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Abstract

Detecting rumors on social media is a very
critical task with significant implications to
the economy, public health, etc. Previ-
ous works generally capture effective features
from texts and the propagation structure. How-
ever, the uncertainty caused by unreliable re-
lations in the propagation structure is com-
mon and inevitable due to wily rumor pro-
ducers and the limited collection of spread
data. Most approaches neglect it and may
seriously limit the learning of features. To-
wards this issue, this paper makes the first
attempt to explore propagation uncertainty
for rumor detection. Specifically, we pro-
pose a novel Edge-enhanced Bayesian Graph
Convolutional Network (EBGCN) to capture
robust structural features. The model adap-
tively rethinks the reliability of latent relations
by adopting a Bayesian approach. Besides,
we design a new edge-wise consistency train-
ing framework to optimize the model by en-
forcing consistency on relations. Experiments
on three public benchmark datasets demon-
strate that the proposed model achieves better
performance than baseline methods on both ru-
mor detection and early rumor detection tasks.

1 Introduction

With the ever-increasing popularity of social me-
dia sites, user-generated messages can quickly
reach a wide audience. However, social media
can also enable the spread of false rumor infor-
mation (Vosoughi et al., 2018). Rumors are now
viewed as one of the greatest threats to democracy,
journalism, and freedom of expression. Therefore,
detecting rumors on social media is highly desir-
able and socially beneficial (Ahsan et al., 2019).
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Figure 1: An example of uncertain propagation struc-
ture. It includes inaccurate relations, making con-
structed graph inconsistent with the real propagation.

Almost all the previous studies on rumor de-
tection leverage text content including the source
tweet and all user retweets or replies. As time goes
on, rumors form their specific propagation struc-
tures after being retweeted or replied to. Vosoughi
(2015); Vosoughi et al. (2018) have confirmed ru-
mors spread significantly farther, faster, deeper, and
more broadly than the truth. They provide the possi-
bility of detecting rumors through the propagation
structure. Some works (Ma et al., 2016; Kochkina
et al., 2018) typically learn temporal features alone
from propagation sequences, ignoring the internal
topology. Recent approaches (Ma et al., 2018;
Khoo et al., 2020) model the propagation struc-
ture as trees to capture structural features. Bian
et al. (2020); Wei et al. (2019) construct graphs and
aggregate neighbors’ features through edges based
on reply or retweet relations.

However, most of them only work well in a nar-
row scope since they treat these relations as reliable
edges for message-passing. As shown in Figure
1, the existence of inaccurate relations brings un-
certainty in the propagation structure. The neglect
of unreliable relations would lead to severe error
accumulation through multi-layer message-passing
and limit the learning of effective features.

We argue such inherent uncertainty in the prop-
agation structure is inevitable for two aspects: i)
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In the real world, rumor producers are always wily.
They tend to viciously manipulate others to create
fake supporting tweets or remove opposing voices
to evade detection (Yang et al., 2020). In these
common scenarios, relations can be manipulated,
which provides uncertainty in the propagation struc-
ture. ii) Some annotations of spread relations are
subjective and fragmentary (Ma et al., 2017; Zu-
biaga et al., 2016). The available graph would be
a portion of the real propagation structure as well
as contain noisy relations, resulting in uncertainty.
Therefore, it is very challenging to handle inherent
uncertainty in the propagation structure to obtain
robust detection results.

To alleviate this issue, we make the first at-
tempt to explore the uncertainty in the propagation
structure. Specifically, we propose a novel Edge-
enhanced Bayesian Graph Convolutional Network
(EBGCN) for rumor detection to model the un-
certainty issue in the propagation structure from a
probability perspective. The core idea of EBGCN
is to adaptively control the message-passing based
on the prior belief of the observed graph to sur-
rogate the fixed edge weights in the propagation
graph. In each iteration, edge weights are inferred
by the posterior distribution of latent relations ac-
cording to the prior belief of node features in the
observed graph. Then, we utilize graph convolu-
tional layers to aggregate node features by aggre-
gating various adjacent information on the refining
edges. Through the above network, EBGCN can
handle the uncertainty in the propagation structure
and promote the robustness of rumor detection.

Moreover, due to the unavailable of missing
or inaccurate relations for training the proposed
model, we design a new edge-wise consistency
training framework. The framework combines un-
supervised consistency training on these unlabeled
relations into the original supervised training on
labeled samples, to promote better learning. We
further ensure the consistency between the latent
distribution of edges and the distribution of node
features in the observed graph by computing KL-
divergence between two distributions. Ultimately,
both the cross-entropy loss of each claim and the
Bayes by Backprop loss of latent relations will be
optimized to train the proposed model.

We conduct experiments on three real-world
benchmark datasets (i.e., Twitter15, Twitter16, and
PHEME). Extensive experimental results demon-
strate the effectiveness of our model. EBGCN of-

fers a superior uncertainty representation strategy
and boosts the performance for rumor detection.
The main contributions of this work are summa-
rized as follows:

• We propose novel Edge-enhanced Bayesian
Graph Convolutional Networks (EBGCN) to
handle the uncertainty in a probability manner.
To the best of our knowledge, this is the first
attempt to consider the inherent uncertainty in
the propagation structure for rumor detection.

• We design a new edge-wise consistency train-
ing framework to optimize the model with
unlabeled latent relations.

• Experiments on three real-world benchmark
datasets demonstrate the effectiveness of our
model on both rumor detection and early ru-
mor detection tasks1.

2 Related Work

2.1 Rumor Detection
Traditional methods on rumor detection adopted
machine learning classifiers based on handcrafted
features, such as sentiments (Castillo et al., 2011),
bag of words (Enayet and El-Beltagy, 2017) and
time patterns (Ma et al., 2015). Based on salient
features of rumors spreading, Wu et al. (2015); Ma
et al. (2017) modeled propagation trees and then
used SVM with different kernels to detect rumors.

Recent works have been devoted to deep learn-
ing methods. Ma et al. (2016) employed Recurrent
Neural Networks (RNN) to sequentially process
each timestep in the rumor propagation sequence.
To improve it, many researchers captured more
long-range dependency via attention mechanisms
(Chen et al., 2018), convolutional neural networks
(Yu et al., 2017; Chen et al., 2019), and Trans-
former (Khoo et al., 2020). However, most of them
focused on learning temporal features alone, ignor-
ing the internal topology structure.

To capture topological-structural features, Ma
et al. (2018) presented two recursive neural net-
work (RvNN) based on bottom-up and top-down
propagation trees. Yuan et al. (2019); Lu and Li
(2020); Nguyen et al. (2020) formulated the prop-
agation structure as graphs. Inspired by Graph
Convolutional Network (GCN) (Kipf and Welling,
2017), Bian et al. (2020) first applied two GCNs

1The source code is available at https://github.
com/weilingwei96/EBGCN.

https://github.com/weilingwei96/EBGCN
https://github.com/weilingwei96/EBGCN
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based on the propagation and dispersion graphs.
Wei et al. (2019) jointly modeled the structural
property by GCN and the temporal evolution by
RNN.

However, most of them treat the edge as the re-
liable topology connection for message-passing.
Ignoring the uncertainty caused by unreliable re-
lations could lead to lacking robustness and make
it risky for rumor detection. Inspired by valuable
research (Zhang et al., 2019a) that modeled uncer-
tainty caused by finite available textual contents,
this paper makes the first attempt to consider the
uncertainty caused by unreliable relations in the
propagation structure for rumor detection.

2.2 Graph Neural Networks

Graph Neural Networks (GNNs) (Kipf and Welling,
2017; Schlichtkrull et al., 2018; Velickovic et al.,
2018) have demonstrated remarkable performance
in modeling structured data in a wide variety of
fields, e.g., text classifcation (Yao et al., 2019),
recommendation system (Wu et al., 2019) and emo-
tion recognition (Ghosal et al., 2019). Although
promising, they have limited capability to handle
uncertainty in the graph structure. While the graphs
employed in real-world applications are themselves
derived from noisy data or modeling assumptions.
To alleviate this issue, some valuable works (Luo
et al., 2020; Zhang et al., 2019b) provide an ap-
proach for incorporating uncertain graph informa-
tion by exploiting a Bayesian framework (Maddox
et al., 2019). Inspired by them, this paper explores
the uncertainty in the propagation structure from
a probability perspective, to obtain more robust
rumor detection results.

3 Problem Statement

This paper develops EBGCN which processes text
contents and propagation structure of each claim
for rumor detection. In general, rumor detection
commonly can be regarded as a multi-classification
task, which aims to learn a classifier from training
claims for predicting the label of a test claim.

Formally, let C = {c1, c2, ..., cm} be the ru-
mor detection dataset, where ci is the i-th claim
and m is the number of claims. For each claim
ci = {ri, xi1, xi2, ..., xini−1, G

i}, Gi indicates the
propagation structure, ri is the source tweet, xij
refers to the j-th relevant retweet, and ni represents
the number of tweets in the claim ci. Specifically,
Gi is defined as a propagation graph Gi = 〈Vi, Ei〉

with the root node ri (Ma et al., 2018; Bian et al.,
2020), where Vi = {ri, xi1, xi2, ..., xini−1} refers to
the node set and Ei = {eist|s, t = 0, ..., ni − 1}
represent a set of directed edges from a tweet to its
corresponding retweets. Denote Ai ∈ Rni×ni as
an adjacency matrix where the initial value is

αst =

{
1, if eist ∈ Ei
0, otherwise

.

Besides, each claim ci is annotated with a
ground-truth label yi ∈ Y , where Y represents fine-
grained classes. Our goal is to learn a classifier
from the labeled claimed set, that is f : C → Y .

4 The Proposed Model

In this section, we propose a novel edge-enhanced
bayesian graph convolutional network (EBGCN)
for rumor detection in Section 4.2. For better train-
ing, we design an edge-wise consistency training
framework to optimize EBGCN in Section 4.3.

4.1 Overview
The overall architecture of EBGCN is shown in
Figure 2. Given the input sample including text
contents and its propagation structure, we first for-
mulate the propagation structure as directed graphs
with two opposite directions, i.e., a top-down prop-
agation graph and a bottom-up dispersion graph.
Text contents are embedded by the text embed-
ding layer. After that, we iteratively capture rich
structural characteristics via two main components,
node update module, and edge inference module.
Then, we aggregate node embeddings to generate
graph embedding and output the label of the claim.

For training, we incorporate unsupervised con-
sistency training on the Bayes by Backprop loss of
unlabeled latent relations. Accordingly, we opti-
mize the model by minimizing the weighted sum
of the unsupervised loss and supervised loss.

4.2 Edge-enhanced Bayesian Graph
Convolutional Networks

4.2.1 Graph Construction and Text
Embedding

The initial graph construction is similar to the pre-
viou work (Bian et al., 2020), i.e., build two distinct
directed graphs for the propagation structure of
each claim ci. The top-down propagation graph and
bottom-up dispersion graph are denoted as GTDi
and GBUi , respectively. Their corresponding initial
adjacency matrices are ATD

i = Ai and ABU
i = A>i .
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Figure 2: The architecture of the proposed rumor detection model EBGCN.

Here, we leave out the superscript i in the following
description for better presenting our method.

The initial feature matrix of postings in the claim
c can be extracted Top-5000 words in terms of TF-
IDF values, denoted as X = [x0, x1, ..., xn−1] ∈
Rn×d0 , where x0 ∈ Rd0 is the vector of the source
tweet and d0 is the dimensionality of textual fea-
tures. The initial feature matrices of nodes in prop-
agation graph and dispersion graph are the same,
i.e., XTD = XBU = X.

4.2.2 Node Update
Graph convolutional networks (GCNs) (Kipf and
Welling, 2017) are able to extract graph structure
information and better characterize a node’s neigh-
borhood. They define multiple Graph Conventional
Layers (GCLs) to iteratively aggregate features of
neighbors for each node and can be formulated as a
simple differentiable message-passing framework.
Motivated by GCNs, we employ the GCL to update
node features in each graph. Formally, node fea-
tures at the l-th layer H(l) = [h(l)

0 ,h(l)
1 , ...,h(l)

n−1]
can be defined as,

H(l) = σ(Â
(l−1)

H(l−1)W(l) + b(l)), (1)

where Â
(l−1)

represents the normalization of adja-
cency matrix A(l−1) (Kipf and Welling, 2017). We
initialize node representations by textual features,
i.e., H(0) = X.

4.2.3 Edge Inference
To alleviate the negative effects of unreliable rela-
tions, we rethink edge weights based on the cur-

rently observed graph by adopting a soft connec-
tion.

Specifically, we adjust the weight between two
nodes by computing a transformation fe(·; θt)
based on node representations at the previous layer.
Then, the adjacency matrix will be updated, i.e.,

g(l)
t = fe

(
‖h(l−1)

i − h(l−1)
j ‖; θt

)
,

A(l) =
T∑
t=1

σ(W(l)
t g(l)

t + b(l)
t ) · A(l−1).

(2)

In practice, fe(·; θt) consists an convolutional layer
and an activation function. T refers to the number
of latent relation types. σ(·) refers to a sigmoid
function. W(l)

t and W(l)
t are learnable parameters.

We perform share parameters to the edge infer-
ence layer in two graphs GTD and GBU . After the
stack of transformations in two layers, the model
can effectively accumulate a normalized sum of
features of the neighbors driven by latent relations,
denoted as HTD and HBU .

4.2.4 Classification
We regard the rumor detection task as a graph clas-
sification problem. To aggregate node representa-
tions in the graph, we employ aggregator to form
the graph representations. Given the node represen-
tations in the propagation graph HTD and the node
representations in the dispersion graph HBU , the
graph representations can be computed as:

CTD = meanpooling(HTD),

CBU = meanpooling(HBU ),
(3)
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where meanpooling(·) refers to the mean-pooling
aggregating function. Based on the concatenation
of two distinct graph representations, label proba-
bilities of all classes can be defined by a full con-
nection layer and a softmax function, i.e.,

ŷ = softmax
(
Wc[CTD; CBU ] + bc

)
, (4)

where Wc and bc are learnable parameter matrices.

4.3 Edge-wise Consistency Training
Framework

For the supervised learning loss Lc, we compute
the cross-entropy of the predictions and ground
truth distributions C = {c1, c2, ..., cm}, i.e.,

Lc = −
|Y|∑
i

yilogŷi, (5)

where yi is a vector representing distribution of
ground truth label for the i-th claim sample.

For the unsupervised learning loss Le, we
amortize the posterior distribution of the classifica-
tion weight p(ϕ) as q(ϕ) to enable quick prediction
at the test stage and learn parameters by minimiz-
ing the average expected loss over latent relations,
i.e., ϕ∗ = arg minϕ Le, where

Le = E
[
DKL

(
p(r̂(l)|H(l−1), G)‖qϕ(r̂(l)|H(l−1), G)

)]
,

ϕ∗ = arg max
ϕ

E[log

∫
p(r̂(l)|H(l−1), ϕ)qϕ(ϕ|H(l−1), G)dϕ],

(6)

where r̂ is the prediction distribution of latent re-
lations. To ensure likelihood tractably, we model
the prior distribution of each latent relation rt, t ∈
[1, T ] independently. For each relation, we define a
factorized Gaussian distribution for each latent re-
lation qϕ(ϕ|H(l−1), G; Θ) with means µt and vari-
ances δ2

t set by the transformation layer,

qϕ(ϕ|H(l−1), G; Θ)) =
T∏
t=1

qϕ(ϕt|{g(l)
t }Tt=1)

=
T∏
t=1

N (µt, δ
2
t ),

µt = fµ({g(l)
t }Tt=1; θµ), δ2

t = fδ({g
(l)
t }

T

t=1; θδ),

(7)

where fµ(·; θµ) and fδ(·; θµ) refer to compute the
mean and variance of input vectors, parameterized
by θµ and θδ, respectively. Such that amounts to
set the weight of each latent relation.

Besides, we also consider the likelihood of la-
tent relations when parameterizing the posterior

distribution of prototype vectors. The likelihood of
latent relations from the l-th layer based on node
embeddings can be adaptively computed by,

p(r̂(l)|H(l−1), ϕ) =

T∏
t=1

p(r̂(l)
t |H(l−1), ϕt),

p(r̂(l)
t |H(l−1), ϕt) =

exp
(

Wtg
(l)
t + bt

)
∑T

t=1 exp
(

Wtg
(l)
t + bt

) . (8)

In this way, the weight of edges can be adaptively
adjusted based on the observed graph, which can
thus be used to effectively pass messages and learn
more discriminative features for rumor detection.

To sum up, in training, we optimize our model
EBGCN by minimizing the cross-entropy loss of
labeled claims Lc and Bayes by Backprop loss of
unlabeled latent relations Le, i.e.,

Θ∗ = arg min
Θ
γLc + (1− γ)Le, (9)

where γ is the trade-off coefficient.

5 Experimental Setup

5.1 Datasets
We evaluate the model on three real-world bench-
mark datasets: Twitter15 (Ma et al., 2017), Twit-
ter16 (Ma et al., 2017), and PHEME (Zubiaga
et al., 2016). The statistics are shown in Table 1.
Twitter15 and Twitter162 contain 1,490 and 818
claims, respectively. Each claim is labeled as Non-
rumor (NR), False Rumor (F), True Rumor (T), or
Unverified Rumor (U). Following (Ma et al., 2018;
Bian et al., 2020), we randomly split the dataset
into five parts and conduct 5-fold cross-validation
to obtain robust results. PHEME dataset3 provides
2,402 claims covering nine events and contains
three labels, False Rumor (F), True Rumor (T),
and Unverified Rumor (U). Following the previ-
ous work (Wei et al., 2019), we conduct leave-one-
event-out cross-validation, i.e., in each fold, one
event’s samples are used for testing, and all the rest
are used for training.

5.2 Baselines
For Twitter15 and Twitter16, we compare our pro-
posed model with the following methods. DTC

2https://www.dropbox.com/s/
7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0

3https://figshare.com/articles/
dataset/PHEME_dataset_for_Rumour_
Detection_and_Veracity_Classification/
6392078

https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect 2017.zip?dl=0
https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect 2017.zip?dl=0
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
https://figshare.com/articles/dataset/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
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Dataset Twitter15 Twitter16 PHEME
# of claims 1,490 818 2,402

# of false rumors 370 205 638
# of true rumors 374 205 1,067

# of unverified rumors 374 203 697
# of non-rumors 372 205 -

# of postings 331,612 204,820 105,354

Table 1: Statistics of the datasets.

(Castillo et al., 2011) adopted a decision tree clas-
sifier based on information credibility. SVM-TS
(Ma et al., 2015) leveraged time series to model
the chronological variation of social context fea-
tures via a linear SVM classifier. SVM-TK (Ma
et al., 2017) applied an SVM classifier with a prop-
agation tree kernel to model the propagation struc-
ture of rumors. GRU-RNN (Ma et al., 2016) em-
ployed RNNs to model the sequential structural
features. RvNN (Ma et al., 2018) adopted two re-
cursive neural models based on a bottom-up and
a top-down propagation tree. StA-PLAN (Khoo
et al., 2020) employed transformer networks to in-
corporate long-distance interactions among tweets
with propagation tree structure. BiGCN (Bian
et al., 2020) utilized bi-directional GCNs to model
bottom-up propagation and top-down dispersion.

For PHEME, we compare with several repre-
sentative state-of-the-art baselines. NileTMRG
(Enayet and El-Beltagy, 2017) used linear sup-
port vector classification based on bag of words.
BranchLSTM (Kochkina et al., 2018) decom-
posed the propagation tree into multiple branches
and adopted a shared LSTM to capture structural
features. RvNN (Ma et al., 2018) consisted of
two recursive neural networks to model propaga-
tion trees. Hierarchical GCN-RNN (Wei et al.,
2019) modeled structural property based on GCN
and RNN. BiGCN (Bian et al., 2020) consisted of
propagation and dispersion GCNs to learn struc-
tural features from propagation graph.

5.3 Evaluation Metrics

For Twitter15 and Twitter16, we follow (Ma et al.,
2018; Bian et al., 2020; Khoo et al., 2020) and eval-
uate the accuracy (Acc.) over four categories and
F1 score (F1) on each class. For PHEME, follow-
ing (Enayet and El-Beltagy, 2017; Kochkina et al.,
2018; Wei et al., 2019), we apply the accuracy
(Acc.), macro-averaged F1 (mF1) as evaluation
metrics. Also, we report the weighted-averaged
F1 (wF1) because of the imbalanced class problem.

5.4 Parameter Settings

Following comparison baselines, the dimension
of hidden vectors in the GCL is set to 64. The
number of latent relations T and the coefficient
weight γ are set to [1, 5] and [0.0, 1.0], respec-
tively. we train the model via backpropagation and
a wildly used stochastic gradient descent named
Adam (Kingma and Ba, 2015). The learning rate is
set to {0.0002, 0.0005, 0.02} for Twitter15, Twit-
ter16, and PHEME, respectively. The training pro-
cess is iterated upon 200 epochs and early stopping
(Yuan et al., 2007) is applied when the validation
loss stops decreasing by 10 epochs. The optimal
set of hyperparameters are determined by testing
the performance on the fold-0 set of Twitter15 and
Twitter16, and the class-balanced charlie hebdo
event set of PHEME.

Besides, on PHEME, following (Wei et al.,
2019), we replace TF-IDF features with word em-
beddings by skip-gram with negative sampling
(Mikolov et al., 2013) and set the dimension of
textual features to 200. We implement this variant
of BiGCN and EBGCN, denoted as BiGCN(SKP)
and EBGCN(SKP), respectively.

For results of baselines, we implement BiGCN
according to their public project4 under the same
environment. Other results of baselines are refer-
enced from original papers (Khoo et al., 2020; Wei
et al., 2019; Ma et al., 2018).

6 Results and Analysis

6.1 Performance Comparison with Baselines

Table 2 shows results of rumor detection on Twit-
ter15, Twitter16, and PHEME datasets. Our pro-
posed model EBGCN obtains the best perfor-
mance among baselines. Specifically, for Twitter15,
EBGCN outperforms state-of-the-art models 2.4%
accuracy and 3.6% F1 score of false rumor. For
Twitter16, our model obtains 3.4% and 6.0% im-
provements on accuracy and F1 score of non-rumor,
respectively. For PHEME, EBGCN significantly
outperforms previous work by 40.2% accuracy,
34.7% mF1 , and 18.0% wF1.

Deep learning-based (RvNN, StA-PLAN,
BiGCN and EBGCN) outperform conventional
methods using hand-crafted features (DTC, SVM-
TS), which reveals the superiority of learning
high-level representations for detecting rumors.

4https://github.com/TianBian95/BiGCN

https://github.com/TianBian95/BiGCN
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Twitter15

Method Acc.
NR F T U
F1 F1 F1 F1

DTC 45.5 73.3 35.5 31.7 41.5
SVM-TS 54.4 79.6 47.2 40.4 48.3
GRU-RNN 64.1 68.4 63.4 68.8 57.1
SVM-TK 66.7 61.9 66.9 77.2 64.5
RvNN 72.3 68.2 75.8 82.1 65.4
StA-PLAN 85.2 84.0 84.6 88.4 83.7
BiGCN 87.1 86.0 86.7 91.4 85.4
EBGCN 89.2 86.9 89.7 93.4 86.7

Twitter16

Method Acc.
NR F T U
F1 F1 F1 F1

DTC 46.5 64.3 39.3 41.9 40.3
SVM-TS 54.4 79.6 47.2 40.4 48.3
GRU-RNN 63.6 61.7 71.5 57.7 52.7
SVM-TK 66.7 61.9 66.9 77.2 64.5
RvNN 72.3 68.2 75.8 82.1 65.4
StA-PLAN 85.2 84.0 84.6 88.4 83.7
BiGCN 88.5 82.9 89.9 93.2 88.2
EBGCN 91.5 87.9 90.6 94.7 91.0

PHEME
Method Acc. mF1 wF1

NileTMRG 36.0 29.7 -
BranchLSTM 31.4 25.9 -
RvNN 34.1 26.4 -
Hierarchical GCN-RNN 35.6 31.7 -
BiGCN 49.2 46.7 63.2
BiGCN(SKP) 56.9 48.3 66.8
EBGCN 69.0 62.9 74.6
EBGCN(SKP) 71.5 57.5 79.1

Table 2: Results (%) of rumor detection.

Moreover, compared with sequence-based mod-
els GRU-RNN, and StA-PLAN, EBGCN outper-
form them. It can attribute that they capture tem-
poral features alone but ignore internal topology
structures, which limit the learning of structural
features. EBGCN can aggregate neighbor features
in the graph to learn rich structural features.

Furthermore, compared with state-of-the-art
graph-based BiGCN, EBGCN also obtains better
performance. We discuss the fact for two main rea-
sons. First, BiGCN treats relations among tweet
nodes as reliable edges, which may introduce in-
accurate or irrelevant features. Thereby their per-
formance lacks robustness. EBGCN considers the
inherent uncertainty in the propagation structure.
In the model, the unreliable relations can be refined

(a) The effect of edge inference

(b) The effect of unsupervised relation learning loss

Figure 3: Results of model analysis on three datasets.

in a probability manner, which boosts the bias of
express uncertainty. Accordingly, the robustness
of detection is enhanced. Second, the edge-wise
consistency training framework ensures the con-
sistency between uncertain edges and the current
nodes, which is also beneficial to learn more effec-
tive structural features for rumor detection.

Besides, EBGCN(SKP) and BiGCN(SKP) out-
performs EBGCN and BiGCN that use TF-IDF
features in terms of Acc. and wF1. It shows the
superiority of word embedding to capture textual
features. Our model consistently obtains better per-
formance in different text embedding. It reveals
the stability of EBGCN.

6.2 Model Analysis

In this part, we further evaluate the effects of key
components in the proposed model.

The Effect of Edge Inference. The number of
latent relation types T is a critical parameter in the
edge inference module. Figure 3(a) shows the ac-
curacy score against T . The best performance is
obtained when T is 2, 3, and 4 on Twitter15, Twit-
ter16, and PHEME, respectively. Besides, these
best settings are different. An idea explanation is
that complex relations among tweets are various in
different periods and gradually tend to be more so-
phisticated in the real world with the development
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Figure 4: Performance of early rumor detection.

of social media. The edge inference module can
adaptively refine the reliability of these complex
relations by the posterior distribution of latent re-
lations. It enhances the bias of uncertain relations
and promotes the robustness of rumor detection.

The Effect of Unsupervised Relation Learning
Loss. The trade-off parameter γ controls the ef-
fect of the proposed edge-wise consistency training
framework. γ = 0.0 means this framework is omit-
ted. The right in Figure 3 shows the accuracy score
against γ. When this framework is removed, the
model gains the worst performance. The optimal
γ is 0.4, 0.3, and 0.3 on Twitter15, Twitter16, and
PHEME, respectively. The results proves the ef-
fectiveness of this framework. Due to wily rumor
producers and limited annotations of spread infor-
mation, it is common and inevitable that datasets
contains unreliable relations. This framework can
ensure the consistency between edges and the corre-
sponding node pairs to avoid the negative features.

6.3 Early Rumor Detection
Rumor early detection is to detect a rumor at its
early stage before it wide-spreads on social media
so that one can take appropriate actions earlier. It
is especially critical for a real-time rumor detec-
tion system. To evaluate the performance on rumor
early detection, we follow (Ma et al., 2018) and
control the detection deadline or tweet count since
the source tweet was posted. The earlier the detec-

tion deadline or the less the tweet count, the less
propagation information can be available.

Figure 4 shows the performance of early rumor
detection. First, all models climb as the detection
deadline elapses or tweet count increases. Partic-
ularly, at each deadline or tweet count, our model
EBGCN reaches a relatively high accuracy score
than other comparable models.

Second, compared with RvNN that captures
temporal features alone and STM-TK based on
handcrafted features, the superior performance of
EBGCN and BiGCN that explored rich structural
features reveals that structural features are more
beneficial to the early detection of rumors.

Third, EBGCN obtains better early detection re-
sults than BiGCN. It demonstrates that EBGCN
can learn more conducive structural features to
identify rumors by modeling uncertainty and en-
hance the robustness for early rumor detection.

Overall, our model not only performs better long-
term rumor detection but also boosts the perfor-
mance of detecting rumors at an early stage.

6.4 The Case Study

In this part, we perform the case study to show the
existence of uncertainty in the propagation struc-
ture and explain why EBGCN performs well. We
randomly sample a false rumor from PHEME, as
depicted in Figure 5. The tweets are formulated
as nodes and relations are modeled as edges in the
graph, where node 1 refers to the source tweet and
node 2-8 refer to the following retweets.

As shown in the left of Figure 5, we observe that
tweet 5 is irrelevant with tweet 1 although replying,
which reveals the ubiquity of unreliable relations
among tweets in the propagation structure and it is
reasonable to consider the uncertainty caused by
these unreliable relations.

Right of Figure 5 indicates constructed graphs
where the color shade indicates the value of edge
weights. The darker the color, the greater the edge
weight. The existing graph-based models always
generate the representation of node 1 by aggregat-
ing the information of its all neighbors (node 2, 5,
and 6) according to seemingly reliable edges. How-
ever, edge between node 1 and 5 would bring noise
features and limit the learning of useful features for
rumor detection. Our model EBGCN successfully
weakens the negative effect of this edge by both the
edge inference layer under the ingenious edge-wise
consistency training framework. Accordingly, the
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5Hi Henry would you be willing to give ITV News a 

phone interview for our Lunchtime bulletin in 2 hours?

The religion of peace strikes again.

if only people didn't hand out guns

Explain.

Tickets go on sale this week

Kill them wherever you find them, and turn them 

out from where they have turned you out.

Idiot strikes again with his stupid tweet.

Breaking: At least 10 dead, 5 injured after to gunman 

open fire in offices of Charlie  Hebdo, satirical mag that 

published Mohammed cartoons

x
Edge 
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Initial propagation 
structure

Refined propagation
structure
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Figure 5: The case study. Left shows a false rumor sampled from PHEME. The gray-highlighted tweet is the
irrelevant one towards this rumor propagation but included in. Right is the constructed directed graphs in top-
down and bottom-up directions based on the propagation structure. Our model iteratively adjusts the weights of
edges in each graph to strength the effect of reliable edges and weaken the effect of unreliable edges.

model is capable of learning more conducive char-
acteristics and enhances the robustness of results.

7 Conclusion

In this paper, we have studied the uncertainty in
the propagation structure from a probability per-
spective for rumor detection. Specifically, we
propose Edge-enhanced Bayesian Graph Convo-
lutional Networks (EBGCN) to handle uncertainty
with a Bayesian method by adaptively adjusting
weights of unreliable relations. Besides, we de-
sign an edge-wise consistency training framework
incorporating unsupervised relation learning to en-
force the consistency on latent relations. Exten-
sive experiments on three commonly benchmark
datasets have proved the effectiveness of modeling
uncertainty in the propagation structure. EBGCN
significantly outperforms baselines on both rumor
detection and early rumor detection tasks.
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