
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural Language Processing, pages 5638–5650

August 1–6, 2021. ©2021 Association for Computational Linguistics

5638

Learning to Ask Conversational Questions
by Optimizing Levenshtein Distance

Zhongkun Liu1, Pengjie Ren1∗, Zhumin Chen1∗, Zhaochun Ren1,
Maarten de Rijke2, Ming Zhou3

1School of Computer Science and Technology, Shandong University, China
2University of Amsterdam & Ahold Delhaize

3Sinovation Ventures, China
{liuzhongkun,renpengjie,chenzhumin, zhaochun.ren}@sdu.edu.cn

m.derijke@uva.nl; mingzhou926@hotmail.com

Abstract

Conversational Question Simplification (CQS)
aims to simplify self-contained questions into
conversational ones by incorporating some
conversational characteristics, e.g., anaphora
and ellipsis. Existing maximum likelihood es-
timation based methods often get trapped in
easily learned tokens as all tokens are treated
equally during training. In this work, we intro-
duce a Reinforcement Iterative Sequence Edit-
ing (RISE) framework that optimizes the min-
imum Levenshtein distance through explicit
editing actions. RISE is able to pay atten-
tion to tokens that are related to conversa-
tional characteristics. To train RISE, we de-
vise an Iterative Reinforce Training (IRT) al-
gorithm with a Dynamic Programming based
Sampling (DPS) process to improve explo-
ration. Experimental results on two bench-
mark datasets show that RISE significantly
outperforms state-of-the-art methods and gen-
eralizes well on unseen data.

1 Introduction

Conversational information seeking (CIS) (Zamani
and Craswell, 2020; Ren et al., 2021b) has received
extensive attention. It introduces a new way to
connect people to information through conversa-
tions (Qu et al., 2020; Gao et al., 2021; Ren et al.,
2020). One of the key features of CIS is mixed
initiative behavior, where a system can improve
user satisfaction by proactively asking clarification
questions (Zhang et al., 2018; Aliannejadi et al.,
2019; Xu et al., 2019), besides passively providing
answers (Croft et al., 2010; Radlinski and Craswell,
2017; Lei et al., 2020).

Previous studies on asking clarification questions
can be grouped into two categories: conversational
question generation (Duan et al., 2017) and conver-
sational question ranking (Aliannejadi et al., 2019).

∗∗ Corresponding authors.

Ira Hayes
 him→

revealing...
this→

Was anyone opposed to Ira Hayes revealing the
truth about Harlon and the Rosenthal photograph?

Was anyone opposed to him (in) this?

anaphora ellipsis

about ... in

fluent

MLE Was opposed to him

MLD

anaphora

CQR

CQS

anyone

Q1
A1

Q3
A3

What was Ira Hayes doing after the War?
Hayes attempted to lead a normal civilian life after the war.

What truth is he wanting to reveal?
To Block's family about their son Harlon being in the
Rosenthal photograph.

SQ4

CQ4

. . .

Was anyone opposed to Ira Hayes ...

Was anyone opposed to him ...

Figure 1: An example for Conversational Question
Simplification and its reverse, Conversational Question
Rewriting. Q1–A3 is the context, SQ4 is the self-
contained question, and CQ4 is the conversational ques-
tion.

The former directly generates conversational ques-
tions based on the dialogue context. However, the
generated questions may be irrelevant and mean-
ingless (Rosset et al., 2020). A lack of explicit
semantic guidance makes it difficult to produce
each question token from scratch while preserving
relevancy and usefulness at the same time (Wang
et al., 2018; Chai and Wan, 2020). Instead, the
latter proposes to retrieve questions from a col-
lection for the given dialogue context, which can
usually guarantee that the questions are relevant
and useful (Shen et al., 2018; Rosset et al., 2020).
However, question ranking methods do not lead
to a natural communication between human and
machine (Pulman, 1995), as they neglect important
characteristics in conversations, e.g., anaphora and
ellipsis. As shown in Fig. 1, the self-contained
question (SQ4) lacks these characteristics, which
makes it look unnatural.

In this work, we study the task of Conversa-

5639

tional Question Simplification (CQS). Given a dia-
logue context and self-contained question as input,
CQS aims to transform the self-contained question
into a conversational one by simulating conversa-
tional characteristics, such as anaphora and ellip-
sis. For example, in Fig. 1, four simplification
operations are applied to obtain the conversational
question (CQ4), which is context-dependent and
superior to its origin one (SQ4) in terms of natu-
ralness and conveying. The reverse process, i.e.,
Conversational Question Rewriting (CQR) (Elgo-
hary et al., 2019; Voskarides et al., 2020) which
rewrites CQ4 into SQ4, has been widely explored
in the literature (Vakulenko et al., 2020; Yu et al.,
2020). Although the proposed methods for CQR
can be easily adopted for CQS, they do not al-
ways generate satisfactory results as they are all
trained to optimize a maximum likelihood estima-
tion (MLE) objective, which gives equal attention
to generate each question token. Therefore, they
often get stuck in easily learned tokens, i.e., tokens
appearing in input, ignoring conversational tokens,
e.g., him, which is a small but important portion of
output.

To address the above issue, we propose a new
scheme for CQS, namely minimum Levenshtein dis-
tance (MLD). It minimizes the differences between
input and output, forcing the model to pay attention
to contributing tokens that are related to conversa-
tional tokens, e.g., “Ira Hay” and “him” in Fig. 1.
Therefore, MLD is expected to outperform MLE
for CQS. However, MLD cannot be minimized
by direct optimization due to the discrete nature,
i.e., minimizing the number of discrete edits. We
present an alternative solution, a Reinforcement
Iterative Sequence Editing (RISE) framework for
the optimization of MLD.

We formulate RISE as a Hierarchical Combina-
torial Markov Decision Process (HCMDP) consist-
ing of an editing Markov Decision Process (MDP)
to predict multiple edits for all tokens in the self-
contained question, e.g., ‘Keep (K)’ to keep a to-
ken, and a phrasing MDP to predict a phrase if
the edit is ‘Insert (I)’ or ‘Substitute (S)’. We only
have the self-contained and conversational question
pairs in the dataset while the demonstrations of the
editing iterations are lacked. Thus, we cannot train
each editing iteration of RISE with teacher forcing.
To this end, we devise an Iterative Reinforce Train-
ing (IRT) algorithm that allows RISE to do some
exploration itself. The exploration can be rewarded

according to its Levenshtein distance (LD) with the
demonstrated conversational question. Traditional
exploration methods like ε-sampling (Sutton and
Barto, 1998) neglect the interdependency between
edits for all tokens, resulting in poor exploration.
Thus, we further introduce a Dynamic Program-
ming based Sampling (DPS) process that adopts
a Dynamic Programming (DP) algorithm to track
and model the interdependency in IRT. Experi-
ments on the CANARD (Elgohary et al., 2019) and
CAsT (Dalton et al., 2019) datasets show that RISE
significantly outperforms state-of-the-art methods
and generalizes well to unseen data.

2 Conversational Question
Simplification: From maximum
likelihood estimation to minimum
Levenshtein distance

2.1 CQS
Given a dialogue context C representing the previ-
ous conversation utterances and the self-contained
clarification question candidate x = {x1, . . . , x|x|}
to be asked next (e.g., from a conversational
question ranking model), the goal of Conversa-
tional Question Simplification (CQS) is to refor-
mulate question x to a conversational question
y = {y1, . . . , y|y|} by simulating conversational
characteristics, e.g., anaphora and ellipsis. A tar-
get conversational question y∗ = {y∗1, . . . , y∗|y∗|} is
provided during the training phase.

2.2 Maximum likelihood estimation for CQS
A commonly adopted paradigm for tasks similar
to CQS, e.g., CQR, is to model the task as a condi-
tional sequence generation process parameterized
by θ, which is usually optimized by MLE:

Lθ = − log pθ(y
∗|x,C)

= −
|y∗|∑
t=1

log pθ(y
∗
t |y∗<t, x, C),

(1)

where y∗ is the target question and y∗<t denotes
the prefix y∗1, y

∗
2, . . . , y

∗
t−1. As we can see, MLE

gives equal weight to each token and falls in easily
learned tokens, the overwhelming duplicate tokens
between x and y, while underestimating subtle dif-
ferences of tokens related to conversational charac-
teristics.

2.3 Minimum Levenshtein distance for CQS
Inspired by Arjovsky et al. (2017), to minimize
the distance between two distributions, we propose

5640

to minimize the LD between the target question
y∗ and the model output y so as to leverage the
high overlap between x and y and focus on subtle
different tokens:

Lθ = LD(y, y∗). (2)

Unfortunately, it is impossible to directly optimize
Eq. 2 because the LD between y and y∗ is the mini-
mum number of single-token edits (insertions, dele-
tions or substitutions) required to change y into y∗,
which is discrete and non-differentiable.

3 RISE

To optimize MLD in Eq. 2, we devise the Re-
inforcement Iterative Sequence Editing (RISE)
framework, which reformulates the optimization of
MLD as a Hierarchical Combinatorial Markov De-
cision Process (HCMDP). Next, we first describe
our HCMDP formulation of RISE. We then detail
the modeling of each ingredient in RISE. Finally,
we present the training process of RISE.

3.1 HCMDP formulation for RISE
RISE produces its output y by iteratively editing
x with four types of edit, i.e., ‘K’ to keep a to-
ken, ‘Delete (D)’ to delete a token, ‘I’ to insert a
phrase (a sequence of tokens) after a token, and
‘S’ to substitute a phrase by a new one. If a to-
ken is predicted as ‘I’ or ‘S’, we need to further
predict a corresponding phrase. Note that we only
predict one phrase for successive ‘S’ edits. We
formulate RISE as a Hierarchical Combinatorial
Markov Decision Process (HCMDP) consisting of
(1) an editing MDP to predict multiple edits for all
tokens, and (2) a phrasing MDP to predict a phrase
if the edit is ‘I’ or ‘S’.

The editing MDP can be formulated as a tuple
〈Se,Ae, T e,R, πe〉. Here, set ∈ Se denotes the
question at t-th iteration yt together with the con-
text C, i.e., set = (yt, C). Note that se0 = (x,C).
aet = [aet,1, a

e
t,2, . . . , a

e
t,|yt|] ∈ A

e is a combinato-
rial action consisting of several interdependent ed-
its. The number of edits corresponds to the length
of yt. For example, in Fig. 2, aet = [‘K’, ‘K’,
‘K’, ‘K’, ‘S’, ‘S’, ‘K’, ‘K’]. In our case, the tran-
sition function T e is deterministic, which means
that the next state set+1 is obtained by applying the
predicted actions from both the editing MDP and
phrasing MDP to the current state set . rt ∈ R is the
reward function, which estimates the joint effect
of taking the predicted actions from both the edit-

ing and phrasing MDPs. πe is the editing policy
network.

The phrasing MDP can be formulated as a tuple
〈Sp,Ap, T p,R, πp〉. Here, spt ∈ Sp consists of
the current question yt, the predicted action from
the editing MDP aet , and the context C, i.e., spt =
(yt, aet , C). apt = [apt,1, a

p
t,2, . . .] ∈ Ap is also a

combinatorial action, where apt,i denotes a phrase
from a predefined vocabulary and i corresponds
to the index of the ‘I’ or ‘S’ edits, e.g., in Fig. 2,
‘apt,1 = him’ is the predicted phrase for the first ‘S’
edit. The length of the action sequence corresponds
to the number of ‘I’ or ‘S’ edits. The transition
function T p returns the next state spt+1 by applying
the predicted actions from the phrasing MDP to
the current state spt . rt ∈ R is the shared reward
function. πp is the phrasing policy network.

RISE tries to maximize the expected reward:

J(θ) = Eaet∼πe,apt∼πp [rt], (3)

where θ is the model parameter which is optimized
with the policy gradient:

∇J(θ) = Eaet∼πe,apt∼πp [rt(∇ log πe(aet |set) +
∇ log πp(apt |s

p
t))],

(4)

Next, we will show how to model πe(aet |set),
πp(apt |s

p
t), and rt.

3.2 Policy networks

We implement the editing and phrasing policy net-
works (πe and πp) based on BERT2BERT (Rothe
et al., 2020) as shown in Fig. 2. The editing pol-
icy network is implemented by the encoder to pre-
dict combinatorial edits, and the phrasing policy
network is implemented by the decoder to predict
phrases.

3.2.1 Editing policy network
We unfold all tokens of the utterances in the con-
text into a sequence C = (w1, . . . , wc), where wi
denotes a token and we add “[SEP]” to separate dif-
ferent utterances. Then the context and input ques-
tion in t-th iteration are concatenated with “[SEP]”
as the separator. Finally, we feed them into the
encoder of BERT2BERT to obtain hidden represen-
tations for tokens in question Ht = (ht1, . . . , h

t
|yt|)

and apply a linear layer with parameter W e to pre-
dict aet :

πe(aet |set = (yt, C)) = softmax(W eHt). (5)

5641

...

...

him

Editing policy Phrasing policy

C
ross Attention

a
p
t,1

Was anyone opposed to Ira Hayes revealing . . .

 Was anyone opposed to him revealing . . .

aet K K K K S S K K

yt

yt+1

Editing iteration t

Was Ira HayesContext Ira Hayes [CLS]anyone opposed to revealing . . .[SEP]

BERT2BERT BERT2BERT

Figure 2: Architecture of our policy network. A combinatorial of all tokens edits is predicted by editing policy,
and for each ‘I’ or ‘S’ edit, a phrase will be predicted by phrasing policy.

3.2.2 Phrasing policy network
We first extract the spans corresponding to the ‘I’
or ‘S’ edits from the question. If the edit is ‘I’,
the question span spanti consists of tokens before
and after this insertion, i.e., spanti = [ytj , y

t
j+1];

if the edit is ‘S’, the question span spanti consists
of successive tokens corresponding to the ‘S’ edit,
i.e., spanti = [ytj , . . . , y

t
k], where aet,j:k =‘S’ and

aet,k+1 6= ‘S’. We only predict once for successive
‘S’ edits, e.g., in Fig. 2, the phrase ‘him’ is pre-
dicted to substitute question span [“Ira”, “Hayes”].

For the i-th ‘I’ or ‘S’ edit with a question span
spanti, we concatenate the span and “[CLS]” token
as input tokens, and feed them into the decoder of
BERT2BERT to obtain a hidden representation of
“[CLS]” token sti. We obtain St by concatenating
each sti and predict the phrases for all ‘S’ and ‘I’
edits by a linear layer with parameter W p:

πp(apt |s
p
t) = softmax(W pSt). (6)

3.3 Reward R
We devise the reward rt to estimate the effect of
taking the joint action (aet , a

p
t) by encouraging ac-

tions that can result in low LD values between yt+1

and y∗, i.e., minimizing Eq. 2. Besides, we discour-
age those actions to achieve same yt+1 with extra
non ‘K’ edits:

rt =
1

1 + LD(yt+1, y∗)
×(

l −
∑
t

(aet 6= ‘K’) + 1

)
,

l = LD(yt, y∗)− LD(yt+1, y∗),

(7)

where 1
1+LD(yt+1,y∗) will reward actions that re-

sult in low LD values between yt+1 and y∗ and
(l −

∑
t(a

e
t 6= ‘K’)) will punish those actions with

unnecessary non ‘K’ edits.

3.4 Training
To train RISE, we need training samples in the
form of a tuple (set , a

e
t , s

p
t , a

p
t , rt). However, we

only have (y0 = x, y∗) in our dataset. Traditional
exploration methods like ε-greedy sampling sam-
ple edits for all tokens independently, ignoring the
interdependency between them. Instead, we devise
an Iterative Reinforce Training (IRT) algorithm to
sample an edit for each token by considering its
future expectation, i.e., sampling aet,i based on ex-
pectation of aet,:i−1 from i = |yt| to 1. We maintain
a matrix M t for this expectation based on both
yt and y∗, which is computed by a Dynamic Pro-
gramming based Sampling (DPS) process due to
the exponential number of edit combinations of
aet,:i. The details of IRT are provided in Alg. 1; it
contains a DPS process that consists of two parts:
computing the matrix M t (line 4–8) and sampling
actions (aet , a

p
t) (line 10) based on M t.

3.4.1 Computing the matrix M t

Given (yt, y∗) with length m and n, we maintain
a matrix M t ∈ R(m+1)×(n+1) (including ‘[SEP]’,
see the upper right part in Fig. 3) where each ele-
ment M t

i,j tracks the expectation of aet,:i to convert
yt:i to y∗:j :

M t
i,j = Epi,j(aet,i)[Ep(aet,:i−1)

πyt:i−>y∗:j (a
e
t,:i)]

= Epi,j(aet,i)

πe(aet,i|yt, C)×

M t
i−1,j−1, if aet,i = ‘K’

M t
i−1,j , if aet,i = ‘D’

M t
i,j−1, if aet,i = ‘I’

M t
i−1,j−1, if aet,i = ‘S’

,
(8)

5642

where aet,:i is the combinational edits for tokens yt:i
and πe(aet,i|yt, C) is calculated by Eq. 5 (see the
upper left part in Fig. 3). M t

0,0 is initialized to 1.
We will first introduce pi,j(aet,i) and then introduce
πyt:i−>y∗:j (a

e
t,:i) in Eq. 8.

Traditional sampling methods sample each edit
aet,i independently, based on model likelihood
πe(aet,i|yt, C). Instead, we sample each edit with
probability pi,j(a

e
t,i) based on edits expectation

M t, which is modeled as:

pi,j(a
e
t,i) =

1

Zti,j
π(aet,i|yt, C)×

M t
i−1,j−1, if aet,i = ‘K’

M t
i−1,j , if aet,i = ‘D’

M t
i,j−1, if aet,i = ‘I’

M t
i−1,j−1, if aet,i = ‘S’,

(9)

where Zti,j is the normalization term. We give an
example on computing M t

1,2 in the bottom part of
Fig. 3. For edit ‘I’ in M t

1,2, its probability is 1, and
its value is πe(aet,i = ‘I’|yt, C) ×M t

1,1 = 0.008.
For the other edits, the probability is 0. Therefore,
M t

1,2 = 0.008.
πyt:i−>y∗:j (a

e
t,:i) is the probability of conducting

edits aet,:i to convert yt:i to y∗:j :

πyt:i−>y∗:j (a
e
t,:i) = πe(aet,i|yt, C)×

πyt:i−1−>y∗:j−1
(aet,:i−1), if aet,i−1 = ‘K’

πyt:i−1−>y∗:j (a
e
t,:i−1), if aet,i−1 = ‘D’

πyt:i−>y∗:j−1
(aet,:i), if aet,i = ‘I’

πyt:i−1−>y∗:j−1
(aet,:i−1), if aet,i−1 = ‘S’,

(10)

To convert yt:i to y∗:j , we need to make sure that
yti can convert to y∗j and that yt:i−1 can convert to
y∗:j−1, which can be calculated recursively. Note
that we only allow ‘S’ and ‘D’ for yti when yti 6=
y∗j and ‘K’ and ‘I’ for yti when yti = y∗j . And
M t
i−1,j−1 = Ep(aet,:i−1)

πyt:i−1−>y∗:j−1
(aet,:i−1).

3.4.2 Sampling (aet , a
p
t)

We sample (aet , a
p
t) based on matrix M t by back-

tracking from i = m, j = n. For example, as
shown in the upper right in Fig. 3, we backtrack
along the blue arrows. In this truncated sample, we
start from M t

7,6, sample an edit ‘K’ to keep ‘reveal-
ing’ based on p7,6(aet,7) in Eq. 9, and move toM t

6,5.
Then, we sample ‘S’ to substitute ‘Ira Hayes’ to
‘him’ and move to M t

4,4. Finally, we sample ‘K’

Algorithm 1: Training Process of RISE
Input: The origin data D = {(x, y∗)}, the

number of samples L;
Output: The model parameters θ;

1 while not coverage do
2 Sample (yt, y∗) from D ;
3 M t

0,0 = 1;
4 for i in 0,. . . , m do
5 for j in 0,. . . , n do
6 Compute M t

i,j according to
Eq. 8;

7 end
8 end
9 Sample aet , a

p
t according to Eq. 11 ;

10 Apply aet , a
p
t to obtain yt+1 ;

11 Obtain rt according to Eq. 7 ;
12 Update θ according to Eq. 4 ;
13 Add (yt+1, y∗) to D.
14 end

[SEP]
Was

anyone
opposed

to
Ira

Hayes
revealing

...

0.9
0
0
0
0
0
0
0

0.09
0.81
0
0
0
0
0
0

0.01
0.08
0.73
0
0
0
0
0

0
M t

1,2

0.07
0.66
0
0
0
0

0
0

0.01
0.07
0.52
0.05
0.01
0

0
0
0

0.01
0.1
0.46
0.05
0

0
0
0
0

0.02
0.09
0.41
0.04

...

...

...

...

...

...

...

...
...

[SE
P]

Wa
s
An
yon

e
opp

ose
d

to him rev
eal
ing

...
y∗

K
K
K
K
K
S
S
K
...

him

ae
t a

p
t

0.9
0.9
0.9
0.9
0.8
0
0
0.9

0.1
0.1
0.1
0.1
0.2
0
0
0.1

0
0
0
0
0
0.1
0.1
0

0
0
0
0
0
0.9
0.9
0

...

I D SKyt

K
I
D
S

0.
1.
0.
0.

0.9
0.1
0.
0.

M t
0,1

M t
1,1

M t
0,2

M t
0,1

0.01
0.08
0.
0.01

=M t
1,2 × × = 0.008

π(| , C)ae
t,1 yt()p1,2 ae

t,1

∑

K
K
K
K
K
S
D
K
...

M t
infect

Figure 3: The DPS process consists of computing ma-
trix M (red box) and sampling (aet , a

t
p) (blue arrows

and box).

in [M t
4,4,M

t
3,3,M

t
2,2M

t
1,1,M

t
0,0] to keep [‘to’, ‘op-

posed’, ‘anyone’, ‘Was’, ‘[SEP]’]. Therefore, we
can obtain aet = [K, K, K, K, K, S, S, K], apt =
[‘him’]. Note that we obtain apt by merging all
corresponding tokens y∗j as the phrase for each ‘I’
edit and successive ‘S’ edits and we only substitute
once. The backtracking rule can be formulated as:

M t
i,j →

M t
i−1,j−1, if a

e
t,i ∈ [‘K’, ‘S’]

M t
i−1,j , if a

e
t,i = ‘D’

M t
i,j−1, if a

e
t,i = ‘I’.

(11)

3.5 Inference
During inference, RISE iteratively edits x until it
predicts ‘K’ edits for all tokens or it achieves the

5643

maximum iteration limit. For example, for editing
iteration t in Figure 2, it predicts ‘S’ for ‘Ira’ and
‘Hayes’ to substitute it to ‘him’ and ‘K’ for other
tokens, which results in ‘Was anyone opposed to
him revealing . . . ’ as output. The output in iteration
t is the input of iteration t+ 1. The actual editing
iteration times vary with different samples.

4 Experiments

4.1 Datasets

As with previous studies (Elgohary et al., 2019;
Yu et al., 2020; Vakulenko et al., 2020; Lin
et al., 2020a), we conduct experiments on the
CANARD1 (Elgohary et al., 2019) dataset, which
is a large open-domain dataset for conversational
question answering (with over 30k training sam-
ples). Each sample in the CANARD dataset in-
cludes a conversational context (historical ques-
tions and answers), an self-contained question, and
its corresponding conversational question under
the context. The questions always have clear an-
swers, e.g., ‘Did he win the lawsuit?’ We follow
the CANARD splits for training and evaluation.

In addition, we evaluate the model performance
on the CAsT2 dataset (Dalton et al., 2019), which
is built for conversational search. Different from
CANARD, its context only contains questions with-
out corresponding answers. Besides, most ques-
tions in the CAsT dataset are exploring questions
to explore relevant information, e.g., ‘What about
for great whites?’ Since the CAsT dataset only
contains 479 samples from different domains com-
pared to CANARD, we use it for testing.

4.2 Evaluation metrics

Following Su et al. (2019); Xu et al. (2020), we
use BLEU-1, BLEU-2, BLEU-3, BLEU-4 (Pap-
ineni et al., 2002), ROUGE-L (Lin, 2004), and
CIDEr (Vedantam et al., 2015) for automatic evalu-
ation. BLEU-n and ROUGE-L measure the word
overlap between the generated and golden ques-
tions. CIDEr measures the extent to which impor-
tant information is missing. Elgohary et al. (2019);
Lin et al. (2020a); Xu et al. (2020) have shown that
automatic evaluation has a high correlation with hu-
man judgement on this task, so we do not conduct
human evaluation in this paper.

1http://canard.qanta.org
2http://www.treccast.ai

4.3 Baselines

We compare with several recent state-of-the-art
methods for this task or closely related tasks:
• Origin uses the original self-contained question

as output.
• Rule (Yu et al., 2020) employs two simple

rules to mimic two conversational characteris-
tics: anaphora and ellipsis.
• QGDiv (Sultan et al., 2020) uses RoBERTa (Liu

et al., 2019) with beam search (Wiseman and
Rush, 2016) for generation.
• Trans++ (Vakulenko et al., 2020) predicts sev-

eral word distributions, and combines them to
obtain the final word distribution when generat-
ing each token.
• QuerySim (Yu et al., 2020) adopts a GPT-

2 (Radford et al., 2019) model to generate con-
versational question.

We also found some methods from related tasks.
But they do not work on this task for various rea-
sons. For example, due to the lack of labels needed
for training, we cannot compare with the meth-
ods proposed by Rosset et al. (2020) and Xu et al.
(2020). Su et al. (2019) propose a model that can
only copy tokens from input; it works well on the
reverse task (i.e., CQR), but not on CQS.

4.4 Implementation details

We use BERT2BERT for the modeling of the edit-
ing and phrasing parts (Rothe et al., 2020), as other
pretrained models like GPT-2 (Radford et al., 2019)
cannot work for both. The hidden size is 768 and
phrase vocabulary is 3461 following (Malmi et al.,
2019). We use the BERT vocabulary (30,522 to-
kens) for all BERT-based or BERT2BERT-based
models. We use the Adam optimizer (learning rate
5e-5) (Kingma and Ba, 2015) to train all models. In
particular, we train all models for 20,000 warm-up
steps, 5 epochs with pretrained model parameters
frozen, and 20 epochs for all parameters. For RISE,
the maximum editing iteration times is set to 3. We
use gradient clipping with a maximum gradient
norm of 1.0. We select the best models based on
the performance on the validation set. During in-
ference, we use greedy decoding for all models.

4.5 Results

We list the results of all methods on both CANARD
and CAsT in Table 1. From the results, we have
two main observations.

First, RISE significantly outperforms all base-

http://canard.qanta.org
http://www.treccast.ai

5644

Table 1: Overall performance (%) on CANARD and CAsT. Bold face indicates the best results in terms of the
corresponding metrics. Significant improvements over the best baseline results are marked with ∗ (t-test, p < 0.01).
Note that we denote BLEU-n as B-n and ROUGE-L as R-L.

CANARD (%) CAsT (%) (unseen)

Method B-1 B-2 B-3 B-4 R-L CIDEr B-1 B-2 B-3 B-4 R-L CIDEr

Origin 54.7 47.0 40.6 35.3 70.9 3.460 75.9 69.2 62.9 57.6 85.0 5.946
Rule 55.0 47.0 40.2 34.8 70.5 3.420 78.0 71.4 65.3 60.0 86.1 6.220

Trans++ 84.3 77.5 72.1 67.5 84.6 6.348 76.0 64.3 54.8 47.2 76.5 4.258
QGDiv 85.2 78.6 73.3 68.9 85.2 6.469 75.9 65.3 56.7 59.6 78.0 4.694
QuerySim 83.1 78.5 74.5 71.0 82.7 6.585 80.6 75.3 70.2 65.5 83.3 6.345

RISE 86.3∗ 80.5∗ 75.6 71.6∗ 86.2∗ 6.759 85.1∗ 78.4 72.2 66.8 87.8∗ 6.543

lines on both datasets. Specifically, RISE outper-
forms the strongest baseline QuerySim by ˜4% in
terms of ROUGE-L. The reason is that RISE en-
hanced by DPS has a better ability to emphasize
conversational tokens, rather than treating all to-
kens equally.

Second, RISE is more robust, which general-
izes better to unseen data of CAsT. The results
of the neural methods on CANARD are much bet-
ter than those on CAsT. But, RISE is more stable
than the other neural models. For example, RISE
outperforms QuerySim by 0.6% in BLEU-4 on
CANARD, while 1.3% on CAsT. The reason is
that RISE learns to cope with conversational to-
kens only, while other models need to generate
each token from scratch.

5 Analysis

5.1 Ablation study
To analyze where the improvements of RISE
come from, we conduct an ablation study on the
CANARD and CAsT datasets (see Table 2). We
consider two settings:
• -DPS. Here, we replace DPS by ε-greedy sam-

pling (ε = 0.2) (Sutton and Barto, 1998).
• -MLD. Here, we replace MLD by MLE in

RISE.
The results show that both parts (DPS and MLD)
are helpful to RISE as removing either of them
leads to a decrease in performance. Without MLD,
the performance drops a lot in terms of all metrics,
e.g., 3% and 7% in BLEU-4 on CANARD and
CAsT, respectively. This indicates that optimizing
MLD is more effective than optimizing MLE. Be-
sides, MLD generalizes better on unseen CAsT as
it drops slightly in all metrics, while with MLE, we
see a drop of 10% in BLEU-1.

Figure 4: Average number of editing iteration of RISE
conditioned on number of tokens in x - y and y - x.

Without DPS, the results drop dramatically,
which indicates that DPS can do better exploration
than ε-greedy and is of vital importance for RISE.
For example, -DPS tends to sample more non ‘K’
edits (RISE vs -DPS: 10% vs 22% on CANARD),
which is redundant and fragile. The performance of
-DPS is even worse than Origin in CAsT in BLEU-
4. This may be because CAsT is unseen.

5.2 Editing iterations
To analyze the relation between the number of edit-
ing iterations of RISE and the editing difficulty, we
plot a heatmap in Fig. 4, where the deeper color rep-
resents a larger number of editing iterations. The
x-axis denotes the number of tokens shown in input
x but not shown in output y and the y-axis denotes
the number of tokens shown in y but not in x.

As the number of different tokens between x
and y increases, the number of editing iterations
increases too. For example, when the y-axis is 1,
as the x-axis ranges from 1 to 10, the number of

5645

Table 2: Ablation study (%) on CANARD and CAsT.

CANARD (%) CAsT (%) (unseen)

Method B-1 B-2 B-3 B-4 R-L CIDEr B-1 B-2 B-3 B-4 R-L CIDEr

Origin 54.7 47.0 40.6 35.3 70.9 3.460 75.9 69.2 62.9 57.6 85.0 5.946

-DPS 67.5 56.4 47.3 39.9 73.9 3.743 80.9 70.0 60.6 53.3 81.2 4.713
-MLD 85.2 78.6 73.3 68.9 85.2 6.469 75.9 65.3 56.7 59.6 78.0 4.694

RISE 86.3 80.5∗ 75.6∗ 71.6∗ 86.2∗ 6.759∗ 85.1∗ 78.4∗ 72.2∗ 66.8∗ 87.8∗ 6.543∗

editing iterations increases from 1.2 to 2.6 because
more ‘D’ edits are needed. We also found that
when the x-axis is between 3 and 7 and the y-axis
is between 1 and 4, only 1–2 editing iterations are
needed. Usually, this is because RISE only needs 1
or 2 successive ‘S’ edits for simulating anaphora.

5.3 Influence of the number of editing
iterations

The overall performance of RISE improves as
the number of editing iterations increases. RISE
achieves 70.5% in BLEU-4 in the first iteration
(even worse than QuerySim in Table 1) but 71.5%
and 71.6% in the second and third iterations. This
shows that some samples are indeed more difficult
to be directly edited into conversational ones, and
thus need more editing iterations.

Even though it will not hurt the performance a
lot, more editing iterations are not always helpful.
About 5% of the samples achieve worse BLEU-4
scores as the number of editing iterations increases.
For example, RISE edits ‘where did humphrey lyt-
telton go to school at?’ into ‘where did he go to
school at?’ in the first iteration, which is perfect.
But RISE continues to edit it into ‘where did he
go to school?’ in the second iteration, which is
undesirable. This is because RISE fails to decide
whether to stop or continue editing.

5.4 Case Study

In Table 3 we present two examples of the out-
put of RISE. We present the context, the original
self-contained question, the target conversational
question, and the output of RISE in the n-th iter-
ation, denoted as ‘Context’, ‘Question’, ‘Target’
and ‘Rewrite#n’, respectively. We have two main
observations. First, it is helpful to edit iteratively.
As shown in Example 1, RISE first replaces ‘Abu’
as ‘he’ in the first iteration and then deletes ‘bakr’
in the second iteration, which simulates anaphora
by editing twice. In Example 2, RISE simulates el-

Table 3: Examples generated by RISE on CANARD.
Here, ‘Question’ means the self-contained question,
and ‘Target’ means the desired conversational question.
‘Rewrite#n’ denotes the output of RISE in n-th itera-
tion.

Example 1 1. At Tabuk the standard of the army
was entrusted to Abu Bakr.

Context 2. Where was Tabuk located?
3. Tabuk on the Syrian border.

Question What did Abu Bakr do during the
expedition of Tabuk?

Rewrite#1 What did he bakr do during expedi-
tion?

Rewrite#2 What did he do during expedition?
Target What did abu bakr do during the ex-

pedition?

Example 2 1. When did Clift start his film ca-
reer?

Context 2. His first movie role was opposite
John Wayne in Red River, which was
shot in 1946 and released in 1948.

Question Did Montgomery Clift win any
awards for any of his films?

Rewrite#1 Did he win any awards for and?
Rewrite#2 Did he win any awards?
Target Did he win any awards for any of his

films?

lipsis by deleting multiple words and achieves poor
grammar after the first iteration but corrects this
by deleting some of the leftover words. RISE may
have learned to check the grammar and remove
redundant words.

Second, RISE can simulate more conversational
characteristics than human, and sometimes it can
achieve a better result, sometimes not. As we can
see, RISE results a better conversational question
by additionally simulating anaphora for ‘Abu Bakr’
in Example 1. However, RISE leaves out necessary
information in Example 2. Here, RISE tries to
simulate conversational characteristics as much as

5646

possible, where the result may be uncontrollable.
In future work, we will add a discriminator to check
the necessary information.

6 Related work

Studies on asking conversational question can be di-
vided into two categories: conversational question
generation and conversational question ranking.

Conversational question generation aims to di-
rectly generate conversational questions condi-
tioned on the dialogue context (Sultan et al., 2020;
Ren et al., 2021a). Zamani et al. (2020) and Qi
et al. (2020) define a question utility function to
guide the generation of conversational questions.
Nakanishi et al. (2019); Jia et al. (2020) incorporate
knowledge with auxiliary tasks. These methods
may generate irrelevant questions due to their pure
generation nature.

Conversational question ranking (Aliannejadi
et al., 2019) retrieves questions from a collection
based on the given context, so the questions are
mostly relevant to the context. Kundu et al. (2020)
propose a pair-wise matching network between con-
text and question to do question ranking. Some
studies also use auxiliary tasks to improve rank-
ing performance, such as Natural Language Infer-
ence (Kumar et al., 2020) and relevance classifica-
tion (Rosset et al., 2020). The retrieved questions
are often unnatural without considering the conver-
sational characteristics, e.g., anaphora and ellipsis.

CQS rewrites the retrieved self-contained ques-
tions into conversational ones by incorporating the
conversational characteristics. Existing applicable
methods for CQS are all MLE based (Xu et al.,
2020; Yu et al., 2020; Lin et al., 2020b; Vakulenko
et al., 2020), which often get stuck in easily learned
tokens as each token is treated equally by MLE. In-
stead, we propose a MLD based RISE framework
to formulate CQS as a HCMDP, which is able to
discriminate different tokens through explicit edit-
ing actions, so that it can learn to emphasize the
conversational tokens and generate more natural
and appropriate questions.

7 Conclusion

In this paper, we have proposed a minimum Lev-
enshtein distance (MLD) based Reinforcement It-
erative Sequence Editing (RISE) framework for
Conversational Question Simplification (CQS). To
train RISE, we have devised an Iterative Reinforce
Training (IRT) algorithm with a novel Dynamic

Programming based Sampling (DPS) process. Ex-
tensive experiments show that RISE is more effec-
tive and robust than several state-of-the-art CQS
methods. A limitation of RISE is that it may fail to
decide whether to stop or continue editing and leave
out necessary information. In future work, we plan
to address this issue by learning a reward function
that considers the whole editing process through
adversarial learning (Goodfellow et al., 2014).

Code

To facilitate the reproducibility of the results, we
share the codes of all methods at https://github.
com/LZKSKY/CaSE_RISE.

Acknowledgments

We thank the reviewers for their valuable feedback.
This research was partially supported by the Na-
tional Key R&D Program of China with grant No.
2020YFB1406704, the Natural Science Foundation
of China (61972234, 61902219, 62072279), the
Key Scientific and Technological Innovation Pro-
gram of Shandong Province (2019JZZY010129),
the Tencent WeChat Rhino-Bird Focused Research
Program (JR-WXG-2021411), the Fundamental
Research Funds of Shandong University, and
the Hybrid Intelligence Center, a 10-year pro-
gram funded by the Dutch Ministry of Educa-
tion, Culture and Science through the Nether-
lands Organisation for Scientific Research, https:
//hybrid-intelligence-centre.nl.

All content represents the opinion of the authors,
which is not necessarily shared or endorsed by their
respective employers and/or sponsors.

References
Mohammad Aliannejadi, Hamed Zamani, Fabio

Crestani, and W. Bruce Croft. 2019. Asking clarify-
ing questions in open-domain information-seeking
conversations. In Proceedings of the 42nd Inter-
national ACM SIGIR Conference on Research and
Development in Information Retrieval, SIGIR 2019,
pages 475–484.

Martin Arjovsky, Soumith Chintala, and Léon Bot-
tou. 2017. Wasserstein gan. arXiv preprint
arXiv:1701.07875.

Zi Chai and Xiaojun Wan. 2020. Learning to ask more:
Semi-autoregressive sequential question generation
under dual-graph interaction. In Proceedings of the
58th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2020, pages 225–237.

https://github.com/LZKSKY/CaSE_RISE
https://github.com/LZKSKY/CaSE_RISE
https://hybrid-intelligence-centre.nl
https://hybrid-intelligence-centre.nl

5647

W Bruce Croft, Donald Metzler, and Trevor Strohman.
2010. Search engines: Information retrieval in prac-
tice, volume 520. Addison-Wesley Reading.

Jeffrey Dalton, Chenyan Xiong, and Jamie Callan.
2019. Cast 2019: The conversational assistance
track overview. In Proceedings of the 28th Text RE-
trieval Conference, TREC 2019, pages 13–15.

Nan Duan, Duyu Tang, Peng Chen, and Ming Zhou.
2017. Question generation for question answering.
In Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, EMNLP
2017, pages 866–874.

Ahmed Elgohary, Denis Peskov, and Jordan L. Boyd-
Graber. 2019. Can you unpack that? Learning
to rewrite questions-in-context. In Proceedings of
the 2019 Conference on Empirical Methods in Nat-
ural Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 5917–5923.

Chongming Gao, Wenqiang Lei, Xiangnan He,
Maarten de Rijke, and Tat-Seng Chua. 2021. Ad-
vances and challenges in conversational recom-
mender systems: A survey. arXiv preprint
arXiv:2101.09459.

Ian J. Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair,
Aaron C. Courville, and Yoshua Bengio. 2014.
Generative adversarial networks. arXiv arxiv
arXiv:1406.2661.

Xin Jia, Wenjie Zhou, Xu Sun, and Yunfang Wu. 2020.
How to ask good questions? Try to leverage para-
phrases. In Proceedings of the 58th Annual Meet-
ing of the Association for Computational Linguistics,
ACL 2020, pages 6130–6140.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In Proceedings
of the 3rd International Conference on Learning
Representations, ICLR 2015.

Vaibhav Kumar, Vikas Raunak, and Jamie Callan. 2020.
Ranking clarification questions via natural language
inference. In Proceedings of the 29th ACM Inter-
national Conference on Information and Knowledge
Management, CIKM 2020, pages 2093–2096.

Souvik Kundu, Qian Lin, and Hwee Tou Ng. 2020.
Learning to identify follow-up questions in conver-
sational question answering. In Proceedings of the
58th Conference of the Association for Computa-
tional Linguistics, ACL 2020, pages 959–968.

Wenqiang Lei, Xiangnan He, Yisong Miao, Qingyun
Wu, Richang Hong, Min-Yen Kan, and Tat-Seng
Chua. 2020. Estimation-action-reflection: Towards
deep interaction between conversational and recom-
mender systems. In Proceedings of the 13th Interna-
tional Conference on Web Search and Data Mining,
WSDM 2020, pages 304–312.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Proceedings of
the 42nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2002, pages 74–81.

Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo
Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, and
Jimmy Lin. 2020a. Conversational question refor-
mulation via sequence-to-sequence architectures
and pretrained language models. arXiv preprint
arXiv:2004.01909.

Sheng-Chieh Lin, Jheng-Hong Yang, Rodrigo
Nogueira, Ming-Feng Tsai, Chuan-Ju Wang, and
Jimmy Lin. 2020b. Query reformulation using
query history for passage retrieval in conversational
search. arXiv preprint arXiv:2005.02230.

Yinhan Liu, Myle Ott, Naman Goyal, Jingfei Du, Man-
dar Joshi, Danqi Chen, Omer Levy, Mike Lewis,
Luke Zettlemoyer, and Veselin Stoyanov. 2019.
Roberta: A robustly optimized BERT pretraining ap-
proach. arXiv preprint arXiv:1907.11692.

Eric Malmi, Sebastian Krause, Sascha Rothe, Daniil
Mirylenka, and Aliaksei Severyn. 2019. Encode,
tag, realize: High-precision text editing. In Proceed-
ings of the 2019 Conference on Empirical Methods
in Natural Language Processing and the 9th Inter-
national Joint Conference on Natural Language Pro-
cessing, EMNLP-IJCNLP 2019, pages 5053–5064.

Mao Nakanishi, Tetsunori Kobayashi, and Yoshihiko
Hayashi. 2019. Towards answer-unaware conversa-
tional question generation. In Proceedings of the
2nd Workshop on Machine Reading for Question An-
swering, MRQA@EMNLP 2019, pages 63–71.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. Bleu: a method for automatic eval-
uation of machine translation. In Proceedings of the
40th Annual Meeting of the Association for Compu-
tational Linguistics, ACL 2002, pages 311–318.

Stephen G Pulman. 1995. Anaphora and ellipsis in ar-
tificial languages. Natural Language Engineering,
1(3):217–234.

Peng Qi, Yuhao Zhang, and Christopher D. Manning.
2020. Stay hungry, stay focused: Generating infor-
mative and specific questions in information-seeking
conversations. In Proceedings of the 2020 Confer-
ence on Empirical Methods in Natural Language
Processing, EMNLP 2020, pages 25–40.

Chen Qu, Liu Yang, Cen Chen, Minghui Qiu, W. Bruce
Croft, and Mohit Iyyer. 2020. Open-retrieval con-
versational question answering. In Proceedings of
the 43rd International ACM SIGIR Conference on
Research and Development in Information Retrieval,
SIGIR 2020, pages 539–548.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. OpenAI
blog, 1(8):9.

5648

Filip Radlinski and Nick Craswell. 2017. A theoretical
framework for conversational search. In Proceed-
ings of the 2017 Conference on Conference Human
Information Interaction and Retrieval, CHIIR 2017,
pages 117–126.

Pengjie Ren, Zhumin Chen, Christof Monz, Jun Ma,
and Maarten de Rijke. 2020. Thinking globally,
acting locally: Distantly supervised global-to-local
knowledge selection for background based conver-
sation. In The Thirty-Fourth AAAI Conference on
Artificial Intelligence, AAAI, pages 8697–8704.

Pengjie Ren, Zhumin Chen, Zhaochun Ren, Evange-
los Kanoulas, Christof Monz, and Maarten de Rijke.
2021a. Conversations with search engines: Serp-
based conversational response generation. ACM
Transactions on Information Systems (TOIS), 2021.

Pengjie Ren, Zhongkun Liu, Xiaomeng Song, Hong-
tao Tian, Zhumin Chen, Zhaochun Ren, and Maarten
de Rijke. 2021b. Wizard of search engine: Access
to information through conversations with search en-
gines. In Proceedings of the 44rd International
ACM SIGIR Conference on Research and Develop-
ment in Information Retrieval, SIGIR 2021.

Corbin Rosset, Chenyan Xiong, Xia Song, Daniel Cam-
pos, Nick Craswell, Saurabh Tiwary, and Paul N.
Bennett. 2020. Leading conversational search by
suggesting useful questions. In Proceedings of the
Web Conference, WWW 2020, pages 1160–1170.

Sascha Rothe, Shashi Narayan, and Aliaksei Severyn.
2020. Leveraging pre-trained checkpoints for se-
quence generation tasks. Trans. Assoc. Comput. Lin-
guistics, 8:264–280.

Ying Shen, Yang Deng, Min Yang, Yaliang Li, Nan Du,
Wei Fan, and Kai Lei. 2018. Knowledge-aware at-
tentive neural network for ranking question answer
pairs. In Proceedings of the 41st International ACM
SIGIR Conference on Research and Development in
Information Retrieval, SIGIR 2020, pages 901–904.

Hui Su, Xiaoyu Shen, Rongzhi Zhang, Fei Sun, Peng-
wei Hu, Cheng Niu, and Jie Zhou. 2019. Improv-
ing multi-turn dialogue modelling with utterance
rewriter. In Proceedings of the 57th Conference of
the Association for Computational Linguistics, ACL
2019, pages 22–31.

Md. Arafat Sultan, Shubham Chandel, Ramón Fernan-
dez Astudillo, and Vittorio Castelli. 2020. On the
importance of diversity in question generation for
QA. In Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, ACL
2020, pages 5651–5656.

Richard S. Sutton and Andrew G. Barto. 1998. Rein-
forcement Learning: An Introduction. MIT Press.

Svitlana Vakulenko, Shayne Longpre, Zhucheng Tu,
and Raviteja Anantha. 2020. Question rewriting for
conversational question answering. arXiv preprint
arXiv:2004.14652.

Ramakrishna Vedantam, C Lawrence Zitnick, and Devi
Parikh. 2015. Cider: Consensus-based image de-
scription evaluation. In Proceedings of the IEEE
conference on Computer Vision and Pattern Recog-
nition, CVPR, pages 4566–4575.

Nikos Voskarides, Dan Li, Pengjie Ren, Evangelos
Kanoulas, and Maarten de Rijke. 2020. Query reso-
lution for conversational search with limited supervi-
sion. In Proceedings of the 43rd International ACM
SIGIR conference on research and development in
Information Retrieval, SIGIR 2020, pages 921–930.

Yansen Wang, Chenyi Liu, Minlie Huang, and Liqiang
Nie. 2018. Learning to ask questions in open-
domain conversational systems with typed decoders.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics, ACL 2018,
pages 2193–2203.

Sam Wiseman and Alexander M. Rush. 2016.
Sequence-to-sequence learning as beam-search opti-
mization. In Proceedings of the 2016 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2016, pages 1296–1306.

Jingjing Xu, Yuechen Wang, Duyu Tang, Nan Duan,
Pengcheng Yang, Qi Zeng, Ming Zhou, and Xu Sun.
2019. Asking clarification questions in knowledge-
based question answering. In Proceedings of the
2019 Conference on Empirical Methods in Natu-
ral Language Processing and the 9th International
Joint Conference on Natural Language Processing,
EMNLP-IJCNLP 2019, pages 1618–1629.

Kun Xu, Haochen Tan, Linfeng Song, Han Wu,
Haisong Zhang, Linqi Song, and Dong Yu. 2020.
Semantic role labeling guided multi-turn dialogue
rewriter. In Proceedings of the 2020 Conference on
Empirical Methods in Natural Language Processing,
EMNLP 2020, pages 6632–6639.

Shi Yu, Jiahua Liu, Jingqin Yang, Chenyan Xiong,
Paul N. Bennett, Jianfeng Gao, and Zhiyuan Liu.
2020. Few-shot generative conversational query
rewriting. In Proceedings of the 43rd International
ACM SIGIR conference on research and develop-
ment in Information Retrieval, SIGIR 2020, pages
1933–1936.

Hamed Zamani and Nick Craswell. 2020. Macaw: An
extensible conversational information seeking plat-
form. In Proceedings of the 43rd International ACM
SIGIR Conference on Research and Development
in Information Retrieval, SIGIR 2020, pages 2193–
2196.

Hamed Zamani, Susan T. Dumais, Nick Craswell,
Paul N. Bennett, and Gord Lueck. 2020. Gener-
ating clarifying questions for information retrieval.
In Proceedings of the Web Conference 2020, WWW
2020, pages 418–428.

Yongfeng Zhang, Xu Chen, Qingyao Ai, Liu Yang,
and W Bruce Croft. 2018. Towards conversational

5649

search and recommendation: System ask, user re-
spond. In Proceedings of the 27th ACM Interna-
tional Conference on Information and Knowledge
Management, CIKM 2018, pages 177–186.

5650

Appendix

For reproducibility for all reported experimental re-
sults, we report the following information. The av-
erage running time for RISE, QuerySim, Trans++,
QGDiv, -MLD, -DPS are 15 hours, 5 hours, 9.5
hours, 9 hours, 9 hours, 15 hours, respectively.
The number of parameters in RISE, Trans++, QG-
Div, -MLD, -DPS are 221M and the number of
parameters in QuerySim is 125M. We list the val-
idation performance on CANARD in Table. 4, as
only CANARD is used for validation. As we can
see, it has high correlation to test performance on
CANARD. We use this script 3 for evaluation.

Table 4: Overall performance (%) on validation set of
CANARD. Note that we denote BLEU-n as B-n and
ROUGE-L as R-L.

CANARD (%)

Method B-1 B-2 B-3 B-4 R-L CIDEr

Trans++ 86.5 80.3 75.4 71.3 86.2 6.704
QGDiv 87.0 80.9 75.9 61.8 86.8 6.786
QuerySim 83.9 79.7 75.9 72.5 83.2 6.737

-DPS 67.2 55.9 46.8 39.4 74.3 3.745
-MLD 87.0 80.9 75.9 61.8 86.8 6.786
RISE 88.0 82.6 78.3 74.6 87.5 7.050

For reproducibility for experiments with hyper-
parameter search, we report the following infor-
mation. The hyperparameter for RISE is the max
editing iteration times. We search it in range of 1
to 5 and find 3 can perform best on BLEU-4. The
results in range of 1 to 5 on BLEU-4 are 70.5%,
71.5%, 71.6%, 71.6% and 71.6%, respectively.

3https://github.com/Maluuba/nlg-eval

