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Abstract

This paper presents a vector initialization approach for the SemEval2020 Task 1: Unsupervised
Lexical Semantic Change Detection. Given two corpora belonging to different time periods and a
set of target words, this task requires us to classify whether a word gained or lost a sense over
time (subtask 1) and to rank them on the basis of the changes in their word senses (subtask 2).
The proposed approach is based on using Vector Initialization method to align GloVe embeddings.
The idea is to consecutively train GloVe embeddings for both corpora, while using the first
model to initialize the second one. This paper is based on the hypothesis that GloVe embeddings
are more suited for the Vector Initialization method than SGNS embeddings. It presents an
intuitive reasoning behind this hypothesis, and also talks about the impact of various factors and
hyperparameters on the performance of the proposed approach. Our model ranks 12th and 10th
among 33 teams in the two subtasks. The implementation has been shared publicly.1

1 Introduction and Background

Lexical Semantic Change (LSC) Detection is an active research topic in the field of natural language
processing, and has been applied for diachronic (across time) and synchronic (across domains) tasks
(Schlechtweg et al., 2019). Previously limited to manual ”close-reading” approaches, the availability
of large-scale corpora have allowed the use of computational methods for this task (Tahmasebi et al.,
2018). This topic has found various applications in various disciplines such as improving information
retrieval from historical documents (Morsy and Karypis, 2016), preventing cross-domain ambiguity in
requirements elicitation interviews (Jain et al., 2020), and studying the impact of societal and cultural
changes on word meanings and usage (Tahmasebi and Risse, 2017).

LSC detection involves the use of two corpora C1 and C2 which, in the diachronic case, belong to
different time periods t1 and t2 respectively. The various approaches found in the literature usually
involve the construction of a word embedding space specific to each corpus. The embeddings can be
constructed through count-based methods such as Positive Pointwise Mutual Information and Random
Indexing, or predictive methods such as Skip-Gram with Negative Sampling (SGNS). Most of these
models are stochastic in nature which means that separately trained embedding models live in their own
space. In order to project them onto a unified space, alignment techniques such as vector initialization and
orthogonal Procrustes are used. The LSC of a word is then quantitatively determined by measuring the
contextual dissimilarity between the word’s representations (Tahmasebi et al., 2018).

Recently, there have been efforts to evaluate these various methods by comparing their results with
manually-annotated data (Schlechtweg et al., 2019; Ahmad et al., 2020). The SemEval-2020 Task 1 is one
such effort which is based on LSC detection in corpora of English, German, Latin, and Swedish languages
(Schlechtweg et al., 2020). Its aim is to provide an evaluation framework for unsupervised LSC detection
systems by comparing their results against a ground truth, as annotated by native speakers or scholars. It
consists of two subtasks: Given two corpora C1 and C2 (for time periods t1 and t2), for a set of target
words,

1github.com/vaibhav29498/GloVeInit
This work is licensed under a Creative Commons Attribution 4.0 International License. License details: http://
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1. decide which words lost or gained senses between t1 and t2, and which ones did not; as annotated
by human judges.

2. rank them according to their degree of LSC between t1 and t2 as annotated by human judges. A
higher rank means stronger change.

2 System Overview

2.1 Vector Initialization

The Vector Initialization (VI) alignment method, which was first used by Kim et al. (2014), involves the
embedding space for t1 to be trained independently on C1. It is then used to initialize the embedding
space for t2 which is then subsequently trained from C2. The underlying idea is that the embedding for a
word w will get considerably updated if it is used within different contexts in C1 and C2, otherwise it will
receive only a slight update. A study by Schlechtweg et al. (2019), which applied the VI method on SGNS
embeddings, found it to perform significantly weaker on LSC detection tasks than other methods such as
orthogonal Procrustes (OP). They attributed this to the sensitivity of the VI method to the frequency of a
word in C2. The high frequency of a word in C2 will result into the word’s embedding getting frequent
updates away from its initial state. This leads to a large divergence between the word’s representations
even if it does not undergo any LSC from t1 to t2.

In a recent shared task on LSC detection in the German language, a modified VI approach achieved the
third-best result and outperformed certain OP approaches (Ahmad et al., 2020). Instead of only initializing
on the word embeddings obtained from C1, the modified approach initializes on the complete SGNS
model which includes the hidden layer. However, it also theoretically suffers from sensitivity to high
frequency.

2.2 Comparison of GloVe and SGNS

GloVe (Global Vectors) and SGNS are unsupervised algorithms for obtaining word embedding spaces
(Pennington et al., 2014; Mikolov et al., 2013). GloVe makes use of co-occurrence matrix X; its (i, j)
entry, Xij is the number of times the word wj appears in the context of the word wi (as defined by the
window-size L). It trains the word embeddings by minimizing the cost function

J =

V∑
i=1

V∑
j=1;j 6=i

f(Xij)(u
T
j vi − logXij)

2, (1)

where V is the vocabulary size and u, v ∈ RD are the word and context word vectors respectively. The
final word embeddings can be obtained by summing or averaging the two.

On the other hand, SGNS is a predictive model which relies on a shallow two-layer neural network
which, given a word, predicts the set of its context words. To avoid the expensive softmax function in the
training objective, negative sampling is used by drawing a few negative samples from a noise distribution.

An important distinction between GloVe and SGNS from this paper’s point of view is the number of
updates that are made to a word embedding during training. In a single epoch, the number of updates to the
SGNS embedding of a word is roughly equal to the number of words that appear in its context throughout
the corpus. Hence, the number of updates is proportional to the frequency of the word which has an
upper-bound of the total number of words in the corpus. However, this relationship is not exactly linear
because of downsampling of frequent words and negative sampling. In the GloVe model, the number of
updates received in a single epoch is equal to the number of distinct context words. This number is limited
by an upper-bound of vocabulary size V , which is usually much less than the total number of words in the
corpus.

As discussed in Section 2.1, the VI method can falsely give a high LSC score to words with high
frequency. Our hypothesis is that the GloVe model is more suited for the VI method due to its lesser
sensitivity to high frequency. To give an indication of the extent of this difference, the relationship between
a word’s frequency and the number of updates to its embedding is depicted in Figure 1 for both GloVe and
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SGNS models trained on the C2 corpora of all the four languages. These results are based on the official
GloVe implementation2 and the gensim3 implementation of SGNS. The models were trained for a single
epoch and only words with a frequency of greater than or equal to 5 were considered. It is clear that the
proportion of updates for frequent and rare words is comparatively more balanced in the case of GloVe.
On the other hand, there is a high rate of growth in the number of updates with respect to the frequency in
the case of SGNS, which indicates that it is biased towards estimating a high LSC for frequent words.

(a) CCOHA 1960-2010 (English) (b) BZ and ND 1946-1990 (German)

(c) LatinISE 0-2000 (Latin) (d) KubHist 1895-1903 (Swedish)

Figure 1: Plot of frequency of a word (x-axis) vs the number of updates to its embedding (y-axis). The
subcaptions include the name of the corpora C2, the corresponding time-period t2, and its language.

2github.com/stanfordnlp/GloVe
3radimrehurek.com/gensim
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3 Results and Experimental Setup

The dataset provided by the competition organizers consists of the corpora C1 and C2, and the list of
target words for four languages: English, German, Latin, and Swedish (Schlechtweg et al., 2020). All of
the corpora were already prepossessed: they were in tokenized and lemmatized form with punctuation
marks and one-word sentences removed.

Subtask 1 is concerned with identifying the loss or gain of one or more word sense(s), where subtask 2
tests a model’s ability to detect fine-grained changes in the two sense frequency distributions. For example,
consider the word cell which historically referred to either a chamber or the smallest unit of an organism.
However, the relative usages of both these senses have decreased with time, with mobile phone being the
predominant meaning now. For subtask 2, the ground-truth ranking of the target words is determined by
calculating the Jensen-Shannon divergence between their normalized sense frequency distributions from
t1 and t2 (Donoso and Sánchez, 2017). A submission is scored by its Spearman’s rank-order correlation
coefficient against the ground-truth ranking.

We used cosine distance as the metric to calculate the distance between a word’s vectors in diachronic
spaces, and every word with a distance of more than 0.55 (for German) or 0.45 (for other languages) were
classified to have gained of lost word sense(s).

In all of our experiments, only words having a frequency of at least 5 were considered. Our best-
performing solution during the evaluation phase achieved an accuracy of 59.9% in subtask 1 and a score
of 0.352. It was obtained by training word embeddings with a dimensionality of 50 on both C1 and C2 for
60 epochs each with a window-size of 10. The subtask-2 score was close to but less than the modified
SGNS-based VI approach discussed in Section 2.1, which was proposed by the team IMS and received a
score of 0.372. We ranked 12th and 10th out of 33 participants in the two subtasks respectively.

Further experiments on subtask-2 were conducted after the competition for analyzing the impact of
hyperparameters like window-size L and embedding dimensionality d and are reported in Table 1. Number
of training epochs was limited to 20 for models with window-size 10 because of their high computational
requirements. The results suggest that training the models for higher number of epochs can produce better
results if the embedding dimensionality is high, but can backfire in the opposite case. Using a larger
window-size improves the average result in most cases.

L Epochs d Scores
English German Latin Swedish Average

5

20

5 0.012 0.366 0.391 0.15 0.23
10 -0.144 0.362 0.394 0.114 0.182
20 0.193 0.402 0.368 0.244 0.302
50 0.278 0.446 0.315 0.229 0.317
100 0.226 0.312 0.254 0.186 0.244

60

5 -0.018 0.354 0.432 0.121 0.222
10 -0.095 0.283 0.379 0.108 0.169
20 0.212 0.41 0.377 0.324 0.331
50 0.228 0.464 0.329 0.366 0.347
100 0.269 0.312 0.276 0.309 0.291

10 20

5 0.011 0.334 0.485 0.218 0.262
10 -0.036 0.351 0.409 0.146 0.218
20 0.144 0.479 0.397 0.187 0.302
50 0.198 0.477 0.275 0.267 0.304
100 0.199 0.349 0.257 0.227 0.258

Table 1: Results of the post-evaluation experiments
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3.1 Error Analysis
We defined the ranking error for each target word as the difference between its predicted rank (RP ) and
its true rank (RT ) divided by the total number of target words (NW ). It lies in the range (−1, 1) and has
an ideal value of zero. A positive value indicates that the model overestimated the LSC for a word, and a
negative value indicates otherwise. We then defined normalized ranking error as the observed ranking
error divided by the expected absolute ranking error.

RankingError(RP , RT , NW ) =
RP −RT

NW
(2)

ExpectedAbsoluteRankingError(RT , NW ) =

∑NW
rp=1

|rp−RT |
NW

NW
(3)

A regression plot between the relative frequency of the target words and their normalized ranking error
as per our best performing model is depicted in Figure 2. A word’s relative frequency is defined as its
frequency divided by the total frequency of all words in the corpus.

Figure 2: Regression plot between the frequency of the target words and their normalized ranking error

There is a statistically significant correlation between the normalized ranking error and the relative
frequency, with the result of the Spearman’s rank-order correlation test being ρ = 0.217 and p = 0.007.
This indicates that the GloVe model’s relative insensitivity to high frequency can lead to it assigning a
rank lower than the true rank to such words. We believe that the frequency of the target words is not large
enough for SGNS’ sensitivity to high frequency to have a major impact on the results. This explains our
model’s inferior performance as compared to SGNS-based model in this task.

4 Conclusion and Future Work

In this paper, we reported our work in the SemEval2020 Task 1. We proposed a GloVe-based VI approach
which achieved the 10th and 12th ranks out of 33 participating teams in the two subtasks. We gave
a theoretical reasoning behind why GloVe is less sensitive towards high frequency than SGNS and
thus more suited for VI method, and empirically showed the magnitude of the difference between the
number of updates to word embeddings in the two models. We believe that despite a lower-than-expected
performance in this competition, our work presents a good case for the suitability of GloVe model when
corpora of larger size are involved. However, proving this quantitatively is a challenging task because of
the limitations associated with manual annotation-based evaluation.
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Planned future work includes the study of how techniques such as dimension-wise mean-centering
and length normalization, which have proved beneficial in OP-based approaches, can be applied for VI
method.
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