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Abstract

Medical imaging plays a significant role in
clinical practice of medical diagnosis, where
the text reports of the images are essential in
understanding them and facilitating later treat-
ments. By generating the reports automati-
cally, it is beneficial to help lighten the burden
of radiologists and significantly promote clin-
ical automation, which already attracts much
attention in applying artificial intelligence to
medical domain. Previous studies mainly fol-
low the encoder-decoder paradigm and focus
on the aspect of text generation, with few stud-
ies considering the importance of cross-modal
mappings and explicitly exploit such map-
pings to facilitate radiology report generation.
In this paper, we propose a cross-modal mem-
ory networks (CMN) to enhance the encoder-
decoder framework for radiology report gen-
eration, where a shared memory is designed to
record the alignment between images and texts
so as to facilitate the interaction and generation
across modalities. Experimental results illus-
trate the effectiveness of our proposed model,
where state-of-the-art performance is achieved
on two widely used benchmark datasets, i.e.,
IU X-Ray and MIMIC-CXR. Further analyses
also prove that our model is able to better align
information from radiology images and texts
so as to help generating more accurate reports
in terms of clinical indicators.1

1 Introduction

Interpreting radiology images (e.g., chest X-ray)
and writing diagnostic reports are essential oper-
ations in clinical practice and normally requires
considerable manual workload. Therefore, radi-
ology report generation, which aims to automat-
ically generate a free-text description based on a
radiograph, is highly desired to ease the burden of
†Corresponding author.
1Our code and the best performing models are released at

https://github.com/cuhksz-nlp/R2GenCMN.

Findings
There is no focal consolidation, pleural eff-
usion or pneumothorax. Bilateral nodular 
opacities that most likely represent nipple 
shadows. The cardiomediastinal silhouette 
is normal.  Clips project over the left lung, 
potentially within the breast. The imaged 
upper abdomen is unremarkable.
Impression
No acute cardiopulmonary process.

Figure 1: A chest X-ray image and its report includ-
ing findings and impression, where aligned visual and
textual features are marked in different colors.

radiologists while maintaining the quality of health
care. Recently, substantial progress has been made
towards research on automated radiology report
generation models (Jing et al., 2018; Li et al., 2018;
Johnson et al., 2019; Liu et al., 2019; Jing et al.,
2019). Most existing studies adopt a conventional
encoder-decoder architecture, with convolutional
neural networks (CNNs) as the encoder and recur-
rent (e.g., LSTM/GRU) or non-recurrent networks
(e.g., Transformer) as the decoder following the im-
age captioning paradigm (Vinyals et al., 2015; An-
derson et al., 2018). Although these methods have
achieved remarkable performance, they are still re-
strained in fully employing the information across
radiology images and reports, such as the mappings
demonstrated in Figure 1 that aligned visual and
textual features point to the same content. The rea-
son for the restraint comes from both the limitation
of annotated correspondences between image and
text for supervised learning as well as the lack of
good model design to learn the correspondences.
Unfortunately, few studies2 are dedicated to solv-
ing the restraint. Therefore, it is expected to have
a better solution to model the alignments across
modalities and further improve the generation abil-
ity, although promising results are continuously
acquired by other approaches (Li et al., 2018; Liu
et al., 2019; Jing et al., 2019; Chen et al., 2020).

2Along this research track, recently there is only Jing et al.
(2018) studying on a multi-task learning framework with a co-
attention mechanism to explicitly explore information linking
particular parts in a radiograph and its corresponding report.

https://github.com/cuhksz-nlp/R2GenCMN
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Figure 2: The overall architecture of our proposed approach, where the visual extractor, encoder and decoder are
shown in gray dash boxes with the details omitted. The cross-modal memory networks are illustrated in blue dash
boxes with presenting the detailed process of memory querying and responding.

In this paper, we propose an effective yet simple
approach to radiology report generation enhanced
by cross-modal memory networks (CMN), which is
designed to facilitate the interactions across modal-
ities (i.e., images and texts). In detail, we use a
memory matrix to store the cross-modal informa-
tion and use it to perform memory querying and
memory responding for the visual and textual fea-
tures, where for memory querying, we extract the
most related memory vectors from the matrix and
compute their weights according to the input visual
and textual features, and then generate responses
by weighting the queried memory vectors. After-
wards, the responses corresponding to the input
visual and textual features are fed into the encoder
and decoder, so as to generate reports enhanced
by such explicitly learned cross-modal information.
Experimental results on two benchmark datasets,
IU X-RAY and MIMIC-CXR, confirm the validity
and effectiveness of our proposed approach, where
state-of-the-art performance is achieved on both
datasets. Several analyses are also performed to
analyze the effects of different factors affecting our
model, showing that our model is able to generate
reports with meaningful image-text mapping while
requiring few extra parameters in doing so.

2 The Proposed Approach

We regard radiology report generation as an image-
to-text generation task, for which there exist sev-

eral solutions (Vinyals et al., 2015; Xu et al., 2015;
Anderson et al., 2018; Cornia et al., 2019). Al-
though images are organized as 2-D format, we fol-
low the standard sequence-to-sequence paradigm
for this task as that performed in Chen et al.
(2020). In detail, the source sequence is X =
{x1,x2, ...,xs, ...,xS}, where xs ∈ Rd are ex-
tracted by visual extractors from a radiology image
I and the target sequence are the corresponding
report Y = {y1, y2, ..., yt, ..., yT }, where yt ∈ V
are the generated tokens, T the length of the report
and V the vocabulary of all possible tokens. The
entire generation process is thus formalized as a
recursive application of the chain rule

p(Y|I) =

T∏
t=1

p(yt|y1, ..., yt−1, I) (1)

The model is then trained to maximize p(Y|I)
through the negative conditional log-likelihood of
Y given the I:

θ∗ = arg max
θ

T∑
t=1

log p(yt|y1, ..., yt−1, I; θ) (2)

where θ is the parameters of the model. An
overview of the proposed model is demonstrated
in Figure 2, with cross-modal memories empha-
sized. The details of our approach are described in
following subsections regarding to its three major
components, i.e., the visual extractor, the cross-
modal memory networks and the encoder-decoder
process enhanced by the memory.
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2.1 Visual Extractor

To generate radiology reports, the first step is to ex-
tract the visual features from radiology images. In
our approach, the visual features X of a radiology
image I are extracted by pre-trained convolutional
neural networks (CNN), such as VGG (Simonyan
and Zisserman, 2015) or ResNet (He et al., 2016).
Normally, an image is decomposed into regions of
equal size3, i.e., patches, and the features (represen-
tations) of them are extracted from the last convo-
lutional layer of CNN. Once extracted, the features
in our study are expanded into a sequence by con-
catenating them from each row of the patches on
the image. The resulted representation sequence is
used as the source input for all subsequent modules
and the process is formulated as

{x1,x2, ...,xs, ...,xS} = fv(I) (3)

where fv(·) refers to the visual extractor.

2.2 Cross-modal Memory Networks

To model the alignment between image and text,
existing studies tend to map between images and
texts directly from their encoded representations
(e.g., Jing et al. (2018) used a co-attention to do so).
However, this process always suffers from the limi-
tation that the representations across modalities are
hard to be aligned, so that an intermediate medium
is expected to enhance and smooth such mapping.
To address the limitation, we propose to use CMN
to better model the image-text alignment, so as to
facilitate the report generation process.

With using the proposed CMN, the mapping and
encoding can be described in the following pro-
cedure. Given a source sequence {x1,x2, ...,xS}
(features extracted from the visual extractor) from
an image, we feed it to this module to ob-
tain the memory responses of the visual features
{rx1 , rx2 , ..., rxS}. Similarly, given a generated
sequence {y1, y2, ..., yt−1} with its embedding
{y1,y2, ...,yt−1}, it is also fed to the cross-modal
memory networks to output the memory responses
of the textual features {ry1 , ry2 , ..., ryt−1}. In do-
ing so, the shared information of visual and textual
features can be recorded in the memory so that the
entire learning process is able to explicitly map
between the images and texts. Specifically, the
cross-modal memory networks employs a matrix
to preserve information for encoding and decoding
process, where each row of the matrix (i.e., a mem-

3E.g., VGG/ResNet uses region size 32 × 32 (in pixels).

ory vector) records particular cross-modal informa-
tion connecting images and texts. We denote the
matrix as M = {m1,m2, ...,mi, ...,mN }, where
N represents the number of memory vectors and
mi ∈ Rd the memory vector at row i with d refer-
ring to its dimension. During the process of report
generation, CMN is operated with two main steps,
namely, querying and responding, whose details
are described as follows.4

Memory Querying We apply multi-thread5 query-
ing to perform this operation, where in each thread
the querying process follows the same procedure
described as follows.

In querying memory vectors, the first step is
to ensure the input visual and textual features are
in the same representation space. Therefore, we
convert each memory vector in M as well as input
features through linear transformation by

ki = mi ·Wk (4)

qs = xs ·Wq (5)

qt = yt ·Wq (6)

where Wk and Wq are trainable weights for the
conversion. Then we separately extract the most
related memory vector to visual and textual features
according to their distances Dsi and Dti through

Dsi =
qs · k>i√

d
(7)

Dti =
qt · k>i√

d
(8)

where the number of extracted memory vectors can
be controlled by a hyper-parameter K to regularize
how much memory is used. We denote the queried
memory vectors as {ks1 ,ks2 , ...,ksj , ...,ksK} and
{kt1 ,kt2 , ...,ktj , ...,ktK}. Afterwards, the impor-
tance weight of each memory vector with respect
to visual and textual features are obtained by nor-
malization over all distances by

wsi =
exp(Dsi)

ΣKj=1exp(Dsj )
(9)

wti =
exp(Dti)

ΣKj=1exp(Dtj )
(10)

Note that the above steps are applied in each thread
to allow memory querying from different memory
representation subspaces.

4Note that these two steps are performed in both training
and inference stages, where in inference, all textual features
are obtained along with the generation process.

5Thread number can be arbitrarily set in experiments.
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Memory Responding The responding process is
also conducted in a multi-thread manner corre-
sponding to the query process. For each thread,
we firstly perform a linear transformation on the
queried memory vector via

vi = mi ·Wv (11)

where Wv is the trainable weight for mi. So that
all memory vectors {vs1 ,vs2 , ...,vsj , ...,vsK} are
transferred into {vt1 ,vt2 , ...,vtj , ...,vtK}. Then,
we obtain the memory responses for visual and
textual features by weighting over the transferred
memory vectors by

rxs = ΣKi=1wsivsi (12)

ryt = ΣKi=1wtivti (13)

where wsi and wti are the weights obtained from
memory querying. Similar to memory querying,
we apply memory responding to all the threads
so as to obtain responses from different memory
representation subspaces.

2.3 Encoder-Decoder
Since the quality of input representation plays an
important role in model performance (Pennington
et al., 2014; Song et al., 2017, 2018; Peters et al.,
2018; Song and Shi, 2018; Devlin et al., 2019; Song
et al., 2021), the encoder-decoder in our model is
built upon standard Transformer (which is a pow-
erful architecture that achieved state-of-the-art in
many tasks), where memory responses of visual
and textual features are functionalized as the in-
put of the encoder and decoder so as to enhance
the generation process. In detail, as the first step,
the memory responses {rx1 , rx2 , ..., rxS} for vi-
sual features are fed into the encoder through

{z1, z2, ..., zS} = fe(rx1 , rx2 , ..., rxS ) (14)

where fe(·) represents the encoder. Then the re-
sulted intermediate states {z1, z2, ..., zS} are sent
to the decoder at each decoding step, jointly with
the memory responses {ry1 , ry2 , ..., ryt−1} for the
textual features of generated tokens from previous
steps, so as to generate the current output yt by

yt = fd(z1, z2, ..., zS , ry1 , ry2 , ..., ryt−1) (15)

where fd(·) refers to the decoder. As a result, to
generate a complete report, the above process is
repeated until the generation is finished.

DATASET
IU X-RAY MIMIC-CXR

TRAIN VAL TEST TRAIN VAL TEST

IMAGE # 5.2K 0.7K 1.5K 369.0K 3.0K 5.2K
REPORT # 2.8K 0.4K 0.8K 222.8K 1.8K 3.3K
PATIENT # 2.8K 0.4K 0.8K 64.6K 0.5K 0.3K
AVG. LEN. 37.6 36.8 33.6 53.0 53.1 66.4

Table 1: The statistics of the two benchmark datasets
w.r.t. their training, validation and test sets, including
the numbers of images, reports and patients, and the
averaged word-based length (AVG. LEN.) of reports.

3 Experiment Settings

3.1 Datasets

We employ two conventional benchmark datasets
in our experiments, i.e., IU X-RAY (Demner-
Fushman et al., 2016)6 from Indiana University
and MIMIC-CXR (Johnson et al., 2019)7 from
the Beth Israel Deaconess Medical Center. The
former is a relatively small dataset with 7,470 chest
X-ray images and 3,955 corresponding reports; the
latter is the largest public radiography dataset with
473,057 chest X-ray images and 206,563 reports.

Following the experiment settings from previous
studies (Li et al., 2018; Jing et al., 2019; Chen et al.,
2020), we only generate the findings section and
exclude the samples without the findings section for
both datasets. For IU X-RAY, we use the same split
(i.e., 70%/10%/20% for train/validation/test set) as
that stated in Li et al. (2018) and for MIMIC-CXR
we adopt its official split. Table 1 show the statistics
of all datasets in terms of the numbers of images,
reports, patients and the average length of reports
with respect to train/validation/test set.

3.2 Baseline and Evaluation Metrics

To examine our proposed model, we use the follow-
ing ones as the main baselines in our experiments:
• BASE: this is the backbone encoder-decoder

used in our full model, i.e., a three-layer Trans-
former model with 8 heads and 512 hidden units
without other extensions.
• BASE+MEM: this is the Transformer model with

the same architecture of BASE where two mem-
ory networks are separately applied to image and
text, respectively. This baseline aims to provide
a reference to the cross-modal memory.

To further demonstrate the effectiveness of our
model, we compare it with previous studies, includ-

6https://openi.nlm.nih.gov/
7https://physionet.org/content/

mimic-cxr/2.0.0/

https://openi.nlm.nih.gov/
https://physionet.org/content/mimic-cxr/2.0.0/
https://physionet.org/content/mimic-cxr/2.0.0/
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DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L AVG. ∆ P R F1

IU
X-RAY

BASE 0.396 0.254 0.179 0.135 0.164 0.342 - - - -
+MEM 0.443 0.270 0.191 0.144 0.172 0.351 6.6% - - -
+CMN 0.475 0.309 0.222 0.170 0.191 0.375 19.6% - - -

MIMIC
-CXR

BASE 0.314 0.192 0.127 0.090 0.125 0.265 - 0.331 0.224 0.228
+MEM 0.340 0.209 0.140 0.100 0.135 0.273 8.2% 0.322 0.255 0.261
+CMN 0.353 0.218 0.148 0.106 0.142 0.278 13.1% 0.334 0.275 0.278

Table 2: NLG and CE evaluations of different models on the test sets of IU X-RAY and MIMIC-CXR datasets.
BL-n denotes BLEU score using up to 4-grams; MTR and RG-L denote METEOR and ROUGE-L, respectively.
The average improvement over all NLG metrics compared to BASE is also presented in the “AVG. ∆” column.

ing conventional image captioning models, e.g.,
ST (Vinyals et al., 2015), ATT2IN (Rennie et al.,
2017), ADAATT (Lu et al., 2017), TOPDOWN (An-
derson et al., 2018), and the ones proposed for the
medical domain, e.g., COATT (Jing et al., 2018),
HRGR (Li et al., 2018), CMAS-RL (Jing et al.,
2019) and R2GEN (Chen et al., 2020).

Following Chen et al. (2020), we evaluate the
above models by two types of metrics, conventional
natural language generation (NLG) metrics and
clinical efficacy (CE) metrics8. The NLG metrics9

include BLEU (Papineni et al., 2002), METEOR
(Denkowski and Lavie, 2011) and ROUGE-L (Lin,
2004). For CE metrics, the CheXpert (Irvin et al.,
2019)10 is applied to label the generated reports
and compare the results with ground truths in 14
different categories related to thoracic diseases and
support devices. We use precision, recall and F1 to
evaluate model performance for CE metrics.

3.3 Implementation Details

To ensure consistency with the experiment settings
of previous work (Li et al., 2018; Chen et al., 2020),
we use two images of a patient as input for re-
port generation on IU X-RAY and one image for
MIMIC-CXR. For visual extractor, we adopt the
ResNet101 (He et al., 2016) pretrained on Ima-
geNet (Deng et al., 2009) to extract patch features
with 512 dimensions for each feature. For the
encoder-decoder backbone, we use a Transformer
structure with 3 layers and 8 attention heads, 512
dimensions for hidden states and initialize it ran-
domly. For the memory matrix in CMN, its dimen-

8Note that CE metrics only apply to MIMIC-CXR be-
cause the labeling schema of CheXpert is designed for
MIMIC-CXR, which is different from that of IU X-RAY.

9https://github.com/tylin/coco-caption
10https://github.com/MIT-LCP/mimic-cxr/

tree/master/txt/chexpert

sion and the number of memory vectors N are set
to 512 and 2048, respectively, and also randomly
initialized. For memory querying and responding,
thread number and the K are set to 8 and 32, re-
spectively. We train our model under cross entropy
loss with Adam optimizer (Kingma and Ba, 2015).
The learning rates of the visual extractor and other
parameters are set to 5 × 10−5 and 1 × 10−4, re-
spectively, and we decay them by a 0.8 rate per
epoch for all datasets. For the report generation
process, we set the beam size to 3 to balance the ef-
fectiveness and efficiency of all models. Note that
the optimal hyper-parameters mentioned above are
obtained by evaluating the models on the validation
sets from the two datasets.

4 Results and Analyses

4.1 Effect of Cross-Modal Memory

The main experimental results on the two afore-
mentioned datasets are shown in Table 2, where
BASE+CMN represents our model (same below).
There are several observations drawn from different
aspects. First, both BASE+MEM and BASE+CMN

outperform the vanilla Transformer (BASE) on both
datasets with respect to NLG metrics, which con-
firms the validity of incorporating memory to intro-
duce more knowledge into the Transformer back-
bone. Such knowledge may come from the hidden
structures and regularity patterns shared among ra-
diology images and their reports, so that the mem-
ory modules are able to explicitly and reasonably
model them to promote the recognition of diseases
(symptoms) and the generation of reports. Sec-
ond, the comparison between BASE+CMN and two
baselines on different metrics confirms the effec-
tiveness of our proposed model with significant im-
provement. Particularly, BASE+CMN outperforms
BASE+MEM by a large margin, which indicates the

https://github.com/tylin/coco-caption
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert
https://github.com/MIT-LCP/mimic-cxr/tree/master/txt/chexpert


5909

DATA MODEL
NLG METRICS CE METRICS

BL-1 BL-2 BL-3 BL-4 MTR RG-L P R F1

IU
X-RAY

ST‡ 0.216 0.124 0.087 0.066 - 0.306 - - -
ATT2IN‡ 0.224 0.129 0.089 0.068 - 0.308 - - -
ADAATT‡ 0.220 0.127 0.089 0.068 - 0.308 - - -

COATT‡ 0.455 0.288 0.205 0.154 - 0.369 - - -
HRGR‡ 0.438 0.298 0.208 0.151 - 0.322 - - -
CMAS-RL‡ 0.464 0.301 0.210 0.154 - 0.362 - - -
R2GEN‡ 0.470 0.304 0.219 0.165 0.187 0.371 - - -

OURS (CMN) 0.475 0.309 0.222 0.170 0.191 0.375 - - -

MIMIC
-CXR

ST3 0.299 0.184 0.121 0.084 0.124 0.263 0.249 0.203 0.204
ATT2IN3 0.325 0.203 0.136 0.096 0.134 0.276 0.322 0.239 0.249
ADAATT3 0.299 0.185 0.124 0.088 0.118 0.266 0.268 0.186 0.181
TOPDOWN3 0.317 0.195 0.130 0.092 0.128 0.267 0.320 0.231 0.238
R2GEN‡ 0.353 0.218 0.145 0.103 0.142 0.277 0.333 0.273 0.276

OURS (CMN) 0.353 0.218 0.148 0.106 0.142 0.278 0.334 0.275 0.278

Table 3: Comparisons of our proposed model with previous studies on the test sets of IU X-RAY and MIMIC-
CXR with respect to NLG and CE metrics. ‡ refers to that the result is directed cited from the original paper and
3 represents our replicated results by their released codes.

usefulness of CMN in learning cross-modal fea-
tures with a shared structure rather than separate
ones. Third, when comparing between datasets,
the performance gains from BASE+CMN over two
baselines (i.e., BASE and BASE+MEM) on MIMIC-
CXR are larger than that of IU X-RAY. This ob-
servation owes to the fact that MIMIC-CXR is
relatively larger, which helps the learning of the
alignment between images and texts so that CMN
helps more on report generation on MIMIC-CXR.
Third, when compared between datasets, the per-
formace gain from BASE+CMN over two baselines
(i.e., BASE and BASE+MEM) on IU X-RAY are
larger than that of MIMIC-CXR. This observation
owes to the fact that IU X-Ray is relatively small
and has less complicated visual-textual mappings,
thus easier for generation by CMN. Moreover, this
size effect also helps that our model shows the
same trend on the CE metrics on MIMIC-CXR as
that for NLG metrics, where it outperforms all its
baselines in terms of precision, recall and F1.

4.2 Comparison with Previous Studies

To further demonstrate the effectiveness, we further
compare our model with existing models on the
same datasets, with their results reported in Table 3
on both NLG and CE metrics. We have following
observations. First, cross-modal memory shows its
effectiveness in this task, where our model outper-

forms COATT, although both of them improve the
report generation by the alignment of visual and
textual features. The reason behind might be that
our model is able to use a shared memory matrix
as the medium to softly align the visual and tex-
tual features instead of direct alignment using the
co-attention mechanism, thus unifies cross-modal
features within same representation space and fa-
cilitate the alignment process. Second, our model
confirms its superiority of simplicity when com-
paring with those complicated models. For exam-
ple, HRGR uses manually extracted templates and
CMAS-RL utilizes reinforcement learning with a
careful design of adaptive rewards and our model
achieves better results with a rather simpler method.
Third, applying memory to both the encoding and
decoding can further improve the generation abil-
ity of Transformer when compared with R2GEN

which only uses memory in decoding. This obser-
vation complies with our intuition that the cross-
modal operation tightens the encoding and decod-
ing so that our model generates higher quality re-
ports. Fourth, note that although there are other
models (i.e., COATT and HRGR) with exploiting
extra information (such as private datasets for vi-
sual extractor pre-training), our model still achieves
the state-of-the-art performance without requiring
such information. It reveals that in this task, the
hidden structures among the images and texts and a



5910

32 64 128 256 512 1024 2048 4096
0.088

0.092

0.096

0.100

0.104

0.108  BASE
 BASE+MEM
 BASE+CMN
 Parameter

Memory Size

BL
-4

62.8M

63.2M

63.6M

64.0M

64.4M

64.8M

 Param
eters

Figure 3: The BLEU-4 score and the number of param-
eters from BASE+CMN against the memory size (i.e.,
number of memory vectors) when the model is trained
and tested on MIMIC-CXR dataset.

good solution of exploiting them are more essential
in promoting the report generation performance.

4.3 Analysis
Memory Size To analyze the impacts of memory
size, we train our model with different numbers of
memory vectors, i.e., N ranges from 32 to 4096,
with the results on MIMIC-CXR shown in Fig-
ure 3. It is observed that, first, enlarging memory
by the number of vectors results in better overall
performance when the entire memory matrix is rel-
atively small (N ≤ 1024), which can be explained
by that, within a certain memory capacity, larger
memory size helps store more cross-modal infor-
mation; second, when the memory matrix is larger
than a threshold, increasing memory vectors is not
able to continue promising a better outcome. An
explanation to this observation may be that, when
the matrix is getting to large, the memory vectors
can not be fully updated so they do not help the
generation process other than being played as noise.
More interestingly, it is noted that even if we use
a rather large memory size (i.e., N = 4096), only
3.34% extra parameters are added to the model
compared to BASE, which justifies that introducing
memory to report generation process through our
model can be done with small price.

Number of Queried Memory Vectors To ana-
lyze how querying impacts report generation, we
try CMN with different numbers of queried vec-
tors, i.e., K ranges from 1 to 512, and show the
results in Figure 4. It is found that the number of
queried vectors should be neither too small nor too
big, where enlarging K leads to better results when
K ≤ 32 and after this threshold the performance
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Figure 4: The BLEU-4 score from BASE+CMN when
tested on the MIMIC-CXR test set against different
numbers of queried memory vectors.

starts to drop. The reason behind might be the
overfitting of memory updating since the memory
matrix is sparsely updated in each iteration when
K is small, i.e., it is hard to be overfit under this
scenario, while more queried vectors should cause
intensive updating on the matrix and some of the
essential vectors are over-updated accordingly. As
a result, it is interesting to find the optimal num-
ber (i.e., 32) of queried vectors and this is a useful
guidance to further improve report generation with
controlling the querying process.

Case Study To further qualitatively investigate
how our model learns from the alignments between
the visual and textual information, we perform a
case study on the generated reports from different
models regarding to an input chest X-ray image
chosen from MIMIC-CXR. Figure 5 shows the
image with ground-truth report, and different re-
ports with selected mappings from visual (some
part of the image) and textual features (some words
and phrases),11 where the mapped areas on the
image are highlighted with different colors. In gen-
eral, BASE+CMN is able to generate more accurate
descriptions (in terms of better visual-textual map-
ping) in the report while other baselines are inferior
in doing so. For instance, normal medical condi-
tions and abnormalities presented in the chest X-ray
image are covered by the generated report from
BASE+CMN (e.g., “severe cardiomegaly”, “pul-
monary edema” and “pulmonary arteries”) and the
related regions on the image are precisely located
regarding to the texts, while the areas highlighted
on the image from other models are inaccurate.

11The representations of the textual features are extracted
from the first layer of the decoder.



5911

Figure 5: Visualizations of image-text mappings between particular regions (indicated by colored weights) of a
chest X-ray image and words/phrases from its reports generated by BASE, BASE+MEM and BASE+CMN, respec-
tively. The color spectrum indicates the value of weight from low to high in the range of [0, 1].

Mild hyperinflated lungs …… with flattening hemidiaphragms.
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Figure 6: T-SNE visualization of memory vectors with
an example input image and its partial generated report
from MIMIC-CXR test set. The queried vectors for
visual and textual features are indicated by arrows.

To further illustrate how the alignment works
between visual and textual features, we perform a t-
SNE visualization on the memory vectors linking to
an image and its generated report from the MIMIC-
CXR test set. It is observed that the word “lung”
in the report and the visual feature for the region
of lung on the image query similar memory vec-
tors from CMN, where similar observation is also
drawn for “hemidiaphragms” and its correspond-
ing regions on the image. This case confirms that
memory vector is effective intermediate medium to
interact between image and text features.

5 Related Work

In general, the most popular related task to ours
is image captioning, a cross-modal task involv-
ing natural language processing and computer vi-
sion, which aims to describe images in sentences
(Vinyals et al., 2015; Xu et al., 2015; Anderson
et al., 2018; Wang et al., 2019; Cornia et al., 2019).

Among these studies, the most related study from
Cornia et al. (2019) also proposed to leverage mem-
ory matrices to learn a priori knowledge for visual
features using memory networks (Weston et al.,
2015; Sukhbaatar et al., 2015; Zeng et al., 2018;
Santoro et al., 2018; Nie et al., 2020; Diao et al.,
2020; Tian et al., 2020b, 2021; Chen et al., 2021),
but such operation is only performed during the
encoding process. Different from this work, the
memory in our model is designed to align the visual
and textual features, and the memory operations
(i.e., querying and responding) are performed in
both the encoding and decoding process.

Recently, many advanced NLP techniques (e.g.,
pre-trained language models) have been applied to
tasks in the medical domain (Pampari et al., 2018;
Zhang et al., 2018; Wang et al., 2018; Alsentzer
et al., 2019; Tian et al., 2019, 2020a; Wang et al.,
2020; Lee et al., 2020; Song et al., 2020). Being
one of the applications and extensions of image
captioning to the medical domain, radiology re-
port generation aims to depicting radiology images
with professional reports. Existing methods were
designed and proposed to better align images and
texts or to exploit highly-patternized features of
texts. For the former studies, Jing et al. (2018)
proposed a co-attention mechanism to simultane-
ously explore visual and semantic information with
a multi-task learning framework. For the latter stud-
ies, Li et al. (2018) introduced a template database
to incorporate patternized information and Chen
et al. (2020) improved the performance of radi-
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ology report generation by applying a memory-
driven Transformer to model patternized informa-
tion. Compared to these studies, our model offers
an effective yet simple alternative to generating ra-
diology reports, where a soft intermediate layer is
provided to facilitate the mappings between visual
and textual features, so that more accurate descrip-
tions are produced for generation.

6 Conclusion

In this paper, we propose to generate radiology re-
ports with cross-modal memory networks, where
a memory matrix is employed to record the align-
ment and interaction between images and texts,
with memory querying and responding performed
to obtain the shared information across modalities.
Experimental results on two benchmark datasets
demonstrate the effectiveness of our model, which
achieves the state-of-the-art performance. Further
analyses investigate the effects of hyper-parameters
in our model and show that our model is able to bet-
ter align information from images and texts, so as
to generate more accurate reports, especially with
the fact that enlarging the memory matrix does not
significantly affect the entire model size.
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