research.google.com/

4.1 Analysis of the pre-training

Analysis of the iterations We pre-train models
with various configurations and observe the model
mechanisms during the pre-training in Table 1.

Models tiny small base

τ 1e-3 5e-4 2.5e-4
Max iterations 6 12 24
mlm (Acc.) 55.4 57.1 57.4
sop (Acc.) 80.9 83.9 84.3

All tokens 3.8 7.1 10.0
All unmasked tokens 3.5 6.5 9.2
[MASK/MASK] 5.8 10.9 16.0
[MASK/random] 5.8 10.9 16.0
[MASK/original] 4.0 7.4 10.5
[CLS] 6.0 12.0 22.5
[SEP] 2.5 7.6 8.4

Table 1: Average number of iterations given token
types during the pre-training. For each model, we re-
port a mean number of iterations on our development
set, at the end of the pre-training.

We observe that the [CLS] token receives far
more iterations than other tokens. This observa-
tion is in line with Clark et al. (2019) who analyze
BERT attention and report systematic and broad
attention to special tokens. We interpret that the
[CLS] token is used as input for the sop task and
aggregates a representation for the entire input. On
the contrary, [SEP] token benefits from usually
few iterations. Again, this backs the observation
emerging from the analysis of attention that inter-
prets [SEP] as a no-op operation for attention
heads (Clark et al., 2019).

We also observe an interesting behavior from
the [MASK] which also benefits from more
iterations than average tokens. As for the
[CLS] token, we interpret that these tokens
are crucial for the mlm task. Looking fur-
ther, we observe that [MASK/random] and
[MASK/MASK] number of iterations is greater
than [MASK/original]. In this case, al-
though all tokens are targeted in the mlm task,
[MASK/random] and [MASK/MASK] are obvi-
ously more difficult to identify3.

The model seems to have an intuitive mechanism
3During inference, the model cannot make the distinction

between [MASK/original] and unmasked tokens. How-
ever, we observe in Table 1 that the two token types have a
distinct mean number of iterations. We believe this is due to
the distribution of the [MASK] tokens. Indeed, we follow the
procedure from ALBERT and use n-gram masking. Therefore,
[MASK/original] tokens tend to appear in the context
of [MASK] tokens. This specific context increases the mean
number of iterations.
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and distributes iterations for tokens that are either
crucial for the pre-training task or present a certain
level of difficulty. This also appears in line with
early-exit mechanisms cited in Section 2, that adapt
the number of layers, for the whole example, to
better scale to each sample level of difficulty.

Natural Fixed point We now analyze how the
token’s hidden states evolve during our model it-
erative transformations. At each iteration n, the
self-attentive mechanism (Vaswani et al., 2017)
computes the updated state n + 1 as a weighted
sum of the current states. This introduces a cyclic
dependency as every token depends on each other
during the iterative process. As convergence within
a loopy structure is not guaranteed, we encourage
the model to converge towards a fixed point (Bai
et al., 2019).

Figure 2: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive iter-
ations. We use our base model and measure iterations
on our development set, at the end of the pre-training.

We obtain this property ”for free” thanks to our
architecture specificity. Indeed at each iteration, the
hidden state is computed as a convex combination
of the previous n and current n + 1 hidden state.
The combination is controlled by λnt (Eq. 5). If λnt
is closed to 0, then hnt ≈ hn+1

t and by definition
(Eq. 4, 6) λnt will eventually be set to 0 at a certain
iteration.

Figure 2 represents the evolution of the mean co-
sine similarity between two hidden states from two
consecutive iterations hnt and hn+1

t . The network
indeed reaches a fixed point for every token. The
[SEP] and tokens that are not masked converge
quicker than [MASK] tokens. Finally, the [CLS]
token oscillates during intermediate layers before

reaching an equilibrium4.

4.2 Application to downstream tasks

During the pre-training phase, the model focuses
on tokens either crucial for the pre-training task
or presents a certain level of difficulty. Now we
study our model behavior during the fine-tuning on
downstream syntactic or semantic tasks.

Control test To verify that our setup has reason-
able performance, we evaluate it on the GLUE
benchmark (Wang et al., 2019). Results from Ta-
ble 2 are scored by the evaluation server5. As in De-
vlin et al. (2019), we discard results for the WNLI
task6. For each task, we fine-tune the model on the
train set and select the hyperparameters on the dev
set using a grid search. We tune the learning rate
between 5e-5, 3e-5, and 2e-5; batch size between
16 and 32 and epochs between 2, 3, or 4. To better
compare our setup, we pre-train BERT and ALBERT

model using our configuration, infrastructure and
datum.

Avg. Glue score

BERT-base 76.9
ALBERT-base 75.6

ALBERT-base + Adapt. Depth 75.2
ALBERT-small + Adapt. Depth 74.2
ALBERT-tiny + Adapt. Depth 72.6

Table 2: GLUE Test results, scored by the evaluation
server but without the WNLI task. To facilitate the
comparison, we reproduce BERT and ALBERT, with
our pre-training dataset, infrastructure and configura-
tion detailed in Section 3.2.

We present results on the test set in Table 2. As
expected, the average score decreases with the num-
ber of iterations. Indeed, we limit the number of
computation operations performed by our model.
Moreover, we build our model on top of ALBERT,
which share parameters across layers, thus reduc-
ing the number of parameters compared with the
original BERT architecture. However, despite these
additional constraints, results stay in a reasonable
range. In particular, ALBERT-base with adaptative
depth is very close to the version with a fixed depth.

4We present the Figures for other model configurations in
Appendix A

5https://gluebenchmark.com/
leaderboard

6See (12) from https://gluebenchmark.com/
faq.
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Probing tasks Conneau and Kiela (2018) intro-
duce probing tasks, which assess whether a model
encodes elementary linguistic properties. We con-
sider semantic and syntactic tasks that do not in-
troduce random replacements. In particular, a task
that predicts the sequence of top constituents im-
mediately below the sentence node (TopConst), a
task that predicts the tense of the main-clause verb
(Tense), and two tasks that predict the subject (resp.
direct object) number in the main clause (SubjNum,
resp. ObjNum).

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 5.0 4.8 5.2 6.7
prep (101k) 4.6 4.6 5.4 6.2
pobj (98k) 4.5 4.6 5.4 5.8
det (86k) 4.5 4.6 5.1 6.1
nn (81k) 5.1 5.4 5.8 6.7
nsubj (80k) 5.3 6.1 5.9 7.5
amod (66k) 4.6 4.9 5.5 6.1
dobj (49k) 4.8 5.0 5.9 6.1
root (44k) 5.9 6.1 6.2 7.9
advmod (37k) 4.8 4.8 5.3 6.8

avg. 5.4 5.4 5.8 7.2
test Acc. 87.5 93.9 96.1 91.2
baseline Acc. 87.3 94.0 96.0 91.9

Table 3: Distribution of the iterations across token de-
pendency types. We fine-tune our base model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.

In our setup, we fine-tune the model on the task
train set and select the hyperparameters on the dev
set using a grid search. We use a 5e-5 learning rate
and fine tune the epochs between 1 to 5; we use a
32 batch size. Finally, we compare in Table 3 the
number of iterations performed for each token on
the Penn Tree Bank (Marcus et al., 1993) converted
to Stanford dependencies7,8.

We provide an accuracy baseline, obtained with
the same setup but using ALBERT without the dy-
namic halting mechanism. As in the previous exper-
iment, we observe that for these tasks, out model

7Since we use sentence piece vocabulary, we assign to
each piece the dependency tag from the whole token.

8We present the Tables for other model configurations in
Appendix B

achieve competitive performances despite using
less computational operations.

Although all tasks achieve significant and com-
parable accuracies, they all require a distinct global
mean of iterations. The Tense task, which can be
solved from the verb only, is completed in only 5.4
iterations, while the TopConst task, which requires
to infer some sentence structure, is performed in
7.2 iterations. This suggests the model can adapt
itself to the complexity of the task and globally
spare unnecessary iterations.

Looking at the token level, as during the pre-
training (Section 4.1), the iterations are unevenly
distributed across tokens. The model seems to iter-
ate more on tokens that are crucial for the task. For
SubjNum, the subj tokens achieve the maximum
number of iterations, while for the ObjNum task,
the obj and root token iterates more. Similarly, all
tasks present a high number of iteration on the main
verb (root) that is crucial for each prediction.

5 Conclusion

We investigated the role of the layers in deep trans-
formers. We designed an original model that pro-
gressively transforms each token through a dy-
namic number of iterations. We analyzed the dis-
tribution of these iterations during pre-training and
confirmed the results obtained by analyzing the
distribution of attention across BERT layers, par-
ticularly the specific behavior played by special
tokens. Moreover, we observed that key tokens
for the prediction task benefit from more iterations.
We confirmed this observation during fine-tuning,
where the tokens with a large number of iterations
are also suspected to be key for achieving the task.

Our experiments provide a new interpretation
path for the role of layers in deep transformer mod-
els. Rather than extracting some specific features
at each stage, layers could be interpreted as the
iteration from an iterative and convergence process.
We hope that this can help to better understand the
convergence mechanisms for transformers models,
reduce the computational footprint or provide new
regularization methods.
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A Natural fixed point

We present here the evolution of the mean cosine
similarity between two hidden states from two con-
secutive iterations for our small (Figure 3) and tiny
(Figure 4) models. As presented in Section 3.2, we
fix the maximum number of iterations at respec-
tively 6 and 12 for the tiny and small models.

Figure 3: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive itera-
tions. We use our small model and measure iterations
on our development set, at the end of the pre-training.

Figure 4: Evolution of the cosine similarity between
hidden states hnt and hn+1

t from two consecutive itera-
tions. We use our tiny model and measure iterations on
our development set, at the end of the pre-training.

B Probing tasks

We give here the probing tasks results from Sec-
tion 4.2 with our small (Table 4) and tiny (Table 5)
models.

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 3.1 3.1 3.1 3.9
prep (101k) 2.9 2.9 3.0 3.6
pobj (98k) 2.9 3.0 3.1 3.5
det (86k) 2.7 2.8 2.7 3.6
nn (81k) 3.2 3.5 3.2 3.9
nsubj (80k) 3.3 3.7 3.3 4.4
amod (66k) 2.9 3.0 3.0 3.6
dobj (49k) 3.0 3.2 3.4 3.5
root (44k) 3.6 3.6 3.5 4.6
advmod (37k) 2.9 3.0 3.0 4.0

avg. 3.2 3.3 3.3 3.9
test Acc. 86.4 93.2 95.5 91.1
baseline Acc. 87.3 94.0 96.0 91.9

Table 4: Distribution of the iterations across token de-
pendency types. We fine-tune our small model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.

Tense Subj
Num

Obj
Num

Top
Const

punct (121k) 2.1 1.9 2.0 2.5
prep (101k) 2.0 1.7 2.0 2.3
pobj (98k) 2.0 1.8 2.0 2.2
det (86k) 1.9 1.7 1.8 2.3
nn (81k) 2.2 2.0 2.0 2.5
nsubj (80k) 2.3 2.2 2.1 2.8
amod (66k) 2.1 1.8 2.0 2.3
dobj (49k) 2.1 1.9 2.1 2.3
root (44k) 2.4 2.1 2.3 2.9
advmod (37k) 2.1 1.8 2.0 2.6

avg. 2.2 2.0 2.1 2.5
test Acc. 88.6 91.1 93.8 91.1
baseline Acc. 87.3 94.0 96.0 91.9

Table 5: Distribution of the iterations across token de-
pendency types. We fine-tune our tiny model on each
probing task. We then perform inference on the Penn
Tree Bank dataset and report the number of iterations
given token dependency types. The number in paren-
theses denotes the number of dependency tags. We only
display the top 10 most frequent tags. We indicate in
bold tags for which the number of iterations is above
avg + std. We include a baseline accuracy which we
obtain with the ALBERT-base version without an adap-
tative depth mechanism and therefore 12 iterations per-
formed for each token.
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Abstract

Curriculum learning has improved the qual-
ity of neural machine translation, where only
source-side features are considered in the met-
rics to determine the difficulty of translation.
In this study, we apply curriculum learning to
paraphrase generation for the first time. Dif-
ferent from machine translation, paraphrase
generation allows a certain level of discrep-
ancy in semantics between source and target,
which results in diverse transformations from
lexical substitution to reordering of clauses.
Hence, the difficulty of transformations re-
quires considering both source and target con-
texts. We propose an edit distance between a
paraphrased sentence pair as a difficulty met-
ric in curriculum learning. Experiments on
formality transfer using GYAFC showed that
our curriculum learning with edit distance im-
proves the quality of paraphrase generation.
Additionally, the proposed method improves
the quality of difficult samples, which was not
possible for previous methods.

1 Introduction

Paraphrase generation is a task that transforms
expressions of an input sentence while retaining
its meaning. While there are various subtasks in
paraphrase generation, formality transfer (Rao and
Tetreault, 2018; Niu et al., 2018; Kajiwara, 2019;
Wang et al., 2019; Kajiwara et al., 2020; Zhang
et al., 2020; Wang et al., 2020; Chawla and Yang,
2020) has been extensively studied. As paraphrase
generation can be regarded as a machine translation
task (Finch et al., 2004; Specia, 2010) within the
same language, the same models (Bahdanau et al.,
2015; Vaswani et al., 2017) have been applied to a
monolingual parallel corpus.

Recent studies (Platanios et al., 2019; Liu et al.,
2020) have shown that curriculum learning (Ben-
gio et al., 2009) achieves faster convergence and
improved translation quality on neural machine

translation. Curriculum learning designs a training
process starting from easy training samples and
gradually proceeds to difficult training samples. In
these previous studies, curriculum learning that
uses source-side features, i.e., sentence length and
word rarity, as a metric to determine the difficulty
has improved the quality of translation.

In this study, we adopt curriculum learning to
the paraphrase generation task. Paraphrasing al-
lows a certain level of semantic divergence between
source and target sentences. For example, some
paraphrases only require just a small number of
transformations as shown in Table 1, while some
others require drastic transformations as Table 2
shows. For the former, transformation is easy be-
cause the target sentence can be generated by copy-
ing almost all the input sentence’s words. For the
latter, transformation is difficult because the input
sentence requires replacement and reordering of
clauses besides lexical and phrasal paraphrasing.
Because of this feature in paraphrase generation,
difficulty in transformations requires to consider
both source and target contexts.

To address this problem, we propose to use
an edit distance between a paraphrased sentence
pair as a difficulty metric that approximates nec-
essary amounts of transformations. We evalu-
ate our method on a formality transfer task using
Grammarly’s Yahoo Answers Formality Corpus
(GYAFC) (Rao and Tetreault, 2018). The result
of paraphrase generation from informal English to
formal English confirmed the effectiveness of cur-
riculum learning based on the edit distance. The
detailed analysis revealed that the proposed method
contributes to performance improvement in diffi-
cult samples regardless of the difficulty metrics,
while sentence length and word rarity based meth-
ods degraded the performance.
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Source Sentence Target Sentence

Yeah I think it would
be funny.

I think it would be
funny.

I have one brother and
three sisters.

I have one brother and
three sisters.

Do you mean which is
least horrible?

Do you mean which is
the least horrible?

Their first two albums
were pretty good.

Their first two albums
were very good.

Table 1: Examples with simple transformations (bold
fonts indicate words that should be rewritten)

2 Preliminary: Curriculum Learning for
Neural Machine Translation

Initial curriculum learning methods for neural ma-
chine translation considered only the difficulty of
the training sample (Kocmi and Bojar, 2017; Zhang
et al., 2018). These methods achieved faster conver-
gence; however, they could not improve machine
translation quality after convergence. Following
these studies, Platanios et al. (2019) and Liu et al.
(2020) proposed a method that considers both the
difficulty of the training samples and the model
competence, which achieved both of faster conver-
gence and improvement in the translation quality.

This study bases on the model proposed by Pla-
tanios et al. (2019), who introduced the model
competence in machine translation. Their method
defines d̄i ∈ [0, 1] that is the difficulty score of
the i-th training sample, and c(t) ∈ [0, 1] that is
the model competence at the training step t. The
method trains the model using only easier training
samples than the model competency at each train-
ing step. In other words, the number of training
samples increases as the training proceeds. Their
method improved the translation quality while re-
duced the training time.

Platanios et al. (2019) defined the difficulty d(si)
based on sentence length and word rarity. Here,
an input sentence si consists of a word string
{w1, ..., wNi}. Considering translation of a long
sentence is more difficult than a shorter one, the
sentence length is adopted as one of the metrics:

dlength(si) , Ni. (1)

Besides, they considered words that infrequently
appear in a training corpus are also difficult to trans-
late because these words have fewer learning op-
portunities. Therefore, Platanios et al. (2019) also

Source Sentence Target Sentence

whats the name of
the song

What is the title of
this song.

not sure thank you
for the two points

Unsure, appreciate
the pair of points.

no where there is no
such thing

That does not exist.

they just got a little
agressive ;)

Suddenly they be-
came angrier.

Table 2: Examples with drastic transformations (bold
fonts indicate words that should be rewritten)

adopted word rarity:

drarity(si) , −
Ni∑

j=1

log p̂(wj), (2)

where p̂(wj) is the unigram probability of word wj
in the training corpus. The final difficulty score
d̄i is computed using the cumulative distribution
functions of d(si) values.

Platanios et al. (2019) defined the model compe-
tence c(t) at the training step t:

c(t) , min(1,

√
t
1− c20
T

+ c20), (3)

where c0 is the initial competence and T is the
number of training steps estimated as necessary
for convergence. They assumed that the compe-
tence is small at the beginning of training and
increases monotonically as the training proceeds,
which reaches the maximum value 1 when t = T .

3 Proposed Method

We approximate the difficulty of transformation in
paraphrase generation as edit distance between a
paraphrased sentence pair:

ddistance(si, ti) , LevenshteinDistance(si, ti), (4)

where LevenshteinDistance(·, ·) computes the Lev-
enshtein distance between the source sentence and
the target sentence ti. The edit distance between
sentences with simple transformations like Table 1
is small, and the edit distance between sentences
with drastic rewriting like Table 2 is large. Hence,
our curriculum learning starts training with para-
phrases with a small number of transformations and
gradually learns more dynamic transformations.
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Algorithm 1 Edit-distance based curriculum learn-
ing

Input: Dataset D = {(si, ti)}Mi=1, consisting of
M samples, neural machine translation model
θ.

Output: Trained neural machine translation
model θ.

1: List of difficulty values L← ∅
2: for i = 1, ...,M do:
3: L← L ∪ {ddistance(si, ti)}.
4: end for
5: Compute a cumulative distribution function

from difficulty values in L
6: for i = 1, ...,M do:
7: Compute the difficulty score d̄i
8: end for
9: for t = 1, ..., T do: . Curriculum learning

10: Compute the model competence c(t).
11: Sample a data batch Bt uniformly from all

si ∈ D, such that d̄i ≤ c(t).
12: Train neural machine translation model θ

using Bt as input.
13: end for

We apply the edit-distance based difficulty met-
ric to the competence-based curriculum learn-
ing (Platanios et al., 2019) framework. The entire
algorithm is shown in Algorithm 1.

4 Experiment

We evaluate the performance of edit-distance based
curriculum learning on a style transfer task: para-
phrase generation from informal English to formal
English using GYAFC1 (Rao and Tetreault, 2018).

4.1 Corpus and Evaluation Metric
GYAFC provides parallel sentences from two do-
mains, Entertainment & Music (E&M) and Fam-
ily & Relationships (F&R). Following Niu et al.
(2018), we expand the training set by combin-
ing sentences of each domain and add the label
2formal or 2informal at the beginning of an
input sentence. Statistics of GYAFC corpus are
shown in Table 3.

As preprocessing, we used Moses
toolkit2 (Koehn et al., 2007) for tokeniza-
tion and normalize-punctuation. We also used

1https://github.com/raosudha89/
GYAFC-corpus

2https://github.com/moses-smt/
mosesdecoder

Train Train* Dev Test

E&M 52, 595 209, 124 2, 877 1, 416
F&R 51, 967 209, 124 2, 788 1, 332

Table 3: Statistics of GYAFC (Train* indicates the
training set after expansion.)

byte-pair encoding3 (Sennrich et al., 2016) to limit
the number of token types to 16, 000.

On GYAFC, Rao and Tetreault (2018) reported
that a correlation exists between manual annotation
and BLEU (Papineni et al., 2002) scores for the
task of informal to formal English transfer. Hence,
we used BLEU as an evaluation metric.

4.2 Setup

As a paraphrase generation model, we implemented
transformer (Vaswani et al., 2017) model using
Joey NMT4 (Kreutzer et al., 2019). Our trans-
former model has four-layers with a hidden size of
512 and a four attention heads for both the encoder
and decoder. We used word embeddings of 512
dimensions tying the source, target, and the output
layer’s weight matrix. We also added dropout to the
embeddings and hidden layers with a probability of
0.2. We trained using the Adam optimizer (Kingma
and Ba, 2015) with the learning rate of 0.0002. The
batch size was 4, 096 tokens. We saved the model
every 800 updates applying early stopping with
patience of five.

To evaluate the effectiveness of the edit distance5

on curriculum learning (denoted as CL-ED), we
compared to curriculum learning with sentence
length (denoted as CL-SL) and word rarity (de-
noted as CL-WR). To compute the model compe-
tency with Equation (3), we need to set two hyper-
parameters of c0 and T . We set c0 to 0.01 and T
to the number of training steps necessary for the
transformer model with ordinary training reaches
the 95% of the maximum BLEU score on the de-
velopment set.

4.3 Results

The experimental results are shown in Table 4,
where ‘Baseline’ is the transformer model trained
without curriculum learning. In the E&M domain,

3https://github.com/rsennrich/
subword-nmt

4https://github.com/joeynmt/joeynmt
5https://github.com/roy-ht/

editdistance
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E&M F&R

Source 49.19 50.94
Baseline 69.81 75.02

CL-SL 69.83 74.90
CL-WR 70.05 74.62

CL-ED 70.34 75.41

Table 4: BLEU scores on the GYAFC test set

Source dead on arrival... there relationship
is dead on arrival

Reference Their relationship is dead on arrival.
Baseline Dead on arrival, there relationship

is dead on arrival.
CL-SL Dead on arrival is dead on arrival.
CL-WR Dead on arrival is dead on arrival.
CL-ED The relationship is dead on arrival.

Table 5: Examples of generated sentences by each model

-1.0

-0.5

0.0

0.5

1.0

Easy Medium Difficult

BL
EU
 C
ha
ng
e

CL-SL
CL-WR
CL-ED

(a) Sentence length

-1.0

-0.5

0.0

0.5

1.0

Easy Medium Difficult

BL
EU
 C
ha
ng
e

(b) Word rarity

-1.0

-0.5

0.0

0.5

1.0

Easy Medium Difficult

BL
EU
  C
ha
ng
e 

(c) Edit distance

Figure 1: Changes in BLEU scores compared to Baseline for each difficulty metric

CL-ED and CL-WR improved BLEU score of
Baseline. In the F&R domain, only CL-ED outper-
formed Baseline. These results indicate that exist-
ing curriculum learning based on sentence length
and word rarity is not effective in paraphrase gen-
eration. In contrast, curriculum learning with the
edit distance was effective on both domains.

4.4 Discussion

We investigated which type of sentences that the
curriculum learning improved their paraphrase
quality. We divided all the test sets into three
classes: Easy, Medium, and Difficult, of the same
size (916 sentences each) using difficulty metrics
of sentence length, word rarity, and edit distance,
respectively. We then computed a BLEU score
of each class and calculated improvements over
Baseline.

Figure 1 shows the BLEU score differences of
CL-SL, CL-WR, and CL-ED, compared to Base-
line, respectively. Overall, the performance im-
provement on the Easy class is significant across
the methods, which is intuitive as such sentences
are easy to learn and used for training throughout
curriculum learning. CL-SL and CL-WR degraded
the BLEU scores on Medium class, and even de-
teriorated the baseline transformer on the Difficult

class. In contrast, CL-ED improved the BLEU
scores of Baseline even on the Difficult class, re-
gardless of the metric of difficulty.

Table 5 shows output examples. The Baseline
output almost the same sentence as the input with-
out necessary transformations. While CL-SL and
CL-WR output a sentence that does not make sense,
CL-ED, which is our method, successfully para-
phrases the source sentence.

5 Summary and Future Work

In this study, we applied the edit distance to cur-
riculum learning for paraphrase generation. Experi-
ment results on an informal to formal style transfer
task confirmed the effectiveness of our method,
particularly for paraphrasing difficult sentences.

Curriculum learning can be applied to any task
when reasonable metrics for task difficulty are
available. Transfer learning using a pre-trained
model (Devlin et al., 2019; Lewis et al., 2020) has
significantly improved the performance of various
natural language processing tasks. In transfer learn-
ing, fine-tuning samples similar to the ones in the
pre-training corpus should be easier to learn. We
plan to apply our edit-distance based curriculum
learning to transfer learning.
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Constantin, and Evan Herbst. 2007. Moses: Open
Source Toolkit for Statistical Machine Translation.
In Proceedings of the 45th Annual Meeting of the As-
sociation for Computational Linguistics, pages 177–
180.

Julia Kreutzer, Jasmijn Bastings, and Stefan Riezler.
2019. Joey NMT: A Minimalist NMT Toolkit for
Novices. In Proceedings of the 2019 Conference on
Empirical Methods in Natural Language Processing
and the 9th International Joint Conference on Natu-
ral Language Processing, pages 109–114.

Mike Lewis, Yinhan Liu, Naman Goyal, Mar-
jan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer.
2020. BART: Denoising Sequence-to-Sequence Pre-
training for Natural Language Generation, Transla-
tion, and Comprehension. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 7871–7880.

Xuebo Liu, Houtim Lai, Derek F. Wong, and Lidia S.
Chao. 2020. Norm-Based Curriculum Learning for
Neural Machine Translation. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, pages 427–436.

Xing Niu, Sudha Rao, and Marine Carpuat. 2018.
Multi-Task Neural Models for Translating Between
Styles Within and Across Languages. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 1008–1021.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a Method for Automatic
Evaluation of Machine Translation. In Proceedings
of the 40th Annual Meeting of the Association for
Computational Linguistics, pages 311–318.

Emmanouil Antonios Platanios, Otilia Stretcu, Gra-
ham Neubig, Barnabas Poczos, and Tom M Mitchell.
2019. Competence-based Curriculum Learning for
Neural Machine Translation. In Proceedings of the
2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 1162–1172.

Sudha Rao and Joel Tetreault. 2018. Dear Sir or
Madam, May I Introduce the GYAFC Dataset: Cor-
pus, Benchmarks and Metrics for Formality Style
Transfer. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 129–140.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016. Neural Machine Translation of Rare Words
with Subword Units. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics, pages 1715–1725.

Lucia Specia. 2010. Translating from Complex to Sim-
plified Sentences. In Proceedings of the 9th interna-
tional conference on Computational Processing of
the Portuguese Language, pages 30–39.

233



Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Proceedings of the 31st Conference
on Neural Information Processing Systems, pages
5998–6008.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wen-
han Chao. 2019. Harnessing Pre-Trained Neural
Networks with Rules for Formality Style Transfer.
In Proceedings of the 2019 Conference on Empiri-
cal Methods in Natural Language Processing and
the 9th International Joint Conference on Natural
Language Processing, pages 3573–3578.

Yunli Wang, Yu Wu, Lili Mou, Zhoujun Li, and Wen-
Han Chao. 2020. Formality Style Transfer with
Shared Latent Space. In Proceedings of the 28th
International Conference on Computational Linguis-
tics, pages 2236–2249.

Xuan Zhang, Gaurav Kumar, Huda Khayrallah, Ken-
ton Murray, Jeremy Gwinnup, Marianna J Mar-
tindale, Paul McNamee, Kevin Duh, and Marine
Carpuat. 2018. An Empirical Exploration of Cur-
riculum Learning for Neural Machine Translation.
arXiv:1811.00739, pages 1–16.

Yi Zhang, Tao Ge, and Xu Sun. 2020. Parallel Data
Augmentation for Formality Style Transfer. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 3221–
3228.

234



Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 235–247

August 5–6, 2021. ©2021 Association for Computational Linguistics

Changing the Basis of Contextual Representations with Explicit Semantics

Tamás Ficsor
Institute of Informatics,

University of Szeged, Hungary
ficsort@inf.u-szeged.hu
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Abstract

The application of transformer-based contex-
tual representations has became a de facto so-
lution for solving complex NLP tasks. De-
spite their successes, such representations are
arguably opaque as their latent dimensions are
not directly interpretable. To alleviate this lim-
itation of contextual representations, we de-
vise such an algorithm where the output rep-
resentation expresses human-interpretable in-
formation of each dimension. We achieve
this by constructing a transformation matrix
based on the semantic content of the embed-
ding space and predefined semantic categories
using Hellinger distance. We evaluate our
inferred representations on supersense predic-
tion task. Our experiments reveal that the in-
terpretable nature of transformed contextual
representations makes it possible to accurately
predict the supersense category of a word by
simply looking for its transformed coordinate
with the largest coefficient. We quantify the
effects of our proposed transformation when
applied over traditional dense contextual em-
beddings. We additionally investigate and re-
port consistent improvements for the integra-
tion of sparse contextual word representations
into our proposed algorithm.

1 Introduction

In recent years, contextual word representations
– such as BERT (Devlin et al., 2019) or GPT-3
(Brown et al., 2020) – have dominated the NLP
landscape on leaderboards such as SuperGLUE
(Wang et al., 2019) as well as on real word ap-
plications (Lee et al., 2019; Alloatti et al., 2019).
These models gain their semantics-related capabili-
ties during the pre-training process, which can be
then fine-tuned towards downstream tasks, includ-
ing question answering (Raffel et al., 2019; Garg
et al., 2019) or text summarization (Savelieva et al.,
2020; Yan et al., 2020).

Representations obtained by transformer-based
language models carry context-sensitive semantic
information. Although the semantic information
is present in the embedding space, the interpre-
tation and exact information it carries is convo-
luted. Hence understanding and drawing conclu-
sions from them are a cumbersome process for hu-
mans. Here we devise such a transformation where
we explicitly express the semantic information in
the basis of the embedding space. In particular, we
express the captured semantic information as finite
sets of linguistic properties, which are called se-
mantic categories. A semantic category can repre-
sent any arbitrary concept. In this paper, we define
them according to WordNet (Miller, 1995) Lex-
Names (sometimes also referred as supersenses).

Even though we present our work on supersense
prediction task, our proposed methodology can also
be naturally extended to settings that exploit a dif-
ferent inventory of semantic categories. Our results
also provide insights into the inner workings of
the original embedding space, since we infer the
semantic information from embedding spaces in
a transparent manner. Therefore, amplified infor-
mation can be assigned to the basis of the original
embedding space.

Sparse representations convey the encoded se-
mantic information in a more explicit manner,
which facilitates the interpretability of such rep-
resentations (Murphy et al., 2012; Balogh et al.,
2020). Feature norming studies also illustrated the
sparse nature of human feature descriptions, i.e.
humans tend to describe objects and concepts with
only a handful of properties (Garrard et al., 2001;
McRae et al., 2005). Hence, we also conduct ex-
periments utilizing sparse representations obtained
from dense contextualized embeddings.

The transformation that we propose in this paper
was inspired by Şenel et al. (2018), but it has been
extended in various important aspects, as we
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• also utilize sparse representations to amplify
semantic information,

• analyze several contextual embedding spaces

• apply whitening transformation on the embed-
ding space to decorrelate semantic features,
which also servers as the standardization step,

• evaluate the strength of the transformation in
a different manner on supersense prediction
task.

We also publish our source code on Github:
https://github.com/ficstamas/word_

embedding_interpretability.

2 Related Work

Contextual word representations provide a solution
for context-aware word vector generation. These
deep neural language models – such as ELMo (Pe-
ters et al., 2018), BERT (Devlin et al., 2019) or
GPT-3 (Brown et al., 2020) – are pre-trained on un-
supervised language modelling tasks, and later fine-
tuned for downstream NLP tasks. Several variants
were proposed to address one or more issue corre-
sponding to the BERT model. Some of which we
exploited in this paper. Liu et al. (2019) proposed
a better pre-training process, Sanh et al. (2019) re-
duced the number of parameters, Conneau et al.
(2020) presented a multilingual model. These mod-
els form the base of our approach, since we produce
interpretable representations by measuring the se-
mantic content of existing representations.

One way to measure the morphological and se-
mantic contents of contextual word embeddings
is via the application of probing approaches. The
premise of this approach is that, if the probed in-
formation can be identified by a linear classifier,
then the information is encoded in the embedding
space (Adi et al., 2016; Ettinger et al., 2016; Klafka
and Ettinger, 2020). Others explored the capacity
of language models, where they examined the out-
put probabilities of the model in given contexts
(Linzen et al., 2016; Wilcox et al., 2018; Marvin
and Linzen, 2018; Goldberg, 2019). We slightly
reflect the premise of these methodologies by intro-
ducing a logistic regression baseline model.

Another approach is to incorporate external
knowledge into Language Models. Levine et al.
(2020) devised SenseBERT by integrating super-
sense information into the training of BERT. K M
et al. (2018) showed a method where an arbitrary

knowledge graph can be incorporated into their
LSTM based model. External knowledge incor-
poration is getting a popular approach to improve
already existing state-of-the-art solutions in a do-
main or task specific environment (Munkhdalai
et al., 2015; Weber et al., 2019; Baral et al., 2020;
Mondal, 2020; Wise et al., 2020; Murayama et al.,
2020). Since we deemed to investigate the effect
of incorporated knowledge towards the semantic
content of embedding space, SenseBERT serves a
good basis for that.

Ethayarajh (2019) investigated the importance of
anisotropic property of the contextual embeddings,
which is a different kind of investigation than we
aim to do. It still gives a good insight into the inner
workings of the layers. Şenel et al. (2018) showed
a method where they measured the interpretability
of Glove embeddings, and later showed a method
to manipulate and improve the interpretability of a
given static word representation (Şenel et al., 2020).
Our approach resembles Şenel et al. (2018), how-
ever, we apply different pre- and post-processing
steps and more importantly, we replaced the usage
of the Bhattacharyya distance with the Hellinger
distance, which is closely related to it but oper-
ates in a bounded and continuous manner. Our
approach also differs from Şenel et al. (2018) in
that we deal with contextualited language models
instead of static word embeddings and we also rely
on sparse contextualized word vectors.

The intuition behind sparse vectors is related
to the way humans describe concepts, which has
been extensively studied in various feature norming
studies (Garrard et al., 2001; McRae et al., 2005).
Additionally, generating sparse features (Kazama
and Tsujii, 2003; Friedman et al., 2008; Mairal
et al., 2009) has proved to be useful in several ar-
eas, including POS tagging (Ganchev et al., 2010),
text classification (Yogatama and Smith, 2014) and
dependency parsing (Martins et al., 2011). There-
fore, several sparse static representations were pre-
sented, such as Murphy et al. (2012) proposed
Non-Negative Sparse Embeddings to represent in-
terpretable sparse word vectors. Park et al. (2017)
showed a rotation-based method and Subramanian
et al. (2017) suggested an approach using a de-
noising k-sparse auto-encoder to generate sparse
word vectors. Berend (2017) showed that sparse
representations can outperform their dense counter-
parts in certain NLP tasks, such as NER, or POS
tagging. Additionally, Berend (2020) illustrated
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how applying sparse representations can boost the
performance of contextual embeddings for Word
Sense Disambiguation, which we also desire to
exploit.

3 Our Approach

We first define necessary notations. We denote
the embedding space with E ∈ Rv×d with the su-
perscript indicating whether it is obtained from
the training set t or evaluation set e. We denote
the number of input words and their dimension-
ality by v and d, respectively. Furthermore, we
denote the transformation matrix withW ∈ Rd×s
– where s represents the number of semantic cate-
gories – and the final interpretable representation
with I ∈ Rv×s, which always denotes the inter-
pretable representation of E(e). Additionally, we
denote the semantic categories with S.

3.1 Interpretable Representation

Our goal is to produce such embedding spaces
where we can identify semantic features by their
basis. In order to obtain such an embedding space,
we are constructing a transformation matrixW(t),
which amplifies the semantic information of an
input representation and can be formulated as:
I = E(e)w × W(t). Ew represents the whitened
embedding space, which is the output of a pre-
processing step (Section 3.2), and W being our
transformation matrix (Section 3.3).

3.2 Pre-processing

Pre-processing consists of two steps: first we gen-
erate sparse representations of dense embedding
spaces (this step is omitted when we report about
dense embedding spaces), then we whiten the em-
bedding space.

3.2.1 Sparse Representation
For obtaining sparse contextualized representa-
tions, we follow the methodology proposed in
(Berend, 2020). That is, we solve the following
sparse coding (Mairal et al., 2009) optimization
problem:

min
α(t),D

1

2

∥∥∥E(t) − α(t)D
∥∥∥
2

F
+ λ

∥∥∥α(t)
∥∥∥
1
,

where D ∈ Rk×d is the dictionary matrix, and
α ∈ Rv×k contains the sparse contextualized rep-
resentations. The two hyperparameters of the dic-
tionary learning approach are the number of basis

vectors to employ (k) and the strength of the regu-
larization (λ).

We obtained the sparse contextual representa-
tions for the words in the evaluation set by fixing
the dictionary matrixD that we learned on the train
set and optimized solely for the sparse coefficients
α(e). We also report experimental results obtained
for different values of basis vectors k and regular-
ization coefficients λ.

The output of this step is also represented with
E instead of α since this step is optional. Among
our results we mark whether we applied (Sparse)
or skipped (Dense) this step.

3.2.2 Whitening

Since we handle dimensions independently, we
first apply whitening transformation on the embed-
ding space. Several whitening transformations are
known – like Cholesky or PCA (e.g. Friedman
(1987)) – but we decided to rely on ZCA whitening
(or Mahalanobis whitening) (Bell and Sejnowski,
1997). One benefit of employing ZCA whitening
is that it ensures higher correlation between the
original and whitened features (Kessy et al., 2018).
As a consequence, it is a widely utilized approach
for obtaining whitened data in NLP (Heyman et al.,
2019; Glavaš et al., 2019).

We determine the whitening transformation ma-
trix from the training set (E(t)), which is then ap-
plied on the representation of our training (E(t))
and evaluation sets (E(e)). We denote the whitened
representations for the training and evaluation sets
by E(t)w and E(e)w , respectively.

3.3 Transformation

In this section, we discuss the way we measure the
semantic information of the embedding space and
express the linear transformation matrix (W).

3.3.1 Semantic Distribution

The coefficients of the contextual embeddings of
words that belong to the same (super)sense cate-
gory are expected to originate from the same dis-
tribution. Hence, it is reasonable to quantify the
extent to which some semantic category is encoded
along some dimension by investigating the distri-
bution of the coefficients of the word vectors along
that dimension. For every semantic category, we
can partition the words whether they pertain to that
category. When a dimension encodes a semantic
category to a large extent, the distribution of the
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coefficients of those words belonging to that cate-
gory is expected to differ substantially from that of
those words not pertaining to the same category.

We can formulate the distributions of our interest
by function L : x → S, which maps each token
(x) to its context-sensitive semantic category (Lex-
Name) and a function f : x → E , which returns
the context-sensitive representation of x. Thus the
devised distributions can be defined as:

Pij =
{
f(x)(i) | f(x) ∈ E(t)w , L(x) ∈ S(j)

}

and

Qij =
{
f(x)(i) | f(x) ∈ E(t)w , L(x) /∈ S(j)

}
,

where i represents a dimension and j denotes a se-
mantic category. In other words, Pij represents the
distribution along the ith dimension of those words
that belong to the jth semantic category, whereas
Qij represents the distribution of the coefficients
along the same dimension (i) of those words that
do not belong to the jth semantic category.

3.3.2 Semantic Information and
Transformation Matrix

For every dimension (i) and semantic category (j)
pair, we can express the presence of the seman-
tic information by defining a distance between the
distributions Pij and Qij . Following from the con-
struction of the distributions Pij and Qij , the larger
the distance between a pair of distributions (Pij ,
Qij), the more likely that dimension i encodes se-
mantic information j.

Based on that observation, we define a transfor-
mation matrixWD as

WD(i, j) = D(Pij , Qij),

where D is the distance function. We specify the
distance function as the Hellinger distance, which
can be formulated as

√√√√1−
√

2σpijσqij
σ2pij + σ2qij

e
− 1

4
·
(µpij−µqij )2

σ2pij
+σ2qij ,

where we assume that Pij ∼ N (µpij , σpij ) and
Qij ∼ N (, µqij , σqij ), i.e. they are samples from
normal distributions with expected value µ and
standard deviation σ.

We decided to rely on Hellinger distance due
to its continuous, symmetric and bounded nature.
In contrast to out approach, Şenel et al. (2018)

proposed the usage of Bhattacharyya distance –
which is closely related to Hellinger distance – but
it would overestimate the certainty of the semantic
information of a dimension in the case of distant
distributions. Another concern is that the Bhat-
tacharyya distance is discontinuous. We discussed
this topic in a earlier work (Ficsor and Berend,
2020) in relation to static word embeddings.

Bias Reduction. So far, our transformation ma-
trix is biased due to the imbalanced semantic cate-
gories. It can be reduced by `1 normalizingWD in
such a manner that vectors representing semantic
categories sum up to 1, which we denote asWND

(Normalized Distance Matrix).

Directional Encoding. As semantic information
can be encoded in both positive and negative direc-
tions, we modify the entries ofWND as

WNSD(i, j) = sign(µpij − µqij ) · WND(i, j),

where sign(·) is the signum function. This modifi-
cation ensures that each semantic category is repre-
sented with the highest coefficients in their corre-
sponding base of the interpretable representation.

3.4 Post-processing

The representations transformed in the above man-
ner are still skewed in the sense that they do not
reflect the likelihood of each semantic category. In
order to alleviate that problem, we measure and
normalize the frequency (fN = f/‖f‖2, f ∈ Ns)
of each occurrence of a supersense category in
the training set and accumulate that information
into the embedding space in the following man-
ner: If = I + I � 1fᵀN , where � represents the
element-wise multiplication, and 1 represents a
vector consisting of all ones. Finally, If represents
our final interpretable representations adjusted with
supersense frequencies.

3.5 Accuracy Calculation

Representations generated by our approach let us
determine the presumed semantic category by the
highest coefficient in the word vector. In other
words, a word vector should have its highest co-
efficient in the base, which represents the same
semantic category as the annotation represents in
the evaluation set. Our overall accuracy is the frac-
tion of the correct predictions and the total number
of annotated data in the evaluation set.
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4 Evaluation

4.1 Experimental setting.

During our experiments, we relied on the SemCor
dataset for training and the unified word sense dis-
ambiguation framework introduced in (Raganato
et al., 2017a) for evaluation, which consists of 5
sense annotated corpora: SensEval2 (Edmonds and
Cotton, 2001), SensEval3 (Mihalcea et al., 2004),
SemEval 2007 Task 17 (Pradhan et al., 2007), Se-
mEval 2013 Task 12 (Navigli et al., 2013), SemEval
2015 Task 13 (Moro and Navigli, 2015) and their
concatenation. We refer to the combined dataset as
ALL througout the paper. The individual datasets
contain 2282, 1850, 455, 1644 and 1022 sense
annotations, respectively. These datasets contain
fine-grained sense annotation for a subset of the
words from which the supersense information can
be conveniently inferred. We reduced the scope of
fine-grained sense annotations to lexname level, in
order to maintain well-defined semantic categories
with high sample sizes. We used the SemEval 2007
data as our development set in accordance with
prior work (Raganato et al., 2017b; Kumar et al.,
2019; Blevins and Zettlemoyer, 2020; Pasini et al.,
2021).

We conducted our experiments on several con-
textual embedding spaces, where each model
represent a different purpose. We can con-
sider BERT (Devlin et al., 2019) as the base-
line of the following contextual models. Sense-
BERT (Levine et al., 2020) incorporated word
sense information into its latent representation.
DistilBERT (Sanh et al., 2019) obtained through
knowledge distillation and operates with less pa-
rameters. RoBERTa (Liu et al., 2019) introduced
a better pre-training procedure. Finally, XLM-
RoBERTa (Conneau et al., 2020) is a multilingual
model with the RoBERTa’s pre-training procedure.
When available, we also conducted experiments
using both cased and uncased vocabularies.

Following (Loureiro and Jorge, 2019), we also
averaged the representations from the last 4 layers
of the transformer models to obtain our final con-
textual embeddings. Furthermore, to determine the
hyperparameters for sparse vector generation, we
used the accuracy of BERT Base model with dif-
ferent regularizations (λ) and number of employed
basis (k) on the SemEval2007 dataset, the results
of which can be seen in Table 1.

λ
0.05 0.1 0.2

k
1500 63.51 64.83 57.80
3000 65.71 66.59 64.61

Table 1: Results of our experiments when relying on
sparse representations created by using various hyper-
parameter combinations. The BERT Base model was
used on the SemEval2007 validation set. k represents
the number of employed basis and λ denotes the regu-
larization parameter.

4.2 Baselines

We next introduce those baselines we compared our
approach with. Most of these approaches rely on
the intact contextual representations E , for which
the dimensions are not intended to directly encode
human interpretable supersense information about
the words they describe.

Logistic Regression Classifier We conducted
the experiments by setting the random state to 0,
maximum iterations to 25,000 and turned off the
utilization of a bias term. In this case the vectors
that were used for making the predictions about the
supersenses of words were of much higher dimen-
sions and not directly interpretable at all, unlike
our representations.

Dimension Reduction (PCA+LogReg) We also
experimented with representations, which inherit
the same number of dimensions as many we utilize
(45). So we applied principal component analysis
(PCA) based dimension reduction on the original
E embedding space. Additionally, we applied Lo-
gistic Regression Classifier on the reduced repre-
sentations with the same parametirazition to the
previously described baseline.

Sparsity Makes Sense (SMS) An approach pro-
posed by Berend (2020) yields human-interpretable
embeddings like ours, since human-interpretable
features are bound to the basis of the output repre-
sentation. Berend (2020) originally presented the
devised algorithm on fine-grained word sense dis-
ambiguation, which we altered to work similarly to
our approach and predict supersense information
instead. We utilized normalized positive pointwise
mutual information to construct the transforma-
tion matrix because it showed the most prominent
scores in the paper.
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Representation Interpretable Latent
Method Our Approach SMS PCA+LogReg LogReg

Input Embedding Type Dense Sparse Sparse Dense Dense
Vocabulary (Cased/Uncased) C U C U C U C U C U

ALL-dev

BERT
Base 65.04 62.44 69.53 68.43 65.24 63.00 57.45 54.70 73.96 72.64
Large 63.68 62.51 68.41 64.82 62.00 57.03 55.60 51.05 73.25 71.69

SenseBERT
Base – 66.13 – 74.59 – 74.21 – 68.57 – 79.47
Large – 64.62 – 74.55 – 73.75 – 71.44 – 78.99

DistilBERT Base 62.94 64.44 70.78 72.68 66.31 68.03 59.34 61.51 74.86 74.46

RoBERTa
Base 59.47 – 65.40 – 61.91 – 52.25 – 69.44 –
Large 64.43 – 70.27 – 65.85 – 52.91 – 75.16 –

XLM-RoBERTa
Base 63.31 – 70.10 – 67.84 – 58.43 – 76.02 –
Large 62.10 – 67.74 – 64.63 – 57.89 – 75.54 –

Table 2: Accuracy of each model on the supersense prediction task using dense and sparse embedding spaces. ALL-
dev denotes the evaluation on the ALL dataset excluding the development set. All of the sparse representations were
generated using λ = 0.1 for the regularization coefficient and k = 3000 basis based on the experiments reported
in Table 1. Our approach and SMS are interpretable representations, PCA+LogReg just represents the information
in the same number of basis but there are no connection, which can be drawn to the previous two, and Logistic
Regression operates on the original embedding spaces. We also include a more detailed table in the Appendix,
which breaks down performances for each sub-corpora.

4.3 Results

We list the results of our experiments using differ-
ent contextual encoders on the task of supersense
prediction in Table 2. We calculated the accuracy
as the fraction of correct predictions and the total
number of annotated samples. We selected λ = 0.1
regularization and k = 3000 basis for sparse vec-
tor generation in accordance with the results that
we obtained over the development set for different
choices of the hyperparameters (see Table 1).

4.3.1 Model Performances
We consider a model’s semantic capacity as the
Logistic Regression model’s performance, and its
interpretability as the best performing interpretable
representation. We do not expect to exceed the
original model, since we limited its capabilities
drastically by reducing the number of utilized di-
mensions to 45.

By looking at the performance, as expected the
original latent representation expresses the most
semantic information measure by Logistic Regres-
sion. Among all of them, SenseBERT dominates
which is due to the additional supersense informa-
tion signal it relies on during its pretraining. The
incorporated supersense information helps Sense-
BERT to represent that information more explicitly,
which becomes more obvious when we amplify

it by sparse representations. So including further
objectives during training just further separates the
information in the basis.

4.3.2 Dense and Sparse Representations

We can see from Table 2 that relying on sparse
representations further amplifies the semantic con-
tent of the latent representations. Based on the
results of our approach, we can conclude that the
semantic information can be more easily identified
in the case of sparse representations (as indicated
by the higher scores in the majority of the cases).
SMS follows a similar trend to ours. Also the rela-
tively small decrease in performance suggests that
the majority of the removed signals correspond to
noise.

4.3.3 Impact of Base and Large Models

In several cases, the Large models under-
performed their Base counterparts (except
RoBERTa). It can indicate that the Large version
might be under-trained, which was also hypothe-
sised in (Liu et al., 2019). Overall, choosing the
Base pre-trained models seems to be a sufficient
and often better option for performing supersense
prediction.
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Mean (Std)
Cased Uncased

BERT
Base 0.35 (±0.21) 0.32 (±0.21)
Large 0.29 (±0.22) 0.28 (±0.22)

SenseBERT
Base – 0.59 (±0.25)
Large – 0.55 (±0.29)

DistilBERT Base 0.34 (±0.21) 0.33 (±0.20)

RoBERTa
Base 0.34 (±0.22) –
Large 0.31 (±0.21) –

XLM-RoBERTa
Base 0.34 (±0.22) –
Large 0.32 (±0.22) –

Table 3: Average Spearman Rank Correlation between
the basis of our interpretable embedding space and the
one obtain by the SMS approach.

4.3.4 Case-sensitivity of the Vocabulary

As the choice whether using a cased or an uncased
model is more beneficial can vary from task to
task, we made experiments in that respect. To this
end, we compared the performance of BERT and
DistilBERT, which are available in both case sen-
sitive and case insensitive versions. Usually, the
choice highly depends on the task (cased versions
being recommended for POS, NER, WSD) and the
language (cased can be beneficial for certain lan-
guages such as German). Overall, we can observe
some advantage of using the cased vocabularies. In-
terestingly, the behavior of DistilBERT and BERT
differs radically in that respect for all but the Lo-
gReg approach.

4.3.5 Considering Dimensionality

Other than the Logistic Regression model, every
approach relies on some kind of condensed repre-
sentation for supersense prediction. Even though
all of the representations were condensed – into 45
dimensions from 768, 1024 dimensions for dense
and 3000 dimensions for sparse representations –
the performance did not decreased by a large mar-
gin. PCA-based dimension reduction approach
performed the worst among the 3 approaches,
whereas ours performed the best. Note that these
interpretable approaches (ours and SMS) not only
perform better over a standard dimension reduc-
tion, but they also associate human-understandable
knowledge to the basis of the embedding space. So
it can be utilized as an explicit semantic compres-
sion technique.
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Figure 1: Rank-biased Overlap scores between the ba-
sis of our approach and SMS on sparse representations
of SenseBERT Base models. Here the p value indicates
the steep of decline in weights (smaller the p the more
top-weighted the metric is).

4.3.6 Comparing Interpretable
Representations

Both our and SMS approach are similar in the sense
that we can assign human-interpretable features to
the basis of output embeddings. We hence analysed
the similarity of the semantic information of the
two embedding spaces. We measured the Spear-
man rank correlation of the coefficients in each pair
of basis generated by our approach and the SMS
approach. We included these values in Table 3,
which showcases the mean of absolute (ignoring
the direction of correlation) correlation coefficients.
Except for SenseBERT, we can see weak correla-
tion scores. Higher correlation between the coeffi-
cients of these interpretable models, along the same
dimension would suggest that they can represent
the same semantic information to a different level
and/or manner. According to the Spearman corre-
lation between our and the SMS approach captures
a different aspect of the encoded semantic content,
but we futher experimented with SenseBERT.

Since the two embeddings expressed from Sense-
BERT – with our and SMS approach – seem to
share the most semantic content, we investigated
them further. During our evaluation, we rely on the
maximum value of each word token, so each dimen-
sion represents the semantic information among its
highest coefficients. Hence, higher value ranks a
word more likely to carry the corresponding seman-
tic information. Therefore, we calculated Rank-
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Figure 2: Representation of the coefficients of several semantic categories where the color represents the assigned
label according to the corpus, whether the prediction according to the maximum is correct (True) or not (False), and
both axis represent its value in their corresponding basis in our representation (SenseBERT, k = 3000, λ = 0.1).

biased Overlap (RBO) scores (Webber et al., 2010)
between the sorted basis, which can be seen in Fig-
ure 1. RBO quantifies a weighted, non-conjoint
similarity measure, which does not rely on corre-
lation. RBO utilizes a p parameter, which controls
the emphasis we have on top ranked items (lower p
indicates more emphasis on the top ranked items).
The p = 1 case differs from the p < 1 case, in that
it returns the un-bounded set-intersection overlap
calculated according to the proposition from Fagin
et al. (2003). On the other hand, p < 1 priori-
tizes the head of the lists. Higher score indicates
higher similarity between two ranked lists, which
in our case means that the two models behave more
similarly.

Both models perform comparable in general with
slightly better scores on sparse models for our ap-
proach. We measured the statistical significance
of the improvements by Berg-Kirkpatrick et al.
(2012), which states the following H0 hypothesis:
if p(δ(X) > δ(x)|H0) < 0.05 then we accept the
improvement of the first model and unlikely to be
cause of random factors, where δ(·) represents the
improvement of the first model. Furthermore, we
used b = 106 bootstraps, which was sufficient ac-
cording to the original paper. Between sparse mod-
els we obtained p = 0.0016 value, which suggests
that the significance of improvement is unlikely to
be caused by random factors.

4.3.7 Qualitative Assessments

Clustering We demonstrate the semantic decom-
position of 3 pairs of semantic categories in Fig-
ure 2. Each marker corresponds to a concrete word
occurrence with their color reflecting their expected

supersense. The markers also indicate whether
the prediction made according to the highest co-
ordinate is correct (True) or not (False). Further-
more, both axis represents its actual value in its
corresponding base. We can notice in these figures
how well data points are separated with respect to
their semantic properties.

Shared Space of Multilingual Domain The
availability of multilingual encoders allows us to
use our supersense classifier on languages other
than English as well. In order to test the appli-
caility of XLM-RoBERTa in such a scenario, we
tested it on some sentences in multiple languages,
the outcome of which is included in Table 4.

To this experiment, we constructedWD in the
usual manner from Sparse XLM-RoBERTa trans-
former on the SemCor dataset (which is in English).
After that, we generated the context aware word
vectors for the sentences. We then obtained the
sparse representations from them by employing
the already optimized dictionary matrix from Sem-
Cor. We finally utilized the previously constructed
distance matrix to obtain the interpretable represen-
tation. In Table 4, we marked the expected label
above the text with blue, and the top 3 predictions
with red below the text.

We included 3 typologically diverse languages
German (DE), Hungarian (HU) and Japanese (JP).
Overall, the expected label was within the top 3
predictions irrespective of the language, which sug-
gests that the overlap in semantic distribution is
high between languages, but further quantitative
experiments are also needed to support that state-
ment.
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Dein bester
adj.all

adj.all
noun.event

verb.competition

Lehrer
noun.cognition

noun.person
noun.act

noun.cognition

ist
verb.stative

verb.stative
verb.social
verb.change

dein letzter
adj.all

adj.all
noun.shape

verb.competition

Fehler.
noun.act

noun.act
noun.attribute
noun.feeling

DE) Translation: Your best teacher is your last mistake. – Ralph Nader

Együtt
adv.all

adv.all
adj.all

verb.social

erő
noun.attribute

noun.attribute
noun.feeling

noun.phenomenon

vagyunk,
verb.stative

verb.stative
verb.weather

verb.consumption

szerteszét
adj.all

verb.body
adj.all

verb.competition

gyöngeség.
noun.attribute

noun.feeling
noun.state

noun.attribute

HU) Translation: We are strong together, and weak as scattered. – Albert Wass

千代田町

noun.location

noun.Tops
noun.location
noun.object

に 着いた

verb.motion

verb.motion
verb.change
verb.contact

時

noun.time

noun.event
noun.time
noun.shape

には、 禎子

noun.person

noun.Tops
noun.person
noun.animal

は すでに

adv.all

adv.all
noun.object
noun.food

生まれていた

verb.body

verb.change
verb.body

adj.all

のです。

JP) Translation: Upon arriving to Chiyoda, Sadako was already born. – Eleanor Coerr

Table 4: A few example of shared knowledge between languages in XLM-RoBERTa. We used the transformation
matrix learned on the English SemCor dataset with Sparse XLM-RoBERTa Base model. Above the text with blue
we mark the expected label, and below the text with red the top 3 predictions.

5 Conclusion

In this paper, we demonstrated our approach to
obtain interpretable representations from contex-
tual representations, which represents semantic in-
formation in the basis with high coefficients. We
demonstrated its capabilities by applying it on su-
persense prediction task. However, it can be uti-
lized on other problems as well such as term expan-
sion and knowledge base completion.

We additionally explored the application of
sparse representations, which successfully ampli-
fied the examined semantic information. We also
considered the effect of incorporated prior knowl-
edge in the form of applying SenseBERT embed-
dings, which showed that its additional objective
during pre-training can amplify those features. Fur-
thermore, explored the space of condensed (Distil-
BERT) and multilingual (XLM-RoBERTa) spaces.
We examined the improvements come by RoBERTa
from a semantic standpoint. Note that our classifi-
cation decision is currently made by simply finding
the coordinate with the largest magnitude.

In conclusion, our experiments showed that it is
possible to extract and succinctly represent human-
interpretable information about words in trans-
formed spaces with much lower dimensions than
their original representations. Additionally, it al-
lows us to make decisions about word vectors in

a more transparent manner, where some kind of
explanation is already assigned to the basis of a
representation, which can lead us to more transpar-
ent machine learning models.
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terpretability to word embeddings while preserving
semantic structure. Natural Language Engineering,
page 1–26.

247



Proceedings of the Joint Conference of the 59th Annual Meeting of the Association for Computational Linguistics and the 11th
International Joint Conference on Natural Language Processing: Student Research Workshop, pages 248–259

August 5–6, 2021. ©2021 Association for Computational Linguistics

Personal Bias in Prediction of Emotions Elicited by Textual Opinions

Piotr Miłkowski∗, Marcin Gruza∗, Kamil Kanclerz∗,
Przemysław Kazienko∗, Damian Grimling†, Jan Kocoń∗

∗Wrocław University of Science and Technology, Wrocław, Poland
†Sentimenti Sp. z o.o., Poznań, Poland
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Abstract

Analysis of emotions elicited by opinions,
comments, or articles commonly exploits an-
notated corpora, in which the labels assigned
to documents average the views of all anno-
tators, or represent a majority decision. The
models trained on such data are effective at
identifying the general views of the popula-
tion. However, their usefulness for predict-
ing the emotions evoked by the textual con-
tent in a particular individual is limited. In
this paper, we present a study performed on
a dataset containing 7,000 opinions, each an-
notated by about 50 people with two dimen-
sions: valence, arousal, and with intensity of
eight emotions from Plutchik’s model. Our
study showed that individual responses often
significantly differed from the mean. There-
fore, we proposed a novel measure to estimate
this effect – Personal Emotional Bias (PEB).
We also developed a new BERT-based trans-
former architecture to predict emotions from
an individual human perspective. We found
PEB a major factor for improving the quality
of personalized reasoning. Both the method
and measure may boost the quality of content
recommendation systems and personalized so-
lutions that protect users from hate speech or
unwanted content, which are highly subjective
in nature.

1 Introduction

Emotions are a very important component of natu-
ral human communication. Collectively, we tend
to react quite similarly emotionally to phenomena
around us, but at the level of the individual, some
differences can be discerned in the intensity of the
emotions experienced. Various emotional models
have been used in different studies. In Russell
and Mehrabian (1977), emotional states are located
in a multidimensional space, with valence (nega-
tive/positive), arousal (low/high) and dominance

explaining most of the observed variance. Another
approach distinguishes different number of basic,
discrete emotions, e.g. six by Ekman and Friesen
(1976) and eight by Plutchik (1982).

We can observe continuous interest in sentiment
analysis and emotion recognition within the filed of
natural language processing (Kocoń and Maziarz,
2021; Alswaidan and Menai, 2020; Kanclerz et al.,
2020). Recently, they commonly rely on deep ma-
chine learning methods applied to large amounts
of textual data (Yadav and Vishwakarma, 2020;
Kocoń et al., 2019b; Kocoń et al., 2019). Never-
theless, emotion recognition remains a challenging
task. One of the reasons is the lack of high quality
annotated data, where annotators are a representa-
tive sample of the whole population. Commonly,
a small number (usually 2 to 5) of trained anno-
tators are involved. Due to differences between
individual opinions, reinforced by multiple choice
possibilities (6 or 8 emotions), this often leads to
low inter-annotator agreement (Hripcsak and Roth-
schild, 2005). Averaging the annotations collected
in such a way can still be a good input for effec-
tive systems recognizing the most likely emotional
responses shared by most people. This, however,
is not suitable to make accurate inferences about
emotions to be evoked in specific individuals.

In this work, we developed a method to pre-
dict text-related emotions that most closely reflect
the reactions of a given reader. In addition to the
classical approach of providing only texts to the
model input, we extended it with our new feature
– Personal Emotional Bias (PEB). It reflects how
an individual perceived the texts they evaluated in
the past. In this way, we switched from averaging
labels for annotated texts to individual text annota-
tions. We tested the impact of PEB on individual
recognition quality of emotion dimensions, also in
a setup including multilingual transformer-based ar-
chitecture for the following languages: Dutch, En-
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glish, Polish, French, German, Italian, Portuguese,
Russian and Spanish. Our experimental evaluation
revealed that emotional annotation of just a few
texts is appears to be enough to calculate the ap-
proximate value of Personal Emotional Bias for a
given user. This, in turn, enables us to significantly
improve personalized reasoning. Since texts are
independently annotated with ten emotional states,
each with its own level, we trained and tested both
multi-task classifiers and multivariate regressors.

This work is inspired by our initial idea of
human-centred processing presented in (Kocoń
et al., 2021). In addition, in paper (Kanclerz et al.,
2021), we have shown that mixing user conformity
measures with document controversy is efficient in
personalized recognition of aggressiveness in texts.

2 Related work

The studies have shown that the recognition of emo-
tions should take into account the subjective as-
sessments of individual annotators (Neviarouskaya
et al., 2009; Chou and Lee, 2019; Kocoń et al.,
2019a). A personal bias related to the individual be-
liefs may have its origins in the demographic back-
ground and many factors such as the first language,
age, education (Wich et al., 2020a; Al Kuwatly
et al., 2020), country of origin (Salminen et al.,
2018), gender (Bolukbasi et al., 2016; Binns et al.,
2017; Tatman, 2017; Wojatzki et al., 2018), and
race (Blodgett and O’Connor, 2017; Sap et al.,
2019; Davidson et al., 2019; Xia et al., 2020). The
uniqueness of person’s annotations may also be
derived from their political orientations and not
respecting them can significantly reduce the effec-
tiveness of the classifier (Wich et al., 2020b).

The most common approach to mitigate the im-
pact of personal bias on method performance is
to utilize only annotations provided by the experts
(Waseem, 2016). However, we should be aware
that selecting a small group of experts poses a risk
of involving too few annotators for too many doc-
uments (Wiegand et al., 2019) or creating unfair
models, that will discriminate minorities (Dixon
et al., 2018). Besides, it may be difficult to find the
sufficient number of experts. To resolve this, non-
expert annotators can be involved. An average of
annotations from non-expert is enough to achieve
expert-level labeling quality (Snow et al., 2008).
Personal bias also affects the model evaluation pro-
cess. Therefore, annotations from a separate set of
annotators should be used in the training and test

set (Geva et al., 2019).

The high variety of annotators’ beliefs directly
impacts the diversity of their subjective assess-
ments. It often means that there is no single correct
label for a given text (Aroyo and Welty, 2013). In
such case, Bayesian probabilistic models can be
used to estimate consensus level, which can then be
converted to categorical values using simple meth-
ods, e.g. thresholding (Kara et al., 2015). Another
solution is to regard disagreement in annotations
as a positive factor that will provide more informa-
tion about single humans. This ambiguity can be
utilized in many ways. Patterns discovered from
differences in annotations can be exploited both to
group like-minded individuals (Akhtar et al., 2020)
and to automatic detect spammers, deliberately in-
troducing noise into their assessments (Raykar and
Yu, 2012; Soberón et al., 2013). On the other hand,
too high annotations similarity level may be related
to the conformity bias, which reflects an excessive
influence of the group’s beliefs on its members
(Gao et al., 2019). Moreover, annotation disagree-
ment can determine the ambiguity of a given text
(Aroyo and Welty, 2013). The variability between
annotators can also be used to generate soft labels
such as inter-annotator standard deviation, which
may be an additional feature of a given sample (Ey-
ben et al., 2012). Such soft labels can also be a
good source of information about annotators them-
selves, e.g. to estimate the unanimity of a specific
social group in recognizing emotions (Steidl et al.,
2005). Another approach is to leverage the ensem-
ble model architecture to incorporate knowledge
regarding the subjectivity of emotion recognition
(Fayek et al., 2016). In order to reduce the potential
noise caused by relying solely on subjective annota-
tions, a hybrid method can be applied mixing both
individual ratings and majority voting (Chou and
Lee, 2019). The final model consists of multiple
sub-models using annotations of individuals sep-
arated and combined. All sub-models are fused
providing one general and non-personalized deci-
sion.

The topic of emotion personalization was ex-
plored in the context of social photos (Zhao et al.,
2016) or emotions evoked by music (Yang et al.,
2007). However, in the context of text analysis, it
has not been studied sufficiently yet.
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Figure 1: Rating distributions within emotional cate-
gories. All values are normalized to the interval [0,1].

3 Dataset and annotation procedure

To create a Sentimenti1 dataset, a combined ap-
proach of different methodologies were used,
namely: Computer Assisted Personal Interview
(CAPI) and Computer Assisted Web Interview
(CAWI) (Kocoń et al., 2019a). Two studies were
carried out involving evaluation of: 30,000 word
meanings (CAWI1) and 7,000 reviews from the In-
ternet (CAWI2). Reviews cover 3 areas: medicine
(3,130 texts), hotels (2,938 texts), and other (936
texts). In this work, we will focus on the use of
CAWI2 due to the evaluation of entire documents
within the study.

In the CAWI2 study, each text received an aver-
age of 50 annotations. To obtain reliable results,
the following cross-section of the population was
used: 8,853 unique respondents were sampled from
the Polish population. Sex, age, native language,
place of residence, education level, marital status,
employment status, political beliefs and income
were controlled, among other factors.

The annotation schema was based on the proce-
dures most widely used in NAWL (Riegel et al.,
2015), NAWL BE (Wierzba et al., 2015) and
plWordNet-emo (Zaśko-Zielińska et al., 2015; Janz
et al., 2017; Kocoń et al., 2018; Kulisiewicz et al.,
2015). Therefore, the acquired data consists of ten
emotional categories: valence, arousal, and eight
basic emotions: sadness, anticipation, joy, fear, sur-
prise, disgust, trust and anger. Mean text rating
distributions within emotional categories are pre-
sented in Figure 1. In total, 7k opinions * average
of 53.46 annotators per opinion * 10 categories =
3.74M single annotations were collected.

1https://www.sentimenti.com/

The annotation process was carried out using the
web-based system with an interface designed in
collaboration with the team of psychologists to re-
duce as much as possible the difficulty of handling
the annotation process and its impact on grades
or their quality (see Figure 2). The collection re-
sulting from the study is copyrighted and we got
permission to conduct the research. A sample con-
taining 100 texts with annotations and annotators’
metadata with the source code of the experiments
are publicly available on GitHub2.

4 Personal Emotional Bias – PEB and
agreement measures

In principle, we assume our collection (Internet re-
view documents) is split into three partitions: past
(Dpast), present, and future (Figure 3). The past
texts are used to estimate individual user beliefs
and biases. The present documents allow us to train
the reasoning model, whereas the future reviews
are for the evaluation, test purposes.

To quantify individual subjective emotional per-
ception of textual content, we introduce a new mea-
sure – Personal Emotional Bias, PEB(u, c). It
describes to what extent the previously known an-
notations vc,d,u of the given user u differ from the
average annotations provided by all others for emo-
tional category c, aggregated over all documents
d ∈ Dpast. Emotional category c ∈ C, where C =
{sadness, anticipation, joy, fear, surprise,
disgust, trust, anger, valence, arousal}. Inte-
ger values of the emotional annotations vc,d,u come
from the study design, Figure 2, i.e. vc,d,u ∈
{−3,−2,−1, 0, 1, 2, 3}, if c = valence and
vc,d,u ∈ {0, 1, 2, 3, 4} otherwise.

First, we need to compute the mean emotional
value µc,d of each document d ∈ Dpast in each
category c over all previously known d’s annota-
tions, i.e. provided by users from the train data,
u ∈ U traind :

µc,d =

∑
u∈Utrain

d
vc,d,u

|U traind | , d ∈ Dpast

In the next step, we calculate the standard de-
viation σc,d of each emotional category c for each
document d in a similar way:

2https://github.com/CLARIN-PL/
personal-bias
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This is our favorite place in the Giant Mountains, so we're biased. The cuisine is excellent (fantastic trout or 

Hungarian cake), delicious honey beer from our own brewery and the palace is getting prettier and prettier. This time 

we used only the restaurant, but next time we will also stay in the hotel again. We will come back here many times.

Figure 2: Emotional annotations for a real example of the hotel review – the CAWI study. Participants scored eight
basic emotions (Plutchik model), arousal and valence on separate scales; varying from 0 to 4 for emotions and
arousal and -3 to 3 for valence. Example review was manually translated from Polish to English.

σc,d =

√∑
u∈Utrain

d
(vc,d,u − µc,d)2

|U traind | , d ∈ Dpast

Based on the above knowledge, we can estimate
the Personal Emotional Bias PEB(u, c) of the user
u for the emotional category c. It is an aggregated
Z-score, as follows:

PEB(u, c) =

∑
d∈Dpast

u

vc,d,u−µc,d
σc,d

|Dpast
u |

where Dpast
u is the set of documents d ∈ Dpast

annotated by user u.
Please note that PEB(u, c) may be calculated

for any user, who provided their annotations to any
document d ∈ Dpast. It means that we can estimate
PEB for users from the dev and test set, always ag-
gregated over past documents. Nevertheless, com-
ponents µc,d and σc,d are fixed and computed only
based on the previously known knowledge, i.e. for
users from the train set. Obviously, the train, dev,
and test sets are different for each out of ten cross-
validation folds, which forces the recalculation of
all PEB values at each fold.

The PEB measure provides us information about
the unique views and preferences of the individ-
ual user. We suspect PEB to be more informative
in the case of ambiguous texts with relatively low
agreement among the annotators. To measure this
agreement we leveraged two different document
controversy measures: (1) the averaged Krippen-
dorff’s alpha coefficient αint (Krippendorff, 2013)

and (2) the general contrstd controversy measure.
The former is commonly used; it is resistant to
missing annotations (Al Kuwatly et al., 2020; Wich
et al., 2020a; Binns et al., 2017). According to
our data, we used the variant of Krippendorff’s
alpha coefficient αint with the interval difference
function δinterval(vc,d,u, vc,d,u′) which calculates
the distance between the two annotations vc,d,u and
vc,d,u′ for document d provided by two different
users u and u′ regarding emotional category c:

δinterval(vc,d,u, vc,d,u′) = (vc,d,u − vc,d,u′)2

Our first emotional controversy measure is ex-
pressed by the Krippendorff’s alpha coefficient
αintc separately calculated for the specified emo-
tional category c ∈ C.

The alternative second measure contrstd(d) was
also used to analyze the controversial nature of
any document d. It is the standard deviation of
user ratings averaged over all emotional categories
c ∈ C:

contrstd(d) =

∑
c∈C σc,d
|C|

5 Experimental plan, scenarios

All experiments were performed for two types of
machine learning tasks, Figure 4:

• Multi-task classification - where each task
was to predict an accurate discrete answer
for each emotional category, i.e. one of the
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Figure 3: The CAWI2 collection was divided by the
texts (columns) and the users/annotators (rows). The
past texts (15% of all) were used to compute the PEB
measure. The models were trained on 55% of the
present texts and 80% of all users. They are verified
with the dev set (disjoint from train) and tested on the
test set - both containing 10% of users and 15% of texts
each. The aforementioned proportions were chosen so
that there were at least 1000 texts and more than 500 an-
notators in each section. The user-based split into train,
dev and test is performed in the 10-fold cross-validation
schema.

five classes {0, 1, 2, 3, 4} for eight emo-
tions and arousal, and one out of seven classes
for valence. Due to data imbalance (’0’ was
the dominating class for most emotions), the
F1-macro measure was used to estimate the
model performance;

• Multivariate regression - where the task was
to estimate the numerical value of each emo-
tional category. Such approach takes into ac-
count the distances between user ratings. R-
squared measure was applied to compute the
model quality.

In order to investigate the effect of PEB on emo-
tion recognition for individual annotators, the fol-
lowing scenarios of the input data were considered:

• AVG - mean value of the annotation (regres-
sion) or most common class (classification)
for all texts compared to the target values; this
scenario is treated as initial baseline;

• TXT - text embeddings; it was the main base-
line;

Figure 4: Two approaches to reasoning: (1) 10-task
classification and (2) multivariate regression. In (1),
the output contains 10 out of 52 classes. In (2), the
output contains 10 real values, one for each emotional
category. V – valence, A – emotional arousal.

• TXT+DEM - text embeddings and annotator
demographic data;

• TXT+PEB - text embeddings and annotator’s
PEB;

• ALL - text embeddings, demographic data
and PEB;

Additional SIZE scenario was performed to exam-
ine the impact of the number of annotated texts in
PEB on the emotion recognition quality.

As a source of text embeddings the following
models for Polish were used: (1) HerBERT, (2)
XLM-RoBERTa, (3) fastText and (4) RoBERTa.
The first one – HerBERT is currently considered
state of the art according to the KLEJ benchmark
(Rybak et al., 2020). Two neural network archi-
tectures were used to perform the experiments:
(1) multi-layer perceptron (MLP) for transformer-
based text embeddings (2) LSTM for fastText-
based word embeddings (with 32 hidden units and a
dropout equal to 0.5) with MLP to combine LSTM
output with additional features. In both cases, the
size of the input depends on the input embedding
size. MLP output for classification is a multi-hot
vector of length 52 (8 emotions x 5 possible ratings,
7 possible valence ratings, and 5 possible emotional
arousal ratings), and for regression – a vector of
size 10 containing real values ranging from 0 to 1
for each emotion dimension.

Ten fold cross-validation was applied as random-
ized non-overlapping partition of users and one
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division of texts, Figure 3. Such an approach is
in line with leave-one-subject-out (LOSO) cross-
validation where data is also split according to par-
ticipants (subjects), i.e. data on one or more users
are separated in the test set. Recently, it is com-
monly treated as SOTA approach in emotion recog-
nition (Barlett et al., 1993; Schmidt et al., 2019)

In the SIZE scenario, we verified what incre-
mental gain in model evaluation score we would
achieve by increasing the number of texts in PEB
(Figure 5 and Figure 6). The PEB measure denotes
how much emotional perception of a given user dif-
fers from opinions of other users. To examine the
significance of PEB for different emotional dimen-
sions, we calculated the correlation between the
PEB model results (R-squared) and the Krippen-
dorff’s alpha coefficient αintc for each emotional
category c ∈ C.

To investigate the impact of PEB also for multi-
ple languages, we translated Polish texts automat-
ically into 8 languages using DeepL3. According
to our manual tests and evaluation of translation
quality, DeepL is characterized by better context
matching of the target language utterances than
other solutions available on the market. We ap-
plied the original annotations to the translated texts
and then prepared dedicated models using XLM-
RoBERTa. The training, test and validation sets
were identical for all languages. The results are in
Table 5 for classification and Table 6 for regression.

In order to verify the significance of differences
between the evaluation results of each model in
each scenario, we performed the independent sam-
ples t-test with the Bonferroni correction, as we
tested more than two different models. We also
checked the normality assumptions before its ex-
ecution using Shapiro-Wilk test. If a sample did
not meet them, we used the non-parametric Mann-
Whitney U test.

6 Results

The results for all experimental scenarios and mod-
els, averaged collectively over ten folds are pre-
sented in Table 1 for classification and Table 2 for
regression. The performance for each emotional
category for all experimental variants for the best
model (HerBERT), is specified in Table 3 for clas-
sification and Table 4 for regression. The results of
multilingual model (XLM-RoBERTa) trained on
sets translated into 8 languages can be seen in Table

3https://www.deepl.com/

AVG TXT TXT+DEM PEB TXT+PEB ALL
(1) HerBERT 5.97 17.69 21.94 32.02 38.42 38.81
(2) XLM-RoBERTa 5.97 17.30 21.29 31.91 38.20 38.44
(3) fastText+LSTM 5.97 16.48 20.52 32.09 37.25 38.36
(4) Polish RoBERTa 5.97 17.01 20.39 32.05 37.10 37.38

Table 1: Classification performance: F1-macro (%) av-
eraged over ten folds. The best model for a specified
scenario (column) is marked in bold; the best scenario
for a given model (row) is underlined. More than one
marked value means statistical insignificance between
them.

AVG TXT TXT+DEM PEB TXT+PEB ALL
(1) HerBERT -0.17 13.16 14.37 32.27 45.96 45.64
(2) XLM-RoBERTa -0.17 12.11 13.08 32.24 44.76 44.49
(3) fastText+LSTM -0.17 10.93 11.70 32.45 43.74 43.50
(4) Polish RoBERTa -0.17 9.92 10.53 32.26 42.45 42.29

Table 2: Performance of regression models: R-squared
averaged over folds. The best model in a given scenario
(column) is in bold; the best scenario for a model (row)
is underlined. More than one value highlighted means
statistical insignificance between them.

5 for classification and Table 6 for regression.
Figure 5 presents R-squared results of reasoning

for the TXT+PEB scenario and HerBERT model
in relation to the number of texts from the past
set used to estimate personal bias PEB(u, c); av-
eraged over all emotional categories and all users
u. The past texts d annotated by user u are either
randomly selected or starting from the most con-
troversial, i.e. with the greatest contrstd(d) value
among all annotated by u in the past. The compo-
nent results for each emotion and only for random
selection are in Figure 6.

Figure 7 depicts the correlation between the an-
notation consistency counted using Krippendorff’s
alpha and the prediction performance in the regres-
sion task on the best model – HerBERT.

7 Discussion

The best results for each model were observed in
the TXT+PEB scenario. The use of demographic
data as additional user characteristics apart from
the PEB measure in the ALL scenario did not pro-
vided significantly better results. HerBERT model
achieved the best results, but differences between
models are not statistically significant (except for
the Polish RoBERTa).

The performance improvement related to demo-
graphic data about individual users was considered
in the TXT+DEM scenario. Demographic features
encode bias for social groups. However, once we
have individual biases (the PEB measure), demo-
graphics becomes redundant and negatively affects
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AVG TXT TXT+DEM PEB TXT+PEB ALL std αintc
sadness 6.28±0.18 16.47±0.90 21.91±1.08 29.93±2.12 37.85±1.26 37.68±0.94 1.18 0.18
anticipation 6.11±0.32 13.43±0.26 19.14±1.12 36.21±2.00 38.58±1.35 38.68±1.61 1.32 0.06
joy 5.64±0.26 20.58±1.36 25.58±1.22 30.69±1.65 39.13±1.24 39.62±1.74 1.28 0.24
fear 5.20±0.23 16.07±0.29 18.57±1.30 34.58±1.65 38.80±1.25 39.22±1.88 1.07 0.09
surprise 6.45±0.28 13.05±0.31 16.73±1.28 35.07±1.15 36.23±1.04 37.52±1.37 1.30 0.02
disgust 5.22±0.31 17.32±0.80 20.13±1.37 30.31±1.69 36.25±1.07 36.75±0.94 1.13 0.16
trust 5.36±0.27 17.11±0.76 22.71±1.43 30.02±1.45 37.07±1.00 38.94±1.56 1.26 0.19
anger 5.33±0.21 21.09±0.79 24.42±1.30 29.90±1.71 37.91±1.32 38.12±1.19 1.31 0.25
arousal 7.99±0.18 18.80±1.63 24.42±1.30 42.08±1.31 45.48±0.98 44.45±0.72 1.28 0.05
valence 6.10±0.21 23.00±1.42 25.75±1.12 21.45±1.39 36.89±0.82 37.15±1.26 1.58 0.38

Table 3: Classification performance – F1-macro for HerBERT model; last two columns are (1) aggregated standard
deviation (std) and (2) Krippendorff’s alpha coefficient αint

c .

AVG TXT TXT+DEM PEB TXT+PEB ALL std αintc
sadness -0.14±0.13 14.08±1.85 14.73±2.27 30.24±3.37 44.93±2.46 44.40±2.74 1.18 0.18
anticipation -0.12±0.13 5.03±0.77 6.60±2.10 44.24±2.66 49.50±2.27 49.21±2.43 1.32 0.06
joy -0.13±0.15 20.20±2.21 21.41±2.19 26.82±2.92 47.66±2.00 47.50±1.97 1.28 0.24
fear -0.22±0.30 6.89±1.41 8.75±1.67 38.77±4.08 46.34±3.38 46.05±3.46 1.07 0.09
surprise -0.14±0.17 1.00±0.55 2.82±2.62 43.20±2.75 44.96±2.58 44.42±2.72 1.30 0.02
disgust -0.25±0.29 12.93±1.58 14.03±1.70 29.38±3.43 43.06±3.02 42.84±3.25 1.13 0.16
trust -0.13±0.21 15.92±1.50 16.81±1.73 29.72±3.25 45.69±2.36 45.57±2.25 1.26 0.19
anger -0.17±0.15 20.04±2.15 20.51±2.31 23.72±2.95 44.61±2.27 44.41±2.29 1.31 0.25
arousal -0.20±0.21 3.05±1.10 4.70±1.28 47.30±1.98 50.87±1.52 50.37±1.70 1.28 0.05
valence -0.16±0.13 32.44±2.75 33.35±2.56 9.32±2.22 41.98±1.61 41.68±1.49 1.58 0.38

Table 4: Regression performance – R-squared for HerBERT model; last two columns are (1) aggregated standard
deviation (std) and (2) Krippendorff’s alpha coefficient αint

c .

AVG TXT TXT+DEM PEB TXT+PEB ALL
Dutch 5.97 17.44 20.83 32.03 37.88 38.24
English 5.97 17.47 21.19 32.20 37.75 38.32
French 5.97 17.13 21.08 32.23 37.48 38.19
German 5.97 17.13 21.04 32.14 37.85 38.13
Italian 5.97 17.12 20.84 31.73 37.66 38.24
Portuguese 5.97 17.35 21.03 31.99 37.70 38.29
Russian 5.97 17.23 21.30 32.32 37.75 38.27
Spanish 5.97 17.42 21.35 32.19 37.75 38.35

Table 5: Classification results (F1-macro, XLM-
RoBERTa) for the texts translated into eight languages.

AVG TXT TXT+DEM PEB TXT+PEB ALL
Dutch -0.17 11.76 12.75 32.29 44.41 44.11
English -0.17 12.04 12.91 32.23 44.70 44.33
French -0.17 11.79 12.67 32.26 44.44 44.13
German -0.17 11.76 12.50 32.30 44.42 44.04
Italian -0.17 11.69 12.75 32.20 44.39 44.11
Portuguese -0.17 11.74 12.60 32.31 44.46 44.11
Russian -0.17 11.74 12.33 32.22 44.35 44.07
Spanish -0.17 11.79 12.66 32.26 44.43 44.08

Table 6: Regression results (R-squared, XLM-
RoBERTa) for the texts translated into eight languages.

the results: compare TXT+PEB vs. ALL.

The PEB measure quantifies the difference in
opinions of a particular user with respect to the
others. In addition to beliefs, user decisions are
also influenced by UI design. Several emotional
categories could prove to be incomprehensible to
individual users, so that their annotations do not
reflect their opinions. Moreover, the scale of val-
ues could be misunderstood by some annotators
who could mark the middle value when they were
unsure whether a given emotional category was
present in the analyzed text at all.

The use of simple statistical methods based on
the averaged opinion about the text presented in
the AVG scenario performs much worse than lan-
guage models combined with MLP. Predicting the
user’s opinion solely upon the text in the TXT sce-
nario (our baseline) results in poor performance.
Therefore, there is a need to exploit personalized
user data. The phenomenon of improving inference
thanks to personalization is the same for each of the
four considered models. It means that the proper
personalization carried out at the stage of input data
is much more important than the language model
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Figure 5: R-squared results on TXT+PEB scenario
and HerBERT model in relation to the number of texts
from the past set used to compute PEB(u, c) values
for a given user u, averaged over all emotional cat-
egories and all users. Two text selection procedures
were considered: random and the most controversial –
contrstd(d). The baseline is the TXT scenario. The
results for emotion categories and random selection are
in Figure 6.

or inference model.

In the case of regression models, the complemen-
tary nature of the PEB measure and the text itself
is clearly visible, see the PEB and TXT scenarios
in Table 2, Table 4, and Table 6. This is mani-
fested in a large number of cases in which a higher
quality of inference from the text (TXT scenario)
corresponds to the lower quality of the PEB-based
inference (PEB scenario) and vice versa. In turn,
their combination provides very good results. We
calculated the correlation value for the results of
evaluation over each emotional category and they
are equal to -0.558 and -0,970 for the results in
Table 3 and Table 4, respectively. We also analyzed
the correlation between two values: (1) the sum
of the results in the TXT and PEB scenarios and
(2) the result in the TXT + PEB scenario. For the
regression models, correlations are 0.999, 0.995,
0.896 for the results in Table 2, Table 4 and Table 6,
respectively. In a similar way, we computed the cor-
relation values for the results of the classification
models; they reach: 0.802, 0.931, 0.257, for data
from Table 1, Table 3 and Table 5, respectively.

The performance in the PEB scenario is the low-
est for the valence category, which may result from
the highest agreement level (αintc = 0.38) and
more flat distribution, Figure 1. Simultaneously,
the reasoning based on text only (TXT scenario)
demonstrated an opposite dependency: its perfor-
mance is greatest for the highest agreement (va-

Figure 6: R-squared results on TXT+PEB scenario and
HerBERT model in relation to the number of texts from
the past set, randomly selected to compute PEB(u, c)
averaged over all users u – the solid lines. The dotted
lines of the same color is the baseline for a given cate-
gory (the TXT scenario).

Figure 7: R-squared results on PEB scenario and Her-
BERT model in relation to Krippendorff’s Alpha. Each
data point corresponds to a separate emotional category
from Table 4.

lence) and lowest for low agreements (surprise,
arousal and anticipation). It means that the more
users disagree, to the greater extent we should rely
on personal biases rather than solely on the textual
content.

Even only one document annotated by a user
utilized to estimate PEB can boost the reasoning,
Figure 5. Moreover, only about 5-7 texts provided
in the past are enough to capture the personal user
beliefs. Later on, the gains are much smaller. This
is valid for all emotional categories, Figure 6. The
benefit is greater if PEB is computed for 1-3 most
controversial texts (contrstd) annotated by a given
user.

We have discovered a nearly linear negative cor-
relation between annotators’ agreement level (Krip-
pendorff’s alpha coefficient) and performance of
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the regression model based only on the personal
bias (PEB), Figure 7.

8 Conclusions

Summarizing the experiments performed, we can
draw several conclusions related to additional data
that can be gathered during the annotation process.
By means of them, we are able to significantly
improve reasoning about emotional categories, i.e.
prediction of emotions evoked by the given textual
opinion in different people.

The most important conclusion is that the use
of our proposed Personal Emotional Bias measure
allows for a tremendous gain in prediction scores
for the particular annotator. Thus, we have shown
that using the current state-of-the-art methods for
embedding texts and data from just a few annota-
tions made by an individual user, we can infer the
user’s perception of emotions with much greater
effectiveness. This opens up the possibility of cre-
ating dedicated and personalized solutions targeted
at specific social groups and individuals we want
to reach with a given message.

We have shown that demographic data of anno-
tators have a positive impact on predicting their
reactions, however not as much as the answers they
provided during the survey itself. In addition, the
combination of text content, demographic data and
the single PEB feature built on the basis of their
historical ratings is even several times better than
the quality of responses given by the system based
on text data alone.

Such a great influence on the outcome of single-
individual data reveals a completely new direction.
The NLP solutions should focus more on good de-
sign of the annotation process, its flow and single
text-annotation sets rather than on post-processing
and generalization of data, i.e. common class la-
bels received by majority voting. The best proof
of this thesis is the fact that we are able to success-
fully ignore the problem of annotator disagreement
within a given text and fill in these gaps with human
information.

In future work, we want to investigate the effect
of individual PEB vector components on recogni-
tion quality. Additionally, we want to extend the
PEB with information about the averaged annota-
tion value of texts. Finally, the quality of dedicated
models for individual emotional dimensions can be
compared to the multi-task model presented in this
work.
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Jan Kocoń and Marek Maziarz. 2021. Mapping word-
net onto human brain connectome in emotion pro-
cessing and semantic similarity recognition. Infor-
mation Processing & Management, 58(3):102530.
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Zielińska. 2019. Multi-level sentiment analysis of
polemo 2.0: Extended corpus of multi-domain con-
sumer reviews. In Proceedings of the 23rd Confer-
ence on Computational Natural Language Learning
(CoNLL), pages 980–991.
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Jan Kocoń, Arkadiusz Janz, Piotr Miłkowski, Monika
Riegel, Małgorzata Wierzba, Artur Marchewka, Ag-
nieszka Czoska, Damian Grimling, Barbara Konat,
Konrad Juszczyk, Katarzyna Klessa, and Maciej Pi-
asecki. 2019a. Recognition of emotions, valence
and arousal in large-scale multi-domain text reviews.
In Zygmunt Vetulani and Patrick Paroubek, editors,
Human Language Technologies as a Challenge for
Computer Science and Linguistics, pages 274–280.
Wydawnictwo Nauka i Innowacje, Poznań, Poland.
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Abstract

Despite the development of pre-trained lan-
guage models (PLMs) significantly raise the
performances of various Chinese natural lan-
guage processing (NLP) tasks, the vocabu-
lary (vocab) for these Chinese PLMs remain-
s to be the one provided by Google Chinese
BERT (Devlin et al., 2019), which is based
on Chinese characters (chars). Second, the
masked language model pre-training is based
on a single vocab, limiting its downstream task
performances. In this work, we first exper-
imentally demonstrate that building a vocab
via Chinese word segmentation (CWS) guid-
ed sub-word tokenization (SGT) can improve
the performances of Chinese PLMs. Then
we propose two versions of multi-vocab pre-
training (MVP), Hi-MVP and AL-MVP, to
improve the models’ expressiveness. Experi-
ments show that: (a) MVP training strategies
improve PLMs’ downstream performances, e-
specially it can improve the PLM’s perfor-
mances on span-level tasks; (b) our AL-MVP
outperforms the recent AMBERT (Zhang & Li,
2020) after large-scale pre-training, and it is
more robust against adversarial attacks.

1 Introduction

The pre-trained language models (PLMs), includ-
ing BERT (Devlin et al., 2019) and its variants
(Yang et al., 2019; Liu et al., 2019), have been
proven beneficial for many natural language pro-
cessing (NLP) tasks, such as text classification,
question answering (Rajpurkar et al., 2018), natu-
ral language inference (NLI) (Bowman et al., 2015)
and relation extraction (Zhu et al., 2020), on En-
glish, Chinese and many other languages. Al-
though they bring impressive improvements for
Chinese NLP tasks, most Chinese PLMs still use
the vocabulary (vocab) provided by Google Chi-
nese BERT (Devlin et al., 2019). Google Chinese

∗Contact: 52205901018@stu.ecnu.edu.cn.

BERT is a character (char) based model since it
splits the Chinese characters with blank spaces. In
the pre-BERT era, a part of the literature on Chi-
nese natural language processing (NLP) first do
Chinese word segmentation (CWS) to divide the
text inputs into sequences of words and use a word-
based vocab in NLP models (Xu et al., 2015; Zou
et al., 2013). There are many arguments on which
vocab a Chinese NLP model should adopt.

The advantages of char-based models are ap-
parent. First, char-based vocab is smaller, thus
reducing the model size. Second, it does not rely
on CWS, thus avoiding word segmentation error,
which can directly result in performance gain in
span-based tasks such as named entity recognition
(NER). Third, char-based models are less vulnera-
ble to data sparsity or the presence of out-of-vocab
(OOV) words and thus less prone to over-fitting (Li
et al., 2019). However, word-based model has its
advantages. First, it will result in shorter sequences
than char-based counterparties, thus are faster. Sec-
ond, words are less ambiguous, thus helping mod-
els learn the semantic meanings of words. Third,
with a word-based model, exposure biases may be
reduced in text generation tasks (Zhao et al., 2013).
Another branch of literature tries to balance the two
by combining word-based embedding with char-
based embedding (Yin et al., 2016; Dong et al.,
2016).

This article tries to strike a balance between the
char-based and word-based models and provides al-
ternative approaches for pre-training Chinese PLM-
s. We experiment on two approaches to build a
vocab for Chinese PLMs: (1) following Devlin
et al. (2019), separate the Chinese chars with white
spaces, and then learn a sub-word tokenizer (de-
note as CHAR); (2) first segment the sentences
with a CWS toolkit like jieba1, and then learn a

1https://github.com/fxsjy/jieba
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sub-word tokenizer (denoted as SGT); (3) do CWS
and keep the high-frequency words as tokens and
low-frequency words will be tokenized by SGT
(denoted as SEG). See Figure 1 for their workflow
of processing an input sentence. The experiments
show that SGT is best suited for PLMs.

Inspired by the previous work that incorporates
multiple vocabularies (vocabs) or naturally com-
bines multiple vocabs (Yin et al., 2016; Dong et al.,
2016; Zhang & Li, 2020), we also investigate a
series of strategies, which we will call Multi-Vocab
Pre-training (MVP) strategies. The first version of
MVP incorporates a hierarchical structure to com-
bine the char-based vocab and word-based vocab.
From the viewpoint of model forward pass, Chi-
nese characters’ embeddings are aggregated to for-
m the vector representations of multi-gram words
or tokens, which are fed into transformer encoders.
Then the word-based vocab will be used in masked
language model (MLM) training. The second ver-
sion of MVP (denoted as AL-MVP) is to employ
an additional vocab to form an auxiliary loss term
in MLM, enhancing the PLM’s ability to capture
the contextual information.

Extensive experiments and ablation studies are
conducted. We select BPE implemented by sen-
tencepiece2 as the sub-word tokenization model,
and Albert (Lan et al., 2019) (tiny and base mod-
el) as our PLMs. Pre-training is done on Chinese
Wikipedia corpus3 (C-1), and a larger corpus we
collect (C-2). The MVP strategies are compared
on a series of Chinese benchmark datasets, two
of which are sentence classification (CLS) tasks,
two are named entity recognition (NER) tasks, and
the remaining two are machine reading comprehen-
sion (MRC) tasks. The experimental results reveal
the following take-aways: 1) combining CWS and
sub-word tokenization yields the best vocab for
Chinese PLMs; 3) MVP strategies can improve a
single-vocab model on all three types of tasks.

We now summarize the following contributions
in this work.

• We validate that combining CWS and sub-
word tokenization is a better way for building
vocabs for Chinese PLMs.

• We propose the novel MVP pre-training strate-
gies for enhancing the Chinese PLMs, and
they are proven to be effective.

2https://github.com/google/sentencepiece
3https://dumps.wikimedia.org/zhwiki/latest/

2 RELATED WORK

Since Devlin et al. (2019), a large amount of liter-
ature on pre-trained language models appear and
push the NLP community forward with a speed
that has never been witnessed before. Peters et al.
(2018) is one of the earliest PLMs that learns con-
textualized representations of words. GPTs (Rad-
ford et al., 2018, 2019) and BERT (Devlin et al.,
2019) take advantage of Transformer (Vaswani
et al., 2017). GPTs are uni-directional and make
predictions on the input text in an auto-regressive
manner, and BERT is bi-directional and makes pre-
dictions on the whole or part of the input text. At
its core, what makes BERT so powerful are the
pre-training tasks, i.e., Mask language modeling
(MLM) and next sentence prediction (NSP), where
the former is more important than the latter. Since
BERT, a series of improvements have been pro-
posed. The first branch of literature improves the
model architecture of BERT. ALBERT (Lan et al.,
2019) makes BERT more light-weighted by em-
bedding factorization and progressive cross-layer
parameter sharing. Zaheer et al. (2020) improve
BERT’s performance on longer sequences by em-
ploying sparser attention.

The second branch of literature improves the
training of BERT. Liu et al. (2019) stabilize and
improve the training of BERT with a larger cor-
pus. More work has focused on new language
pre-training tasks. ALBERT (Lan et al., 2019) in-
troduce sentence order prediction (SOP). Struct-
BERT (Wang et al., 2019) designs two novel pre-
training tasks, word structural task and sentence
structural task, to learn better representations of
tokens and sentences. ERNIE 2.0 (Sun et al.,
2019) proposes a series of pre-training tasks and ap-
plies continual learning to incorporate these tasks.
ELECTRA (Clark et al., 2020) has a GAN-style
pre-training task for efficiently utilizing all tokens
in pre-training. Our work is closely related to this
literature branch by designing a series of novel pre-
training objectives by incorporating multiple vocab-
ularies. Our proposed method is off-the-shelf and
can be easily incorporated with other pre-training
tasks.

Another branch of literature looks into the role
of words in pre-training. Although not mentioned
in Devlin et al. (2019), the authors propose w-
hole word masking in their open-source repository,
which is effective for pre-training BERT. In Span-
BERT (Joshi et al., 2019), text spans are masked
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Figure 1: An illustration of how to process input sentence into tokens under different methods we define.

in pre-training, and the learned model can substan-
tially enhance the performances of span selection
tasks. It is indicated that word segmentation is vi-
tal for Chinese PLMs. Cui et al. (2019) and Sun
et al. (2019) both show that masking tokens in the
units of natural Chinese words instead of single
Chinese characters can significantly improve Chi-
nese PLMs. Liu et al. (2019) apply CWS to build
a vocab that can improve Chinese-English transla-
tion performance. AMBERT (Zhang & Li, 2020)
propose to leverage vocabs of different granularity
in encoding sentences and improve the pre-training.
In this work, compared to literature, our contri-
butions are: (a) we find that CWS and sub-word
tokenization can improve the pre-trained models’
performances on downstream tasks. (b) we pro-
pose MVP pre-training tasks, which are proven to
improve the expressiveness of pre-trained models
and downstream performances.

3 Our methods

This section presents our methods for rebuilding
the vocab for Chinese PLMs and introducing our
series of MVP strategies.

3.1 Building the vocabs
We investigate four workflows to process the text
inputs, each corresponding to a different vocab (or
a group of vocabs) (Figure 1). We first introduce
the single vocab models, CHAR, SEG and SGT.

For char-based vocab CHAR, Chinese characters
in the corpus are treated as words in English and
are separated with blank spaces, and a sub-word
tokenizer is learned.4 This method is essentially

4Here the sub-word tokenizer mainly learns how to deal
with non-Chinese tokens.

how BERT (Devlin et al., 2019) builds the Chinese
vocab.

SGT (short for segmentation guided
tokenization) requires the corpus sentences
to be segmented with a CWS tool, and a sub-word
tokenizer like BPE is learned on the segmented
sentences. Some natural Chinese words in SGT
will be split into pieces, but there are still many
tokens with multiple Chinese chars.

Finally, SEG (short for segmentation) with size
N is built with the following procedures: (a) do
CWS on the corpus; (b) for long-tail Chinese words
and non-Chinese tokens, tokenize them into tokens
that have high frequencies; (c) sort the vocab via
frequency, and if the most frequent N words or
tokens can cover R percent of the corpus5, then
take them as vocab; if not, then re-do (b).

Note that SEG is essentially how AMBERT
(Zhang & Li, 2020) builds the vocab for their Chi-
nese PLM. However, they do not learn a sub-word
tokenizer after CWS, thus making our SGT differ-
ent from theirs. We will use experiments to show
that our SGT yields comparably better PLMs.

3.2 Multi-vocab pre-training (MVP)

In this subsection, we will introduce MVP, a series
of natural extensions to the MLM task by Devlin
et al. (2019).

3.2.1 Hierarchical MVP
We first introduce hierarchical MVP (Hi-MVP).
Figure 2(a) depicts the architecture of Hi-MVP,
and Figure 1 depicts its procedure for processing

5This follows the implementation of BPE, which also asks
the tokenizer to cover most of the corpus. The ratio is usually
set as 99.99%.
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(a) Hi-MVP (b) AL-MVP

(c) AMBERT

Figure 2: The architectures for the two versions of MVP strategies. The first two are ours, and the third one is
AMBERT’s.

input sentences. Two vocab, a more fine-grained
vocab Vf , and a more coarse-grained vocab Vc,
are combined hierarchically. Sequences are first
tokenized via Vc, and then the Chinese tokens (if
containing multiple Chinese chars) are split into
single chars. Thus Vf consists of Chinese chars
and non-Chinese tokens from Vc. Then Chinese
chars and non-Chinese tokens are embedded into
vectors. The representations of chars inside a token
are aggregated into the representation of this token,
further fed into the transformer encoder. We ap-
ply a convolution network (with kernel size 3 and
#channels equally the embedding size) and max-
pooling to convert the char sequence into a fixed
token level representation in this work.

During MLM task, whole word masking is ap-
plied. That is, we will mask 15% of the tokens in

the Vc. For example, in Figure 2(a), ” 喜欢” (like)
is masked, thus in the char sequence, two tokens
” 喜” and ”欢” are masked. A classifier is designat-
ed to predict the masked Vc token ” 喜欢”. Let x
and y denote the sequences of tokens with lengths
lx and ly, for the same sentence under Vc and Vf , in
which a part of tokens are masked. Denote xmask

as the masked tokens under Vc. The loss function
for MVPhier is

min
θ
− log Pθ(x

mask|x,y)

≈min
θ
−

lx∑

i=1

Ii log Pθ(x
mask
i |x,y), (1)

in which Ixi is a variable with binary values indicat-
ing whether the i-th token is masked in x.
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3.2.2 Auxiliary loss MVP
Figure 2(b) depicts another version of MVP. In this
method, a sentence is tokenized and embedded in a
fine-grained Vf (e.g., a char-based vocab), and an
MLM task on Vf is conducted. However, different
from the vanilla MLM, an auxiliary MLM loss
objective based on a more coarse-grained vocab Vc
is added. Thus, we call this method Auxiliary loss
MVP (AL-MVP).

For example, encoded representations of the
chars ” 喜” and ”欢” inside the word ” 喜欢” is
aggregated to the vector representation of the word,
and an auxiliary MLM layer is tasked to predict the
word-based on Vc. For the aggregator in the exam-
ple, we adopt the BERT-style pooler, which uses
the starting token’s representation to represent the
word’s representation.6 Denote xmask and ymask

as the masked tokens under Vf and Vc, respectively.
The loss function for MVPobj is as follows:

min
θ
− log Pθ(x

mask,ymask|x)

≈min
θ
−

lx∑

i=1

Ixi log Pθ(x
mask
i |x)

− λ ∗
ly∑

i=1

Iyi log Pθ(y
mask
i |x), (2)

in which Ixi and Iyi are variables with binary val-
ues indicating whether the i-th token is masked in
sequence x and y, respectively. Here λ is the coef-
ficient which measures the relative importance of
the auxiliary MLM task.

Note that AL-MVP is different from AMBERT’s
architecture (Figure 2(c)). In AMBERT, a sequence
has to be encoded twice with different vocabs.
Meanwhile, AL-MVP is a plug-in pre-training s-
trategy, and during inference, the PLM is the same
as the original PLM.

We will denote the model pre-trained with Hi-
MVP strategy and vocab V as Hi-MVP(V ) for no-
tational convenience. AL-MVP with a fine-grained
vocab Vf and a coarse-grained vocab Vc are denot-
ed as AL-MVP(Vf , Vc).

4 Experiments

4.1 Setup
Two corpora are used for pre-training. The first one
is Chinese Wikipedia (C-1). We conduct most of

6Due to limited resources available, we leave to future
work to investigate whether alternative aggregators can bring
improvements.

the experiments and ablation studies on this cor-
pus. Finally, we will use the other corpus (C-2) to
match the SOTA performances. C-2 has 25 million
documents, thus it has approximately the same size
as the Chinese corpus in AMBERT (Zhang & Li,
2020). 7

CHAR’s vocab size is set at 21128, which is
the same with Google Chinese BERT. We con-
sider three vocab sizes for SGT: {21,128, 31,692,
72,635}. We will show in experiments that SGT
works best with vocab size 31,692. Moreover, for
the experiments with AL-MVP, we will only con-
sider SGT with vocab size 31,692. We set the
vocab size of SEG to be 72,635, which is the same
as AMBERT. Table 1 reports the basic statistics
for the tokens in these vocabs. As the vocab size
goes up, As the vocab size goes up, the vocab will
include more and more phrase-level tokens (# Chi-
nese chars ≥ 2).

For Hi-MVP, we consider Hi-MVP(SGT) and
Hi-MVP(SEG). For AL-MVP, we consider AL-
MVP(CHAR, SGT), AL-MVP(CHAR, SEG), and
AL-MVP(SGT, SEG). The relative importance co-
efficient λ in Eq. 2 is tuned from the set {0.1, 0.5,
1.0, 2.0, 10.0} via training on a small corpus with
100k sentences and a small dev corpus with 5k sen-
tences. We finally select λ = 0.5 for all models.

For pre-training, whole word masking is adopted,
and a total of 15% of the words (from CWS) in the
corpus are chosen. Furthermore, following BERT
(Devlin et al., 2019), 80% of the chosen words
are masked, a random word replaces 10%, and the
rest remain unchanged. For AL-MVP, 1/3 of the
time masked tokens from the fine-grained vocab
are predicted, and 1/3 of the time masked tokens
from the coarse-grained vocab are predicted, and
for the rest of the time, masked tokens from both
vocabs are predicted.

In this article, all models use the ALBERT as the
encoder. We use two different settings. The first is
for a smaller ALBERT model (ALBERT-tiny). The
number of layers is 3, the embedding size is 128,
and the hidden size is 256. We use this setting for
extensive comparisons and ablation studies. Then
we use the second model configuration, which is
the same as ALBERT base. We pre-trained the best
model from AL-MVP and show that our method
also works for large language models.

7Since AMBERT (Zhang & Li, 2020) does not open-
source their corpus, we collect the corpus ourselves. C-2
consists of Chinese Wikipedia and news articles we crawled
from the web.
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Vocab vocab size zh words zh words (len=1) zh words (len=2) zh words(len>=3) other
CHAR 21,128 48.59 48.59 0 0 51.39
SGT 21,128 89.02 38.61 44.06 6.32 10.98
SGT 31,692 88.49 27.56 51.36 9.57 11.49
SGT 72,635 85.72 17.43 36.72 31.58 14.27
SEG 72,635 89.53 16.86 38.93 33.74 10.47

Table 1: The compositions of different vocabs.

Other ALBERT configurations remain the same
with ALBERT (Lan et al., 2019). The pre-training
hyper-parameters are almost the same with AL-
BERT (Lan et al., 2019) and the maximum se-
quence length is 512. Here, the sequence length is
counted under the more fine-grained vocab for AL-
MVP. The batch size is 1024, and all the models
are trained for 12.5k steps. The pre-training opti-
mizer is LAMB, and the learning rate is 1e-4. For
finetuning, the sequence length is 256, the learning
rate is 2e-5, the optimizer is Adam (Kingma & Ba,
2015), and the batch size is set as the power of
2 so that each epoch contains less than 500 steps.
Each model is run on a given task 10 times, and
the average performance scores are reported for
reproducibility.

4.2 Baseline models
The first group of baselines is the original Google
Chinese BERT (Devlin et al., 2019), with different
vocabs. The second one is AMBERT (Zhang &
Li, 2020), a pre-trained model with two vocabs
of different granularity. For fair comparison, we
pre-train the baselines ourselves, with the same
corpus.

4.3 benchmark tasks
For downstream tasks, we select two sentence pair
classification (CLS) tasks: (1) XNLI from Conneau
et al. (2018) ; (2) LCQMC (Liu et al., 2018). We
also investigate two named entity recognition (N-
ER) tasks. MSRA NER (MSRA) (Levow, 2006)
is from open domain, and CCKS NER8 (CCKS)
is collected from medical records. For machine
reading comprehension (MRC) tasks, we consider
two benchmark datasets, CMRC2018 (Cui et al.,
2019) and ChID (Zheng et al., 2019).

4.4 Results for different vocabs
Table 3 report the results of pre-training ALBERT-
tiny with a series of different vocabs. We can see
that SGT obtains the best results on CLS, while

8https://biendata.com/competition/CCKS2017 2/

CHAR and SGT have comparable results for span-
level tasks NER and MRC. Even though the model
with SEG has more parameters than SGT, it con-
sistently under-performs SGT. The above results
indicate two conclusions. First, CWS alone can not
build a proper vocab for Chinese BERT. Second,
sub-word tokenizers learned on the segmented Chi-
nese corpus can decompose long-tail words into
tokens while keeping meaningful phrases as it is,
improving the downstream performances of AL-
BERT.

Also, Table 3 reports SGT’s performances using
different vocab sizes. The results show that vocab
size 31,692 is best suited for Chinese PLMs. When
the SGT’s vocab size goes up, the less frequent
tokens will not receive enough training, thus af-
fecting the downstream performances. When the
SGT’s vocab size goes down, it is essentially sim-
ilar to CHAR. Thus it can not leverage phrasal in-
formation of the Chinese language. Thus, for the
experiments in the rest of the paper, we only use
SGT with vocab size 31,692.

SGT has the efficiency advantage over CHAR.
We now make inference on the LCQMC test set
using batch size 19, and the sequence length is
kept as it is. We can observe that SGT has a 1.25x
inference speed up than CHAR.

4.5 Results for MVP
In this subsection, we analyze results for our MVP
strategies. We can see from Table 2 that when
trained using the same corpus, our Hi-MVP’s per-
formance can match the AMBERT’s performances.
Note that AMBERT has twice the computational
complexity of our Hi-MVP. Our Hi-MVP encoders
the sentence from char level to phrase level, thus
understanding the components of the sentence.

Note that Hi-MVP’s pre-training works on the
phrase level; thus, it does not perform well on the
span level tasks. Table 3 shows that the AL-MVP
strategy can generally improve all tasks’ results, es-

9This is consistent with the online scenarios of the industry
since user queries usually come one by one.
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task CLS NER MRC
task name LCQMC XNLI MSRA CCKS CMRC2018 ChID

metric Acc. macro F1 exact F1 exact F1 EM Acc.
SGT (31,692) 79.79 60.19 81.07 85.74 61.64 70.97

AMBERT 80.64 60.89 81.57 86.34 62.86 72.45
Hi-MVP(SGT) 80.56 60.98 81.35 86.82 62.65 72.43
Hi-MVP(SEG) 80.35 60.57 81.48 86.56 62.48 72.31

AL-MVP(CHAR, SGT) 80.93 61.43 81.47 86.97 62.93 72.65
AL-MVP(CHAR, SEG) 81.05 61.14 81.83 86.49 63.32 72.87
AL-MVP(SGT, SEG) 81.56 61.77 82.21 87.24 63.29 73.05

Table 2: The main experimental results for our MVP strategies. Our methods outperform AMBERT, even though
they require less computational resources for pre-training.

task CLS NER MRC
task name LCQMC XNLI MSRA CCKS CMRC2018 ChID

metric Acc. macro F1 exact F1 exact F1 EM Acc.
CHAR (21,128) 77.85 59.22 81.14 85.63 61.23 71.05
SGT (31,692) 79.79 60.19 81.07 85.74 61.64 70.97
SGT (21,128) 79.27 59.71 79.07 83.96 61.37 70.76
SGT (72,635) 79.04 59.45 78.79 83.41 60.89 70.51
SEG (72,635) 79.16 59.32 78.63 83.32 60.72 70.28

Table 3: Results for different vocabs, when used for ALBERT-tiny pre-training.

task name LCQMC XNLI MSRA CCKS CMRC2018 ChID
AL-MVP(SGT, SEG) 81.56 61.77 82.21 87.24 63.29 73.05

AL-MVP(SGT, SEG)-1 79.79 60.19 81.07 85.74 61.64 70.97
AL-MVP(SGT, SEG)-2 80.78 60.86 81.49 86.23 62.08 71.63

Table 4: Ablation studies on the AL-MVP’s pre-training strategies.

task name LCQMC XNLI MSRA CCKS CMRC2018 ChID
Google BERT 86.72 77.64 93.61 90.25 70.08 82.04

RoBERT-wwm-ext 86.23 78.57 94.82 91.56 72.63 83.62
AMBERT (Zhang & Li, 2020) - - - - 73.25 86.62

AMBERT (ours) 86.95 78.93 95.39 91.74 73.08 85.31
AL-MVP(SGT, SEG) 87.68 79.75 95.94 92.53 73.82 86.76

Table 5: The performances of models with large scale pre-training.

Metric AMBERT AL-MVP(SGT, SEG)
(↑ better) LCQMC XNLI LCQMC XNLI

original score 86.95 78.93 87.68 79.75
after-attack score 15.43 16.39 17.34 18.82

#queries 66 73 74 82

Table 6: Results on the adversarial robustness. “Query Number”denotes the number of queries the attack system
made to the target model and a higher number indicates greater difficulty.
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pecially on span-level tasks. Also, our two versions
of AL-MVP models can outperform AMBERT on
most of the tasks. AL-MVP asks the model to learn
a more general representation that can work with
different vocabs, making the model better under-
stand a token’s relation with its contexts.

Among the two AL-MVP models, AL-
MVP(SGT, SEG) performs best on five of the six
tasks. On CMRC2018, the performance of AL-
MVP(SGT, SEG) is very close to AL-MVP(CHAR,
SEG). AL-MVP(SGT, SEG) maintains the SGT’s
advantage on CLS tasks while improving NER and
MRC via AL-MVP pre-training.

4.6 Ablation on the pre-training strategies of
AL-MVP

For AL-MVP, we emphasize that cross-vocab
MLMs is essential for the pre-training. Thus, we
compare AL-MVP(SGT, SEG) with two other ver-
sions. First, AL-MVP(SGT, SEG)-1 keeps the main
MLM layer in Figure 2(b), that is, to only make
MLM predictions on the more fine-grained vo-
cab;10 Second, AL-MVP(SGT, SEG)-2 only keep
the auxiliary MLM layer in Figure 2(b), that is, to
only make MLM predictions on the more coarse-
grained vocab. Table 4 reports that AL-MVP(SGT,
SEG) achieves the best results on all 6 tasks. The
results show that MLM pre-training that combines
both vocabs can effectively improve the PLM’s
language understanding abilities and downstream
performances.

4.7 Large scale pre-training
In section, we report the pre-training results on
C-2, a large-scale corpus matching the size of AM-
BERT’s corpus. Table 5 reports the performances
of ALBERT-base. We first directly report the re-
sults of AMBERT from Zhang & Li (2020) on the
CMRC2018 and ChID tasks. Besides, to eliminate
the factor of different training corpus, we also train
AMBERT on the C-2 corpus. The results show
that our AL-MVP(SGT, SEG) model outperforms
both AMBERT models. Note that we only require
half the GPU time for AMBERT training, and the
inference speed of AL-MVP(SGT, SEG) is 2.15x
of AMBERT.

4.8 Robustness over adversarial attacks
We claim that our AL-MVP training strategy can
ask the ALBERT encoder to efficiently draw infor-

10This model is essentially the vanilla ALBERT-tiny with
vocab SGT.

mation from contexts into token representations,
thus improving the expressiveness. Thus it is a
fair reasonable that AL-MVP pre-trained models
should be more robust to adversarial attacks. This
subsection leverages the TextFooler framework (Jin
et al., 2020) to conduct black-box attacks on the
LCQMC and XNLI datasets. As shown in Table
6, we report the original performance, after-attack
performance, and the number of queries needed
by TextFooler to attack each model. We can see
that AL-MVP(SGT, SEG) increases the number of
queries needed to attack by a clear margin. Com-
pared with AMBERT, our AL-MVP(SGT, SEG)
demonstrates robustness improvements.

5 Conclusions

In this work, we propose a series of novel pre-
training methods called MVPs, which leverage
multiple vocabularies in the language model pre-
training. To select the vocabs for MVP pre-training,
we first conduct experiments to validate SGT,
which combines Chinese word segmentation and
sub-word tokenization, works best for the Chinese
language model pre-training. We then use experi-
ments to show that our proposed MVP methods can
achieve better performances than AMBERT with
less computational resources. Also, we show our
MVP method can improve the pre-trained model’s
robustness against adversarial attacks.
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Abstract

The internet has actually come to be an essen-
tial resource of health knowledge for individu-
als around the world in the present situation of
the coronavirus condition pandemic(COVID-
19). During pandemic situations, myths, sen-
sationalism, rumours and misinformation, gen-
erated intentionally or unintentionally, spread
rapidly through social networks. Twitter is
one of these popular social networks people
use to share COVID-19 related news, informa-
tion, and thoughts that reflect their perception
and opinion about the pandemic. Evaluation
of tweets for recognizing misinformation can
create beneficial understanding to review the
top quality and also the readability of online
information concerning the COVID-19. This
paper presents a multilingual COVID-19 re-
lated tweet analysis method, CMTA, that uses
BERT, a deep learning model for multilingual
tweet misinformation detection and classifica-
tion. CMTA extracts features from multilin-
gual textual data, which is then categorized
into specific information classes. Classifica-
tion is done by a Dense-CNN model trained
on tweets manually annotated into information
classes (i.e., ’false’, ’partly false’, ’mislead-
ing’). The paper presents an analysis of mul-
tilingual tweets from February to June, show-
ing the distribution type of information spread
across different languages. To access the per-
formance of the CMTA multilingual model,
we performed a comparative analysis of 8
monolingual model and CMTA for the misin-
formation detection task. The results show that
our proposed CMTA model has surpassed var-
ious monolingual models which consolidated
the fact that through transfer learning a multi-
lingual framework could be developed.

1 Introduction

Since late 2019, the coronavirus disease COVID-19
has spread worldwide to more than 216 countries

(Organization et al., 2020). COVID-19 has cre-
ated a massive impact on multiple sectors includ-
ing countries economy, government bodies, private
companies, media houses and most importantly,
affecting the mental and physical health of human
beings by tempering their daily routine activities
(Torales et al., 2020; Fernandes, 2020).

COVID-19 also has made us realize how well the
world is interconnected through the Internet. Social
media is a significant conduit where people share
their response, thoughts, news, information related
to COVID-19, with one in three individuals world-
wide participating in social media, with two-thirds
of people utilizing it on the Internet (Ortiz-Ospina,
2020). Studies have shown that many people con-
nect to the Internet and social media platforms such
as Twitter, Facebook, Whatsapp, Instagram and
Reddit every day and utilizing it for getting infor-
mation/news through them (Matsa and Shearer,
2018) (Hitlin and Olmstead, 2018). Twitter users
are known, especially, for posting and exchanging
news: almost 60% of Twitter users classify it as ex-
cellent or incredibly helpful for sharing preventive
health information (Wilford et al., 2018).

Nonetheless, social media is still full of misinfor-
mation regarding health. It is difficult to assess the
authenticity of health information on the Internet
for people with non-medical experience. Precise
and reliable dissemination of correct information
about the virus that causes a pandemic will help to
monitor the spread of the virus and related popula-
tion anxiety (Sharma et al., 2017). Social media
content and misinformation may have intense impli-
cations for public opinion and behavior, positively
or negatively influencing the viewpoint of those
who access it (Brindha et al., 2020; Kouzy et al.,
2020).

The WHO director-general stated at the Munich
security conference in February 2020, ’we are not
only fighting an epidemic; we are fighting an info-
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demic’ (Zarocostas, 2020). It is clear that there is
no way of stopping the transmission of COVID-19,
so it is necessary to check information on the Inter-
net in order to prevent the panic and disinformation
linked to the disease. Seeking accurate and valid
information is the biggest challenge with Internet
health information (Eysenbach et al., 2002).

Misinformation appears in several ways in the
case of COVID-19, such as ’COVID-19 is a bi-
ological agent developed by either the US or
China’,’COVID-19 is the potential by-product of
Chinese cuisine, such as bat soup amongst other in-
gredients,’and ’breath-holding self-detection test’,
unconfirmed home remedies such as vitamin C,
urine from animals, turmeric etc. In its worse, this
type of misinformation will lead individuals to re-
sort to unsuccessful (and actually directly harmful)
remedies, either to overreact (e.g. by hoarding
goods) or to underreact quite dangerously (e.g., by
deliberately engaging in risky behavior and inadver-
tently spreading the virus). (Brindha et al., 2020;
Pennycook et al., 2020). Unfortunately, the fake
news spread faster than the virus (Gallotti et al.,
2020).

An online social platform such as Twitter pro-
vides particularly fertile ground for the spread of
misinformation (Frenkel et al., 2020). Twitter
gives direct access to extraordinary content, which
may intensify rumors and dubious information
(Cinelli et al., 2020). With such a huge amount
of human-generated information being exchanged
every day, it has attracted Natural Language Pro-
cessing (NLP) researchers to explore, analyze, and
generate valuable insights about people response
to COVID-19. People response is analyzed with
respect to sentiments and misinformation and mali-
cious information detection.

This paper proposes CMTA, a multilingual tweet
analysis and information (misinformation) detec-
tion method for understanding both the negative
and positive sides of social media during COVID-
19 pandemic. CMTA uses Multilingual BERT,
trained on 104 multiple languages to derive fea-
tures from tweets and 1D convolution for finding
the correlation between data of hidden states. It
also uses a dense layer for linear transformation on
contextual embeddings to provide inferential points.
Our work helps in providing better results in find-
ing the proximity of being fake. We used manually
annotated multilingual COVID-19 related tweets
for training deep neural network model in order

to detect and identify the type of misinformation
present in tweets belonging to different language
groups.

For experimenting with our method, we used
trained models for a systematic analysis of COVID-
19 related tweets collected from February to June
2020. The analysis of tweets is done based on the
distribution of the type of information present in
tweets concerning the language used for writing a
tweet. We investigated the presence of false infor-
mation spread throughout Tweeter by classifying
the tweets in three classes: ’false’, ’partly false’
and ’misleading’. We have provided illustrative sta-
tistical representation of our findings and detailed
discussion about the insights discovered in our sur-
vey. The motivation for designing a multilingual
method lies behind the need of analyzing not just
monolingual tweets but also multilingual tweets
by building a single deep learning framework that
would be able to understand tweets in multiple
languages. That being said, we also analysed the
performance of CMTA multilingual BERT frame-
work with respect to 8 monolingual BERT models.
The performance score achieved by the multilin-
gual model were very close to that of monolingual
models which suggests that utilizing a singular mul-
tilingual model for COVID-19 tweet analysis and
disinformation categorization is a reliable and ro-
bust method.

2 Related Work

The COVID-19 pandemic has resulted in studies
investigating the various types of misinformation
arising during the COVID-19 crisis (Brennen et al.,
2020; Dharawat et al., 2020; Singh et al., 2020;
Kouzy et al., 2020). Studies investigate a small
subset of claims (Singh et al., 2020) or manually
annotate Twitter data (Kouzy et al., 2020). In (Bren-
nen et al., 2020) authors analyse different types of
sources for looking for COVID-19 misinformation.
Pennycook et al. (Pennycook et al., 2020) intro-
duced an attention-based account of misinforma-
tion and observed that people tend to believe false
claims about COVID-19 and share false claims
when they do not think critically about the accu-
racy and veracity of the information. Kouzy et
al. (Kouzy et al., 2020) annotated about 600 mes-
sages containing hashtags about COVID-19, they
observed that about one-fourth of messages contain
some form of misinformation, and about 17% con-
tain some unverifiable information. With such mis-
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information overload, any decision making proce-
dure based on misinformation has a high likelihood
of severely impacting people’s health (Ingraham
and Tignanelli, 2020). The work in (Huang and
Carley, 2020) examined the global spread of in-
formation related to crucial disinformation stories
and ”fake news” URLs during the early stages of
the global pandemic on Twitter. Their study shows
that news agencies, government officials, and in-
dividual news reporters send messages that spread
widely and play critical roles. Tweets citing URLs
for ”fake news” and reports of propaganda are more
likely than news or government pages shared by
regular users and bots.

The work in (Sharma et al., 2020) focused on
topic modelling and designed a dashboard to track
Twitter’s misinformation regarding the COVID-19
pandemic. The dashboard presents a summary of
information derived from Twitter posts, including
topics, sentiment, false and misleading informa-
tion shared on social media related to COVID-
19. Cinelli et al. (Singh et al., 2020) track (mis)-
information flow across 2.7M tweets and compare
it with infection rates.They noticed a major Spatio-
temporal connection between information flow and
new COVID-19 instances, and while there are
discussions about myths and connections to low-
quality information, their influence is less promi-
nent than other themes specific to the crisis. To
find and measure causal relationships between pan-
demic features (e.g. the number of infections and
deaths) and Twitter behaviour and public senti-
ment, the work in (Gencoglu and Gruber, 2020)
introduced the first example of a causal inference
method. Their proposed approach has shown that
they can efficiently collect epidemiological domain
knowledge and identify factors that influence pub-
lic interest and attention.

The discussion around the COVID-19 pandemic
and the government policies was investigated
in(Lopez et al., 2020). They used Twitter data
in multiple languages from various countries and
found common responses to the pandemic and how
they differ across time using text mining. More-
over, they presented insights as to how information
and misinformation were transmitted via Twitter.
Similarly, to demonstrate the epidemiological ef-
fect of COVID-19 on press publications in Bogota,
Colombia, (Saire and Navarro, 2020) used text min-
ing on Twitter data. They intuitively note a strong
correlation between the number of tweets and the

number of infected people in the area.
Most of the works described above focus on

analysing tweets related to single language such as
English. In our work we have designed a single
model leveraging multilingual BERT for the analy-
sis of tweets in multiple languages. Furthermore,
we used a large data set to train and analyze the
tweets. Our aim is to provide a system that will
be restricted to any language for analysing social
media data.

3 Data preparation

This section discusses the steps involved in the col-
lection of COVID-19 related tweets. For training
our misinformation detection deep learning model,
we have extracted annotated misinformation data
from multiple publicly available open databases.
We also collected a very large number of multi-
lingual tweets consisting of over 2 million tweets
belonging to eight different languages.

3.1 Training Dataset

In order to train and test our misinformation
detection model, we collected the training data
from an online fact-checker website called Poynter
(Poynter Institute, 2020). Poynter have a specific
COVID-19 related misinformation detection pro-
gram named ’CoronaVirusFacts/DatosCoronaVirus
Alliance Database1’. This database contains thou-
sands of labelled social media information such
as news, posts, claims, articles about COVID-19
which were manually verified and annotated by hu-
man volunteers(fact-checkers) from all around the
globe. The database gathers all the misinformation
related to topics such as COVID-19 cure, detection,
the effect on animals, foods, travel, government
policies, crime, lockdown.

The misinformation dataset was available in 2
languages- ‘English’ and ‘Spanish’. Since we were
training a multilingual BERT model, we crawled
through the content of all 2 websites using Beau-
tifulsoup2, a Python library for scraping informa-
tion from web pages. We scrape 8471 English lan-
guage false news/information belonging to nine
major classes namely, ‘False’, ‘Partially false’,
‘Misleading’, ‘No evidence’, ‘Four Pinocchios’,
‘Incorrect’, ‘Three Pinocchios’, ‘Two Pinocchios’
and ‘Mostly False’. For each article we gath-

1https://www.poynter.org/covid-19-poynter-resources/
2Python module is available at

https://pypi.org/project/beautifulsoup4/
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Classes Number of tweets
False (Poynter Institute, 2020) (English) 2,869
Partially False (English) 2,765
Misleading (English) 2,837
False (Spanish) 191
Partially False (Spanish) 161
Misleading (Spanish) 179
False (Alam et al., 2020) (English) 500
Total 9,502

Table 1: Collected Misinformation Dataset

ered the article’s title, it’s content and the fact
checker’s misinformation-type label. Similarly,
from the Spanish3 databases we collected 531 mis-
information articles respectively. The collected
data contains the misinformation published on so-
cial media platforms such as Facebook, Twitter,
What’sapp, YouTube and were mostly related to
political-biased news, scientifically dubious infor-
mation and conspiracy theories, misleading news
and rumors about COVID-19. We also used one
more human annotated fact-checked tweet dataset
(Alam et al., 2020) available at the public repos-
itory4. The dataset contained true and false la-
belled tweets in English and Arabic language. We
used only false labelled tweets consisting of 500
English. We compiled (table 1) a total of 9,502
micro-articles distributed across 9 misinformation
classes.

Defining misinformation classes: The collected
data was unevenly distributed across 9 classes. We
put the classes such as ’No evidence’, ’Four Pinoc-
chios5’, ’Incorrect’, ’Three Pinocchios6’, ’Two
Pinocchios7’ and ’Mostly False’ under the minority
group because of having very few labels. On the
other hand, labels like ’False’, ’Partially false’ and
’Misleading’ comprises the majority group as most
of the collected articles belongs to this group. In or-
der to structure and distribute the dataset uniformly
for training our model, we reformed the dataset by
merging the minority group labels into the majority
group labels. The classes (’Four Pinocchios’ and
’Incorrect’) that correspond to completely false in-
formation were merged together into the ’False’
class. ’Three Pinocchios’ and ’Two Pinocchios’
were merged together into ’Partially false’ class.
’No evidence’ and ’Mostly False’ were put together

3https://chequeado.com/latamcoronavirus/
4https://github.com/firojalam/COVID-19-tweets-for-

check-worthiness
590%-95% changes of it being false
670%-75% changes of it being false
750%-55% changes of it being false

with the ’Misleading’ class.
Table 6 gives a clear understanding of our train-

ing dataset and showcase some misinformation ar-
ticles present in our training dataset. Column 1
shows the reformed label assigned by us, column
2 shows the original label assigned by the fact-
checker, column 3 gives a misinformation example
associated with the label present in column 2, and
column 4 provides a reasoning given by the fact-
checker behind assigning a particular label (column
2) to the misinformation (column 3). For example,
if we would look at the entry number ’3’ in the ta-
ble 6, the misinformation is about the adverse effect
of 5G radiation over the COVID-19 patients. This
was labeled ’Incorrect’ by the fact-checker. After
analysing the fact-checker rating and the explana-
tion given, we labelled it as ’False’ misinforma-
tion. Entry number ’5’ talks about the COVID-19
test cost. The explanation given by fact-checker
is valid as it is not sure if there is any fee in USA
for COVID-19 test or not. So because of the lack
of evidence and uncertainty we labelled it as ’Par-
tially false’. Entry number ’7’ in the table talks
about a video showing COVID-19 corpus dumping
in the sea. Based on the explanation, the video
was coupled with the wrong information to mislead
the audience. So it was labelled as ’Misleading’
misinformation.

3.2 Inference Dataset

Once we finished training our multilingual tweet
misinformation detection model we aimed to use
it for predicting and analysing the misinforma-
tion spread across all over the social media plat-
forms in multiple languages. In order to do so,
we collected around 2,137,106 multilingual tweets
consisting of tweets belonging to eight major lan-
guages, namely- ’English’, ’Spanish’, ’Indonesian’,
’French’, ’Japanese’, ’Thai’, ’Hindi’ and ’German’.
We used an ongoing dataset of tweets IDs associ-
ated with the novel coronavirus COVID-19 (Chen
et al., 2020). Started on January 28, 2020, the
current version of dataset contains 212,978,935
tweets divided into groups based on their pub-
lishing month. The dataset was collected using
multilingual COVID-19 related keywords and con-
tains tweets in more than 30 languages. We used
tweepy8 which is a Python module for accessing
twitter API. For our analysis we decided to retrieve
the tweets using the tweet IDs of the tweets pub-

8Python module is available at http://www.tweepy.org
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Spanish(es)
German(de)

Japanese(ja)

Indonesian(in)

English(en)

French(fr) Hindi(hi) Thai(th)

Spanish(es) German(de) Japanese(ja) Indonesian(in)

English(en) French(fr) Hindi(hi) Thai(th)

Figure 1: Language-wise Dataset Distribution Pie
chart.

Language ISO Number of tweets
English en 1,472,448
Spanish es 353,294
Indonesian in 80,764
French fr 71,722
Japanese ja 71,418
Thai th 36,824
Hindi hi 27,320
German de 23,316
Sum 2137106

Table 2: Language-wise Dataset Distribution

lished in past 5 months (February, March, April,
May and June). Table 2 shows the total number
of tweets collected by us and figure 1 shows their
distribution across eight different language.

4 The CMTA Method

In this section, we have given a detailed sequential
overview of CMTA method design. Both misin-
formation9 and disinformation10, according to the
Oxford English Dictionary, are false or mislead-
ing information. Misinformation refers to informa-
tion that is accidentally false and spread without
the intent to hurt, whereas disinformation refers
to false information that is intentionally produced
and shared to cause hurt (Hernon, 1995). Claims
do not have to be entirely truthful or incorrect;
they can contain a small amount of false or inaccu-
rate information(Shahi and Nandini, 2020). This
work uses the general notion of misinformation
and makes no distinction between misinformation

9https://www.oed.com/view/Entry/
119699?redirectedFrom=misinformation

10https://www.oed.com/view/Entry/54579?
redirectedFrom=disinformation

and disinformation as it is practically difficult to
determine one’s intention computationally. Fig-
ure 2 shows the phases of the analytics pipeline
of CMTA with their internal processes. CMTA
implements a data science pipeline consisting of
four phases: (1) tokenizing, (2) text features extrac-
tion, (3) linear transformation, and (4) classifica-
tion. The first phases (tokenizing, text feature ex-
traction, linear transformation) correspond to a sub-
stantial data-preparation process intended to build
a multi-lingual vectorized representation of texts.
The objective is to achieve a numerical pivot repre-
sentation of texts agnostic of the language. CMTA
classification task uses a dense layer and leads to a
trained network model that can be used to classify
micro-texts (e.g. tweets) into three misinformation
classes: ’false’, ’partly false’ and ’misleading’.

Text tokenization Given a multilingual textual
dataset consisting of sentences, CMTA uses the
BERT multilingual tokeniser to generate tokens
that BERT’s embedding layer will further process.
CMTA uses MBERT11 to extract contextual fea-
tures, namely word and sentence embedding vec-
tors, from text data 12. In the subsequent CMTA
phases that use NLP models, these vectors are
used as feature inputs with several advantages.
(M)BERT embeddings are word representations
that are dynamically informed by the words around
them, meaning that the same word’s embeddings
will change in (M)BERT depending on its related
words within two different sentences.

For the non-expert reader, the tokenization pro-
cess is based on a WordPiece model. It greedily
creates a fixed-size vocabulary of individual char-
acters, subwords, and words that best fit a language
data (e.g. English) 13. Each token in a tokenized
text must be associated with the sentence’s index:
sentence 0 (a series of 0s) or sentence 1 (a series of
1s). After breaking the text into tokens, a sentence
must be converted from a list of strings to a list of
vocabulary indices. The tokenisation result is used

11https://github.com/google-research/
bert/blob/master/multilingual.md

12Embeddings are helpful for keyword/search expansion,
semantic search and information retrieval. They help accu-
rately retrieve results matching a keyword query intent and
contextual meaning, even in the absence of keyword or phrase
overlap.

13This vocabulary contains whole words, subwords occur-
ring at the front of a word or in isolation (e.g., ”em” as in
the word ”embeddings” is assigned the same vector as the
standalone sequence of characters ”em” as in ”go get em”),
subwords not at the front of a word, which are preceded by
’##’ to denote this case, and individual characters (?)
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Figure 2: A detailed structure of CMTA architecture.

as input to apply BERT that produces two outputs,
one pooled output with contextual embeddings and
hidden-states of each layer. The complete set of
hidden states for this model are stored in a struc-
ture containing four elements: the layer number (13
layers) 14, the batch number (number of sentences
submitted to the model), the word / token number
in a sentence, the hidden unit/feature number (768
features) 15.

In the case of CMTA, the tokenisation is more
complex because it is done for sentences written
in different languages. Therefore, it relies on the
MBERT model that has been trained for this pur-
pose.

Feature Extraction Phase is intended to exploit
the information of hidden-layers produced due to
applying BERT to the tokenisation phase result.
The objective is to get individual vectors for each
token and convert them into a single vector repre-
sentation of the whole sentence. For each token
of our input, we have 13 separate vectors, each of
length 768. Thus, to get the individual vectors, it
is necessary to combine some of the layer vectors.
The challenge is to determine which layer or com-
bination of layers provides the best representation.

Linear convolution The hidden states from the
12th layer are processed in this phase, applying
linear convolution and pooling to get correlation
among tokens. We apply a three-layer 1D convolu-
tion over the hidden states with consecutive pool-
ing layers. The final convolutional layer’s output
is passed through a global average pooling layer
to get a final sentence representation. This rep-

14It is 13 because the first element is the input embeddings,
the rest is the outputs of each of BERT’s 12 layers.

15That is 219,648 unique values to represent our one sen-
tence!

resentation holds the relation between contextual
embeddings of individual tokens in the sentence.

Classification A linear layer is connected to the
model in the end for the CMTA classification task.

This classification layer outputs a Softmax value
of vector, depending on the output, the index of
the highest value in the vector represents the label
for the given sequence: ’false’, ’partly false’ and
’misleading’.

5 Experiment

5.1 Dataset Proprocessing

In data preprocessing, we performed cleaning and
structuring of the training and inference dataset.
The collected dataset contained lots of unneces-
sary noises and components such as emojis, sym-
bols, numeric values, hyperlinks to websites and
username mentions which were needed to be re-
moved. Since our dataset was multilingual, we
had to be very careful while preprocessing as we
did not wanted to lose any valuable information.
We used simple regular expressions to remove
URLs, special characters or symbols, blank rows,
re-tweets, user mentions but we did not removed
the hashtags from the data. As hashtags might
contain useful information. For example in the
sentence- ’Wear mask to protect yourself from
#COVID-19 #corona’, only ’#’ symbol was re-
moved during the preprocessing(e.g. ’Wear mask
to protect yourself from COVID19 corona’). We
removed stop words using NLTK16, a Python li-
brary for natural language processing. NLTK sup-
ports multiple languages except few languages such
as Hindi and Thai in our case. For preprocess-
ing Hindi dataset we used CLTK(Classical Lan-

16https://www.nltk.org/
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guage Toolkit) 17 which supports Hindi stop words.
For removing Thai stop words from Thai tweets,
we used PyThaiNLP (Wannaphong Phatthiyaphai-
bun, 2016). The emojis were removed using their
unicodes. For training our model we divided the
dataset into training, validation and testing dataset
in the ratio of 80%/10%10% respectively. The fi-
nal count for train, validation and test dataset was
7,602, 950, 950.

5.2 Model Setup and Training
Training Setting We fine-tuned the Sequence
Classifier from HuggingFace based on the param-
eters as specified in (Devlin et al., 2018). Thus,
we set a batch size of 32, learning rate 1e-4, with
Adam Weight Decay as the optimizer. We run the
model for training for 10 epochs. Then, we save
the model weights of the transformer. These will
be helpful for the further training.

Hyperparameters’ Setting Table 3 lists every
hyperparameter for training and testing our model.
All the calculations and selection of hyperpar-
maters are done based on tests and for the best
output from the model. After performing several it-
erations on distinct sets of hyper-parameters, based
on the analysis of the model’s performance, we
adopted the one showing promising results on our
dataset.

Parameters Value

Pool Size of Average Pooling 8
Pool Size of Max Pooling 8
Dropout Probability 0.36
Number of Dense layers 4
Text Length 128
Batch Size 32
Epochs 10
Optimizer Adam
Learning Rate 1× 10−4

Table 3: Hyper-parameters for training

5.3 Results assessment
This section discusses the performance our multi-
lingual model over the test data. On the test dataset,
our model was able to achieve an accuracy(%) of
82.17 and F1(%) of 82.54. The precision and re-
call reported by the model were 82.07 and 82.30
respectively. Table 5 shows model’s prediction over

17https://docs.cltk.org/en/latest/index.html

few examples from the test dataset along with their
actual label. As we shown in the table, the model
prediction in case of entry number ’1’, ’2’, ’3’ and
’4’ our model was able to predict the correct the
label. But in case of entry number ’5’ the label
predicted by our model was ’False’ whereas the ac-
tual label is ’Misleading’. If we would look at the
misinformation at the entry number ’5’ which is a
Spanish text- ’El medicamento contra piojos sirve
como tratamiento contra Covid-19.’ and who’s En-
glish translation would be- ”. This misinformation
claims about a COVID-19 medicine and since this
could be ’false’ and ’misleading’ misinformation
at the same time, our model predicted it as a ’false’
misinformation rather than ’misleading’.

6 Multilingual Misinformation Analysis

In this section, we provide a detailed analysis
misinformation distribution across the multilin-
gual tweets. We used our trained multilingual
model to predict and categorize the misinforma-
tion type present in tweets. We conducted our se-
quential misinformation analysis on a collection
of over 2 million multilingual tweets. Our survey
studied and analyzed the distribution of COVID-
19 misinformation across eight major languages,
(i.e. ’English’, ’Spanish’, ’Indonesian’, ’French’,
’Japanese’, ’Thai’, ’Hindi’ and ’German’) for five
months (i.e. February, March, April, May and
June). Figure 4 shows the month-wise distribu-
tion of misinformation types for each language.
Table 4 presents a detailed count of misinforma-
tion classes across all the languages. In the figure
6, we could observe that for February, March and
June months our model predicted large number of
tweets as ’False’, followed by ’Misleading’ which
is second largest and the number of ’Partially false’
was the least. For the tweets generated during the
month of April and May, our model discovered that
the number of ’Partially false’ tweets are more than
’Misleading’ tweets and ’False’ tweets were again
in majority. Figure ?? parallelly showcase the over-
all(all 5 months together) spread of misinformation
types across each language. We could clearly see
that German tweets have the highest number of
’Misleading’ tweets whereas French have the least.
Spanish tweets beats other language’s tweets by be-
coming the language with largest source of ’False’
misinformation. Germany generated the least num-
ber of ’False’ tweets. Hindi tweets tends to have the
highest number of ’Partially false’ tweets whereas
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Lingo February March April
Misinformation Misinformation Misinformation

False Partially False Misleading False Partially False Misleading False Partially False Misleading
Spanish 58346 6653 13740 67956 10913 8826 34125 5437 3604
German 517 581 2505 862 1438 3043 584 892 2664
Japanese 1920 3079 5245 448 692 2650 1635 2850 5840
Indonesian 11157 3226 1951 12573 4336 1582 9073 3367 1273
English 88369 62747 76640 92428 96571 105143 77368 74947 63473
French 4464 3472 1155 12024 10270 1670 6650 5300 763
Hindi 500 870 202 756 909 348 2211 2868 705
Thai 1950 1074 2780 6036 736 7678 2263 554 2917

Lingo May June
Misinformation Misinformation

False Partially False Misleading False Partially False Misleading
Spanish 57821 8214 7107 54965 8828 6759
German 1076 1426 4430 616 657 2028
Japanese 8984 12324 18125 1741 2496 3389
Indonesian 12695 4574 1805 9114 3038 1000
English 140494 128326 119391 135172 101896 109483
French 8475 7667 842 4952 3535 483
Hindi 4560 6057 1343 2501 2739 751
Thai 2825 470 1830 2103 486 3122

Table 4: Language-wise predicted misinformation labels of tweets

Test Data Actual Label Prediction Accuracy(/)
Dr. Megha Vyas from Pune, India died due to
COVID-19 while treating COVID patients.

False False

El plátano bloquea “la entrada celular
del COVID-19”

False False

Asymptomatic people are very rarely
contagious, said the WHO.

Partially False Partially False

Patanjali Coronil drops can help cure coronavirus. Misleading Misleading
El medicamento contra piojos sirve como
tratamiento contra Covid-19.

Misleading False

Table 5: Misinformation data examples along with model’s prediction and actual label

Thai have the least of all. Following more specific
observation made with respect to the languages:

• English: The misinformation distribution for
English data, indicates that there is a major-
ity of False tweets during the five months,
whereas the distribution of Misleading la-
belled data is slightly less than as compared to
False labelled data. Partially False labelled
tweets are moderately distributed, as in month
April we can see that there is a greater number
with respect to other months.

• Spanish: From the distribution graph, Span-
ish tweets have greater frequency of False la-
belled tweets, whereas the Misleading tweets
and Partially False tweets shows almost
same number of tweet across the five months.

• German: There was a surge of Misleading
labelled tweets during the month February,
and the count remained the same throughout
the five months. There was also an increase
in Partially False tweets in March but it de-
creased in successive months, leading to mi-
nor False labelled tweets.

• Japanese: In the graph of language wise-
distribution4, it can be seem that on an av-
erage throughout the five months, approx 20%
of Japanese tweets are labelled False, simi-
larly approx 30% of the Japanese tweets are
labelled Partially False, leading to the major-
ity of 50% data are labelled as Misleading.
We can also see that there was a huge increase
in Misleading tweets in March, tweeted in
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Japanese language.

• Indonesian: In our distribution for Indonesian
tweets approximately 10% of tweets are la-
belled as Misleading and in contrary there is
a large distribution of False labelled tweets.
Approximately 34% of the data in Indonesian
dialect is labelled as Partially False through-
out the five months.

• French: Figure4 shows the misinformation
distribution across all of the five months in
the French tweets. The largest majority of the
tweets were classified as False misinforma-
tion. Among Partially false and Misleading,
the least number of tweets were labelled as
Misleading.

• Hindi: The frequency of Hindi tweets is low
in the dataset used in our experiment. Yet,
our model can predict or label Hindi tweets.
Tweets in Hindi have low numbers of Mis-
leading tweets, whereas the Partially False
tweets class has a great frequency. False la-
belled tweets are slightly low compared to
Partially False tweets in this dialect.

• Thai: The distribution of Thai tweets, shows
that our model prediction is majorly oriented
towards the Misleading tweets. The distribu-
tion of Misleading labelled tweets it the great-
est among the labelled classes, in contrast to
Partially False tweets. False labelled tweets
are comparatively moderate in this language.

7 Conclusion and Future Work

In this paper, we presented a BERT based mul-
tilingual model for analysing COVID-19 related
multilingual tweets. We performed a detailed sys-
tematic survey for detecting disinformation spread
on the social media platform- Twitter. We were
able to detect misinformation distribution across
eight major languages and presented a quantified
magnitude of misinformation distributed across dif-
ferent languages in last 5 months. We also demon-
strated that our single multilingual CMTA frame-
work performed significantly well as compared to
the monolingual misinformation detection models.
We strongly believe that our model can help in fil-
tration of misinformation and factual data present
in multiple languages during the pandemic.

In future, we aim at collecting more annotated
training data and performing analysis of a larger

multilingual dataset to gain deeper understanding.
We aim at improving our model’s robustness and
contextual understanding for better performance in
the classification task. Since analysis was done on
a limited dataset the results cannot be generalised.
We hope that through our work researchers could
gain more deeper insights about misinformation
spread across major languages and hence utilizing
the information in building more reliable social
media platform.
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A Appendix

A.1 CMTA vs Monolingual BERT Models
In this section, we have presented a comparative
performance study of various monolingual BERT
models with respect to our proposed multilingual
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CMTA model for the misinformation detection task.
We investigated eight monolingual BERT model18,
namely, ’English’, ’Spanish’, ’French’, ’Germann’,
’Japanese’, ’Hindi’ ’Thai19’ and ’Indonesian’.

Data Processing: We utilized the same 9,502
tweets distributed across 3 misinformation classes
for training the monolingual models. Since our
dataset was consist of tweets in English and Span-
ish language; we translated the tweets into eight
languages for training each of the eight monolin-
gual model. We used Google Translator API20 for
converting the tweets into a particular language.

Experiment and Result: We experimented the
multi-lingual data with their respective linguistic
based BERT models. We set the model training
parameters same as the CMTA model, and prepro-
cessed the data as stated previously. Each of the
monolingual model was fine-tuned for 10 ephocs
with batch size of 32. using the classification
dataset of their respective language. EnglishBERT
scored an F1-score of 77.9% on the English tweets,
with recall rate of 74.18%. This possible reason
could be that it is heavily trained on English Corpus.
From huggingface’s model library we got Span-
ishBERT. The model scored an F1-score of 76.2%
with recall rate of 72.02% and precision 80.9%. For
French tweets we used CamemBERT(Martin et al.,
2019) from huggingface. The CamemBERT scored
an F1-score of 76.32%, with recall rate of 71.45%
and precision 81.91%. GermanBERT showed a sig-
nificant results on German-basesd tweets. It had a
precision of 80.61% with recall rate of 71.43%,
resulting to an F1-score of 75.74%. Japanese-
BERT derived from the paper (Kikuta, 2019), is
79.56% precise on Japanese tweets with recall rate
of 65.36% and F1-score of 71.76%. HindiBERT
model had an F1-score of 71.95%, 79.56% precise
with recall rate 65.68%. ThaiBERT scored an F1-
score of 72.11%, being 79.11% precise with recall
rate 66.25% IndonesianBERT is 78.96% precise,
recall rate of 65.66%, resulting to an F1-score of
71.69%. Based on the experiment results, we can
strongly suggest that the multilingual CMTA model
was able to generalize smoothly on the dataset and
it’s performance was equivalent to the monolingual
models.

18Pretrained model from https://huggingface.co/models
19ThaiBERT from https://github.com/ThAIKeras/bert
20Please refer https://cloud.google.com/translate/docs

ModelsMetrics Precision Recall F1-score
EnglishBERT 82.03 74.18 77.90
SpanishBERT 80.9 72.02 76.20
CamemBERT 81.91 71.45 76.32
GermanBERT 80.61 71.43 75.74
JapaneseBERT 79.56 65.36 71.76
HindiBERT 79.56 65.68 71.95
ThaiBERT 79.11 66.25 72.11
IndonesianBERT 78.96 65.66 71.69
CMTA 81.52 74.40 77.79

Figure 3: Training Accuracy(Upper) and Training
loss(Lower)
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Our Rating IFCN(Poynter) Rating Misinformation Explanation

False False
The border between France
and Belgium will be closed.

French and Belgian authorities
denied it.

Four pinocchios
Trump’s effort to blame
Obama for sluggish
coronavirus testing.

There was no “Obama rule,” just
draft guidance that never took
effect and was withdrawn before
President Trump took office.

Inaccurate

Elisa Granato, the first
volunteer in the first Europe
human tria of a COVID-19
vaccine, has died.

Elisa Granato, the first volunteer
in the first Europe human trial
of a COVID-19 vaccine, has died.

Partially
False

Partially False
Media shows a Florida
beach full of people while
it’s empty.

The different videos were not shot
at the same time. The beaches
are empty when they are closed.

Two Pinocchios
The bill for a coronavirus
test in the US is $3.000

The CDC is not making people
pay the test by now.

Partly False

Salty and sour foods cause
the “body of the COVID-19
virus” to explode and
dissolve.

“Consuming fruit juices or gargling
with warm water and salt does not
protect or kill COVID-19,” the
World Health Organization
Philippines told VERA Files.

Misleading Misleading
A clip from Mexico depicts
the dumping of coronavirus
patients corpses into the sea.

Misbar’s investigation of the video
revealed that it does not depict the
dumping of coronavirus patients
corpses in Mexico, but rather paratroopers
landing from a Russian MI 26 helicopter.

No Evidence
Media uses photos of puppets
on patient stretchers to
scare then public.

There is no evidence that any media
outlet used this photo for their reporting
about COVID-19. Its origin is unclear,
maybe it was shot in Mexico and shows
a medical training session.

Mostly False
Coronavirus does not affect
people with ‘O+’ blood type.

The post claiming coronavirus does
not affect people with ‘O+’ blood
type is misleading.

Table 6: Misinformation Dataset
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Figure 4: Month-wise Disinformation Distribution in Languages.
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Abstract

Individuals with autism spectrum disorder
(ASD) experience difficulties in social aspects
of communication, but the linguistic character-
istics associated with deficits in discourse and
pragmatic expression are often difficult to pre-
cisely identify and quantify. We are currently
collecting a corpus of transcribed natural con-
versations produced in an experimental setting
in which participants with and without ASD
complete a number of collaborative tasks with
their neurotypical peers. Using this dyadic
conversational data, we investigate three prag-
matic features – politeness, uncertainty, and
informativeness – and present a dataset of ut-
terances annotated for each of these features
on a three-point scale. We then introduce on-
going work in developing and training neural
models to automatically predict these features,
with the goal of identifying the same between-
groups differences that are observed using
manual annotations. We find the best per-
forming model for all three features is a feed-
forward neural network trained with BERT
embeddings. Our models yield higher accu-
racy than ones used in previous approaches
for deriving these features, with F1 exceeding
0.82 for all three pragmatic features.

1 Introduction

Autism spectrum disorder (ASD) is a neurological
disorder associated with impairments in commu-
nication that can have a life-long impact on rela-
tionships, professional success, and personal inde-
pendence (Ketelaars et al., 2010; Whitehouse et al.,
2009; Hendricks, 2010). Although some percent-
age of individuals with ASD are not verbal from a
young age, most go on to acquire spoken language
but experience challenges in social aspects of com-
munication related to discourse and pragmatic ex-
pression (Eales, 1993; Young et al., 2005). This
atypicality in language has been recognized since

the disorder was first named nearly eighty years
ago (Kanner, 1943), and unusual language usage
is one of the criteria used in the primary diagnos-
tic instruments for ASD (Lord et al., 2002; Rutter
et al., 2003). One challenge for clinicians, however,
is that there are no existing assessment tools for
quantifying atypicality in discourse or pragmatics
that can highlight communication deficits associ-
ated specifically with ASD while ruling out those
associated with unrelated language disorders.

Most previous work on identifying pragmatic
features that index atypicality in expressive lan-
guage relies on careful manual annotations of tran-
scripts of spontaneous spoken language (Volden
and Lord, 1991; Bishop et al., 2000; Adams, 2002;
Gorman et al., 2016; Canfield et al., 2016). De-
ploying complex annotation schemes like these,
however, is time consuming and requires training
and expertise, rendering this sort of detailed linguis-
tic analysis impractical in the clinical intervention
settings in which it would be most useful. Work on
computational approaches for automatically iden-
tifying these features in the expressive language
of individuals with ASD has focused exclusively
on the language of children. In addition, this prior
research has generally been applied to expressive
language produced in a semi-structured context
with an examiner or parent rather than spontaneous
conversational speech with a peer (Prud’hommeaux
et al., 2014; Losh and Gordon, 2014; Parish-Morris
et al., 2016; Goodkind et al., 2018).

Our work addresses these aforementioned short-
comings in the previous work on pragmatic expres-
sion in ASD. In this paper, we describe an anno-
tated corpus of conversations between adults with
and without ASD and their neurotypical interlocu-
tors as they engage in several collaborative tasks.
Using this corpus, we investigate the degree of po-
liteness, uncertainty, and informativeness in these
conversations with the goal of identifying distinc-
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tive pragmatic features of ASD. We focus on these
three features in particular because they are spe-
cific, remediable, and relevant in the collaborative
discourse domain.

When data collection is complete, we will re-
lease the transcribed and annotated dataset to re-
searchers who have completed their institution’s
human subjects training. The dataset will be unique
in that it is produced by adults, a subgroup of the
ASD population that is both understudied and un-
derserved. In addition, the dataset will consist en-
tirely of spontaneous conversations with a peer, a
rarity in ASD datasets. To our knowledge there
is no single corpus manually annotated with all
three features of politeness, uncertainty, and infor-
mativeness. Moreover, our corpus is already larger
than any existing spoken language (as opposed to
textual) corpus available for these features.

With our annotated corpus, we propose several
neural models for classifying utterances accord-
ing to these features, and we explore whether our
automated methods of generating these pragmatic
features can be used to distinguish adults with ASD
from their neurotypical peers as effectively as fea-
tures derived via manual annotation. Our models
outperform prior approaches to all three classifica-
tion tasks, often by very wide margins. Although
our predicted annotations do not capture all of the
between-group differences observed using the man-
ual annotations, we see promise in our approach.

2 Data Collection

2.1 Participants and tasks

We have collected spoken language data in a col-
laborative dyadic setting from adults 18 to 30 years
of age with high-functioning ASD (n = 14) and
with typical development (TD, n = 8). The ASD
participants met the criteria for a diagnosis of ASD
on the Autism Diagnostic Observation Schedule
(ADOS) (Lord et al., 2002). All participants met
the following eligibility criteria: (1) performance
IQ (PIQ) ≥ 80; (2) verbal IQ (VIQ) ≥ 80; (3)
monolingual speaker of American English; and (4)
no history of language impairment, auditory pro-
cessing disorder, or hearing difficulty. This data
collection is ongoing and is being conducted with
the approval of the Institutional Review Boards of
the two participating universities.

Each ASD or TD participant is paired with a neu-
rotypical conversational partner (CP, n = 11), and
together they engage in collaborative tasks involv-

Feature Agreement α

Politeness 91.58% 0.57
Uncertainty 85.62% 0.75

Informativeness 91.62% 0.90

Table 1: Percent agreement and interrater reliability
(Krippendorf’s α) for pragmatic feature annotation.

ing verbal communication and deliberation. The
two tasks we focus on in this paper include a map
task and a deserted island task. In the map task,
styled after Anderson et al. (1991), each participant
is given a map of the same area, but with slight
differences in the place names and locations of ob-
stacles. Each map is marked with an X to show
where that participant is located on the map. The
experimental participant must give verbal direc-
tions to the conversational partner to lead them to
their position on the map. In the deserted island
task, a widely used method of eliciting natural con-
versation in second language instruction, the two
participants are given a selection of labeled pic-
tures of various items. They must agree on which
of these items they would like to have with them
on a deserted island. They are also given some
specific categories of items to decide upon, such as
items meant for entertainment or items that would
be used to escape.

The conversations are recorded and then manu-
ally transcribed using Praat (Boersma and Weenink,
2001). Thus far, we have collected and transcribed
conversations from 22 pairs of participants, with
14 experimental participants in the ASD group, 8
experimental participants in the TD group, and
11 neurotypical conversational partners, resulting
in a corpus of 9,267 total utterances produced by
experimental participants, with 5,742 utterances
produced by experimental participants in the ASD
group and 3,525 utterances produced by experimen-
tal participants the TD group. In the transcriptions,
an utterance is defined as a C-unit, “an independent
clause with its modifiers” which cannot be further
split up without losing the primary meaning of the
utterance (Loban, 1976). Each utterance is marked
with a punctuation to denote the utterance type as
an exclamation, question, abandoned utterance, in-
terrupted utterance, or regular utterance. Addition-
ally, we transcribe discourse markers, filler words,
unfilled pauses, partial or interrupted words, sound
effects or onomatopoeia, and verbal expressions of
affirmation, negation, or exclamation.
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Task Utterance Politeness Uncertainty Informativeness

Map How the heck am I supposed to say this? 1 1 1

Map It’s near the Irrigation Pond. 2 1 3

Map Okay so we’re going to have to go down one block. 3 1 2

Map Can you describe where you’re at? 2 3 1

Map Yeah it is by some trees. 2 1 2

Map Yeah it is by some trees. 2 1 2

Island I don’t care. 1 1 1

Island I would say the matches first, because you can
set off a signal, like a signal fire. 2 1 3

Island Or you could keep the matches? 2 2 2

Island Fishing pole, definitely, um. 2 1 2

Island We’ll put them off to the side. 3 1 1

Island Do we want to go with these four? 3 2 1

Island You want to do the dog? 3 2 2

Island If we wanna trying get off the island we probably
want some rope or something. 3 2 3

Island We could use logs and stuff to tie up and make some
kind of raft trying to get back to civilization. 3 1 3

Table 2: Samples manual annotations for each task.

2.2 Pragmatic feature annotation

After transcription, the transcripts are then anno-
tated for politeness, uncertainty, and informative-
ness (Meyers et al., 2019), with each utterance re-
ceiving two annotations from a set of three trained
human annotators. Each feature is given a rating on
a scale from 1 to 3, with 1 representing the smallest
degree of politeness, uncertainty, or informative-
ness, and 3 representing the highest degree of that
feature. To measure the degree of agreement be-
tween the annotators, we calculate Krippendorf’s
alpha (Artstein and Poesio, 2008) for each feature,
the results of which can be seen in Table 1. The fi-
nal annotation of each feature for every utterance is
then taken to be the average of the two annotators.
We note that, although certain words are often help-
ful for determining the score of an utterance for a
given feature, we do not rely on a list of specific
lexical items or keywords. Example utterances and
their corresponding scores are shown in Table 2.

These three features were chosen for a number
of reasons. First, they are specific and interpretable,
and as such, they are ideal features for targeted re-
mediation. Secondly, they are especially relevant
for and important in collaborative conversation; in-
terviews, narratives, or monologues might be better
analyzed using other features. Third, there are exist-

ing corpora labelled for these features and available
toolkits for extracting these features, which allows
us to compare our work against prior baselines and
will enable us to leverage external corpora in our
future work. Finally, we note that politeness, in
particular, has been cited as an area of deficit in
ASD (Frith, 1994; Sirota, 2004).

Politeness The politeness feature is a measure
of how well an utterance contributes to a polite
and collaborative dialogue, marked by agreeable-
ness, positive attitudes, and willingness to com-
promise. A low politeness rating of 1 is given to
utterances expressing frustration or criticism (“no
you’re wrong”, “ugh how do I do this?”) and ut-
terances which use a more blunt way of phrasing
commands (“go left”). A high politeness rating of
3 is given to utterances containing niceties (e.g.,
“thanks”, “sorry”) or highly positive words (“per-
fect”, “awesome”) and utterances that use a polite
or indirect way of phrasing commands (“if you
could make a left”, “you want to make a left”).

Uncertainty The uncertainty feature is defined
to be a measure of the amount of uncertainty ex-
pressed about the correctness, validity, or permis-
sibility of the utterance. A low uncertainty rating
of 1 is given to utterances which express no un-
certainty at all, or contain only a few filler words.
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A medium uncertainty rating of 2 is given to po-
lar questions, either-or questions, short abandoned
utterances, and utterances containing many filler
words (“um”, “uh”) or hedge phrases (“I guess”,
“I’m assuming”). A high uncertainty rating of 3
is given to open questions (“where are you?”) and
utterances expressing explicit uncertainty or confu-
sion (“I have no idea”).

Informativeness The informativeness feature is
defined as a measure for the overall information
content and specificity of an utterance. A low infor-
mativeness rating of 1 is given to utterances which
contain only polar answers (“yes”, “no”) or vague
words with low specificity (“thing”, “over there”).
In the map task, a medium informativeness rating
of 2 is given to utterances which contain words for
general objects and do not specify a specific loca-
tion on the map, and a high informativeness rating
of 3 is given to utterances which contain proper
nouns or labels or descriptions that can only point
to one specific location on the map. In the island
task, a rating of 2 is given to utterances which con-
tain only an item word or a short phrase explaining
the item, and a rating of 3 is given to utterances
which contain multiple item words or a longer ex-
planation of the items.

3 Models

After the transcripts are annotated for the prag-
matic features described above, we train a number
of machine learning models on the annotated data,
with the goal of eventually being able to bypass
the manual annotations and automate the annota-
tion process using these predictive models. The
models are given the transcribed and tokenized ut-
terance converted to all lowercase and are tasked
with predicting the categorical label for politeness,
uncertainty, and informativeness based on the man-
ual transcriptions.

3.1 Baselines

We start with several different baseline models,
shown in Table 4. The majority baseline always pre-
dicts the most frequent class; the stratified baseline
makes random predictions proportional to the distri-
bution of classes in the training set, and the random
baseline predicts a random class every time.

We also evaluate against existing pre-trained
models for rating politeness, uncertainty, and in-
formativeness (Meyers et al., 2018). The results

of this baseline can be seen in the “Existing Mod-
els” row in Table 4. The pre-trained politeness
classifier is an SVM and is trained on the Stanford
Politeness Corpus (Danescu-Niculescu-Mizil et al.,
2013), which includes 4,353 sentences of text con-
versations from public forums on Wikipedia and
Stack Exchange. The pre-trained uncertainty clas-
sifier is a logistic regression model trained on the
Szeged Uncertainty Corpus (Vincze, 2014), which
includes more than 9,000 annotated sentences from
corpora from different genres. The pre-trained
informativeness classifier is a logistic regression
model trained on the SQUINKY! corpus (Lahiri,
2015), which includes 7,000 utterances annotated
for informativeness, implicature, and formality.

Additionally, because the scales used in the pre-
trained classifiers for politeness and informative-
ness are continuous and differ from our own cat-
egorical annotation scale, we use thresholding to
convert the predictions to our scale. For example,
to convert a continuous scale from 0 to 1 into a
categorical scale from 1 to 3, we map any scores
less than 0.33 to be 1, scores between 0.33 and 0.67
to be 2, and scores greater than 0.67 to be 3. Since
the pre-trained uncertainty classifier only predicts
a binary result of either 0 or 1 corresponding to
certain or uncertain, we map their 0 rating to our 1
rating and their 1 rating to our 3 rating.

3.2 Neural model architecture

We apply several methods for extracting sentence
embeddings from the utterances in our dataset.
First we use a basic sequences embedding in which
each unique word appearing in the training data is
assigned a unique identification number, and each
utterance is then converted to a vector composed
of the identification numbers for the words in the
utterance, with padding for dimension consistency.
With the sequence embeddings, we use a bidirec-
tional LSTM model trained for 20 epochs with a
batch size of 128.

Additionally, we also use word embeddings from
pre-trained word2vec (Mikolov et al., 2013) and
GloVe (Pennington et al., 2014) models, represent-
ing each utterance summing all of the vectors for
the component words. Each utterance is repre-
sented with these pretrained embeddings in the
embedding layers of our models, which are im-
plemented in Keras1. For the word2vec model,
we use the Google News model which includes

1https://keras.io/
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Parameters Sequence (LSTM) GloVe (CNN) word2Vec (CNN) BERT (Feedforward NN)

CV Folds 5 5 5 5
Epochs 20 20 20 20

Batch size 128 128 128 8
Embedding
dimension 300 100 300 768

Layers
1 bidirectional
hidden layer,
1 dense layer

3 convoluted layers,
2 max pooling layers,
1 global max pooling layer,
1 dense layer

3 convoluted layers,
2 max pooling layers,
1 global max pooling layer,
1 dense layer

2 hidden linear layers

Dropout 0.5 0.5 0.5 0.5

Loss function categorical
cross entropy

categorical
cross entropy

categorical
cross entropy

categorical
cross entropy

Optimizer RMSprop RMSprop RMSprop Adam

Table 3: Summary of model parameters.

about 100 billion word vectors with a dimension
of 300 2. For the GloVe model, we use the pre-
trained Stanford GloVe model trained on data from
Wikipedia and Gigaword which includes around
6 billion word vectors with a dimension of 100
(Pennington et al., 2014). With the word2vec and
GloVe embeddings, we use a convolutional neural
network (CNN) model with global max pooling,
trained for 20 epochs with a batch size of 128.

The last type of embeddings that we employ
are the contextualized word representations of
BERT (Devlin et al., 2019). Rather than integrat-
ing classification within the BERT architecture, we
extract the 768-dimensional embeddings from the
BERT-base model, and use them within a feedfor-
ward neural network with two hidden layers (Schus-
ter et al., 2020) to predict the three points on each
of the three annotation scales. The complete infor-
mation for the parameterizations of our baseline
and neural models is provided in Table 3.

3.3 Model evaluation

All our models are trained and evaluated with 5-
fold cross validation. For each fold, the accuracy,
precision, recall and F1 of the predictions are cal-
culated. Then the averages of these metrics across
the 5 folds are computed as the indexes to evaluate
model performance.

4 Results

4.1 Manual annotations

Given the manual annotations, we examine whether
there are significant differences between the ASD
and the TD participant groups in terms of the three
pragmatic features, using t-tests for significance

2https://code.google.com/archive/p/word2vec/

testing. As shown in Table 5, the manual anno-
tations reveal significant differences between the
ASD and TD participants for politeness and infor-
mativeness in the map task, and uncertainty and in-
formativeness in the island task. ASD participants
are more polite, less uncertain, and less informa-
tive compared to TD participants in the map task.
However, the results are reversed in the island task,
where ASD participants are less polite, more uncer-
tain, and more informative than TD participants.

The difference in politeness between the two
tasks could be partially due to the nature of the two
tasks, as the map task requires the experimental par-
ticipant to give instructions and commands to their
conversational partner and thus presents greater op-
portunity and need for phrasing their statements in
a more polite way. In contrast, in the island task,
the two participants have equal roles, and there may
be less need for phrasing statements more politely.
These results suggest ASD participants tend to be
more polite than their TD peers in tasks in which
they have a leading or authority role. Furthermore,
the structure of the task could also contribute to the
difference in uncertainty in the two tasks. In the
map task, the participant giving instructions has a
clear, factual set of information to convey to their
partner, while the island task is more subjective and
requires more discussion between the two partici-
pants to agree on a set of items. This would suggest
that ASD participants exhibit more uncertainty than
their TD peers in open-ended tasks which require
more discussion and exchange of opinion.

4.2 Model predictions

The prediction results for all our models are pre-
sented in Table 4. Overall, the majority classifier
performed the best among the baselines tested and

288



Politeness Uncertainty Informativeness

Baselines Acc. Prec. Rec. F1 Acc. Prec. Rec. F1 Acc. Prec. Rec. F1

Majority .84 .71 .84 .77 .62 .38 .62 .47 .56 .31 .56 .40
Stratified .71 .71 .71 .71 .46 .46 .46 .46 .38 .38 .38 .38
Random .20 .71 .20 .31 .20 .45 .20 .28 .20 .40 .20 .27

Existing Models .73 .70 .73 .72 .55 .34 .55 .42 .55 .49 .55 .52

Model Embeddings

LSTM Sequences .87 .86 .87 .86 .72 .70 .72 .71 .82 .81 .82 .81
CNN GloVe .86 .82 .86 .84 .67 .64 .67 .65 .74 .72 .74 .73
CNN word2vec .84 .80 .84 .82 .69 .63 .69 .66 .76 .74 .76 .75

Feedforward NN BERT .85 .88 .85 .87 .84 .82 .84 .83 .82 .82 .83 .82

Table 4: Comparison of accuracy, precision, and recall for the baselines and models tested. The best baseline in
each column and the best proposed model in each column are rendered in boldface.

Manual Annotations BERT Model Predictions

Map Task ASD TD ASD TD

Politeness 2.0005** 1.9645 2.0626 2.0444
Uncertainty 1.4124 1.4334 1.399 1.3805

Informativeness 1.6044 1.7145**** 2.0631 2.0444

Island Task ASD TD ASD TD

Politeness 2.0332 2.0743 2.1798 2.1597
Uncertainty 1.3894**** 1.223 1.367 1.4021

Informativeness 1.7395*** 1.5169 2.1798 2.1597

Table 5: Speaker averages for pragmatic features, comparing the manually annotated values and values predicted
by the BERT model which has the highest F1 measures. Asterisks indicates a significant difference between the
two groups (** p < 0.01, *** p < 0.001, **** p < 0.0001).

had a fairly high accuracy already. This was espe-
cially true for politeness, where the majority base-
line had an F1 measure of 0.77. This is likely due
to the distribution of the politeness ratings, since
most statements fell into the neutral category of
2 for politeness, being neither particularly polite
or impolite. Despite the high performance of the
majority baseline however, all four models trained
on our own data generally performed substantially
better than all the baseline classifiers, especially for
uncertainty and informativeness. The BERT model
seemed to perform the best overall across all three
features, while the sequences model also performed
well for politeness and informativeness. In terms
of the F1 measure, the feedforward model trained
with BERT embedding outperforms the majority
baseline by 0.1 for politeness, 0.33 for uncertainty,
and 0.42 for informativeness.

Since our goal is to investigate the differences in
pragmatic expression between the two participant
groups, we want our model to be able to capture
the same group differences seen in the manual an-

notations. To this end, we take the output for each
group predicted from the best-performing model,
the feedforward model using BERT embedding,
and perform a t-test between the two groups as
well. The results of significance testing based on
model predictions are then compared to those given
manual annotations. As presented in Table 5, the
BERT model fails to capture the group tendencies
for uncertainty and informativeness in the map task
and politeness and uncertainty in the island task,
showing the opposite results as the manual anno-
tations. However, it does seem to show the same
group tendencies for politeness in the map task and
informativeness in the island task, but it does not
reveal statistically significant differences for any of
the features.

5 Conclusions and Future Work

From the results of our study, we can see that
there exist significant and quantifiable differences
in pragmatic expressions between adults with ASD
and their neurotypical peers. Moreover these dif-
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ferences are not fixed or consistent across all situ-
ations, but rather they may vary depending on the
open-ended nature of the task, the roles involved,
and the general context of the discourse. Relying
on manual annotations of this sort, however, would
not be practical or feasible in a clinical setting or
for monitoring the efficacy of an intervention.

To determine whether these annotations can be
carried out automatically, we introduced several
potential models trained on the annotated data. Al-
though all of our models outperformed one or more
of the baselines, the BERT model generally is su-
perior for all three features. None of the models,
however, were able to capture the statistically sig-
nificant differences we observe in the manual an-
notations. There is still more work to be done in
fine-tuning the model to capture between-group
differences which are vital to our study of the prag-
matic expression of adults with ASD.

In our future work, we plan to extend the cur-
rent study in at least three directions. First, we
would like to employ different model architectures,
leveraging external labeled corpora, with more sys-
tematic comparisons to see whether the differences
between ASD and TD groups seen in manual anno-
tations can be fully automatically derived. Second,
after a long hiatus, we have recently resumed col-
lecting data, with the goal of including 20 partici-
pants with ASD and 20 with typical development.
Third, we aim to include annotations of other prag-
matic features such as coherence and dialog acts
in order to examine the differences of these fea-
tures between ASD and neurotypical groups more
comprehensively.
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Abstract

Most earlier work on text summarization is car-
ried out on news article datasets. The summary
in these datasets is naturally located at the be-
ginning of the text. Hence, a model can spuri-
ously utilize this correlation for summary gen-
eration instead of truly learning to summarize.
To address this issue, we constructed a new
dataset, SUMPUBMED, using scientific arti-
cles from the PubMed archive. We conducted
a human analysis of summary coverage, re-
dundancy, readability, coherence, and informa-
tiveness on SUMPUBMED. SUMPUBMED is
challenging because (a) the summary is dis-
tributed throughout the text (not-localized on
top), and (b) it contains rare domain-specific
scientific terms. We observe that seq2seq mod-
els that adequately summarize news articles
struggle to summarize SUMPUBMED. Thus,
SUMPUBMED opens new avenues for the fu-
ture improvement of models as well as the de-
velopment of new evaluation metrics.

1 Introduction

Most of the existing summarization datasets, i.e.,
CNN Daily Mail and DUC are news article datasets.
That is, the article acts as a document, and the
summary is a short (10-15 lines) manually written
highlight (i.e., headlines). In many cases, these
highlights have significant lexical overlap with the
few lines at the top of the article. Thus, any model
which can extract the top few lines, e.g., extractive
methods, performs adequately on these datasets.

However, the task of summarization is not
merely limited to short-length news articles. One
could also summarize long and complex documents
such as essays, research papers, and books. In
such cases, an extractive approach will most likely
fail. For successful summarization on these doc-
uments, one needs to (a) find information from
the distributed (non-localized) locale in the large

text, (b) perform paraphrasing, simplifying, and
shortening of longer sentences and (c) combine
information from multiple sentences to generate
the summary. Hence, an abstractive approach will
perform better on such large documents.

One obvious source that contains such com-
plex documents is the MEDLINE biomedical
scientific articles, which are publicly available.
Furthermore, these articles are accompanied by
abstracts and conclusions which summarize the
documents. Therefore, we constructed a scien-
tific summarization dataset from pre-processed
PubMed articles, named SUMPUBMED. In com-
parison to the previous news-article based datasets,
SUMPUBMED documents are longer, and the cor-
responding summaries cannot be extracted by se-
lecting a few sentences from fixed locations in the
document.

The dataset, along with associated scripts, are
available at https://github.com/vgupta123/

sumpubmed. Our contributions in this paper are:

• We created a new scientific summarization
dataset, SUMPUBMED, which has longer text
documents and summaries with non-localized
information from documents.

• We analyzed the quality of summaries in
SUMPUBMED on the basis of four param-
eters: readability, coherence, non-repetition,
and informativeness using human evaluation.

• We evaluated several extractive, abstractive
(seq2seq), and hybrid summarization mod-
els on SUMPUBMED. The results show that
SUMPUBMED is more challenging compared
to the earlier news-based datasets.

• Lastly, we showed that the standard sum-
marization evaluation metric, ROUGE (Lin,
2004), correlates poorly with human evalua-
tions on SUMPUBMED. This indicates the
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need for a new evaluation metric for the scien-
tific summarization task.

In Section 1, we provided a brief introduc-
tion. The remaining parts of the paper are orga-
nized as follows: in Section 2 we explain how
SUMPUBMED was created. In Section 3, we ex-
plain how summaries were annotated by human
experts. We then move on to experiments in Sec-
tion 4. We next discuss the results and analysis in
Section 5, followed by the related work in Section
6. Lastly, we move on to the conclusions in final
Section 7.

2 SUMPUBMED Creation

SUMPUBMED is created from PubMed biomed-
ical research papers, which has 26 million docu-
ments. The documents are sourced from diverse
literature, including MEDLINE, life science jour-
nals, and online books. For SUMPUBMED cre-
ation we took 33, 772 documents from Bio Med
Central (BMC). BMC incorporates research papers
related to medicine, pharmacy, nursing, dentistry,
health care, health services, etc.

The research documents in BMC contain two
subsections: Front and Body. The front part of
the document is basically the abstract and taken as
the gold summary. The body part which is taken
as the main document contains three subsections:
background, results, and conclusion.

Preprocessing The average word count in the
PubMed scientific articles is around 4, 000 words
for each document and 250 to 300 lines in every
document. Therefore, to create SUMPUBMED,
we performed extensive preprocessing so that non-
textual content is removed and the overall text is
reduced to a more manageable size. This exten-
stive pre-processing step is one of the main factors
that sets SUMPUBMED apart from similar datasets
(Cohan et al., 2018).

During preprocessing, the non-textual content
from the text was removed by: (a) replacing ci-
tations and digits in the content with <cit> and
<dig> labels, (b) removing figures, tables, signa-
tures, subscripts, superscripts, and their associated
text (e.g., captions), and (c) removing the acknowl-
edgments and references from the text. All the
preprocessing was done on a sentence level utiliz-
ing the Python regex library.1 After preprocessing,

1https://tinyurl.com/q5v9p5d

we convert the final document to an XML format
and use the SAX parser to parse it.

SAX vs DOM parser: In SAX, events are trig-
gered when the XML is being parsed. When the
parser is parsing the XML and encounters a tag
starting (e.g., < something >), then it triggers
the tagStarted event (actual name of the event
might differ). Similarly, when the end of the tag is
met while parsing (< /something >), it triggers
tagEnded. Using a SAX parser implies one needs
to handle these events and make sense of the data
returned with each event. One could also use the
DOM parser,2 where no events are triggered while
parsing. In DOM the entire XML is parsed, and a
DOM tree (of the nodes in the XML) is generated
and returned. In general, DOM is easier to use but
has a huge overhead of parsing the entire XML be-
fore one can start using it; therefore, we use SAX
instead.

An example of the front part, body part, and
the XML file formed from the pre-processed text
is shown in https://github.com/vgupta123/

sumpubmed/blob/master/template.pdf.

Versions of SUMPUBMED We maintained three
versions of SUMPUBMED with varying degrees of
preprocessing, a) XML, b) Raw Text, and c) Noun-
phrases. Details of each version are as follows:

• In the XML version, we exported the whole
dataset into a single XML file

• The Raw Text version is obtained after prepro-
cessing when removing non-textual context is
completed, followed by XML parsing.

• In the Noun phrases version, we processed
the raw text version further to ensure that the
summary and the text have the same named
entities.

We found that standard Name Entity Recogni-
tion (NER) (Finkel et al., 2005) and Biomedical
Named Entity Recognizer (ABNER) (Settles, 2005)
fail to pick the scientific named entities correctly.
Note that the main reason behind ABNER insuf-
ficiency is the presence of novel PubMed named
entities that were not covered by any of the classes
in the ABNER tool. Therefore, we use a simple
heuristic of noun intersection between summary
and main-text noun phrases to obtain plausible en-
tity sets. This produced a shorter version of both
the text and the summary than the original pair.

2https://tinyurl.com/py6qxzc
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Figure 1: SUMPUBMED creation pipeline.

Version Avg. Stats Summary Article
Raw Text Words 277 4227
version Sents 14 203
Noun Phrase Words 223 1578
version Sents 10 57
Hybrid Words 223 1891
version Sents 10 71

Table 1: Average number of sentences and words in the
abstract and text in the three SUMPUBMED versions

The SUMPUBMED versions statistics is given
in Table 1. The SUMPUBMED overall creation
pipeline is shown in Figure 1.

3 Human Annotation of SUMPUBMED

Inspired from work on human evaluation of sum-
maries by Friedrich et al. (2014), we distributed 50
randomly chosen summaries from the noun-phrase
versions of SUMPUBMED to 10 expert annotators
(graduate NLP students) such that we have 3 anno-
tation for each summary. We asked these human-
annotators to rate the summaries on a scale of 1 to
10. We created different document files, each hav-
ing 10 pairs of summaries where we randomly shuf-
fled between reference and generated summaries
with respect to the placement on the page (left or
right). The annotators evaluated the summaries
based on the following criteria:

• Non-Repetition and no factual Redundancy

(Non-Re): There should not be redundancy in
the factual information, and no repetition of
sentences is allowed.

• Coherence (Coh): Coherence means “conti-
nuity of sense”. The arguments have to be
connected sensibly so that the reader can see
consecutive sentences as being about one (or
a related) concept.

• Readability (Read): Consideration of general
readability criteria such as good spelling, cor-
rect grammar, understandability, etc. in the
summaries.

• Informativeness, Overlap and Focus (IOF):
How much information is covered by the sum-
mary. The goal is to find the common pieces
of information via matching the same key-
words (or key phrases), such as “Nematodes”,
across the summary. For overlaps, annotators
compare the keywords’ (or key-phrases) oc-
currence frequency and ensure the summaries
are on the same topic.

The average scores and standard deviations are
shown in Table 2. Annotators found that for read-
ability, coherence, and non-repetitiveness, the qual-
ity of summaries is satisfactory. However, for in-
formativeness and overlap, it is hard to evaluate
summaries due to domain-specific technical terms.
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Criteria Mean (µ) S.D. (σ)
Non-Re 7.19 0.755
Coh 6.87 0.705
Read 6.82 0.821
IOF 6.31 0.879

Table 2: Mean and Standard Deviation (SD) scores of
human annotation on 50 summaries

ROUGE and Human Scores For the 50 sum-
maries evaluated by expert annotators, we calcu-
lated the Pearson’s correlation (Pearson, 1895) be-
tween ROUGE (Lin, 2004) scores (ROUGE-1 (R-
1), ROUGE-2 (R-2) and ROUGE-L (R-L)) in terms
of precision, recall and F1 score with the human-
evaluated scores. ROUGE-n is an n-gram simi-
larity measure that computes uni/bi/trigram and
higher n-gram overlaps. In R-L, L refers to the
Longest Common Subsequence (LCS) overlap: a
subsequence of matching words with the maximal
length that is common in both texts with the order
of words being preserved. Pearson’s correlation
value (between −1 and +1) quantifies the degree
to which quantitative and continuous variables are
related to each other. The Pearson’s correlations
values are shown in Table 3.

ROUGE scores assume that a high-quality sum-
mary generated by a model should have common
words and phrases with a gold-standard summary.
However, this is not always true because (a) there
can be semantically similar meaning (synonymous)
word usage, and (b) there can be the usage of text
paraphrases (similar information conveyed) with a
little lexical overlap in the reference summary text.
Therefore, merely considering lexical overlaps to
evaluate summary quality is not sufficient. A high
ROUGE score may indicate a good summary, but
a low ROUGE score does not necessarily indicate
a bad summary. Furthermore, while summarizing
large documents, humans tend to utilize different
paraphrasing/words to convey the same meaning
in a shorter form. Several studies by Cohan and
Goharian (2016); Dohare et al. (2017) argue that
ROUGE is not an accurate estimator of the quality
of a summary for scientific input, e.g., biomedical
text. Hence, a weak correlation of ROUGE scores
with human ratings on SUMPUBMED, as reported
in Table 3, should not be a surprise. That is, all cor-
relation values in Table 3 are close to zero, so we
can conclude that Rouge scores are weakly related
with human ratings on the SUMPUBMED.

4 Experiments

We have used the noun phrase version of
SUMPUBMED in the abstractive summarization set-
tings and the Hybrid version of SUMPUBMED in
the extractive and the hybrid settings, i.e., (extrac-
tive + abstractive) summarizations. We split the
dataset into train (93%), test (3%), and validation
(4%) sets. Before training, we wrote a script that
first tokenizes all input files and then forms the vo-
cabulary and chunked files for the train, test, and
validation sets. This step converts the input into a
suitable format for the seq2seq models.

4.1 Baseline Models

We use the following models on SUMPUBMED for
evaluation: We use extractive, abstractive, and hy-
brid (extractive + abstractive) automatic summa-
rization methods to evaluate SUMPUBMED.

Abstractive Methods We use several modifica-
tions of seq2seq with attention, as described below:

Seq2Seq with Attention (Nallapati et al., 2016):
The encoder is a single layer bidirectional LSTM,
while the decoder is a single layer unidirectional
LSTM. Both the encoder and decoder have same
sized hidden states, with an attention mechanism
over the source hidden states and a soft-max layer
over the vocabulary to generate the words. We use
the same vocabulary for both the encoding and the
decoding phase.

Seq2Seq with Pointer Generation Networks (See
et al., 2017): The previous model has a computa-
tional decoder complexity because each time we
have to apply the softmax over the entire vocabu-
lary. The model also outputs an excessive number
of UNK tokens (UNK is a special token utilized
for out-of-vocabulary words) in the target summary.
To address this issue, we use a pointer-generator
network (See et al. (2017)) which integrates the ba-
sic seq2seq model (with attention) with a copying
mechanism (Gu et al. (2016)). We call this model
seq2seq for the rest of the paper.

The seq2Seq model with Pointer Generation Net-
works and Coverage Mechanism (+cov) (Mi et al.,
2016): The summaries generated by the model dis-
cussed before may show repetition, like generating
the same arrangement of words multiple times (e.g.,
“this bioinformatic approach this bioinformatic ap-
proach...” ). This repetition of phrases is prominent
when generating multi-line summaries. The solu-
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Criteria Prec Recall F1
R-1 R-2 R-L R-1 R-2 R-L R-1 R-2 R-L

Non-Re -0.09 -0.06 -0.11 +0.02 -0.07 +0.007 +0.008 -0.05 +0.03
Coh +0.05 -0.14 +0.05 -0.04 -0.25 -0.01 +0.02 -0.19 +0.06
Read +0.19 +0.09 +0.20 +0.006 -0.03 +0.03 +0.12 +0.01 +0.13
IOF -0.15 -0.18 -0.16 +0.12 0.08 +0.09 +0.06 -0.007 +0.12

Table 3: Pearson’s correlation between ROUGE scores and human ratings on SUMPUBMED’s noun-phrase version

tion to the problem of redundancy in summaries
in seq2seq models is the coverage mechanism of
Mi et al. (2016). This model penalizes repeated
word generations by keeping track of the hitherto
covered parts using attention distribution.

Extractive Methods There are several existing
approaches to extractive summarization, mostly
derived from LexRank (Erkan and Radev, 2004),
and TextRank (Mihalcea and Tarau, 2004). We use
TextRank, which is an unsupervised approach for
sentence extraction, and has been used successfully
in many NLP applications (Hulth, 2003).

Hybrid Methods (Extractive + Abstractive)
We also experimented with the hybrid approach
for summarization. First, we used extractive sum-
marization using the TextRank ranking algorithm.
We then applied abstractive summarization on the
extracted text. We used the pointer-generator net-
works, followed by the coverage mechanism for the
abstractive summarization. In this setting, we have
not perfomed any preprocessing before extractive
summarization to decrease the length of the docu-
ments. The extractive summarization step makes
the text length sufficient to apply the abstractive
summarization step on it quite easily.

4.2 Experimental Settings

While decoding seq2seq models (for abstrac-
tive and hybrid models), we use a beam search
(Medress et al., 1977) with a beam width of 4.Note
that, Beam search is a greedy technique which
chooses the most likely token from all generated
tokens at each step to obtain the best b sequences
(the hyper-parameter b here represents the beam
width). Beam search is shown to be better than
generating the first sequence.

We also experimented with varying target sum-
mary lengths (i.e., the number of decoding steps)
for seq2seq models. We report both seq2seq mod-
els with and without coverage results for compari-
son. We considered ROUGE-1 (R-1), ROUGE-2
(R-2), and ROUGE-L (R-L)’s precision, recall, and

F1 score for evaluation.

Hyper-parameters The hyper-parameters used
for the seq2seq model is in Table 4.

Hyper-parameter Value
LSTM Hidden state size 256
Word embedding dimensions 128
Batch Size 16
encoder steps training 100-1000
encoder steps testing 100-4000
decoder steps length 100-250
beam size 4
learning rate for adagrad 0.15
maximum gradient norm 2.0

Table 4: Hyper-parameters for seq2seq models

We utilized tensorflow package 3 for models and
ROUGE evaluation package pyrouge 4 for the
evaluation metric.We use a single GeForce GTX
TITAN X with 12GB GPU memory taking on
average 5 to 6 days per model for model training.

5 Results and Analysis

Results on SUMPUBMED for abstractive methods,
i.e., seq2seq models (with and without coverage),
the extractive method of TextRank, and the hy-
brid approach, i.e., TextRank + seq2seq (with and
without coverage) are shown in Tables 6, 7, and 8,
respectively. We also evaluated the seq2seq models
on news datasets (CNN/Daily Mail and DUC 2001)
for comparison, as shown in Table 5.

Analysis: In all three approaches, abstractive in
Table 6, extractive in Table 7 and hybrid in Table
8, we notice that the ROUGE Recall and F1-score
increase, whereas precision decreases with the num-
ber of words (100 to 250) in the target summaries.
The increase in Recall is expected as the chances of
lexical overlap are more with larger generated sum-
maries. Precision decreases because, with more

3https://www.tensorflow.org/
4https://pypi.org/project/pyrouge/
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Data Model R-1 R-2 R-L
Pr Re F1 Pr Re F1 Pr Re F1

CNN seq2seq 33.49 38.49 34.61 13.89 15.87 14.29 30.15 34.64 31.15
-DM +cov 38.59 41.10 38.53 16.84 17.83 16.75 35.56 37.81 35.48
DUC seq2seq 41.34 21.33 27.63 14.28 7.30 9.49 32.95 16.93 21.93

+cov 43.86 21.92 28.57 15.04 7.41 9.68 34.96 17.29 22.60

Table 5: ROUGE scores on CNN-Dailymail (CNN-DM) and DUC 2001 dataset (DUC) using seq2seq models

Steps Model R-1 R-2 R-L
Pr Re F1 Pr Re F1 Pr Re F1

100 seq2seq 52.30 20.56 28.01 16.01 6.17 8.50 47.97 18.70 25.53
+cov 57.50 22.66 31.04 20.28 7.74 10.73 52.62 20.56 28.23

150 seq2seq 48.88 27.10 32.81 15.18 8.35 10.18 44.64 24.56 29.81
+cov 55.11 29.71 36.79 19.17 10.14 12.66 50.48 27.07 33.57

200 seq2seq 44.83 30.23 33.79 13.73 9.20 10.33 40.86 27.37 30.65
+cov 52.86 33.84 39.21 18.25 11.52 13.43 48.47 30.88 35.84

250 seq2seq 41.18 31.84 33.00 12.80 9.79 10.22 37.68 28.89 30.03
+cov 51.11 36.24 40.13 17.63 12.39 13.77 46.92 33.13 36.73

Table 6: ROUGE scores of noun-phrase SUMPUBMED version using a seq2seq model of varying decoding steps

Steps R-1 R-2 R-L
Pr Re F1 Pr Re F1 Pr Re F1

150 45.91 31.69 36.82 16.97 11.09 13.12 39.12 26.91 28.84
200 42.81 36.03 38.44 15.71 13.31 14.10 36.60 30.73 31.48
250 40.51 39.59 39.33 14.81 15.30 14.72 34.83 33.98 34.83

Table 7: Results for TextRank an Extractive Summarization approach on hybrid version of the SUMPUBMED.

Steps Model R-1 R-2 R-L
Pr Re F1 Pr Re F1 Pr Re F1

100 seq2seq 50.32 21.09 28.45 12.66 5.14 7.04 46.58 19.40 26.23
+cov 56.07 27.42 30.69 16.65 6.47 8.95 51.87 20.62 28.27

150 seq2seq 45.01 25.50 30.99 11.14 6.21 7.59 41.43 23.35 28.42
+cov 52.23 29.11 35.62 15.44 8.45 10.42 48.35 26.81 32.86

200 seq2seq 40.55 28.46 31.56 9.93 6.93 7.70 37.21 25.98 28.86
+cov 47.82 33.37 37.28 14.01 9.68 10.84 44.29 30.80 34.44

250 seq2seq 35.80 30.88 30.61 9.14 7.67 7.66 32.67 27.95 27.80
+cov 43.82 36.16 37.33 12.77 10.49 10.85 40.55 33.37 34.49

Table 8: ROUGE scores on hybrid version of the SUMPUBMED using Hybrid model: TextRank + seq2seq models

Model R-1 R-2 R-L
Pr Re F1 Pr Re F1 Pr Re F1

Abstractive 51.11 36.24 40.13 17.63 12.39 13.77 46.92 33.13 36.73
Extractive 40.51 39.59 39.33 14.81 15.30 14.72 34.83 33.98 32.82
Hybrid Model 43.82 36.16 37.33 12.77 10.49 10.85 40.55 33.37 34.49

Table 9: ROUGE comparison on SUMPUBMED. seq2seq abstractive methods’ target summary is of 250 words

words, the chances of non-covered words in the
output summary also increase.

We notice in both Tables 6 and 8 that by adding

the coverage (+cov) mechanism, the problem of
repetition in summaries is solved to a great extent.
The ROUGE scores also show improvement after
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applying coverage to pointer-generator networks.
Thus, one can conclude that pointer generator net-
works effectively handle named entities and out-
of-vocabulary words, and the coverage mechanism
is useful to avoid repetitive generation, which is
essential for scientific summarization.

In Table 9, we note that in terms of Precision
(Pr), the abstractive approach shows the best re-
sults. However, the Recall (Re) of the extractive
summarization model is always better than abstrac-
tive and hybrid approaches. Furthermore, the R-1
Re (ROUGE-1 Recall) and R-L Re (ROUGE-L
Recall) for the hybrid models are approximately
similar to the abstractive models. We also pro-
vide a few qualitative example of summarization
on CNN/DailyMail in Appendix Section A, on
SUMPUBMED in Appendic Section B.

6 Related Work

Below, we provide the details of other summariza-
tion datasets:

News: CNN-Daily Mail has 92, 000 examples
with documents of 30-sentence length with 4 cor-
responding human-written summaries of 50 words.
DUC (Document Understanding Conference), an-
other dataset, contains 500 documents ( 35.6 tokens
on average) and summaries ( 10.4 tokens). Giga-
word (Rush et al., 2015) has 31.4 document tokens
and 8.3 summary tokens. Lastly, X-Sum (Extreme
Summarization) (Narayan et al., 2018) contains
20-sentence (BBC articles) (431 words) and corre-
sponding one-sentence (23 words) summaries.

Social Media: Webis-TLDR-17 Corpus (Völske
et al., 2017) is a large-scale dataset of 3 million
pairs of content and self-written summaries ob-
tained from social media (Reddit). Webis-Snippet-
20 Corpus (Chen et al., 2020) contains 10 million
(webpage content and abstractive snippet) pairs
and 3.5 million triples (query terms, abstractive
snippets, etc.) for query-based abstractive snippet
generation of web pages.

Scientific: Recently, Sharma et al. (2019) re-
leased a large dataset of 1.3 million of U.S. patent
documents along with human written summaries.
However, the closest datasets to SUMPUBMED are
released by Cohan et al. (2018); Kedzie et al.
(2018); Gidiotis and Tsoumakas (2019).

Comparison with SUMPUBMED: News
datasets’ summary is located at the top of

the article for most examples. Social media
datasets lack the scientific aspect, i.e., complex
domain-specific vocabulary and non-localized
distributed information of SUMPUBMED. Other
works on the scientific datasets are by Cohan
et al. (2018); Kedzie et al. (2018); Gidiotis and
Tsoumakas (2019). The closest work to our
approach is the PubMed dataset by Cohan et al.
(2018). However, unlike SUMPUBMED, (a) no
extensive preprocessing pipeline was applied
to clean the text (b) a single version is released
compared with SUMPUBMED’s several versions
with distinct properties (varying summary lengths,
article lengths, and vocabulary sizes), (c) only
level-1 section headings instead of the whole
PubMed document are used, and (d) there is a
lack of human evaluation to assess data quality.
However, Cohan et al. (2018) do act as an powerful
inspiration for our work.

7 Conclusion

We created a non-news, SUMPUBMED dataset,
from the PubMed archive to study how various
summarization techniques perform on task of sci-
entific summarization on domain specific scientific
texts. These texts have essential information scat-
tered throughout the whole text. In contrast, earlier
datasets with news stories appear to mostly have
useful information in the first few lines of the doc-
ument text. We also conducted a human evaluation
on aspects such as repetition, readability, coher-
ence, and Informativeness for 50 summaries of
250 words. Each summary is evaluated by 3 dif-
ferent individuals on the basis of four parameters:
readability, coherence, non-repetition, and informa-
tiveness. Due to the unavailability of any state-of-
the-art results on this new dataset, we built several
baseline models (extractive, abstractive, and hybrid
model) for SUMPUBMED. To check the signifi-
cance of our results, we studied the effectiveness
of ROUGE through Pearson’s correlation analy-
sis with human-evaluation and observed that many
variants of ROUGE scores correlate poorly with hu-
man evaluation. Our results indicate that ROUGE
is possibly not a proper metric for SUMPUBMED.

Acknowledgements

We would like to thank the ACL SRW anonymous
reviewers for their useful feedback, comments, and
suggestions.

298



References
Wei-Fan Chen, Shahbaz Syed, Benno Stein, Matthias

Hagen, and Martin Potthast. 2020. Abstractive snip-
pet generation. In Proceedings of The Web Confer-
ence 2020, pages 1309–1319.

Arman Cohan, Franck Dernoncourt, Doo Soon Kim,
Trung Bui, Seokhwan Kim, Walter Chang, and Nazli
Goharian. 2018. A discourse-aware attention model
for abstractive summarization of long documents. In
Proceedings of the 2018 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 2 (Short Papers), volume 2, pages 615–621.

Arman Cohan and Nazli Goharian. 2016. Revisiting
summarization evaluation for scientific articles. In
Proceedings of the Tenth International Conference
on Language Resources and Evaluation (LREC’16),
pages 806–813.

Shibhansh Dohare, Harish Karnick, and Vivek Gupta.
2017. Text summarization using abstract meaning
representation. arXiv preprint arXiv:1706.01678.
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2018. Content selection in deep learning models of
summarization. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 1818–1828.

Chin-Yew Lin. 2004. ROUGE: A package for auto-
matic evaluation of summaries. In Text Summariza-
tion Branches Out, pages 74–81, Barcelona, Spain.
Association for Computational Linguistics.

Mark F. Medress, Franklin S Cooper, Jim W. Forgie,
CC Green, Dennis H. Klatt, Michael H. O’Malley,
Edward P Neuburg, Allen Newell, DR Reddy,
B Ritea, et al. 1977. Speech understanding systems:
Report of a steering committee. Artificial Intelli-
gence, 9(3):307–316.

Haitao Mi, Baskaran Sankaran, Zhiguo Wang, and Abe
Ittycheriah. 2016. Coverage embedding models for
neural machine translation. In Proceedings of the
2016 Conference on Empirical Methods in Natural
Language Processing, pages 955–960.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 con-
ference on empirical methods in natural language
processing, pages 404–411.

Ramesh Nallapati, Bowen Zhou, Cicero dos Santos,
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A Summarization Example on
CNN/DailyMail Dataset

We see factual redundancy and repetitiveness in
the generated summaries with pointer-generation
which is removed by applying coverage. In the
example below the Factual Redundancy is shown
with the bold text:

Reference Summary maricopa county sheriff ’s

office in arizona says robert bates never trained with them.

“ he met every requirement , and all he did was give of

himself, ”his attorney says. tulsa world newspaper: three

supervisors who refused to sign forged records on robert

bates were reassigned.

Summary from seq2seq some supervisors at the

tulsa county sheriff’s office were told to forge reserve

deputy robert bates ’ training records. some supervisors

at the tulsa county sheriff’s office were told to forge re-

serve deputy robert bates’ training records, and three who

refused were reassigned to less desirable duties. some su-
pervisors at the tulsa county sheriff ’s office were told
to forge reserve deputy robert bates ’ training records.

Summary from seq2seq with coverage some

supervisors at the tulsa county sheriff ’s office were told to

forge reserve deputy robert bates ’ training records . the

volunteer deputy ’s records had been falsified emerged “

almost immediately ” from multiple sources after bates

killed eric harris on april 2 . bates claims he meant to

use his taser but accidentally fired his handgun at harris

instead.

B Example of Summarization on
SUMPUBMED

Here we provide representative examples of actual
summaries. Repetitiveness, i.e., factual redundancy
is shown with the bold text.

B.1 Abstractive Summarization on
SUMPUBMED

We see factual redundancy and repetitiveness in
the generated summaries with pointer-generation
which is removed by applying coverage. We also
observe that repetitiveness is removed by using the
coverage mechanism.

reference: the origin of these genes has been at-

tributed to horizontal gene transfer from bacteria, although

there still is a lot of uncertainty about the origin and struc-

ture of the ancestral ghf <dig> ppn endoglucanase. our

data confirm a close relationship between pratylenchus spp.

furthermore, based on gene structure data, we inferred a

model for the evolution of the ghf <dig> endoglucanase

gene structure in plantparasitic nematodes. our evolu-

tionary model for the gene structure in ppn ghf <dig>

endoglucanases implies the occurrence of an early duplica-

tion event, and more recent gene duplications at genus or

species level. the latter one is the first gene isolated from

a ppn of a different superfamily -LRB- sphaerularioidea

-RRB-; all previously known nematode endoglucanases

belong to the superfamily tylenchoidea -LRB- order rhab-

ditida -RRB-. no statistical incongruence between the

phylogenetic trees deduced from the catalytic domain and

the cbm <dig> was found, which could suggest that both

domains have evolved together. and the root knot ne-

matodes, while some radopholus similis endoglucanases

are more similar to cyst nematode genes. two new en-

doglucanases from the migratory nematodes pratylenchus

coffeae and ditylenchus africanus were included in this

study. phylogenetic analyses were conducted with the

ppn ghf <dig> endoglucanases and homologous endoglu-

canases from bacterial and other eukaryotic lineages such

as beetles, fungi and plants. previous studies on the evo-

lution of these genes have focused primarily on data of

sedentary nematodes, while in this study, extra data from

migratory nematodes were included. it is not clear whether

this ancestral endoglucanase consisted of the whole gene

cassette, containing a catalytic domain and a carbohy-

dratebinding module -LRB- cbm, type <dig> in ppn and

bacteria -RRB- or only of the catalytic domain while the

cbm <dig> was retrieved by domain shuffling later in

evolution. the ghf <dig> catalytic domain and the cbm

<dig> rather than that it evolved by domain shuffling.

endo <dig> betaglucanases or cellulases from the glyco-

syl hydrolase family <dig> -LRB- ghf5 -RRB- have been

found in numerous bacteria and fungi, and recently also in

higher eukaryotes, particularly in plantparasitic nematodes

-LRB- ppn -RRB-.
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seq2seq: although the hox cell line with peculiar prop-

erties of horizontal gene transfer -LRB- hgt -RRB- has

been proposed to delineate the function of ghf <dig> en-

doglucanases. the gene structure of the ppn ghf <dig>

endoglucanases is a matter of debate, in this study no sup-

port for an early exon/domain shuffling event after the

independent gain of a catalytic domain. the exon/intron

gene structure of the ppn ghf <dig> endoglucanases was

compared with the multiple protein sequence alignment.

the gene structure of the ppn ghf <dig> endoglucanases

was compared with the multiple protein sequence align-

ment. the gene structure of the ppn ghf <dig> en-
doglucanases was compared with the multiple protein
sequence alignment. the gene structure of the ppn ghf
<dig> endoglucanases was compared with the multi-
ple protein sequence alignment. the evolution of the

gene structure of the ppn ghf <dig> gene families: the

number of members from an ancient or early eukaryotic

ancestral gene is associated with the expansion of mem-

bers from an ancient or early eukaryotic ancestral gene. in

this study, we.

seq2seq coverage: the expansion of horizontal gene

transfer -LRB- hgt -RRB- events in horizontal gene trans-

fer -LRB- hgt -RRB- has been proposed to explain the

origin of ghf <dig> endoglucanases in the nematode king-

dom. while the ppn ghf <dig> endoglucanases has a close

relationship to the root knot nematodes. in order to have

a broader overview of the endoglucanase evolution in the

infraorder tylenchomorpha, the gene structure of six ad-

ditional genes was incorporated in our study. the ppn ghf

<dig> gene family is associated with the expansion of the

ppn ghf <dig> gene family bordered by intron <dig> and

intron <dig> although 1 - <dig> symmetrical domains

are suggested to be frequently associated with domain

shuffling events in the evolution of paralogous gene fami-

lies: the evolution of the ppn indicate a history of recent

duplication events for which little information is available.

our model implies that the divergence of the gene structure

of the ppn ghf <dig> gene family is notably dynamic, and

this evolution involves more intron gains than losses in the

order rhabditida -LRB- infraorder tylenchomorpha -RRB-,

which is part of one of the three evolutionary independent

plantparasitic nematode clades. our results demonstrate

that the conserved gene structure of the ppn ghf <dig>

endoglucanases and the observation of some sequence con-

servation in the evolution of the plantparasitic bacteria and

nematodes. our results suggest that the evolution of the

ghf <dig> gene family is a major consequence of the

evolution of.

B.2 Extractive Summarization on
SUMPUBMED

TextRank produces a purely extractive summary.
But we see that it is able to identify the relevant sen-
tences. The content overlap between the reference
and generated extractive summary is adequate.

reference : to find out the different ovarian activ-
ity and follicle recruitment with mirnamediated post-
transcriptional regulation, the small rnas expressed
pattern in the ovarian tissues of multiple and uni-
parous anhui white goats during follicular phase was
analyzed using solexa sequencing data. <dig> mirnas

coexpressed, <dig> and <dig> mirnas specifically ex-

pressed in the ovaries of multiple and uniparous goats
during follicular phase were identified. in the present

study, the different expression of mirnas in the ovaries of

multiple and uniparous goats during follicular phase were

characterized and investigated using deep sequencing tech-

nology. rt-pcr was applied to detect the expression level

of <dig> randomly selected mirnas in multiple and uni-

parous hircine ovaries, and the results were consistent with

the solexa sequencing data. micrornas play critical roles

in almost all ovarian biological processes, including fol-

liculogenesis, follicle development, follicle atresia, luteal

development and regression. the result will help to further

understand the role of mirnas in kidding rate regulation

and also may help to identify mirnas which could be poten-

tially used to increase hircine ovulation rate and kidding

rate in the future. the <dig> most highly expressed mir-

nas in the multiple library were also the highest expressed

in the uniparous library, and there were no significantly dif-

ferent between each other. the highest specific expressed
mirna in the multiple library was mir29c, and the one
in the uniparous library was mir<dig> <dig> novel

mirnas were predicted in total. superior kidding rate is

an important economic trait in production of meat goat,

and ovulation rate is the precondition of kidding rate. go

annotation and kegg pathway analyses were implemented

on target genes of all mirna in two libraries.
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extracted : in order to identify differentially ex-
pressed mirna during follicular phase in the ovaries of
multiple and uniparous anhui white goats, two small
rna libraries were constructed by solexa sequencing.
for all mirnas target genes of multiple and uniparous goats

in the ovaries during follicular phase, there were <dig>

and <dig> target genes mapped to the go terms of cellu-

lar component. the expression levels of <dig> randomly

selected mirnas were verified in the ovaries of multiple

and uniparous goats during follicular phase using rt-pcr. in

this study, we sequenced the small rnas in the ovarian tis-
sues of multiple and uniparous anhui white goats dur-
ing follicular phase by illumina solexa technology, then

analyzed the differentially expressed mirnas, predicted

novel mirnas, and made go enrichment and kegg path-

way analysis of target genes in two mirna libraries. in

ovaries between multiple and uniparous goats of follic-

ular phase, <dig> novel mirnas were predicted in total,

which is distinctly more than the amount predicted in our

previous study implemented by our team workers, zhang

et al. the highest specific expressed mirna in multiple
library was mir29c, and the one in uniparous library
was mir<dig> as aligning the clean reads to the mirna

precursor/mature mirnas of all animals in the mirbase

<dig> database, and obtained mirna with no specified

species. rt-pcr was carried out to analyze the expression

of <dig> randomly selected mirnas in multiple and uni-

parous hircine ovaries during follicular phase, and the

results were consistent with the solexa sequencing data.

B.3 Attention Visualization for SUMPUBMED

We can visualize the attention projection for
seq2seq models by highlighting the respective
words in yellow on the source document while
producing a word. Figures 2 and 3 show the words
in green with high generation probability, i.e, pgen
> 0.5 (not copied), non marked words have pgen
< 0.5 (mostly copied).

Observations While producing a word in the out-
put, we can visualize the respective words in the
source document on which the network is focussing.
The darker the green highlight over a word in the
summary, the higher is the pgen prob- ability. E.g.,
there is a chance that pgen is high whenever a new
sentence is started after a period (.). The model
generally focuses on two or three words at a time.
There is a high chance that the summary starts with
a noun phrase or a noun. For example, we can
see in Figure 2 that the summary starts with name
(noun) ‘kevin pietersen’.
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Figure 2: Attention Probability for decoding on DUC 2001 dataset example, showing the summary is more inclined
to an extractive nature. Attention corresponding to the word ‘pietersen’ present in the generated summary is shown.

Figure 3: Attention Probability for decoding on a SUMPUBMED example where the attention corresponding to
word ‘present’ in the generated summary is shown.
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Abstract
The events that took place at the Unite the
Right rally held in Charlottesville, Virginia on
August 11-12, 2017 caused intense reaction
on social media from users across the politi-
cal spectrum. We present a novel application
of psycholinguistics - specifically, construal
level theory - to analyze the language on so-
cial media around this event of social import
through topic models. We find that includ-
ing psycholinguistic measures of concreteness
as covariates in topic models can lead to in-
formed analysis of the language surrounding
an event of political import.

1 Introduction

Construal Level theory (CLT) (Trope and Liber-
man, 2010) postulates that people create differing
mental representations of the same information de-
pending upon whether the information is psycho-
logically proximal or psychologically distant. For
instance, people experience geographically distant,
and hence psychologically distal events, by forming
mental construals of such events at higher levels
of abstraction than events that are geographically
proximal (Fujita et al., 2006). These construals
manifest themselves in the language people use,
specifically in concreteness values. Additionally,
empirical research has demonstrated that the ten-
dency to create abstract versus concrete construals
systematically affects human judgments, attitudes,
and behaviors (McCrea et al., 2012).

To illustrate, consider the example of climate
change. Research has shown that when people are
primed to think about the topic of climate change
using more concrete terms such as beetle and
forest vs. more abstract terms (sea levels),
they are more likely to engage with the topic of
climate change (Scannell and Gifford, 2013). Con-
creteness of words is the degree to which a concept
denoted by the word refers to a perceptible entity.

High Abstraction/
Low Concreteness

A Confederate who was opposed to
secession, but refused to fight against
Virginia https://t.co/UTJvNsEYd7
#waxmuseum #USHistory

Low Abstraction/
High Concreteness

”Confederate general/soldiers statues /
memorials are literally just participation
trophies ” - the best sentence I ever heard

#Charlottesville

Table 1: Example tweets demonstrating how language
reflects differing levels of construals about the same
topic. Highlighted words represent high concrete-
ness/low abstraction terms.

In other words, it is easier to generate a mental
image of a beetle as opposed to a mental image of
sea level, and talking about the topic of climate
change in more concrete terms makes people more
likely to engage with the topic. Furthermore, the
analysis of words and their associated sentiments
can be used to conclude the tone of discussion and
how the discussion around climate change can vary
between countries (Dahal et al., 2019).

Construals can differ based on geographical, so-
cial and temporal distance. An event which is dis-
tant in the future would be described in language
that has higher levels of abstractness (and there-
fore low concreteness) than an event which is more
proximal. Given that (a) language use reflects dif-
fering levels of construals and (b) construals can
differ for events that are temporally distant vs. tem-
porally proximal, we seek to investigate whether
individuals on social media would discuss an event
using different levels of construals and whether we
can determine the effects of these construals from
their language use.

We thus use Construal Level Theory as a the-
oretical foundation to understand the reaction of
individuals on Twitter related to the Unite the Right
rally that took place in Charlottesville, Virginia on
August 11-12, 2017. We apply topic models to
analyze language use and study how users view
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the events that took place during the protests. To
demonstrate, consider the tweets shown in Table 1
as examples of high concreteness/low abstraction
vs. low concreteness/high abstraction language sur-
rounding the Charlottesville Rally from our corpus.
While one tweet discusses the topic using highly
concrete words (statues and trophies), the other
does so using abstract concepts like secession and
confederate.

Our work, situated at the intersection of psy-
cholinguistics and computational social science,
makes the following salient contributions:

• We extend the application of Construal Level
Theory beyond laboratory settings to make it
more ecologically valid;

• To analyze language produced spontaneously
on social media, we use topic modeling and
include concreteness values as covariates in
the topic models.

2 Related Work

Construal Level Theory to Study Human Be-
havior: Construal level theory, first introduced
by Liberman et al. (2007), describes the relation
between psychological distance and how the mind
perceives objects and events as abstract or con-
crete. The distance consists of temporal, spatial,
and geographical dimensions. McCrea et al. (2008)
explained how representing tasks that must be com-
pleted in a concrete way decreases the likelihood
of procrastination.

The theory has also been applied by Stephan
et al. (2011) to show that temporal proximity and
concrete construals produce a corresponding in-
crease in perceived social closeness (described as
familiarity with a specific topic). Williams et al.
(2014) conducted a study regarding how psycholog-
ical distance of thought would impact the positivity
of reactions. They showed how distance from a sce-
nario (having it happen to oneself versus to some-
one else) impacts one’s reaction to it. Snefjella and
Kuperman (2015) show that abstraction increases
with distance and decreases as spatial distance de-
creases. (Rufai and Bunce, 2020) analyze tweets
from top world leaders’ responses to the COVID-19
pandemic with results unrelated to construal theory,
yet still integrate the categorization of tweets from
each leader into categories that can further explain
the path of response each country’s leader took.
However, most of the work cited above is based on
laboratory studies. On the other hand, social media

language has the benefit of being more ecologically
valid, in that, communication between speakers is
more interactive and messages are generally spon-
taneous rather than prompted or composed before
delivery.

Topic Models to Study Language Data: Topic
modeling techniques, based on probabilistic latent
semantic analysis (Hofmann, 2001), latent Dirich-
let allocation (LDA) (Blei and Lafferty, 2006) have
been widely used to support quantitative and qual-
itative analysis of text data. While the topics are
uncorrelated in the base LDA model, correlated
topic models leverage the fact that certain topics
may share words between them and thus be closer
to one another (Blei et al., 2007). Topic models can
be created using a variety of methods, and salient
topics can be derived from tweets collected using
both traditional LDA and non-traditional methods
(Demszky et al., 2019). Topic models have also
been used to study topics that analyze how human
emotion is attached to text samples in context dif-
ferent than construal theory analysis (Kleinberg
et al., 2020). Structured topic models (STM) (Wal-
lach, 2008), treat the documents as sequences of
segments, which can share the same prior distribu-
tion of topics. This allows the model to leverage
the existing structure of documents from the given
segmentation. The other advantage of using STM
is that it allows for the inclusion of covariates into
the prior distributions, so that variance of different
topics of the variable of interest can be investigated
(Roberts et al., 2014). While covariates such as
political ideology have been widely studied in prior
literature (Bauer et al., 2017), the inclusion of psy-
cholinguistic measures of words has not heretofore
been systematically studied. We thus investigate
whether the inclusion of psycholinguistics mea-
sures of concreteness in the topic models results in
meaningful comparisons of the underlying constru-
als about the events.

3 Data

A major challenge while studying social media
data is representativeness and sample selection bias
(Tufekci, 2014). To address this challenge, we de-
signed an observational study using Twitter’s pub-
lic APIs to obtain a longitudinal dataset of tweets
from Feb 7, 2017 through Oct 11, 2017 around the
Charlottesville protests of August 2017, in Virgina,
USA. As an event of far-reaching social and politi-
cal import, which was characterized by not only the
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Figure 1: List of hashtags and keywords used to collect
our data corpus for Charlottesville protest event. The
hashtags were split into two Conditions. In Condition
1, there are two sets of keywords and hashtags and the
search criteria is that the tweet should match at least
one item from each set. Condition 2 is a set of hashtags,
where the search criteria is to match at least one item
from the set.

discussion surrounding planning of protests, but the
ensuing discussion after August due to the death of
Heather Heyer, this event serves as an exemplary
case for analysis of how individuals formed con-
struals before, during and after the event. We used
a carefully curated set of keywords, and defined the
search criteria iteratively: first, we conducted an
advanced search on Twitter for tweets containing
keywords from trending tweets, including hashtags
regarding the Charlottesville event. Next, we exam-
ined the tweets resulting from this search to identify
additional key words we had missed, and then we
conducted additional data pulls to include tweets
with these additional keywords. All research was
conducted in accordance with the university ethics
board approval. Data collection was ruled exempt
because we collected tweets from public accounts.
We acquired the data through the GNIP Histori-
cal Powertrack Twitter API for the Charlottesville
event by using the data pullsearch string in Figure 1
resulting in 526, 102 tweets.

4 Method

We use R and the STM (Roberts et al., 2019) pack-
age to build our topic models. We preprocess the
data by converting all tokens to lowercase, remov-
ing symbols from the text, and removing stopwords
using the spaCy library (Honnibal et al., 2020) in
Python. We also include some custom stopwords
such as like and try to make the topics more
meaningful. We used smenatic coherence as one of
the measures to determine final number of topics.

We then used an existing concreteness lexi-

con (Brysbaert et al., 2014a) to compute the av-
erage concreteness value of words that occur in
tweets. The concreteness lexicon by Brysbaert
et al. (2014a) contains concreteness values of over
40,000 English words in their lemma form and has
been used in prior natural language research to
investigate argument strategies (Tan et al., 2016)
and for predicting text comprehension (Crossley
et al., 2017), among others. However, prior ap-
proaches that investigate psychological distance
in natural language (Bhatia and Walasek, 2016;
Snefjella and Kuperman, 2015) compute average
concreteness scores for each tweet by consulting
the concreteness lexicon for all words that occur
in tweets. By contrast, we only focus on words
that have extreme concreteness scores (>=4, on
a scale of 1 – 5) and extreme abstractness scores
(<=2). We focus on the extreme ends of the con-
creteness/abstractness spectrum to be consistent
with prior literature, which suggests that extreme
valence is highly correlated with emotion, mem-
ory and recognition of words (Ponari et al., 2018).
More experimentation is needed to determine what
effect our design choice of using the extreme values
for concreteness has on the resulting topic model,
such that, if we choose a different threshold of
concreteness values, we might surface different
patterns in the data. This would require manual
inspection of the words contained in each topic
and qualitative evaluation of the semantic content
within and between topics.

Figure 2: Measurement of concreteness of each topic

5 Results

After constructing a topic model, the patterns no-
ticed among the topics and among the words that
were most common in each topic can be used to ex-
plain the construal levels of the users.It is important
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to note that some of the topics produced, specifi-
cally Topic 2, 7, and 10 contained foul language,
reflecting the harsh and opinionated nature of the
tweets made regarding this event. We summarize
our two main findings in this paper, while more in-
depth analysis and contextualization within a larger
research project is the main focus of an upcoming,
larger publication.

Concreteness level differentiates between top-
ics: Figure 2 shows the level of concreteness in
each topic, arranged from Low to High Concrete-
ness. For each individual post, a concreteness value
above the mean was labelled as being “high con-
creteness”, and below the mean was labelled as
being “low concreteness”. On a topic level, the
concreteness value for each topic is determined
internally by the STM library using prevalence,
which based on the documentation1 refers to how
much of a document is associated with a topic tak-
ing into account the metadata provided. Figure 2
thus shows how the prevalence of topics differs
across values of the categorical covariate which is
the “concreteness” value.

As discussed above, concrete terms refer to spe-
cific tangible objects, while abstract terms can be
general ideas or emotions. Topics 3 and 9 stand
out as the least and most concrete, resp. Other top-
ics with high concreteness terms in the tweets are
Topic 1, 6 and 10. Most topics are characterized
by low concreteness values (Topics 3, 7, 8, 5 and
4). This makes sense due to the fact that most of
our data relating to the event is collected before,
in fact, months before the rally was scheduled to
take place (our data collection starts in February
while the main Charlottesville protests took place
in August 2017). This means, on average, Topic
3 discusses the Charlottesville rally in more gen-
eral ideas and terms, while Topic 9 discusses using
specific people or more concrete objects. Terms
that served as labels for topic 1 include “stand”,
“vote”, and “quit”, while topic labels for topic 3
include “outrage”, “lead”, and “nationalist”. Fre-
quent terms found in topic 1 are more easily vi-
sualized compared to terms in topic 3 that exhibit
low concreteness and are considered more abstract.
Terms in topics 6 and 10 include “america”, “resist-
trump”, “assault”, and “historic”. These terms are
imaginable and can present an image in the reader
or tweeter’s mind, showing the high concreteness
of the tweets in the topics they belong to. Terms

1https://tinyurl.com/37rwucpw

with low concreteness including “wrong”, “praise”,
“civil”, “approve”, and “game” can be found in top-
ics 4, 5, 7, and 8. These terms are (in contrast to
those in topics 1, 6, and 10) less imaginable and do
not clearly present a picture in the reader’s mind,
illustrating how the topics these terms belong to
discuss more abstract ideas.

Figure 3: Change in Topic proportion over time: Topics
3 and 9

Topic proportions over time reflect construals:
The discussion of Topics 3 and 9 is important be-
cause they are so widely dissimilar. To investi-
gate further, we plot the difference between the
two topics over time in terms of expected topic
proportion in Figure 3. This figure shows how
tweets in Topic 9 began to steadily increase im-
mediately after the Charlottesville protests began
in August, and peaked during the period after the
events, while Topic 3 (characterized by low con-
creteness language, with terms such as “outrage”,
“attention”, “nationalist”, and “return”) declined
during the month of the protests and was less pop-
ular during the peak of Topic 9. At the time of
the protests (August 11-12), Topic 9 had begun
to increase while topic 3 had been declining and
reached its lowest point yet. Topic 9 also contains
terms that may be related to the aftermath of the
protests because they illustrate the reaction

This suggests that topics associated with more
concrete terms regarding the Charlottesville event,
specifically Topic 9, were more prevalent after the
event. Put differently, individuals were more likely
to talk about the protests in concrete terms after the
main protest event had passed (Aug 10-11). While
the expected topic proportion of Topic 3 dips after
the August time window, it does not dramatically
differ from the previous expected topic proportion.
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This suggests that the abstract construals are likely
to appear both before and after the event but not dur-
ing. This finding is consistent with prior research
applying Construal Level Theory in lab settings.

6 Conclusion

The protests that took place in Charlottesville in
August of 2017 caused an outsize reaction on social
media. We investigate how individuals perceive
an event during its occurrence and after it ends,
through the lens of Construal Level Theory. Our
main finding is that adding concreteness values as
covariates during topic modeling can help distin-
guish which topics were prevalent before, during
and after the event. We find that during the ongoing
discussion surrounding the protests (time period of
Feb through Oct 2017 in our corpus), it was more
likely that abstract terms that refer to ideas and
emotions were used.

Notably, we found that language using more con-
crete terms was used to describe the events after
they occurred. This finding is not surprising — it
is easier to discuss an event in concrete terms after
it occurs, because individuals will have specific
objects (like car and torch) to refer to, in addi-
tion to proper nouns like specific names or places.
However, a significant dip in the expected topic
proportion after the event (c.f. Figure 3 Topic 9
trajectory) suggests that the this effect is attenuated
over time. Our research can be used to gain in-
sight into how to measure construals of events over
time, and can be used to show what elements of
an event people focus on as they react to it. Thus,
our methodology showcases the use of quantita-
tive methods which could be used to study how
Construal Level Theory is reflected during crisis
events. For future work, we also aim to study how
our approach could be applied towards different
crisis events.

Limitations: We acknowledge several limita-
tions of our work:

• Single Event: Our analysis is focused on a
single event: the Charlottesville protest rally.
As such, we cannot yet claim generalizability
of our findings. We offer our research as a
first foray into a series of analyses focusing on
construals across varying events and contexts.
For example, one direction for future work is
suggested in analysis of construals about the
COVID-19 pandemic at different stages of an
ongoing, global event.

• Deeper Analysis of Concrete Terms: In this
work, we do not present an in-depth study
for the concrete vs. abstract words associ-
ated with each topic. Certainly, interesting
questions to ask would be whether the frex
terms (highest ranking frequent and exclusive
words) or the highest probability words in
each topic are correlated in any way with the
concreteness values. We address this limita-
tion as part of our future work.

• Language Limitations: Our study is focused
on an event that occurred in the United States.
As such, all of our data are in English. As
part of addressing the question of generaliz-
ability of findings, we further aim to replicate
our findings in multiple languages given ap-
propriate data. Concreteness lexicons now
exist in multiple languages, including Dutch
(Brysbaert et al., 2014b) and French (Bonin
et al., 2020), which makes this future analysis
a viable option.
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Abstract

Misleading information spreads on the Inter-
net at an incredible speed, which can lead to ir-
reparable consequences in some cases. There-
fore, it is becoming essential to develop fake
news detection technologies. While substan-
tial work has been done in this direction, one
of the limitations of the current approaches
is that these models are focused only on one
language and do not use multilingual informa-
tion. In this work, we propose a new technique
based on cross-lingual evidence (CE) that can
be used for fake news detection and improve
existing approaches. The hypothesis of the us-
age of cross-lingual evidence as a feature for
fake news detection is confirmed, firstly, by
manual experiment based on a set of known
true and fake news. Besides, we compared
our fake news classification system based on
the proposed feature with several strong base-
lines on two multi-domain datasets of general-
topic news and one newly fake COVID-19
news dataset showing that combining cross-
lingual evidence with strong baselines such as
RoBERTa yields significant improvements in
fake news detection.

1 Introduction

After the manipulation of opinions on Face-
book during the 2016 U.S. election (Allcott and
Gentzkow, 2017), the interest in the topic of fake
news has increased substantially. Unfortunately,
the distribution of fakes leads not only to misinfor-
mation of readers but also to more severe conse-
quences such as shooting in Washington Pizzeria
(Kang and Goldman, 2016) that was caused by the
spreading of fake news about Hillary Clinton lead-
ing a child sex trafficking. Also, due to the global
pandemic in 2020, there was a simultaneous emer-
gence of infodemic (Alam et al., 2020) that could
lead to an even worse epidemiological situation
and harm people’s health dramatically.

As a result, fake news received tremendous pub-
lic attention, as well as drawn increasing interest
from the academic community. Multiple super-
vised fake news detection models were proposed
based on linguistic features (Pérez-Rosas et al.,
2018; Patwa et al., 2020); deep learning models
(Barrón-Cedeño et al., 2019; Glazkova et al., 2020;
Kaliyar et al., 2021); or signals from social net-
works (Nguyen et al., 2020; Cui et al., 2019). One
of the directions of the supervised approaches is
to use additional information from the Web (Popat
et al., 2017; Karadzhov et al., 2017; Ghanem et al.,
2018). However, in these works only monolingual
signals were taken into account.

In our work, we assume that viral spreading of
(fake) information may naturally hit the “language
barrier” and cross-checking of facts across media
in various languages (supposed to be strongly in-
dependent) could yield an additional signal. We
aim to close this gap and perform an exploration of
cross-lingual Web features to fake news detection.

The contribution of our work is a new cross-
lingual evidence feature for fake news detection
based on multilingual news verification.1 We con-
duct a manual experiment based on cross-lingual
dataset markup to evaluate if the user can use such
a feature for misinformation identification. Af-
ter that, we implement the proposed feature show-
ing that adding cross-lingual evidence consistently
improves the results of strong baselines including
large pre-trained transformers. We release publicly
all code and data.2

2 Related Work

Firstly, several datasets have been collected for dif-
ferent sub-tasks of fake news detection pipeline:

1This work is a substantially extended version of the pre-
liminary experiment by Dementieva and Panchenko (2020).

2https://github.com/skoltech-nlp/
multilingual-fake-news
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1. Text extraction 2. Text translation 3. Cross-lingual news 
retrieval

4. Cross-lingual evidence 
impact computation

5. News classification

Figure 1 – Overview of our approach: checking for fake news based on cross-lingual evidence (CE).

dataset from The Fake News Challenge3 for stance
detection; LIAR (Wang, 2017), FakeNewsNet (Shu
et al., 2018), FakeNewsDatasets (Pérez-Rosas et al.,
2018), and NELA-GT-2018 (Norregaard et al.,
2019) for fake news classification tasks; FEVER
(Thorne et al., 2018) for fact checking tasks. Re-
sponding to current events in 2020, COVID-19 fake
news classification datasets COVID-19 Fake News
(Patwa et al., 2020), ReCOVery (Zhou et al., 2020)
have been already created.

Several supervised models were previously ex-
plored. Some of the works focused on exploring
internal features of news. In (Pérez-Rosas et al.,
2018; Patwa et al., 2020) different linguistic fea-
tures extracted from news texts were used. In
(Ghanem et al., 2020) the perspective of the us-
age of emotional signals extracted from the news
text for detecting fakes was shown. In addition
to internal features, a set of external features can
add more confidence in fake news detection model
decision reasoning. For instance, user interaction
signals were explored in (Nguyen et al., 2020; Cui
et al., 2019). Another quite strong signal can be
additional information extracted from the Web. In
(Popat et al., 2017; Karadzhov et al., 2017; Ghanem
et al., 2018; Li and Zhou, 2020) the authors referred
to the Web search (Google or Bing) to collect rele-
vant articles and use such scraped information as
an external feature to build a fake news classifier.

Seeking information via some search engine to
find evidence is a quite natural feature motivated
by real users’ behaviour. Several studies tried to
figure out how users authenticate the information
from the Web. Jr. et al. (2018) showed that individ-
uals rely on both their judgment of the source and
the message, and when this does not adequately
provide a definitive answer, they turn to external
resources to authenticate news. The intentional
and institutional reaction was seeking confirmation
from institutional sources (some respondents an-
swered simply “Google”). Moreover, participants
that received messages across different media plat-

3http://www.fakenewschallenge.org

forms (Zhao, 2019) and different perspectives of
the information (Geeng et al., 2020) showed greater
awareness about news evidence. Consequently, the
information from the external search is an impor-
tant feature for news authenticity evaluation and
evidence seeking. While the idea of multilingual-
ism was already explored for hate speech (Aluru
et al., 2020) and rumors (Wen et al., 2018) detec-
tion, however, previous works did not fully use
multilingual information of fake news detection.
In our study, we explore fake news spread on the
Web for different languages and extend evidence
retrieval to cross-lingual news verification.

3 Detection of Fake News using
Cross-lingual Evidence (CE)

Our approach is based on the following hypothe-
sis: if the news is true, then it will be widespread
in different languages and also across media with
different biases, and the facts mentioned should be
identical. On the other hand, if it is fake news, it
will receive a lesser response in the foreign press
than true news. The step-by-step process, schemat-
ically represented in Figure 1, is as follows:

Step 1. Text extraction: As a new article ar-
rives, title and content are extracted from it.

Step 2. Text translation: The title is translated
into target languages and new search requests are
generated.

Step 3. Cross-lingual news retrieval: Search
is executed based on the translated titles in multiple
languages.

Step 4. Cross-lingual evidence impact com-
putation Top-N articles from search results are
used to evaluate the authenticity of the initial news.
The information described in the news is compared
with the information in the articles from the search
result. The number of articles that confirms or dis-
proves the original news is estimated.

Step 5. News classification: Based on the infor-
mation from the previous step, the decision is made
about the authenticity of the news. If the majority
of results support the original news, then it is more
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likely to be true; if there are contradictions – it is a
signal to consider the news as fake.

To confirm the hypothesis that cross-lingual evi-
dence can be used for fake news detection we con-
ducted two experiments. The first one (Section 4)
is a manual small-scale study confirming the hy-
pothesis that a person can distinguish fake news
based on such cross-lingual evidence. The second
one (Section 5) is an automated fake news detec-
tion system tested on several fake news datasets:
we implemented our cross-lingual evidence feature
and compared it with several baselines achieving
SOTA on all datasets.

4 Experiment 1: Manual Verification

First, we conducted a manual experiment on a small
dataset to test the hypothesis in “ideal conditions”.

4.1 Dataset

For fake news examples, we used the list of top
50 fake news from 2018 according to BuzzFeed.4.
For true news, we used NELA-GT-2018 dataset
(Norregaard et al., 2019). We manually selected 10
fake and true news and manually executed all steps
of our approach (Section 3) on this dataset. This
dataset featuring 20 news is provided in Table 2 in
the Appendix A: the dataset is combined by news
from several fields – celebrities, science, politics,
culture, and world.

4.2 Experimental Setup

We precalculated Step 2 and Step 3 for annota-
tors convenience and reproducibility. We generated
cross-lingual requests in five languages – English,
French, German, Spanish, and Russian. For transla-
tion from English, Google Translation service was
used. As all news are of 2018, the time range of
every search was limited only by this year. From
search results, we used the first page of the search
which consisted of 10 news. As a result, for 20
news for each of languages we got 1000 pairs of
“original news↔ scraped news” to markup.

We asked 6 annotators to take part in the ex-
periment: manually conduct Step 4: cross-lingual
evidence impact computation. For each news, we
provide information about its title, content, and link
of the source. Every annotator got 10 randomly
selected news, as a result, we got each news cross-
checked by 3 annotators. All non-English news

4https://github.com/BuzzFeedNews/
2018-12-fake-news-top-50

were translated into English. For each pair “origi-
nal news↔ scraped news” the annotator provided
one of three answers: 1) Support: the information
in the scraped news supports the original news; 2)
Refute: the information is opposite or differ from
the original news or there is an explicit refutation;
3) Not enough info: the information is not relevant
or not sufficient to support/refute the original news.
Finally, at the end of the annotation of a sample,
the annotator was asked to conduct Step 5 of the
pipeline and classify the news as fake or true.

The used interface for manual markup is pre-
sented in Appendix A Figure 3.
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Figure 2 – The results of manual annotation: the distribution
of annotators answers for fake (a) and legit (b) news.

4.3 Discussion of Results
Based on the collected annotations, for each news
we chose the final label based on the majority voted.
We estimated confidence in the annotators’ agree-
ment with Krippendorff’s alpha (α = 0.83). After
that, we calculated the distribution of each type of
annotators’ answers for the top 10 search results
by language for fake and true news separately. The
results are provided in Figure 2.

As we can see, the distribution of labels for true
news significantly differs from the distribution for
fake ones: the number of supporting articles is
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FakeNewsAMT Celebrity ReCOVery

Pre. Rec. F1 Pre. Rec. F1 Pre. Rec. F1

TextCNN 0.276 0.250 0.260 0.641 0.703 0.664 0.733 0.913 0.805
LSTM 0.614 0.614 0.614 0.745 0.740 0.740 0.800 0.803 0.793
ME Sim + ME AlexaRank 0.539 0.593 0.592 0.552 0.550 0.550 0.794 0.798 0.793
CE AlexaRank 0.541 0.541 0.541 0.605 0.605 0.605 0.768 0.773 0.765
CE Sim + CE AlexaRank 0.872 0.864 0.864 0.631 0.620 0.619 0.829 0.829 0.829

BERT 0.586 0.586 0.586 0.800 0.800 0.800 0.868 0.868 0.866
BERT + CE AlexaRank 0.541 0.541 0.541 0.810 0.728 0.915 0.768 0.773 0.765
BERT + CE Sim + CE AlexaRank 0.884 0.885 0.894 0.982 0.982 0.982 0.870 0.863 0.884

RoBERTa 0.895 0.548 0.656 0.856 0.690 0.731 0.986 0.936 0.956
RoBERTa + CE AlexaRank 0.930 0.820 0.872 0.799 0.890 0.822 0.949 0.986 0.966
RoBERTa + CE Sim + CE AlexaRank 0.973 0.938 0.953 0.952 0.784 0.856 0.992 0.960 0.975

Ngrams 0.573 0.572 0.572 0.730 0.730 0.730 0.878 0.879 0.877
Ngrams + CE AlexaRank 0.655 0.655 0.655 0.740 0.740 0.740 0.891 0.891 0.891
Ngrams + CE Sim + CE AlexaRank 0.864 0.854 0.853 0.789 0.790 0.789 0.931 0.932 0.931

Punctuation 0.239 0.489 0.321 0.211 0.460 0.289 0.433 0.658 0.522
Punctuation + CE AlexaRank 0.741 0.741 0.741 0.605 0.600 0.600 0.668 0.673 0.665
Punctuation + CE Sim + CE AlexaRank 0.872 0.864 0.864 0.631 0.620 0.619 0.829 0.829 0.829

LIWC 0.597 0.593 0.592 0.630 0.610 0.605 0.768 0.771 0.756
LIWC + CE AlexaRank 0.646 0.645 0.644 0.712 0.700 0.690 0.846 0.846 0.842
LIWC + CE Sim + CE AlexaRank 0.894 0.885 0.884 0.692 0.680 0.679 0.894 0.894 0.894

Readability 0.729 0.729 0.729 0.478 0.470 0.468 0.732 0.741 0.724
Readibility + CE AlexaRank 0.760 0.760 0.760 0.592 0.590 0.590 0.796 0.798 0.790
Readability + CE Sim + CE AlexaRank 0.928 0.927 0.927 0.674 0.670 0.670 0.828 0.829 0.828

Syntax 0.626 0.625 0.624 0.639 0.630 0.629 0.812 0.809 0.797
Syntax + CE AlexaRank 0.677 0.677 0.677 0.721 0.720 0.720 0.844 0.841 0.834
Syntax + CE Sim + CE AlexaRank 0.902 0.895 0.895 0.754 0.750 0.750 0.886 0.886 0.886

All linguistic 0.739 0.739 0.739 0.750 0.750 0.750 0.875 0.874 0.870
All linguistic + CE AlexaRank 0.641 0.641 0.641 0.605 0.600 0.600 0.868 0.868 0.868
All linguistic + CE Sim + CE AlexaRank 0.940 0.937 0.937 0.801 0.800 0.800 0.916 0.917 0.916

Table 1 – Results: adding our Cross-lingual Evidence (CE) improves various baseline systems and yields state-of-the-art results.
The proposed feature is used in two parts: (i) content similarity score based on embeddings distance (Sim); (ii) AlexaRank score
of the scraped news source (AlexaRank). ME stands for Monolingual Evidence. The statistical significance of the baselines
improvements was tested with paired t-test over 5-fold cross-validation.

enough for almost every language. At the same
time, for fake news we got more refuting signals
than supporting for the English language and little
or no evidence or relevant information dissemina-
tion for other languages. The average accuracy of
annotators classification is 0.95. Thus, a person can
distinguish fake based on cross-lingual evidence.

5 Experiment 2: Automatic Verification

We implemented cross-lingual evidence (CE) fea-
ture, as described below. We tested its performance
on fake news detection on three multi-domain
datasets comparing it with strong baselines.

5.1 Cross-lingual Evidence (CE) Feature

Cross-lingual evidence retrieval As in manual
setup, for translation and search we used Google
services via Python APIs. In our setup for the auto-
mated feature we focused as well on five languages:

English, French, German, Spanish, and Russian.
We extracted only the first page of the search result
that gave us 10 articles for each language.

Cross-lingual text similarity For unsupervised
cross-lingual relevance computation between orig-
inal news and scraped one, we chose cosine sim-
ilarity between sentence embeddings. To get sen-
tence vector representation, we averaged the both
title and content sentence’s tokens’ embeddings ex-
tracted from M-BERT (Devlin et al., 2019). For the
sample news the similarity score is extracted for all
10 pairs “original news↔ scraped news” for each
of 5 languages.

Source credibility Also, we took into account
the credibility of the source. Following Popat et al.
(2016) we used AlexaRank for source assessment.

Cross-lingual evidence (CE) feature is con-
structed of two parts: content similarity score based
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on embeddings distance (Sim) and AlexaRank
score of the scraped news source (AlexaRank).

5.2 Datasets

Firstly, we evaluate the systems on a multi-domain
dataset by Pérez-Rosas et al. (2018) which con-
sist of two parts: FakeNewsAMT dataset (240 fake
and 240 legit articles) and CelebrityDataset dataset
(250 fake and 250 legit articles). FakeNewsAMT
dataset consists of news from six topics: sports,
business, entertainment, politics, technology, and
education. CelebrityDataset is dedicated to ru-
mors, hoaxes, and fake reports about famous actors,
singers, socialites, and politicians. Secondly, we
ran experiments on COVID-19 fake news dataset
ReCOVery (Zhou et al., 2020). It consists of 2029
(665 fake and 1364 true news). All datasets are
originally in English. We used 70%-20%-10% pro-
portion for train-test-validation split.

5.3 Baselines

We compare to both linguistic-based fake news
detection models and SOTA deep neural networks:

Linguistic Features: In (Pérez-Rosas et al.,
2018) a baseline fake news classification model was
trained based on Ngrams, punctuation, psycholin-
guistic features extracted with LIWC, readability,
syntax, and concatenation of all these set of fea-
tures. In (Zhou et al., 2020) LIWC features were
also used as one of the proposed baselines. We
tested these features separately, grouped them all,
and in combination with our proposed feature. We
experimented with SVM, RandomForest, LogRe-
gression, and LightGBM. The best models based
on LightGBM are presented.

Text-CNN, LSTM: Following (Zhou et al.,
2020), we tested TextCNN and LSTM models
on all datasets. We fined-tuned models hyper-
parameters and report the best ones in the results.

BERT, RoBERTa: BERT (Devlin et al., 2019)
based models were used for fake news detection by
Kaliyar et al. (2021) and specifically for COVID-
19 fake news classification (Gundapu and Mamidi,
2021; Glazkova et al., 2020). We used pretrained
models and fine-tuned them. The combination
with CE feature was done as a concatenation with
[CLS] token embedding before Linear layer.

Monolingual Evidence (ME): In addition, we
compared our feature with the case when only
monolingual English evidence was used. The
LightGBM classification model was used as well.

5.4 Discussion of Results
Table 1 compares results of our model based on
cross-lingual evidence (CE) with the baselines on
three datasets. The statistical significance of the
baselines improvements was tested with paired
t-test over 5-fold cross-validation. The CE fea-
ture by itself outperforms all baseline for Fake-
NewsAMT and better than some linguistic fea-
tures for Celebrity and ReCOVery. The mono-
lingual English evidence (ME) works worse than
the cross-lingual one. The usage of only rank fea-
ture improves the baselines, but the best scores are
achieved by adding full CE features set. The com-
binations of CE feature with BERT and RoBERTa
gains SOTA results for all dataset. At the same
time, despite linguistic features did not outperform
Transformer-based baselines, the combination of
our CE feature and different linguistic features
showed competitive results that can be more ex-
plainable than the transformer model. Examples
how retrieved cross-lingual results can be used to
explain the classification results are illustrated in
Appendix B.

6 Conclusion

We presented an approach for fake news detection
based on cross-lingual evidence (CE) which pro-
vides a different perspective on the event across
languages verified in two experiments. A fake
news classification model with CE significantly
improves performance over various baselines and
compares favorably to SOTA. Besides, the CE is
interpretable as a user can check in which and how
many languages a piece of given news was found.

A promising direction to explore is to increase
the number of languages used for cross-lingual in-
formation retrieval. In addition to this, the general
distribution of news in the world should be taken
into account – for instance, US news tend to be
covered in European presses more than European
news are covered in the US press. Also, in our work
the language of original news was English. The
analogous experiments for other original languages
of news should be conducted.
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A Manual Evaluation

News title URL Label
Lottery winner arrested for dumping $200,000 of ma-
nure on ex-boss’ lawn

https://worldnewsdailyreport.com/lottery-winner-
arrested-for-dumping-200000-of-manure-on-ex-boss-
lawn/

Fake

Woman sues Samsung for $1.8M after cell phone gets
stuck inside her vagina

https://worldnewsdailyreport.com/woman-sues-samsung-
for-1-8m-after-cell-phone-gets-stuck-inside-her-
vagina/comment-page-58/

Fake

BREAKING: Michael Jordan Resigns From The
Board At Nike-Takes ’Air Jordans’ With Him

https://www.newsbreak.com/news/944830700924/breaking-
michael-jordan-resigns-from-the-board-at-nike-takes-air-
jordans-with-him

Fake

Donald Trump Ends School Shootings By Banning
Schools

https://www.8shit.net/donald-trump-ends-school-
shootings-banning-schools/

Fake

New mosquito species discovered that can get you
pregnant with a single bite

https://thereisnews.com/new-mosquito-species-
discovered-can-make-you-pregnant/

Fake

Obama Announces Bid To Become UN Secretary Gen-
eral

https://www.pinterest.com/pin/465630048969491948/ Fake

Lil Tay Rushed To Hospital After Being Beat By
Group Of Children At A Playground

https://www.huzlers.com/lil-tay-rushed-to-hospital-after-
being-beat-by-group-of-children-at-a-playground/

Fake

Post Malone’s Tour Manager Quits Says Post Malone
Smells Like Expired Milk And Moldy Cheese

https://www.huzlers.com/post-malones-tour-manager-
quits-says-post-malone-smells-like-expired-milk-and-
moldy-cheese/

Fake

Putin: Clinton Illegally Accepted $400 Million From
Russia During Election

https://newspunch.com/putin-clinton-campaign-400-
million-russia/

Fake

Elon Musk: 99.9% Of Media Is Owned By The ’New
World Order’

https://newspunch.com/elon-musk-media-owned-new-
world-order/

Fake

Scientists Develop New Method to Create Stem Cells
Without Killing Human Embryos

https://www.christianpost.com/news/scientists-develop-
new-method-to-create-stem-cells-without-killing-human-
embryos.html

Legit

Luis Palau Diagnosed With Stage 4 Lung Cancer https://cnnw.com/luis-palau-diagnosed-with-stage-4-
lung-cancer/

Legit

1st black woman nominated to be Marine brigadier
general

https://edition.cnn.com/2018/04/12/politics/marine-
corps-brigadier-general-first-black-female/index.html

Legit

Disney CEO Bob Iger revealed that he seriously ex-
plored running for president

https://www.businessinsider.com/disney-ceo-bob-iger-
says-he-considered-running-for-president-oprah-pushed-
2018-4

Legit

Trump Has Canceled Via Twitter His G20 Meeting
With Vladimir Putin

https://www.buzzfeednews.com/article/emilytamkin/trump-
g20-putin-russia

Legit

US Mexico and Canada sign new USMCA trade deal https://www.dw.com/en/us-mexico-canada-sign-usmca-
trade-deal/a-51613992

Legit

Afghanistan Women children among 23 killed in US
attack UN

https://www.aljazeera.com/news/2018/11/30/afghanistan-
women-children-among-23-killed-in-us-attack-un

Legit

UNESCO adds reggae music to global cultural her-
itage list

https://www.aljazeera.com/features/2018/11/29/unesco-
adds-reggae-music-to-global-cultural-heritage-list

Legit

The Saudi women detained for demanding basic hu-
man rights

https://www.aljazeera.com/news/2018/11/29/the-saudi-
women-detained-for-demanding-basic-human-rights/

Legit

Georgia ruling party candidate Zurabishvili wins pres-
idential runoff

https://www.aljazeera.com/news/2018/11/30/ex-envoy-
wins-georgia-presidency-vote-to-be-challenged

Legit

Table 2 – The manually selected 20 news dataset (10 fake and 10 true news) for manual experiment. Fake news were selected
from the top 50 fake news of 2018 according to BuzzFeed. Legit news were selected from NELA-GT-2018 dataset.
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Original news: Lottery winner arrested for 
dumping $200,000 of manure on 
ex-boss’ lawn

https://worldnewsdailyreport.com/lottery-winner-arrested-for-
dumping-200000-of-manure-on-ex-boss-lawn/

Title Title in EN Link Text of the content Content in EN Do you think it 
supports original 
news?
Answer: 1 
(Support), 0 
(Refute), -1 (Not 
enough info)

Any comments

0 Lottery winner 
arrested for 
dumping 
$200,000 of 
manure on ex-
boss’ lawn

— https:
//worldnews
dailyreport.
com/lottery-
winner-
arrested-for-
dumping-
200000-of-
manure-on-
ex-boss-
lawn/

A man from Illinois was arrested for 
getting $224,000 worth of manure 
dumped on his former employer’s 
property, only two weeks after he 
won $125 million at the lottery and 
quit his job.

54-year old Brian Morris, from the 
small town of Clarendon Hills in 
Dupage County, bought over 20,000 
tons of manure and asked for it to be 
dumped on his former boss’ 
property, pretending it was his 
residence.

Dozens of trucks filled with manure 
showed up in front of the house 
around 6:00 this morning and began 
dumping their smelly cargo over the 
property’s lawn.

George Fitzgerald, Mr. Morris’ 
former employer, was awakened by 
the sound of the vehicles on his 
property and rapidly called the 
police.

Unfortunately, it took the police more 
than 15 minutes to arrive on the site, 
and more than 10,000 tons of 
manure had already been dumped 
in the meantime.

Brian Morris was standing right 
across the street and laughing when 
the police arrived, and he rapidly 
came over to confess his 
responsibility and explain his 
motivations.

Lieutenant Frank Meyers, a 
spokesman of the Clarendon Hills 
Police Department, met the press a 
few hours later to explain the 
motivations behind this strange 
crime.

— —

Englsih query https://www.google.com/search?
cd_min:1/1/2018,cd_max:
1/1/2019&q=Lottery+winner+arreste
d+for+dumping+$200000+of+manur
e+on+exbossâ€™+lawn&num=10

Title Title in EN Link Text of the content Content in EN Do you think it 
supports original 
news?
Answer: 1 
(Support), 0 
(Refute), -1 (Not 
enough info)

Any comments
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Any comments
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police.
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than 15 minutes to arrive on the site, 
and more than 10,000 tons of 
manure had already been dumped 
in the meantime.

Brian Morris was standing right 
across the street and laughing when 
the police arrived, and he rapidly 
came over to confess his 
responsibility and explain his 
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spokesman of the Clarendon Hills 
Police Department, met the press a 
few hours later to explain the 
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crime.
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Englsih query https://www.google.com/search?
cd_min:1/1/2018,cd_max:
1/1/2019&q=Lottery+winner+arreste
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Title Title in EN Link Text of the content Content in EN Do you think it 
supports original 
news?
Answer: 1 
(Support), 0 
(Refute), -1 (Not 
enough info)

Any comments

1 PolitiFact - Viral 
post that lottery 
winner was 
arrested for 
dumping manure 
on former boss’ 
lawn reeks of 
falsity

— https://www.
politifact.
com/factche
cks/2018/no
v/05/worldn
ewsdailyrep
ortcom/viral-
post-lottery-
winner-was-
arrested-
dumping-
man/

A viral blog post claims that a man 
who won the lottery was arrested 
"for getting $224,000 worth of 
manure dumped on his former 
employer’s property." Published on 
World News Daily Report, the post 
claims that a 54-year-old Clarendon 
Hills, Ill., resident named Brian 
Morris bought over 20,000 tons of 
manure after winning $125 million at 
Powerball Multi-state lottery two 
weeks before.
This story was flagged as part of 
Facebook’s efforts to combat false 
news and misinformation on its 
News Feed. (Read more about our 
partnership with Facebook.) The 
post received over 2.3 million 
interactions and had been shared 
over 285,000 times, CrowdTangle 
data show.
While Clarendon Hills is a village in 
DuPage County in Illinois, there’s 
little else of the post that’s true.
The post features a mugshot of a 
man laughing as he holds up a 
placard from the Clarendon Hills 
Police Department that shows his 
booking number.
A search for the image shows the 
photo isn’t of a man named Brian 
Morris. The photo is of Ronald Searl, 
who was arrested in 2014 for driving 
under the influence, according to 
WGN9.
Another photo included in the World 
News Daily Report post is of two 
police officers. A Chicago Tribune 
article published May 16, 2018, 
notes that the photo depicts 
Clarendon Hills Police Chief Paul 
Dalen and recently-retired police 
chief Boyd Farmer.
Featured Fact-check
World News Daily Report notes in a 
disclaimer at the bottom of the 
website that readers should take 
their posts with a grain of salt:
"World News Daily Report assumes 
all responsibility for the satirical 
nature of its articles and for the 
fictional nature of their content. All 
characters appearing in the articles 
in this website – even those based 
on real people – are entirely fictional 
and any resemblance between them 
and any person, living, dead or 
undead, is purely a miracle."
PolitiFact has found World News 
Daily Report’s stories false before.
However, the hoax did make a real 
impact. According to the Chicago 
Tribune, the post had been 
circulated throughout the Clarendon 
Hills community, and the police 
department received some calls 
inquiring about it in May.
"I guess it is humor to a certain 
extent, but people need to read to 
the bottom and find out it’s not a real 
news story," Village President Len 
Austin told the Chicago Tribune at 
the time. "The problem these days is 
that people see a headline online 
and jump to conclusions."
A viral World News Daily Report 
post claims that a lottery winner was 
arrested for dumping $200,000 of 
manure on his former boss’ lawn. 
While pulling photos from real news 
stories, the site itself admits that the 
article is satire.
We rate this claim Pants on Fire!

—

Finish!!!
Your decision: Finally, how can you classifier the 

news: is it fake or true?
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Figure 3 – User interface that was used for annotators answer collection for manual verification. An annotator has to conduct
Step 4 and Step 5 of the pipeline: (i) identify whether a cross-lingual scraped news supports, refutes or has not enough info with
respect to the original one; (ii) classify the original news as a fake or a true one based on the provided cross-lingual evidence.
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B Samples of Cross-lingual Evidence for News Items

Title English translation
Original news (FAKE)

Kate Middleton & Prince William Try To Save Crumbling Marriage? –
English search results

Prince William and Kate Middleton’s Love Through the Years –
How Princess Diana made desperate ‘last-ditch attempt’ to save marriage
with Charles

–

Prince William of Wales — Economist - World News, Politics, Economics,
Business & Finance

–

French search results
Le jour où le prince William a demandé Kate Middleton en mariage The day Prince William proposed to Kate Middleton
William et Kate, fiançailles avant le mariage royal William and Kate, engagement before the royal wedding
Mariage William et Kate William and Kate wedding

German search results
Elternschaft, Babynamen, Prominente und königliche Nachrichten —
CafeMom.com

Parenting, Baby Names, Celebrities, and Royal News — CafeMom.com

Kate Middletons umstrittenste Momente aller Zeiten Kate Middleton’s Most Controversial Moments of All Time
Wie Kate Middleton und Prinz William das Leben ihrer Kinder normal halten How Kate Middleton and Prince William Keep Their Kids’ Lives Normal

Spanish search results
Prı́ncipe William – Cları́n.com Prince William - Cları́n.com
Con un comentario, Harry hizo llorar a Kate Middleton en el dı́a de su boda With a comment, Harry made Kate Middleton cry on his wedding day
El Prı́ncipe Guillermo de Inglaterra se casará con su novia Kate Middleton
en 2011 - RTVE.es

Prince William of England will marry his girlfriend Kate Middleton in 2011
- RTVE.es

Russian search results
Факты о свадьбе Кейт Миддлтон и принца Уильяма, о ко-
торых вы могли не знать

Kate Middleton and Prince William’s wedding facts you might not know

Кейт Миддлтон Kate Middleton
Кэтрин, герцогиня Кембриджская — Википедия Catherine, Duchess of Cambridge - Wikipedia

Original news (LEGIT)
Amazon Prime Air drone completes its first US public delivery –

English search results
Amazon Prime Air drone completes its first US public delivery –
Amazon’s Prime Air drone delivery fleet gains FAA approval for trial com-
mercial flights – TechCrunch

–

Amazon completes its first public US drone delivery –
French search results

E-commerce. Amazon autorisé à livrer par drone aux États-Unis E-commerce. Amazon authorized to deliver by drone to the United States
Première livraison par drone réussie pour Amazon First successful drone delivery for Amazon
Amazon a livré son premier colis par drone Amazon delivered its first package by drone

German search results
Prime Air: FAA erteilt Amazons Lieferdrohnen die Starterlaubnis Prime Air: FAA gives Amazon’s delivery drones permission to take off
Amazon Prime Air-Drohne schließt erste öffentliche Auslieferung in den
USA ab

Amazon Prime Air drone completes first US public delivery

Amazon Prime Air: Amazon kündigt Lieferungen per Drohne binnen
Monaten an

Amazon Prime Air: Amazon announces drone deliveries within months

Spanish search results
Amazon hace su primera entrega por dron en Estados Unidos Amazon makes its first delivery by drone in the United States
Amazon recibe autorización para operar entregas con drones Amazon receives authorization to operate drone deliveries
Amazon recibe aprobación federal para arrancar Prime Air, su propuesta de
entrega con drones

Amazon receives federal approval to launch Prime Air, its drone delivery
proposal

Russian search results
Amazon запускает дроны Prime Air для быстрой доставки Amazon launches Prime Air drones for fast delivery
В США прошла первая публичная демонстрация доставки
товара с помощью дронов Amazon Prime Air

First Public Demonstration of Amazon Prime Air Product Delivery Held in
USA

Amazon показала новые гибридные дроны для доставки
заказов сервиса Prime Air

Amazon Shows New Hybrid Drones To Deliver Prime Air Orders

Table 3 – The example of the cross-lingual evidence extraction for fake and legit news from FakeNewsAMT. For each target
language (English, French, German, Spanish, Russian) search results are presented: titles of top 3 news. For every non-Enlgish
title the English translation is provided. For fake news the search results across other languages are only mildly topically related
to the original news while for legit news the search results across other languages are strongly related to the original news.
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Title English translation
Original news (FAKE)

В Израиле создали лекарство от коронавируса:
https://www.vesty.co.il/article/SJxK1wRF8

Israel invented a vaccine against coronavirus

English search results
Israel isolates coronavirus antibody in ’significant breakthrough’ –
Israel is not releasing a coronavirus vaccine – The Forward –
Hadassah treats COVID-19 patient with new concentrated passive vaccine –

French search results
Les Israéliens et le vaccin contre le coronavirus The Israelis and the coronavirus vaccine
Pandémie de Covid-19 en Israël — Wikipédia Covid-19 pandemic in Israel - Wikipedia
Vaccin contre la Covid-19 — Wikipédia Vaccin contre la Covid-19 — Wikipédia

German search results
Impfstoffe gegen Coronavirus – aktueller Forschungsstand Coronavirus vaccines - current state of research
Warum es so lang dauert, einen Corona-Impfstoff zu entwickeln Why it takes so long to develop a corona vaccine
Falschinformationen zur COVID-19-Pandemie – Wikipedia Incorrect information about the COVID-19 pandemic - Wikipedia

Spanish search results
Cuáles son y en qué estado están los esfuerzos israelı́es para inventar una
vacuna para el coronavirus

What are and in what state are Israeli efforts to invent a coronavirus vaccine

Sus mejores intentos ... - Consulado General H. de Israel Your best attempts ... - Consulate General H. of Israel
Vacuna de Pfizer y BioNTech muestra resultados positivos Pfizer and BioNTech vaccine shows positive results

Russian search results
В Израиле заявили, что Covid-19 остановит лекарство от
холестерина

Israel says cholesterol medication will stop Covid-19

Врач о Covid-19: «Мы не понимаем патогенез заболевания»
— Израиль в фокусе

Doctor about Covid-19: �We do not understand the pathogenesis of the
disease� - Israel in focus

Израильские технологии Israeli technology

Original news (LEGIT)
В Монголии произошла вспышка бубонной чумы:
https://hightech.fm/2020/07/02/plague-outbreak

Bubonic plague outbreak in Mongolia

English search results
Bubonic plague: Case found in China’s Inner Mongolia - CNN –
Teenager dies of Black Death in Mongolia –
China bubonic plague: Inner Mongolia takes precautions after case –

French search results
Epidémie : des cas de peste détectés en Chine et en Mongolie Epidemic: cases of plague detected in China and Mongolia
Craintes d’une épidémie de peste bubonique? Un adolescent de 15 ans est la
première victime recensée en Mongolie

Fear of a bubonic plague epidemic? A 15-year-old is the first victim in Mon-
golia

Chine : Un cas de peste bubonique détecté en Mongolie intérieure China: Bubonic plague case detected in Inner Mongolia
German search results

Mongolei: 15-Jähriger an Beulenpest gestorben - DER SPIEGEL Mongolia: 15-year-old died of bubonic plague - DER SPIEGEL
Beulenpest - Was über die Pest-Fälle in China bekannt Bubonic plague - what is known about the plague cases in China
Bringen Murmeltiere die Pest zurück? Mongolei warnt vor Tier-Kontakt Will marmots bring the plague back? Mongolia warns of animal contact

Spanish search results
BROTE DE PESTE BUBÓNICA EN MONGOLIA BUBONIC PLAGUE OUTBREAK IN MONGOLIA
Brote de peste negra provoca cuarentena en Mongola Black plague outbreak causes quarantine in Mongolia
Brote de peste negra alarma en Mongolia y cierra frontera con Rusia Black plague outbreak alarms Mongolia, closes border with Russia

Russian search results
В Монголии произошла вспышка бубонной чумы ... - Гор-
дон

There was an outbreak of bubonic plague in Mongolia ... - Gordon

В Монголии произошла вспышка бубонной чумы -
Урал56.Ру

Bubonic plague outbreak in Mongolia - Ural56.Ru

Возвращение «Черной смерти»: главное о вспышке бубон-
ной чумы в Монголии

Return of the ”Black Death”: the main thing about the outbreak of the
bubonic plague in Mongolia

Table 4 – The result of the cross-lingual evidence extraction for real-life news. For each target language (English, French,
German, Spanish, Russian) search results are presented: titles of top 3 news. For every non-Enlgish title the English translation
is provided. For fake news the search results across other languages are only mildly topically related to the original news while
for legit news the search results across other languages are strongly related to the original news.
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Abstract

It is reported that grammatical information
is useful for machine translation (MT) task.
However, the annotation of grammatical infor-
mation requires the highly human resources.
Furthermore, it is not trivial to adapt grammat-
ical information to MT since grammatical an-
notation usually adapts tokenization standards
which might not be suitable to capture the re-
lation of two languages, and the use of sub-
word tokenization, e.g., Byte-Pair-Encoding,
to alleviate out-of-vocabulary problem might
not be compatible with those annotations. In
this work, we propose two methods to explic-
itly incorporate grammatical information with-
out supervising annotation; first, latent phrase
structure is induced in an unsupervised fashion
from a multi-head attention mechanism; sec-
ond, the induced phrase structures in encoder
and decoder are synchronized so that they are
compatible with each other using constraints
during training. We demonstrate that our ap-
proach produces better performance and ex-
plainability in two tasks, translation and align-
ment tasks without extra resources. Although
we could not obtain the high quality phrase
structure in constituency parsing when evalu-
ated monolingually, we find that the induced
phrase structures enhance the explainability of
translation through the synchronization con-
straint.

1 Introduction

Although machine translation (MT) has achieved
improved performance using neural machine trans-
lation (NMT), the translation qualities for distant
languages are still poor (Johnson et al., 2017). As a
way to tackle the problem, statistical MT (SMT) in-
corporates synchronous grammar to achieve more
linguistically accurate translations, in which com-
plex structural relations between source and tar-
get languages are expressed using phrase structure

(Wong et al., 2005). The synchronous grammar ex-
presses the complex relationships between source
and target languages and incorporates phrase struc-
ture to enable more linguistically accurate transla-
tion. A similar idea could be employed for NMT
to achieve improved performance on those distant
language pairs. However, grammatical informa-
tion annotation demands high human resources. In
addition, such grammatical annotation is done on
word-level granularities, which might not be the
best tokenization for MT tasks due by language
mismatch or out-of-vocabulary problem, and often
sub-word tokenization, e.g., Byte-Pair-Encoding
(BPE) (Sennrich et al., 2016), is employed to alle-
viate the problem. As a result, it is difficult to in-
corporate grammatical information into NMT that
handle multiple languages simultaneously.

Recently, there have been researches on unsu-
pervised learning of phrase structure without rely-
ing on human annotations. Although these phrase
structures learned in an unsupervised fashion are
very close to the human annotation (Shen et al.,
2018a,c), there exists no model which incorporates
phrase structures as latent information to improve
the performance and explainability of translation.

In this work, we introduce an approach to incor-
porate the phrase structure explicitly into Trans-
former (Vaswani et al., 2017). The approach can
split into two steps; first, latent phrase structures
are induced in an unsupervised fashion for the
source and target sides (Shen et al., 2018a); sec-
ond, the two induced latent phrase structures are
synchronously agreed with each other through an
attention mechanism (Deguchi et al., 2021). Exper-
iments on German-English and Japanese-English
show that our synchronous latent structures have
achieved better performance on translation and
alignment tasks. We also show that the induced
phrase structures and synchronous structures can
enhance the explainability of translation through
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our detailed analysis in word alignment task.

2 Related Work

2.1 NMT with Supervised Tree Structure

In the previous work, it is reported that supervised
phrase structures (Eriguchi et al., 2017; Nguyen
et al., 2020) and dependency structures (Ma et al.,
2019; Deguchi et al., 2019) can help the perfor-
mance of MT. However, these approaches require
an annotated corpus of syntactic structures. In ad-
dition, such syntactic annotation is done on word-
level granularities, which might not be the best
tokenization for MT tasks due by language mis-
match or out-of-vocabulary problem, and often
BPE (Sennrich et al., 2016), is employed to al-
leviate the problem. However, the application of
BPE to grammatical information might require a
different approach for each language.

2.2 Latent Grammar Induction with Neural
Machine Translation

Shen et al. (2018a) introduce the concept called
”syntactic distance” which represents the syntac-
tic relation of word pairs. Similarly, Shen et al.
(2018c) introduce ordered neurons which allows
to learn long-term or short-term information by a
novel gating mechanism and activation function.
Kim et al. (2019) apply amortized variational in-
ference for recurrent neural network grammar to
learn the phrase structures in an unsupervised fash-
ion. Wang et al. (2019) add an extra constraint to
the multi-head self-attention mechanism in order
to encourage the attention heads to follow phrase
structures. Shen et al. (2020) introduce the con-
strained multi-head self-attention mechanism that
allows to induct phrase and dependency structure
at the same time.

These works successfully learn to induce phrase
structure from language modeling task without ex-
tra linguistic resources. It is described in (Htut
et al., 2019) that translation task is a conditional lan-
guage modeling task with many supervisory signals
and is suitable for deriving phrase structure. Un-
fortunately, despite grammatical information helps
the understanding model work, previous work has
not explicitly used induced phrase structures.

2.3 Transformer NMT

We employ the Transformer (Vaswani et al., 2017)
as our base model, which is an encoder-decoder
model that relies on an attention mechanism for

computing the contextual representations of source
and target text. Both the encoder and decoder are
composed of multiple layers, each of which in-
cludes a multi-head attention (MHA) and a feed-
forward sub-layer. To compute the MHA output,
three inputs, query Q, key K, and value V are pro-
jected into N different sub-spaces, namely heads,
with each output computed in each subspace, then,
projected back to the original space after aggrega-
tion:

Q̂1:N = QWQ, K̂
1:N = KWK , V̂

1:N = VWV

(1)

Hn = AV̂n = softmax

(
Q̂nK̂n

>
√
dh

)
V̂n (2)

MHA(Q̂, K̂, V̂) = concat
(
H1, ...,HN

)
WO

(3)
where WQ ∈ Rdo×dh , WK ∈ Rdo×dh , WV ∈
Rdo×dh , WO ∈ Rdo×dh are projection parameters.
do is dimension of original space. dh = do/N is
the dimension of subspace. The value A denotes
the attention probability for the jth target token
overall the ith source token, computed by nth head.

In the translation task, Transformer is frequently
used for its translation accuracy and efficiency.
Transformer decoder employs the autoregressive
model which guesses the next token having read all
the previous ones. Also, since attention represents
relationship the between source and target tokens,
it is used in the alignment task (Garg et al., 2019).

2.4 Synchronous syntactic attention
Deguchi et al. (2021) find that NMT performance
can be improved by synchronizing the encoder at-
tention to decoder attention, which is called ”syn-
chronous syntactic attention”. The dependency in-
formation is embedded in these attention by super-
vised learning task. The encoder-decoder attention
can be viewed as a soft word alignment, which is
a weight that can project the source vector into the
target vector space without additional model param-
eters. This work synchronize the source and target
attentions that be embedded dependency informa-
tion by supervision task. To match the attention of
encoder and decoder, they project the encoder atten-
tion to the target one, and incorporate constraints
such that the source and target attention agree with
each other.
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少年 は 望遠鏡 で 女性<B> を 見た

telescope

the boy saw the woman<B> with the telescope

the
with

the
boy
saw
the

woman the boy saw the woman<B> with the telescope

見
たを

女
性で

望
遠
鏡は

少
年

Source distance: Target distance:

Projected target distance:

Synchronous 
constraint

Encoder-Decoder attention

Figure 1: The example of relation between syntactic distances and synchronous constraint on Japanese to English
translation task. Starting from induction of source and target syntactic distances, we project the source distance to
the target one through encoder-decoder attention weight. By measuring the difference between the projected target
syntactic distance and target one with the synchronous constraint. It can embed the syntactic correspondences of
source and target language into the encoder-decoder attention weight.

3 Synchronous Latent Phrase Structure

In this section, we present the Synchronous La-
tent Phrase Structure. This proposed method is
split into two steps. One is Latent Phrase Struc-
ture Induction (LPSI) and the other is Synchronous
Constraint. Figure 1 shows the flow of synchroniz-
ing Japanese source and English target syntactic
distances.

3.1 Latent Phrase Structure Induction

We employ syntactic distance (Shen et al., 2018a)
as a way to induce phrase structure. Each syntactic
distance di is associated with each span (i, i + 1)
which indicates the relative order of hierarchically
splitting a sentence into smaller components. For
example, Figure 1 shows that the target syntactic
distance between ‘woman‘ and ‘with‘ covers the
phrase ‘the woman with the telescope‘. Mathemati-
cally, syntactic distance di is computed through the
convolution-based network:

di = tanh(WD




ki−M
ki−M+1

· · ·
ki


+ bD) (4)

where WD and bD are convolution kernel param-
eter, kernel size M represents a look-back range
to calculate syntactic distance d. ki ∈ K̂n is same
as key used in MHA. The attention gate values are
computed as follows:

gi,t = P (bt ≤ i) =
t−1∏

j=i+1

αj,t (5)

αj,t =
hardtanh((dt − dj) · τ) + 1

2

where t is the current time step. αj,t is a proba-
bility value that represents the syntactic relation-
ship of distance dj and dt, and hardtanh(x) =
max(−1,max(1, x)). τ is the temperature hyper
parameter that controls the sensitivity of αj,t to
the differences between syntactic distances. bt is a
variable that indicates the position of break in the
phrase structure. This α is sharper than softmax
function, which allows to separate the constituents
more easily. The phrase structured MHA is defined
based on the gates:

ãi,t =
gi,t · ai,t∑
i gi,t · ai,t

(6)

where a is an element of attention A. The gate
gi,t is a weight that constrains attention to only the
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same hierarchy in the phrase structure. Here, ã is
used in place of the elements of A in Equation 2.

3.2 Synchronous Constraint
In the MT model, encoder and decoder learn sep-
arate phrase structures, which are not necessarily
synchronized in that two structures may not be
compatible with each other in terms of vector rep-
resentations. Therefore, synchronizing each phrase
structure learned in encoder and decoder, inspired
by synchronous grammar in SMT, may improve
the performance of translation by the synchronous
structure. Inspired by synchronous syntactic atten-
tion (Deguchi et al., 2021), we project the struc-
ture expressed by the encoder syntactic distance
to the target one, and incorporate constraints such
that the source and target syntactic distances agree
with each other. In Figure 1, the source syntac-
tic distance is projected to the target syntactic dis-
tance through the attention weight, and the syntac-
tic correspondence between Japanese and English
is learned from the target and projected syntactic
distances of the phrase ‘saw the woman with the
telescope‘.

The synchronous constraint can be represented
by using the Mean Squared Error (MSE) of the
syntactic distance between the source and target
languages:

Lsync =
L∑

l

∑

i

(
d
(l)
i − d̃

(l)
i

)2
(7)

d(l) is projected syntactic distance in lth decoder
layer and computed as:

d̃
(l)

= C(l)e(l) (8)

where e(l) is syntactic distance in lth encoder layer.
C(l) ∈ RJ×I is the lth encoder-decoder attention
weight, which represents the relationships of en-
coder and decoder representations, works just like
MHA. Here, I and J are length of source and target
sentence. The lth encoder-decoder attention weight
is computed as:

C(l) = softmax(
Q̂

(l)
decK̂

(l)>
enc√

δh
) (9)

where Q
(l)
dec and K

(l)
enc are lth decoder and encoder

hidden weights.
The important element in phrase structure is the

hierarchical positional relationship derived from

syntactic distance. However, MSE over-penalizes
the models, because it results in the exact distance
prediction task. Therefore, we use the rank loss
(Burges et al., 2005) as proposed by Shen et al.
(2018b), which takes hierarchical positioning into
account. Applying the rank loss to the synchronous
constrict, we obtain the following:

Lsync =
L∑

l

∑

i,j>i

hinge
(
d
(l)
i − d

(l)
j , d̃

(l)
i − d̃

(l)
j

)

(10)
where hinge(x1, x2) = max (0, 1− sign(x1) · x2)
and sign(x) is sign function. Therefore, the overall
objective L is represented by:

L = Ltrans + λLsync (11)

where Ltrans = −∑J
i log p(yi|x,y<i) where

Ltrans is the objective of machine translation task
and λ ≥ 0 is hyper parameter to control the degree
of the synchronous constraint Lsync. x and y are
source and target sentences, respectively.

4 Experiments

We train our proposed models using the training
objective in Equation 11 and evaluate them on
three tasks: translation, constituency parsing, and
word alignment. We implement models within
the Fairseq sequence modeling toolkit (Ott et al.,
2019).

4.1 Training Details

We employ the transformer iwslt de en align

fairseq configuration for German-English dataset
and the transformer align fairseq configuration
for Japanese-English dataset. We use two MHA
layers from the bottom to induct the phrase struc-
tures, and two encoder-decoder MHA layers from
the top to synchronize the encoder and decoder syn-
tactic distances 1. The hyper parameters are set as
look back range M = 5 and temperature τ = 1.0
1. The synchronous constrain hyper parameter is
set by λ = 0.01 for MSE and Rank loss.

4.2 Tasks

4.2.1 Translation Task
We evaluated the effectiveness of the synchronous
latent phrase structures for MT tasks on IWSLT’14
German-English and ASPEC Japanese-English

1We tried various settings in our preliminary experiments,
and this setting achieved the best performance.
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Train Valid Test
IWSLT’14 160,239 7,283 6,750
ASPEC 1,255,372 1,790 1,812
Europarl v7 1,905,695 997 508

Table 1: Number of sentences in each dataset.

datasets. We train the translation models on the
IWSLT’14 German-English and ASPEC Japanese-
English (Nakazawa et al., 2016) datasets. We use
the prepare iwslt14.sh for IWSLT’14 German-
English and follow the instruction of constructing
the baseline system of WAT 2, but KyTea (Neubig
et al., 2011) is used as the tokenizer for Japanese
sentences. These datasets are applied BPE. Table 1
shows the detailed data statistics. To compare the
effectiveness of synchronous latent phrase struc-
ture, we run additional baselines without latent
phrase induction but with synchronous constraints
applied to the attention weights. We run inference
with a beam size of 5 and report the quality of trans-
lation of our models with BLEU (Papineni et al.,
2002).

4.2.2 Constituency Parsing Task
In this experiment, we did not apply BPE and En-
glish data was parsed using Stanford CoreNLP

version 4.1.0 3, and thus the number of tokens
in each sentence is preserved.

The latent phrase structure is obtained by force
decoding; we feed the gold target sentences from
the test set into the word-wise trained MT models.
We report unlabeled F-measure (UF) as the quality
of English latent phrase structures, inducted from
the bottom syntactic distances, with scoring script
Evalb 4. Here, UF is an F-measure that ignores
constituency tags and evaluates only by bracketing.

4.2.3 Alignment Task
We also measure the impact of the alignment qual-
ities represented by our synchronous grammar
against other models including a statistical model
FAST-ALIGN (Dyer et al., 2013) 5. We use the
same experimental setup as described in (Chen
et al., 2020) and use the scripts 6 for pre-processing
and evaluation. The scripts provide three different

2http://lotus.kuee.kyoto-u.ac.jp/WAT/
WAT2019/baseline/dataPreparationJE.html

3https://stanfordnlp.github.io/CoreNLP/
4https://nlp.cs.nyu.edu/evalb/
5https://github.com/clab/fast_align
6https://github.com/lilt/alignment-

scripts

BLEU[%]
De→En Ja→En

Transformer 34.42 29.48
w/. Synchronous Attn 34.54 29.56
Transformer + LPSI 34.83 29.44
w/. SynchMSE 34.79† 29.79†
w/. SynchRank 35.05† 29.62†

Table 2: Results on translation task in IWSLT’14
German to English (De→En) and ASPEC Japanese to
English (Ja→En). Translation quality is reported in
BLEU and its values in bold indicate the best perfor-
mance. The numbers with † are significantly different
from the Transformer baseline measured by approxi-
mate randomization test (α = 1%).

datasets, but we only use German-English Europarl
v7 training data and the gold alignments 7 provided
by (Vilar et al., 2006). Table 1 shows the detailed
data statistics. We report the alignment quality in
the penultimate layer following (Garg et al., 2019)
with Alignment Error Rate (AER) introduced in
(Vilar et al., 2006). In this task, the trained model
is BPE-wise, but the reported AER is word-wise.
Furthermore, we report the quality of symmetrized
alignments that combined both unidirectional align-
ments. The combination method is employed the
grow-diagonal heuristic (Koehn et al., 2005), in
which alignments are greedily enlarged from the
intersected alignments.

4.3 Results

4.3.1 Translation Task
Table 2 compares the performance of our meth-
ods against baselines. The NMT models with
synchronous latent phrase structures have better
translation performance. In IWSLT’14 German-
English dataset, the NMT model with synchronous
latent phrase structure by rank loss improves 0.63
BLEU point. In ASPEC Japanese-English dataset,
the NMT model with synchronous latent phrase
structure by MSE loss improves 0.31 BLEU point.
These results show that the use of explicit latent
phrase structures can be useful in MT tasks involv-
ing syntactically distant languages like Japanese-
English.

However, the Rank synchronous constraint
model performed worse than the MSE synchronous
constraint model in the ASPEC Japanese-English
dataset. This probably is because that the phrase

7https://www-i6.informatik.rwth-
aachen.de/goldAlignment/
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Stanford

Transformer
+ LPSI

.spirithumantheofflashaislanguagea ?treeneutralclimateaseeneveryouhave

.spirithumantheofflashaislanguagea ?treeneutralclimateaseeneveryouhave

Figure 2: The top parse trees are obtained from the Stanford parser. The bottom parse trees are inducted from our
transformer with LPSI (first layer) trained on IWSLT’14 German to English.

UF[%] BLEU[%]
De→En

(Hent et. al., 2019) 56.1 30.2
Transformer + LPSI 37.40 30.69
w/. SynchMSE 14.33 30.41
w/. SynchRank 33.75 30.80

Table 3: Results on constituency parsing task in
IWSLT’14 German to English (De→En). Latent
phrase structure quality is reported in UF and its val-
ues in bold indicate the best performance.

structure is not well inducted from the Japanese-
English dataset and the advantage of Rank syn-
chronous constraint is not utilized. The difficulty of
induction phrase structure in the Japanese-English
dataset can also be read from the results of Trans-
former with LPSI.

The synchronous syntactic attention model
(Deguchi et al., 2021) also have good translation
performance, but we can improve it further by in-
corporating the syntactic distance into the attention.

Although not shown in previous work (Htut
et al., 2019), Table 2 shows that the use of ex-
plicit latent phrase structure is useful for the MT
task. Interestingly, we found that the effective syn-
chronous constrain differed between syntactically
close, i.e., German-English, and distant languages,
i.e., Japanese-English.

4.3.2 Constituency Parsing Task
Table 3 compares the performance of our meth-
ods against baselines. The results show that the
synchronous constraint hurt the quality of latent
phrase structures. Especially, in MSE synchronous
constraint, UF is drooped 17.01 points from the

result of Transformer with latent phrase structure
induction. This is because the MSE synchronous
constraints induct a synchronous grammar that is
different from the phrase structure being evaluated.
In other words, synchronous constrain hinders the
derivation of the latent phrase structures. However,
the decrease in UF by synchronous constrain by
rank loss is small, whereas synchronous constrain
by MSE greatly reduced UF. It suggests that syn-
chronous constrain by MSE derives an exact syn-
chronization grammar and synchronous constrain
by rank loss derives a minimal synchronization
grammar.

As with prior study (Htut et al., 2019), we did
not find any correlation between the phrase struc-
ture qualities and translation qualities especially
when two structures are synchronized in encoder
and decoder. This indicates that our induced gram-
matical structures using synchronous constraints
might capture bilingual correspondence better than
non-constrained models.

Figure 2 shows examples of parse tree from Stan-
ford Parser and our Transformer with LSPI. In the
first example ”a flash of the human spirit”, our
model almost correctly inducts phrase structure in
comparison with Stanford Parser. The only mis-
take is grouping ”the” and ”human” first in the
noun phrase “the human spirit“. This mistake can
be unique to concepts of syntactic distance, as it is
the same as in the prior study (Htut et al., 2019). In
the second example “have you ever seen a climate
neutral tree ?“, our model correctly inducts the verb
phrase “ever seen a climate neutral tree“, but fails
to induct the phrase ”have you ever” correctly.

326



AER[%] (precision[%], recall[%]) BLEU[%]
De→En En→De Symmetrized De→En En→De

FAST-ALIGN 30.8 (68.2, 70.3) 32.4 (66.8, 68.4) 27.7 (81.4, 65.0) - -
Transformer 46.2 (51.0, 57.1) 47.5 (49.5, 56.1) 35.8 (84.9, 51.3) 33.62 26.59
Transformer + LPSI 43.4 (53.5, 60.1) 45.9 (51.1, 57.6) 34.3 (84.6, 53.4) 33.25 26.98
w/. SynchMSE 42.4 (54.5, 61.2) 46.3 (50.8, 57.2) 34.1 (84.5, 53.8) 33.96 26.61
w/. SynchRank 44.4 (52.7, 58.9) 50.1 (47.3, 52.9) 36.1 (86.5, 50.5) 34.13 27.03

Table 4: Results on the alignment and translation task in Europarl v7 German to English (De→En) and English
to German (En→De). ‘Symmetrized‘ indicates the alignments combined both unidirectional alignments De→En
and En→De. Alignment quality is reported in AER, translation quality in BLEU and its values in bold indicate
best performance.

AER[%] (Precision[%], Recall[%])
Layer Transformer w/. SynchMSE w/. SynchRank

1 92.2 (62.7, 4.1) 95.0 (25.6, 2.7) 93.2 (26.0, 3.9)
2 92.1 (28.3, 4.5) 91.1 (34.9, 5.0) 90.8 (28.9, 5.4)
3 84.0 (42.7, 9.8) 88.6 (34.1, 6.8) 81.5 (37.2, 12.2)
4 49.3 (79.7, 37.0) 53.2 (75.2, 33.8) 40.7 (81.4, 46.4)
5 35.8 (84.9, 51.3) 34.1 (84.5, 53.8) 36.1 (86.5, 50.5)
6 47.2 (86.9, 37.7) 52.1 (87.7, 32.8) 56.9 (87.5, 28.4)

Table 5: Results of AER on each layer. The value in bold indicates the best performance.

De→En Ja→En
Transformer 34.42 29.48
w/o. Positional Embedding 17.01 15.40
Transformer + LPSI 34.83 29.44
w/o. Positional Embedding 33.94 28.89
Transformer + Local Attn 34.77 30.19
w/o. Positional Embedding 33.84 29.58

Table 6: Results on IWSLT’14 German to English
(De→En) and ASPEC Japanese to English (Ja→En)
for effectiveness of learning word order. ’w/o. Posi-
tional Embedding’ indicates removing positional em-
bedding from the models. The local attention mask is
applied only to the encoder following a prior study (Cui
et al., 2019).

4.3.3 Alignment Task

Table 4 compares the performance of our meth-
ods against statistic and neural baseline approaches.
Compared with Transformer, the model with la-
tent phrase structure show better translation per-
formance and quality of alignments. Furthermore,
synchronizing source and target latent phrase struc-
ture decreases the AER, which indicates that syn-
chronous constrain improves the interpretability of
translation. However, synchronous constrain by
Rank loss resulted in a deterioration in AER, de-
spite improving the translation performance BLEU.

Therefore, the relationship between BLEU and
AER does not seem to be significantly correlated.

Table 5 shows that the effectiveness of syn-
chronous latent phrase structure for two layers from
the top in terms of AER. In the penultimate layer,
while synchronous constrain by MSE contributed
to the improvement of AER, but synchronous con-
strain by rank loss conversely worsened AER. How-
ever, rank loss resulted in a significant improve-
ment AER in the third and fourth layers. In the
final layer, both synchronous constraints by MSE
and rank loss result in the worse AER. It suggests
that the quality of the latent phrase structure derived
from the second layer from the bottom is poor and
this may have affected the results adversely.

5 Analysis

5.1 Effectiveness of Attention Gate

We realize that our gated multi-head attention
(GMHA), without synchronous constraint, is very
similar to local attention within mixed multi-head
attention (MMHA) (Cui et al., 2019). MMHA en-
courages each head to acquire different features
by masking them differently and allows the model
to be aware of the order of the sequence. Table 6
show that Transformer without position embed-
ding decrease of 17.41 BLEU point in IWSLT’14
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(a) Reference (b) FastAlign (c) SyncMSE (d) SyncRank

Figure 3: The symmetrized examples from the German-English alignment test set. Gold Alignment is shown in
(a). Alignment in (b) show the output from FastAlign (BPE-wise trained), (c) from synchronized MSE model, and
(d) from synchronized Rank model. Black squares and gray squares in the reference represent sure and possible
alignments, respectively.

German-English and 14.08 BLEU point in ASPEC
Japanese-English. In the Transformer with latent
phrase structure induction (LPSI), the performance
is only reduced by 0.89 BLEU point in IWSLT’14
German-English and 0.55 BLEU point in ASPEC
Japanese-English without position embedding. For
a fair comparison, we employ local attention with 2
window in the two bottom layers of encoder. Sim-
ilarly, in the Transformer with local attention, the
performance is only reduced by 0.93 BLEU point in
IWSLT’14 German-English and 0.61 BLEU point
in ASPEC Japanese-English without position em-
bedding. It indicates that local constraints on at-
tention mechanisms help learning the order of the
sequence rather than latent phrase structure induc-
tion.

5.2 Effectiveness of Synchronous Latent
Phase Structure

Figure 3 shows examples from the German-English
alignment test set. In the first example, we find that
there are no false alignments in our models with
synchronous constraints. However, in rank loss,
the alignment between ’Therefore’ and ’Daher’,
which was captured by MSE, is lost. In the sec-

ond example, duplicated our model correctly aligns
them with ’um’ compared with FastAlign. There-
fore, The synchronous constraints by MSE and
rank loss indicate that only alignments with high
confidence are provided. Furthermore, as can be
seen from the precision values in this Table 4, there
are no false alignments in synchronous constrain by
rank loss, and definite explainability of translation
is achieved. In other words, the synchronization
constraint favors precision over recall, which may
make the AER worse, but it can provide a reliable
explanation for human. The prior study (Jain and
Wallace, 2019; Serrano and Smith, 2019) conclude
that the attentions have not explainability. How-
ever, our attention is constrained by the syntactic
distance, it can explain the relation between source
and target sentence following the constituency tree.
We will work it as the future works.

6 Conclusion

This paper introduces the approach to improve the
performance and explainability of MT. In the MT
task, our model improves the quality of transla-
tion even through distant language pairs. In the
alignment task, we demonstrate that synchronous
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constraint for syntactic distance can produce high
precisional alignments to interpret MT hypothe-
sis. Currently, our approach induces the poor la-
tent phrase structure constructed with the previous
work. To achieve the more high performance and
explainability of MT, we would like to investigate
other syntactic structures and a translation model
which can induce better latent phrase structure.
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Abstract

The presence of zero-pronoun (ZP) greatly af-
fects the downstream tasks of NLP in pro-drop
languages such as Japanese and Chinese. To
tackle the problem, the previous works identi-
fied ZPs as sequence labeling on the word se-
quence or the linearlized tree nodes of the in-
put. We propose a novel approach to ZP iden-
tification by casting it as a query-based argu-
ment span prediction task. Given a predicate
as a query, our model predicts the omission
with ZP. In the experiments, our model sur-
passed the sequence labeling baseline.

1 Introduction

Pro-drop languages, such as Japanese, Chinese,
or Arabic, allow omissions of essential phrases
or arguments, e.g., nouns, which could be eas-
ily inferred by humans given contexts in a sen-
tence. The omitted argument is called zero-
pronoun (ZP), or (small) “pro”, which is an in-
stance of empty categories in linguistics.

JA このケーキは美味しい。私は (pro-OBJ)気に入った．
EN This cake is delicious. I like (it).

In the Japanese example above, the object argu-
ment (OBJ) is omitted from the second sentence
because Japanese speakers can predict from the
context that the OBJ is “it”, and the omission is
natural for the Japanese speakers.

Downstream tasks involving pro-drop lan-
guages could easily suffer from the existence of
ZPs. In the machine translation task, it has
been reported that supplementing the ZP infor-
mation when translating from pro-drop languages
to non-pro-drop languages improves the perfor-
mance (Wang et al., 2019).

When identifying a ZP from the sentence where
the argument is omitted, the predicate informa-
tion is the key. The ZP identification is solved in
many previous works as a labeling task for input
sentence tokens (Aloraini and Poesio, 2020; Song
et al., 2020) or nodes in a parse tree (Xiang et al.,
2013; Takeno et al., 2015).

In this study, we treat ZP identification as an in-
stance of span prediction tasks inspired by the QA
method proposed in Devlin et al. (2019). There
are two steps to solve the ZP identification in our
approach. 1) Given a predicate as a query, our
model extracts each argument, such as subject or
object, as the answer from the input sentence. 2) If
our model cannot extract any corresponding argu-
ment from the input sentence, the model predicts
whether or not it is a ZP. In the above example,
given a predicate 気に入った “like”, our model
should predict that the subject argument is 私は
“I” in the sentence and the object argument is a
ZP. By explicitly providing predicates as queries
in this way, our approach allows the model to cap-
ture information about the ZP cue from the input
sentence, thereby improving the ZP identification
performance.

Our contributions are as follows: 1)We pro-
posed a novel approach for ZP identification.
2)The improvement from the sequence labeling
baseline was confirmed on two different language
datasets.

2 Related work

Most of the researchers considered the ZP detec-
tion or ZP identification as a labeling task. Xiang
et al. (2013) and Takeno et al. (2015) used parse
trees as input and detected empty categories, in-
cluding ZPs, by labeling a node representing the
maximal projection of a predicate, namely IP or
VP. Song et al. (2020) proposed jointly learning
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ZP resolution and ZP identification by treating
it as sequence labeling on every word boundary.
Aloraini and Poesio (2020) considered word po-
sitions before or after each VP node as ZP loca-
tion candidates and predicted whether the candi-
date has ZP or not as a binary classification task.
To the best of our knowledge, our approach is the
first work that formalizes ZP identification as a QA
task.

In recent years, approaches for solving various
tasks as QA-based span prediction problems have
been proposed. Li et al. (2020) made questions
corresponding to NER entity tags. Then, their
model predicted the entity span giving the ques-
tion and a sentence as QA tasks to tackle the nested
NER problem. In the coreference resolution task,
Wu et al. (2020) generated queries based on each
mention and extracted the text spans of corefer-
ences as answers to given queries. Nagata et al.
(2020) improved the performance of word align-
ment task by giving a word in the source language
sentence as a question and predicting its corre-
sponding word span in the target language sen-
tence.

3 Span-based ZP identification

Treebanks have phrase structure tree information,
and in some treebanks, empty categories are also
annotated as null terminal nodes (Butler et al.,
2012; Xue et al., 2005). However, we focused only
on ZP identification, not dealing with other empty
categories, such as trace and PRO, in this paper.

We formally define the ZP identification as
span-based prediction as follows: Given a tok-
enized sentence x = x1, ..., x|x|, we denote a span
of the sentence as xqs:qe (1 ≤ qs ≤ qe ≤ |x|) that
corresponds to the head of predicate of the sen-
tence, i.e., verb or adjective. The task is to identify
the span of the sentence x corresponding to the ar-
gument required by the predicate xqs:qe. When no
span is detected, there are three possible cases: (i)
the argument is dropped as a kind of ZP; (ii) the
argument is not dropped as a ZP, but as another
empty category such as trace or PRO; (iii) it is
not required by the predicate at all. We grouped
the latter two cases into one class, the non-ZP
class. Therefore, our model predicts one of the
ZP classes or the non-ZP class for the required but
omitted argument. The prediction is applied for
each grammatical function of the argument, such
as SBJ, OBJ, etc.

Our argument span prediction is inspired by
BERT fine-tuning for the QA task (Devlin et al.,
2019). Inputs follow a BERT style formulated
as “[CLS] query [SEP] sentence [SEP]”, where
[CLS] is a special token to output the classification
result and [SEP] denotes the boundary of “query”
and “sentence.” The query in the input is defined
as follows:

{ xqs−C:qs−1, [Predicate1], xqs:qe, [Predi-
cate2], xqe+1:qe+C }

where C is the size of the context windows before
and after the span xqs:qe in the sentence. [Pred-
icate1] and [Predicate2] 1 are used as boundary
markers to specify the start and end of the pred-
icate in the query.

(1) (φ)
(pro)-SBJ

大学
university

へ
at
着き
VB

まし
AX

た
AXD

‘ (pro) arrived at the university. ’

In the example sentence (1) , there are five words
in the tokenized input sentence excluding a null
token φ 2. Given “着き” as a predicate with C =
1, the query is represented as follows:

{“へ”, [Predicate1], “着き”, [Predicate2], “まし” }

Given the inputs, our model is expected to pre-
dict that SBJ is a required argument belonging to
“pro” class and OBJ is a non-ZP argument because
the predicate is an intransitive verb.

3.1 Argument Span Prediction

Two independent linear layers are added to BERT
for predicting the start and end positions of an ar-
gument type for an input predicate. We dealt with
three arguments, which are subject, object, and in-
direct object, for a predicate and added six layers
in total.

Using hidden size H , ha ∈ RH is the em-
bedding of the final BERT encoder layer, corre-
sponding to a token a in the input, and farg

start(·)
and farg

end(·) are linear layers to calculate start and
end probabilities. Given xi, the ith word in a
sentenece x, let parg

start(xi) = farg
start(hxi) and

parg
end(xi) = farg

end(hxi) denote the probabilities that
the ith word is the start and end of the span of arg,
argument e.g., SBJ, OBJ, etc.

1These words are implemented using unused words in the
BERT vocabulary, “[UnusedX]”.

2φ is a null token indicating “pro”, which does not appear
in the actual input sentence.
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The score that the span xi:j is the span of arg is
defined as the product of the ith word start proba-
bility and the jth word end probability of arg. We
define ı̂ and ̂ as the start and the end positions that
maximize scorearg(i, j).

scorearg(i, j) = parg
start(xi) · parg

end(xj) (1)

(̂ı, ̂) = arg max
1≤i≤j≤|x|

scorearg(i, j) (2)

When there is no arg span in the predicate, we
assume its start and end positions equal to that of
[CLS] and define the score as follows:

scorenull = parg
start([CLS]) · parg

end([CLS]) (3)

There are two cases for scorenull and
scorearg (̂ı, ̂):

scorenull ≤ scorearg (̂ı, ̂) (4)

scorenull > scorearg (̂ı, ̂) (5)

When Equation 4 holds, our model predicts that
the span between the ı̂th and ̂th in x is the argu-
ment arg for the given predicate. Otherwise, the
argument for the given predicate does not exist in
x denoted by Equation 5, which implies ZP exists
in the argument or the argument is a non-ZP state.

The loss of a single example is calculated by the
cross-entropy loss of correct positions i′ and j′:

lossspan =
∑

arg

− log parg
start(xi′) − log parg

end(xj′)

(6)

3.2 ZP classification
The difference between ZP detection and ZP iden-
tification is whether there are one or more classes
of ZPs for arguments. In the ZP detection task, ZP
classification is binary classification whether the
argument is either ZP class or non-ZP class. When
there are multiple ZP classes to solve the ZP iden-
tification task, the ZP classification is a multi-class
classification.

To classify, we add an independent layer for
each predicted argument type into BERT. The arg
class probabilities are as follows:

parg
class = softmax(h[CLS]Warg + barg) (7)

where Warg ∈ RH×numclass , and barg ∈
Rnumclass are parameters. numclass is the num-
ber of classes including the non-ZP class.

The loss losslabel is calculated by cross-entropy
function and the correct label probability.

losslabel = − log parg
class(indexcorrect) (8)

Datasets Category Train Dev Test

NPCMJ
docs(all) 261

sents 29,796 3,724 3,726
preds 76,892 9,595 9,450

OntoNotes
5.0

docs 1,391 172 166
sents 32,358 5,435 9,450
preds 135,241 19,538 16,556

Table 1: Statistics on NPCMJ and OntoNotes5.0. In the
“Category” column, “docs”, “sents”, and “preds” rep-
resent documents, senteneces, and predicates, respec-
tively. In NPCMJ, “all” means the total number of doc-
uments in train, dev, and test.

Datasets argument SBJ OB1 OB2

NPCMJ ZP ratio(%) 20.58 3.67 0.24
ZP number 15,824 2,823 184

OntoNotes
5.0

ZP ratio(%) 21.59 0.05 0.00
ZP number 29,195 61 1

Table 2: The ratio and the number of ZPs to queries
in train datasets of NPCMJ and Chinese subsets
OntoNotes.

3.3 Training
The training objective is defined using lossspan

and losslabel in 3.1 and 3.2 as follows:

losstotal = αlossspan + (2 − α)losslabel (9)

α is a hyperparameter that weights the loss func-
tion of each task by taking a value between 0 <
α < 2 3.

4 Experiments

4.1 Datasets
We take two Datasets: NPCMJ4 for Japanese ZP
identification and OntoNotes5.05 for Chinese ZP
detection. The dataset statistics are shown in Ta-
bles 1 and 2.

NPCMJ is an extension of the Keyaki Treebank
(Butler et al., 2012), which contains empty cat-
egory information including ZP, and has 40,831
sentences with trees in the March 2020 version.
ZPs are annotated at the first position of a pred-
icate head phrase (inflectional phrase, IP). In the
Japanese experiments, let xqs:qe in a query be a
word tagged either with the verb or the adjective
that constitutes a predicate.

The verb tags are “VB”, “VB0”, “VB2”, and
“AX”, and the adjective tags are “ADJN” and

3We first run our preliminary experiments by setting α =
1, and then, run further experiments using linear interpolation

4http://npcmj.ninjal.ac.jp
5https://catalog.ldc.upenn.edu/LDC2013T19
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“ADJI”. The phrase tagged with “-SBJ”, “-OB1”,
or “-OB2”, which is at the same depth of the
query, is selected as the argument. In training, we
used “pro” and its derived tags, i.e., “speaker” and
“hearer”, as ZP classes for ZP classification.

OntoNotes5.0 is used in the official CoNLL-
2012 shared task. The rate of phrase tags of “pro”
nodes in train datasets is composed of “-SBJ” with
more than 99%, “-OBJ” with less than 0.5%, and
others. The phrases tagged with “-SBJ”, “-OBJ”,
or “-IO” are treated as arguments. The head word
of the phrase with VP is considered as a predicate,
and let the head word be xqs:qe in a query.

In Japanese and Chinese, there are nominal
predicate phrases which do not have verbs and
copulas. Such phrases were tagged with “-PRD”
tags in both datasets, but we did not deal tagged
with “-PRD” in this paper.

4.2 Model and Setting
We used NICT BERT Japanese pre-trained
model without BPE6 for NPCMJ, and “bert-base-
chinese”7 models in HuggingFace’s Transformers
(Wolf et al., 2019) for OntoNotes5. Japanese texts
are tokenized by MeCab with Juman dic8, and
Chinese texts are tokenized by BERT Tokenizer,
i.e., WordPiece.

The following are the hyperparameters:
batch size = 16, learning rate = 3e-5, train-
ing epoch = 4, C = 2, α = 1 in training objective.

4.3 Baseline
The sequence labeling model with BERT is used
as a baseline model, referring to the method of
Devlin et al. (2019). The entire sentence is used
as input, and the predicate tokens with ZP argu-
ment in the sentence are labeled with a particular
ZP class using the BIOES format.

For each argument, we use a different model for
each argument type prediction.

4.4 Results
We evaluate the results in terms of precision, re-
call, and F-score. For example, in case the SBJ
argument has “pro”, one of the ZP classes, it is
defined as follows,

Precisionpro
SBJ = correct number of predicted “pro” SBJ

number of predicted “pro” SBJ

Recallpro
SBJ = correct number of predicted “pro” SBJ

number of gold “pro” SBJ

6https://alaginrc.nict.go.jp/nict-bert/index.html
7https://huggingface.co/bert-base-chinese/tree/main
8https://taku910.github.io/mecab/

Model argument Arg span
accuracy

ZP
F1

ZP
pre

ZP
recall

Baseline
SBJ - 61.5 62.3 60.8
OB1 - 58.0 62.3 54.2
ALL - 60.9 62.2 59.6

QAZP
SBJ 90.8 66.0 66.2 65.8
OB1 88.5 59.7 60.6 59.0
ALL 89.3 64.9 65.4 64.5

Table 3: Argument span accuracy and ZP identification
on NPCMJ for each argument. The row of ALL indici-
ataes the value for SBJ, OB1 and OB2.

label Model F1 pre recall

pro baseline 60.8 61.3 60.2
QAZP 65.1 64.2 66.0

speaker baseline 62.2 66.2 58.8
QAZP 65.4 68.7 62.5

hearer baseline 65.1 60.9 70.0
QAZP 68.7 65.3 72.7

Table 4: ZP identification on NPCMJ for each ZP class.
This values are the result for three arguments.

The same calculation applies to the other argu-
ments and the other labels. The accuracy for re-
quired arguments that appear in the sentence is
evaluated with the accuracy of whether the predic-
tion span matches exactly with the gold span.

Table 3 and Table 4 show the results of ZP iden-
tification on NPCMJ for each argument and each
ZP class. In Table 3 and Table 4, QAZP indicates
our proposal method, and the baseline is left blank
because the argument span is not predicted by the
baseline. Compared to the baseline, the proposed
method outperformed for each argument and each
ZP class. The lower F1 value of ZP identification
for OB1 in Table 3 can be attributed to the fact that
ZPs occur only about 18% as often in OB1 as in
SBJ.

Table 5 shows the result of the Chinese ZP de-
tection. Compared to the baseline, the proposed
method outperformed for both argument cases.
Although it is not directly comparable with (Alo-
raini and Poesio, 2020) in that their task defini-
tion is slightly different and their targets are only
anaphoric ZPs, our model achieves about 80% F1
values, which is higher than their F1 of 68.5%.

4.5 Examples

Figure 1 shows the three prediction examples of
the baseline and our proposal model, QAZP. Ex-
ample 1 is the case when the the QAZP’s predic-
tion is correct and the baseline’s prediction is in-
correct. In this example, the model needs to rec-
ognize that the SBJ arguments of the two predi-
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Figure 1: Prediction examples of the baseline and QAZP, our proposal model for three sentences in a Japanese ZP
identification task. Each line represents either the prediction of one of the both models, or the Gold data for the
argument of a predicate covered by the lines. The first and third examples are predictions for SBJ arguments, and
the second example is a prediction result for the OBJ arguments by the baseline and QAZP.

Model Arg Arg span
accuracy

ZP
F1

ZP
pre

ZP
recall

Baseline SBJ - 71.5 72.5 70.5
ALL - 71.4 72.6 70.3

QAZP SBJ 88.7 80.6 81.2 80.6
ALL 88.3 80.5 81.0 80.4

Table 5: Argument(Arg) span accuracy and ZP detec-
tion on OntoNotes5.0. for “pro” class. The row of ALL
indiciataes the value for SBJ, OBJ and IO2 arguments.

cates お 話し “speak” and 復習 “review” are dif-
ferent. While the proposed model predicted a dif-
ferent SBJ argument for each predicate, the base-
line predicted the same SBJ item for both predi-
cates. Therefore, we consider that the proposed
model is more context-aware than the baseline.

Example 2 is the case when the QAZP’s pre-
diction is incorrect and the baseline’s prediction
is correct. In this example, その ことを “it” is
the OBJ argument for the first predicate知ってい
“know”, but it is also the referent of the omitted
object argument, which is ZP, for the second pred-
icate隠して “hide”. Our model predicted the first
predicate知ってい hasそのことを as an OBJ ar-
gument. It also predicted the same span その ことを as the OBJ argument for the second predi-
cate隠して, which results in failing to detect that
the OBJ argument is dropped. The reason is that
our model predicts an OBJ argument span for each
predicate independently. To alleviate such errors,
we need to add a constraint to the model that no
span in the input sentence can be the argument for
more than one predicate at the same time, using

Integer Linear Programming as in the method of
(Iida and Poesio, 2011).

Example 3 is the case when the predictions
of both models are incorrect. In this example
sentence, the gold ZP class is the first person
“speaker”, but it is impossible to identify the ZP
without knowing the context before and after the
input sentence. We expect our model will capture
context information by extending the input unit to
multiple sentences instead of a single sentence.

5 Conclusion

We proposed a ZP identification method based on
span prediction and evaluate it on Japanese and
Chinese datasets. Our model is the first approach
to consider ZP detection as a QA task. In exper-
iments, the F1 values of our method were higher
than the baseline method using sequence labeling
for both Japanese and Chinese.

Future works include to analyze arguments that
appeared overtly in tasks such as semantic role la-
beling. As a setting closer to the real problem, we
will use a tagger to create queries instead of us-
ing Gold data. The other future work is compar-
ison with a baseline which predicts all arguments
at once by sharing the model parameters of BERT
as our proposal model. We also consider extend-
ing our proposed method to coreference resolution
tasks in pro-drop languages.

References
Abdulrahman Aloraini and Massimo Poesio. 2020.

335



Anaphoric zero pronoun identification: A multi-
lingual approach. In Proceedings of the Third
Workshop on Computational Models of Refer-
ence, Anaphora and Coreference, pages 22–32,
Barcelona, Spain (online). Association for Compu-
tational Linguistics.

Alastair Butler, Tomoko Hotta, Ruiko Otomo, Kei
Yoshimoto, Zhen Zhou, and Hong Zhu. 2012.
Keyaki treebank : phrase structure with functional
information for japanese. In In Proceedings of Text
Annotation Workshop.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Ryu Iida and Massimo Poesio. 2011. A cross-lingual
ILP solution to zero anaphora resolution. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, pages 804–813, Portland, Ore-
gon, USA. Association for Computational Linguis-
tics.

Xiaoya Li, Jingrong Feng, Yuxian Meng, Qinghong
Han, Fei Wu, and Jiwei Li. 2020. A unified MRC
framework for named entity recognition. In Pro-
ceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5849–
5859, Online. Association for Computational Lin-
guistics.

Masaaki Nagata, Katsuki Chousa, and Masaaki
Nishino. 2020. A supervised word alignment
method based on cross-language span prediction us-
ing multilingual BERT. In Proceedings of the 2020
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 555–565, On-
line. Association for Computational Linguistics.

Linfeng Song, Kun Xu, Yue Zhang, Jianshu Chen, and
Dong Yu. 2020. ZPR2: Joint zero pronoun recovery
and resolution using multi-task learning and BERT.
In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics, pages
5429–5434, Online. Association for Computational
Linguistics.

Shunsuke Takeno, Masaaki Nagata, and Kazuhide Ya-
mamoto. 2015. Empty category detection using path
features and distributed case frames. In Proceed-
ings of the 2015 Conference on Empirical Meth-
ods in Natural Language Processing, pages 1335–
1340, Lisbon, Portugal. Association for Computa-
tional Linguistics.

Longyue Wang, Zhaopeng Tu, Xing Wang, and Shum-
ing Shi. 2019. One model to learn both: Zero pro-
noun prediction and translation. In Proceedings

of the 2019 Conference on Empirical Methods in
Natural Language Processing and the 9th Interna-
tional Joint Conference on Natural Language Pro-
cessing (EMNLP-IJCNLP), pages 921–930, Hong
Kong, China. Association for Computational Lin-
guistics.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
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Abstract

Various studies show that pretrained language
models such as BERT cannot straightfor-
wardly replace encoders in neural machine
translation despite their enormous success in
other tasks. This is even more astonishing con-
sidering the similarities between the architec-
tures. This paper sheds some light on the em-
bedding spaces they create, using average co-
sine similarity, contextuality metrics and mea-
sures for representational similarity for com-
parison, revealing that BERT and NMT en-
coder representations look significantly differ-
ent from one another. In order to address this
issue, we propose a supervised transformation
from one into the other using explicit align-
ment and fine-tuning. Our results demonstrate
the need for such a transformation to improve
the applicability of BERT in MT.

1 Introduction

Contextualized token representations produced by
pretrained language models (LMs), in particular
BERT (Devlin et al., 2019), have ushered in a new
era, allowing the separation of unsupervised pre-
training of powerful representation spaces, from the
supervised training of task-specific, comparatively
shallow classifiers on top of these representations.
BERT-based models have consistently shown state-
of-the-art performance in a variety of tasks, which
is largely attributed to the rich information cap-
tured by the representations. These capabilities
and its Transformer-based architecture suggest that
BERT could improve neural machine translation
(NMT) as well. However, as shown by Clinchant
et al. (2019), although useful, information encoded
by BERT is not sufficient by itself for successful
MT. The reason for this is still an open question.
Some of the most widely accepted hypotheses to
date argue that either there is a fundamental dis-
crepancy between the masked language modeling

training objective of BERT compared to the gen-
erative, left-to-right nature of the MT objective
(Song et al., 2019; Lewis et al., 2020) ; or that
catastrophic forgetting (Goodfellow et al., 2015)
takes place when learning the MT objective on
top of the pretrained LM (Merchant et al., 2020).
The latter could be caused by the large size of the
training data typically used in MT,and by the high
capacity decoder network used in MT because to
fit the high-capacity model well on massive data
requires a huge number of training steps. However,
since on the one hand, the left-to-right constraint
in MT is potentially more relevant for the decoders
than the typically bidirectional encoder that has ac-
cess to the entire input sequence, and on the other
hand, BERT and other pre-trained LMs have been
successfully used for other complex problems with
large training data and high capacity classifiers (Liu
and Lapata, 2019; Witteveen and Andrews, 2019;
Huang et al., 2021), it is reasonable to assume there
may be further reasons for these discrepancies.

We take a complementary stance and analyze the
differences between the representation spaces pro-
duced by BERT and those produced by the MT
objective. We therefore attempt to align these
spaces, and investigate whether such an explicit
alignment would reshape the BERT representa-
tion space to enable its use as an NMT encoder.
To the best of our knowledge, this is the first
study to investigate the intrinsic differences of pre-
trained LM and MT spaces, as well as the first
attempt to explicitly align them. For reproducing
our experiments, we make our code available at
https://github.com/Helsinki-NLP/Geometry

2 Methodology

2.1 Comparing the Representation Spaces

Measures of Isotropy and Contextuality. We
investigate how the embedding spaces of BERT
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and MT differ by making a layer-by-layer compari-
son of these spaces. First, we measure the level of
isotropy of these spaces using the average cosine
similarity (AvgSim) between the representations of
uniformly randomly sampled words from different
contexts (Ethayarajh, 2019). (An)isotropy corre-
sponds to the degree of directional (non)uniformity
in an embedding space, where perfect isotropy im-
plies directional uniformity in the distribution word
vectors. It is important to consider (an)isotropy
when discussing contextuality since cosine similar-
ity is relative to the directional uniformity of the
sample space. Then, we also generalize AvgSim to
using the Euclidean distance as our distance met-
ric. Understanding how cosine similarity and the
Euclidean distance interact allows for a more com-
plete understanding of the space.

We also make a layer-wise comparison using
two of the anisotropy-adjusted contextuality met-
rics presented in Ethayarajh (2019): SelfSim: av-
erage cosine similarity between the contextualized
representations of a word across its occurrences in
the dataset, and IntraSim: average cosine similar-
ity between representations of words in a sentence
and the sentence mean vector. Both metrics are
corrected for anisotropy via subtracting the corre-
sponding AvgSim, assuming AvgSim as a measure
of anisotropy.

Measures of Representational Similarity. We
measure the similarities between pairs of layers
of both models using Representational Similar-
ity Analysis (RSA) (Laakso and Cottrell, 2000;
Kriegeskorte et al., 2008) and Projection-Weighted
Canonical Correlation Analysis (PWCCA) (Mor-
cos et al., 2018) as task-agnostic measures.

RSA, originally developed for neuroscience, and
later adopted for quantifying the similarity between
neural networks (Chrupała and Alishahi, 2019; Ab-
nar et al., 2019) works by taking a set of input
stimuli of size n, and running them through the
models to be compared. For each model, the acti-
vations to each of the n stimuli points are pairwise
compared to each other using a similarity metric
to compute a an adjacency matrix of size [n × n]
between the stimuli points obtained. These matri-
ces are then contrasted against each other using the
Pearson’s correlation coefficient, giving a measure
of the "representational similarity".

PWCCA is an extension over the SVCCA (Sin-
gular Value Canonical Correlation Analysis) dis-
tance measure (Raghu et al., 2017), which com-

bines Singular Value Decomposition (SVD) and
Canonical Correlation Analysis (CCA) (Hotelling,
1936). CCA is invariant to linear transforms, hence,
it is useful for finding shared structures across rep-
resentations which are superficially dissimilar, mak-
ing it a good tool for comparing the representations
across groups of networks and for comparing rep-
resentations. Specifically, given the two sets of n
corresponding representations from two models,
PWCCA performs (1) SVD over the dimension
space to prune redundant dimensions, (2) CCA to
find linear transformations of the two spaces’ di-
mensions, which are maximally correlated to each
other, and (3) a weighted average of the resulting
correlation coefficients, which favor the ones that
are more relevant to the underlying representations.

2.2 Aligning the Representation Spaces

We present two methods to align the BERT space
to that of the MT encoder: (i) an explicit alignment
transformation that forces BERT representations to
better match those of the MT encoder, and (ii) an
implicit alignment effect achieved by a fine-tuning
process which uses translation as its objective.

Explicit Alignment Transformation. We build
upon Cao et al. (2020), maximizing the contextual
alignment the model can achieve via the average
accuracy on the contextual word retrieval task. This
method presents several advantages that can be
leveraged in our work. It is multilingual, it respects
contextuality of the embeddings, and it makes use
of rather reliable, widely used and not-memory
intensive alignment algorithms (Brown et al., 1993;
Och and Ney, 2003)

The task, as originally posed by Cao et al.
(2020) is as follows. Given a parallel pre-aligned
corpus C of source-target pairs (s, t), and one
word within a source sentence, the objective is
to find the corresponding target word. Let each
sentence pair (s, t) have word pairs, denoted
a(s, t) = (i1, j1), ..., (im, jm), containing position
tuples (i, j) such that the words si and tj are trans-
lations of each other. We use a regularized loss
function Loss = L+ λR so that L aligns the em-
beddings from one model, f1(i, s), to the ones of
the other model f2(j, t):
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Figure 1: Cosine similarity (top) and Euclidean distance (bottom) distributions between randomly sampled words.
Note that BERT has 12 layers and MT encoder has 6 layers, so the layers should be compared according to their
relative positions, such as comparing the final layer of BERT to the final layer of MT encoder.

L(f1, f2;C) = -
∑∑

sim (f1(i, s), f2(j, t))

(s,t)∈C
(i,j)∈a(s,t)

R(f ;C) =
∑

s∈C

len(t)∑

i=1

‖f1(i, s)− f◦1 (i, s)‖22

where f◦1 denotes the pretrained model 1 before
alignment and R is the regularization term that
imposes a penalty if the target embeddings stray
too far from their initialization. We validate using
a version of Cao et al. (2020) word retrieval task
using a nearest neighbor retrieval function:

N(i, s|f1, f2) = argmax
t∈C,0≥j≥len(t)

sim (f1(i, s), f2(j, t))

We propose to modify the regularized loss func-
tion Loss = L + λR so that L aligns the embed-
dings from one model, f1(i, s), to the ones of an-
other model, f2(j, t), and also use a regularization
term R to impose a penalty if the aligned embed-
dings stray too much. In contrast with Cao et al.
(2020), this allows for alignment between embed-
dings produced by different models. Specifically,
we align the representations in the final layer of the
pretrained language model, to that of the encoder of
the MT model. Although in this work, we focus on
aligning the different representations for the same
word to each other, aligning embedding spaces of
different languages and different models is also an
interesting future direction.

Implicit Alignment via Fine-tuning. We fine-
tune a hybrid model consisting of BERT in the

encoder side that sends its representations to a pre-
trained MT decoder. We then use smoothed cross
entropy loss as our training objective to fine-tune
BERT representations for performing MT. The out-
puts of BERT are passed through a linear projection
layer to match the dimension of the MT decoder
and then fed into the decoder in the same way as in
the standard Transformer architecture.

3 Comparing The Embedding Spaces.

We compare the representation spaces produced by
BERT and the encoder of a Transformer trained
on the MT task. BERT is composed of 12 layers,
plus an initial input embedding layer, with a dimen-
sion of 768. The MT system we apply consists
of an input embedding layer followed by 6 Trans-
former layers with a hidden dimension of 512. We
use the pretrained bert-base-uncasedmodel,
as well as the pretrained English-German transla-
tion model opus-mt-en-de, both from the Hug-
gingFace library (Wolf et al., 2019). Following
Ethayarajh (2019), we extract embeddings using
data from the SemEval Semantic Textual Similarity
tasks from 2012 to 2016 (Agirre et al., 2016).

Average similarity between random tokens.
Figure 1 presents the layer-wise cosine similarity
(top) and the Euclidean distance (bottom) distribu-
tions of randomly sampled words.The behavior of
BERT in Figure 1(top) is consistent with the find-
ings of Ethayarajh (2019). The level of anisotropy
of the embedding representations throughout layers
of BERT increases towards higher layers, with the
exception of a slight drop at the last layer (L12),
considering the average cosine similarity of the rep-
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resentations as a proxy measure of anisotropy. Fur-
ther, we notice Figure 1(bottom) that BERT embed-
dings follow an inverted U-shape. This, together
with the AvgSim trend, means that the embedding
space starts by stretching out and becoming nar-
rower, later on to spread out shorter embeddings in
layer 12, in line with (Voita et al., 2019).

The MT-based representations, however, look
significantly different. The cosine-based AvgSim
follows an almost U-like trend: it starts from a
relatively high level at layer 0, then immediately
drops and stays low throughout the middle layers,
before a sudden increase at the final layer (L6). In
particular:

1. a high average similarity of the MT embed-
dings in layer 0 is striking since the represen-
tations are not yet that “contextualized” this
early in the model, and

2. the gradual increase of average similarity in
BERT layers, versus the very steep increase
at the last layer of MT model.

Behavior (1) might be caused by the shared source-
target vocabularies and the embedding layer in the
MT model in the encoder and the decoder being
shared. Such shared processing can result in a
seeming inflation of the cosine similarity of ran-
domly selected vectors, which actually belong to
two different language spaces. To test for this
hypothesis, we check the average Euclidean dis-
tance between randomly selected tokens in Figure
1-bottom. Interestingly, we do not observe consid-
erable high levels of closeness between random
words in layer 0, and the distribution is widespread.
That is, the embeddings are organized in a nar-
row cone but have a wide range of lengths. This
behaviour might arise from the system needing to
represent both languages in the same space, and the
interplay between training the embeddings layer at
the target side while needing to keep source em-
beddings apart enough - future work is necessary
to confirm this. Motivated by these findings, we
emphasize that using both metrics and observing
how they interact allows for a more complete un-
derstanding of the representation spaces. 1

Finding (2) is more relevant to our main ques-
tion of the differences between the geometries of

1Cosine similarity does not take into account the magni-
tude of the vectors at play, making it susceptible to the exis-
tence a large value in one of the entries of a high-dimensional
vector, while Euclidean distance is hard to interpret in high-
dimensional spaces and it is unbounded from above.
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Figure 2: Comparison of contextualization for BERT
and MT spaces using SelfSim and IntraSim. We also
present the raw SelfSim before anisotropy correction.

BERT and MT. Both metrics show a more gradual
increase in the closeness of random tokens in the
BERT over layers, as compared to an abrupt in-
crease in the MT space. Therefore, we can deduce
that the MT model can keep random representa-
tions successfully apart for all but the uppermost of
the layers. We hypothesize that this monotonously
increasing levels of closeness of random token em-
beddings in BERT may be contributing to its sub-
optimal machine translation performance. To verify
this hypothesis, in section 4 we present results on
MT performance after alignment and in section 4.1
we show how the alignment method changes the
embeddings distributions.

Similarity between tokens of the same form.
SelfSim will be high in less contextualized models,
because such models use similar representations
for each occurrence of the same token. Highly con-
textualized models will have lower SelfSim since
every occurrence of the word will have a different
representation. Comparing the two spaces (Fig-
ure 2), we again observe different trends. SelfSim
steadily drops for BERT except for the last layer,
showing an increase in the contextuality of the rep-
resentations. For the MT model, on the other hand,
we observe a steep drop at layer 6, indicating a sud-
den increase in contextuality here. All in all, BERT
gradually increases contextualization whereas the
MT encoder tends to model individual lexical con-
cepts in most layers before adding a strong contex-
tual influence in the last one.

Once again, we see a different behavior in layer
0 of the MT model, which is characterized by low
SelfSim in the embedding layer. This a direct re-
sult of the high AvgSim value at the embeddings
layer (due to the shared vocabulary space) which
is the anisotropy correction factor for SelfSim. We
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Figure 3: Representation similarity analysis between of out-of-box BERT, as well as the aligned models
M1/M2/M3, with MT model from HuggingFace.

deduce that anisotropy-corrected SelfSim cannot
straightforwardly be interpreted as a measure of
contextuality in the embeddings layer of MT mod-
els with a shared source-target vocabulary. For
comparison, we, therefore, also present the uncor-
rected SelfSim (raw) value (dashed line) for this
layer, which confirms this reasoning.

Similarity between tokens within the same sen-
tence. We check the average similarity between
tokens in the same sentence (IntraSim). Figure 2
reveals different behavior between the two mod-
els. In particular, we see a smooth increase over
the layers for both models until the penultimate
layer, pointing to an increasing level of in-sentence
contextualization, as shown by the embeddings of
the words in the same sentence gradually coming
together. However, the behavior at the final layer
is different between the two models. We observe
an increase in IntraSim for the BERT model at the
last layer, in contrast to the drop at the last layer
of the MT model. In other words, the MT model
is suddenly discriminating between the words in
the sentence at layer 6, just before passing informa-
tion to the decoder. We hypothesize that it may be
useful for the MT decoder to have access to repre-
sentations that are less contextualized at a source
sentence level, since it still needs to add semantic
information for decoding into the target language.
Notice that SelfSim and IntraSim decrease for final

Encoder Explicit Fine-
alignment tuning

MTbaseline Trf 7 7

huggingface en-de (6-layers) 7 7

M1:align
BERT

3 7

M2:fine-tune
(12-layers)

7 3

M3:align+fine-tune 3 3

Table 1: Model setups. MTbaseline and hugging-
face en-de are baseline models which use Transformer
(“Trf”) as encoder. M1, M2 and M3 utilize various
combinations of the proposed alignment strategies.

layer of the MT model. That is, similarity of word
forms in different contexts is decreasing greatly
and similarity of words to the mean sentence vector
is (to a smaller degree) also decreasing. This might
be an indication of the different constraints MT
models have on contextualization. For example,
the model may have a tendency to pay strong atten-
tion to syntactic and positional information, instead
of focusing on shared semantics of the sentence.

Layer-wise similarity analysis between models.
Figures 3-top left and 4-top-left present the results
of the representational similarity analysis (RSA)
and projection-weighted canonical correlation anal-
ysis (PWCCA) between out-of-the-box BERT and
the MT model representational spaces. Both anal-
yses depict higher similarity values between the
lower layers of the models. At the lower layers, the
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Figure 4: Representational similarity analysis of BERT, HuggingFace MT model, and aligned models M1/M2/M3.

representations are not yet changed so much from
their initial starting point, so it is to be expected that
they are more similar between the models. Towards
the higher levels, though, the similarity decreases.
The BERT representations gain distance from the
MT representations, reaching the lowest similarity
between the BERT-L12 and the MT layers.

4 Aligning the Representation Spaces

To address the discrepancies observed in the BERT
and the MT encoder embedding spaces, we use
the transformations from section 2.2. We use five
different setups (Table 1). Two of these use 6-
layered Transformer encoders and serve as base-
lines: the MTbaseline model, a transformer-based
MT model trained from scratch with the fine-tuning
data (Table 2), and Huggingface en–de a state-of-
the-art, pretrained Transformer model. We com-
pare the proposed alignment methods using M1,
which uses only the explicit alignment transforma-
tion strategy, M2, which uses the implicit align-
ment via fine-tuning strategy, and the hybrid M3,
which combines the two strategies.

Data. We use data from the English-German sec-
tions of the MuST-C dataset (Di Gangi et al., 2019),
Europarl (Koehn, 2005), extracted using OpusTools
(Aulamo et al., 2020) and the development tarball
from the WMT2019 news translation shared task
(Bojar et al., 2019) in the proportions indicated
in Table 2. We test using the MuST-C provided

Train Val.
Explicit Alignment Fine-Tuning

Europarl 45K 150K 1.5K
MuST-C 45K 150K 1.5K
newstest 13K 13K 500
Total 102K 313K 3.5K

Table 2: Train and validation splits for the datasets.

test-split, newstest2014 (Bojar et al., 2014) and
newstest2015 (Bojar et al., 2015), which were ex-
cluded from the train data. All of the data splits are
attainable using our repository.

We purposefully restrict the data amount used
for training the alignments. Such aligned systems
should be able to work under less intensive resource
requirements. The size of the training data for both
methods varies, because we try to keep the explicit
alignment comparable to what was originally pro-
posed for mBERT (Cao et al., 2020), whereas the
implicit alignment via fine-tuning requires more
data since the MT decoder is also to be fine-tuned.

Results. Table 3 presents the BLEU scores for
five setups. Notably, we see that by explicitly align-
ing the embedding spaces in a supervised way (M1)
the system is already able to perform translation
reasonably well. Besides being data efficient, due
to its simplicity, the alignment method used for
M1 is also memory efficient and fast to train. We
think that this shows how applying the simple align-
ment procedure described in section 2.2 can be
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Figure 5: Comparison of out-of-box BERT and MT models, against the aligned models M1/M2/M3, in terms of
the Cosine similarity (top) and Euclidean distance (bottom) distributions between randomly sampled words.

MuST-C newstest
2014 2015

MTbaseline 29.9 14.5 17.6
huggingface en-de 33.7 28.3 31.1
M1:align 21.4 18.1 18.9
M2:fine-tune 33.8 23.9 28.0
M3:align+fine-tune 34.1 25.0 29.2

Table 3: BLEU scores for EN-DE test sets.

used to make the rich world-knowledge captured by
BERT accessible for NMT by making the embed-
ding spaces compatible. In section 4.1, we investi-
gate the distributional changes in the embeddings
spaces caused by the alignments.

We also notice that fine-tuning in M2 works
quite well. We highlight how data efficient this
method is. After training for 1 epoch we obtain al-
ready over 30 BLEU points for MuST-C and after 3
epochs of fine-tuning we achieve results compara-
ble with the huggingface en-de model. On MuST-
C data, M3 yields similar results, notably however,
it converges much faster. At only 1% of the 1st
epoch (∼ 3K utterances) it achieves already 85%
of its performance in both test sets, and with 10K ut-
terances it starts to converge. The results obtained
with newstest 2014 and newstest 2015 follow a
similar trend, yet fail to surpass the huggingface
model – a state-of-the-art MT model trained with
all available EN-DE resources (∼ 350.7M parallel
sentences) from OPUS (Tiedemann, 2012). How-
ever, in all cases, we observe a better performance
than the MTbaseline, an MT model trained with
the same restricted data. These results indicate that

BERT can indeed be used as an MT encoder, but
only with a careful alignment procedure that over-
comes the incompatibilities between the encoders.

4.1 The Aligned BERT Space

Finally, we check the effects of the alignment
schemes on the geometry of the BERT space.
Here, our specific question of interest is in which
ways the BERT-produced embedding space became
more similar (or not) to the MT space after apply-
ing the alignment methods.

AvgSim. Figure 5 shows layer-wise cosine simi-
larity (top) and Euclidean distance (bottom) distri-
butions of random words of the aligned models.

While all three distributions are different from
the original BERT, M1 is the least different in terms
of where the distribution is centered, but even here
the distributions are less skewed/more symmetrical,
with respect to the cosine similarity. However, the
Euclidean distance results show that M1 consis-
tently produces shorter word vectors. This aligned
model is hence creating a space that is as narrow as
BERT’s, but not as elongated. This might be due
to the regularization term in the supervised align-
ment not allowing the embeddings to drift too far
from its pre-optimized setting, as well as the align-
ment being explicitly done for the last layer.2 For
both metrics, M2 and M3 are noticeably different
compared to the original BERT and similar to each
other. This indicates that aligning via fine-tuning
propagates information in such a way that the space

2We see changes in the distributions of all layers due to
backpropagation of information at training time.
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Figure 6: Comparison of BERT and the aligned models
M1/M2/M3, in terms of SelfSim and IntraSim.

is reshaped drastically. The increase in the BLEU
scores discussed above correlates with the amount
of change we observe in the distance distributions.

SelfSim and IntraSim. Figure 6-top shows con-
siderable change in the SelfSim of M1/M2/M3 fol-
lowing the alignment. Now all three models show
an abrupt increase in the similarity of tokens of the
same form in the ultimate layer. In other words,
these models are retrieving information related to
the specific word form, just before passing the in-
formation to the decoder. This finding is in line
with (Voita et al., 2019), who find that the MT de-
coder seems to require more information about the
specific word form’s representation, as compared
to the overly contextual representations that the
pretrained language models tend to produce.

Figure 6-bottom compares the after-alignment
IntraSim with before-alignment case. Note that
the M1/M2/M3 values in general are lower than
the BERT, throughout the layers. This confirms
the previous findings that the word forms seem
to retain their original representations more, and
adjusting to the sentence context less.

Layer-wise similarity analysis between models.
Figures 3 and 4 show how the responses of
M1/M2/M3 become significantly similar to that of
the MT model post-alignment. Note that interest-
ingly the explicit alignment method is particularly
successful in achieving similarity to the MT model,
in terms of similarities between responses to pairs

of stimuli (as measured by RSA) and correlation
of model responses over changing stimuli (as mea-
sured by PWCCA). However, as shown in Table 3,
model M1 is outperformed by M2 and M3, which
might be related to the anisotropy levels of M1
being similar to those of BERT (Figure 5).

5 Related Work

Analysis of contextualized representations.
While there has been huge efforts to analyze word
representations, most of it has been conducted
using probing tasks (McCann et al., 2017; Conneau
and Kiela, 2018; Conneau et al., 2018; Hewitt and
Manning, 2019). Similarly, Merchant et al. (2020)
study the effects of fine-tuning BERT representa-
tions on a specific set of probing tasks and analyse
the change in the contextual representations using
similarity analysis. Mimno and Thompson (2017)
quantitatively studied static word representations
produced with skip-gram with negative sampling.
Their work was extended by Ethayarajh (2019)
for contextualized embeddings, in which they use
word level measures of contextuality to contrast
ELMo (Peters et al., 2018), GPT-2 (Radford et al.,
2019) and BERT (Devlin et al., 2019). Voita et al.
(2019) present a comparison of contextualized
representations trained with different objectives,
using CCA and and mutual information to study
information flow across networks. They conclude
that although MT-produced representations do
get refined with context, the change in those
is not as extreme as for masked LM-produced
representations (BERT-like), which is in line with
our observations of higher SelfSim and lower
IntraSim (i.e. not ultra-contextualized embeddings)
for MT and aligned models as compared to BERT.

Pretrained LMs in NMT. Clinchant et al.
(2019) present a systematic comparison of meth-
ods to integrate BERT into NMT models, includ-
ing using BERT at the embedding level or for ini-
tializing an encoder. Zhu et al. (2020) propose a
BERT-fused MT system that uses additional atten-
tion modules between the outputs of BERT and the
encoder and decoder of the Transformer, increasing
the model parameters by the number of parameters
the chosen BERT flavour has. Yang et al. (2020)
proposes a similar strategy, though using BERT out-
puts only in the encoder, and a three-fold training
technique. Imamura and Sumita (2019) propose a
simple yet effective two-stage optimization tech-
nique that first freezes BERT, and then fine-tunes
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over the full model parameters set. We argue that
this is similar to the align and fine-tune approach
we propose for incorporating BERT into MT. Fi-
nally, a number of studies leverage pretraining tech-
niques. MASS (Song et al., 2019) is partly inspired
by BERT, but it is pretrained in NMT and is tailored
to match the way prediction is done in NMT (left-
to-right). Liu et al. (2020) enhance transformer-
based MT systems performance by using a BART
pretraining technique (Lewis et al., 2020) in a mul-
tilingual fashion to initialize an NMT system.

Alignment. Numerous methods have been pro-
posed for aligning (contextualized) word represen-
tations (Och and Ney, 2003; Ruder et al., 2019).
Wang et al. (2019) learn an optimal linear transfor-
mation between embedding spaces. Schuster et al.
(2019) propose a similar approach using the cen-
troids of the instances of the same word in different
contexts. Our work is closer to Cao et al. (2020),
which use a resource-efficient algorithm that takes
into account the contextuality of embeddings.

6 Conclusion

This paper provides an analysis of the intrinsic
differences between BERT and machine translation
encoders. We compare the representation spaces of
both models and pinpoint discrepancies between
them. We show that this mismatch can be remedied
through an alignment strategy, which successfully
reshapes BERT into an effective MT encoder. We
also study the effects that the alignment methods
have on the geometry of the embeddings spaces.
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Abstract

This paper proposes a novel attention mecha-
nism for Transformer Neural Machine Trans-
lation, “Synchronous Syntactic Attention,” in-
spired by synchronous dependency grammars.
The mechanism synchronizes source-side and
target-side syntactic self-attentions by mini-
mizing the difference between target-side self-
attentions and the source-side self-attentions
mapped by the encoder-decoder attention ma-
trix. The experiments show that the proposed
method improves the translation performance
on WMT14 En-De, WMT16 En-Ro, and AS-
PEC Ja-En (up to +0.38 points in BLEU).

1 Introduction

The Transformer Neural Machine Translation
(NMT) model (Vaswani et al., 2017) has achieved
state-of-the-art performance and become the focus
of many NMT studies. One of its characteristics
is the self-attention mechanism, which computes
the strength of relationships between two words
in a sentence. Transformer NMT has been im-
proved by extending the self-attention mechanism
to incorporate syntactic information (Wang et al.,
2019b; Omote et al., 2019; Deguchi et al., 2019;
Wang et al., 2019a; Bugliarello and Okazaki,
2020). In particular, Deguchi et al. (2019) and
Wang et al. (2019a) have proposed dependency-
based self-attentions, which are trained to attend
to the syntactic parent for each token under con-
straints based on the dependency relations, for
capturing sentence structures. Existing syntax-
based NMT models, including their ones, use only
monolingual syntactic information on either side
or both.

By contrast, synchronous grammars such as
synchronous context-free grammars and syn-
chronous dependency grammars, which are de-
fined in two languages and generate sentence

Do you speak English?

Sprichst du Englisch?

ROOT

ROOT

Figure 1: An example of dependency structures and
alignments

structures aligned across them, have been intro-
duced into many SMT models with the result of
improving their translation performances (Jiang
et al., 2009; Ding and Palmer, 2005; Chiang, 2005;
Zhang et al., 2006). Figure 1 shows an example of
the dependency structures of source and target lan-
guage sentences and their alignments1. Inspired
by synchronous dependency grammars, we aim to
improve the performance of Transformer NMT by
incorporating the main idea of the synchronous de-
pendency grammars (i.e., synchronizing sentence
structures across two languages). As far as we
know, neither the synchronous dependency gram-
mars themselves nor their basic idea has yet been
incorporated into NMT.

This paper proposes a novel attention mecha-
nism for Transformer NMT, called “Synchronous
Syntactic Attention,” which captures sentence
structures aligned across two languages by the
aligned self-attentions on the source- and target-
side. The mechanism uses encoder-decoder atten-
tions to map source-side syntactic self-attentions
into a target language space based on Garg et al.
(2019)’s observation that encoder-decoder atten-
tions represent the alignments of source and tar-
get words. The mechanism is trained to main-
tain consistency between source- and target-side
syntactic self-attentions according to an objective

1In this paper, an arrow is drawn from a head to its depen-
dent.
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loss function that incorporates the difference be-
tween the target-side syntactic self-attentions and
the mapped source-side syntactic self-attentions.
We use dependency-based self-attention (Deguchi
et al., 2019) as source- and target-side syntactic
self-attentions.

2 Transformer NMT Model

The Transformer NMT model (Vaswani et al.,
2017) is an encoder-decoder model composed
of the encoder that encodes source tokens
f = (f1, f2, . . . , fI) into hidden vectors and
the decoder that generates target tokens e =
(e1, e2, . . . , eJ) from the outputs of the encoder.
The encoder and decoder consist of Nenc encoder
layers and Ndec decoder layers, respectively. Both
the encoder layers and decoder layers are com-
posed of multiple sub-layers, each of which in-
cludes a self-attention layer and a feed forward
layer. The decoder layers additionally apply an
encoder-decoder attention layer between the self-
attention layer and the feed forward layer.

The self-attention and encoder-decoder atten-
tion are calculated by a multi-head attention mech-
anism. The multi-head attention MHA(Q,K, V )
maps the demb-dimension embedding space into
H subspaces of the dk (= demb

H ) dimension and
calculates attention in each subspace as shown in
Equations 1 to 3:

MHA(Q,K, V ) = [M1; . . . ; MH ]WM , (1)

Mh = AhVh, Ah = softmax

(
QhK⊤

h√
dk

)
, (2)

Qh = QWQ
h ,Kh = KWK

h , Vh = V W V
h , (3)

where WQ
h , WK

h , W V
h ∈ Rdemb×dk and WM ∈

Rdemb×demb are parameter matrices. In the self-
attention, the previous layer’s output is used as Q,
K, and V . In the encoder-decoder attention, the
previous layer’s output is used as Q and the last
encoder layer’s output is used as K and V . Note
that, in training, the decoder’s self-attention masks
future tokens.

3 Dependency-Based Self-Attention

This section describes dependency-based self-
attention (DBSA) (Deguchi et al., 2019), which is
the baseline of our syntactic self-attention. DBSA
captures dependency structures by extending the
multi-head self-attention of the ldep-th layer of the
encoder or decoder. Let h be one of head of the

ldep-th encoder layer’s self-attention or the ldep-th
decoder layer’s self attention. An attention weight
matrix Ah, where each value indicates the depen-
dency relationship between two words, is calcu-
lated by using the bi-affine operation in Equation
4:

Ah = softmax

(
QhUK⊤

h√
dk

)
, U ∈ Rdk×dk . (4)

In Ah, the probability of token q being the head
of token t in a source/target sentence S (i.e.,
P (q = head(t)|S)) is modeled as Ah[t, q]. Then,
a weighted representation matrix Mh, which in-
cludes dependency relationships in the source sen-
tence or target sentence, is obtained by multiply-
ing Ah and Vh (i.e., Mh = AhVh). Finally, Mh

is concatenated with the other heads and mapped
to a demb-dimensional matrix. In the decoder-side
DBSA, future information is masked to prevent at-
tending to unpredicted tokens in inference.

The Transformer NMT model with DBSA
learns translation and dependency parsing at the
same time by minimizing the objective function
L = Lt + λdepLdep, where Lt is the translation
loss and Ldep is computed in Equation 5:

Ldep = −
I∑

i=1

logP (head(fi) | f)

−
J∑

j=1

logP (head(ej) | e). (5)

λdep > 0 is a hyperparameter to control the influ-
ence of the dependency parsing loss Ldep.

DBSA has been extended to deal with sub-
word tokens. For details, see the original paper
by Deguchi et al. (2019).

4 Proposed Method: Synchronous
Syntactic Attention

This section proposes a novel attention mecha-
nism for Transformer NMT, “Synchronous Syn-
tactic Attention,” which captures sentence struc-
tures aligned across source and target languages.
A Transformer NMT model with the proposed at-
tention is trained according to the objective func-
tion presented below as Equation 6:

L = Lt + λdepLdep + λsyncLsync, (6)

where Lsync is the loss to keep consistency be-
tween source-side and target-side syntactic self-
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Figure 2: An example of synchronous syntactic atten-
tion

attention (i.e., DBSA) and λsync is a hyperparam-
eter to control the influence of Lsync. In particu-
lar, Lsync is the differences between the encoder’s
self-attention, which is mapped into target lan-
guage space by the encoder-decoder attention, and
the decoder’s self-attention.

Let E and D be the attention matrix Ah of
the ldep-th encoder layer’s syntactic self-attention
and that of the ldep-th decoder layer’s syntactic
self attention, respectively. The proposed method
first maps E into the target language space by
the encoder-decoder attention as shown by Equa-
tion 7:

Dmapped = CEC⊤, (7)

where Dmapped is the mapped encoder’s syntactic
self attention matrix, and C is the encoder-decoder
attention weight matrix of the lsync-th decoder’s
layer. Then, Dmapped is masked to prevent attend-
ing to future tokens, and a softmax function is ap-
plied to the masked Dmapped as follows in Equa-
tion 8:

D′ = softmax(mask(Dmapped)). (8)

Next, the proposed method computes the mean
squared error between D′ and D as Lsync as fol-
lows in Equation 9:

Lsync =
∑

t,q

(D′
t,q − Dt,q)

2. (9)

Figure 2 shows an example of the synchronous
syntactic attention. The value in each cell indi-
cates an attention score (i.e., an element of an at-
tention weight matrix), and the darker cell repre-
sents a higher attention score. In all matrices, each
row represents an attention distribution for each
token (i.e., scores are normalized in a row direc-
tion). As can be seen in Figure 2, the English

encoder’s syntactic self-attentions E is mapped
into the German encoder’s syntactic self-attentions
D′ using the encoder-decoder attentions C and
C⊤. Then, the loss between the German en-
coder’s syntactic self-attentions D′ and the Ger-
man decoder’s syntactic self-attentions D is mea-
sured. When calculating the loss, the values of the
masked elements in D′ and D, such as DSprichst,du
and Ddu,Englisch?, are assigned to zero.

5 Experiments

5.1 Setup
We compared the proposed model with a conven-
tional Transformer NMT model and a Transformer
NMT with DBSA (Transformer+DBSA), which
do not synchronize between source- and target-
side self attentions, to confirm the effectiveness of
the proposed synchronous syntactic attention. The
Transformer base model (Vaswani et al., 2017)
was used as the baseline model.

We evaluated translation performance in the
WMT14 En-De translation task, WMT16 En-Ro
translation task, and WAT ASPEC Ja-En transla-
tion task (Nakazawa et al., 2016). In ASPEC Ja-
En, we used the first 1.5 million translation pairs
of the training data in training. We used Moses
Tokenizer to tokenize English, German, and Ro-
manian sentences and KyTea (Neubig et al., 2011)
to tokenize Japanese sentences. Byte Pair En-
coding (BPE) was applied to create subword to-
kens. We used dependency structures generated
by Stanza (Qi et al., 2020) for English, German,
and Romanian sentences, and EDA2 for Japanese
sentences as the supervisions in the training of
source- and target-side DBSA (i.e., calculation
of Ldep in Transformer+DBSA and the proposed
model). Note that Stanza and EDA are not used
in testing. The details of the dataset and prepro-
cessing are shown in the Appendix.

All models were trained for 100,000 updates.
We used label smoothed cross entropy (Szegedy
et al., 2016) as the Lt of the objective function
and set label smoothing ϵ to 0.1. In the proposed
model, the hyperparameter λsync was tuned for
each development set and set to 0.5 for WMT14
En-De, 0.1 for WMT16 En-Ro, and 10.0 for AS-
PEC Ja-En. In all experiments, λdep and ldep were
set to 0.5 and 1, respectively. lsync was set to 5
according to Garg et al. (2019)’s finding that the

2http://www.ar.media.kyoto-u.ac.jp/
tool/EDA
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Import@@ ance of retrieval of exacerbation factors and optimum treatment are emphasized .

(b) Dependency structures captured by SyncAttn’s attentions

Figure 3: Dependency structures of the examples in Figure 4

WMT14 WMT16 ASPEC
Model En→De En→Ro Ja→En
Transformer 27.23 23.83 28.94
DBSA 27.31 24.13 29.57
SyncAttn 27.69 24.33 29.84

Table 1: Experimental results (BLEU(%))

alignment performance of the encoder-decoder at-
tention in the penultimate layer is the best among
all layers. In decoding, we used beam search with
length penalty and set the beam size to 4. The de-
tails of the hyperparameters are shown in the Ap-
pendix.

5.2 Results

Table 1 shows the experiment results. In the
table, “DBSA” and “SyncAttn” indicate Trans-
former NMT with DBSA and Transformer NMT
with the proposed synchronous syntactic attention,
respectively. Translation performance was evalu-
ated by BLEU (Papineni et al., 2002).

As Table 1 illustrates, the proposed model Syn-
cAttn outperforms the baseline models Trans-
former and DBSA on all the tasks. In particu-
lar, SyncAttn improved by 0.38, 0.20, and 0.27
BLEU points in the WMT14 En-De, WMT16 En-
Ro, ASPEC Ja-En tasks, respectively, compared
to DBSA. These results demonstrate the effective-
ness of our synchronous syntactic attention.

5.3 Case Study

This section compares translation examples of the
baseline model DBSA and the proposed model
SyncAttn to show the effectiveness of the syn-
chronous syntactic attention. Figure 4 shows
translation examples of the two models for the Ja-

Input 増悪因子の検索と至適治療の重要性を強調した
DBSA Importance of retrieval and optimum treatment of exacerba-

tion factors is emphasized.
SyncAttn Importance of retrieval of exacerbation factors and optimum

treatment are emphasized.
Reference The importance of finding out exacerbation factors and opti-

mum treatment are emphasized.

Figure 4: Translation examples of DBSA and SyncAttn
in the ASPEC Ja-En task

En task. The bold words are the differences be-
tween the translations by the two models. As can
be seen in Figure 3, in both models, the encoder’s
self-attentions correctly find that “因子 (factors)”
attends to “の (of )”. However, DBSA does not
correctly find the head of “factors” on the English
side, while SyncAttn does. This is because Syn-
cAttn synchronizes the source- and target-side de-
pendency structures between “因子” and “factors”
identified by the encoder-decoder attentions while
DBSA does not. Figure 3 and 4 show that the cor-
rect analysis for the target-side dependency struc-
tures led to the correct translation.

6 Related Work

The main characteristic of Transformer NMT
is attention mechanisms (i.e., self-attentions and
encoder-decoder attentions). Some researches
have analyzed and/or improved the attention
mechanisms of Transformer NMT. For instance,
Tang et al. (2018b) analyzed encoder-decoder at-
tentions in terms of word sense disambiguation,
and Tang et al. (2018a) analyzed self-attentions in
terms of subject-verb agreement and word sense
disambiguation. Raganato and Tiedemann (2018)
and Voita et al. (2019) revealed the behaviors
of attention heads in terms of dependency rela-
tions. Namely, Raganato and Tiedemann (2018)
observed that specific attention heads of the en-
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coder’s self-attentions mark syntactic dependency
relations. Voita et al. (2019) found that the con-
fident heads play linguistically-interpretable roles
like dependency relations. Garg et al. (2019) pro-
posed a method for jointly learning to produce
translations and alignments with a single Trans-
former model and showed that encoder-decoder
attentions emulate word alignments. Based on
their observations, our method maps the encoder’s
syntactic self-attentions into the target language
space by using encoder-decoder attentions.

Shaw et al. (2018) extended a self-attention
mechanism to encode the relative positions be-
tween two words in a sentence. Omote et al.
(2019) and Wang et al. (2019b) proposed a self-
attention mechanism to encode relative positions
on source-side dependency trees.

Some researchers proposed syntax-aware self-
attentions that are trained using dependency-based
constraints. For instance, Wang et al. (2019a) and
Bugliarello and Okazaki (2020) proposed source-
side dependency-aware Transformer NMT. Wang
et al. (2019a) created a constraint based on de-
pendency relations between tokens to encoder
self-attentions. Bugliarello and Okazaki (2020)
also proposed Parent-Scaled Self-Attention, which
multiplies an attention weight matrix by scores
based on dependency relations. Deguchi et al.
(2019) proposed DBSA, which is applicable to
both the encoder’s and decoder’s self-attentions
and is extended to subword units. We used DBSA
to implement source- and target-side syntactic at-
tentions in Transformer NMT. The main differ-
ence from the above-mentioned studies is that our
work focuses on the incorporation of bilingual
syntactic information into NMT.

Harada and Watanabe (2021) incorporated syn-
chronous phrase structure grammar into NMT.
Specifically, they proposed a syntactic NMT
model that induces latent phrase structure and
synchronizes the source- and target-side sentence
structures. The difference with our model is that
we synchronize dependency structures while they
synchronize phrase structures.

7 Conclusions

In this paper, we proposed a novel attention mech-
anism for Transformer NMT, “Synchronous Syn-
tactic Attention,” which captures sentence struc-
tures aligned across source and target languages
by aligned self-attention. The synchronous at-

tention mechanism trains syntactic self-attentions
(DBSA) under a constraint that minimizes the loss
between encoder’s and decoder’s self attentions,
where the encoder’s self attentions are mapped
into the target language space by encoder-decoder
attentions. Since this method relies only on the
constraint induced from the encoder’s and de-
coder’s self-attentions and encoder-decoder atten-
tions, it does not require additional model param-
eters. The experiments show that the proposed
method improves Transformer NMT’s translation
performance (up to a 0.38 BLEU point improve-
ment).
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A Dataset and Preprocessing Details

We used Moses Tokenizer with the aggres-
sive hyphen splitting option3 for English,
German, and Romanian sentences and KyTea
for Japanese sentences. In English, Ger-
man, and Romanian sentences, we used
normalize-punctuation.perl, con-
tained in the Moses toolkit, to normalize the
characters. In WMT14 En-De, we also applied
language identification filtering to the training
data using langid4 (Lui and Baldwin, 2012),
keeping only the sentence pairs with correct
languages on both sides (Ng et al., 2019). In
ASPEC Ja-En, we used the first 1.5 million
translation pairs of the training data in training.
We trained Byte Pair Encoding (BPE) with 37,000
joint operations for WMT14 En-De and 40,000
joint operations for WMT16 En-Ro and trained
BPE separately on the source and target sides with
16,000 merge operations for ASPEC Ja-En. We
set the batch size to 25,000 tokens for WMT14
En-De, 6,000 tokens for WMT16 En-Ro, and
12,000 tokens for ASPEC Ja-En. Before applying
BPE, we removed sentences longer than 100
words in all the training datasets and sentence
pairs with a source/target length ratio exceeding

3 https://github.com/moses-smt/
mosesdecoder/blob/master/scripts/
tokenizer/tokenizer.perl

4https://github.com/saffsd/langid.c

# Sentence pairs
Dataset Train Dev Test
WMT14 En→De 3,772,107 3,000 3,003
WMT16 En→Ro 599,208 1,999 1,999
ASPEC Ja→En 1,428,181 1,790 1,812

Table 2: Statistics of evaluation dataset

1.5 for WMT14 En-De and WMT16 En-Ro and
2.0 for ASPEC Ja-En.

Table 2 shows the number of parallel sentence
pairs in the training, development, and test sets.

B Model and Training Details

We used the Transformer base model (Vaswani
et al., 2017) as the baseline model. We used
the Adam optimizer (Kingma and Ba, 2014) with
β1 = 0.9, β2 = 0.98. The learning rate was
warmed up over the first 4,000 steps to a peak
value of 7e-4, and then it was decreased pro-
portionally to the inverse square root of the step
number (Vaswani et al., 2017). All models were
trained for 100,000 updates. The dropout prob-
ability was set to 0.1. We used label smoothed
cross entropy (Szegedy et al., 2016) as the Lt

of the objective function and set label smooth-
ing ϵ to 0.1. In all experiments, λdep was set to
0.5, the ldep-th layer that captures source or tar-
get side’s sentence structures was set to the 1st
(bottom) layer, and the encoder-decoder attention
for mapping the encoder’s self-attention was ob-
tained from the 5th layer (i.e., lsync=5) according
to Garg et al. (2019)’s finding that the alignment
performance of the encoder-decoder attention in
the penultimate layer is the best among all layers.
In decoding, we used beam search with a beam
size of 4 and length penalty α = 0.6 (Wu et al.,
2016).

We performed all the training on 2 V100 GPUs
for WMT14 En-De, and a single V100 GPU for
WMT16 En-Ro and ASPEC Ja-En. For all the
models, training took about 7 hours for WMT14
En-De, about 3 hours for WMT16 En-Ro, and
about 4 hours for ASPEC Ja-En. The num-
ber of model parameters of all models is about
64M for WMT14 En-De and WMT16 En-Ro, and
about 72M for ASPEC Ja-En. In WMT14 En-De
and WMT16 En-Ro, the encoder-side embedding
layer and the decoder-side embedding layer are
shared.
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C Hyperparameter Search

In the proposed model, the hyperparameter
λsync was tuned on each development set.
We tuned λsync by trying different λsync ∈
{0.01, 0.05, 0.1, 0.5, 1.0, 5.0, 10.0}.

D Evaluation Details

In all experiments, translation performance was
evaluated by BLEU (Papineni et al., 2002). As
for the ASPEC Ja-En task, we followed the WAT
Automatic Evaluation Systems5.

5http://lotus.kuee.kyoto-u.ac.jp/
WAT/evaluation/index.html#automatic_
evaluation_systems.html

355





Author Index

Aboufoul, Lolo, 304
Aggarwal, Salil, 112
Aida, Taichi, 138
Aizawa, Akiko, 197
Anand, Tanvi, 180
Antypas, Dimosthenis, 119
Arase, Yuki, 229
Asai, Manabu, 138
Ashok Kumar, Pradhiksha, 71
Avramidis, Eleftherios, 186

Bai, He, 148
Bajaj, Ahsaas, 71
Bansal, Rachit, 44
Berend, Gábor, 235
Bergel, Alexandre Henri, 215
Bernardi, Raffaella, 101
Bharti, Prerna, 292
Bravo-Marquez, Felipe, 215
Brenner, Eliot, 71

Camacho-Collados, Jose, 119
Celikkanat, Hande, 337
Cerezo, Jhonny, 215
Chernishev, George, 127
Choudhary, Himanshu, 44
Chu, Chenhui, 81, 87
Chua, Huikai, 93
Crabbé, Benoit, 221
Creutz, Mathias, 337

Dahl, Jacob, 44
Dangati, Pavitra, 71
Das, Rajarshi, 71
Deguchi, Hiroyuki, 348
Dementieva, Daryna, 310
Dotterrer, Dominic, 71
Dugast, Christian, 1

Farokhenajd, Mehrdad, 270
Ficsor, Tamás, 235

Gallicano, Tiffany, 304
Gao, Wen, 148
Gao, Yingbo, 23

Garcia, Noa, 81
Ghosh Chowdhury, Arijit, 180
Grimling, Damian, 248
Gruza, Marcin, 248
Gu, Weiqi, 87
Gupta, Vivek, 292

Harada, Shintaro, 321

Inoue, Seiichi, 138
Iwata, Sei, 331

Ji, Heng, 16, 174

Kadotani, Sora, 229
Kajiwara, Tomoyuki, 229
Kanclerz, Kamil, 248
Karnick, Harish, 292
Kazienko, Przemyslaw, 248
Kocon, Jan, 248
Komachi, Mamoru, 138
Kriman, Samuel, 174
Krishna, Kalpesh, 71
Kumar, Sourav, 112
Kurohashi, Sadao, 87

Levens, Sara, 304
Li, Ming, 148
Lin, Jimmy, 148
Lin, Xi Victoria, 16
Liu, Duanchen, 284
Liu, Jie, 148
Liu, Zoey, 284

Macketanz, Vivien, 186
Mahajan, Khyati, 304
Mamidi, Radhika, 112
McCallum, Andrew, 71
Milkowski, Piotr, 248

Nagata, Masaaki, 331
Nakashima, Yuta, 81
Ney, Hermann, 1, 23
Ninomiya, Takashi, 348
Nishikawa, Sosuke, 163
Nokhiz, Pegah, 292

357



Onizuka, Makoto, 229
Otani, Mayu, 81

Pagé-Perron, Émilie, 44
Panchenko, Alexander, 310
Pranesh, Raj, 270
Preece, Alun, 119
Prud’hommeaux, Emily, 284
Punia, Ravneet, 44

Rajani, Nazneen, 16
Ri, Ryokan, 163
Rogers, David, 119

Samaran, Jules, 81
Schenk, Niko, 44
Shaikh, Samira, 304
Sharma, Dipti Misra, 112
Shekhar, Ambesh, 270
Shi, Peng, 148
Shinoda, Kazutoshi, 197
Simoulin, Antoine, 221
Singh, Smriti, 180
Slobodkin, Evgeniy, 127
Smirnova, Anna, 127
Song, Haiyue, 87
Stadler, Patrick, 186
Sugawara, Saku, 197

Tamura, Akihiro, 348
Tan, Luchen, 148
Testoni, Alberto, 101
Thulke, David, 1
Tiedemann, Jörg, 337
Tokarchuk, Evgeniia, 1
Tsuruoka, Yoshimasa, 163

Ueda, Ryo, 60
Uppaal, Rheeya, 71

Vargas-Solar, Genoveva, 270
Vázquez, Raúl, 337

Wang, Qingyun, 16
Wang, Weiyue, 1, 23
Waseem, Zeerak, 180
Washio, Koki, 60
Watanabe, Taro, 321, 331
Windsor, Bradford, 71

Xiong, Kun, 148

Yang, Christine, 284
Yang, Qingyun, 284

Yang, Zijian, 23
Yavuz, Semih, 16

Zhu, Wei, 33, 260


	Program
	Investigation on Data Adaptation Techniques for Neural Named Entity Recognition
	Stage-wise Fine-tuning for Graph-to-Text Generation
	Transformer-Based Direct Hidden Markov Model for Machine Translation
	AutoRC: Improving BERT Based Relation Classification Models via Architecture Search
	How Low is Too Low? A Computational Perspective on Extremely Low-Resource Languages
	On the Relationship between Zipf's Law of Abbreviation and Interfering Noise in Emergent Languages
	Long Document Summarization in a Low Resource Setting using Pretrained Language Models
	Attending Self-Attention: A Case Study of Visually Grounded Supervision in Vision-and-Language Transformers
	Video-guided Machine Translation with Spatial Hierarchical Attention Network
	Stylistic approaches to predicting Reddit popularity in diglossia
	"I’ve Seen Things You People Wouldn’t Believe": Hallucinating Entities in GuessWhat?!
	How do different factors Impact the Inter-language Similarity? A Case Study on Indian languages
	COVID-19 and Misinformation: A Large-Scale Lexical Analysis on Twitter
	Situation-Based Multiparticipant Chat Summarization: a Concept, an Exploration-Annotation Tool and an Example Collection
	Modeling Text using the Continuous Space Topic Model with Pre-Trained Word Embeddings
	Semantics of the Unwritten: The Effect of End of Paragraph and Sequence Tokens on Text Generation with GPT2
	Data Augmentation with Unsupervised Machine Translation Improves the Structural Similarity of Cross-lingual Word Embeddings
	Joint Detection and Coreference Resolution of Entities and Events with Document-level Context Aggregation
	"Hold on honey, men at work": A semi-supervised approach to detecting sexism in sitcoms
	Observing the Learning Curve of NMT Systems With Regard to Linguistic Phenomena
	Improving the Robustness of QA Models to Challenge Sets with Variational Question-Answer Pair Generation
	Tools Impact on the Quality of Annotations for Chat Untangling
	How Many Layers and Why? An Analysis of the Model Depth in Transformers
	Edit Distance Based Curriculum Learning for Paraphrase Generation
	Changing the Basis of Contextual Representations with Explicit Semantics
	Personal Bias in Prediction of Emotions Elicited by Textual Opinions
	MVP-BERT: Multi-Vocab Pre-training for Chinese BERT
	CMTA: COVID-19 Misinformation Multilingual Analysis on Twitter
	Predicting pragmatic discourse features in the language of adults with autism spectrum disorder
	SumPubMed: Summarization Dataset of PubMed Scientific Articles
	A Case Study of Analysis of Construals in Language on Social Media Surrounding a Crisis Event
	Cross-lingual Evidence Improves Monolingual Fake News Detection
	Neural Machine Translation with Synchronous Latent Phrase Structure
	Zero Pronouns Identification based on Span prediction
	On the differences between BERT and MT encoder spaces and how to address them in translation tasks
	Synchronous Syntactic Attention for Transformer Neural Machine Translation

