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Abstract

We explore the performance of Bidirectional Encoder Representations from Transformers (BERT)
at definition extraction. We further propose a joint model of BERT and Text Level Graph
Convolutional Network so as to incorporate dependencies into the model. Our proposed model
produces better results than BERT and achieves comparable results to BERT with fine tuned
language model in DeftEval (Task 6 of SemEval 2020), a shared task of classifying whether a
sentence contains a definition or not (Subtask 1).

1 Introduction

Definition Extraction from free text (DEFT) (Spala et al., 2020) involves finding term definition pairs from
free and semi-structured texts, especially those whose term-definition span crosses a sentence boundary
and those which do not have a definition phrase. An example of a cross boundary sentence from the DEFT
corpus is given below:

In doing so , <DEF> monomers release water molecules as byproducts <DEF> (1). This type of
reaction is known as <TERM> dehydration synthesis <TERM> , which means “ <QUALIFIER>
to put together while losing water <QUALIFIER> . ”(0)

It can be observed that the definition (enclosed by DEF tags) and the corresponding terms (enclosed by
TERM tags) are present in different sentences, thus increasing the difficulty of definition extraction. The
task is thus relatively different and complex from the conventional definition extraction (DE) task in which
a definition could be broken into the following sub-parts:

1. The DEFINIENDUM field (DF) i.e., the word being defined.

2. The DEFINITOR field (VF) i.e., the verb phrase used to introduce the definition.

3. The DEFINIENS field (GF) i.e., genus phrase or the hypernym.

4. The REST field (RF) i.e., additional clauses that help to distinguish the definiendum from its genus.

and thus easily be captured by common verb phrases (DEFINITOR) like “means”, “refers to”, “is”, etc.
These kind of conventional definitions could easily be tagged as follows:

<DF>Photosynthesis</DF> <VF>is</VF> <GF>the process </GF> <RF>by which green
plants manufacture food. </RF>

In the example presented above, the definition (REST field) and the corresponding term (DEFINIEN-
DUM field) are present in the same sentence. Moreover, the presence of DEFINITOR(s) in the text also
eases the task of extracting such definitions.
* Equal contribution.
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The order of the tags in the WCL Corpus (Navigli et al., 2010), one of the conventional corpus for
Definition Extraction task, is predefined viz. DEFINIENDUM, DEFINITOR, DEFINIENS, REST. On the
other hand, there is no such predefined order for the DEFT corpus regarding the occurrence of BIO Tags.
This absence of order makes it difficult for the models to identify the definitional sentences in the DEFT
corpus and then associate the words present in the definitions with the appropriate tags.

Another observation is the variation in the pattern of the definitional sentences in the DEFT corpus
due to the presence of the heterogeneous distribution of tags. Some tags like ‘O’,‘I-Term’,‘I-Definition’,
etc. are very frequent whereas tags such as ‘Alias-Term’, ‘Secondary-Definition’ are rarely seen. This
imbalance in dataset causes difficulty in finding a structure for the definition and hence makes the DEFT
corpus relatively more complex when compared to conventional corpora like WCL.

Thus, given the complexity of the definitions present in the DEFT corpus, the whole pipeline for the
extraction of meaningful term-definition pairs from free text can be restructured as presented in Figure 1.

Figure 1: Pipeline for Definition Extraction

Since the corpus is already in the form of sentences, sentence segmentation is not required. For tagging
tokens, authors of DEFT Corpus (Spala et al., 2019) have defined a new annotation scheme, a part of
which has been touched upon in the introduction section. Moreover, it can be found in the corresponding
paper.

In this paper, we present the approach used for the task “DeftEval: Extracting term-definition pairs in
free text” of SemEval 2020. The subtasks are as follows:

1. Subtask 1 - Sentence Classification

2. Subtask 2 - Sequence Labeling

3. Subtask 3 - Relation Classification

Our presented methods for the sentence classification subtask (Subtask 1) revolve around the Trans-
former (Vaswani et al., 2017) based model, Bidirectional Encoder Representations from Transformers
(BERT) (Devlin et al., 2018). Experiments 1 have been done to improve the results and in the process we
have come up with improvised architectures.

The rest of the paper is organized as follows: Related work with its limitations has been discussed
in Section 2, followed by a description of the data used in Section 3. The proposed methods have been
elaborated in Section 4 2. Section 5 and 6 contains the results and error analysis respectively. Section 7
concludes the paper and also includes the possible future work.

2 Related Work

The very first attempt at DE was by Kobyliński and Przepiórkowski (2008). They used a “Balanced
Random Forest classifier” to classify definitions so as to handle the imbalance of the dataset. A major
contribution to DE was by Navigli and Velardi (2010), by using a generalization of word lattices to model
textual definitions in the form of Definiendum, Definitor, Definiens and Rest. However, this approach is
unable to generalise definitions, especially the ones that defy the conventional semantics i.e. common
patterns found in definitional sentences.

1Corresponding submissions have been made under the username of mler on Codalab
2Source code available at https://github.com/dsciitism/SemEval-2020-Task-6
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Many existing works take advantage of linguistic features like syntactic dependencies. Jin et al. (2013)
built DefMiner which is a supervised sequence labelling system using shallow parsing and dependency
features. Training CRF (Conditional Random Fields) with lexical, terminological, and structural features
extracted from data has also been tried by Anke (2013). The use of linguistic features lead to promising
results and observations. Espinosa-Anke and Saggion (2014) took advantage of the subtrees in the
dependency parsing of a sentence. Feature representation of sentences were created using these subtrees.
Espinosa-Anke et al. (2015) incorporated both linguistic and semantic features of sentence for training
classifiers. SensEmbed is used to reveal the semantic compactness of definition containing sentences.

With the advent of the deep learning era, the first attempt at DE using deep learning was by Li et
al. (2016). Feature representation of sentences were learned using Long Short Term Memory (LSTM)
cells. Text preprocessing such as replacing some selected words with POS tags, were carried out thus
obtaining brilliant results. Anke and Schockaert (2018) developed Syntactically Aware Neural Networks
by incorporating syntactic information (syntactic dependencies and dependency labels) along with the
text sentences as input. With the help of pre-trained word embeddings, convolutional filters and Bi-LSTM
cells, the model was capable of extracting both short range and long range dependencies from the text
data.

In the most recent attempt at Definition Extraction, Veyseh et al. (2019) proposed a multi-task model to
perform sentence classification and sequence labelling simultaneously. The model took advantage of the
entire syntactic dependency tree rather than just dependencies, thus yielding state of the art results on the
WCL dataset.

3 Dataset

For the purpose of training, evaluation and testing, the DEFT corpus has been used. Not only is the corpus
significantly larger than the previously available corpora in the field of Definition Extraction, but the
dataset also contains definitions from complex, human-annotated data across a variety of topics and from
both free (textbook) and semi-structured (legal document) language. Table 1 shows the statistics of the
major datasets available in the field of DE namely, WCL, W00 (Jin et al., 2013) and DEFT.

Dataset No. of positive annotations Size(in sentences)
WCL 1,871 4,718
W00 731 2,185
DEFT 11,004 23,746

Table 1: Dataset statistics

By complicated structure, we mean that the corpus does not contain simple sentences of the form
“X is a Y” as is the case in most of the definitions present in the WCL dataset. Instead, roughly 50%
of term-definition pairs in the dataset appear across sentence boundaries or with an otherwise complex
structure (e.g., containing secondary information, containing ambiguous references to previously stated
terms or definitions) whereby the relationship between a term and definition requires more deduction than
finding a definition verb phrase.

4 Methods

4.1 Data Preprocessing

Unlike conventional approaches for text classification (Tf-Idf, Bag of Words Model, etc.), deep learning
approaches require minimal preprocessing. It is often believed that preprocessing leads to the loss of
information. So, for preprocessing the we have only performed the following two steps:

1. Removal of leading line numbers: Some of the sentences in the data have a leading line number. It
has been removed since it is irrelevant to the content of the sentence and acts as noise.
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2. Addition of the subject token: It has been found in some cases of our experiments that adding the
subject token i.e. the subject of the textbook from which the sentence to be classified is picked, helps
improve the results.

4.2 Model Architectures
Initially, we started off by using the approach of Syntactically Aware Neural Networks. However, owing
to the complexity of the DEFT corpus, the model was unable to perform well. Hence, we shifted towards
using larger pretrained models such as Transformers. We concentrate on the performance of BERT
since it has achieved the State of The Art results in many NLP tasks with limited fine-tuning on task-
specific training data. Moreover, Kumar et al. (2020) have shown that BERT implicitly captures syntactic
dependencies, which play an essential role in Definition Extraction.

We now describe the three approaches that we have implemented and submitted to the shared task.

1. BERT : BERT, based on the Transformer architecture, consists of multi-attention heads which apply
sequence-to-sequence transformation on the input text sequence. BERT incorporates the following
practices for training (a) learn to predict a masked token using the left and right context of the text
sequence (Masked Language Model) (b) learn to predict whether two sentences occur in continuation
or not (Next Sentence Prediction)

For our experiments, we use the BERT (base-cased) made publicly available by Huggingface (Wolf
et al., 2019). It consists of 12 hidden layers in the encoder of the Transformer. The encoder outputs
a feature vector of 768 dimensions. We select the cased model (pre-trained on cased English text)
because lower casing the data leads to loss of information. The representation corresponding to the
CLS token is fed through two feed-forward linear layers, thus giving two values corresponding to the
logits of the two classes. We train the model for 5 epochs using AdamW (Loshchilov and Hutter,
2017) optimizer with a learning rate of 2e-5.

2. BERT with fine tuned language model : This model is the same as the first one, except we fine
tune the Masked Language Model of BERT using the training data. This helps BERT to understand
the context of the corpus in a better manner. Results show that fine tuning the language model of
neural networks gives improved results (Howard and Ruder, 2018).

To fine tune the LM, we take help of Huggingface’s run language modeling.py utility3. The other
hyperparameter settings remain the same as the first model.

Figure 2: Joint model of BERT and Text Level GCN

3. Joint model of BERT and Text Level GCN : The above models do not take into account linguistic
features along with the text data. Researchers have obtained superior results by incorporating linguis-
tic information into the models. However, creating such features requires extra effort and involves
the use of dependency parsers, which may lead to error propagation (error in extracting linguistic

3https://github.com/huggingface/transformers/tree/master/examples/
language-modeling
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information will lead to feeding of erroneous information to the model). Graph Convolutional
Networks (GCN) (Kipf and Welling, 2016) have yielded superior performance on graph-structured
data. Since text can also be represented as graph data (for example syntactic dependency trees), we
use the feature representation obtained from a Text Level Graph Convolutional Network (Huang et
al., 2019) along with the feature representation obtained from BERT, to solve our task. As shown in
Figure 2, both the representations are concatenated and a linear layer is used to output the logits of
the two classes.

Figure 3: Inner Working of Text Level Graph Convolutional Networks

In a GCN, data is represented as graph(s) and each node of the graph is represented by a set of
attributes. A Text Level GCN represents a text sequence as a graph. Each token of the sentence
represents a node and has its corresponding word vector as attributes. A token has an edge between
its n-grams to the left and right of it (n is also referred as window size). The greater the value of n,
greater is the range of dependencies that are captured. Figure 3 shows the corresponding edges for a
token (T2) of a text sequence with 4 tokens, considering a window size of 2.

The weights of the edges are learned through training. The weighted representations (product of edge
weight and word vector) is sent to its neighbours by each node. Each node gathers information from
its neighbouring nodes, and uses it to update its own representation (i.e. attributes) and edge weights.
The values of the edge weights represent the significance of the dependency between a token and one
of its n-grams. Thus, the model understands the difference between strong and weak dependencies
without any human intervention.

The language model of the BERT component of the model is not fine tuned. We use the publicly
available pre-trained weights. The Text Level GCN component uses pre-trained GloVe word embed-
dings (Pennington et al., 2014) as node attributes. We use a window size of 5 in our experiments.
The model is trained for 5 epochs using AdamW with learning rate 2e-5.

5 Results

We evaluate the performance of the three models on the validation set and the test set. The evaluation
metric is F1 score on the positive class. The submissions of the test set were done using a 10-fold cross
validation so as to increase the robustness of the results. The results are presented in Table 2.

The results show that fine tuning the language model of BERT leads to improved results. The fine
tuned BERT achieves the greatest F1 score on the test set among the 3 models. The reason for such a
performance boost can be attributed to the structure of the DEFT corpus. The corpus consists of long
continuous segments from textbooks and legal documents. Since there is a lot of text in the same context,
fine-tuning the language model helps BERT to get a better understanding of the domain of the corpus.
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Model Validation Set Test Set
BERT 0.74 0.731
BERT with fine tuned language model 0.768 0.775
Joint model of BERT & GCN 0.781 0.758

Table 2: Comparison of results of the mentioned models

It is also evident from Table 2 that the inclusion of Text Level GCN along with BERT is also beneficial.
The Text Level GCN component of the joint model is capturing some extra information from the text data
which is boosting the performance.

6 Error Analysis

We analyze the predictions on the validation set. For the predictions of all the models, we calculate the
binary cross entropy loss for each example and then sort the examples as per descending loss values. We
examine the top commonly mis-classified examples by each of the 3 models (in Table 3).

Sentence True Label
”United States v. Miller , 307 U.S. 174 ( 1939 ) . 1
Pathogens include bacteria , protists , fungi and other infectious organisms . 1
Toll goods are available to many people , and many people can make use of
them , but only if they can pay the price .

1

Table 3: Common highly mis-classified sentences

We observe that majority of these examples belong to the cross sentence definition scenario as mentioned
in Section 1. This implies that models are struggling to extract cross-sentence definitions. The models
lack a context to the sentence to be classified, because of which it is unable to classify definitions that
are covered in more than one sentence. To the human reader, the predictions of most of mis-classified
sentences would appear correct. However, they are incorrect according to DEFT corpus.

An additional reason for the errors is the incorrect/ambiguous labelling of the dataset. For example,
consider the sentence ‘”United States v. Miller , 307 U.S. 174 ( 1939 ) .’ in table 3. The sentence is not a
definition but due to the inverted comma (”) of the trailing sentence (which was a definition), this sentence
was also labelled a definition. Similarly, the label for the sentence “Pathogens include bacteria , protists ,
fungi and other infectious organisms .” is debatable as it seems more of a description than a definition.
Last but not the least, “Toll goods are available to many people , and many people can make use of them ,
but only if they can pay the price .” is clearly not a definition.

7 Conclusion and Future Work

We study the performance of BERT on the DEFT corpus and tried to boost BERT with explicit linguistic
information (in the form of dependencies) using a Text Level GCN model. For further improvements, we
can use BERT with a fine-tuned language model as the component of the joint model. The models can also
make use of a context in the form of the sentence preceding the sentence to be classified. The incorporation
of a context can help models overcome the problem of misclassifying cross-sentence definitions.
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