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Abstract

We present the first end-to-end, transformer-
based table question answering (QA) system
that takes natural language questions and mas-
sive table corpus as inputs to retrieve the most
relevant tables and locate the correct table cells
to answer the question 1. Our system, CLTR,
extends the current state-of-the-art QA over ta-
bles model to build an end-to-end table QA ar-
chitecture. This system has successfully tack-
led many real-world table QA problems with
a simple, unified pipeline. Our proposed sys-
tem can also generate a heatmap of candi-
date columns and rows over complex tables
and allow users to quickly identify the cor-
rect cells to answer questions. In addition, we
introduce two new open-domain benchmarks,
E2E WTQ and E2E GNQ, consisting of 2,005
natural language questions over 76,242 ta-
bles. The benchmarks are designed to validate
CLTR as well as accommodate future table re-
trieval and end-to-end table QA research and
experiments. Our experiments demonstrate
that our system is the current state-of-the-art
model on the table retrieval task and produces
promising results for end-to-end table QA.

1 Introduction

Tables are widely used in digital documents across
many domains, ranging from open-domain knowl-
edge bases to domain-specific scientific journals,
enterprise reports, to store structured information in
tabular format. Many algorithms have been devel-
oped to retrieve tables based on given queries (Ca-
farella et al., 2008, 2009; Sun et al., 2019; Bhaga-
vatula et al., 2013; Shraga et al., 2020a; Chen et al.,
2021). The majority of these solutions exploit tradi-
tional information retrieval (IR) techniques where
tables are treated as documents without consider-
ing the tabular structure. However, these retrieval

1System page: https://github.com/IBM/row-column-
intersection

methods often result in an inferior quality due to
a major limitation that most of these approaches
highly rely on lexical matching between keyword
queries and table contents. Recently, there is a
growing demand to support natural language ques-
tions (NLQs) over tables and answer the NLQs
directly, rather than simply retrieving top-k rel-
evant tables for keyword-based queries. Shraga
et al. (2020c) introduce the first NLQ-based table
retrieval system, which leverages an advanced deep
learning model. Although it is a practical approach
to better understand the structure of NLQs and ta-
ble content, it only focuses on table retrieval rather
than answering NLQs. Lately, transformer-based
pre-training approaches have been introduced in
TABERT (Yin et al., 2020), TAPAS (Herzig et al.,
2020), and the Row-Column Intersection model
(RCI) (Glass et al., 2020). These algorithms are
very powerful at answering questions on given ta-
bles; however, one cannot apply them over all ta-
bles in a corpus due to the computationally expen-
sive nature of transformers. An end-to-end table
QA system that accomplishes both tasks is in need
as it has the following advantages over separated
systems: (1) It reduces error accumulations caused
by inconsistent, separated models; (2) It is easier
to fine-tune, optimize, and perform error analysis
and reasoning on an end-to-end system; and (3)
It better accommodates user needs with a single,
unified pipeline. Hence, we propose a table re-
trieval and QA over tables system in this paper,
called Cell Level Table Retrieval (CLTR). It first
retrieves a pool of tables from a large table corpus
with a coarse-grained but inexpensive IR method.
It then applies a transformer-based QA over tables
model to re-rank the table pool and finally finds the
table cells as answers. To the best of our knowl-
edge, this is the first end-to-end framework where a
transformer-based, fine-grained QA model is used
along with efficient coarse-grained IR methods to
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Figure 1: The overview of the end-to-end table QA architecture of CLTR.

retrieve tables and answer questions over them. Our
experiments demonstrate that CLTR outperforms
current state-of-the-art models on the table retrieval
task while further helping customers find answers
over returned tables.

To build such a Table QA system, an end-to-
end benchmark is needed to evaluate alternative
approaches. Current benchmarks, however, are
not designed for such tasks, as they either focus
on the retrieval task over multiple tables or QA
task on a single table. To address the problems,
we propose two new benchmarks: E2E WTQ and
E2E GNQ. The details of these benchmarks and
more discussions are provided in Section 4.1.

The specific contributions of this paper are sum-
marized as follows:

• A transformer-based end-to-end table QA
system: We build a novel end-to-end table
QA pipeline by utilizing a transfer learning
approach to retrieve tables from a massive
table corpus and answer questions over them.
The end system outperforms the state-of-the-
art approaches on the table retrieval task.

• Creating heatmaps over complex tables:
To highlight all relevant table columns, rows,
and cells, CLTR generates heatmaps on tables.
Following a pre-defined color code, the high-
lighted columns, rows, and cells are ranked ac-
cording to their relevance to the questions. Us-
ing the heatmap, users can efficiently glance
through complex tables and accurately locate
the answers to the questions.

• Two new benchmarks for the end-to-end
table QA evaluation: We propose and re-
lease two new benchmarks, E2E WTQ and
E2E GNQ, extending two existing bench-

marks, WikiTableQuestions and GNQtables,
respectively. The benchmarks can be used to
evaluate systems for table retrieval and end-
to-end table QA.

2 Overview

The Architecture The architecture of our end-
to-end table QA system, CLTR, is illustrated in
Figure 1. This system aims to solve the end-to-
end table QA task by generating a reasonable-sized
subset of relevant tables from a massive table cor-
pus, and employs the transformer-based approach
to re-rank them based on their relevance to the user
given NLQs, and finally answer the given NLQs
with cells from these tables.

CLTR possess an abundant number of tables
generated from documents of various knowledge
sources to form a large table corpus. The system
has two components: an inexpensive tf-idf (Salton
and McGill, 1986) based coarse-grained table re-
trieval component and a fine-grained RCI-based
table QA component. CLTR first takes as input
any user given NLQs and processes the questions
and the table corpus with the inexpensive BM25
algorithm to generate a set of relevant tables, which
is relatively large and contains noise (i.e., irrelevant
tables). Here we use BM25 to efficiently narrow
down the table candidates from a massive table cor-
pus and highly reduce the execution time and com-
putational cost for CLTR. The output of this coarse-
grained table retrieval component is later fed into
the more expensive but accurate, transformer-based
RCI to learn probability scores for table columns
and rows, respectively. The scores produced by
RCI indicate how likely the given question’s fi-
nal answer exists within a table column or row.
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With the probability scores, CLTR re-ranks the ta-
bles and produces two outputs to the users: (1) a
heatmap over top-ranked tables that highlights the
most relevant columns and rows with a color code;
(2) the table cells that contain the answers to the
NLQs.

The applications Figure 2 presents the user in-
terface of an application of the CLTR system. In
this example, we apply the system to table QA
over an aviation-related dataset, a domain-specific
dataset on tables in aviation companies’ annual re-
ports. This user interface consists of two major
sections, with Tag A and Tag B point to the user
input and the system output sections, respectively.
Under Tag A and B, the CLTR pipeline is employed
to support multiple functionalities. Users can input
any NLQs, such as “When is the purchase agree-
ment signed between Airbus and Virgin America?”
in this example, into the text box at Tag D and
click the Search button at Tag C to query the pre-
loaded table corpus. Users may select to reset the
system for new queries or re-train a new model
with a new corpus. In the system output sections,
a list of tables similar to the table at Tag F is gen-
erated and presented to users. For each table, the
system output includes: (a) the surrounding text
of the table from the original PDF (Tag E); (b)
the pre-processed table in a clean, human-readable
format with a heatmap on it, indicating the most
relevant rows, columns, and cells (Tag F); (c) an
annotation option, where the users can contribute
to refining the system with feedback (Tag G). In
addition, the CLTR architecture has been widely ap-
plied to datasets from many other domains, varying
from finance to medical. The system is also vali-
dated with open-domain benchmarks, with more
details discussed in Section 4.

3 The RCI-based Table QA

Traditional approaches solve the table QA problem
with two consecutive steps: retrieval of the most
relevant tables for a given NLQ and locating the
correct answers out of the cells with the help of
a QA over tables model. These steps are usually
studied separately. Our proposed system, CLTR,
unifies the two-step table QA with a single pipeline
by leveraging the novel RCI model. RCI is the
state-of-the-art approach for locating answers over
tables (Glass et al., 2020); however, it is not de-
signed to retrieve tables out of large table corpus.
In this section, we describe how we build an end-

to-end table QA system combining the strength of
inexpensive IR methods and the RCI model.

3.1 The Row-Column Intersection Model
We first briefly introduce the Row-Column Intersec-
tion model (RCI), which supports the fine-grained
table retrieval component of our system. The RCI
model decomposes table QA into its two com-
ponents: projection, corresponding to identifying
columns, and selection, identifying rows. Every
row and column identification is a binary sequence-
pair classification. The first sequence is the ques-
tion and the second sequence is the row or column
textual sequence representation. We use the in-
teraction model of RCI that concatenates the two
sequences, with standard separator tokens, as the
input to a transformer.

The RCI interaction model uses the sequence
representation which is later appended to the ques-
tion with standard [CLS] and [SEP ] tokens to de-
limit the two sequences. This sequence pair is fed
into a transformer encoder, ALBERT (Lan et al.,
2020). The final hidden state for the [CLS] token is
used in a linear layer followed by a softmax to clas-
sify if the column or row containing the answer or
not. Each row and column is assigned with a prob-
ability of containing the answer. The RCI model
outputs the top-ranked cell as the intersection of the
most probable row and the most probable column.

Figure 3 gives a sample question fed into the
transformer architecture along with the column and
row representation of a table.

3.2 The End-to-End Table QA with RCI
To tackle the table retrieval problem, we exploit an
inexpensive IR method together with the state-of-
the-art RCI model. Unlike the traditional methods
treating tables as free text, a set of features, or
multi-modal objects, CLTR treats tables as a set of
columns and rows and re-rank the tables based on
cell-level RCI scores.

As we previously mentioned in Section 2, CLTR
first processes the question and table corpus with
the inexpensive BM25 algorithm to generate a pool
of highly relevant tables. Later, the RCI model
is used to produce probability scores for every
column and row for tables in the pool. There-
fore, for every table t with n columns and m rows
in the table pool T , we have two set of scores,
Pcolumn = {pc1 , pc2 , pc3 , ..., pcn} for columns and
Prow = {pr1 , pr2 , pr2 , ..., prm} for rows. We cal-
culate the overall probability score for each ta-
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Figure 2: The application of CLTR on an aviation corpus
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Figure 3: The RCI Table QA Model

ble by taking the maximum cell-level score, us-
ing Pt = max(Pcol) + max(Prow). Our experi-
ments prove the advantages of this method over
the other algorithms (e.g., taking the averaged cell-
level scores).

CLTR re-ranks the tables within the table pool
T using the maximum cell-level scores. Once the
re-ranking is done, the top-k tables out of T are
returned to the users. The correct cells on the top-k
tables are later identified by locating the intersec-
tion of the most relevant columns and rows discov-
ered by the RCI model.

4 Experiments

4.1 Data
Proposed Benchmarks: Existing table retrieval
and QA benchmarks focus on either answering
NLQs on a single table or the retrieval of mul-
tiple tables for a keyword query. A comprehen-
sive comparison of existing benchmarks with their
limitations is listed in Table 1. WikiSQL (Zhong
et al., 2017) and WikiTableQuestions (Pasupat and
Liang, 2015) are widely used to evaluate table QA

systems. More recently, they have been used by
TAPAS (Herzig et al., 2020) and TABERT (Yin
et al., 2020) where transformer-based models for
QA over tables have been introduced. However,
these benchmarks are not created to be used as part
of an end-to-end table retrieval and QA pipeline.
On the other hand, WikiTables was created based
on the corpus introduced by Bhagavatula et al.
(2015) and used in many recent table retrieval stud-
ies (Zhang and Balog, 2018a; Deng et al., 2019;
Shraga et al., 2020b,c). Despite its popularity, the
WikiTables benchmark has two major limitations.
First, the query set is fairly limited, containing only
100 keyword-based queries. Many recent studies
use this small set of queries for a learning-to-rank
(LTR) task with 5-fold cross-validation, potentially
causing overfitting issues for the proposed table
retrieval models. Second, the query set includes
only keyword-based queries, which do not repre-
sent the NLQs customers are expected to ask to get
answers over tables. To solve the aforementioned
issues and create an end-to-end table QA bench-
mark with NLQs, we introduce two new bench-
marks, E2E WTQ and E2E GNQ, inspired by Wik-
iTableQuestions and GNQtables.

The WikiTableQuestions (Pasupat and Liang,
2015) benchmark is originally designed for find-
ing answer to questions from given tables. It con-
sists of complex NLQs and tables extracted from
Wikipedia. We filter the benchmark following
Glass et al. (2020) to generate a subset of 1,216
questions with 2,108 tables.

The GNQtables dataset, introduced in Shraga
et al. (2020c), extends the Google Natural Ques-
tions (NQ) benchmark (Kwiatkowski et al., 2019).
It contains 789 NLQs and a large table corpus of
74,224 tables. For each question, the ground truth



206

# of tables # of queries Retrieval task QA task Reference
WikiSQL 24,241 80,654 7 3 (Zhong et al., 2017)
TabMCQ 68 9,092 7 3 (Jauhar et al., 2016)

WikiTableQuestions 2,108 22,033 7 3 (Pasupat and Liang, 2015)
WikiTables 1.6M 100 3 7 (Bhagavatula et al., 2015)
GNQtables 74,224 789 3 7 (Shraga et al., 2020c)
E2E WTQ 2,108 1,216 3 3
E2E GNQ 74,224 789 3 3

Table 1: Comparison of table QA and retrieval benchmarks

only points to the most relevant table (with a binary
grade 1 indicates relevant), while all other tables in
the table corpus are considered irrelevant (grade 0).
GNQtables is the only table retrieval benchmark
using NLQs, which makes it possible to adapt it to
end-to-end table QA. To create the E2E GNQ, we
manually annotate and enhance GNQtables with
additional ground truth data for each question: (1)
the table cells containing the correct answers; (2)
the index of the target columns; (3) the index of the
target rows.

Experimental Data: We experiment with
E2E WTQ to test the portability of CLTR, in
which we fine-tune the RCI model with two other
table QA benchmarks. We utilize an open-domain
benchmark, WikiSQL (Zhong et al., 2017), and a
domain-specific benchmark, TabMCQ (Jauhar
et al., 2016). The WikiSQL dataset has 80,654
questions on 24,241 Wikipedia tables, while the
TabMCQ is a much smaller dataset, with only
68 hand-crafted tables and 9,092 multiple-choice
questions.

4.2 Experimental Setup

Overall Setup: We test our system under two ex-
perimental settings for table retrieval: (1) We test
CLTR without task-specific training on E2E WTQ
and fine-tune the RCI model with WikiSQL and
TabMCQ; (2) To fairly compare against the state-
of-the-art, we follow the experimental setup in
Shraga et al. (2020c) and fine-tune CLTR with
E2E GNQ. We implement 5-fold cross-validation
on E2E GNQ, where 80% of data is used for fine-
tuning and 20% is used for validation. For both
E2E GNQ and E2E WTQ, we use BM25 as our
baseline model, which is widely used in industry-
scale IR systems. We test the end-to-end table QA
capability of CLTR with our newly proposed bench-
marks. Since we are the first publicly accessible
end-to-end table QA system, we do not have a base-
line to fairly compare to for our end-to-end table
QA experiments.

We implement the coarse-grained table retrieval

with the BM25 algorithm embedded in the Elas-
ticSearch python API for all of our experiments.
This API can be accessed at https://elasticsearch-
py.readthedocs.io/en/master/. Each table is indexed
as a single text document with the embedded En-
glish analyzer. For each question, we generate a
pool of 300 tables with the highest BM25 similar-
ity scores. Following the current state-of-the-art
model in Shraga et al. (2020c), we set k1 = 1.2
and b = 0.7. The tables in the pool are later pro-
cessed with the RCI model.

Our experiments employ the RCI model with
ALBERT XXL version (Lan et al., 2020). The RCI
model is fine-tuned for different benchmarks with
the following configurations: (1) training batch size
= 128; (2) Number of epochs = 2; (3) Learning rate
= 2.5e-5; and (4) maximum sequence length = 512.

The model and data for the experiments with
CLTR are available at https://github.com/IBM/row-
column-intersection.

Evaluation metrics: For table retrieval evalua-
tion, we use the three metrics from previous work
(Zhang and Balog, 2018b; Shraga et al., 2020c)
for the top-k retrieved tables, namely precision
(P) with k ∈ {5, 10}, normalized discounted gain
(NDCG) with k ∈ {5, 10, 20}, and the mean av-
erage precision (MAP). For the end-to-end table
QA tasks, we evaluate our proposed model follow-
ing Glass et al. (2020) with two commonly used
metrics in the IR community, accuracy at top 1 re-
trieved answer (Hit@1) and the mean reciprocal
rank (MRR).

All experimental results are evaluated with
the TREC standard evaluation tool (Voorhees
and Harman, 2005). The source code of
the TREC evaluation tool can be found at
https://trec.nist.gov/trec eval/.

4.3 Experimental Results
We experimentally compare CLTR against the
BM25 baseline and the current state-of-the-art
model on table retrieval in this section. Further-
more, we test CLTR with our proposed benchmarks
on the end-to-end table QA task.
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P@5 P@10 N@5 N@10 N@20 MAP
BM25 0.5938 0.6587 0.5228 0.5356 0.5359 0.4704
CLTR 0.7437 0.8735 0.6915 0.7119 0.7321 0.5971

(a) E2E WTQ
P@5 P@10 N@5 N@10 N@20 MAP

BM25 0.0413 0.0242 0.1650 0.1764 0.1852 0.1601
MTRpoint 0.1460 0.0767 0.6227 0.6349 0.6359 0.5920
MTRpair 0.1826∗ 0.0990∗ 0.6945∗ 0.7198∗ 0.7220∗ 0.6328∗

CLTR 0.2203 0.1660 0.7235 0.7402 0.7458 0.7176

(b) E2E GNQ

Table 2: A comparison of CLTR and the baselines (* indicates the current state-of-the-art numbers).

Table Retrieval: We present the experimental
results for table retrieval without task specific train-
ing on E2E WTQ in Table 2a. Since the MTR
model (Shraga et al., 2020c) is not available to us
and this dataset has never been used in any pub-
lished table retrieval work, we only compare our
results to the coarse-grained BM25 baseline. The
results indicate our proposed model outperforms
the BM25 baseline with average improvements of
29.12%, 33.94% and 26.93% on precision, NDCG,
and MAP, respectively. The results on E2E WTQ
also indicate that pre-trained CLTR can be adapted
to new datasets without task-specific training.

The experimental results for E2E GNQ are
shown in Table 2b, comparing against BM25 and
the current state-of-the-art, the two MTR mod-
els, MTRpoint (with point-wise training) and
MTRpair (with pair-wise training) in Shraga et al.
(2020c). The comparison shows that our proposed
model outperforms the current best MTRpair

model on all metrics, with an average improve-
ment of 28.73% on precision, 3.43% on NDCG,
and 13.40% on MAP. The experimental results in-
dicates CLTR is the new state-of-the-art system for
table retrieval. Moreover, CLTR can further locate
cell values to answer NLQs after table retrieval.

MRR Hit@1
E2E WTQ 0.5503 0.4675
E2E GNQ 0.4067 0.2699

Table 3: Model evaluation for end-to-end table QA

End-to-End Table QA: To further validate
CLTR, we implement the end-to-end Table QA
evaluation with E2E WTQ and E2E GNQ. The
only existing end-to-end table QA model, Sun et al.
(2016), and its dataset are not publicly available.
Therefore, we do not have any baseline models to
compare to. Our experimental results are reported
in Table 3. As the first attempt for an end-to-end ta-
ble QA system with transformer-based architecture
on complex table benchmarks, we show that our ap-
proach is able to achieve promising and consistent

performance. Our results indicate CLTR performs
better for the first benchmark, E2E WTQ, where
the table corpus mainly contains well-structured
tables. On the other hand, we expect the results for
E2E GNQ to be worse due to the amount of poorly
formatted tables in the table corpus.

Qualitative Analysis: The experiments indicate
CLTR outperforms all baselines, as well as the
current state-of-the-art models on table retrieval. It
also produces promising results for the end-to-end
table QA task. We further demonstrate the high-
portability of CLTR with pre-trained models using
unseen benchmarks.

The system performance is much better for
E2E WTQ based on the experimental results. After
a thorough investigation, we notice that the original
GNQtables contains a large amount of noisy tables
which do not have tabular structures. A consider-
able amount of tables in GNQtables are Wikipedia
InfoBoxes, which may have multiple column/row
headers and are difficult to process by machines
accurately. Although table quality is crucial for
table QA models, CLTR proves its advantageous
by producing state-of-the-art results with noisy ta-
ble corpus. Furthermore, the example shown in
Figure 2 demonstrates the effectiveness of CLTR
when applied to real-world data.

5 Related Work

Table Retrieval A majority of the table retrieval
methods proposed in the literature treat tables as in-
dividual documents without taking the tabular struc-
ture into consideration (Pyreddy and Croft, 1997;
Wang and Hu, 2002; Liu et al., 2007; Cafarella
et al., 2008, 2009). More recent approaches utilize
features generated from queries, tables, or query-
table pairs. For example, Zhang and Balog (2018b)
introduces an ad-hoc table retrieval method, re-
trieving tables with features such as #query term,
#columns, #null values, etc. Similar work includes
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Sun et al. (2019), Bhagavatula et al. (2013), and
Shraga et al. (2020a). The current state-of-the-art
model is introduced in Shraga et al. (2020c), where
tables are treated as multi-modal objects and re-
trieved with a neural ranking model. We compare
CLTR with this approach in Section 4.

Table QA Models Early table QA systems typi-
cally convert natural language questions into SQL
format to answer questions over tables (Yu et al.,
2018; Guo and Gao, 2020; Lin et al., 2019; Xu
et al., 2018). In Jiménez-Ruiz et al. (2020),
the authors promote the idea of matching tabu-
lar data to knowledge graphs and create the Se-
mantic Web Challenge on Tabular Data to Knowl-
edge Graph Matching (SemTab), which provide
a new solution for table understanding and QA
related tasks. Recently, TAPAS (Herzig et al.,
2020) and TABERT (Yin et al., 2020) introduce the
transformer-based approaches for this task. The
RCI (Glass et al., 2020) model is the state-of-the-
art model for QA over tables. It utilizes a transfer
learning based framework to independently clas-
sify the most relevant columns and rows for a given
question and further identify the most relevant cells
as the intersections of top-ranked columns and
rows.

End-to-End Table QA Models To the best of
our knowledge, the table cell search framework
published in Sun et al. (2016) is the only existing
end-to-end Table QA system. This work leverages
the semantic relations between table cells and uses
relational chains to connect queries to table cells.
However, the proposed model only works for well-
formatted questions containing at least one highly
relevant entity to link tables to the questions. In
addition, the model and the data are not publicly
available for comparison.

6 Conclusion

This paper proposes an end-to-end solution for ta-
ble retrieval and finding answers for NLQs over
tables. To the best of our knowledge, this is the first
system built where a transformer-based QA model
is used for locating answers over tables while im-
proving the ranking of tables out of a table pool
formed by inexpensive IR methods. To evaluate
the efficacy of this system, we introduce two bench-
marks, namely E2E WTQ and E2E GNQ.

The experimental results indicates that the pro-
posed system, CLTR, outperforms the baselines

and the current state-of-the-art model on the ta-
ble retrieval task. Furthermore, CLTR produces
promising results on the end-to-end table QA task.
In real-world applications, CLTR can be applied
to create a heatmap over tables to assist users in
quickly identifying the correct cells on tables.
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