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Abstract

In recent years, reference-based and super-
vised summarization evaluation metrics have
been widely explored. However, collecting
human-annotated references and ratings are
costly and time-consuming. To avoid these
limitations, we propose a training-free and
reference-free summarization evaluation
metric. Our metric consists of a centrality-
weighted relevance score and a self-referenced
redundancy score. The relevance score is
computed between the pseudo reference built
from the source document and the given
summary, where the pseudo reference content
is weighted by the sentence centrality to
provide importance guidance. Besides an
F1-based relevance score, we also design an
Fβ-based variant that pays more attention to
the recall score. As for the redundancy score
of the summary, we compute a self-masked
similarity score with the summary itself to
evaluate the redundant information in the
summary. Finally, we combine the relevance
and redundancy scores to produce the final
evaluation score of the given summary. Ex-
tensive experiments show that our methods
can significantly outperform existing methods
on both multi-document and single-document
summarization evaluation. The source code
is released at https://github.com/Chen-Wang-
CUHK/Training-Free-and-Ref-Free-Summ-
Evaluation.

1 Introduction

Text summarization systems have been developed
rapidly due to the appearance of sequence-to-
sequence frameworks (Sutskever et al., 2014; Bah-
danau et al., 2015; See et al., 2017; Chan et al.,
2020), transformer architectures (Vaswani et al.,
2017) and large-scale pre-training models (Devlin
et al., 2019; Liu et al., 2019). How to accurately

∗This work was mainly done when Wang Chen was an
intern at Tencent AI Lab.

evaluate the summaries generated from these sys-
tems also attracts more and more attention in this
research area. One of the most accurate evaluation
methods is human evaluation. However, human
evaluation is expensive, time-consuming, and non-
reproducible. Thus, it is necessary to develop au-
tomatic evaluation metrics for text summarization
systems. Existing automatic summarization evalu-
ation metrics can be roughly categorized into two
groups: reference-based metrics and reference-free
metrics. In this work, we focus on reference-free
metrics.

Reference-free summarization evaluation met-
rics have been developed in parallel in multi-
document summarization and single-document
summarization. The SOTA reference-free method
for multi-document summarization evaluation, SU-
PERT (Gao et al., 2020), predicts a relevance score
for each (document, summary) pair to estimate the
informativeness of the summary and then averages
all the scores from multiple documents as the fi-
nal evaluation score. For each pair, SUPERT em-
ploys the top-ranked sentences which are ranked by
the position or centrality as a pseudo reference of
the document and then applies BERTScore (Zhang
et al., 2020) to produce a relevance score between
the pseudo reference and the given summary. The
SOTA single-document summarization reference-
free evaluation metric, LS Score (Wu et al., 2020),
combines a learned linguistic scorer for the sum-
mary and a cosine similarity scorer for the (docu-
ment, summary) pair to produce the final score.

Although SUPERT and LS Score achieve the
SOTA performance on their own areas respectively,
they still have several drawbacks. For example,
SUPERT only considers the relevance score be-
tween the document and the summary while ignor-
ing the other aspects such as how much redundant
information is contained in the summary. Besides,
SUPERT assumes that all pseudo reference sen-

https://github.com/Chen-Wang-CUHK/Training-Free-and-Ref-Free-Summ-Evaluation
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tences are equally-important. However, in the real
world, the key information of a document is un-
evenly distributed over sentences. Therefore, such
an assumption may introduce extra noise for the
evaluation. Note that although SUPERT may em-
ploy sentence centrality to select document sen-
tences as a pseudo reference, they ignore the sen-
tence centrality after the selection and still treat
the selected sentences equally-important. As for
LS Score, although it does not require a reference
during the evaluation of a summary, it requires
a large-scale training dataset with reference sum-
maries to train the linguistic scorer. Besides the
intrinsic drawbacks in these SOTA methods, to our
best knowledge, there is no reference-free evalua-
tion metric showing that it can achieve the SOTA
performance on both multi-document and single-
document summarization.

To solve the above limitations, based on SU-
PERT, we propose a novel training-free and
reference-free metric for both multiple and single
document summarization evaluation. Our metric is
composed of a centrality-weighted relevance score
and a self-referenced redundancy score.

For the relevance score which is employed to
estimate the informativeness of the summary, we
incorporate the following new features. First, un-
like previous work which only utilizes the token-
level representations, motivated by Clark et al.
(2019), we engage a hybrid way that contains both
token-level representations and sentence-level rep-
resentations to encode the document and the sum-
mary. The purpose of the hybrid representation
is to enable our method to consider richer map-
ping styles (i.e., token-to-token, sentence-to-token,
and sentence-to-sentence) and help to produce a
more comprehensive evaluation score. Second,
we utilize the sentence centrality computed from
sentence-level representations of the source doc-
ument to produce the importance weights of the
pseudo reference sentences and tokens. Based on
the weights, we compute a weighted relevance
score that is more precise by considering the rela-
tive importance. Third, besides the F1 version of
our relevance score, we also propose an adaptive
Fβ version where recall is considered β times as
important as precision. β is computed based on the
length ratio between the pseudo reference and the
given summary. The motivation is to punish the
short summary that can easily get high precision
while covering very limited important information

in the pseudo reference (i.e., low recall).
To measure the redundancy of a summary, we

design a simple but effective self-referenced simi-
larity score. If a summary contains much redundant
information, there must exist plenty of semantically
similar tokens or sentences. Based on this assump-
tion, we use the summary itself as the reference
and input a (summary, summary) pair into a self-
masked BERTScore to produce a redundancy score
that evaluates the averaged degree of semantic sim-
ilarity of each token or sentence with other tokens
or sentences.

After obtaining the centrality-weighted rele-
vance score and the self-referenced redundancy
score, we combine them to predict the final evalua-
tion score. Depending on either F1 or Fβ is applied
in our relevance score, we propose two variants of
our method: the F1-based version and the Fβ-based
version. Extensive experiments are conducted on
both multi-document and single-document summa-
rization datasets. The results show that our F1-
based method already outperforms all the SOTA
baselines on all datasets. Moreover, our Fβ-based
method can further improve the performance on
multi-document summarization datasets.

Our contributions are summarized as follows:
(1) A novel training-free and reference-free summa-
rization evaluation metric which considers both rel-
evance and redundancy; (2) A centrality-weighted
relevance score that effectively utilizes the sentence
centrality of the documents to provide importance
guidance for the pseudo reference tokens and sen-
tences. Besides the F1 version, we also develop
an Fβ based relevance score which pays more at-
tention to recall; (3) A self-referenced redundancy
score that utilizes a self-masked BERTScore to
detect the duplicated information of the given sum-
mary; (4) To the best of our knowledge, we are
the first evaluation metric that can achieve SOTA
performance on both multiple and single document
summarization under the reference-free setting.

2 Preliminary

Notations. We denote vectors as bold lowercase
characters and matrices as bold uppercase charac-
ters. The characters that are not bold are used to
denote scalars. Calligraphy uppercase characters
are utilized to represent sets.

Problem Definition. We formally define the
reference-free summarization evaluation problem
as follows. Give a set of documents D =
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Figure 1: Overall framework of our method. w and s are the token-level and sentence-level representations. n
and N (m and M ) are the token number and the sentence number of the summary (pseudo reference). For multi-
document summary (i.e., K > 1), we compute relevance scores between the summary x and each document dk,
and then average them as the final relevance score.

{d1, d2, ..., dK} and a generated summary x, the
goal is to predict a score to represent the overall
quality of the summary. K = 1 and K > 1 indi-
cate single-document and multi-document summa-
rization respectively.

3 Our Methodology

The overall framework is illustrated in Figure 1.
Our final evaluation score of a summary consists of
an averaged centrality-weighted relevance score
and a self-referenced redundancy score. Both
scores are calculated on a semantic-level instead of
utilizing n-gram overlapping. The averaged rele-
vance score is computed from the relevance score
between the summary and each document in the
document set. The redundancy score is calculated
based on the summary itself.

3.1 Centrality-weighted Relevance Score
Our relevance score aims to estimate the informa-
tiveness of the given summary. We first encode
each document in the document set and the sum-
mary into hidden representations. Then, for each
document, we select essential sentences by central-
ity to build a pseudo reference. Next, we compute
a centrality-weighted relevance score between the
summary and each pseudo reference. Finally, we
average all the relevance scores as the final rel-
evance score of the summary. We use the k-th
document dk and a summary x as an example to
show the workflow.

Encoding. Following SUPERT (Gao et al., 2020),
we first split the document dk and the summary x
into sentences. Then, the pre-trained SBERT1 is
employed to encode the tokens of each sentence
into token-level contextual hidden representations.
We also apply max-pooling on all the tokens of a
sentence to obtain the sentence-level hidden repre-
sentation. Following previous work, when utilizing
the token-level representations to compute the rel-
evance and redundancy scores, we will filter out
the non-informative tokens such as stop-words to
improve the efficiency.

Building Pseudo Reference. We do not choose
all the document sentences of dk to evaluate the
relevance of the summary. Because the whole doc-
ument usually contains plenty of unimportant sen-
tences which may introduce extra noise for the rel-
evance evaluation. Thus, we select important docu-
ment sentences to build a pseudo reference r for the
evaluation. The sentence selection is based on the
centrality of each sentence, which is computed by
the unsupervised algorithm, PacSum (Zheng and
Lapata, 2019), using the sentence-level represen-
tation. After obtaining the centrality scores of all
sentences of the document, we choose the top-M2

sentences as the pseudo reference. Besides, we
normalize the centrality scores to [0, 1] and denote
the normalized centrality scores of the selected sen-

1bert-large-nli-stsb-mean-tokens
2In experiments, we follow the default configuration of

SUPERT and set M as 12 for all the datasets.
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tences as ās = [ās1, ā
s
2, ..., ā

s
M ] where āsi ∈ [0, 1]

and the superscript s means sentence-level. We
denote the pseudo reference building process as
PacSumTopM.

Computing Relevance Score with One Pseudo
Reference. Instead of only using token-level rep-
resentations, we also leverage the sentence-level
representations to provide multi-level information.
The hybrid representations of the summary x and
the pseudo reference r are denoted as follows:

X = [wx
1 , ...,w

x
n, s

x
1 , ..., s

x
N ], (1)

Rk = [wr
1, ...,w

r
m, s

r
1, ..., s

r
M ], (2)

where n and N (m and M ) are the token number
and sentence number of the summary (pseudo ref-
erence). w and s represent the token and sentence
hidden representations respectively.

Besides the hybrid representations, we also in-
troduce a centrality weighting scheme to weight
the tokens and sentences of the pseudo reference,
which is different from previous work that either
treats them equally or uses the surface statistics
like IDF as the weights. Based on the centrality
scores of the selected pseudo reference sentences
i.e., ās = [ās1, ā

s
2, ..., ā

s
M ], we assign the weights

of the pseudo reference tokens as follows:

āw = [āw1 , ā
w
2 , ..., ā

w
m], (3)

āwj = āsi:wj∈si , (4)

where āi:wj∈si indicates the token wj inherits the
centrality score from its sentence si. Since we
have already removed the non-informative tokens
in the token-level representations of each sentence,
the remaining tokens capture the key information
of the sentence and consequently it is reasonable
to perform such a weight inheritance. Next, we
combine token weights āw and sentence weights ās

to get the final normalized centrality-based weights
of the hybrid representations:

a = [aw1 , ..., a
w
m, a

s
1, ..., a

s
M ], (5)

awj = āwj /sum([āw; ās]), (6)

asi = āsi/sum([āw; ās]), (7)

where “[·; ·]” represents concatenation.
Based on the hybrid representations (i.e., X

and Rk) and the centrality-based weights of the
pseudo reference tokens and sentences (i.e., a),
we compute the relevance score between the sum-
mary and the pseudo reference by a weighted

BERTScore (Zhang et al., 2020). For brevity, we
denote the j-th element of X as xj , the i-th element
of Rk as ri, and the i-th element of a as ai:

Recall =

∑
i ai maxj Sim(ri,xj)∑

i ai
, (8)

Precision =

∑
j maxi Sim(ri,xj)

|X|
, (9)

F1 =
2 ∗Recall ∗ Precision
Recall + Precision

, (10)

where “Sim” denotes the cosine similarity and |X|
equals to n + N . Recall, Precision, and F1 are
in the range of [-1, 1].

Besides the F1 version, we also propose an adap-
tive Fβ version of relevance score as follows:

Fβ =
(1 + β2) ∗Recall ∗ Precision
Recall + β2 ∗ Precision

, (11)

β2 =


1, if ( |Rk|

|X| )
1/γ ≤ 1

2, if ( |Rk|
|X| )

1/γ ≥ 2

( |Rk|
|X| )

1/γ , otherwise

, (12)

where |Rk| = m+M , |X| = n+N , and γ is a pos-
itive integer hyper-parameter. In our experiments,
γ is set as 2 after fine-tuning on the validation
dataset and is fixed for all the testing datasets. The
physical meaning of β is that the Recall score is
considered β times as important as the Precision
score. In summarization evaluation, the coverage
of the key information is always the most important
quality indicator of the summary. Thus, we set the
lower bound of β as 1. On the other hand, the met-
ric should not only evaluate the key information
coverage, containing less unimportant content in
the summary should also be considered. Therefore,
we set the upper bound of β as

√
2. As shown in

Eq.12, within the range of [1,
√

2], β adaptively
changes according to the ratio between |Rk| and
|X|. The intuition comes from that a longer pseudo
reference implies more key information needs to
be covered by the summary. Besides, a shorter
summary can easily get high precision but covers
very limited important information in the pseudo
reference. Thus, we give Recall a higher weight
to punish such short summaries when the pseudo
reference is long.

Final Averaged Relevance Score. After com-
puting the centrality-weighted relevance score be-
tween the summary and the pseudo reference of
each source document, we employ the average as
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the final relevance score of the summary:

scorerel = mean([F 1
∗ , ..., F

k
∗ , ..., F

K
∗ ]), (13)

where * is 1 for the F1 variant and β for the Fβ
variant. The superscript k indicates the F∗ score
is computed with the k-th document. Note that
scorerel ∈ [−1, 1] and higher is better.

3.2 Self-referenced Redundancy Score
In this section, we introduce our self-referenced
redundancy score. We engage the summary itself
as the reference to evaluate the degree of the se-
mantic similarity between each summary token or
sentence with the other tokens or sentences. The
averaged semantic similarity degree is used as the
redundancy score. The computation is based on a
self-masked BERTScore as follows:

scorered =

∑
i maxj:i 6=j Sim(xj ,xi)

|X|
, (14)

where “j : i 6= j” means we do not consider the
similarity between xi and itself, i.e, self-masked.
Because of the symmetric property, the F1, preci-
sion, and recall scores are equal with each other.
This is also the reason that we use precision in
Eq.14 as the final redundancy score. Note that
scorered ∈ [−1, 1] and lower is better.

3.3 Final Evaluation Score
After obtaining the relevance score and the redun-
dancy score, we apply a linear combination to pro-
duce the final evaluation score of the summary
based on the document set:

score =
scorerel − λ ∗ scorered

1 + λ
, (15)

where 0 < λ ≤ 1 is a hyper-parameter to
scale the redundancy score and score ∈ [−1, 1].
Higher score means better summary quality. In
our experiments, after fine-tuning on the vali-
dation set, λ is set as 0.6 and is fixed for all
the testing datasets. We denote the variants of
our final method as Ours(Fβ)-PacSumTopM and
Ours(F1)-PacSumTopM depending on whether
the adaptive Fβ is employed.

4 Experiment Setup

4.1 Datasets
For comprehensively investigating our summariza-
tion evaluation methods, we test our methods on
both multi-document and single-document sum-
marization datasets. We leverage TAC3 datasets

3https://tac.nist.gov/

Dataset |Topic| Document Summary
|Set| Ave.S Ave.T |Systems| Ave.S Ave.T

Valid. TAC-2010 46 10 23.2 651.8 43 4.3 118.9

Test.

TAC-2011 44 10 20.1 560.5 50 4.3 120.9
TAC-2009 44 10 24.9 705.8 55 4.1 117.6
TAC-2008 48 10 23.3 660.0 58 4.2 119.6
CNNDM 499 1 36.0 921.1 4 3.5 73.2

Table 1: Statistics of datasets. “Valid.” and “Test.” in-
dicate the dataset is used for validation and testing, re-
spectively. “|Topic|” is the number of topics. Under
each topic, a set of documents is given and summaries
are from different systems associating with human-
annotated quality scores. “|Set|” is the number of doc-
uments in the document set. “Ave.S” and “Ave.T” rep-
resent the averaged sentence number and token number
per document or summary. Note that the token number
is counted after the tokenization. “|Systems|” denotes
the number of summarization systems in the dataset.

for multi-document summarization evaluation test-
ing. We choose TAC-2010 as the validation dataset
and TAC-2008/TAC-2009/TAC-2011 as the testing
datasets. Following previous work, we only uti-
lize the initial summaries in TAC datasets, i.e., the
summaries for the document set A. For the single-
document summarization evaluation, we employ
CNNDM4 (Chaganty et al., 2018) as the testing
dataset. The statistics of these datasets are shown
in Table 1. Note that the hyper-parameters of our
methods are fine-tuned on TAC-2010 and then fixed
for all the testing datasets.

For TAC datasets, we compute correlation coef-
ficients between predicted scores of an evaluation
method and the annotated Pyramid scores of sum-
maries to measure the effectiveness of the method.
Following Gao et al. (2020), a correlation is com-
puted for each topic. Then, the averaged correlation
from all the topics is engaged as the final correla-
tion of the method with human ratings.

For CNNDM dataset, correlations are calculated
with the human scores in three dimensions includ-
ing Overall, Grammar, and Redundancy. Follow-
ing Wu et al. (2020), the correlation is computed
between predicted scores of the 499 × 4 = 1996
(document, summary) pairs with corresponding hu-
man ratings.

4.2 Baselines

In this section, we briefly introduce our baselines.
We choose TF-IDF, JS (Louis and Nenkova,

2013), and REPEAR (Rioux et al., 2014) as tra-
ditional reference-free baselines. All these tradi-
tional baselines do not build pseudo references and

4https://bit.ly/price-of-debiasing
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Method TAC-2011 TAC-2009 TAC-2008
r ρ τ r ρ τ r ρ τ

TF-IDF 0.313 0.294 0.209 0.372 0.382 0.279 0.375 0.341 0.243
JS 0.377 0.333 0.240 0.376 0.381 0.279 0.385 0.338 0.242
REAPER 0.377 0.334 0.237 0.358 0.357 0.256 0.287 0.261 0.187
Ours(F1)-All 0.495 0.451 0.329 0.478 0.476 0.353 0.466 0.426 0.310
Ours(Fβ)-All 0.498 0.455 0.332 0.480 0.471 0.348 0.462 0.423 0.307
ROUGE-1-PacSumTopM 0.436 0.377 0.274 0.418 0.406 0.301 0.397 0.348 0.252
ROUGE-2-PacSumTopM 0.429 0.388 0.287 0.380 0.419 0.314 0.410 0.355 0.259
ROUGE-L-PacSumTopM 0.436 0.370 0.272 0.427 0.415 0.306 0.385 0.336 0.245
MoverScore-PacSumTopM 0.521 0.475 0.351 0.483 0.485 0.362 0.479 0.440 0.323
S+WMS-PacSumTopM 0.291 0.292 0.211 0.350 0.358 0.264 0.364 0.358 0.260
C-ELMO-PacSumTopM 0.386 0.302 0.217 0.317 0.235 0.167 0.210 0.162 0.114
C-SBERT-PacSumTopM 0.332 0.293 0.207 0.314 0.277 0.197 0.183 0.196 0.143
SUPERT-PacSumTopM 0.511 0.481 0.357 0.486 0.494 0.368 0.493 0.457 0.334
SUPERT-IDF-PacSumTopM 0.507 0.476 0.353 0.485 0.492 0.367 0.489 0.450 0.328
Ours(F1)-PacSumTopM 0.531 0.493 0.365 0.502 0.506 0.381 0.495 0.461 0.337
Ours(Fβ)-PacSumTopM 0.541 0.505 0.374 0.507 0.508 0.380 0.500 0.465 0.339

Table 2: Main results on multi-document summarization datasets. Pearson’s r, Spearman’s ρ, and Kendall’s τ with
human scores are reported. The best results are bold and the second-best results are underlined.

Method Overall Grammar Redundancy
r ρ τ r ρ τ r ρ τ

TF-IDF 0.264 0.249 0.187 0.186 0.170 0.127 0.281 0.253 0.187
JS 0.265 0.232 0.174 0.210 0.180 0.136 0.317 0.278 0.208
REAPER 0.036 0.032 0.024 0.004 -0.006 -0.005 -0.020 -0.031 -0.024
LS Score (Wu et al., 2020) − 0.334 − − 0.266 − − 0.288 −
Ours(F1)-All 0.390 0.370 0.281 0.306 0.306 0.232 0.413 0.381 0.287
Ours(Fβ)-All 0.361 0.337 0.255 0.273 0.270 0.204 0.395 0.356 0.268
ROUGE-1-PacSumTopM 0.224 0.215 0.159 0.126 0.114 0.084 0.289 0.254 0.186
ROUGE-2-PacSumTopM 0.347 0.335 0.253 0.254 0.240 0.181 0.398 0.369 0.274
ROUGE-L-PacSumTopM 0.235 0.224 0.166 0.135 0.122 0.090 0.300 0.264 0.193
MoverScore-PacSumTopM 0.373 0.341 0.259 0.264 0.240 0.181 0.411 0.359 0.267
S+WMS-PacSumTopM 0.324 0.353 0.267 0.240 0.256 0.193 0.360 0.385 0.286
C-ELMO-PacSumTopM 0.355 0.297 0.223 0.232 0.201 0.151 0.425 0.354 0.262
C-SBERT-PacSumTopM 0.405 0.378 0.286 0.295 0.299 0.225 0.415 0.373 0.279
SUPERT-PacSumTopM 0.384 0.374 0.284 0.318 0.317 0.240 0.381 0.369 0.277
SUPERT-IDF-PacSumTopM 0.382 0.373 0.283 0.316 0.314 0.238 0.377 0.365 0.274
Ours(F1)-PacSumTopM 0.416 0.404 0.308 0.341 0.341 0.259 0.428 0.408 0.308
Ours(Fβ)-PacSumTopM 0.400 0.381 0.290 0.314 0.311 0.235 0.427 0.395 0.298

Table 3: Main results on single-document summarization dataset (CNNDM). Pearson’s r, Spearman’s ρ, and
Kendall’s τ with human scores are reported. The best results are bold and the second-best results are underlined.

directly utilize the full content of the documents.
For fairness, we also show the performance of our
methods without building pseudo reference. We
denote them as Ours(F1)-All and Ours(Fβ)-All
since they use the whole document as a reference.

We also extend several popular reference-
based methods as baselines. We adapt ROUGE-
1/2/L (Lin, 2004), MoverScore (Zhao et al., 2019),
and S+WMS (Clark et al., 2019) into the reference-
free scenario via building the pseudo reference with
the PacSumTopM method. We add the suffix “-
PacSumTopM” to these baseline names to indi-
cate the pseudo reference building process.

Besides, the SOTA reference-free summary eval-
uation metrics are also selected as our strong base-
lines, including C-ELMO/C-SBERT (Sun and
Nenkova, 2019), SUPERT/SUPERT-IDF (Gao
et al., 2020), and LS Score (Wu et al., 2020). C-
ELMO (C-SBERT) encodes the document and the

summary using the pre-trained ELMO (SBERT)
and then computes their cosine similarity. SUPERT-
IDF is an extension of SUPERT, which utilizes the
inverse document frequency (IDF) as the impor-
tance weight of each token. For fair comparisons,
we also apply the same pseudo reference build-
ing process i.e., PacSumTopM, to C-ELMO/C-
SBERT/SUPERT/SUPERT-IDF and add the suffix
“-PacSumTopM” to the their names.

5 Results and Analysis

5.1 Main Results

The main experimental results on multi-document
summarization datasets are shown in Table 2.
We find that our F1 version (i.e., Ours(F1)-
PacSumTopM) already consistently outperforms
all the baselines, which indicates the effectiveness
of our centrality-weighted relevance score and our
self-referenced redundancy score. The results also
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Figure 2: The gap of Spearman’s ρ between Ours(Fβ)
and Ours(F1) on TAC-2011 for different |Set| and
|Systems|. Positive gaps mean our Fβ can improve the
performance while negative gaps indicate our Fβ de-
grades the performance. When changing one of them,
the other is fixed. “all” means the full size is applied,
i.e., 10 for |Set| and 50 for |Systems|.

demonstrate that our Fβ version can further im-
prove the performance of multi-document sum-
marization evaluation. By comparing Ours(Fβ)-
PacSumTopM and Ours(Fβ)-All, we see that the
pseudo reference building process can significantly
improve the performance. This is also the reason
why we apply the same pseudo reference building
process into SOTA baselines for fair comparisons.
In the remaining part of this paper, we omit the
suffix “-PacSumTopM” for simplicity when we
mention a method.

We also test our methods on the single-document
summarization dataset without further fine-tuning
the hyper-parameters. The main results are dis-
played in Table 3. We note that our F1 version still
outperforms all the baselines, which manifests the
high generalization ability of our F1-based method.
One interesting finding is that the performance sig-
nificantly drops after incorporating the Fβ score.

To study the reason for the performance degrada-
tion on CNNDM after incorporating Fβ , we com-
pare CNNDM and TAC datasets first. From Table 1,
we note the main differences between them are the
size of the document set for each topic (i.e., |Set|)
and the number of the summarization systems (i.e.,
|Systems|). CNNDM has much smaller |Set| and
|Systems|. We use the TAC-2011 dataset as an ex-
ample to investigate whether our Fβ is unsuitable
for smaller |Set| and |Systems|. We change |Set|
and |Systems| respectively and report the gap of
Spearman’s ρ between Ours(Fβ) and Ours(F1) in
Figure 2. From the results, we observe that our Fβ

Method TAC CNNDM
2011 2009 2008 Overall Grammar Redundancy

Ours(F1) 0.493 0.506 0.461 0.404 0.341 0.408
Ours(Fβ) 0.505 0.508 0.465 0.381 0.311 0.395
MoverScore 0.475 0.485 0.440 0.341 0.240 0.359
+CentralityW. 0.472 0.467 0.431 0.350 0.257 0.364
+Redundancy 0.237 0.202 0.221 0.448 0.326 0.546
+Both 0.261 0.220 0.241 0.455 0.341 0.545

Table 4: Spearman’s ρ of incorporating the central-
ity weighting and redundancy score into MoverScore
based framework. “+Both” means these two features
are simultaneously applied.

can consistently improve the performance for dif-
ferent |Set|. For the single-document summariza-
tion setting, i.e., |Set|=1, it still obtains a positive
gap. Nevertheless, when the |Systems| is small
such as 4, applying our Fβ leads to a dramatic per-
formance dropping. From Table 1, we also see
that CNNDM and TAC-2011 have different sum-
mary lengths (73.2 for CNNDM and 120.9 for TAC-
2011). However, when we limit the |Systems| of
TAC-2011 to smaller numbers, the average length
of generated summaries is still around 120, which
indicates the performance degeneration is indeed
from the change of system numbers. Therefore, we
suggest using Ours(Fβ) when |Systems| is large
like 12 and employing Ours(F1) when |Systems|
is small like 4.

5.2 Ablation Study

For better understanding the contributions of our
proposed components, we conduct ablation stud-
ies on the best-performed method on each dataset,
i.e., Ours(Fβ) for the multi-document summariza-
tion datasets and Ours(F1) for the single-document
summarization dataset. We display results of the
rank-based Spearman’s ρ in Figure 3.

As shown in the figure, after removing one of
the three components (i.e., the centrality weight-
ing, the hybrid representation, and the redundancy
score), the performance of our methods become
worse in most cases. This finding demonstrates
the effectiveness of our proposed components. Be-
sides, we also note that removing the redundancy
score significantly degrades the performance on
the redundancy evaluation on CNNDM, which in-
dicates our redundancy score effectively captures
the redundancy degree of the summaries.

5.3 Apply Centrality Weighting and
Redundancy Score into MoverScore

Besides basing on BERTScore, we also study
whether our key features i.e., the centrality weight-
ing and redundancy score, can work well in a
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Figure 3: Ablation studies for Ours(Fβ) on TAC
datasets and Ours(F1) on CNNDM. “-CentralityW.”
means that we remove the centrality weighting when
computing relevance scores. “-HybridR.” represents
we only utilize the token-level representations when
calculating relevance and redundancy scores. “-
Redundancy” indicates we omit the redundancy score.

MoverScore based framework (i.e., the relevance
and redundancy scores are computed using Mover-
Score). Note that our Fβ is not applicable to Mover-
Score since it is not an F -measure. The results are
listed in Table 4. We find that these two features
significantly improve the performance of the orig-
inal MoverScore on single-document summariza-
tion evaluation while degrading the performance
dramatically on multi-document summarization
evaluation. On CNNDM, the enhanced Mover-
Score even outperforms Ours(F1) on the “Overall”
and “Redundancy” aspects, which indicates Mover-
Score is a promising basis for our proposed new fea-
tures. We leave solving the performance dropping
of the enhanced MoverScore on multi-document
setting as future work.

5.4 Robustness Analysis

We investigate the robustness of our method on
the following factors and report the experimental
results on the validation dataset (i.e., TAC-2010) in
Figure 4: (1) the hyper-parameter λ for scaling the
redundancy score; (2) the hyper-parameter γ in Fβ ;
(3) the number of selected sentences for pseudo ref-
erence i.e., M ; (4) different pre-trained contextual
encoding models including BERT-base5, BERT-
large6, RoBERTa-base7, and RoBERTa-large8.

5bert-base-nli-stsb-mean-tokens
6bert-large-nli-stsb-mean-tokens
7roberta-base-nli-stsb-mean-tokens
8roberta-large-nli-stsb-mean-tokens

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Different λ

0.550

0.575

0.600

0.625

C
or

re
la

tio
ns

r
ρ

1 2 3 4 5 6
Different γ

0.550

0.575

0.600

0.625

C
or

re
la

tio
ns

r
ρ

3 6 9 12 15 18 21
Different M

0.550

0.575

0.600

0.625

C
or

re
la

tio
ns

r
ρ

BERT-base
BERT-large

RoBERTa-base
RoBERTa-large

0.550

0.575

0.600

0.625

C
or

re
la

tio
ns

r
ρ

Figure 4: The performance of Ours(Fβ) on TAC-2010
under different λ, γ, M , and encoding models. When
we change one of them, the others are fixed. The Pear-
son’s r and Spearman’s ρ are reported.

Since both Spearman’s ρ and Kendall’s τ
are rank-based correlation coefficients, we omit
Kendall’s τ for simplicity. From this figure, we
observe that the performance of our method is rel-
atively stable for different λ and γ. We also find
that a small M leads to lower correlations because
much important information may be abandoned
when building the pseudo references. But a large
M will also degenerate the correlations since more
noises are introduced. Thus, a moderateM is better.
As for encoding models, we note that large encod-
ing models obtain better performance than base
encoding models. However, large models need
more computation resources and time to encode
the input text. Note that for our final method, we
only fine-tune λ and γ on the TAC-2010 and set
them as 0.6 and 2. As for M and encoding mod-
els, following the configuration of SUPERT (Gao
et al., 2020), we directly set M as 12 and employ
the BERT-large as the encoding model. All these
factors are fixed for all testing datasets.

5.5 Performance on Bad/Good Summaries

In this section, we evaluate the ability of our
method to distinguish bad and good summaries.
The bad and good summaries are selected by hu-
man ratings. We use TAC-2011 as an example and
choose SUPERT as a strong baseline. The corre-
sponding distributions of the reversed rank for bad
and good summaries are illustrated in Figure 5. A
smaller (larger) reversed rank represents the sum-
mary is assigned with a lower (higher) score. From
the figure, we find that compared with SUPERT,
Our(Fβ) has a better ability to assign bad sum-
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Figure 5: Distributions of the reversed rank from SU-
PERT and Ours(Fβ) for bad and good summaries on
TAC-2011. The bar in the middle indicates the median.

maries lower scores and good summaries higher
scores, which demonstrates the effectiveness of
our method again. Moreover, we also note that
both SUPERT and Ours(Fβ) are good at giving bad
summaries lower scores while having difficulty in
assigning good summaries higher scores. We leave
solving this problem as another future work under
the reference-free setting.

6 Related Work

Reference-based Evaluation Metrics mainly
measure the relevance between the human-
annotated references and the system-generated
text, which are widely adopted in text summa-
rization (Lin, 2004; Zhao et al., 2019), machine
translation (Papineni et al., 2002; Zhang et al.,
2020), and dialogue systems (Papineni et al., 2002;
Gao et al., 2021; Xiang et al., 2021). For exam-
ple, ROUGE (Lin, 2004) evaluates the token se-
quence overlapping. BERTScore (Zhang et al.,
2020), S+WMS (Clark et al., 2019), and Mover-
Score (Zhao et al., 2019) measure the semantic
similarity between the references and the summary
via a greedy or optimized minimum Earth Mover’s
Distance.

Reference-free Evaluation Metrics have been
developed to avoid the dependency on human-
annotated references, which obtain more and more
attention in recent years (Böhm et al., 2019; Gao
et al., 2020; Wu et al., 2020; Chan et al., 2021).
Some of them need to train a scorer (Peyrard and
Gurevych, 2018; Xenouleas et al., 2019; Scialom
et al., 2019; Böhm et al., 2019). For example,
LS Score (Wu et al., 2020) designs a metric which

combines a linguistic quality scorer trained from
the built positive and negative summaries, and a
relevance scorer based on cosine similarity. The
others do not require training (Louis and Nenkova,
2013; Rioux et al., 2014; Peyrard, 2019; Sun and
Nenkova, 2019). For instance, SUPERT (Gao et al.,
2020) builds the pseudo references from the source
document first and then engages BERTScore to
compute the relevance score between the pseudo
reference and the summary.

7 Conclusion

In this paper, we propose a novel training-free
and reference-free summarization evaluation met-
ric consisting of a relevance score and a redun-
dancy score. Experiments on multi-document and
single-document summarization settings show the
effectiveness of our methods. One promising fu-
ture direction is to solve the performance dropping
issue after applying our key features into Mover-
Score and the other is to tackle the problem that
current metrics struggle to assign higher scores for
good summaries.
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