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Abstract

In this work, we introduce the methods proposed by the UnibucKernel team in solving the Social
Media Variety Geolocation task featured in the 2020 VarDial Evaluation Campaign. We address
only the second subtask, which targets a data set composed of nearly 30 thousand Swiss German
Jodels. The dialect identification task is about accurately predicting the latitude and longitude of
test samples. We frame the task as a double regression problem, employing a variety of machine
learning approaches to predict both latitude and longitude. From simple models for regression,
such as Support Vector Regression, to deep neural networks, such as Long Short-Term Memory
networks and character-level convolutional neural networks, and, finally, to ensemble models
based on meta-learners, such as XGBoost, our interest is focused on approaching the problem
from a few different perspectives, in an attempt to minimize the prediction error. With the same
goal in mind, we also considered many types of features, from high-level features, such as BERT
embeddings, to low-level features, such as characters n-grams, which are known to provide good
results in dialect identification. Our empirical results indicate that the handcrafted model based
on string kernels outperforms the deep learning approaches. Nevertheless, our best performance
is given by the ensemble model that combines both handcrafted and deep learning models.

1 Introduction

The organizers of the 2020 VarDial Evaluation Campaign (Găman et al., 2020) proposed a shared task
targeted towards the geolocation of short texts, e.g. tweets, namely the Social Media Variety Geoloca-
tion (SMG) task. Typically formulated as a double regression problem, the task is about predicting the
location, expressed in latitude and longitude, from where the text received as input was posted on a cer-
tain social media platform. Twitter and Jodel are the platforms used for data collection, divided by the
language area in three subtasks, namely:

• Standard German Jodels (DE-AT) - formed of conversations initiated in Germany and Austria in
regional dialectal forms (Hovy and Purschke, 2018).

• Swiss German Jodels (CH) - based on a smaller number of Jodel conversations from Switzerland
(Hovy and Purschke, 2018).

• BCMS Tweets - from the area of Bosnia and Herzegovina, Croatia, Montenegro and Serbia where
the macro-language used is BCMS, with both similarities and a fair share of variation among the
component languages (Ljubešić et al., 2016).

In this paper, we focus only on the second subtask, SMG-CH, proposing a variety of handcrafted
and deep learning models, as well as an ensemble model that combines all our previous models through
meta-learning. Our first model is a Support Vector Regression (SVR) classifier (Chang and Lin, 2002)
based on string kernels, which are known to perform well in other dialect identification tasks (Butnaru
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and Ionescu, 2018b; Ionescu and Popescu, 2016; Ionescu and Butnaru, 2017). Our second model is a
character-level convolutional neural network (CNN) (Zhang et al., 2015), which is also known to provide
good results in dialect identification (Butnaru and Ionescu, 2019; Tudoreanu, 2019). Due to the high pop-
ularity and the outstanding results of Bidirectional Encoder Representations from Transformers (BERT)
(Devlin et al., 2019) in solving mainstream NLP tasks, we decided to try out a Long Short-Term Memory
(LSTM) network (Hochreiter and Schmidhuber, 1997) based on German BERT embeddings as our third
model. Lastly, we combine our three models into an ensemble that employs Extreme Gradient Boosting
(XGBoost) (Chen and Guestrin, 2016) as meta-learner. We conducted experiments on the development
set provided by the organizers, in order to decide which models to choose for our three submissions for
the SMG-CH subtask. Our results indicate that the ensemble model attains the best results. Perhaps
surprisingly, our shallow approach based on string kernels outperforms both deep learning models. Our
observations are consistent across the development and the test sets provided by the organizers.

The rest of this paper is organized as follows. We present related work on dialect identification and
geolocation of short texts in Section 2. Our approaches are described in more detail in Section 3. We
present the experiments and empirical results in Section 4. Finally, our conclusions are drawn in Sec-
tion 5.

2 Related Work

One of the initial works on text-based geotagging (Ding et al., 2000) aims at automatically finding the
geographic scope of web pages, in a classification setup relying on named location entities such as
cities and states. The authors used gazetteers as the source of the location mappings, proposing a rather
heuristic approach. Gazetteers, constitute a tool used in one of the three general approaches taken so far
in text-based geolocation, this tool being adopted in a number of works (Lieberman et al., 2010; Quercini
et al., 2010; Cheng et al., 2010). In this line of research, some researchers employed rule-based methods
(Bilhaut et al., 2003), while others plugged named entity recognition into various machine learning
techniques (Gelernter and Mushegian, 2011; Qin et al., 2010). The main disadvantage of these methods
is that they rely on the existence of specific mentions of locations in text, rather than inferring them in
a not so straightforward manner. These direct mentions of places do not represent a safe assumption,
especially when it comes to social media platforms such as Twitter, which is used as the data source in
some of these studies (Cheng et al., 2010). The other two main categories of approaches for text-based
geolocation rely on either unsupervised learning (Ahmed et al., 2013; Hong et al., 2012; Eisenstein et al.,
2010) or supervised classification (Wing and Baldridge, 2011; Kinsella et al., 2011). The unsupervised
methods can be described in large part as clustering techniques based on topic models.

There are some studies on user geolocation in social media, that look at this task from a supervised
learning perspective (Rout et al., 2013) and can be included in the second set of approaches for geotag-
ging. However, in such works, other details (e.g. social ties) in the users profile have been considered
rather than their written content. Although these works cover geolocation prediction in social media,
they do not use text as input. Our current interest in studying language variation for the geolocation
of users in social media has been covered in the literature in a series of works (Rahimi et al., 2017;
Han et al., 2014; Doyle, 2014; Roller et al., 2012; Eisenstein et al., 2010), employing various machine
learning techniques, that range from probabilistic graphical models (Eisenstein et al., 2010) and adaptive
grid search (Roller et al., 2012) to Bayesian methods (Doyle, 2014) and neural networks (Rahimi et al.,
2017).

The related work to date covers a wide range of languages and dialects, including Dutch (Wieling
et al., 2011), British (Szmrecsanyi, 2008), American (Huang et al., 2016; Eisenstein et al., 2010) and
even African American Vernacular English (Jones, 2015). Most related to our work is the study of Hovy
and Purschke (2018), which targets the German language and its variations and, in addition to the pre-
viously mentioned endeavours, performs a quantitative analysis against a dialect map. Moreover, Hovy
and Purschke (2018) collected 16.8 million online posts from the German-speaking area with the aim of
learning document representations of cities. Among these posts, some were from the German speaking
side of Switzerland, being part of the SMG shared task, more specifically the SMG-CH subtask that we
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are addressing. The authors aimed at capturing enough regional variations in the written language, serv-
ing as input in automatically distinguishing the geographical region of speakers. The focus was on larger
regions covering a given dialect, the proposed approach being based on clustering. Given the shared
task formulation, we take a different approach and use the provided data in a double regression setup,
addressing the problem both from a shallow perspective and a deep learning perspective, respectively.

3 Methods

3.1 ν-Support Vector Regression based on String Kernels.
String Kernels. Lodhi et al. (2001) introduced string kernels as a means of comparing two documents,
based on the inner product generated by all substrings of length n, typically known as character n-grams.
Since then, string kernels have found many applications, from sentiment analysis (Giménez-Pérez et
al., 2017; Ionescu and Butnaru, 2018; Popescu et al., 2017), automated essay scoring (Cozma et al.,
2018) and sentence selection (Masala et al., 2017) to native language identification (Ionescu et al., 2014;
Ionescu et al., 2016; Ionescu and Popescu, 2017; Popescu and Ionescu, 2013) and dialect identification
(Butnaru and Ionescu, 2018b; Butnaru and Ionescu, 2019; Ionescu and Butnaru, 2017).

In this work, we employ string kernels as described in (Butnaru and Ionescu, 2019), specifically using
the efficient algorithm for building string kernels of Popescu et al. (2017). We note that the number of
character n-grams is usually much higher than the number of samples, so representing the text samples
as feature vectors may require a lot of space. String kernels provide an efficient way to avoid storing
and using the feature vectors (primal form), by representing the data though a kernel matrix (dual form).
Each cell in the kernel matrix represents the similarity between some text samples xi and xj . In our ex-
periments, we use the presence bits string kernel (Popescu and Ionescu, 2013) as the similarity function.
For two strings xi and xj over a set of characters S, the presence bits string kernel is defined as follows:

k0/1(xi, xj) =
∑
g∈Sn

#(xi, g) · #(xj , g), (1)

where n is the length of n-grams and #(x, g) is a function that returns 1 when the number of occurrences
of n-gram g in x is greater than 1, and 0 otherwise.
ν-Support Vector Regression. Support Vector Machines (SVM) (Cortes and Vapnik, 1995) represent
a popular method initially designed for binary classification, which was subsequently repurposed for
regression, under the SVR (Drucker et al., 1997) acronym (i.e. Support Vector Regression). Similar to
SVM, SVR uses the notion of support vectors and margin in order to find an optimal estimator. In the
original ε-SVR formulation (Drucker et al., 1997), there is an ε-insensitive region, i.e. ε tube, defined in
the optimization function. The goal is to find the flattest tube containing most of the training samples,
while also minimizing the prediction error and model complexity. Different from linear regression, ε-
SVR fits the error within the maximum margin ε, instead of minimizing the error directly (Smola and
Schölkopf, 2004). In our experiments, we employ an equivalent SVR formulation known as ν-SVR
(Chang and Lin, 2002), where ν is the configurable proportion of support vectors to keep with respect to
the number of samples in the data set. In ν-SVR, the margin ε is automatically estimated to its optimal
value. Using ν-SVR, the optimal solution can converge to a small model, with only a few support vectors.
This is especially useful in our use case, as the data set provided in the SMG-CH subtask does not contain
too many samples. Another reason to employ ν-SVR in our regression task is that it was found to surpass
other regression methods in complex word identification (Butnaru and Ionescu, 2018a).

3.2 Character-Level Convolutional Neural Network
Character Embeddings. From the pioneering works in language modelling at the character level
(Gasthaus et al., 2010; Wood et al., 2009) to date (Georgescu et al., 2020), a broad range of neural
architectures rely on characters as features. Among these, we can mention Recurrent Neural Networks
(RNNs) (Sutskever et al., 2011), LSTM networks (Ballesteros et al., 2015), CNNs (Kim et al., 2016;
Zhang et al., 2015) and transformer models (Al-Rfou et al., 2019). Characters are the base units in
building words that exist in the vocabulary of most languages. Knowledge of words, semantic structure
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or syntax is not required when working with characters. Robustness to spelling errors and words that
are outside the vocabulary (Ballesteros et al., 2015) constitute other advantages explaining the growing
interest in using characters as features. In our paper, we employ a convolutional neural network working
at the character level (Zhang et al., 2015). The employed CNN is equipped with a character embedding
layer, automatically learning a 2D representation of text formed of character embedding vectors, that is
further processed by the convolutional layers.

Convolutional Neural Networks. Inspired by the visual cortex of mammals (Fukushima, 1980), CNNs
have been extensively used in image classification (LeCun et al., 1989; LeCun et al., 2004; Krizhevsky et
al., 2012), subsequently being adapted for various NLP tasks (Kim, 2014; Zhang et al., 2015). CNNs are
composed of convolutional blocks, consisting of convolutions and pooling operations, usually followed
by a sequence of dense layers and ending with an output layer, with the number of neurons equal to
the number of values that we are interested in predicting. In the experiments, we employ a character-
level CNN (Zhang et al., 2015) with squeeze-and-excitation (SE) blocks, introduced by Butnaru and
Ionescu (2019). Since this method has been previously applied in Romanian dialect identification with
good results (Butnaru and Ionescu, 2019; Tudoreanu, 2019), we consider it a good candidate for our text
geolocation task. We therefore change the original architecture by replacing the Softmax classification
layer with a regression layer formed of two units, one predicting the latitude and one predicting the
longitude, respectively. We train our character-level CNN towards minimizing the mean squared error
(MSE) loss function with respect to the ground-truth latitude and longitude.

3.3 Long Short-Term Memory Networks based on BERT Embeddings

BERT Embeddings. Transformers (Vaswani et al., 2017) represent a very important advance in Natural
Language Processing, with many benefits over the traditional sequential neural architectures. Based on
an encoder-decoder architecture with attention, transformers proved to be better at modelling long-term
dependencies in sequences, while being effectively trained as the sequential dependency of previous
tokens is removed. Unlike other contemporary attempts at using transformers in language modelling
(Radford et al., 2018), BERT (Devlin et al., 2019) incorporates context from both directions in the process
of building deep language representations, in a self-supervised fashion. The masked language modeling
technique enables BERT to pre-train these deep bidirectional representations, that can be further fine-
tuned and adapted for a variety of tasks, without significant architectural updates. We also make use
of this property in the current work, employing a TensorFlow version of a German BERT model1. The
model has been trained on the latest German Wikipedia dump, the OpenLegalData dump and a collection
of news articles, summing up to a total of 12 GB of text files. We add the pre-trained German BERT
model to be fine-tuned in an end-to-end fashion along with our LSTM architecture for geolocation of
Swiss German short texts.

Long Short-Term Memory Networks. RNNs (Werbos, 1988) operate at the sequence level, attaining
state-of-the-art performance on various problems involving time series (Weiss et al., 2018). Major draw-
backs in regular RNNs are the phenomenons of exploding and vanishing gradients, which can be caused
by an increase in the length of the input sequence (Hochreiter et al., 2001). LSTM networks (Hochre-
iter and Schmidhuber, 1997) represent a flavour of RNN, designed to overcome the aforementioned
challenges faced when working with RNNs. An LSTM unit has a more complex structure, including a
memory cell to remember dependencies in the input and three gates acting as regulators: input, output
and, in more recent versions, forget gates, which enable the cell to reset its state (Gers et al., 2000). The
LSTM architecture used in this work is inspired by the one described in (Onose et al., 2019), which has
been successfully employed in Romanian dialect identification. We train our LSTM model using the
mean squared logarithmic error as loss function. We opted for the aforementioned loss in favor of the
mean squared error, as the latter loss function did not produce optimal results for our LSTM.

1https://github.com/deepset-ai/FARM
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3.4 Ensemble Learning

XGBoost. Gradient tree boosting (Friedman, 2001) is based on training a tree ensemble model in an
additive fashion. This technique has been successfully used in classification (Li, 2010) and ranking
(Burges, 2010) problems, obtaining notable results in reputed competitions such as the Netflix Challenge
(Bennett et al., 2007). Furthermore, gradient tree boosting is the ensemble method of choice in real-world
pipelines running in production (He et al., 2014). XGBoost (Chen and Guestrin, 2016) is a tree boosting
model targeted at solving large-scale tasks with limited computational resources. This approach aims at
parallelizing tree learning while also trying to handle various sparsity patterns. Overfitting is addressed
through shrinkage and column subsampling. Shrinkage acts as a learning rate, reducing the influence of
each individual tree. Column subsampling is borrowed from Random Forests (Breiman, 2001), bearing
the advantage of speeding up the computations. In the experiments, we employ XGBoost as a meta-
learner over the individual predictions of each of the models described above. We opted for XGBoost in
detriment of average voting and a ν-SVR meta-learner, both providing comparatively lower performance
levels in a set of preliminary ensemble experiments.

4 Experiments

4.1 Data Set

The data set for the SMG-CH subtask contains a training set of 22,600 samples, with one sample per line,
each formed of a piece of text and a pair of coordinates representing the position on Earth, i.e. latitude
and longitude. The development set is composed of 3,086 samples, provided in the same format. The test
set consists in 3,097 samples without coordinates. We note that the centroid computed on the training
data has a latitude of 47.26 degrees and a longitude of 8.33 degrees, confirming that the average location
is on the territory of Switzerland.

4.2 Parameter Tuning

ν-SVR based on string kernels. In the experiments, we use ν-SVR with a pre-computed string kernel,
employing the efficient algorithm proposed in (Popescu et al., 2017). In a set of preliminary experiments,
we employed various blended spectrum string kernels based on various n-gram ranges that include n-
grams from 3 to 7 characters long. The best performance in terms of both mean absolute error (MAE)
and mean squared error (MSE) were attained by a string kernel based on the blended spectrum of 3 to
5 character n-grams. These results are consistent with those reported by Ionescu and Butnaru (2017),
suggesting that the 3-5 n-gram range is optimal for German dialect identification. The resulting kernel
matrix is used as input in a double regression setup, with a ν-SVR model for predicting the latitude
(in degrees), and another ν-SVR model for predicting the longitude (in degrees), respectively. We tried
out values ranging from 10−4 to 104 for the regularization penalty C, during the hyperparameter tuning
phase. Similarly, for the proportion of support vectors ν, we considered 10 values covering the interval
(0, 1] with a step of 0.1. For both regression models, the best value for the parameter C is 10. As for the
parameter ν, the default value of 0.5 seems to yield the best results.
Character-level CNN. Except for the last layer, the architecture used in our experiments is identical to
the architecture employed by Butnaru and Ionescu (2019) for Romanian dialect identification. An input
of maximum 5000 characters (zero-padding is used as necessary) is expected into the network, with the
characters initially encoded with their position in the vocabulary. For each character, a vectorial represen-
tation of 128 elements is learned in the embedding layer. Three convolutional blocks follow, each being
composed of a convolutional layer with 128 one-dimensional filters of size 7 for the first two blocks, and
of size 3 for the last block, resptectively. Each convolutional block also performs downsampling through
max-pooling operations with a filter of size 3. Squeeze-and-excitation (SE) attention modules are in-
tegrated after each pooling layer. The outputs are then flattened and given as input into the regression
layer, containing two neurons, one for predicting the latitude and the other for predicting the longitude.
Adam (Kingma and Ba, 2015) is used as the optimization algorithm, in an attempt to minimize the MSE
loss. We trained our model on mini-batches of 128 samples for 100 epochs with early stopping, using a
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learning rate of 5 · 10−4. The network converged in 60 epochs, after observing no improvements for the
last 7 epochs.
LSTM based on BERT embeddings. In conjunction with the LSTM, we fine-tuned a BERT model that
is pre-trained on a German corpus, as detailed in Section 3.1. Thus, we input the data into a BERT layer,
initialized with the corresponding pre-trained parameters. We set the maximum sequence length to 310,
which is around the mean sequence length in the SMG-CH data set. The BERT layer is followed by two
LSTM layers of size 128 each, both having tanh activation. We use dropout for regularization, randomly
removing 20% of the neurons. We tried out various optimization algorithms such as Adam, RMSProp
and stochastic gradient descent (SGD) with momentum. We obtained the best convergence using SGD
with a momentum rate of 0.9 and a learning rate of α = 10−1. The training automatically ended after 18
epochs because of early stopping, as there were no more improvements registered for the loss value.
Extreme Gradient Boosting. We employed XGBoost as a meta-learner, training it over the predictions
of all the other models. In our case, XGBoost provided the best results with the number of estimators set
to 1000, a maximum depth of 10−4 and the learning rate α = 10−2.

4.3 Preliminary Results

In the development phase, as there was no metric specified in the description of the SMG task, we
treated it as any other regression problem and evaluated the predictions in terms of both MAE and MSE.
In Table 1, we present the results obtained by our four models on the development set. As the organizers
released the ground-truth labels for the test set after the competition, we also include the MAE and the
MSE on the test set, for reference.

Method MAE MSE
Development Test Development Test

ν-SVR + string kernels 0.2306 0.2289 0.1066 0.1049
character-level CNN 0.2937 0.3123 0.1552 0.1633

LSTM + BERT embeddings 0.3594 0.3618 0.2226 0.2259
XGBoost ensemble 0.2234 0.2207 0.1043 0.1017

Table 1: Results in terms of Mean Absolute Error (MAE) and Mean Squared Error (MSE) obtained on
the development set and on the test set by the proposed handcrafted, deep and ensemble algorithms. The
reported MAE and MSE values represent the average value computed over the latitude and the longitude,
both being expressed in degrees.

Considering the results presented in Table 1, it is clear that the algorithm that achieves the best MAE
and MSE values is the ensemble based on the XGBoost meta-learner. This does not come as a surprise,
as the ensemble combines the predictions of three individual models, each being based on a different
type of features and a different learning model. While these aspects are complementary in theory, the
results indicate that this is also the case in practice.

Additionally, we note that the performance achieved by ν-SVR comes close to the one attained by
the ensemble, leaving behind the two neural models based on characters and fine-tuned BERT embed-
dings. This confirms the efficiency of string kernels over deep learning approaches observed in related
works (Butnaru and Ionescu, 2019; Găman and Ionescu, 2020), which seems to be independent of the
task to be solved.

Another comment regarding the results outlined in Table 1 is that the errors on the development set
do not fall far from the ones obtained on the test set. However, the ensemble model as well as the ν-
SVR based on string kernels obtain slightly lower errors at test time compared to the errors reported on
the development set. The opposite seems to happen with the deep models, as both the LSTM based on
BERT embeddings and the character-level CNN yield slightly higher errors on the test data than on the
development data.

Every participant was allowed to make three submissions to compete against other shared task partic-
ipants. Based on the results reported on the development set, we have decided to choose the character-
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Figure 1: Distances between ground-truth locations (blue) and predicted locations (red) for a subset of
100 Swiss German Jodels randomly selected from the official test set. Best viewed in color.

level CNN, the ν-SVR based on string kernels and the XGBoost ensemble as candidates for the SMG-CH
challenge. We excluded the LSTM based on BERT embeddings, since it attains the highest errors among
the considered models.

4.4 Final Results

Method Submission Median distance Mean distance Clustering Accuracy
character-level CNN #1 40.23 42.87 29.79%
ν-SVR + string kernels #2 26.78 31.49 51.13%

XGBoost ensemble #3 25.57 30.52 53.88%

Table 2: The final results of our team (UnibucKernel) obtained in the SMG-CH subtask, with the metrics
picked by the organizers, oriented on clustering by city and on distances expressed in kilometers.

Table 2 shows our final results obtained on the test set, considering the metrics chosen by the organiz-
ers, which are oriented on distances (in kilometers) and on clustering accuracy. Considering the official
metrics, our best submission placed us in the top six participants.

We observe that our best performing algorithm, namely the XGBoost ensemble combining the predic-
tions of both deep and shallow methods based on various types of features, achieves a median distance
of 25.57 km, a mean distance of 30.52 km and a clustering accuracy of 53.88%. Consistent with our
findings on the development set, the ν-SVR based on string kernels does not fall far behind the XGBoost
ensemble, obtaining a mean distance and median distance that is about one kilometer higher and a clus-
tering accuracy that is nearly 2.75% lower. The deep character-level CNN seems significantly worse,
with around 15 km and more than 10 km higher errors in terms of the median and the mean distances as
compared to the other two submitted models, and around 21% lower clustering accuracy. In our opinion,
these results stand proof that neural networks might not be the holy grail in every possible situation.

We believe that the proposed methods attain decent results, given the challenging nature of the problem
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at hand. However, it is clear to us that they could benefit from some improvements, considering the val-
ues obtained in the final evaluation phase. One important step in this direction is to visualize the errors,
at scale, on the map of Switzerland, for a better understanding of the patterns that our best performing
algorithm drew with its predictions. Thus, we overlap the predicted and the ground-truth locations on
the map of Switzerland, illustrating the result in Figure 1. The points depicted on the map are described
by their 2D coordinates, latitude and longitude, as in the data set provided for the task. The ground-truth
locations are colored in blue, while the predictions are illustrated in red. For each pair of ground-truth
and predicted location, there is a line connecting the two points, giving us a better idea regarding the
errors made by the XGBoost ensemble, in terms of distance. For the visualization presented in Figure 1,
we have randomly selected a subset of 100 points from the test set, with non-overlapping ground-truth
locations. We hereby notice that including all the data points from the test set would generate a visual-
ization that is too cluttered and hard to understand. Hence, we opted for a smaller number of points for
a better visualization experience. Considering the annotated map illustrated in Figure 1, we observe that
our predictions tend to be clustered around the main cities in the German-speaking side of Switzerland,
such as Zürich, Bern, Lucerne and Basel. This bias towards the mentioned cities might be induced by the
data samples from the training set, likely not having a well-distributed variance in terms of the locations
or the texts used in the learning process. We also observe that the ground-truth locations exhibit a higher
variance than the predicted locations. One possible solution would to manually adjust the variance of the
predicted location to match the variance of the actual locations.

5 Conclusion

In the current work, we tackled the SMG-CH shared subtask of the 2020 VarDial Evaluation Campaign.
We addressed this challenge from a shallow perspective, with handcrafted models such as a ν-SVR based
on string kernels, as well as from a deep learning perspective, with neural models such as an LSTM
based on BERT embeddings and a character-level CNN, respectively. Additionally, we combined the
proposed models into an ensemble, employing the XGBoost meta-learner. We obtained our best results
with the XGBoost ensemble, which benefits from complementary information from the handcrafted and
deep models. We therefore brought one more proof regarding the effectiveness of ensemble learning in
general, and of XGBoost, in particular. Another important conclusion is that our shallow model based
on string kernels outperforms the two deep neural networks. We consider this as yet another indicator
of the high discriminative power that string kernels can bring to a fairly standard learning model, i.e. the
ν-SVR.

In future work, we aim to explore ways to improve our performance with respect to the metrics pro-
posed by the shared task organizers. Currently, it seems that training the models to simply minimize the
MSE or the MAE values is not effective, as our best model was significantly outperformed by the model
proposed by the shared task organizers themselves.
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Rosa M. Giménez-Pérez, Marc Franco-Salvador, and Paolo Rosso. 2017. Single and Cross-domain Polarity
Classification using String Kernels. In Proceedings of EACL, pages 558–563.



251

Mihaela Găman and Radu Tudor Ionescu. 2020. The Unreasonable Effectiveness of Machine Learning in Molda-
vian versus Romanian Dialect Identification. journal=arXiv preprint arXiv:2007.15700.
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