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Abstract

This paper describes our approach to ”DeftEval: Extracting Definitions from Free Text in Text-
books” competition held as a part of SemEval 2020. The task was devoted to finding and labeling
definitions in texts. DeftEval was split into three subtasks: sentence classification, sequence
labeling and relation classification. Our solution ranked 5th in the first subtask and 23rd and 21st
in the second and the third subtasks respectively. Our best solution for subtasks 1, 3 employs
multi-task learning of a Transformer-based model on all three tasks. However, for subtask 2
single-task learning proved to perform better.

1 Introduction

This work is devoted to DeftEval challenge (Spala et al., 2020) held as part of SemEval 2020. It was
concerned with the problem of definition extraction. It has recently been a popular topic. However, there
were few annotated datasets and they were often small in size (Jin et al., 2013) or were limited to the cases
when a term and its definition are in the same sentence (Navigli et al., 2010).

DeftEval is one of the first attempts to provide a structured multi-task dataset that can be used for
various tasks connected with definition extraction and labeling (Spala et al., 2019) at text level (in contrast
to sentence level). All the provided data was in English.

Our system employs a Transformer-based model trained jointly for all three tasks. For each task, we
add a linear layer with dropout on top of the Transformer output. It allows the system to use information
about sentence classes, entities it contains, and relations between them at the same time while training.
This helps to improve the results for Subtasks 1,3. However, a single-task model performs better for
Subtask 2.

Our system achieved F1 score of 0.844 for the first task with the difference from the first place equal to
approximately 0.03 points. For the second task, our final score was equal to 0.52 while the difference
amounted to 0.32. For the third task, our F1-score was equal to 0.61 while the winning system achieved
the perfect score of 1.0. Although named entity information was provided for the third subtask, we did
not use it and included only span information into the model. The main contribution of our work is a
detailed analysis of multi-task systems performance for definition extraction, classification and named
entity recognition. The results show that our approach to multi-task training might be beneficial for the
sequence classification task, but it requires reconsidering for sequence labeling. Our code is publicly
available1.

2 Background

DeftEval was split into three subtasks 2:

This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
creativecommons.org/licenses/by/4.0/.

1Gorynych is a Russian folklore three-headed dragon. https://github.com/davletov-aa/deft-eval-2020
2https://competitions.codalab.org/competitions/22759
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• Subtask 1: Sentence Classification
Given a sentence, classify whether or not it contains a definition. This is the traditional definition
extraction task.

• Subtask 2: Sequence Labeling
Label each token with BIO tags according to the corpus’ tag specification.

• Subtask 3: Relation Classification
Given the tag sequence labels, label the relations between each tag according to the corpus’ relation
specification.

The dataset contained 215 files, 80 out of them were for training, 68 for validation, and 67 for the test.
These files contained 7001 text extracts with 26552 sentences and 513219 word uses. The dataset contains
29011 unique tokens. The data was provided in CoNLL 2003-like format (see Fig. 1). The data was from
several distinct domains: biology, economics, government, history, physics, psychology and sociology.

DeftEval was held in two phases: first, there was given the data for the first two subtasks which did not
contain named entity information. Then the third subtask data with named entity spans and types were
revealed.

Figure 1: Deft corpus example

There are many ways to extract information from text. This task is often solved by extracting named
entities and classifying relations between them. Currently, the best results are achieved with Transformer-
based models (Vaswani et al., 2017). The most advanced models (according to paperswithcode3) use extra
training data or additional knowledge bases. For example, in the state-of-the-art system the authors use
Wikipedia data (Baldini Soares et al., 2019). However, such data is impossible to get for domain-specific
relations.

Among the systems that do not use encyclopedias or other labeled data, the best results were achieved by
Joshi et al. (Joshi et al., 2019). They pre-trained a BERT-like system, but instead of predicting individual
masked tokens, they trained the model to infer contiguous random spans. The model was also trained to
predict each token in the masked span using output representations of only span boundary tokens. This
significantly improved the results of their model in comparison with the vanilla BERT.

Our system applies a sequence labeling approach to both named entity recognition and relation
extraction. A similar work was proposed by Veyseh et al. (Veyseh et al., 2020) where they built a joint
system for definition extraction where they combined both sentence classification and sequence labelling
in a single BiLSTM model with a graph convolutional layer on top of it. This approach looked promising
and we decided to transform it and to use a single BERT-based model. Thus, we adopt a multi-task
approach and predict sentence classes, named entities and the relation between these entities in one go.
We compare the multi-task model results with its single-task counterparts.

3 System Overview

3.1 Multi-task learning
To solve all three subtasks of the competition, we decided to use the joint training method. We propose a
model that simultaneously predicts an input example class, a tag sequence of entity labels and semantic

3https://paperswithcode.com/sota/relation-extraction-on-tacred
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Figure 2: Joint relation extraction and named entity recognition

Figure 3: Architecture of our main model for joint subtasks learning.

relations between entities. To do so, we consider relation extraction as a sequence labeling problem
(similar to how named entity recognition is usually solved). In each example, we have one marked main
entity (which may contain several tokens) and we predict all named entity tags and all relations between
the main entity and all other tokens in the sentence (see Fig. 2). The architecture of our main model is
depicted in Figure 3.

The dataset contained texts separated into small windows of 3-5 sentences each. Windows were split
with respect to their description ids. According to the organizers, there were no relations that span across
windows. Thus, all our training and inference was done with respect to these windows.

In each training example, we highlight the boundaries of the analyzed sentence with special tokens.

We also mark the boundaries of the entity for which we are going to predict all relations in the
text extract. So for each named entity from the dataset we generate a training example containing the
boundaries for the considered entity and the sentence.

During training, the weighted sum of cross-entropies of each subtask was optimized. Thus, the proposed
model relies solely on the input text and the knowledge of the boundaries of entities and sentences, without
using information about entity types. The learning rate was set to 1e-5, the weight decay and the dropout
were set to 0.1. To obtain information about entity boundaries, we trained an independent entity extraction
model based on BERT (Devlin et al., 2018). We use it to extract entities and generate examples for
our main model. In the competition for the third subtask, we used annotated named entity information
provided by the organizers instead of BERT-model predictions.

BERT and XLNet (Yang et al., 2019) tokenizers split tokens into several subtokens so we had to create
an aggregation scheme to merge subtoken outputs back together for entity and relation inference. The
output was taken from the first sub-token.

For each training example from the training dataset we generated several samples. Since each example
from the training dataset was turned into several examples, in the prediction we had to choose the answer
from one. For this, in the first task, we selected the answer with the maximum score, for the second task
for each word we took the answer from the example in which the score was maximum for this word. In
the third task, we group examples into non-overlapping sets according to the predicted relation type, and
in each set, we choose an example with the maximum average score. For the final prediction, we merge
the answers of these sets.

Similar to the approach described before, we tried to train models jointly on first and seconds subtasks
only. We also tried single-task models for the first and second tasks. Subtask sections 1 and 2 below
describe the response construction process for each subtask respectively.
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3.2 Single-task models

3.2.1 Subtask 1. Sentence classification
In this experiment, sentences were classified into two classes whether they contain a definition or not. As
a single task model we fine-tuned a Roberta.large model (Liu et al., 2019)4. According to the Roberta
instruction, the training and validation samples were binarized to the desired format. We fine-tuned only
weight-decay and dropout coefficients due to heavy performance costs. The learning rate was set equal
to 1e-05. All models were trained for 20 epochs. Validation occurred at the end of each epoch. Roberta
models were trained at the sentence level without using all sentences from the window.

3.3 Subtask 2. Named entity recognition

The second subtask was named entity recognition in the definition domain. Entity labels were selected
among various definitions and term types. Entities could span across several words. In the experiment, the
model was trained at the window level.

We relied on the code by Kamal Raj 5. The BERT-large-uncased model was used. For each token in the
example, we took BERT embedding from the first subtoken and passed it through a dropout layer followed
by a linear layer. Cross entropy was used as an error function. All non-entity tokens were ignored for
loss function calculation. The labels ‘[CLS]‘ and ‘[SEP]‘ were used to mark the beginning and the end of
each example. We also optimized the learning rate, dropout rate, and weight decay coefficients using the
validation dataset.

4 Results

Model w1 w2 w3 Task1
Dev F1

Task1
Test F1

Task2
Dev F1

Task2
Test F1

Task3
Dev F1

Task3
Test F1

m.-task BERT ♠ 1.0 1.0 1.0 0.813 0.848 - - 0.631 0.604
m.-task BERT ♠ 1.0 0.1 1.0 0.818 0.830 - - 0.667 0.723
m.-task XLNet ♠ 0.0 0.0 1.0 - - - - 0.456 0.655
m.-task XLNet ♠ 1.0 0.0 1.0 0.839 0.826 - - 0.463 0.48
m.-task BERT ♣ 0.0 1.0 - - - 0,652 0.541
m.-task BERT ♣ 1.0 0.3 - 0.838 0.807 - -
s.-task BERT ♦ - 1.0 - - - 0.656 0.581 - -
s.-task Roberta 1.0 - - 0.805 0.816 - -

Table 1: The best results achieved by our models on the test set. ♠ denotes a model trained jointly on
all three subtasks which require the knowledge of entity spans, ♣ denotes a model trained on first and
second subtasks and ♦ denotes a model trained only on the first subtask. Roberta model opposite to all
other models was trained only on single sentences on the first subtask.

We ranked 5th in the task of sentence classification and 23rd and 21st in named entity recognition and
relation classification. Our system achieved 0.844 in the F1 metric for the first task with the difference
from the first place equal to approximately 0.03 points. For the second task our final result score was
equal to 0.52 while the difference amounted to 0.32. For the third task our F1-score was equal to 0.61.

In Table 1 we provide the post-evaluation results of our models for all three subtasks. Entity spans for
subtask 1 models (denoted by ♠) were inferred from predictions of our best single-task model for subtask
2 on the development dataset.

For the first task we tried a Roberta based model and BERT and XLNet-based multi-task learning
models. Multi-task approach outperforms the Roberta model for this task. It is true not only for the best
model but for all multi-task models trained on all three subtasks where the sentence weight is not set to
0. However, we could not improve single-task results for named entity recognition. It might be due to

4https://github.com/pytorch/fairseq/tree/master/examples/roberta
5https://github.com/kamalkraj/BERT-NER/
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insufficient training time because the task itself is more difficult than binary classification. XLNet and
BERT results turned out to be close to each other. Their exact results may depend on a lot of factors such
as seed number which are not covered in the article. Multi-task learning results with different weighting
schemes can be seen in the Appendix.

4.1 Error analysis (Subtask 1)

Figure 4: Types of the examples our model struggles most with. There were in total 85 wrongly predicted
examples. 85 examples were additionally randomly selected from the correct predictions. pos and neg
denotes positive and negative classes. For example, 14.1% of wrong answers are of type 1a from the
positive class and 0% are of type 1a from the negative class

Figure 5: Ablation analysis of contexts. w2-w3 = 1.0-1.0 mean that the weights of the second and the
third subtasks are equal to 1.0.

In Figure 4 we show our classification of the main error types of our best-performing relation extraction
models for the first subtask. We manually labelled misclassified examples according to their error type. It
turns out that most errors come from our model being too sensitive to words typical for definitions, e.g.
various conjunctions (which, that). Another major downside is mishandling of named entities. It proves
that named entity information might be helpful for telling whether a message contains a definition.

After the shared task we have also studied the influence of context on model results for the first subtask
(see Figure 5). The texts in the dataset were split at a sentence level by the organizers. So we decided to
see how full text inputs influenced the results. Three context types were studied: no context, left, right
and full. The context shows which information is left with respect to the analyzed sentence. Left context
means that we make predictions for the sentence and all words to the left. Full context means that we
preserve the sentence and all words to the left and right. We filter examples which have main entity
outside of preserved words of the window. We did early stopping by best f1-score for positive class on
first subtask. As can be seen from Figure 5, leaving only left context improves model results. The fact
that full context is performing poorly relative to other variants maybe attributed to the filtering process for
examples with main entity out of context.
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5 Conclusion

This work is about our results in DeftEval challenge which was devoted to finding and classifying
definitions in texts. A single Transformer-based model was adopted for both tasks simultaneously. We
ranked 5th in the task of sentence classification and 23rd and 21st in named entity recognition and relation
classification. In this paper we describe our system and analyze the errors.
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A Multi-task learning on subtasks 1, 2

Figure 6 shows the results of the models trained jointly on the first and the second subtasks. We set the
weight of the target subtask to 1.0, while changing the weight of another subtask. For subtask 1 multi-task
learning seems beneficial on the dev set, which was used for early stopping. From the test set performance
we see that this improvement is comparable with the variance of the scores. For subtask 2 multi-task
learning evidently hurts.
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Figure 6: Scores for subtask 1 and subtask 2 with regard to each others weights.

B Multi-task learning on all three subtasks

In Figure 7 you can see the results of the models trained jointly on all three subtasks. For the first subtask
we used entity spans predicted by our best single-task sequence labeling model, while for the third subtask
we used gold entity spans. Also, for subtask 1 we did early stopping by the F1 score of the positive on the
subtask 1 development set.

Figure 7: Scores for subtasks 1, 3 with regard to the weights of the other two subtasks.

Figure 8: F1 scores for subtask 1 with regard to the weights of the other two subtasks. Gold entity spans
are fed to the model.

Figure 8 shows the results for subtask 1 when the gold entity spans are used instead of the predicted
ones. It seems, that our results for subtask 1 could be way better if our model for subtask 2 was better at
predicting entities spans.


