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Abstract

This paper presents six document classification models using the latest transformer encoders and
a high-performing ensemble model for a task of offensive language identification in social media.
For the individual models, deep transformer layers are applied to perform multi-head attentions.
For the ensemble model, the utterance representations taken from those individual models are
concatenated and fed into a linear decoder to make the final decisions. Our ensemble model
outperforms the individual models and shows up to 8.6% improvement over the individual models
on the development set. On the test set, it achieves macro-F1 of 90.9% and becomes one of the
high performing systems among 85 participants in the sub-task A of this shared task. Our analysis
shows that although the ensemble model significantly improves the accuracy on the development
set, the improvement is not as evident on the test set.

1 Introduction

With the development of IT, social media has become more and more popular for people to express their
views and exchange ideas publicly. However, some people may take advantage of the anonymity in social
media platform to express their comments rudely, and attack other people verbally with offensive language.
To keep a healthy online environment for the adolescences (Chen et al., 2012) and to filter offensive
messages for the users (Razavi et al., 2010), it is necessary and significant for technology companies to
develop an efficient and effective computational methods to identify offensive language automatically.

Transformer-based contextualized embedding approaches such as BERT (Devlin et al., 2019a), XLNet
(Yang et al., 2019), RoBERTa (Liu et al., 2019), ALBERT (Lan et al., 2020) or ELECTRA (Clark et al.,
2020) have re-established the state-of-the-art for many natural language classification tasks especially the
GLUE Dataset (Wang et al., 2018). Their pre-trained models were pre-trained on different large datasets,
for example, BERT was pre-trained on the BOOKCORPUS (Zhu et al., 2015) and English Wikipedia, and
RoBERTa was pre-trained on CC-NEWS (Nagel, 2016), OPENWEBTEXT (Gokaslan and Cohen, 2019),
and STORIES (Trinh and Le, 2018) which enable their models to learn different language features.

This paper presents six transformer-based offensive language identification models that learn different
features from the target utterance. To combine the distinctive learned language features, we introduce an
ensemble strategy which concatenates the representations of the individual models and feed them into the
linear decoder to make binary classification (Section 4.2). It largely improves the performance over the
baseline on our dev set (Section 4.4).

2 Related Work

Offensive language in Twitter (Wiegand et al., 2018), Facebook (Kumar et al., 2018), and Wikipedia (Geor-
gakopoulos et al., 2018) has been widely studied. In addition, different aspects of offensive language have
been studied, like the type and target of offensive posts (Zampieri et al., 2019), cyberbullying (Dinakar
et al., 2011; Huang et al., 2014), aggression (Kumar et al., 2018), toxic comments (Georgakopoulos et
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al., 2018) and hate speech (Badjatiya et al., 2017; Davidson et al., 2017; Malmasi and Zampieri, 2017;
Malmasi and Zampieri, 2018).

Many deep learning approaches have been used to address the task. The Convolutional Neural Networks
(CNNs), Long Short-Term Memory Networks (LSTMs) and FastText were applied on the hate speech
detection task (Badjatiya et al., 2017). Gamback and Sikdar (2017) used four Convolutional Neural
Network (CNN) models with random word vectors, word2vec word vectors, character n-gram, and
concatenation of word2vec word embeddings and character n-grams as feature embeddings separately to
categorize each tweet into four classes: racism, sexism, both (racism and sexism) and non-hate-speech.

3 Data Description

The datasets we use are Offensive Language Identification Dataset (OLID) (Zampieri et al., 2019) and
Semi-Supervised Offensive Language Identification Dataset (SOLID) (Rosenthal et al., 2020). Given a
tweet, the task is to predict whether the content involves offensive language. Table 1 shows the examples
of offensive and non-offensive tweets in these two datasets.

Id Tweet Label
09 @USER Buy more icecream!!! NOT
71 @USER That’s because you are an old man. OFF

(a) Examples from OLID.

Id Tweet AVG_CONF CONF_STD
167 @USER Pre-ordered your book, received in July, started last night and cannot put it down! 0.215 0.188
524 a combination of innocence and corruption 0.691 0.142

(b) Examples from SOLID.

Table 1: Examples in OLID and SOLID. NOT: not offensive, OFF: offensive, AVG_CONF: average of the
confidences to be offensive, CONF_STD: confidences’ standard deviation

OLID is a collection of 14,100 English tweets annotated as OFF or NOT. It is divided into a training set of
13,240 tweets and test set of 860 tweets (Zampieri et al., 2019). SOLID is a collection of about 9 million
English tweets labeled in a semi-supervised manner (Rosenthal et al., 2020). The data are annotated with
AVG_CONF and CONF_STD predicted by several supervised models (Zampieri et al., 2020). The test set
provided by organizers this year has 3887 tweets. Table 2 shows the statistics of OLID and SOLID.

OLID SOLID
TRN 13240 9089140
TST 860 3887

Table 2: Statistics of OLID and SOLID. TRN: training set, TST: test set.

4 Experiments

4.1 Data Split
For our experiments, a combination of OLID and SOLID (Section 3) is used. We find that about 1.0% of
SOLID are duplicates, which have been removed before data splitting. For the dataset used for fine-tuning
classification model, we set threshold of AVG_CONF (Section 3) to be 0.5 in SOLID, which means the
data with AVG_CONF above 0.5 is labelled as OFF. 90% of the TRN of OLID is combined with the whole
SOLID as the new training set TRN for default transformer-based models fine-tuning (FT). The remaining
10% of the TRN and the TST of OLID is used as the development set DEV of FT. All the existed datasets
are combined together as the training set TRN for model pre-training (PT). After pre-training, 99.5% of
the SOLID is randomly selected as the training set TRN and 0.5% of the SOLID is randomly selected
to create the development set DEV for fine-tuning our pre-trained models into classification models and
regression models (PT-C and PT-R). In PT-C, the data with AVG_CONF above 0.5 is labelled as OFF
and in PT-R, original value of AVG_CONF is used. Furthermore, 90% of TRN in OLID is randomly
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selected as the new training set TRN, and 10% of TRN in OLID is combined with the TST of the OLID
and become the development set DEV for classification models and regression models’ further fine-tuning
(PT-C-C and PT-R-C). The ensemble model is fine-tuned on the same dataset as PT-C-C. Table 3
shows the detailed statistics of the data split in our experiments.

FT PT PT-R PT-C PT-R-C PT-C-C E

TRN 8,963,663 9,107,127 8,951,747 8,951,747 11,916 11,916 11,916
DEV 2,184 - 44,983 44,983 2,184 2,184 2,184

Table 3: Statistics of the data split used for our experiments. TRN: training set, DEV: development set, FT:
dataset used for default model fine-tuning, PT: dataset used for default model pre-training, PT-R: dataset
used for fine-tuning our pre-trained models into regression models, PT-C: dataset used for fine-tuning our
pre-trained models into classification models, PT-R-C: dataset used for fine-tuning regression model into
classification models, PT-C-C: dataset used for further fine-tuning classification models, E: dataset used
for fine-tuning ensemble models.

4.2 Models
In general, default transformer-based models are fine-tuned as baseline models. The sequence of em-
beddings of input generated from the transformer encoder is fed into linear decoder to gain the output
vector that makes the binary classification. Then we pre-train these default models and choose the
models with lowest perplexity. Next, we fine-tune the pre-trained models into regression models and
classification models based on corresponding dataset, respectively. Furthermore, the regression models
and classification models are fine-tuned again into classification models. In the end, sentence presentation
of individual models are concatenated and fed into linear decoder to generate the output vector that makes
the binary decision of whether or not this tweet is offensive.

Dataset for 
Fine-Tuning

Dataset for 
Pre-Training

Fine-Tuning 
BERT

Fine-Tuning 
RoBERTa

Pre-Training 
BERT

Pre-Training 
RoBERTa

Classification 
Model

Regression 
Model

Classification 
Model

Regression 
Model

Classification 
Model

Classification 
Model

Classification 
Model

Classification 
Model

Ensemble 
Model

Prediction

Figure 1: Overview of the individual models and the ensemble model

In our experiments, two types of transformer-based models are used as the default models, BERT-Base
model (Devlin et al., 2019b) and RoBERTa-Base model (Liu et al., 2020). For the default model fine-
tuning part, the default BERT-Base and RoBERTa-Base are fine-tuned on FT (Section 4.1) as baseline
models. For the pre-training part, the BERT-Base and RoBERTa-Base are pre-trained on PT (Section 4.1).
Then, the two pre-trained models which have the lowest perplexity are fine-tuned into regression models
and classification models separately on PT-R and PT-C. Next, the fine-tuned pre-trained models are
further fine-tuned into classification models on PT-R-C and PT-C-C. Finally, sentence presentation of
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six individual models are concatenated to form the ensemble model which is fine-tuned on E. Figure 1
shows the overview of the six individual models and the ensemble model.

4.3 Experimental Setup

According to our experiments, the data preprocessing doesn’t contribute significantly to the final prediction
results on such huge dataset. Thus, we skip the data preprocessing. According to the analysis of sentence
length in the dataset, we set max_length of the models to be 128. After an extensive hyper-parameter
search, we set learning_rate to be 2e− 5, seed_value to be 42, and epochs to be 10 for our six individual
models and ensemble model. After that, we also experiment more on the ensemble model and find that
the best result is gained by changing learning_rate to 1e− 5 and dropout to 0.5.

4.4 Results

Table 4 shows the results achieved by our individual models and ensemble model. The selected pre-
trained BERT-base model and pre-trained RoBERTa-base model have the lowest perplexities, which
are 21.3 and 47.5. Our fine-tuned pre-trained classification-classificaion BERT and RoBERTa models
outperform their counterpart baseline by about 1.7% and 1.1%, respectively. In addition, our fine-tuned
pre-trained regression-classification BERT and RoBERTa models show 2.1% and 1.8% improvements
over their baselines. The ensemble model with learning_rate of 1e− 5 and dropout of 0.5 (E_2) achieves
significantly improvement on development set. It outperforms the BERT baseline and RoBERTa baseline
by 8.5% and 8.6%, respectively. As a result, we use this ensemble model as our final model and submit
the prediction results to the shared task’s CodaLab page.1 We achieve a macro-F1 score of 90.901% on
the test set and rank 36th among 85 participants in sub-task A. After the release of the gold labels, we also
calculate our other models’ performance on test set (Table 4) and make detailed comparison and analysis
among them (Section 4.5.1).

Model ACC_DEV ACC_TST P_TST R_TST F1_TST Epochs
B-FT 83.784 92.153 88.990 94.510 90.933 6
R-FT 83.692 92.102 88.933 94.503 90.882 10

B-PT-C-C 85.204 90.610 88.402 88.115 88.256 1
B-PT-R-C 85.845 92.102 88.933 94.532 90.885 2
R-PT-C-C 84.654 92.102 88.933 94.532 90.885 1
R-PT-R-C 85.158 88.552 85.129 87.886 86.299 2

E 88.548 92.153 88.990 94.510 90.933 2
E_1 90.701 92.153 88.992 94.396 90.917 1
E_2 90.884 92.128 88.962 94.464 90.901 2

Table 4: Results of individual models and ensemble model on dev set and test set. B-FT: fine-tuned default
BERT-base, R-FT: fine-tuned default RoBERTa-base, B-PT-C-C: fine-tuned our pre-trained BERT-base
classification-classification model, R-PT-C-C: fine-tuned our pre-trained RoBERTa-base classification-
classification model, B-PT-R-C: fine-tuned our pre-trained BERT-base regression-classification model,
R-PT-R-C: fine-tuned our pre-trained RoBERTa-base regression-classification model, E: ensemble
model with default learning_rate of 2e− 5, E_1: ensemble model with lower learning_rate of 1e− 5,
E_2: submitted ensemble model with higher dropout of 0.5.

4.5 Analysis

4.5.1 Ablation Analysis
When we fine-tuned our pre-trained models, B-PT-C, B-PT-R, R-PT-C, and R-PT-R on only 10%
of the PT-R and PT-C (Section 4.4) separately, the accuracy of models, B-PT-C-C, B-PT-R-C,
R-PT-C-C, and R-PT-R-C we get is 82.822%, 83.326%, 83.280%, and 83.646%, which is lower than
the results using total data (Table 4). It indicates that deep learning models which are trained on larger
dataset perform better. For the ensemble model, when we decrease the learning_rate from 2e− 5 (E) to
1e− 5 (E_LL), the performance improves from 88.548% to 90.701%, which shows that the ensemble
1https://competitions.codalab.org/competitions/23285
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model is sensitive to the change in learning rates. By changing the default dropout from 0.1 (E_LL) to 0.5
(E_HD), the model performance increase to 90.884%, which indicates the influence of the dropout rate.
After comparing the predicted labels from our unsubmitted models with the released gold labels (Table 4),
we can see the model which achieves the highest accuracy on the development set doesn’t perform best on
the test set. which may be caused by overfitting. Pure fine-tuned BERT-base model (B_FT) achieves the
same accuracy as other two ensemble models. In addition, higher accuracy can’t guarantee the higher
f1-score due to the data imbalance.

4.5.2 Error Analysis
The confusion matrix in Figure 2 further displays the error pattern of our classifier on test set. As we can
see, there are only three instances labeled with OFF are misclassified to NOT while more data labeled
with NOT are classified to OFF. Table 5 shows these three misclassified offensive examples and other
misclassified not offensive tweets.

Figure 2: Confusion matrix of the ensemble model

One explanation of the results may be that the imbalance of the dataset leads to the classifier’s preference
for the majority class. It is possible that our classifier may not capture some of the subtle nuances in
meaning and contexts, and our system still needs some improvement for these subtle details.

Id Tweet PL TL
304 Can someone please jump her ass. NOT OFF

2333 @USER I don’t So far as you can recognize your Dad aa trash there’s no need to be talking to you. NOT OFF
2825 @USER Wings over and it’s not even a question (sweet chili &amp; Jamaican jerk hanger). NOT OFF

(a) Misclassified offensive examples.

Id Tweet PL TL
3564 @USER @USER @USER Do not engage with idiots, they’ll bring you down to their level and beat you with experience. OFF NOT
3725 This heartburn is disgusting. OFF NOT

(b) Misclassified not offensive examples.

Table 5: Misclassified examples. PL: predicted label, TL: true label

4.6 Conclusion
This paper explores the performance of six individual transformer-based models and their ensemble model
for the task of offensive language identification in social media. Default BERT-Base and RoBERTa-
Base individual fine-tuning models are adapted to establish the strong baselines for the ensemble model.
Sentence representations from six individual models are concatenated and fed into the linear decoder to
make binary decision for the ensemble model. Our ensemble model with higher dropout shows significant
improvements on accuracy, up to 8.6%, on the dev set than baseline models. However, it performs worse
than the baseline model B-FT and original ensemble model E on the test set, which has a 92.153%
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accuracy. It may be caused by model overfitting and data imbalance, which are the problems we need to
take into consideration in future experiments.
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