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Abstract

This paper describes POSTECH’s submission
to WMT20 for the shared task on Automatic
Post-Editing (APE). Our focus is on increasing
the quantity of available APE data to overcome
the shortage of human-crafted training data.
In our experiment, we implemented a nois-
ing module that simulates four types of post-
editing errors, and we introduced this module
into a Transformer-based multi-source APE
model. Our noising module implants errors
into texts on the target side of parallel cor-
pora during the training phase to make syn-
thetic MT outputs, increasing the entire num-
ber of training samples. We also generated
additional training data using the parallel cor-
pora and NMT model that were released for
the Quality Estimation task, and we used these
data to train our APE model. Experimental
results on the WMT20 English-German APE
data set show improvements over the baseline
in terms of both the TER and BLEU scores:
our primary submission achieved an improve-
ment of -3.15 TER and +4.01 BLEU, and our
contrastive submission achieved an improve-
ment of -3.34 TER and +4.30 BLEU.

1 Introduction

There has been a surge of interest in developing
Automatic Post-Editing (APE) models, which is ca-
pable of automatically correcting errors produced
by a machine-translation (MT) system, and thus is
an attractive way to improve the quality of the MT
output. Currently, sequence-to-sequence modeling
has become a dominant approach to constructing
APE models (Chatterjee et al., 2019, 2018), which
requires a large quantity of training samples. How-
ever, APE data1 — comprising triplets of three
texts: source (src), a machine-translation (mt) of
src, and a human-crafted post-edited sentence (pe)
of mt — is too small and costly to acquire. Con-
sequently, the lack of APE data becomes a great

1http://www.statmt.org/wmt20/ape-task.html

obstacle to a satisfactory performance of sequence-
to-sequence models.

To reduce such data scarcity, there have been
several attempts at constructing synthetic APE
data (Negri et al., 2018; Junczys-Dowmunt and
Grundkiewicz, 2016). Most notably, Negri et al.
(2018) proposed a simple but effective way to con-
struct a large-scale synthetic APE data set eSCAPE
(src, mt, ref ), of which src and ref is the source
and target text of freely available parallel corpora,
respectively, and mt is a translation of src produced
by the MT system that had been trained on those
parallel corpora.

As eSCAPE has shown to be beneficial in train-
ing APE models (Chatterjee et al., 2019), it has
become feasible to train deep APE models and also
what most recent works have been relying on so far.
Nevertheless, the availability of a limited quantity
of parallel corpora may not only be insufficient, but
also vary depending on the language pair, that is,
while some language pairs have plenty of resources,
some others have relatively few resources. We thus
argue that further works to supply additional re-
sources should be needed to mitigate the potential
data scarcity.

In this work, we introduce a noising scheme
by which corrupted texts (refnoise) are produced
from ref of parallel corpora, resulting in additional
APE triplets (src, refnoise, ref ), where src and ref
is the source and target text of parallel corpora,
respectively. During post-editing, certain editing
operations including the word insertion, deletion,
substitution, and shifting are applied to translated
texts (noisy texts) for error correction. Thus, we
applied such operations to target texts (clean texts)
of parallel corpora to inject errors in reverse. More-
over, to simulate the quantity of errors that the
target MT system produces, we refer to the distri-
bution of “Translation Error Rate” (TER) (Snover
et al., 2006) occurring in the actual APE data to
determine the quantity of errors to be injected.
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Figure 1: An illustration of the noising procedure

While we trained our models using the noising
module, we supplied to the models synthetic APE
data in addition to the WMT’20 APE data set as
training data. The synthetic data was produced by
using the eSCAPE method, which uses parallel cor-
pora and a trained NMT model. We observed that
models with noising module improved up to about
-0.7 TER and +1.45 BLEU on the English-German
(EN-DE) WMT’20 APE validation set compared
to models without noising. Finally, our primary
and contrastive submission to the WMT’20 APE
shared task respectively recorded 28.41 TER and
54.22 BLEU, and 28.22 TER and 54.51 BLEU on
the blind EN-DE WMT’20 APE test set.

2 Related Work

Noise injection to input sentences has become a
popular method to let auto-encoders (Hill et al.,
2016; Vincent et al., 2008) or pre-trained language
models (Lewis et al., 2019; Devlin et al., 2019)
learn how to reconstruct the original input. Be-
cause post-editing is a process of reconstructing
corrupted translations, simulating corrupted MT
outputs by injecting noise to the target sentence is
a way to get synthetic APE training samples.

In the APE task, Xu et al. (2019) employed a data
noising technique that incorporates a noise vector
generated from a Gaussian or uniform distribution
into the word embedding vector. However, their
noising process has an effect on all tokens in a

sequence, whereas only certain tokens in a given
MT output are to be corrected in the APE process.

3 Method

3.1 Post-Editing Noise
Post-editing of mt texts requires four editing opera-
tions: insertion, deletion, substitution, and shifting.
In other words, mt texts contain the following types
of errors (The examples on the left side and right
side are mt and pe, respectively.):

• Insertion operation implies that mt includes
deletion errors:
We the world→ We are the world

• Deletion operation implies that mt includes in-
sertion errors:
We are in the world→ we are the world

• Substitution operation implies that mt includes
substitution errors:
We is the world→ we are the world

• Shifting operation implies that mt includes shift-
ing errors:
We the world are→ we are the world

Considering the characteristics of editing opera-
tions, applying these operations to a clean text can
simulate a corrupted mt text that can be post-edited
to the original text. Thus, we corrupted a portion of
words in a target text of parallel corpora, yielding a
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Figure 2: The categorical TER distribution of the
WMT’20 training data, representing the proportion y
[%] of samples belong to a specific TER range x.

new synthetic mt text which form a new synthetic
triplet together with the corresponding source and
target text in the parallel corpora.

3.2 Noising Procedure

Given an input sentence, we consider a noising
procedure (Figure 1) (1) that specifies the quantity
of words to become noise; (2) that selects specific
words that will become noise according to the spec-
ified quantity; (3) and that determines the types of
noise to be injected into the selected words.

Noising Quantity and Candidate Selection

The first step is to specify the quantity of words
that will become noise in a given input sentence.
Choosing a static proportion can be one option (De-
vlin et al., 2019), but imitating the proportion of
errors that the target MT system produces would
be more helpful to simulate the original mt text,
considering that APE aims to correct the output
produced by a particular MT system.

Accordingly, we refer to TER scores between
mt and pe of the WMT’20 train set, which indicate
the proportion of errors in mt that need to be cor-
rected. Specifically, a TER range (e.g. (45, 50])
is drawn from the TER distribution in intervals of
5 (Figure 2), and then a specific value (e.g. 48)
uniformly sampled from that range will be used as
the error rate (e.g. 48→ 0.48). Finally, the noising
quantity is calculated by multiplying the error rate
by the input length. After specifying the noising
quantity, we randomly select noising candidates
among words in a given sentence according to the
specified quantity.

Noise Application
Once the noising candidates have been selected,
we now need to determine the types of noise that
will be assigned to each candidate, and this process
relies entirely on randomness. In particular, we
produce four random numbers, making their sum-
mation equal to the noising quantity, and then this
numbers are used as the quantity for each of the
‘insertion’, ‘deletion’, ‘substitution’, and ‘shifting’
post-editing noise. According to the quantity of
each noising type, each type of noise is applied
to words that are randomly selected among the
noising candidates. Here, we present an example
scenario as follows:

• Suppose that the noising quantity is 5 and
the noising candidates are w1, w4, w7, w9, w11

where wi represents an input word in the i-th
position.

• Given that the randomly selected numbers are
{1, 2, 0, 2}, according to each of these four se-
lected numbers, the words are randomly se-
lected among the noising candidates, forming
four subsets of selected words.
(e.g.: {{w4}, {w1, w9}, {Ø}, {w7, w11}}).

• Finally, one corresponding noise operation is
applied to each subset of selected words. e.g.:
{w4}: insertion noise, {w1, w9}: deletion noise,
{Ø}: substitution noise, {w7, w11}: shifting
noise.

4 Experiment

4.1 Setup
Data. We collected publicly available parallel
corpora that are listed on the WMT’20 Quality Es-
timation (QE) task webpage2, which had been used
to train the MT system by which mt texts of the
WMT’20 QE corpus had been produced, and then
we generated about 20M synthetic APE triplets
(src, mt, ref ) in the same manner as the eSCAPE
method by using the pretrained MT system3 that
has been released on the QE task webpage. This
synthetic APE triplets were used together with the
official APE train set to train our APE model and
a BPE model4 by which we obtained a shared vo-
cabulary of 32K subwords. During the training
phase, the collected parallel corpora were used to

2http://www.statmt.org/wmt20/quality-estimation-
task.html

3https://github.com/facebookresearch/mlqe
4https://github.com/google/sentencepiece
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Figure 3: The structure of our APE model.

generate another synthetic APE triplets produced
by our noising approach.

Model configuration. We adopted the ”sequen-
tial APE model” proposed by Lee et al. (2019)
to construct our APE model (Figure 3) by ap-
plying some minor modifications: the ReLU ac-
tivation (Nair and Hinton, 2010) in the ’feed-
forward’ layers was replaced with the GELU activa-
tion (Hendrycks and Gimpel, 2016), an additional
residual connection between the outputs of the first
and third multi-head attention layer was added in
the decoder. Additionally, we removed some de-
tails such as ”stack-level attention” and ”future
masking to mt”. We set our model’s hyperparam-
eters as follows: the size of the word embedding
and all hidden dimensions at 768; the size of the
inner dimension of feed-forward layers at 3072;
8 heads; 6 layers; and dropout rate at 0.1. The
model was optimized using Adam (Kingma and Ba,
2015) with β1 = 0.9, β2 = 0.998, and ε = 1e−8,
and we used the same learning rate scheduling as
Vaswani et al. (2017) with 15,000 warmup steps.
We implemented and trained our model by using
the OpenNMT-py5 framework.

5https://github.com/OpenNMT/OpenNMT-py

Model
WMT’20 dev WMT’20 test
TER BLEU TER BLEU

Baseline 31.37 50.37 31.56 50.21
APEbase 29.42 52.32 – –

+Noise 28.72 53.77 – –
Submission (Ensemble)

Primary 28.70 53.77 28.41 54.22
Contrastive – – 28.22 54.51

Table 1: The evaluation results. APEbase stands for
the model trained without using our noising approach.

4.2 Training Details

Training procedure. Training of the APE model
is composed of two steps. At the first step, both
the synthetic triplets and WMT’20 training data are
used to train the model. Every time each training
batch is assigned to the model, 25% of the syn-
thetic triplets (src, mt, ref ) in the batch are replaced
with another synthetic triplets (src, ref noise, ref ) by
applying the noising procedure (§3.2) to each ref.
We here set the batch size at 33,000 tokens. The
following step is to fine-tune the model by only us-
ing the WMT’20 data, starting at the convergence
point found in the first step. At this step, we set the
batch size at 1,024 tokens.

Ensemble. We trained two ensemble models for
submission. Our primary submission (TERNoise-
Ops-Ens8) is an ensemble of eight runs. We first
selected the top five runs, which had the lowest
TER on the development set, for three individual
weight initializations. To form the ensemble model,
we then selected among them the top two runs,
for each of four edit operations, that make correc-
tions most frequently. Our contrastive submission
(TERNoise-nFold-Ens8) is also an ensemble of
eight runs. Aiming for generalization to unseen
data, all runs were trained and validated in a 4-fold
setting on a data set into which the training data
and development data had been merged. Then we
selected the top two runs for each fold to form the
ensemble model.

4.3 Result

Table 1 presents our evaluation results. As the
WMT20 test data is blind to users, we were not
able to conduct an evaluation on the test data set,
but we observed that applying our noising scheme
improved the post-editing quality of the model on
the development data set. As a result, our primary
submission, which is an ensemble of models adopt-
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ing the noising scheme, showed an improvement
of −3.15 TER score and +4.01 BLEU score on
the test data set. In addition, our contrastive sub-
mission, which is an ensemble of models trained
on the separate training data set to seek generality
performance on unseen data, showed better results
than our primary submission, resulting in its high
generalization capability to the unseen the WMT20
test data.

5 Conclusion

We propose a noising scheme to supply APE mod-
els with synthetic APE triplets during the training
phase. Our noising scheme is designed based on
the error types that are defined in the APE task, and
the quantity of noise that are injected during the
training phase are determined in consideration of
the distribution of those error types in the official
training data. According to the experimental re-
sults, applying our noising scheme to APE models
showed an improvement of the post-editing quality
in terms of both TER and the BLEU scores, which
indicates that our noising scheme was effective in
training APE models although there may be differ-
ences between the synthesized errors and the actual
MT errors. Therefore, in future work, we will aim
to reduce those gaps caused by our noising scheme.
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