
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 979–992

August 1–6, 2021. ©2021 Association for Computational Linguistics

979

Prosodic segmentation for parsing spoken dialogue

Elizabeth Nielsen Mark Steedman Sharon Goldwater
School of Informatics

University of Edinburgh, UK
e.k.nielsen@sms.ed.ac.uk

{steedman, sgwater}@inf.ed.ac.uk

Abstract

Parsing spoken dialogue poses unique diffi-
culties, including disfluencies and unmarked
boundaries between sentence-like units. Previ-
ous work has shown that prosody can help with
parsing disfluent speech (Tran et al., 2018),
but has assumed that the input to the parser
is already segmented into sentence-like units
(SUs), which isn’t true in existing speech ap-
plications. We investigate how prosody af-
fects a parser that receives an entire dialogue
turn as input (a turn-based model), instead
of gold standard pre-segmented SUs (an SU-
based model). In experiments on the En-
glish Switchboard corpus, we find that when
using transcripts alone, the turn-based model
has trouble segmenting SUs, leading to worse
parse performance than the SU-based model.
However, prosody can effectively replace gold
standard SU boundaries: with prosody, the
turn-based model performs as well as the SU-
based model (90.79 vs. 90.65 F1 score, respec-
tively), despite performing two tasks (SU seg-
mentation and parsing) rather than one (pars-
ing alone). Analysis shows that pitch and in-
tensity features are the most important for this
corpus, since they allow the model to correctly
distinguish an SU boundary from a speech dis-
fluency — a distinction that the model other-
wise struggles to make.

1 Introduction

Parsing spoken dialogue poses unique difficulties:
spontaneous speech is full of disfluencies, includ-
ing false starts, repetitions, and filled pauses. In ad-
dition, speech transcripts lack punctuation, which
would otherwise help signal the boundaries of
sentence-like units (SUs).1 Because of these diffi-
culties, current parsers struggle to accurately parse

1We follow Kahn et al. (2004) in using the term ‘sentence-
like units’ rather than ‘sentences’ throughout, since conversa-
tional speech doesn’t always consist of syntactically complete
sentences.

English speech transcripts, even when they han-
dle other English text well. However, research has
shown that prosody can help with at least one of
these problems, improving parsing performance for
speech that contains disfluencies (Tran et al., 2018,
2019). In this work, we hypothesize that incorpo-
rating prosodic features from the speech signal can
actually help with both of these problems: not only
parsing disfluent speech, but also parsing speech
that isn’t segmented into SUs.

Other researchers have augmented parsers with
prosodic features, but always with the assumption
that the parser has access to gold SU boundaries,
which cannot be assumed in a deployed speech
application. For example, Gregory et al. (2004);
Kahn et al. (2005) and Hale et al. (2006) incor-
porated prosody into statistical parsers or parse
rerankers, with mixed results. More recently, Tran
et al. (2018) and Tran et al. (2019) found that
prosody improved an end-to-end neural parser, with
the most significant gains in disfluent sentences.
Parsing without access to gold SU boundaries is
much more difficult: Kahn and Ostendorf (2012)
showed that parsing quality depends on the quality
of the sentence segmentation. Furthermore, find-
ing SU boundaries is not as simple as finding long
pauses in speech, as we demonstrate below.

We hypothesize that access to prosodic features
will help an English parser that has to both parse
and correctly identify SU boundaries (which we
call SU segmentation). We test this hypothesis
by inputting entire dialog turns to a neural parser
without gold SU boundaries. We call this the turn-
based model, and compare it to an SU-based model,
which assumes gold SU boundaries and parses one
SU at a time. We use turns as our input unit be-
cause they resemble the input a dialog agent would
receive from a user. Following Tran et al. (2019)
and others, we use a human-generated gold tran-
script instead of an automatic speech recognition



980

(ASR) transcript; we plan to use ASR output in
future work.

We build on the work of Tran et al. (2018) and
Tran et al. (2019), considering two different exper-
imental conditions for each model: inputting text
features only and inputting both text and prosodic
features. Using the Switchboard corpus of En-
glish conversational dialogue, we find that when
only transcripts are used, the turn-based parser per-
forms considerably worse than the SU-based parser,
which is not surprising given that it needs to per-
form two tasks instead of one. However, when
prosodic features are included, there is no differ-
ence in performance between the turn-based and
SU-based models, and both models outperform the
text-only counterparts.

Our primary contributions are:

• We show that a parser that has access to
prosody can perform both SU segmentation
and parsing as well as a model that only has
to parse.

• We show that one difficultly for the prosody-
free turn-based model is that it confuses
speech disfluencies with SU boundaries, as
illustrated in Figure 1. Further analysis indi-
cates that adding pitch and intensity features
can help the model to disambiguate the two,
while pause and duration features do not.

2 Background: prosody and syntax

Prosodic signals divide speech into units (Pier-
rehumbert, 1980). The location and type of
these prosodic units are determined by information
structure (Steedman, 2000), disfluencies (Shriberg,
2001), and to some extent, syntax (Cutler et al.,
1997). Some psycholinguistic research shows
that in experimental conditions, speakers can use
prosody to predict syntax — for example, that En-
glish speakers can use prosody to determine where
to attach a modifier or prepositional phrase, or
how to correctly group coordinands (e.g., Kjel-
gaard and Speer (1999); Speer et al. (1996); Warren
et al. (1995)). However, Cutler et al. (1997) argues
that English speakers often “fail to exploit” this
prosodic information even when it is present, so it
isn’t actually a signal for syntax in practice. Many
computational linguists have experimented with
this possible link between syntax and prosody by
incorporating prosody into syntactic parsers (e.g.,
Noeth et al. (2000); Gregory et al. (2004); Kahn

et al. (2005); Tran et al. (2018)). These models
have had mixed success: For example, Gregory
et al. (2004) found that prosody was at best a neu-
tral addition to their model, while Kahn et al. (2005)
found that prosody helped rerank PCFG output.

One possible reason that prosody is only some-
what effective in previous research is that prosodic
units below the level of the SU do not always coin-
cide with traditional syntactic constituents (Selkirk,
1995, 1984).2 In fact, the only prosodic boundaries
that consistently coincide with syntactic boundaries
are the prosodic boundaries at the ends of SUs
(Wagner and Watson, 2010). The prosodic bound-
aries at the end of SUs are more distinctive (i.e.,
tending to correspond to longer pauses and more
distinctive pitch and intensity variations) and less
likely appear in any other location. These features
make prosody a reliable signal for SU boundaries,
even though it is an unreliable signal for syntactic
structure below the SU level.

Some researcheres have used this correlation be-
tween prosody and SU boundaries to help in SU
boundary detection. Examples of SU segmenta-
tion models that found prosodic cues were impor-
tant include Gotoh and Renals (2000); Kolář et al.
(2006); Kahn et al. (2004); Kahn and Ostendorf
(2012), who all used traditional statistical models
(e.g., HMMs, finite state machines, and decision
trees), and Xu et al. (2014), who used a neural
model. Kahn et al. (2004) and Kahn and Ostendorf
(2012) also looked at downstream parsing accuracy
on the same corpus we use. Like us, Kahn and
Ostendorf (2012) don’t use gold SU boundaries,
but direct comparison is impossible because they
use ASR output instead of human transcriptions
and a different metric for parse performance (SPar-
seval; Roark et al. (2006)). However, they show
that having access to gold SU boundaries increases
the SParseval score from 78.5 to 82.3, which shows
that parsing without gold SU boundaries is difficult.

However, in some research areas, prosody is
less frequently used for SU detection. Some ASR
corpora and applications segment at relatively ar-
bitrary boundaries such as long silences or even
regular intervals (e.g., Jain et al. (2020)). Other
applications, such as speech translation, do require
syntactically coherent input, but even there, sys-
tems targeting SUs have often used only textual
features (Sridhar et al., 2013; Wan et al., 2020).

2We refer here to traditional constituency parsing; CCG
(Steedman and Baldridge, 2011) proposes different syntactic
constituents that coincide with prosodic units.



981

TURN

S

{th-} that’s of course being facetious

SBARQ

{how do you} how do you feel

(a) Text+prosody model output

TURN

SQ

do you feel {th-} that’s of course being facetious

WHADVP

how

EDITED

{how do you}

(b) Text-only model output

Figure 1: A portion of a turn that contains both disfluencies (shown in curly braces) and an SU boundary. A
simplified version of the text+prosody model output is shown in (a), which matches the gold SU boundaries. The
text-only model incorrectly places an SU boundary after a disfluency (shown in (b)).

Systems for restoring punctuation from ASR out-
put must identify SU boundaries to correctly insert
sentence-final punctuation, but these systems are
typically evaluated on rehearsed monologues (such
as TED talks) or read speech, which largely lack
disfluencies (e.g., Federico et al. (2012)). Here,
we show that prosody is primarily helpful for dis-
tinguishing SU boundaries from disfluencies, so
although some of these systems have used prosody
(e.g., Tilk and Alumäe (2016)), text-only systems
are very competitive (e.g., Che et al. (2016); Alam
et al. (2020)).

Even when SU boundaries are already known,
other research in parsing conversational speech has
shown that prosody helps identify and correctly
handle disfluencies. Tran et al. (2018) found that
prosody only modestly affects parsing of fluent
SUs, but has a marked effect on disfluent SUs.
This accords with other previous work that has
found that prosody is helpful in disfluency detec-
tion (Zayats and Ostendorf, 2019) We discuss the
relationship between prosody and disfluencies in
greater detail in Section 6, including how prosody
helps the model not to confuse disfluencies and SU
boundaries, as shown in Figure 1 above.

3 Task and data

We use the American English corpus Switchboard
NXT (henceforth SWBD-NXT) (Calhoun et al.,
2010). We choose this corpus mainly so we can
compare performance with Tran et al. (2018) and
Tran et al. (2019), as well as other earlier proba-

bilistic models such as Kahn et al. (2005). SWBD-
NXT comprises 642 dialogues between strangers
conducted by telephone. These dialogues are tran-
scribed and hand-annotated with Penn Treebank-
style constituency parses. We preprocess the tran-
scripts to remove punctuation and lower-case all
letters, making the input more like an ASR tran-
script that would be used in a deployed application.

The transcript divides the corpus into SUs and
turns. Since these SUs may be sentences or other
syntactically independent units such as sentence
fragments, we use the generic term ‘sentence-like
unit’ (SU). A turn is a contiguous span of speech
by a single speaker. Turns are hand-annotated in
SWBD-NXT, but for a deployed dialog agent, a
turn is simply whatever contiguous input the user
gives. Not all turns in the SWBD-NXT contain
more than one SU: of a total 60.1k turns, 35.8k
consist of a single SU. The remaining 24.3k contain
more than one SU; the majority (52.4 percent) of
these contain just two SUs. The average number of
SUs per turn is 1.82.

We follow the general approach of Tran et al.
(2018), but where they parse a single SU at a time,
we give our parser a single dialog turn at a time
for our turn-based model. The model returns con-
stituency parses for the turn in the form of Penn
Treebank (PTB)-style trees. In order to keep the
output in the form of valid PTB trees, we add a
top-level constituent, labelled TURN, to all turns,
however many SUs they consist of. This example
shows how the two sentences in (1) would be fused



982

into a single turn in (2):

(1) Separate SUs:
a. (S (NP Kim) (VP sings))
b. (S (NP Sidney) (VP dances))

(2) Merged into a single turn:
a. (TURN (S (NP Kim) (VP sings)) (S (NP

Sidney) (VP dances)))

Of course, using turns instead of SUs leads to
longer inputs. We experiment with a pipeline ap-
proach (first segmenting turns into SUs, then pars-
ing) as well as an end-to-end approach. In the
end-to-end approach, we can’t handle extremely
long inputs since these longer sequences lead to
high memory usage for transformers. We still want
to capture the model’s behavior on generally longer
inputs, so we filter out two problematically long
turns from the training set (out of 49,294 turns).
We do not have to remove any turns from the devel-
opment or test sets. This leaves the maximum turn
length at 270 tokens. We also remove any turns for
which some or all speech features are missing from
the corpus.

3.1 Feature extraction

From the speech signal, we extract features for
pauses between words, word duration, pitch, and
intensity. We largely follow the feature extraction
procedure outlined in Tran et al. (2018) and Tran
et al. (2019), which we summarize here, noting any
deviations from or additions to their procedure.

Pause features are extracted from the time-
aligned transcript. Each word’s pause feature cor-
responds to the pause follows it. Each pause is
categorized into one of six bins by length in sec-
onds: p > 1, 0.2 < p ≤ 1, 0.05 < p ≤ 0.2,
0 < p ≤ 0.05, p ≤ 0 (see below), and pauses
where we are missing time-aligned data. Following
Tran et al. (2018), the model learns 32-dimensional
embeddings for each pause category.

Since we use turns instead of SUs, we have to
determine how to handle pauses at the beginnings
and endings of turns. We decide to calculate pauses
based on all words in the transcript, not just the
words for a single speaker at a time. This means
that at a turn boundary, we calculate the pause as
the time between the end of one speaker’s turn and
the beginning of the other speaker’s turn. If one
speaker interrupts another, the pause duration has
a negative value. We place these negative-valued

pauses in the same bin as pauses with length 0.
Duration features are also extracted from the

time-aligned transcript. We are interested in the
relative lengthening or shortening of word tokens,
so we normalize the raw duration of each token.
Following the code base for Tran et al. (2019), we
perform two different types of normalization. In
the first case, we normalize the token’s raw dura-
tion by the mean duration of every instance of that
word type. In the second, we normalize the token’s
raw duration by the maximum duration of any word
in the input unit (SU or turn). These two normal-
ization methods result in two duration features for
each word token, which are concatenated and input
to the model.

Pitch features (or more accurately, F0 features)
are extracted from the speech signal using Kaldi
(Povey et al., 2011). These are extracted from
25ms frames every 10ms. Three pitch features are
extracted: warped Normalized Cross Correlation
Function (NCCF); log-pitch with mean subtraction
over a 1.5-second window, weighted by Probabil-
ity of Voicing (POV); and the estimated derivative
of the raw log pitch. For further details on these
features, see Ghahremani et al. (2014).

Intensity features are also extracted from the
speech signal using the same software and frame
size as we use for pitch features. Starting with
40-dimensional mel-frequency filterbank features,
we calculate three features: (1) the log of the total
energy, normalized by the maximum total energy
for the speaker over the course of the dialog; (2)
the log of the total energy in the lower half of the
40 mel-frequency bands, normalized by the total
energy; and (3) the log of the total energy in the up-
per half of the 40 mel-frequency bands, normalized
by the total energy.

For training, development, and testing, we use
the split described in Charniak and Johnson (2001),
which is a standard split for experiments on SWBD-
NXT (e.g., Kahn et al. (2005); Tran et al. (2018)).
The training set makes up 90 percent of the data,
and the development and testing sets make up 5
percent each.

4 Model

We use the parser described in Tran et al. (2019), di-
rectly extending the code base described in their pa-
per.3 The model is a neural end-to-end constituency

3Original: https://github.com/trangham283/prosody nlp;
our extended code: https://github.com/ekayen/prosody nlp

https://github.com/trangham283/prosody_nlp
https://github.com/ekayen/prosody_nlp


983

parser based on Kitaev and Klein (2018)’s text-
only parser, with a transformer-based encoder and
a chart-style decoder based on Stern et al. (2017)
and Gaddy et al. (2018). This encoder-decoder
is augmented with a CNN on the input side that
handles prosodic features (Tran et al., 2019). For
further description of the model and hyperparame-
ters, see Appendices A.1 and A.2.

The text is encoded using 300-dimensional
GloVe embeddings (Pennington et al., 2014).4 Of
the four types of prosodic features described in
Section 3, pause and duration features are already
token-level. However, pitch and intensity features
are extracted from the speech signal at the frame
level. In order to map from these frame-level fea-
tures to a token-level representation, the pitch and
intensity features pass through a CNN, and are then
concatenated with the token-level pause and dura-
tion features.

We follow Tran et al. (2019) in training each
model 10 times with different random seeds. For
the development set, we report the mean of these
10 models’ performance. We then select the me-
dian model by development set performance, and
use it to calculate test set results. For any further
experiments, such as those discussed in Section
6, we use the random seed for this median model.
Each model is trained for 50 epochs and use the
epoch with highest development set performance.

In addition to this end-to-end approach, we also
report results for a pipeline approach. For the
pipeline, we first segment the speech into SUs us-
ing a modified version of the parser architecture:
We keep the encoder the same, but we change the
decoder so that it only does sequence labelling, and
we frame the SU segmentation task as a sequence
labelling task. We then use the SU-based parser
to parse the resulting SUs. We report the model’s
performance with and without prosodic features
during the segmentation and parsing steps.

5 Results

We compare the turn-based F1 performance of
our parser to a replication of the SU-based per-
formance described in Tran et al. (2018) and Tran
et al. (2019). Table 1 shows the development and
test set results.5 We find that the turn-based model
benefits significantly from prosody. The turn-based

4See Appendix A.3 for results using BERT embeddings.
5We use PyEvalb to evaluate our parser’s performance,

though we modify it so that it behaves identically to Evalb:
https://github.com/ekayen/PYEVALB

SU-based Turn-based
Test set:
Text only 90.29 86.56
Text+prosody 90.65 90.79
Dev. set:
Text only 90.31 86.08
Text+prosody 90.90 90.84

Table 1: Test and development set F1 of the turn-based
model compared to the SU-based model. Dev. set
scores are the mean over 10 random seeds. For the test
set, we use the model that has the median dev. set per-
formance out of 10 randomly seeded models.

Input length (# tokens)
1 2–8 9–22 23–255

Text only 98.36 93.00 89.22 84.30
Text+pros. 99.18 94.91 92.74 89.80
∆ 0.82 1.91 3.52 5.5

Table 2: F1 performance of the text-only and
text+prosody turn-based models on inputs of various
lengths in the development set. The inputs are divided
into bins of approximately equal size by token length.

model performs equivalently well to the SU-based
model, despite doing two tasks instead of one. The
SU-based model also improves by 0.36 in F1 score
on the test set with the addition of prosody. Note
that while prosody has a considerably larger ef-
fect on the turn-based model than on the SU based
model, the exact size of this change will depend on
the corpus. For example, in a corpus with very few
multi-SU turns, the performance change in the turn-
based model might not be as large. However, our
results suggest that prosody helps when a model
needs to both detect SU boundaries and parse SUs.

The biggest difference between the SU- and turn-
based models’ performance on this corpus is in the
text-only scenario, where the turn-based parser is
substantially worse. This is expected for a few
reasons. First, the text-only turn-based parser en-
counters longer inputs. Longer inputs tend to lead
to more parse errors simply because there are more
ways to parse a longer string. Table 2 shows this
correspondence between length and performance.
The median length of turns in the development set
is 9 tokens, while the median length of SUs is 6
tokens. Longer strings are also more likely to con-
tain the things that make parsing difficult, namely
disfluencies and SU boundaries.

The turn-based parser’s task is also more com-

https://github.com/ekayen/PYEVALB


984

Segmentation Parsing
Precision Recall F1 F1

Pipeline Text only 78.84 68.61 73.31 82.73
Text+prosody 99.96 99.45 99.71 90.89

E2E Text only 55.01 75.78 63.74 86.09
Text+prosody 99.41 99.41 99.41 90.90

Table 3: Development set performance of the pipeline model on segmentation and parsing as compared to the
end-to-end model. (Results are from single models rather than an average as in Table 1.)

plex: it has to perform both SU segmentation and
parsing, rather than parsing alone. This gives the
turn-based parser novel ways to make errors by
splitting a turn into the wrong number of SUs. How-
ever, prosody brings the turn-based parser up to
the level of the SU-based parser, even though the
turn-based model’s task is more complex. Table 5
shows how the text-only parser significantly over-
estimates the number of SU boundaries. Without
prosody, the model achieves an F1 score of 63.74
on SU prediction on the development set, compared
to 99.41 with prosody (see Table 3). The most com-
parable work on SWBD is Kahn and Ostendorf
(2012), who achieved 78 F1 using a hidden-event
model, where we use a much more powerful trans-
former model; however, their model used ASR
transcripts as input, so these scores aren’t directly
comparable.

We also test the pipeline model described in Sec-
tion 4, which first segments turns into SUs and
then parses them, both with and without prosody.
We train just one segmentation model with the
same random seed as the median development set
model. We report the development set performance
on segmentation (measured by segmentation F1
(Makhoul et al., 2000)) and parse F1 in Table 3.

The text+prosody pipeline model achieves an
F1 score of 99.71, which is statistically indistin-
guishable from the end-to-end text+prosody model.
In both cases, we see that the addition of prosody
boosts SU segmentation accuracy to near-perfect
levels, which explains why the parser performance
is similar (and much better than without prosody).

Comparing the two text-only models reveals a
more interesting pattern: while the pipeline model
achieves much better segmentation F1, its parsing
performance is worse. This is unexpected, as pars-
ing and segmentation performance are usually cor-
related. This effect seems to arise because the two
models err in different directions on segmentation:
The pipeline model under-segments turns (corre-

sponding to higher segmentation precision), while
the end-to-end over-segments (higher recall, sub-
stantially lower precision). When it over-segments,
the end-to-end text-only model often splits a word
or short constituent off of an otherwise well-formed
SU subtree; by contrast, the pipeline model tends
to leave two or more SUs combined and and then
to generate many SU-internal parsing errors. These
SU-internal parsing errors include more coordina-
tion errors as well as VP, NP, and clause attach-
ment errors than the end-to-end model.6 However,
the pipeline model does as well as the end-to-end
model at PP attachment and modifier attachment.

Overall, these results show that a pipeline model
can be as effective at parsing as an end-to-end one,
but that including prosody is even more important
for a pipeline model. Since we care about parsing
performance and the end-to-end text-only model
does much better at parsing, we use the end-to-end
model for all remaining analyses.

5.1 Error types

We use the Berkeley Parser Analyser (Kummer-
feld et al., 2012) to determine what types of errors
each of the SU-based and end-to-end turn-based
models makes. Figure 2 summarizes the output of
the Analyser. Overall, the SU-based parser shows
only small effects from prosody, but the turn-based
model does significantly worse on certain error
types without prosody. Even for the turn-based
model, prosody only affects error types that have
to do with the shape of the tree. The different label
category shows errors where two identically shaped
trees have different constituent labels, and prosody
has no effect on these.

For the turn-based model, poor SU segmentation
by the text-only model explains some of the dif-
ferences between the text+prosody and text-only
models. Since 68.8 percent of SUs are clauses (i.e.,

6We use the Berkeley Parser Analyser to analyze types of
parse error (Kummerfeld et al., 2012).



985

Figure 2: Prevalence of various error types in the development set output, given four different experimental condi-
tions: SU-based, with and without prosody; and turn-based, with and without prosody. Error types are classified
by the Berkeley Parser Analyzer (Kummerfeld et al., 2012).

they have a top node of type S, SBAR, SQ or SINV),
an incorrect SU segmentation is usually classed
as a clause attachment error. An example of this
kind of attachment error can be seen in Appendix
A.4. However, prosody also affects the turn-based
model’s rate of NP, PP, and modifier attachment
errors. Since these attachment errors are not as
common in the text-only SU-based model, it seems
likely that they are caused by a cascade effect from
errors in top-level SU segmentation. Prosody also
affects the turn-based model’s rate of unary errors
(which are errors “involving unary productions that
are not linked to a nearby error such as a matching
extra or missing node”) and single word phrase
errors (which are “a range of node errors that span
a single word” but which are not related to other
errors) (Kummerfeld et al., 2012). Finally, very
modest differences are seen for two rare error types:
NP-internal and VP attachment errors.

5.2 Effect of disfluencies

All Fluent Disfluent
Text only 86.09 89.89 84.25
Text+all prosody 90.90 93.63 89.58
∆ from prosody 4.81 3.74 5.33
Pitch only 90.71 93.46 89.37
Intensity only 90.29 93.30 88.83
Duration only 86.24 89.94 84.44
Pause only 86.21 90.09 84.32

Table 4: F1 for the text and text+prosody turn-based
models when tested on the entire development set, the
subset of the development set consisting of only fluent
turns, and the subset of all disfluent turns.

Our turn-based model performs worse overall
on disfluent turns than on fluent turns, which was
also true of Tran et al. (2018)’s SU-based model.
Prosody also leads to a greater gain in F1 for dis-
fluent turns than for fluent turns. These differences
in performance are shown in Table 4. The lower
performance on disfluent sentences may be at least
partially attributable to length differences: the me-
dian length of turns with disfluencies is 28 tokens,
compared to 3 tokens for fluent turns, where we
define a disfluent turn as any turn containing the
constituent tag EDITED. As discussed in Section 5,
longer input generally leads to more parser errors,
meaning that disfluent sentences are more likely
to cause parser errors. However, there are other
reasons disfluencies are difficult for the turn-based
model, as discussed in the following section.

6 Distinguishing disfluencies and SU
boundaries

One effect of disfluencies is that the text-only
model tends to confuse certain kinds of disfluen-
cies for SU boundaries, as illustrated in Figure 1.
Table 5 shows that the text+prosody model largely
avoids this confusion, and indeed can do so almost
as well using only pitch or intensity features. How-
ever, models using only pause or duration features
are not good at distinguishing disfluencies from
SU boundaries and predict boundaries too often.
These results largely concur with previous work
describing the similarities and differences between
prosodic features of disfluencies and SU bound-
aries (Shriberg, 2001; Wagner and Watson, 2010).
In this section, we examine each of the features



986

Total Predicted
Features predicted bound. bound. at disf.
Gold 2552 2
All 2552 4
Pitch 2590 17
Intensity 2647 20
Duration 3437 204
Pause 3648 225
None 3516 208

Table 5: The total number of SU boundaries predicted
on the dev. set as compared to the number of SU bound-
aries predicted to fall at what are actually interruption
points within disfluencies. The first line shows the tar-
get for both values. We give results for a model with all
four prosodic features, models with only one prosodic
feature at a time, and a model with no prosodic features.

more closely with respect to this previous work
and our results, highlighting where our results do
(and do not) accord with expectations.

The disfluencies that are relevant to this discus-
sion include repetitions and restarts. Examples
of these from SWBD-NXT are shown here, with
bracketing added for clarity:

(3) Spurious repetition: it [may] may be at
this point
Restart: [but it’s] but I think it’s relatively
unimportant

In these examples, the text in square brackets is
called the reparandum, which is immediately fol-
lowed by the interruption point. Disfluencies in
SWBD-NXT are marked in the constituency parse
annotation, where the reparandum is marked as a
constituent with the label EDITED. The interruption
point is the right edge of this constituent.

Our analysis draws on the work of Shriberg
(2001), who described the prosodic features of the
interruption point and the reparandum based on an
analysis of three English conversational and task-
based dialogue corpora — the Switchboard Cor-
pus (which we use a subset of), ATIS (Hirschman,
1992), and AMEX (Kowtko and Price, 1989).

Pauses. Although pauses may be the most intu-
itive potential cue to SU boundaries, previous work
suggests that long pauses also characterize interrup-
tion points (Wagner and Watson, 2010; Shriberg,
2001). Indeed, our analysis shows that longer
pauses (> 0.05s) are over-represented in both lo-
cations. If pause types were distributed uniformly,
16 percent of both SU boundaries and interruption

points would have a longer pause. Instead, we find
that 33 percent of SUs boundaries and 37 percent
of interruption points have such pauses. This ex-
plains why the pause-only model tends to confuse
SU boundaries and interruption points.

Duration. Shriberg (2001) found that both in-
terruptions and SU boundaries are associated with
lengthening of the immediately preceding sylla-
ble. Lengthening before the interruption point may
occur even if there are no other prosodic cues to
the disfluency, and can be “far greater” than at
SU boundaries (Shriberg, 2001, 161). This type of
lengthening is captured by our first duration feature,
which measures the token duration normalized by
the mean duration for its word type. Like Shriberg
(2001), we find that words preceding SU bound-
aries are lengthened on average (normalized dura-
tion: 1.18), and those preceding interruption points
even more so (normalized duration: 1.41). In prin-
ciple, this extra lengthening could help the duration-
only model distinguish SU boundaries from inter-
ruptions, but in practice the model is nearly as bad
at distinguishing them as the text-only model.

The second duration feature is the token length
normalized by the maximum length of any token in
the input, to normalize for speaking rate. Initially,
this feature looks helpful: SU-final words have
mean value of 0.86, while words directly before
the interruption point have a mean of 0.50. How-
ever, the feature mainly captures the number of
phones in a word, since words with fewer phones —
including English function words — tend to have
shorter normalized duration. It turns out that func-
tion words occur more often before interruption
points than before SU boundaries: using NLTK’s
stopwords as a heuristic for function words, only
21.9 percent of development set SUs end in a func-
tion word, while the word before an interrutption
point is a function word 51.6 percent of the time
(Bird and Klein, 2009). Since the second duration
feature captures a lexical distinction that is already
signalled in the text, it cannot help the duration-
only model outperform the text-only model.

Pitch. Based on previous work, our finding that
pitch features are useful is not a surprise: the pitch
contour before an interruption point is generally
“flat or slowly falling” (Shriberg, 2001, 161), while
SU boundaries are characterized by a boundary
tone, generally corresponding to a fall or rise. Our
model may be able to learn such temporal patterns,
but even just looking at static pitch features re-



987

veals differences between boundaries and interrup-
tions for two of the three features. In particular,
the mean warped NCCF value for pre-interruption
point words is significantly higher than the value
for SU-final words (p < 0.001), though somewhat
lower than the overall average value across the
development set. Meanwhile, the log-pitch with
POV-weighted mean subtraction is significantly
lower at interruption points than at SU boundaries
(p < 0.01). These differences allow the pitch-only
model to distinguish SU boundaries and interrup-
tion points much better than the pause- or duration-
only models can (see Table 5). Of these two pitch
features, log-pitch is a more direct indicator of
fundamental frequency (F0), which suggests that
average perceived pitch is likely lower before dis-
fluencies than before SU boundaries. There could
be several reasons for this difference. For example,
it could be that the “flat or slowly falling” tone of
disfluencies that Shriberg (2001) describes has a
lower average value than SU boundaries which can
have either a fall or a rise (e.g., for certain kinds
of questions). However, examining pitch features
across the whole corpus obscures more subtle dis-
tinctions such as different types of pitch contours.

Intensity. We find that intensity features alone
are enough to distinguish SU boundaries from inter-
ruption points, which is interesting because inten-
sity has not been previously identified as an impor-
tant cue: Shriberg (2001) doesn’t note any partic-
ularly distinctive intensity features of the reparan-
dum or interruption point, and work by Kim et al.
(2006) on the Switchboard Corpus suggests that
SU boundaries are correlated to lower intensity in
some speakers, but that this isn’t consistent across
speakers. The three intensity features correspond
to overall energy, energy in the lower half of fre-
quencies, and energy in the higher frequencies. SU-
final words have a significantly higher mean value
for lower-frequency intensity than all other words
(p < 0.001), while words before the interruption
point do not. This systematic difference in one in-
tensity feature seems to be part of how intensity
features allow the model to consistently tell SU
boundaries apart from disfluencies.

Overall performance. Given our claim that the
main issue facing the text-only turn-based parser is
distinguishing disfluencies from SU boundaries, it
is not surprising that the two features that do best
at this, pitch and intensity, also yield the highest
overall performance. Results are shown in Table 6.

Features F1

All features 90.90

Only

Pitch 90.71 (ns)
Intensity 90.29 (*)
Duration 86.24 (*)
Pause 86.21 (*)

No prosodic features 86.09 (*)

Table 6: Results of ablation testing, measured by F1
score on the dev. set. Asterisks indicate a statistically
significant difference (p < 0.001) from the model with
all features. The first row shows with all features; the
next four rows show the result with one feature at a
time; the final row shows the result with no prosody.

7 Conclusion

Our experiments show that parsing English speech
transcriptions without gold SU boundaries is diffi-
cult for our parser: Its F1 score drops by about 4
percentage points compared to a model with gold
SU boundaries. Incorrect SU segmentation causes
a large part of this damage, though other errors in
tree construction also play a role. We show that we
can undo this damage by giving our parser prosodic
information. Importantly, prosody helps by allow-
ing the parser to distinguish disfluencies from SU
boundaries. These results argue for giving prosodic
information to parsers in deployed applications,
where no SU boundary annotations are available,
including dialog agents.

Furthermore, our experiments show that even
limited prosodic features help a great deal: for our
English data, pitch information alone is not signifi-
cantly worse than pitch, intensity, pause, and word
duration information combined. This means that in-
corporating the right kind of prosodic information
can potentially lead to significant gains.

Acknowledgments

We are very grateful to Trang Tran for help answer-
ing questions related to her code and to Mari Osten-
dorf for conversations that helped inspire this paper.
We would like to thank Korin Richmond, the ACL
reviewers, and members of the AGORA research
group at the University of Edinburgh for their feed-
back. This work was supported by funding from
Huawei and the project SEMANTAX, which re-
ceived funding from the European Research Coun-
cil (ERC) under the European Union’s Horizon
2020 research and innovation programme (grant
agreement No. 742137).



988

References

Tanvirul Alam, Akib Khan, and Firoj Alam. 2020.
Punctuation restoration using transformer models
for high-and low-resource languages. In Proceed-
ings of the Sixth Workshop on Noisy User-generated
Text (W-NUT 2020), pages 132–142, Online. Associ-
ation for Computational Linguistics.

Edward Loper Bird, Steven and Ewan Klein. 2009.
Natural Language Processing with Python.
O’Reilly Media Inc.

Sasha Calhoun, Jean Carletta, Jason Brenier, Neil
Mayo, Dan Jurafsky, Mark Steedman, and David
Beaver. 2010. The NXT-format Switchboard Cor-
pus: A rich resource for investigating the syntax, se-
mantics, pragmatics and prosody of dialogue. Lan-
guage Resources and Evaluation, 44:387–419.

Eugene Charniak and Mark Johnson. 2001. Edit detec-
tion and parsing for transcribed speech. In Second
Meeting of the North American Chapter of the Asso-
ciation for Computational Linguistics.

Xiaoyin Che, Cheng Wang, Haojin Yang, and
Christoph Meinel. 2016. Punctuation prediction
for unsegmented transcript based on word vector.
In Proceedings of the Tenth International Confer-
ence on Language Resources and Evaluation (LREC
2016), Paris, France. European Language Resources
Association (ELRA).

Anne Cutler, Delphine Dahan, and Wilma van Donse-
laar. 1997. Prosody in the comprehension of spo-
ken language: A literature review. Language and
Speech, 40(2):141–201.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Marcello Federico, Sebastian Stüker, Luisa Bentivogli,
Michael Paul, Mauro Cettolo, Teresa Herrmann, Jan
Niehues, and Giovanni Moretti. 2012. The iwslt
2011 evaluation campaign on automatic talk transla-
tion. In International Conference on Language Re-
sources and Evaluation (LREC), pages 3543–3550.

David Gaddy, Mitchell Stern, and Dan Klein. 2018.
What’s going on in neural constituency parsers? an
analysis. In Proceedings of the 2018 Conference of
the North American Chapter of the Association for
Computational Linguistics: Human Language Tech-
nologies, Volume 1 (Long Papers), pages 999–1010,
New Orleans, Louisiana. Association for Computa-
tional Linguistics.

P. Ghahremani, B. BabaAli, D. Povey, K. Riedhammer,
J. Trmal, and S. Khudanpur. 2014. A pitch extrac-
tion algorithm tuned for automatic speech recogni-
tion. In 2014 IEEE International Conference on
Acoustics, Speech and Signal Processing (ICASSP),
pages 2494–2498.

Yoshihiko Gotoh and Steve Renals. 2000. Sentence
boundary detection in broadcast speech transcripts.
In ASR2000-Automatic Speech Recognition: Chal-
lenges for the new Millenium ISCA Tutorial and Re-
search Workshop (ITRW).

Michelle Gregory, Mark Johnson, and Eugene Char-
niak. 2004. Sentence-internal prosody does not help
parsing the way punctuation does. Proceedings of
the Human Language Technology Conference of the
North American Chapter of the Association for Com-
putational Linguistic.

John Hale, Izhak Shafran, Lisa Yung, Bonnie J. Dorr,
Mary Harper, Anna Krasnyanskaya, Matthew Lease,
Yang Liu, Brian Roark, Matthew Snover, and Robin
Stewart. 2006. PCFGs with syntactic and prosodic
indicators of speech repairs. In Proceedings of
the 21st International Conference on Computational
Linguistics and 44th Annual Meeting of the Associa-
tion for Computational Linguistics, pages 161–168.
Association for Computational Linguistics.

Lynette Hirschman. 1992. Multi-site data collection
for a spoken language corpus. In Proceedings of the
Workshop on Speech and Natural Language, HLT
’91, page 7–14, USA. Association for Computa-
tional Linguistics.

Mahaveer Jain, Gil Keren, Jay Mahadeokar, Geoffrey
Zweig, Florian Metze, and Yatharth Saraf. 2020.
Contextual RNN-T for Open Domain ASR. In Proc.
Interspeech 2020, pages 11–15.

Jeremy G. Kahn, Matthew Lease, Eugene Charniak,
Mark Johnson, and Mari Ostendorf. 2005. Effective
use of prosody in parsing conversational speech. In
Proceedings of the Conference on Human Language
Technology and Empirical Methods in Natural Lan-
guage Processing, HLT ’05, page 233–240, USA.
Association for Computational Linguistics.

Jeremy G. Kahn and Mari Ostendorf. 2012. Joint
reranking of parsing and word recognition with au-
tomatic segmentation. Computer Speech and Lan-
guage, 26(1):1 – 19.

Jeremy G. Kahn, Mari Ostendorf, and Ciprian Chelba.
2004. Parsing conversational speech using enhanced
segmentation. In Proceedings of HLT-NAACL 2004,
pages 125–128, Boston, Massachusetts, USA. Asso-
ciation for Computational Linguistics.

Heejin Kim, Tae jin Yoon, Jennifer Cole, and Mark
Hasegawa-johnson. 2006. Acoustic differentiation
of l- and l-l% in Switchboard and radio news speech.
In Proceedings of Speech Prosody 2006.

https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.18653/v1/2020.wnut-1.18
https://doi.org/10.1007/s10579-010-9120-1
https://doi.org/10.1007/s10579-010-9120-1
https://doi.org/10.1007/s10579-010-9120-1
https://www.aclweb.org/anthology/N01-1016
https://www.aclweb.org/anthology/N01-1016
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://www.aclweb.org/anthology/N19-1423
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.18653/v1/N18-1091
https://doi.org/10.1109/ICASSP.2014.6854049
https://doi.org/10.1109/ICASSP.2014.6854049
https://doi.org/10.1109/ICASSP.2014.6854049
https://doi.org/10.3115/1220175.1220196
https://doi.org/10.3115/1220175.1220196
https://doi.org/10.21437/Interspeech.2020-2986
https://doi.org/10.3115/1220575.1220605
https://doi.org/10.3115/1220575.1220605
https://doi.org/https://doi.org/10.1016/j.csl.2011.03.002
https://doi.org/https://doi.org/10.1016/j.csl.2011.03.002
https://doi.org/https://doi.org/10.1016/j.csl.2011.03.002
https://www.aclweb.org/anthology/N04-4032
https://www.aclweb.org/anthology/N04-4032


989

Nikita Kitaev and Dan Klein. 2018. Constituency pars-
ing with a self-attentive encoder. In Proceedings
of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers),
pages 2676–2686, Melbourne, Australia. Associa-
tion for Computational Linguistics.

Margaret M. Kjelgaard and Shari R. Speer. 1999.
Prosodic facilitation and interference in the resolu-
tion of temporary syntactic closure ambiguity. Jour-
nal of Memory and Language, 40(2):153 – 194.

Jáchym Kolář, Elizabeth Shriberg, and Yang Liu. 2006.
Using prosody for automatic sentence segmentation
of multi-party meetings. In International Confer-
ence on Text, Speech and Dialogue, pages 629–636.
Springer.

Jacqueline C. Kowtko and Patti J. Price. 1989. Data
collection and analysis in the air travel planning
domain. In Speech and Natural Language: Pro-
ceedings of a Workshop Held at Cape Cod, Mas-
sachusetts, October 15-18, 1989.

Jonathan K. Kummerfeld, David Hall, James R. Cur-
ran, and Dan Klein. 2012. Parser showdown at
the wall street corral: An empirical investigation
of error types in parser output. In Proceedings of
the 2012 Joint Conference on EMNLP and CoNLL,
pages 1048–1059, Jeju Island, South Korea.

John Makhoul, Francis Kubala, Richard Schwartz, and
Ralph Weischedel. 2000. Performance measures
for information extraction. Proceedings of DARPA
Broadcast News Workshop.

Elmar Noeth, Anton Batliner, Andreas Kießling, Ralf
Kompe, and Heinrich Niemann. 2000. Verbmobil:
The use of prosody in the linguistic components of
a speech understanding system. IEEE Transactions
on Speech and Audio processing, 8(5):519–532.

Jeffrey Pennington, Richard Socher, and Christopher D.
Manning. 2014. GloVe: Global vectors for word
representation. In EMNLP, pages 1532–1543.

Janet Breckenridge Pierrehumbert. 1980. The phonol-
ogy and phonetics of English intonation. Ph.D. the-
sis, Massachusetts Institute of Technology.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, Nagendra Goel, Mirko
Hannemann, Petr Motlicek, Yanmin Qian, Petr
Schwarz, Jan Silovsky, Georg Stemmer, and Karel
Vesely. 2011. The Kaldi speech recognition toolkit.
In IEEE 2011 Workshop on Automatic Speech
Recognition and Understanding. IEEE Signal Pro-
cessing Society.

Brian Roark, Mary Harper, Eugene Charniak, Bon-
nie Dorr, Mark Johnson, Jeremy Kahn, Yang Liu,
Mari Ostendorf, John Hale, Anna Krasnyanskaya,
Matthew Lease, Izhak Shafran, Matthew Snover,
Robin Stewart, and Lisa Yung. 2006. SParseval:
Evaluation metrics for parsing speech. In Proceed-
ings of the Fifth International Conference on Lan-
guage Resources and Evaluation (LREC’06).

Elisabeth Selkirk. 1984. Phonology and Syntax. MIT
Press, Cambridge, MA.

Elisabeth Selkirk. 1995. Sentence prosody: Intonation,
stress, and phrasing. The handbook of phonological
theory, 1:550–569.

Elizabeth Shriberg. 2001. To ’errrr’ is human: Ecology
and acoustics of speech disfluencies. Journal of the
International Phonetic Association, 31:153 – 169.

Shari Speer, Margaret Kjelgaard, and Kathryn Dobroth.
1996. The influence of prosodic structure on the res-
olution of temporary syntactic closure ambiguities.
Journal of psycholinguistic research, 25:249–71.

Vivek Kumar Rangarajan Sridhar, John Chen, Srinivas
Bangalore, Andrej Ljolje, and Rathinavelu Chengal-
varayan. 2013. Segmentation strategies for stream-
ing speech translation. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics, pages
230–238, Atlanta, Georgia. Association for Compu-
tational Linguistics.

Mark Steedman. 2000. Information structure and
the syntax-phonology interface. Linguistic inquiry,
31(4):649–689.

Mark Steedman and Jason Baldridge. 2011. Combi-
natory Categorial Grammar. In Robert Borsley and
Kersti Börjars, editors, Non-Transformational Syn-
tax: A Guide to Current Models, pages 181–224.
Blackwell, Oxford.

Mitchell Stern, Jacob Andreas, and Dan Klein. 2017. A
minimal span-based neural constituency parser. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 818–827, Vancouver, Canada.
Association for Computational Linguistics.

Ottokar Tilk and Tanel Alumäe. 2016. Bidirectional re-
current neural network with attention mechanism for
punctuation restoration. In Interspeech 2016, pages
3047–3051.

Trang Tran, Shubham Toshniwal, Mohit Bansal, Kevin
Gimpel, Karen Livescu, and Mari Ostendorf. 2018.
Parsing speech: a neural approach to integrating lex-
ical and acoustic-prosodic information. In Proceed-
ings of the 2018 Conference of the North American
Chapter of the Association for Computational Lin-
guistics, Volume 1 (Long Papers), pages 69–81, New
Orleans, Louisiana. Association for Computational
Linguistics.

Trang Tran, Jiahong Yuan, Yang Liu, and Mari Osten-
dorf. 2019. On the Role of Style in Parsing Speech
with Neural Models. In Proc. Interspeech 2019,
pages 4190–4194.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in neural information pro-
cessing systems, pages 5998–6008.

https://www.aclweb.org/anthology/P18-1249
https://www.aclweb.org/anthology/P18-1249
https://doi.org/https://doi.org/10.1006/jmla.1998.2620
https://doi.org/https://doi.org/10.1006/jmla.1998.2620
https://www.aclweb.org/anthology/H89-2017
https://www.aclweb.org/anthology/H89-2017
https://www.aclweb.org/anthology/H89-2017
http://www.aclweb.org/anthology/D12-1096
http://www.aclweb.org/anthology/D12-1096
http://www.aclweb.org/anthology/D12-1096
http://www.aclweb.org/anthology/D14-1162
http://www.aclweb.org/anthology/D14-1162
https://doi.org/10.1017/S0025100301001128
https://doi.org/10.1017/S0025100301001128
https://doi.org/10.1007/BF01708573
https://doi.org/10.1007/BF01708573
https://www.aclweb.org/anthology/N13-1023
https://www.aclweb.org/anthology/N13-1023
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.18653/v1/P17-1076
https://doi.org/10.21437/Interspeech.2016-1517
https://doi.org/10.21437/Interspeech.2016-1517
https://doi.org/10.21437/Interspeech.2016-1517
https://doi.org/10.18653/v1/N18-1007
https://doi.org/10.18653/v1/N18-1007
http://dx.doi.org/10.21437/Interspeech.2019-3122
http://dx.doi.org/10.21437/Interspeech.2019-3122


990

Michael Wagner and Duane G. Watson. 2010. Ex-
perimental and theoretical advances in prosody: A
review. Language and Cognitive Processes, 25(7-
9):905–945.

David Wan, Zhengping Jiang, Chris Kedzie, Elsbeth
Turcan, Peter Bell, and Kathy McKeown. 2020.
Subtitles to segmentation: Improving low-resource
speech-to-TextTranslation pipelines. In Proceed-
ings of the workshop on Cross-Language Search and
Summarization of Text and Speech, pages 68–73,
Marseille, France. European Language Resources
Association.

Paul Warren, Esther Grabe, and Francis Nolan. 1995.
Prosody, phonology and parsing in closure ambigui-
ties. Language and Cognitive Processes, 10(5):457–
486.

Chenglin Xu, Lei Xie, Guangpu Huang, Xiong Xiao,
Eng Siong Chng, and Haizhou Li. 2014. A deep
neural network approach for sentence boundary de-
tection in broadcast news. In INTERSPEECH-2014,
pages 2887–2891.

Vicky Zayats and Mari Ostendorf. 2019. Giving atten-
tion to the unexpected: Using prosody innovations
in disfluency detection. In Proceedings of the 2019
Conference of the North American Chapter of the As-
sociation for Computational Linguistics, Volume 1,
pages 86–95, Minneapolis, Minnesota. Association
for Computational Linguistics.

A Appendices

A.1 Model description
The parser is an encoder-decoder model that takes
both speech and text inputs. In this appendix, we
describe the three main model components: the
CNN that processes the continuous speech inputs
before they reach the encoder, the transformer-
based encoder, and the chart-style decoder.

A.1.1 The speech-processing CNN
Of the four prosodic features, pause and duration
are already discrete at the token level. Pitch and
intensity, however, are extracted from frames ev-
ery 10 ms in the original speech signal. If a given
token is shorter than a fixed number of frames,
some frames of left and right context are included;
frames from longer tokens are subsampled to re-
duce their frame length. These two frame-based
features features have a different dimensionality
than the token-level input and they are untenably
long for a sequence model or transformer. The
CNN solves both these problems by producing a
fixed-length representation for each feature at the
token level. This representation can be concate-
nated with the other token-level features and input
to the encoder.

For a speech input with f frames, the raw fea-
tures input to the CNN have dimensions 6 × f ,
where 6 is the number of total features for each
frame (3 pitch features and 3 intensity features).
Several filters of different sizes then perform one-
dimensional convolution of the input. These differ-
ent filters allow the CNN to integrate information
on various time scales. We apply N of each of these
m filters, for a total of mN filters. We use the hy-
perparameters described by Tran et al. (2018): N
= 32 filters of widths w = [5, 10, 25, 50], for a total
of mN = 128 filters. The output of each filter is
then max-pooled, which converts the features for a
given token to a uniform dimension.

These CNN-processed features are then concate-
nated with the token-level prosodic features (pause
and duration) and the text embedding for the token,
and then input to the encoder. The CNN is trained
along with the encoder-decoder model.

A.1.2 The encoder
The encoder is a standard transformer with eight
attention heads, based on the work of Kitaev and
Klein (2018). For each word of input xi, the trans-
former encoder produces a representation of the
forward context, −→yi , and the backward context←−yi .
We represent a given span between indices i and
j by subtracting the forward representations and
backward representations and concatenating the
results:

v(i,j) = [−→yj −−→yi ;←−yj −←−yi ]

The next section explains how we use this span rep-
resentation v(i,j) to generate scores for constituents
in a tree.

A.1.3 The decoder
The decoder is a chart-style span-based decoder.
Its goal is to output the correct tree T for an input
x1, ..., xn. Each tree’s score S(T ) is simply the
sum of the scores of its constituents, where each
constituent is defined by a start index i, an end
index j, and a label l.

Stree(T ) =
∑

i,j,label∈T
Slabel(i, j, l) + Sspan(i, j)

As this formula for tree score shows, each con-
stituent’s score is made up of a label score and span
score. Conceptually, the span score corresponds to
the probability that a constituent exists that exactly

https://doi.org/10.1080/01690961003589492
https://doi.org/10.1080/01690961003589492
https://doi.org/10.1080/01690961003589492
https://www.aclweb.org/anthology/2020.clssts-1.11
https://www.aclweb.org/anthology/2020.clssts-1.11
https://doi.org/10.1080/01690969508407112
https://doi.org/10.1080/01690969508407112
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008
https://doi.org/10.18653/v1/N19-1008


991

covers span (i, j) in the input; the label score re-
flects the probability that the span (i, j) has a given
constituent label (e.g., S, NP). The decoder must
have a way of determining the label score and span
score for each constituent.

The label scores are generated by passing the
span representation v(i,j) through a two-layer feed-
forward network like the feed-forward networs
Vaswani et al. (2017) use:

FFN(x) = W2(relu(W1x + b1)) + b2

Following Kitaev and Klein (2018), we also include
a layer normalization step (LNorm). This feed-
forward network produces a vector for each span
Slabel(i, j) whose size is the number of possible
labels:

Slabel(i, j) = M2(relu(LNorm(M1v(i,j))+c1))+c2

The lth element of this vector is the score for the
label l:

Slabel(i, j, l) = [Slabel(i, j, )]l

We also need to calculate the span score, but
calculating the score for all spans (i, j) would
be prohibitively inefficient. Instead, Kitaev and
Klein (2018), following the approach of Stern et al.
(2017) and Gaddy et al. (2018), use a dynamic pro-
gramming strategy based on the CKY algorithm.
The score for a span (i, j) is calculated in terms
of the scores of its subspans, which allows span
scores to be built up recursively from the stored
scores of smaller spans. A given span (i, j) can be
split at any internal point into two subspans, (i, k)
and (k, j). Each of these possible splits (i, k, j) is
assigned a score, calculated by summing the span
scores of the subspans:

Ssplit(i, k, j) = Sspan(i, k) + Sspan(k, j)

Then, to find the best score for this span (i, j), we
find the label and split that maximize the following
sum:

Sbest(i, j) = max
l,k

[Slabel(i, j, l) + Ssplit(i, k, j)]

All spans are recursively split into subspans, even-
tually arriving at single-word spans. Since there
are no splits possible for a single-word span, the
score for a single word span is simply that word’s
best label score:

Sbest(i, i + 1) = max
l

[Slabel(i, i + 1, l)]

This method requires that the grammar be in
Chomsky-Normal form, which the model achieves
by collapsing strings of unary rules and using
dummy nodes to make n-ary rules into binary rules.

With this method of generating tree scores from
span representations, we can then define the hinge
loss for our predicted tree T̂ compared to the gold
tree T∗, where ∆ represents the Hamming loss on
labeled spans:

Loss(T̂ , T∗) =

max[0,max
T

[∆(T̂ , T∗) + Stree(T̂ )]

− Stree(T∗)]

We then use this loss function to train our
encoder-decoder, including the CNN input mod-
ule for speech.

A.2 Model training details
We used the hyperparameters specified in (Tran
et al., 2019)’s code base, documented in Table 7.
Each model was trained for 50 epochs on a single
Nvidia GTX 1080 GPU, which took approximately
7 hours per model. The text-only models have ap-
proximately 23M trainable parameters each, while
the text+prosody models have approximately 20M
trainable parameters.

Hyperparameter Value
Epochs 50
Text embedding dim. 300
Max. seq. length 270
Dropout 0.3
Num. layers 4
Num. heads 8
Model dim. 1536
Key/value dim. 96

Table 7: Model hyperparameters. Note that the maxi-
mum sequence length for the SU-based model is 200
tokens.

A.3 Incorporating BERT
We include here the results for both the SU- and
turn-based parsers when given BERT embeddings
(Devlin et al., 2019) in place of GloVE embed-
dings (Pennington et al., 2014). We train one model
for each experimental condition, using the random
seed we used to generate the results shown in Ta-
ble 1. We see in Table 8 that BERT improves the



992

TURN

SBAR

although we just moved to california and uh the cost of living ... is ... pathological

(a) Text+prosody model output

TURN

S

and uh the cost of living ... is ... pathological

SBAR

although we just moved to california

(b) Text-only model output

Figure 3: An example of a clause attachment error. The tree shown in (a) is correctly parsed as a single SU by the
text+prosody model, whereas the text-only model incorrectly segments this into two SUs, as shown in (b). This
example is taken from the development set and slightly simplified for space (shown by ellipses).

performance in all experimental conditions. The
SU-based text+prosody parser does outperform the
turn-based parser by a statistically significant mar-
gin, though this result was obtained on just one
model instead of 10 randomly seeded models. How-
ever, the turn-based parser’s performance remains
quite close to the SU-based parser’s despite having
a more difficult task to perform, and otherwise the
basic pattern from the GloVE results holds here.

SU-based Turn-based
Text only 91.90 88.08
Text+prosody 92.77 92.12

Table 8: Development set F1 when using BERT embed-
dings, comparing the turn-based model to the SU-based
model.

A.4 Clause attachment illustration
Figure 3 illustrates an example of an error classified
as a clause attachment error by the Berkeley Parser
Analyser (Kummerfeld et al., 2012).


