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Abstract

Open-domain dialog systems have a user-
centric goal: to provide humans with an en-
gaging conversation experience. User engage-
ment is one of the most important metrics
for evaluating open-domain dialog systems,
and could also be used as real-time feedback
to benefit dialog policy learning. Existing
work on detecting user disengagement typi-
cally requires hand-labeling many dialog sam-
ples. We propose HERALD, an efficient an-
notation framework that reframes the training
data annotation process as a denoising prob-
lem. Specifically, instead of manually label-
ing training samples, we first use a set of la-
beling heuristics to label training samples au-
tomatically. We then denoise the weakly la-
beled data using the Shapley algorithm. Fi-
nally, we use the denoised data to train a user
engagement detector. Our experiments show
that HERALD improves annotation efficiency
significantly and achieves 86% user disengage-
ment detection accuracy in two dialog corpora.
Our implementation is available at https://
github.com/Weixin-Liang/HERALD/.

1 Introduction

Evaluation metrics heavily influence a field’s re-
search direction. The ultimate goal of open-domain
dialog systems is to provide an enjoyable experi-
ence to users. Previous research mainly focuses
on optimizing automatic dialog evaluation metrics
such as BLEU, which models the distance between
the system responses and a limited number of ref-
erences available. However, it has been shown that
these metrics correlate poorly with human judg-
ments (Liu et al., 2016).

Open-domain dialog system evaluation has long
been one of the most difficult challenges in the dia-
log community for several reasons: (1) The goal of

1Equal Contribution.

dialog evaluation should be to evaluate users’ con-
versational experience. Existing automatic evalua-
tion metrics such as BLEU are mostly constrained
to a static corpus, and do not capture the user experi-
ence in a realistic interactive setting. (2) Currently,
self-reported user ratings are widely used to evalu-
ate open-domain dialogs. However, self-reported
ratings suffer from bias and variance among differ-
ent users (Liang et al., 2020e). Although we could
tell which dialog system is better by running statis-
tical tests on a large number of noisy ratings, it is
challenging to locate dialogs with bad performance
reliably. Only by identifying these bad dialogs ef-
fectively can we correct errors in these samples to
improve dialog system quality.

User engagement has been recognized as one
of the essential metrics for open-domain dialog
evaluation (Ram et al., 2018). Previous research
also confirms that incorporating user engagement
as real-time feedback benefits dialog policy learn-
ing (Yu et al., 2016). One of the most costly bot-
tlenecks of learning to detect user disengagement
is to annotate many turn-level user engagement la-
bels (Ghazarian et al., 2020). In addition, the data
annotation process becomes more expensive and
challenging for privacy-sensitive dialog corpora,
due to the privacy concerns in crowdsourcing (Xia
and McKernan, 2020).

To improve annotation efficiency, we reframe
the training data annotation process as a denois-
ing problem. Specifically, instead of manually
labeling each training datum, we automatically
label the training samples with a set of labeling
heuristics. The heuristic functions primarily con-
sist of regular expressions (Regexes) and incorpo-
rate open-sourced natural language understanding
(NLU) services. Since the automatically gener-
ated labels might contain noise, we then denoise
the labeled data using the Shapley algorithm (Jia
et al., 2019a,b). We use the Shapley algorithm to

https://github.com/Weixin-Liang/HERALD/
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quantify the contribution of each training datum,
so that we can identify the noisy data points with
negative contribution and then correct their labels.
Our experiments show that HERALD achieves 86%
accuracy in user disengagement detection in two
dialog corpora.

Our proposed framework HERALD is conceptu-
ally simple and suitable for a wide range of applica-
tion scenarios: First, since our model could detect
user engagement in real-time (i.e., after each user
utterance), our model could be plugged into exist-
ing dialog systems as a real-time user experience
monitor module. In this way, dialog systems could
detect and react to user’s disengagement in both
open-domain dialogs (Yu et al., 2016) and task-
oriented dialogs (Yu et al., 2017). During training,
our model could also be used as real-time feed-
back to benefit dialog policy learning (Yi et al.,
2019). Second, HERALD could quantify user en-
gagement and be used as an automatic dialog eval-
uation metric. It could locate dialogs with poor
user experience reliably to improve dialog system
quality (Ghazarian et al., 2020; Choi et al., 2019).
Third, user engagement is an essential objective of
dialog systems, but few dialog datasets with user
engagement ratings are available. Our heuristic
functions, combined with the proposed workflow,
can be readily deployed to annotate new dialog
datasets.

2 Related Work

2.1 Open-Domain Dialog System Evaluation

Open-domain dialog system evaluation is a long-
lasting challenge. It has been shown that exist-
ing automatic dialog evaluation metrics correlate
poorly with human judgments (Liu et al., 2016;
Lowe et al., 2017; Novikova et al., 2017). A well-
known reason is that these automatic dialog evalua-
tion metrics rely on modeling the distance between
the generated response and a limited number of ref-
erences available. The fundamental gap between
the open-ended nature of the conversations and the
limited references (Gupta et al., 2019) is not ad-
dressed in methods that are lexical-level based (Pa-
pineni et al., 2002; Lin, 2004; Banerjee and Lavie,
2005), embedding based (Rus and Lintean, 2012;
Forgues et al., 2014), perplexity based (Adiwar-
dana et al., 2020), or learning based (Tao et al.,
2018; Lowe et al., 2017). Mehri and Eskénazi
(2020) simulate user response using DialogGPT
and evaluate the probability of user complaint.

Given the limitations above, self-reported user rat-
ings are widely used to evaluate open-domain di-
alogs. However, self-reported ratings suffer from
bias and variance among different users (Venkatesh
et al., 2018). Denoising human ratings is still an
open research problem (Liang et al., 2020e; Li et al.,
2019).

2.2 User Engagement in Dialogs
User engagement is commonly defined as the user’s
willingness to continue conversing with the dia-
log system (Yu et al., 2016, 2017). Existing work
on measuring user engagement primarily resorts
to human rating (Yi et al., 2019; Hancock et al.,
2019), or proxy metrics. Example proxy metrics
include conversation length like number of dialog
turns (Venkatesh et al., 2018; Ram et al., 2018), and
conversational breadth like topical diversity (Guo
et al., 2018). Sporadic attempts have been made to
detecting user disengagement in dialogs (Yu et al.,
2004; Ghazarian et al., 2020; Choi et al., 2019).
A major bottleneck of these methods is that they
require hand-labeling many dialog samples for in-
dividual datasets. Although Liang et al. (2020e)
denoise user self-reported ratings with the Shap-
ley algorithm for dialog system evaluation, their
method cannot be directly applied to dialogs with-
out user ratings as in our setting. Our work is
focusing on the problem that it is expensive and
difficult to obtain user ratings. The core insight of
our work is to reframe the training data annotation
process as a process of denoising labels created by
heuristic functions pre-defined. To the best of our
knowledge, we are the first to combine automatic
data labeling with the Shapley algorithm to perform
dialog evaluation. Our method could potentially
generalize to other classification tasks if different
weak labelers are provided.

2.3 Learning from Weak Supervision
Learning from weak supervision reduces annota-
tion costs by utilizing noisy but cost-efficient la-
bels (Ratner et al., 2020, 2016; Liang et al., 2020e).
One of the most popular forms of weak supervision
is distant supervision, in which the records of an
external knowledge base are heuristically aligned
with data points to produce noisy labels for rela-
tionship extraction tasks (Bunescu and Mooney,
2007; Mintz et al., 2009; Hancock et al., 2018).
Other applications of weak supervision to scene
graph prediction (Krishna et al., 2019), intent clas-
sification (Mallinar et al., 2019), and medical imag-
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Figure 1: Schematic of the HERALD two-stage workflow. Stage 1: Auto-label training data with Heuristic Func-
tions. We first design heuristics rules for detecting user disengagement by investigating multiple dialog corpora.
The heuristics rules are implemented as heuristic functions based on regular expressions and dialog acts. Then, we
use the heuristic function to label the training set automatically. Stage 2: Denoise weakly-labeled training data
with Shapley Algorithm. We calculate the Shapley value for each data point and correct the noisy data points with
negative Shapely values by flipping their labels. Finally, we fine-tune the model on the denoised training data.

ing (Varma et al., 2017) have observed similar ben-
efits in annotation efficiency. Unlike the existing
work, we leverage weak supervision to improve
annotation efficiency for detecting user disengage-
ment in social conversations.

3 Problem Formulation

We defined engagement as the degree to which
users are willing to continue conversing with the
dialog system Yu et al. (2016, 2017). We focus on
identifying the dialog turns with “disengaged” user
response, since they usually indicate poor conversa-
tion experience. We formulate the user engagement
prediction as a binary classification problem: Our
goal is to learn a parameterized user engagement
predictor Mθ that, given a dialog turn (along with
its dialog context) x ∈ X, predicts the turn-level
user engagement label y ∈ Y = {0, 1}, where la-
bel y = 1 means “disengaged” and y = 0 means
“engaged”. We start from an unlabeled train set
Dtrain = {xi}

Ntrain
1 without any label yi. The test set

Dtest = {(xi, yi)}
Ntest
1 contains the ground-truth label

yi. The development set Ddev has a similar structure
as the test set Dtest but the development set can be
much smaller than a train set (i.e., Ndev � Ntrain),
making it economical to obtain. Following the
general architecture of neural classifiers, we for-
mulate our model Mθ = M(φ, f ) = f (φ(x)): Here
BERT (Devlin et al., 2019)-based φ is a text en-
coder that maps each dialog turn x to a feature
space φ(x) ∈ Rd. f is the final linear layer with
softmax activation.

4 Data

To ensure our framework is generalized to vari-
ous corpora, we investigate multiple open-domain
dialog datasets ranging from ASR-based (Gun-
rock (Liang et al., 2020a)) to text-based (Con-
vAI2 (Dinan et al., 2019), Blender (Roller et al.,
2020), and Meena (Adiwardana et al., 2020)) dia-
log systems.

Gunrock Movie Dataset Gunrock Movie
dataset consists of dialog data collected from
Gunrock, an ASR-based open-domain social
chatbot originally designed for Amazon Alexa
Prize (Liang et al., 2020a). The Gunrock dataset
comes from a user study where in-lab users were
recruited to carry on conversations. We have
consent to use the data and we also removed any
sensitive information in the conversation. Two
dialog experts (co-authors of this paper) randomly
annotated 134 dialogs and split them evenly into
the test set and development set. In total, the
experts labeled 519 turn-level disengaging user
responses and 2,312 engaging user responses.
They reached a high inter-annotator agreement
score (Cohen, 1968) with kappa κ = 0.78. The
training set contains 276 unlabeled dialogs, with
5644 dialog turns. In addition, we ensure that
the data annotation is independent of the labeling
heuristics collection, so there is no data leakage
problem. A full example dialog can be found in
Appendix A.4.

ConvAI2 Dataset ConvAI2 dataset contains
text-based dialog collected from the second Conver-
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Labeling Heuristics Coverage (%) Example Disengaged User Responses
Heuristics Group Disengaged intents Gunrock ConvAI2

(1) Complain
system responses

Complain system repetition

1.93 1.95

{ You already asked me that. | I already told you. Remember? }
Complain system ignoring them { You’re not listening. | You didn’t answer my question. }
Complain system misunderstanding { I never said I don’t eat my favorite seafood. }
Not understanding system { What are you talking about? }
Curse system { You’re dumb. }
Express frustration { Sigh. }

(2) Dislike
current topic

Express negative opinion 1.90 3.45 { I don’t like music. | It’s boring. }
Show low interests { I don’t care. }

(3) Request to end
topic or conversation

Request topic change 5.20 2.92 { Let’s talk about something else. }
Request termination { Stop. | Bye. }

(4) End with
non-positive responses

End with negative answer

20.13 4.86

{ No. | I have not. }
End with unsure answer { I don’t know. | I don’t remember. | Well, maybe. }
End with back-channeling { Yeah. | Okay. }
End with hesitation { Hmm... | That’s a hard one, let me think. }

Table 1: Our labeling heuristics designed to capture user disengagement in dialogs. A dialog turn is considered
disengaged if any of the heuristic rules apply to the user responses.

sational Intelligence (ConvAI) Challenge (Dinan
et al., 2019). We select dialogs from the main eight
participated chatbots (Bot 1, 2, 3, 4, 6, 9, 11) and
exclude dialogs that are one-sided or shorter than
three turns. The dialog experts annotated 207 di-
alogs in total. The dialogs are evenly distributed
over all the eight bots to ensure system diversity,
and are randomly sampled within each bot. The
annotated data consist of 209 disengaging turns
and 1684 non-disengaging turns. They reached a
high inter-annotator agreement score (Cohen, 1968)
with kappa κ = 0.76. We split the annotated dialogs
evenly into the test set and develop set. The train-
ing set contains 2,226 dialogs, with 18,306 dialog
turns.

Google Meena Dataset Meena (Adiwardana
et al., 2020) is the largest end-to-end neural chat-
bot so far, trained on 867M public domain social
media conversations. We study the 93 example
Human-Menna conversations released by Google.

Facebook Blender Dataset The Blender bot
(Roller et al., 2020) is an open-domain chatbot
with several conversational skills: providing engag-
ing talking points and listening to their partners,
displaying knowledge, empathy, and personality
appropriately while maintaining a consistent per-
sona. We study the 108 example Human-Blender
conversations released by Facebook.

5 Method

Our goal is to train a user engagement detector
with minimum data annotation efforts. Traditional
supervised learning paradigms require annotating
many training samples. In addition, it requires addi-
tional data annotation to extend the model to a new

dialog corpus. To reduce annotation work, we pro-
pose HERALD, a two-stage pipeline that annotates
large-scale training data efficiently and accurately
(Figure 1). Instead of hand-labeling training data
points, we use heuristic functions to label each
training datum automatically. The heuristic func-
tions are built upon a set of user disengagement
heuristics rules. Since the training data are auto-
matically labeled, their labels would be noisy. We
then clean the noisy training data with Shapley al-
gorithm (Ghorbani and Zou, 2019) to improve the
labeling accuracy. The Shapley algorithm denoises
training data by identifying data with wrong labels
and flip their labels. Finally, as we received clean
training data, we use them to fine-tune a BERT-
based model and obtain the final user disengage-
ment detection model.

5.1 Stage 1: Auto-label Training Data with
Heuristic Functions

Since labeling large-scale training data is time-
consuming, we propose heuristic labeling functions
to label training data automatically. The heuristic
functions focus on detecting disengagement from
user responses, as it directly indicates poor user
experience. To build the heuristics functions, we
first summarize the heuristic rules shared among
users. We investigate the disengaged dialog turns
from the four datasets mentioned above and iden-
tify four groups of user disengagement patterns:
“complain system responses”, “dislike current top-
ics”, “terminate or change topics”, and “end with
non-positive responses” (Table 1). We then discuss
the implementation of heuristics functions.
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5.1.1 Disengagement Heuristic Rules
Group 1: Complain system responses. Com-
plaints are an evident sign of user disengagement.
We identify six related disengaged intents. The
first three intents (“complain system repetition”,
“complain system ignoring them” and “complain
system misunderstanding”) usually appear when
the bot makes errors like repeating the same con-
tent, ignoring, forgetting, and misunderstanding the
user’s response. In these cases, users express their
disengagement by indicating the bot’s error (e.g.
“You already told me that”, “You’re not listening”).
Another intent “not understanding system” hap-
pens when users cannot understand the system’s
response (e.g. “I don’t know what you’re talking
about.”). In the last two intents, users reveal nega-
tive emotions by cursing the system (e.g. “you’re
dumb”) or express frustration (e.g. “sigh”) about
the conversation.

Group 2: Dislike current topics. When dis-
cussing a given topic, users might show their disen-
gagement by expressing negative opinions or low
interest. For example, given the bot’s response, “I
write romantic novels under a pen name. ”, for
users who are not interested in reading, users might
say “reading is boring”, “I don’t like to read”, or
“I’m not interested in this”. We also make sure to
handle the corner cases where the user utterance
should be labeled as engaged but contains nega-
tive opinions. For instance, to respond to the bot’s
question, “do you want to not work?”, a user might
say, “Yes. my job is boring. I have to work with
mail”. Though the user mentions a negative feeling
(“boring”), the user agrees with the bot and shares
further information.

Group 3: Terminate or change topics Group 3
considers the cases where users express disengage-
ment to the current topic in a more straightforward
fashion. For example, if users are not interested in
the current topic, instead of just expressing their
dislike to it, they may request to switch topics with
“Let’s talk about something else”. In some cases,
users might show strong disengagement by request-
ing to end the conversation if the user is no longer
interested in continuing the conversation.

Group 4: End with non-positive responses A
more subtle but common clue of disengagement
is when users end the response with non-positive
content. For example, non-positive responses like
“I don’t know”, “No”, “Yeah”, “uh”, “Probably”,

imply that users do not have much to talk about
the current topic. To keep the precision of our
heuristics high, we carefully consider the coun-
terexamples. One case is that the user follows up
with more responses such as questions (e.g., Bot:
“Have you seen any movies lately? ”, User: “No.
Have you?”), and opinion (e.g. Bot: “What’s your
favorite animation movie?”, User: “I don’t know,
but it might actually be frozen two. My sister loves
it.”) in the same dialog turn. These turns should
not be labeled as disengaged since the user is still
interested in sharing more content or asking follow-
up questions. Therefore, we take a conservative
approach: we label the dialog turn as disengaged
only if no more responses follow the non-positive
response.

5.1.2 Heuristic Functions Implementation
Next, we discuss how to use heuristic functions to
auto-label disengaged user utterances. First, we
split user responses into segments since user re-
sponses may consist of multiple units with differ-
ent semantic meanings. We use NLTK Sentence
Tokenizer for text-based system, and a segmenta-
tion model (Chen et al., 2018) for ASR (Automatic
Speech Recognition)-based system as the segmen-
tation tool. We then apply the heuristic functions
on each segment to detect disengaged intents. For
heuristic groups 1 to 3, if any segment contains a
disengaged intent, the user response is auto-labeled
as disengaged. For heuristic group 4 (“End with
non-positive responses”), we assign disengaged la-
bels only if the disengaged intents are detected in
the last segment.

We detect disengaged intents with Regexes. The
benefit of using Regexes is that they have mini-
mum dependencies and are easy to modify. We
design Regexes for each intent. Following com-
mon Regexes complexity metrics (Luo et al., 2018),
our Regexes for each intent contains 43.9 Regexes
groups and 87.7 or clauses on average.

Our framework also supports incorporating ad-
ditional resources to improve the intent detection
accuracy for automatic training data labeling. For
example, we can enhance the recall of Regexes
intent detection by incorporating existing deep
learning-based NLU (Natural Language Under-
standing) models. Specifically, we re-purpose an
open-sourced dialog act classification model (Yu
and Yu, 2021) to enhance disengagement intent
detection: we select 6 out of the 23 supported
dialog act labels that are associated with disen-



3657

gaged intents, and map each selected dialog act
label to the heuristic groups. The dialog act “com-
plaint” is mapped to the heuristic group “com-
plain system repetition”;“closing” is mapped to
the disengaged intent “request termination”; “hold”
to “hesitation”;“other_answers” to “unsure an-
swer”; “back-channeling” to “back-channeling”,
and “neg_answer“ to ‘negative answer‘”. If a user
utterance is detected with disengaged intent by ei-
ther Regexes or the deep learning model, then the
utterance is auto-labeled as disengaged.

5.2 Stage 2: Denoise with Shapley Algorithm
& Fine-tune

Overview Next, we denoise the labeled data us-
ing Shapley algorithm (Ghorbani and Zou, 2019).
Shapley algorithm has been studied in the co-
operative game theory (Dubey, 1975) and eco-
nomics (Gul, 1989) as a fair distribution method.
Shapley algorithm computes a Shapley value for
each training datum, which quantifies the contribu-
tion of each training datum to the prediction and
performance of a deep network. Low Shapley value
data capture outliers and corruptions. Therefore,
we can identify and denoise the incorrectly labeled
data by computing their Shapley values and fine-
tune the model on the cleaned training set.

Shapley Algorithm Shapley algorithm comes
originally from cooperative game theory (Dubey,
1975). Consider a cooperative game with n players
D = {1, ..., n} and a utility function v : 2[n] → R

which assigns a reward to each of 2n subsets of
players: v(S ) is the reward if the players in subset
S ⊆ D cooperate. Shapley value defines a unique
scheme to distribute the total gains generated by
the coalition of all players v(D) with a set of ap-
pealing mathematical properties. In our setting, we
can consider Dtrain = {(xi, yi)}

Ntrain
1 as Ntrain players.

We define the utility function v(S ) as the perfor-
mance on the development set Ddev. The Shapley
value for player i is defined as the average marginal
contribution of {(xi, yi)} to all possible subsets that
are formed by other players (Jia et al., 2019a,b):

si =
1
N

∑
S⊆Dtrain\{xi}

1(
N−1
|S |

) [v(S ∪ {xi}) − v(S )]

As suggested by the definition of Shapley value,
computing Shapley value requires an exponen-
tially large number of computations to enumer-
ate O(2Ntrain) possible subsets and train the model
Mθ on each subset, which is intractable. Inspired

by (Jia et al., 2019a,b), HERALD tackles this
issue by reducing the deep model Mθ to a K-
nearest neighbors (KNN) model and then apply
the closed-form solution of Shapley value on KNN:
We reduce our BERT-based classification model
Mθ = M(φ, f ) = f (φ(x)) to a KNN by first fine-
tuning Mθ on the auto-labeled training samples.
We then use the feature extractor φ to map each
training datum to the feature space {φ(xi)}

Ntrain
1 . We

construct a KNN classifier in the feature space to
compute the closed-form Shapley value.

Next, we discuss the closed-form solution of
Shapley value. We first consider a special case
where the development set Ddev only contains one
datum Ddev = {(xdev, ydev)}. Given any nonempty
subset S ⊆ Dtrain, we use the KNN classifier to
classify xdev. To do this, we sort the data points in
the training set {xi}

Ntrain
1 based on their euclidean dis-

tance in the feature space φ(x) to the datum in the
development set xdev, yielding (xα1 , xα2 , ..., xα|S |)
with xα1 , ..., xαK as the top-K most similar data
points to xdev. The KNN classifier outputs the
probability of xdev taking the label ydev as P[xdev →

ydev] = 1
K

∑K
k=1 1[yαk = ydev], where αk is the index

of the kth nearest neighbor. We define the utility
function as the likelihood of the correct label:

ν(S ) =
1
K

min{K,|S |}∑
k=1

1[yαk(S ) = ydev] (1)

Jia et al. (2019a,b) proves that the Shapley value of
each training point sαi can be calculated recursively
in O(N log N) time as follows:

sαN =
1[yαN = ydev]

N

sαi = sαi+1 +
min{K, i}

i × K
(
1[yαi=ydev]−1[yαi+1=ydev]

)
The above result for a single point in Ddev could
be readily extended to the multiple-point case, in
which the utility function is defined by

ν(S ) =
1

Ndev

Ndev∑
j=1

1
K

min{K,|S |}∑
k=1

1[y
α

( j)
k (S ) = ydev, j]

where α( j)
k (S ) is the index of the kth nearest neigh-

bor in S to xdev, j. Jia et al. (2019a,b) also prove
that the Shapley value in this case is the average of
the Shapley value for every single dev point.

Denoising Procedure Our denoising procedure
works as follows: (1) We first fine-tune our BERT-
based classification model Mθ = M(φ, f ) = f (φ(x))
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No. Method Gunrock Movie ConvAI2

bACC F2Score bACC F2Score

(1) Heuristics 78.32 65.09 76.58 58.16
(2) Heuristics (regex only) 62.81 35.46 72.04 49.90
(3) Heuristics (NLU only) 72.68 56.32 63.62 32.86

(4) Heuristics w/o Group 1 78.21 64.88 71.20 48.44
(5) Heuristics w/o Group 2 77.96 64.49 75.45 56.22
(6) Heuristics w/o Group 3 71.52 55.36 71.96 49.80
(7) Heuristics w/o Group 4 58.34 23.97 68.32 42.68

(8) BERT(dev) 73.98 60.74 74.97 55.40
(9) BERT(Auto) 80.55 71.77 78.76 63.13

(10) BERT(Auto+dev) 80.73 72.16 80.46 64.54
(11) HERALD 86.17* 80.01* 86.22* 70.49*

Table 2: Evaluation results comparison among variants
of HERALD. * indicates that the model is statistically
significantly better than baseline models. All numbers
in the table are in percentage.

on the auto-labeled training samples. This step in-
jects the knowledge in the labeling heuristic into the
model Mθ. (2) We then map each auto-labeled train-
ing datum to the feature space {φ(xi)}

Ntrain
1 , since we

want to apply the closed-form KNN formula of
Shapley value in the feature space. (3) Next, for
a binary classification problem, we duplicate each
training datum 2 times with labels [0, 1]. This gen-
erates a large training set Dlarge with 2 × Ntrain data
points, and we note that the origin training set Dtrain
is a subset of Dlarge, since Dlarge enumerates all C
possible labels for each each training datum. (4)
We then calculate Shapley value for the 2 × Ntrain
data points in Dlarge using the closed-form KNN
formula. (5) We remove the data with negative
Shapley value in Dlarge, and get a cleaned training
set Dclean. The duplicate-and-remove procedure
“flips” the labels of the noisy data points with low
Shapley value. (6) Finally, we fine-tune the clas-
sification model Mθ on Dclean to get the final user
disengagement detection model.

To sum up, the Shapley value quantifies the con-
tribution of each training datum. Low Shapley
value data capture outliers and corruptions that are
not consistent with the distribution of other data
points. We identify and correct these outliers and
corruptions to provide a clean training set.

6 Experiments

Model Setup We use K = 10 for the KNN
Classifier. We use BERT (Devlin et al., 2019)
as the text encoder φ of our classification model
Mθ = M(φ, f ) = f (φ(x)). Additional implementa-

tion details are included in Appendix.

Model Comparisons and Ablations We com-
pare HERALD to its several ablations (Table 2)
and evaluate the performance on the test set. We
report balanced accuracy (bACC) and Fβ Score
with β = 2 (Baeza-Yates et al., 1999). (1) Heuris-
tics uses the labeling heuristic function with both
Regex and dialog act to predict the test set. (2)
Heuristics (Regex only) uses the labeling heuristic
function only with Regex to predict on the test set.
(3) Heuristics (NLU only) uses the labeling heuris-
tic function only with NLU. (4-7) show the ablation
of the heuristics function prediction baseline by ex-
cluding each heuristic group. (8) BERT(dev) fine-
tunes BERT on the expert-annotated development
set. (9) BERT(Auto) fine-tunes BERT on the auto-
labeled training samples. (10) BERT(Auto+dev)
fine-tunes BERT on both the auto-labeled training
samples and the development set. (11) HERALD
reports the performance of the final model trained
on Dclean.

Results Our first takeaway is that our labeling
heuristics produce decent predictions and gener-
alize to different datasets. As shown in Table 2,
Heuristics prediction (Heuristic, 78.32%, 76.58%)
is better than the BERT-based model with limited
training samples (BERT(dev), 73.98%, 74.94%)
on both datasets. It also shows that our labeling
heuristics are generalizable to different corpora.

Our second takeaway is that learning from a
large number of noisy labels works better than
learning from a limited number of clean labels.
As shown in Table 2, BERT fine-tuned on the auto-
labeled training set (BERT(Auto), 80.55, 78.76)
outperforms BERT fine-tuned on clean but small
development set (BERT(dev), 73.98, 74.94) by a
large margin. In addition, we also observe that the
BERT model fine-tuned on the auto labeled training
data (BERT(Auto), 80.55%, 78.76%) generalizes
beyond the labeling heuristics (Heuristics, 78.32%,
76.58%).

Our third takeaway is that using the expert-
annotated development set for denoising is
more efficient than using the development set
as additional training data. After fine-tuning
BERT on the weakly labeled training data
(BERT(Auto), 80.55%, 78.76%), having an ad-
ditional fine-tuning step using the development
set slightly improves the model’s performance
(BERT(Auto+dev), 80.73%, 80.46%). In contrast,
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using the development set for the Shapley denois-
ing algorithm gives a significant performance gain
(HERALD, 86.17%, 86.22%).

Figure 2: Removing data with low Shapley values
(Shapley with Ktest = 1, 5, 10, 25, 50) improves the
performance of the KNN in Gunrock Movie Dataset
while removing data with high Shapley values and re-
tain data with low Shapley values (“RetainHurtful”)
leads to worse performance.

Annotation Cost The cost of annotating the
DEV set is small for the Shapley algorithm. For
Gunrock Movie Dataset, we used 67 annotated di-
alogs as the DEV set. For ConvAI2, we used 52
annotated dialogs as the DEV set. The annotation
takes less than 1 hour in both cases, which is negli-
gible compared to the cost of annotating all training
data.

Heuristics Group Analysis We perform abla-
tion studies to analyze the importance of each of
the four heuristics groups in Table 1. As shown in
Table 2, excluding heuristics group 4 leads to the
most significant performance drop in both datasets
(Heuristics w/o Group 4, 58.34%, 68.32%), indi-
cating that “end with non-positive response” is the
most prevalent form of user disengagement.

In addition, each heuristics group has differ-
ent importance in different datasets. For exam-
ple, dropping heuristics group 1 (“complain system
responses”) only leads to a marginal performance
drop on the Gunrock Movie dataset but incurs a sig-
nificant performance drop on the ConvAI2 dataset.
We also notice that heuristic group 4 (“End with
non-positive responses”) plays a more critical role
in the Gunrock Movie dataset than in the ConvAI2
dataset. This might be mainly due to the differ-
ence between ASR-based (Gunrock Movie) and
text-based (ConvAI2) systems. When asked an
open-ended question in ASR-based systems, since
users have less time to think, they are more likely
to reply with responses such as “I’m not sure”,
“let me think”. While in text-based systems (Con-
vAI2), users have more time to think and formulate

their responses. Hence, heuristics group 4 covering
these responses happen more in Gunrock Movie
than ConvAI2.

Generalizability of Heuristic Functions The
results show that our heuristic functions are gener-
alized to both ASR-based and text-based systems.
As indicated in Table 2, our Regexes reach a de-
cent accuracy of 62.81% and 72.04% on the expert
annotated test set respectively on Gunrock Movie
and ConvAI2 dataset, and thus can serve as a rela-
tively reliable source for auto-labeling. In addition,
although the dialog act model (MIDAS) is initially
designed for ASR-based systems and thus has a
better performance on the Gunrock Movie data, it
should be generalizable to other ASR-based sys-
tems, as the six selected dialog acts are general and
independent of topics. Therefore, the combination
of dialog acts and Regexes should be sufficient to
be applied to various corpora.

Figure 3: An example dialog turn from the Gun-
rock Movie dataset with an incorrect auto label “non-
disengaged” identified by data Shapley. In this case,
the user actually says “I don’t wanna talk about movies
anymore,” but an ASR error happens, and thus the la-
beling heuristics fail to capture this dialog turn.

Figure 4: An example dialog turn from Gunrock Movie
dataset that is incorrectly auto-labeled as “disengaged”
because the labeling heuristics see the negative word
“disagree”. This data point is also identified and cor-
rected by data Shapley.

Shapley Value Analysis We also present an anal-
ysis to show how Shapley denoising works, as
shown in Figure 2. We examine the Shapley value
for each training datum in Stage 2. We first show
two example dialog turns from the Gunrock Movie
dataset with a negative Shapley value in Figure 3
and Figure 4. In Figure 3, the dialog turn is incor-
rectly auto-labeled as “non-disengaged”. This is
because an ASR error happens, and the user utter-
ance “I don’t wanna talk about movies anymore”



3660

is transcribed as “I wanna talk about movies any-
more”. In Figure 4, the user says, “Oh I disagree.
I think the movie was fantastic!”. The labeling
heuristics see the negative word “disagree” and
auto-label this turn as “disengaged”. Both data
points are with negative Shapley values and are
corrected in Stage 3.

Next, we present a quantitative analysis of Shap-
ley value. According to the Shapley value, we
remove data points one by one, starting from the
least valuable (low Shapley values) to the most
valuable (high Shapley values). Each time, after
removing the data point, we create new KNN clas-
sifier models on the remaining dialog turns and
labels and evaluate them on the test set with ex-
pert annotations. As shown in Figure 2, removing
training data with low Shapley values increases the
performance to a certain point before convergence
for K of all choices. We observe a similar trend
when re-training a model on the remaining data. In
contrast, removing data randomly or removing data
starting from high Shapley values decreases the per-
formance on the test set (“Random” and “Retain-
Hurtful” in Figure 2). This shows that low Shapley
value data effectively capture outliers and corrup-
tions, which further justifies our design choice of
denoising with Shapley value.

Alternative Data Valuation Methods We also
explored alternative methods to data Shapley like
influence function (Koh and Liang, 2017) and
TracIn (Pruthi et al., 2020): on Gunrock Movie,
Influence Functions and TracIn achieve 82.96%
and 83.15% accuracy, respectively. Both meth-
ods outperform BERT(Auto+dev) (80.73%) signif-
icantly but perform slightly worse than HERALD
(86.17%). Overall, results show that our data an-
notation workflow also works well with other data
valuation methods.

Figure 5: An error case where the low engagement dia-
log turn that is not captured by HERALD.

Error Analysis Figure 5 shows an error exam-
ple of HERALD, where both the labeling heuris-
tics and the Shapley algorithm fail to identify this
turn as low engagement. In this example, the chat-
bot system asks whether the user is interested in

movies, but the user does not directly answer the
question. Instead, the user says “I have a ques-
tion for you social bot”, indicating that the user
does not like the current topic and wants to talk
about something else. HERALD fails to identify
this dialog turn as low engagement, partly because
the Regexes in the “request topic change” heuris-
tic rule does not cover this example. One way to
fix this error is to upgrade the Regexes. A more
general solution is to consider the chatbot system’s
expectations on user responses conditioned on the
chatbot’s question. If the chatbot receives an “un-
expected” user response, then the user is probably
not interested in discussing the current topic.

7 Conclusion

The ultimate chatbot evaluation metric should be
user-centric, as chatbots are there to provide hu-
mans with enjoyable experiences. Previously de-
tecting user disengagement typically requires an-
notating many dialog samples for each individual
dataset. We propose a two-stage pipeline HER-
ALD to automatically label and denoise training
data and, at the same time, build a user disengage-
ment detector. Our experiment shows that HER-
ALD significantly reduces the annotation cost of
a new corpus. HERALD’s disengagement detec-
tion results highly correlate with expert judgments
on user disengagement in both datasets (86.17%
bACC in Gunrock Movie, 86.22% in ConvAI2).
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A Appendix

A.1 Implementation Details of HERALD
We use K = 10 for the KNN Regressor. We load
and fine-tune pre-trained BERT as the feature ex-
tractor φ. The details of extending BERT to encode
multi-turn dialogs are as follows. Each dialog turn
(along with its dialog context) is represented as
a sequence of tokens in the following input for-
mat (Liang et al., 2020c): Starting with a special
starting token [CLS ], we concatenate tokenized
user and system utterances in chronological order
with [S EP] as the separators for adjacent utter-
ance. In other words, we represent each dialog
as a sequence: [CLS ], S 1,1, S 1,2, ..., [S EP], U1,1,
U1,2, ..., [S EP], S 2,1, S 2,2, ..., [S EP] where S i, j

and Ui, j are the jth token of the system and user
utterance in the ith turn. Following BERT, we also
add a learned embedding to every token indicating
whether it comes from user utterances or system
utterances . In addition, since the disengaging class
and the non-disengaging class are imbalanced, we
up-sample the disengaging dialog turns for both
the training set and the development set. Though
it is also possible to handle the imbalanced classes
by adding weights for two classes, we did not take
this approach because we do not have a closed-
form solution for calculating the shapley value for
weighted KNN in O(N log N) time. Improving the
architecture of HERALD and extending HERALD
to other machine learning tasks (Liang and Zou,
2021; Liang et al., 2020d,b, 2021) are interesting
directions of future work.

A.2 Reproducibility
The source code of HERALD can be found in the
supplementary materials. We run experiments
on a server of eight GTX 1080 GPUs. The
average runtime for all stages of HERALD is less
than 10 minutes. The number of parameters is
similar to BERT. We use the default hyperparam-
eters of BERT. The public examples of Google
Meena Dataset can be downloaded from https:

//github.com/google-research/google-research/

blob/master/meena/meena.txt The public examples
of Facebook Blender Dataset can be down-
loaded from https://parl.ai/projects/recipes/

chatlog_2.7B_render.html The public examples
of ConvAI2 Dataset can be downloaded from
http://convai.io/data/data_volunteers.json and
http://convai.io/data/summer_wild_evaluation_

dialogs.json

(a) Denoising with Shapley Value in Gunrock
Movie Dataset

(b) Denoising with Shapley Value in ConvAI2
Dataset

Figure 6: Removing data points with low Shapley value
improves the performance of the KNN classifier.

Additional Shapley Value Analysis We also
present addition analysis to show how Shapley de-
noising works as shown in Figure 6. We present
the experiments on both Gunrock Movie Dataset
and ConvAI2 Dataset. Figure 6 presents a quanti-
tative analysis of Shapley value. According to the
Shapley value, we remove data points one by one
starting from the least valuable to the most valu-
able. Each time, after the data point is removed, we
create new KNN classifier models on the remain-
ing dialog turns and labels and evaluate them on
the test set with expert annotations. As shown in
Figure 6, removing training data with low Shap-
ley values increases the performance to a certain
point before convergence for K of all choices. We
observe a similar trend when re-training a model
on the remaining data. In contrast, removing data
randomly or removing data from the most to least
valuable data decreases the performance on the test
set. This shows that low Shapley value data ef-
fectively capture outliers and corruptions, which
further justifies our design choice of denoising with
Shapely value.

A.3 Addition Dialog Examples
We show additional dialog examples. Figure 7
shows a full dialog example from ConvAI dataset.
Figure 8 shows a full dialog example from Gunrock
Movie dataset.

https://github.com/google-research/google-research/blob/master/meena/meena.txt
https://github.com/google-research/google-research/blob/master/meena/meena.txt
https://github.com/google-research/google-research/blob/master/meena/meena.txt
https://parl.ai/projects/recipes/chatlog_2.7B_render.html
https://parl.ai/projects/recipes/chatlog_2.7B_render.html
http://convai.io/data/data_volunteers.json
http://convai.io/data/summer_wild_evaluation_dialogs.json
http://convai.io/data/summer_wild_evaluation_dialogs.json
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Figure 7: A full example from ConvAI Dataset.

Figure 8: A full example from Gunrock Movie Dataset.


