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Abstract
A snowclone is a customizable phrasal tem-
plate that can be realized in multiple, instantly
recognized variants. For example, “* is the
new *” (Orange is the new black, 40 is the new
30). Snowclones are extensively used in so-
cial media. In this paper, we study snowclones
originating from pop-culture quotes; our goal
is to automatically detect cultural references in
text. We introduce a new, publicly available
data set of pop-culture quotes and their corre-
sponding snowclone usages and train models
on them. We publish code for CATCHPHRASE,
an internet browser plugin to automatically de-
tect and mark references in real-time, and ex-
amine its performance via a user study. Aside
from assisting people to better comprehend
cultural references, we hope that detecting
snowclones can complement work on para-
phrasing and help to tackle long-standing ques-
tions in social science about the dynamics of
information propagation.

1 Introduction

First coined by Richard Dawkins (Dawkins, 1976),
a meme is a unit of cultural transmission: any idea
or behavior that can be transferred by imitation. In-
ternet memes have become an integral part of mod-
ern digital culture (Shifman, 2014). Pullum (Pul-
lum, 2004) coined the term snowclones to describe
a specific type of meme – phrasal templates that are
easily reusable in many different contexts. Pullum
described a snowclone as “a multi-use, customiz-
able, instantly recognizable, time-worn, quoted or
misquoted phrase or sentence that can be used in an
entirely open array of different jokey variants”. For
example, the quote “One does not simply walk into
Mordor” from the “Lord of the Rings” films be-
came a well-known pattern – “One does not simply
*” – used extensively online (see Figure 1).

In this paper, our goal is to develop algorithms
to detect snowclones in text. We envision an “En-

glishman in New York” – a foreigner, perhaps, or
someone who does not easily understand contem-
porary cultural references and could use the help
of an automated system to communicate better. In
particular, we focus on pop-culture references over
the internet.

From a linguistic point of view, snowclones com-
plement the paraphrasing task (Barzilay and McK-
eown, 2001; Fernando and Stevenson, 2008; Dolan
et al., 2004). Paraphrase detection identifies alter-
native ways to convey the same meaning, while
snowclones keep (some of) the original sentence
structure but completely change the meaning.

Detection and tracking of digital memes have
been the focus of multiple computational studies.
The closest to our work are MEMETRACKER
and NIFTY (Leskovec et al., 2009; Suen et al.,
2013), that tracked quotations attributed to indi-
viduals. These works focused on short, distinctive
phrases that travel relatively intact through on-line
text. Other related tasks are multi-word expres-
sion/idiom identification (Haagsma et al., 2020;
Zarrieß and Kuhn, 2009; Muzny and Zettlemoyer,
2013) and cliché detection (Cook and Hirst, 2013;
van Cranenburgh, 2018). Again, idioms and multi-
word expressions are chiefly fixed expressions (“cat
got your tongue?”, “jumped the shark”) that rarely
change their meaning across mutations. Therefore,

Figure 1: Snowclone example, based on “One does not
simply walk into Mordor” from “Lord of the Rings”.
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these settings are much more restrictive than ours.
Our contributions are the following: we propose

a novel task of snowclone detection, identifying cul-
tural references. We first formulate it as a tagging
task, treating snowclones as regular expressions;
we conduct a user study to show humans have an
intuitive notion of the “correct” pattern(s), and de-
velop a sequence-to-sequence tagger to reveal such
patterns. We then extend the formulation to softer
notions of similarity. We experiment with feature-
based and neural approaches, achieving high accu-
racies. To further show the utility of our methods,
we develop CATCHPHRASE, a browser extension to
detect pop-culture references, conduct a user study
and show it indeed helps users identify cultural ref-
erences. We publish data and code1. We believe
tracking snowclones will find interesting applica-
tions in social science, exploring the diffusion and
evolution of highly dynamic content online.

2 Snowclones as Regular Expressions

The common view of snowclones treats them as
regular expressions (The-Snowclones-Database,
2007). Thus, in this section, we formulate
the snowclone detection problem as a tagging
task. Intuitively, we want to predict for each
word in the original sentence whether it is
replaced by a wildcard. We use the resulting
pattern to match new sentences to the original
sentence. For example, given a sentence s =
〈One, does, not, simply, walk, into,Mordor〉
we would like to find a mapping:
T (s) = 〈One, does, not, simply, ∗, ∗, ∗〉.
(Adjacent wildcards can be merged)

2.1 Can People do This?

Before we set out to find an algorithm to uncover
the underlying snowclone form of an input sen-
tence, we try to evaluate the feasibility of this task.
It is not clear that such patterns exist, or are agreed
upon by human annotators. To that end, we con-
duct a user study to test if people have an intuitive
notion of snowclone patterns.

We recruited 22 volunteers through social media.
The participants were 80% males. 85% of them
were 25-35 years old, the rest being 40-55. All par-
ticipants were Israeli and identified as non-native
English speakers. Participants were given a short
explanation of snowclones and instructed to find

1https://github.com/sweedy12/
CATCHPHRASE

Figure 2: Histogram of the exact-match similarity mea-
sure (top) and relaxed-match measure (bottom), aver-
aged over all sentences, for all pairs of participants.

the snowclone form of a set of (the same) 20 sen-
tences, chosen from the memorable movie quote
database (Danescu-Niculescu-Mizil et al., 2012).
We chose sentences at random, filtering out quotes
that became known internet memes. Participants
marked words that should become wildcards, gen-
erating up to 3 patterns per sentence, as they saw
fit. We asked participants to report whether they
were familiar with any sentence, and discarded the
entire questionnaire of two who did.

Evaluation and Results. To compute similarity
between pairs of people, we propose two measures.
In exact-match, the score is the percentage of sen-
tences (out of 20) on which the two people had at
least one exact-match pattern. In relaxed-match,
we compute for each sentence the closest match
between the patterns of both people (in terms of
simple % agreement). The score is the percentage
of agreement over all 20 closest matches.

Figure 2 shows histograms over all pairs of par-
ticipants. For exact-match, most pairs of partici-
pants agree on roughly half the patterns. A careful
examination of the results indicates that partici-
pants are divided into those that prefer a single,
general pattern (annotating “The pavement was his
enemy” as “The * was his *”), and those preferring

https://github.com/sweedy12/CATCHPHRASE
https://github.com/sweedy12/CATCHPHRASE
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Snowclone Form Tagging - Results
Model Accuracy Recall
Naive 0.74 0
Bi-LSTM-CRF 0.92 0.82
BERT 0.9 0.88

Table 1: Accuracy and recall for each of the proposed
models for the snowclone form tagging task.

several narrower patterns (marking both “The * was
his enemy” and “The pavement was his *”). An-
other contributing factor is that many mismatched
pairs of patterns differ only in stopwords. The
relaxed-match measure is less sensitive to this is-
sue and indeed demonstrates high agreement. We
hypothesize that this indicates the feasibility of
training machine learning models for this task.

3 Snowclone Pattern Tagger

We create and publish our own data set for this task,
and use it to train two different ML models for it.

Data. To train ML models to solve the task of
snowclone tagging, we needed examples for sen-
tences and their underlying snowclone form. To
this end, we use the snowclone patterns along with
the original quotes from The Snowclone Database
(The-Snowclones-Database, 2007). As this is not
enough data to train on, we use the patterns to
lookup more instances online, collecting 7700
〈snowclone pattern, instance〉 pairs. When split-
ting to train-dev-test sets (60%/20%/20%), we
make sure all variants of the same pattern are put
in the same set. We release our dataset1.

Bi-LSTM-CRF. We adapt the model of (Huang
et al., 2015), tested on part of speech tagging,
chunking and named entity recognition tasks. Its
CRF layer performs a structured prediction over
the sentence tags, using sentence-level informa-
tion rather than predicting a label for each word
separately, rendering it useful for our task. For
optimization, we use negative log-likelihood.

BERT S2S. We use BERT (Devlin et al., 2019),
as it has shown to produce good results when fine-
tuned to specific sequence-to-sequence tasks. We
fine-tune BERT for a token classification task us-
ing the snowclone form dataset. Since this model
outputs a probability measure for each token, we
use binary cross-entropy as the objective function.

See Appendix A for implementation details and
hyper-parameter tuning.

Evaluation and results. Since most words in an
input sentence are not replaceable, wildcards are
infrequent. Thus, we prioritize models with higher
recall than precision. Table 1 shows recall and ac-
curacy of the models. The naive majority baseline
(no words are wildcards) yields 74% accuracy (and,
naturally, 0% recall). The Bi-LSTM-CRF model
reaches an accuracy of 92%, and 82% recall. BERT
achieves an accuracy of 90%, and recall 88%.

4 Going Beyond Regular Expressions

When we tried to apply our models to find snow-
clones in online community text (looking for regex
matches), we realized that the regex formulation
might be too simplistic, as some cultural references
do not follow the snowclone pattern exactly, and
some sentences that do follow it are not really ref-
erences. Take Apocalypse Now’s famous “I love
the smell of napalm in the morning”. A natural cor-
responding pattern is “I love the smell of * in the
morning”, and indeed, “I love the smell of bureau-
cracy in the morning” is most likely a reference to
the movie. However, the case of “I love the smell
of pancakes in the morning” is a lot less clear. On
the other hand, “30 is the old 40” does not per-
fectly match the “* is the new *” pattern, but still
might be considered a reference. In this section
we reformulate the problem, using the output of
the sequence-to-sequence tagger as one input to a
machine learning model.

We reformulate the problem as a binary classi-
fication task over pairs of sentences. Given a seed
sentence s representing an original pop-culture
quote, and a candidate sentence c, decide whether c
is a reference to s. We note this is not an easy task,
as it is hard to put our finger on why “One does not
simply forget to social distance” is likely a refer-
ence to “One does not simply walk into Mordor”,
but “One cannot just walk right into jail” is not.

5 Snowclone Reference Detector

Data. We searched the web and found 20 famous
movie quotes that turned into snowclone internet
memes. We removed three quotes appearing in
the data of Section 3, not to contaminate our eval-
uation. Next, we defined overly general regular
expressions for each seed (attempting to catch both
snowclones and not) and crawled Reddit conversa-
tions to find matches. We choose Reddit due to its
popularity and comprehensive use of memes. We
collected 3850 pairs of seed and sentence and had
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Snowclone Detection - Results
Model Accuracy Precision Recall
Naive 0.64 1 0
SVM 0.85±0.08 0.84±0.13 0.78±0.12
RoBERTa 0.81±0.94 0.7± 0.15 0.74±0.18

Table 2: Snowclone detection task. We performed 20
splits for the SVM model and 5 for RoBERTa, and re-
port standard deviation.

an expert manually annotate them (after calibra-
tion). The dataset is imbalanced, with 64% of pairs
tagged as non-reference. When splitting to train-
dev-test (60%/20%/20%), we ensure all examples
from the same seed are put in the same set. We
take a supervised approach and train two models.

Feature-based SVM model. We calculate three
sets of features, focusing on sentence structure. (1)
Similarity between s and c: edit distance, longest
common sequence, and longest substring between
s, c. (2) We use the snowclone tagger of Section
3 to predict ŝ, the snowclone form of s and use
the same features of group (1) between ŝ, c. (3)
To characterize the shared and replaced words we
calculate the idf statistic for words shared between
s, c and words in s but not in c (idf over movie
quotes (Danescu-Niculescu-Mizil and Lee, 2011)).
We tried decision trees, random forests, and SVM,
and chose SVM due to its performance.

RoBERTa-based model. We chose RoBERTa as
our second model, as it showed impressive results
on a related 2-sentence classification task. We use
a model pre-trained on SNLI (Nie et al., 2020),
which achieved state-of-the-art result on a natural
language inference task. We replace its classifi-
cation head with a binary classification head, and
fine-tune the model on the dataset of Section 4.
Unlike SVM, we expect this model to capture se-
mantic similarity (e.g., between “old” and “new”).

See Appendix B for implementation details and
hyper-parameter tuning.

Evaluation and results. The accuracy, precision
and recall measures for all models are presented
in Table 2. The naive majority baseline achieves
64% accuracy on the full data set (as the data is
not balanced). For our feature-based SVM model,
we randomly select 20 different splits, reaching an
average of 85% accuracy, 84% precision and 78%
recall, with a corresponding std of 8.7%, 13.8% and
12%. The RoBERTa-based model achieved average
results of 81% accuracy, 70% precision and 74%

recall, with std 9.4%, 15.7% and 18.7%. Thus, we
chose the SVM model. This perhaps indicates the
importance of structure in the snowclone problem;
alternatively, perhaps the amount of data was not
sufficient to fine-tune RoBERTa.

Observations. As a (qualitative) reality check,
we choose 10 seeds unseen during training. We
crawl all Reddit posts from March 2016 (month
and year chosen at random). We choose Reddit as
a diverse and popular online community, where in-
ternet memes are used regularly. We use the SVM
model to collect new candidate references for the
seeds. We analyze the candidate references and ob-
serve that (not surprisingly) their quality is heavily
influenced by the snowclone tagger feature. When
the regex is too general (e.g., “I am your *” for
“I am your father”), the number of false positives
is high. Importantly, over all seeds our method
is capable of detecting true references that do not
exactly match the predicted snowclone-form.

6 Evaluation: Web Extension

Our main motivation in this study was to help the
proverbial “Englishman in New York” identify cul-
tural references. In this section, we ask whether our
algorithms can help users detect pop-culture ref-
erences online. We create CATCHPHRASE, a web
browser extension able to detect and mark pop-
culture references in web pages (see Figure 3). The
extension inspects the web page source and identi-
fies candidate sentences. We use locality-sensitive
hashing (Gionis et al., 1999) with similarity thresh-
old = 0.2 for filtering, allowing us to reduce com-
putation time and maintain a small number of false
negatives. Next, the extension runs the reference-
detector on each (seed, candidate sentence) pair
and highlights the predicted references.

Experimental design. We choose a set of 20 pop-
culture quotes (seeds) unseen by our reference-
detector during training time, and whose snow-
clone form is the basis to many variations. All
sentences chosen are ones that became popular in-
ternet memes. For each seed quote, we manually
crawled Reddit and found threads containing refer-
ences to it. After filtering out threads that were over
10 messages long, we were left with 106 threads.

We recruited 10 volunteers through social me-
dia, all Israeli, non-native English speakers, who
self-identified as having low familiarity with pop-
culture. 80% of the volunteers were 20-35 years
old, and the remaining 20% were 40-60 years old.
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Figure 3: Screenshot of our web extension, suggesting “Nobody puts TV in a corner” is a reference to Dirty
Dancing’s “Nobody puts baby in a corner”. The suggested reference is underlined in blue. Hovering over the
underlined sentence prompts a message containing original quote information.

70% of the participants were females. We ran-
domly selected 16 seeds for each participant and
randomly split them into two groups, one per condi-
tion (with and without our extension). The threads
were shown in random order. The participants were
asked to go over each thread and point out any
pop-culture references they detect, specifying their
origin if they knew it.
Evaluation and results. Under the no-extension
condition, participants correctly identified a pop-
culture reference 38.7% of the time. The reference
origin was correctly identified in 61.2% of these.
This is interesting, as it shows people can identify
that a sentence looks like a cultural reference, even
when they do not recognize the source.

When using the extension, participants correctly
identified a reference 68.7% of the times, recog-
nizing the origin in 98.1% of these. In 26.3% of
the threads, the algorithm did not recognize the
reference. 5% of the times, we believe the algo-
rithm was right but people thought it was not (e.g.,
“I solemnly swear I’m up for good tea” as a ref-
erence to “I solemnly swear I’m up to no good”).
The reason source recognition is not perfect is one
user finding a sentence the algorithm missed (but
not attributing it). To check our hypothesis that
web-extension users recognize more pop-culture
references, we run t-test with α = 0.95 and reject
the null hypothesis with pval = 0.00005.

7 Conclusions and Future Work

In this work we proposed the novel task of de-
tecting snowclones in text. Motivated by the high
agreement achieved by humans on a snowclone

annotation task, we first developed algorithms for
finding snowclones which are regular expressions,
then extended the formulation to a softer notion
of similarity. We introduce a new data set of pop-
culture quotes and their corresponding snowclone
variants and train models on them. We publish code
for CATCHPHRASE, an internet browser plugin to
automatically detect and mark references in real-
time. Our results demonstrate our algorithms can
indeed help users detect pop-culture references.

In the future, our work might be used in conver-
sational AI context, supporting agents’ ability to un-
derstand and even generate pop-culture references.
Another direction worth pursuing is applying our
methods to domains outside pop-culture (or at the
very least, to pop-culture of different cultures).

We believe snowclones, complementing the no-
tion of paraphrases, are worth exploring and can
give us new insights into how ideas spread and
evolve. Our approach opens an opportunity to bet-
ter answer long-standing questions in social science
about the dynamics of information.
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Below we provide implementation details for the
sake of reproducibility.

A Snowclone Pattern Tagger:
Hyper-parameter tuning

For the BI-LSTM-CRF model, we perform a
small grid search to determine the values for
the learning rate, weight decay, and the number
of layers and hidden dimension of the the BI-
LSTM. As the search space, we used learning −
rate ∈ {0.01, 0.001, 0.0001}, weight-decay ∈
{0, 0.01, 0.001}, num-layers ∈ {1, 2, 3} and
hidden-dim ∈ {32, 64, 128}. Finally, we
choose learning-rate = 0.01,weight-decay = 0,
num-layers = 2,hidden-dim = 32. For the BERT
model, we use a smaller grid search over the
learning rate (∈ {0.001, 0.0001}) and the weight
decay ({0, 0.01, 0.001}) hyper-parameters, and
train it for a single epoch using learning-rate =
0.0001,weight-decay = 0.01.

B Snowclone Reference Detector:
Hyper-parameter tuning

For the RoBERTa model, we perform the same
hyper-parameter search as described in Section A,
and use the same values. For the SVM model,
we search over kernels (RBF, linear and polyno-
mial), degree (when applicable, over [2, 3, 4]) and
C-values ({0.1 · i}10i=1). Our search dictates using
a polynomial kernel of degree 3, with C = 0.5.


